Computational Logic

Constraint Logic Programming
Constraints

• Constraint: conditions that a solution must satisfy
 ◦ $X + Y = 20$
 ◦ $X \land Y$ is true
 ◦ The third field of the data structure is greater than the second
 ◦ The murderer is one of those who had met the cabaret entertainer

• CLP: LP plus the ability to compute with some form of constraints
 (which are solved by the system during computation)

• (Additional) features of a CLP system:
 ◦ Domain of computation (reals, rationals, integers, booleans, structures, . . .)
 ◦ Expressions that can be built (+, *, ∧, ∨)
 ◦ Constraints allowed: equations, disequations, inequations, etc.
 (=, ≠, ≤, ≥, <, >)
 ◦ Constraint solving algorithms: simplex, gauss, etc.

• Solutions: assignments to variables, or new constraints among variables.
A comparison with classic LP (I)

- Example (plain Prolog): \[q(X, Y, Z) :\neg Z = f(X, Y). \]

```
?- q(3, 4, Z).
Z = f(3,4)
```

```
?- q(X, Y, f(3,4)).
X = 3, Y = 4
```

```
?- q(X, Y, Z).
Z = f(X,Y)
```

- Example (plain Prolog): \[p(X, Y, Z) :\neg Z \text{ is } X + Y. \]

```
?- p(3, 4, Z).
Z = 7
```

```
?- p(X, 4, 7).
{INSTANTIATION ERROR} ← is/2 not reversible, does not work!
```
A Comparison with classic LP (II)

- Example (**CLP(ℜ) package**):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Some solutions:
 - Better algorithms.
 - Compile-time optimizations (program transformation, global analysis, etc).
 - Parallelism.
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.

  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).


  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X = 14, Y = 15, Z = 16 ;
  no
  ```

- 458 steps (all solutions: 475 steps).
Example of Search Space Reduction

- Using the CLP(ℜ) package (generate–and–test):

```prolog
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).
solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
```

- Query:

