
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Safety in Pervasive Computing

Deliverable number: D13

Workpackage: Resource-Oriented Specialization (WP4)

Preparation date: 1 November 2003

Due date: 1 May 2004

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Tech. Univ. of Madrid (UPM), Roskilde Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

The aim of task 6.1 is to study safety conditions which are applicable to pervasive computing

and develop a framework for certifying that the execution of a code is safe according to the safety

conditions established via a predefined policy. We present a deliverable D13 which consists of

four main parts.

The first part, D13.1, presents a framework for the verification of CLP programs based on

abstract interpretation. This deliverable was included already in the previous period report. We

introduce a practical verification framework which can be used to approximate at compile-time

a wide range of properties, from directional types to variable independence, determinacy or ter-

mination, always safely, and with a significant degree of precision. Our proposed approach takes

advantage, within the context of program verification and debugging, of significant advances

in static program analysis techniques and the resulting concrete tools, which have been shown

useful for other purposes such as optimization, and are thus likely to be present in compilers.

The focus is put on compile-time checking of assertions which is conceptually more powerful

than run-time checking albeit it is also more complex. The deliverable pursues that the results

of compile-time checking are valid for any query which satisfies the existing entry declarations,

hence compile-time checking can be used both to detect that an assertion is violated and to prove

that an assertion holds for any valid query, i.e., the assertion is validated. The main problem

with compile-time checking is that it requires the existence of suitable static analyses which are

capable of proving the properties of interest. Our system is generic in that any program property

(for which a suitable analysis exists in the system) can be used for debugging. Currently CiaoPP

can infer types, modes and other variable instantiation properties, constraint independence, non-

failure of predicates, determinacy, bounds on computational cost, bounds on sizes of terms in

the program, and other properties. Thus, we have available a wide range of properties which are

amenable to be compile-time checked and that will become useful later to define safety policies

in the context of mobile code certification.

An additional attachment, D13.2, elaborates on a refined analysis for non-failure of goals.

This deliverable is an improved version of the corresponding one included in the first period

report. Non-failure analysis aims at inferring that predicate calls in a program will never fail.

This type of information has many applications in functional/logic programming. Clearly, non-

failure is a property which is very useful for detecting program errors. It is moreover essential for

estimating other complex properties such as lower bounds on the computational costs of goals,

which can be used in turn to attest that the execution of a piece of code is not only safe but it is

also efficient. Essentially, this is done by enhancing the code with cost certificates which attest

that the execution of the code will not take more than a given amount of time (or that it will

not consume more than a given amount of memory). The non-failure property is also used for

granularity control of parallel/distributed tasks, as we discuss in the last deliverable. It is also

useful in the context of program parallelization, and instrumental in partial evaluation and other

program transformations, and has also been used in query optimization. In this deliverable, we

re-cast the non-failure analysis proposed by Debray et al. as an abstract interpretation, which not

only allows to investigate it from a standard and well understood theoretical framework, but has

also several practical advantages. It allows us to incorporate non-failure analysis into a standard,

generic abstract interpretation engine. The analysis thus benefits from the fixpoint propagation

algorithm, which leads to improved information propagation. Also, the analysis takes advantage

of the multi-variance of the generic engine, so that it is now able to infer separate non-failure

information for different call patterns. Moreover, the implementation is simpler, and allows to

perform non-failure and covering analyses alongside other analyses, such as those for modes and

types, in the same framework. Finally, besides the precision improvements and the additional

simplicity, our implementation (in the Ciao/CiaoPP multiparadigm programming system) also

shows better efficiency. We believe that more precise inference of this property helps improving

the verification and safety tasks.

In the third part, D13.3, we address the issue of safety of mobile code and discuss some ap-

plications in pervasive systems. When developing software for deployment on Smart Cards (and

similar ambient computing devices), several issues related to safety arise: 1) Pervasive comput-

ing is characterized by having a relatively large number of untrusted computing devices which

interact with environment by means of sensors, with other devices or, possibly, with the user.