```prolog
?- solution(X, Y, Z).
X =. 14, Y =. 15, Z =. 16 ? ;
no
```

- 458 steps (all solutions: 475 steps).
Generate–and–test Search Tree
Example of Search Space Reduction

- Move \texttt{test(X, Y, Z)} to the beginning (constrain–and–generate):

\begin{verbatim}
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).
solution(X, Y, Z) :-
 test(X, Y, Z),
 p(X), p(Y), p(Z).
\end{verbatim}

- Using \texttt{plain Prolog}:

\begin{verbatim}
:- test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
:- solution(X, Y, Z).
{INSTANTIATION ERROR}
\end{verbatim}

- Using the \texttt{CLP(\textbackslash R)} package:

\begin{verbatim}
:- test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
:- solution(X, Y, Z).
X =. 14, Y =. 15, Z =. 16 ? ;
no
\end{verbatim}

In 11 steps (and all solutions in 11 steps)!
Constrain–and–generate Search Tree

\[
g
\]

- X=11
- X=3
- X=7
- X=16
- X=15
- X=14
- Y=16
- Y=15
- Z=16
The semantics is parameterized by the *constraint domain* \mathcal{X}:

$\text{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, D, L, T)$:

- Σ: set of *predicate* and *function symbols*, together with their arity
- $L \subseteq \Sigma$–formulae: constraints
- D: the set of actual elements in the constraint domain
- \mathcal{D}: meaning of predicate and function symbols (and hence, constraints).
- T: a first–order theory (axiomatizes some properties of \mathcal{D})

(\mathcal{D}, L) is a *constraint domain*

Assumptions:

- L built upon a first–order language
- $\in \in \Sigma$ and \in is *identity* in \mathcal{D}
- There are identically false and identically true constraints in L
- L is closed w.r.t. renaming, conjunction, and existential quantification
Constraint Domains (I)

• \(\Sigma = \{0, 1, +, *, =, <, \leq\} \), \(D = \mathbb{R} \) (the reals), \(D \) interprets \(\Sigma \) as usual, \(\mathcal{R} = (D, \mathcal{L}) \)
 → **Arithmetic over the reals** ("\(\mathcal{R} \)" domain).
 ◇ Eg.: \(x^2 + 2xy < \frac{y}{x} \land x > 0 \) (\(\equiv xxx + xxy + xxy < y \land 0 < x \))
 ◇ Question: is 0 needed? How can it be represented?

• \(\Sigma' = \{0, 1, +, =, <, \leq\} \), \(\mathcal{R}_{Lin} = (D', \mathcal{L}') \)
 → **Linear arithmetic** ("\(\mathcal{R}_{Lin} \)" domain)
 ◇ Eg.: \(3x - y < 3 \) (\(\equiv x + x + x < 1 + 1 + 1 + y \))

• \(\Sigma'' = \{0, 1, +, =\} \), \(\mathcal{R}_{LinEq} = (D'', \mathcal{L}'') \)
 → **Linear equations** ("\(\mathcal{R}_{LinEq} \)" domain)
 ◇ Eg.: \(3x + y = 5 \land y = 2x \)

• A corresponding set of domains can be defined on the **rationals** ("\(\mathbb{Q} \)" domain)
Constraint Domains (II)

- A very special domain:
 - $\Sigma = \{ \text{constant and function symbols}, = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, \mathcal{L})$

\rightarrow **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
- Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $\text{LP} \equiv \text{CLP} (\mathcal{FT})$
 - I.e., classical LP can be viewed as constraint logic programming over Herbrand terms with a single constraint predicate symbol: \equiv.
Constraint Domains (III)

- $\Sigma = \{\langle\text{constants}\rangle, \lambda, _, ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets $.$ as string concatenation, $::$ as string length

\rightarrow **Equations over strings of constants** (D domain)

- Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$

\rightarrow **Boolean constraints** ($BOOL$ domain)

- Eg.: $\neg(x \land y) = 1$
CLP(Δ) Programs

• Recall that:
 ◦ Σ is a set of predicate and function symbols
 ◦ L ⊆ Σ—formulae are the constraints

• Π ⊆ Σ: set of predicate symbols definable by a program
 ◦ Atom: \(p(t_1, t_2, \ldots, t_n) \), where \(p \in \Pi \) and \(t_1, t_2, \ldots, t_n \) are terms
 ◦ Primitive constraint: \(p(t_1, t_2, \ldots, t_n) \), where
 \(t_1, t_2, \ldots, t_n \) are terms and \(p \in \Sigma \) is a predicate symbol
 ◦ Constraint: (first–order) formula built from primitive constraints

• The class of constraints will vary (generally only a subset of formulas are considered constraints)

• A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n \) where \(a \) is an atom and the \(b_i \)'s are atoms or constraints

• A fact is a rule \(a \leftarrow c \) where \(c \) is a constraint

• A goal (or query) \(G \) is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ): language based on Prolog + constraint solving over the reals (ℜLin)
 - Same execution strategy as standard Prolog (depth-first, left-to-right)
 - Allows linear equations and disequations over the reals
 - Linear constraints are solved;
 non-linear constraints are *passive*: delayed until linear or simple checks:
 * $X \times Y = 7$ becomes linear when X is assigned a definite value
 * $X \times X + 2 \times X + 1 = 0$ becomes a check when X is assigned a definite value
 - Prolog arithmetic is subsumed by constraint solving
- Note: CLP(ℜ) is really CLP((ℜ, ℱT)) — ℱT is often omitted.

- Supported in modern Prologs *coexisting* with the ISO primitives *is/2, >/2* etc.
- In Ciao, via the *clpr* package:
 - Uses .=., .>. etc. to distinguish the *clpr* constraints from the ISO-Prolog arithmetic primitives.
 - I.e., $X .= Y + 5$, $Y .> 1$ vs. $X is Y + 5$, $Y > 1$
Linear Equations (CLP(ℚ) package)

- Vector \(\times \) vector multiplication (dot product):
 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}
 \]
 \[
 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- Vectors represented as lists of numbers
  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result .==. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!
  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K .==. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 .==. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx .==. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(ℐ))

• Can we solve systems of equations? E.g.,

\[\begin{align*}
3x + y &= 5 \\
x + 8y &= 3
\end{align*}\]

• Write them down at the top level prompt:

\begin{verbatim}
?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
X .=. 1.6087, Y .=. 0.173913
\end{verbatim}

• A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):

\begin{verbatim}
system(_Vars, [], []).
system(Vars, [Co|Coefs], [Ind|Indeps]) :-
 prod(Vars, Co, Ind),
 system(Vars, Coefs, Indeps).
\end{verbatim}

• We can now express (and solve) equation systems

\begin{verbatim}
?- system([X, Y], [[3, 1], [1, 8]], [5, 3]).
X .=. 1.6087, Y .=. 0.173913
\end{verbatim}
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed
 \[\text{?- } \sin(X) .==. \cos(X). \]
 \[\sin(X) .==. \cos(X) \]

- This is also the case if there exists some procedure to solve them
 \[\text{?- } X\times X + 2\times X + 1 .==. 0. \]
 \[-2\times X - 1 .==. X \times X \]

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:
 \[\text{?- } X .==. \cos(\sin(Y)), Y .==. 2+Y\times 3. \]
 \[Y .==. -1, X .==. 0.666367 \]

- Disequations are solved using a modified, incremental Simplex
 \[\text{?- } X + Y .=<. 4, Y .>=. 4, X .>=. 0. \]
 \[Y .==. 4, X .==. 0 \]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:
 \[F_0 = 0 \]
 \[F_1 = 1 \]
 \[F_{n+2} = F_{n+1} + F_n \]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =.= 0.
fib(N,N) :- N =.= 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0, N1 =. N - 1, N2 =. N - 2, fib(N1,F1), fib(N2,F2), R =. F1 + F2.
```

- Note all constraints included in program (F1 >=0, F2 >=0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```prolog
?- fib(N, F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series
 → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that:
 across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number \(X + Yi \) modeled as \(c(X, Y) \)
- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 .==. Re1+Re2,
    Im12 .==. Im1+Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 .==. Re1 * Re2 - Im1 * Im2,
    Im3 .==. Re1 * Im2 + Re2 * Im1.
```

(equality is \(c_equal(c(R, I), c(R, I)) \), can be left to [extended] unification)
Analog RLC circuits (CLP(ℜ))

- Circuits in series:

```prolog
circuit(series(N1, N2), V, I, W) :-
c_add(V1, V2, V),
circuit(N1, V1, I, W),
circuit(N2, V2, I, W).
```

- Circuits in parallel:

```prolog
circuit(parallel(N1, N2), V, I, W) :-
c_add(I1, I2, I),
circuit(N1, V, I1, W),
circuit(N2, V, I2, W).
```
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

• **Resistor:** \(V = I \times (R + 0i) \)

```
circuit(resistor(R), V, I, _W) :-
    c_mult(I, c(R, 0), V).
```

• **Inductor:** \(V = I \times (0 + WL i) \)

```
circuit(inductor(L), V, I, W) :-
    Im = W * L,
    c_mult(I, c(0, Im), V).
```

• **Capacitor:** \(V = I \times (0 - \frac{1}{WC} i) \)

```
circuit(capacitor(C), V, I, W) :-
    Im = -1 / (W * C),
    c_mult(I, c(0, Im), V).
```
Analog RLC circuits (CLP(\mathbb{R}))

- Example:

\[
\begin{align*}
R &= ? & C &= ? \\
V &= 4.5 \\
I &= 0.65 \\
L &= 0.073 \\
\omega &= 2400
\end{align*}
\]

?- circuit(parallel(inductor(0.073), series(capacitor(C), resistor(R))), c(4.5, 0), c(0.65, 0), 2400).

R = 6.91229, C = 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list $[1, 2, \ldots, N]$
- E.g.: the solution is represented as $[2, 4, 1, 3]$
- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