Thus, when modeling such a system, it is not realistic to consider one device in isolation: it will

receive plenty of mobile data from the environment. In this context, the safety of the deployed

software is crucial, as the cost of recalling unfit devices can be prohibitive. 2) It is essential to

simplify the (safety) verification process and reduce its resource usage. Indeed, Smart Cards

typically provide less than 4Kb of RAM while it is possible to use only up to 128Kb for storing

the application and static data. Such resource considerations tend to dominate the development

process for pervasive systems, forcing developers to write low-level code from scratch, as mo-

bile system developers have found in their own experience. Proof-Carrying Code (PCC) is a

general approach to mobile code safety in which programs are augmented with a certificate (or

proof). The intended benefit is that the program consumer can locally validate the certificate

w.r.t. the “untrusted” program by means of a certificate checker—a process which should be

much simpler, efficient, and automatic than generating the original proof. The practical uptake

of PCC greatly depends on the existence of a variety of enabling technologies which allow both

to prove programs correct and to replace a costly verification process by an efficient checking

2

procedure on the consumer side. In the previous period we proposed Abstraction-Carrying Code

(ACC), a novel approach which uses abstract interpretation as enabling technology. ACC, like

recent approaches to mobile code safety, such as PCC, involves associating safety information

to programs. Essentially, ACC is a framework for ensuring the safety of mobile code in which

programs are augmented with abstractions as certificates (or proofs of safety). The abstraction

(or abstract model) of the program is computed by standard static analyzers. The safety policy is

specified by using an expressive assertion language defined over abstract domains. In particular,

we rely on an expressive class of safety properties which have been discussed in the two former

deliverables. We have developed a framework for checking the validity of these assertions based

on the use of abstract interpretation analysis techniques which infer properties of programs (i.e.

abstract approximations) and compare them with assertions using the abstract comparison oper-

ators already defined in the abstract domains. The validity of the abstraction on the consumer

side is checked in a single-pass by a specialized abstract-interpreter. We argue that the large

body of applications of abstract interpretation to program verification (see D13.1) is amenable

to the overall PCC scheme. We believe that ACC is of interest for bringing the automation and

expressiveness which is inherent in the abstract interpretation techniques to the area of mobile

code safety.

In this period we have extended ACC along two lines:

• Implementation and evaluation: although global analysis is routinely used as a practical

tool, it is in general unacceptable (and specifically in a pervasive environment) to run the

whole analyzer to validate the certificate since it involves considerable cost. We have

designed a very efficient, highly specialized abstract interpretation-based checking algo-

rithm. While our approach is general, we have developed it for concreteness in the context

of constraint logic programming. We have implemented and benchmarked ACC within the

Ciao system preprocessor. The algorithm has been integrated within CiaoPP. With this,

we have proceeded to benchmark and experimentally evaluate a practical incarnation of

the ACC approach in the integrated tool. Our experimental results show that the checking

phase is indeed faster than the proof generation phase, and that the sizes of certificates are

reasonable.

• Resource-aware ACC: In addition to having some assurance of the correctness and safety

characteristics of the code received, in a pervasive computing platform an essential issue

is to also have some assurance of the kind of load the particular code is going to pose.

We have proposed a method whereby this can be specified by means of cost certificates.

To this end, we use the assertion language available in CiaoPP which allows specifying

complex programs properties (including safety and resource-related properties). A receiver

3

can now reject code that does not adhere to a particular safety policy involving resource-

related issues (e.g., that it will not compute for more than a given amount of time, or that

it will not take up an amount of memory or other resources above a certain threshold). We

rely on the compile-time tools described above (and available in the integrated tool) for the

certification of programs with resource consumption assurances and the efficient checking

of such certificates. We have implemented this type of resource-aware ACC on the Ciao

system and the integrated tool. Essentially, the fact that abstract interpretation techniques

allow inferring very rich information will allow us to generate certificates which specify

complex program properties including traditional safety issues but also resource-related

properties.