```prolog
queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
    queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1),
    queens(NewUnplaced, [Q|Placed], Qs).% OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen =\= Y + Nb, Queen =\= Y - Nb,
    Nb1 is Nb + 1, no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, [])..
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(/XML) (in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(I, N, [X|Xs]) :-
 I >. 0, % I is greater than 0
 X >. 0, X .<=. N, % All queens between 0 and N
 I1 .=. I - 1, % I1 is I - 1
 constrain_values(I, N, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen .<> Y + Nb, Queen .<> Y - Nb,
 Nb1 .=. Nb + 1, no_attack(Ys, Queen, Nb1).

place_queens(0, _). % Base case
place_queens(N, Q) :-
 N >. 0, % N is greater than 0
 member(N, Q),
 N1 .=. N - 1, place_queens(N1, Q).
The N Queens Problem in CLP(\mathcal{R})

- This last program can attack the problem in its most general instance:

  ```
  ?- queens(N,L).
  L = [], N = 0 ;
  L = [1], N = 1 ;
  L = [2, 4, 1, 3], N = 4 ;
  L = [3, 1, 4, 2], N = 4 ;
  L = [5, 2, 4, 1, 3], N = 5 ;
  L = [5, 3, 1, 4, 2], N = 5 ;
  L = [3, 5, 2, 4, 1], N = 5 ;
  L = [2, 5, 3, 1, 4], N = 5
  ...
  ```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list Xs in no_attack(Xs, X, 1))

- Note that in fact we are using both \mathcal{R} and $\mathcal{F}\mathcal{T}$
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(\(\mathbb{R}\))

- CLP(\(\mathbb{R}\)) generates internally a set of equations for each board size

  ```
  ?- constrain_values(4, 4, Qs).
  Qs = [_A, _B, _C, _D],
  nonzero(_E), _A <<= 4,0, _E == .3+.0+_A-_D,
  nonzero(_F), _A >= 0, _F == -3.0+_A-_D,
  nonzero(_G), _B <<= 4,0, _G == .2+.0+_A-_C,
  nonzero(_H), _B >= 0, _H == -2.0+_A-_C,
  nonzero(_I), _C <<= 4,0, _I == 1+_A-_B,
  nonzero(_J), _C >= 0, _J == -1+_A-_B,
  nonzero(_K), _D <<= 4,0, _K == .2+.0+_B-_D,
  nonzero(_L), _D >= 0, _L == -2.0+_B-_D,
  nonzero(_M), _M == 1+_B-_C,
  nonzero(_N), _N == -1+_B-_C,
  nonzero(_O), _O == 1+_C-_D,
  nonzero(_P), _P == -1+_C-_D
  ```

The N Queens Problem in CLP(\(\mathbb{R}\))

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-_D,
nonzero(_F), _B.=.1.0, _F.=. -D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,
nonzero(_H), _C.=>.0, _H.=.1.0-_C,
nonzero(_I), _D.=<.4.0, _I.=.3.0-_D,
nonzero(_J), _D.=>.0, _J.=. -1.0-_D,
nonzero(_K), _K.=.2.0-_C,
nonzero(_L), _L.=. -_C,
nonzero(_M), _M.=.1+_C-_D,
nonzero(_N), _N.=. -1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \(\mathbb{Z} \).

- Example: \(E \in \{-123, -10..4, 10\} \)

 Can be represented as, e.g., \(E :: [-123, -10..4, 10] \)
 [Eclipse notation]

 or as \(E \text{ in } -123 \lor (-10..4) \lor 10 \)
 [Ciao notation]

- We can:
 - Establish the *domain* of a variable (\(\text{in} \)).
 - Perform arithmetic operations (\(+\), \(-\), \(*\), \(/\)) on the variables
 - Establish linear relationships among arithmetic expressions (\(#=\), \(#<\), \(#=<\))

- These operations / relationships narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```
  :- use_package(clpfd).
  ```

 directive in the source code—or, equivalently, adding in the module declaration:

  ```
  :- module(_, ..., [clpfd]).
  ```
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- \texttt{domain(Variables, Min, Max)}: A shorthand for several in constraints

- \texttt{labeling(Options, VarList)}:
 - \texttt{Options} dictates the search order
 - instantiates variables in \texttt{VarList} to values in their domains

```prolog
?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- \texttt{minimize(G, X)}: solve \texttt{G} minimizing the value of variable \texttt{X}

- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% SEND
% + MORE
% _________
% MONEY

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
 domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
 0 #< S, 0 #< M, % No leftmost zeros
 all_different([S,E,N,D,M,O,R,Y]), % All digits different
 S*1000 + E*100 + N*10 + D + %
 M*10000 + O*1000 + R*10 + E #= % Arith. constr.
 M*10000 + O*1000 + N*100 + E*10 + Y, %
 labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

```prolog
pn1(A,B,C,D,E,F,G) :-
    domain([A,B,C,D,E,F,G], 0, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + 1.
```
A Project Management Problem (II)

- Query:

```prolog
?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10.
```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:

```prolog
?- minimize(pn1(A,B,C,D,E,F,G), G).
    A = 0, B in 0..1, C = 0, D in 0..2,
    E = 2, F in 3..5, G = 6
```

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

\[
\text{pn2}(A, B, C, D, E, F, G, X) :-
\text{domain}([A,B,C,D,E,F,G,X], 0, 10),
A \#>= 0, G \#=< 10,
B \#>= A, C \#>= A, D \#>= A,
E \#>= B + 1, E \#>= C + 2,
F \#>= C + 2, F \#>= D + 3,
G \#>= E + 4, G \#>= F + X.
\]

- We do not want to accelerate it more than needed!

\[\rightarrow \text{minimize } G \text{ and maximize } X.\]

\[
A = 0, B \text{ in } 0..1, C = 0, D = 0,
E = 2, F = 3, G = 6, X = 3.
\]
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

 ![Diagram]

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

```prolog
pn3(A,B,C,D,E,F,G,X,Y) :-
    domain([A,B,C,D,E,F,G,X,Y], 0, 10),
    A #>= 0, G #=< 10,
    X #>= 2, Y #>= 2, X + Y #= 6,
    B #>= A, C #>= A, D #>= A,
    E #>= B + X, E #>= C + 2,
    F #>= C + 2, F #>= D + Y,
    G #>= E + 4, G #>= F + 1.
```

- Query:

```prolog
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G).
A = 0, B = 0, C = 0, D in 0..1, E = 2,
F in 4..5, X = 2, Y = 4, G = 6
```

- I.e., we must devote more resources to task \(B \)

- All tasks but \(F \) and \(D \) are critical now

- Sometimes, `minimize/2` not enough to provide best solution (pending constr.):

```prolog
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).
```
The N-Queens Problem Using Finite Domains

• By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :-
    constrain_values(N, N, Qs),
    all_different(Qs),
    labeling(Type, Qs).
```

```prolog
constrain_values(0, _N, []).
constrain_values(N, NMax, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. NMax,
    constrain_values(N1, NMax, Xs), no_attack(Xs, X, 1).
```

```prolog
no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

• Query: `?- queens(20, Q, [ff]).`
 `Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?`
CLP(\mathcal{F}T) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

\begin{verbatim}
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
 iso(I1, D2),
 iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ;
L=b, X=u, Y=W, Z=v ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v
\end{verbatim}
• Equations over finite strings
• Primitive constraints: concatenation (.), string length (::)
• Find strings meeting some property:

```
?- "123".Z = Z."231", Z::0.
no

?- "123".Z = Z."231", Z::1.
Z = "1"

?- "123".Z = Z."231", Z::2.
no

?- "123".Z = Z."231", Z::3.
no

?- "123".Z = Z."231", Z::4.
Z = "1231"
```

• These constraint solvers are very complex
• Often incomplete algorithms are used
Word equations plus arithmetic over \(\mathbb{Q} \) (rational numbers)

Prove that the sequence \(x_{i+2} = |x_{i+1}| - x_i \) has a period of length 9 (for any starting \(x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>). abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :-
    seq(<Y, X>.U)
    abs(Y, Y1).
```

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)\