In the last part, D13.4, we present a unified abstract interpretation-based approach to resource-

aware distributed and mobile computing and discuss its implementation in the context of a multi-

paradigm programming system. Distributed parallel execution systems speed up applications by

splitting tasks into processes whose execution is assigned to different receiving nodes in a high-

bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling

such tasks such that each one involves sufficient computational cost when compared to the task

creation and communication costs and other such practical overheads. For this purpose, we show

that some of the properties discussed in deliverables D13.1 and D13.2, especially lower bounds

on cost and upper bounds on data sizes, can be used to perform high-level optimizations such as

resource-aware task granularity control. On the receiving side, an important issue is to have some

assurance of the correctness and characteristics of the code received and also of the kind of load

the particular task is going to pose, which can be specified by means of certificates using ACC

as discussed in deliverable 13.3. In essence, in this deliverable, we show that our proposals can

contribute to bringing increased flexibility, expressiveness and automation of important resource-

awareness aspects in the area of mobile and distributed computing. The deliverable presents in

a tutorial way a number of general solutions to these problems, and illustrate them through their

implementation in the Ciao program development environment. In particular, we focus on the

facilities for parallel and distributed execution of Ciao, on its assertion language for specifying

complex programs properties (including safety and resource-related properties), its compile-time

and run-time tools for performing automated parallelization and resource control, as well as on

the certification of programs with resource consumption assurances and efficient checking of

such certificates.

4

Attachments:

Part I (D13.1) — Abstract Verification and Debugging of Constraint Logic Programs (pub-

lished at Recent Advances in Constraints, number 2627 in LNCS, pages 1–14. Springer-Verlag,

January 2003).

Part II (D13.2) — Multivariant Non-Failure Analysis via Standard Abstract Interpretation

(published at Proc. of 7th International Symposium on Functional and Logic Programming

(FLOPS 2004), LNCS, Num. 2998, pages 100-116, Springer-Verlag, April 2004).

Part III (D13.3) — Abstraction-Carrying Code (published at Proc. of 11th International

Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR’04), LNAI,

Num. 3452, pages 380-397, Springer-Verlag, March 2005).

Part IV (D13.4) — Some Techniques for Automated, Resource-Aware Distributed and Mo-

bile Computing in a Multi-Paradigm Programming System (published at Proc. of EURO-PAR

2004, LNCS, Num. 3149, pages 21-37, Springer-Verlag, August 2004).

5

Contents

I Abstract Verification and Debugging of Constraint Logic Programs 3

1 Background 3

2 An Approach Based on Semantic Approximations 3

2.1 Approximating Program Semantics . 4

2.2 Abstract Verification and Debugging . 5

3 A Practical Framework and its Implementation 6

4 A Sample Debugging Session with CHIPRE 9

4.1 Aiding the Analyzer . 11

4.2 Assertions for System Predicates . 11

4.3 Assertions for User-Defined Predicates . 13

II Multivariant Non-Failure Analysis via Standard Abstract Interpre-
tation 16

5 Introduction 16

6 Preliminaries 18

7 The Abstract Interpretation Framework 20

8 Abstract Framework, Domain, and Operations for Non-Failure Analysis 23

8.1 Abstract Domain . 24

8.2 Abstract Operations . 26

8.3 Adapting the Analysis Framework . 27

9 Implementation Results 30

10 Conclusions 31

III Abstraction-Carrying Code 33

1

11 Introduction 33

12 Preliminaries 36

12.1 Constraint Logic Programming . 36

12.2 Abstract Interpretation . 37

13 An Assertion Language to Specify the Safety Policy 38

14 Certifying Programs by Static Analysis 40

14.1 Using Analysis Results as Certificates . 41

14.2 The Analysis Algorithm . 42

15 The Verification Condition 47

16 Checking Safety in the Consumer 49

17 Experimental Results 53

18 Resource-Aware Abstraction Carrying Code 56

19 Discussion and Related Work 59

IV Some Techniques for Automated, Resource-Aware Distributed and
Mobile Computing in a Multi-Paradigm Programming System 62

20 Introduction 62

21 Inferring Complex Properties Including Term Sizes and Costs 65

22 Controlling Granularity in Distributed Computing 68

23 Resource-Aware Mobile Computing 72

24 Conclusions 76

2

Part I

Abstract Verification and Debugging of

Constraint Logic Programs

1 Background

The technique of Abstract Interpretation [CC77] has allowed the development of sophisticated

program analyses which are provably correct and practical. The semantic approximations pro-

duced by such analyses have been traditionally applied to optimization during program compila-

tion. However, recently, novel and promising applications of semantic approximations have been

proposed in the more general context of program verification and debugging [Bou93, CLMV96,

BDD+97].