```\n?- seq(U,V,W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 - Program structure, modularity
 - Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \(\#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \(L \) and \(U \) (which can be variables themselves)
 - If \(L = U = n \), all constraints must hold
 - If \(L = U = 1 \), one and only one constraint must be true
 - Constraining \(U = 0 \), we force the conjunction of the negations to be true
 - Constraining \(L > 0 \), the disjunction of the constraints is specified
- Disjunctive constructive constraint: \(c_1 \lor c_2 \)
 - If properly handled, avoids search and backtracking
 - E.g.:

 \[
 \begin{align*}
 \text{nz}(X) & \leftarrow X > 0. \\
 \text{nz}(X) & \leftarrow X < 0. \\
 \end{align*}
 \]

 \[
 \text{nz}(X) \leftarrow X < 0 \lor X > 0.
 \]
Other Primitives

- CLP(\mathcal{X}) systems usually provide additional primitives
- E.g.:
 - `enum(X)` enumerates \(X\) inside its current domain
 - `maximize(X)` (c.f. `minimize(X)`) works out maximum (minimum value) for \(X\) under the active constraints
 - `delay Goal until Condition` specifies when the variables are instantiated enough so that `Goal` can be effectively executed
 - Its use needs deep knowledge of the constraint system
 - Also widely available in Prolog systems
 - Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in FT constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}
(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\mathcal{X})

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use time stamps to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X < Y + Z, & \ Y = Z + W \\
X < Y + 4, & \ Y = 4 + W, \ Z = 4 \\
X < 9, & \ Y = 5, \ Z = 4, \ W = 1 \\
\text{trail } W, & \ \text{timestamp it} \\
\text{trail } X, & \ Y, Z, \ \text{timestamp them} \\
\text{timestamp } X, & \ Y, Z, W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel, Holzbaur]:
 - Provide a hook into unification.
 - Allow attaching an attribute to a variable.
 - When unification with that variable occurs, user-defined code is called.
 - Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHRs):
 - Higher-level abstraction.
 - Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 - Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- **Example: Freeze**

```prolog
freeze( X, Goal) :-
  attach_attribute( V, frozen(V,Goal)),
  X = V.

verify_attribute( frozen(Var,Goal), Value) :-
  detach_attribute( Var),
  Var = Value,
  call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
  detach_attribute( V1),
  detach_attribute( V2),
  V1 = V2,
  attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 - Specially useful if infer is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses
 (as with Prolog and plain unification)

- Compare:

 max(X,Y,X) :- X >. Y. ?- max(X, Y, Z).
 max(X,Y,Y) :- X <=. Y. Z =. X, Y <. X ;

with

 max(X,Y,X) :- X >. Y, !. ?- max(X, Y, Z).
 max(X,Y,Y) :- X <=. Y. Z =. X, Y <. X
CLP Systems

- As mentioned before, CLP defines a class of languages obtained by
 - Specifying the particular constraint system(s)
 - Specifying the *Computation* and *Selection* rules
- Most practical systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms
- Most use the *Computation* and *Selection* rules of Prolog
Some Classic CLP Systems

- **CLP(R):**
 - Linear arithmetic over reals ($=, \leq, >$) – CLP(R)
 - Incremental Gaussian elimination and incremental Simplex

- **PrologIII:**
 - CLP(R)
 - Boolean ($=$), 2-valued Boolean Algebra – CLP(B)
 - Infinite (rational) trees ($=, \neq$)
 - Equations over finite strings – CLP(WE)

- **CHIP** (and its successor: the ILOG library):
 - CLP(FD), CLP(B), CLP(Q)
 - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
 - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

- **RISC–CLP:**
 - Arithmetic constraints over reals, also non-linear (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
 - CLP(FD).

- **SICStus:**
 - CLP(R), CLP(Q), CLP(FD)
 - Attributed variables and CHR for adding domains.

- **ECLiPS:**
 - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
 - CLP(R), CLP(Q), CLP(FD), CLP(B).
 - Attributed variables and CHR for additional domains.

- **Ciao:**
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for additional domains.
 - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!
Some origins and other instances

- Ancestors:
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- Constraints in logic languages: – the origin of “constraint programming”:
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: clpr, CHIP, ...
 - Later, included in mainstream Prolog implementations.
 - Has given rise to a whole research area!

- Constraints in imperative languages:
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables: \(x := x + 1 \leftrightarrow x_{i+1} := x_i + 1 \)
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*