In the case of Constraint Logic Programs (CLP), a comparatively large body of approxima-

tion domains, inference techniques, and tools for abstract interpretation-based semantic analysis

have been developed to a powerful and mature level (see, e.g., [MH92, CV94, GdW94, BCHP96,

dlBHB+96, HBPLG99] and their references). These systems can approximate at compile-time a

wide range of properties, from directional types to variable independence, determinacy or termi-

nation, always safely, and with a significant degree of precision.

Our proposed approach takes advantage, within the context of program verification and

debugging, of these significant advances in static program analysis techniques and the result-

ing concrete tools, which have been shown useful for other purposes such as optimization,

and are thus likely to be present in compilers. This is in contrast to using traditional proof-

based methods (e.g., for the case of CLP, [AM94, AP93, Der93, Fer87, Vet94]), developing

new tools and procedures (such as specific concrete [BDM97, DNTM88, DNTM89] or ab-

stract [CLMV96, CLMV99] diagnosers and declarative debuggers), or limiting error detection

to run-time checking (e.g., [Vet94]).

2 An Approach Based on Semantic Approximations

We now briefly describe the basis of our approach [BDD+97, HPB99, PBH00c]. We consider

the important class of semantics referred to as fixpoint semantics. In this setting, a (monotonic)

semantic operator (which we refer to as SP) is associated with each program P . This SP function

operates on a semantic domain which is generally assumed to be a complete lattice or, more

3

Property Definition

P is partially correct w.r.t. I [[P]] ⊆ I

P is complete w.r.t. I I ⊆ [[P]]

P is incorrect w.r.t. I [[P]] 6⊆ I

P is incomplete w.r.t. I I 6⊆ [[P]]

Table 1: Set theoretic formulation of verification problems

generally, a chain complete partial order. The meaning of the program (which we refer to as

[[P]]) is defined as the least fixpoint of the SP operator, i.e., [[P]] = lfp(SP). A well-known result

is that if SP is continuous, the least fixpoint is the limit of an iterative process involving at most

ω applications of SP and starting from the bottom element of the lattice.

Both program verification and debugging compare the actual semantics of the program, i.e.,

[[P]], with an intended semantics for the same program, which we denote by I. This intended

semantics embodies the user’s requirements, i.e., it is an expression of the user’s expectations. In

Table 1 we define classical verification problems in a set-theoretic formulation as simple relations

between [[P]] and I.

Using the exact actual or intended semantics for automatic verification and debugging is in

general not realistic, since the exact semantics can be only partially known, infinite, too expen-

sive to compute, etc. An alternative and interesting approach is to approximate the semantics.

This is interesting, among other reasons, because a well understood technique already exists,

abstract interpretation, which provides safe approximations of the program semantics. Our first

objective is to present the implications of the use of approximations of both the intended and

actual semantics in the verification and debugging process.

2.1 Approximating Program Semantics

We start by recalling some basic concepts from abstract interpretation. In this technique, a pro-

gram is interpreted over a non-standard domain called the abstract domain Dα which is simpler

than the concrete domain D, and the semantics w.r.t. this abstract domain, i.e., the abstract se-

mantics of the program is computed (or approximated) by replacing the operators in the program

by their abstract counterparts.

The concrete and abstract domains are related via a pair of monotonic mappings: abstraction

α : D 7→ Dα, and concretization γ : Dα 7→ D, which relate the two domains by a Galois inser-

tion (or a Galois connection) [CC77]. We will denote by [[P]]α the result of abstract interpretation

4

for a program P . Typically, abstract interpretation guarantees that [[P]]α is an over-approximation

of the abstract semantics of the program itself, α([[P]]). Thus, we have that [[P]]α ⊇ α([[P]]),

which we will denote as [[P]]α+ . Alternatively, the analysis can be designed to safely under-

approximate the actual semantics, and then we have that [[P]]α ⊆ α([[P]]), which we denote as

[[P]]α−
.

2.2 Abstract Verification and Debugging

The key idea in our approach is to use the abstract approximation [[P]]α directly in verification and

debugging tasks. As we will see, the possible loss of accuracy due to approximation prevents

full verification in general. However, and interestingly, it turns out that in many cases useful

verification and debugging conclusions can still be derived by comparing the approximations of

the actual semantics of a program to the (also possibly approximated) intended semantics.

A number of approaches have already been proposed which make use to some extent of

abstract interpretation in verification and/or debugging tasks. Abstractions were used in the

context of algorithmic debugging in [LS88]. Abstract interpretation for debugging of imperative

programs has been studied by Bourdoncle [Bou93], and for the particular case of algorithmic

debugging of logic programs by Comini et al. [CLV95] (making use of partial specifications)

and [CLMV96].

In our approach we actually compute the abstract approximation [[P]]α of the actual seman-

tics of the program [[P]] and compare it directly to the (also approximate) intention (which is

given in terms of assertions [PBH00b]), following almost directly the scheme of Table 1. This

approach can be very attractive in programming systems where the compiler already performs

such program analysis in order to use the resulting information to, e.g., optimize the generated

code. I.e., in these cases the compiler will compute [[P]]α anyway.

For now, we assume that the program specification is given as a semantic value Iα ∈ Dα.

Comparison between actual and intended semantics of the program is most easily done in the

same domain, since then the operators on the abstract lattice, that are typically already defined in

the analyzer, can be used to perform this comparison. Thus, for comparison we need in principle

α([[P]]). Using abstract interpretation, we can usually only compute instead [[P]]α, which is an

approximation of α([[P]]). Thus, it is interesting to study the implications of comparing Iα and

[[P]]α.

In Table 2 we propose (sufficient) conditions for correctness and completeness w.r.t. Iα,

which can be used when [[P]] is approximated. Several instrumental conclusions can be drawn

from these relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as [[P]]α+), are

5

Property Definition Sufficient condition

P is partially correct w.r.t. Iα α([[P]]) ⊆ Iα [[P]]α+ ⊆ Iα

P is complete w.r.t. Iα Iα ⊆ α([[P]]) Iα ⊆ [[P]]α−

P is incorrect w.r.t. Iα α([[P]]) 6⊆ Iα [[P]]α−
6⊆ Iα, or

[[P]]α+ ∩ Iα = ∅ ∧ [[P]]α 6= ∅

P is incomplete w.r.t. Iα Iα 6⊆ α([[P]]) Iα 6⊆ [[P]]α+

Table 2: Validation problems using approximations

specially suited for proving partial correctness and incompleteness with respect to the abstract

specification Iα. It will also be sometimes possible to prove incorrectness in the extreme case

in which the semantics inferred for the program is incompatible with the abstract specification,

i.e., when [[P]]α+ ∩ Iα = ∅. We also note that it will only be possible to prove completeness if

the abstraction is precise, i.e., [[P]]α = α([[P]]). According to Table 2 only [[P]]α−
can be used

to this end, and in the case we are discussing [[P]]α+ holds. Thus, the only possibility is that the

abstraction is precise.

On the other hand, if analysis under-approximates the actual semantics, i.e., in the case de-

noted [[P]]α−
, it will be possible to prove completeness and incorrectness. In this case, partial

correctness and incompleteness can only be proved if the analysis is precise.

If analysis information allows us to conclude that the program is incorrect or incomplete w.r.t.

Iα, an (abstract) symptom has been found which ensures that the program does not satisfy the

requirement. Thus, debugging should be initiated to locate the program construct responsible for

the symptom.

More details about the theoretical foundation of our approach can be found in [BDD+97,

PBH00c].

3 A Practical Framework and its Implementation

Using the ideas outlined above, we have developed a framework [HPB99, PBH00a] capable

of combined static and dynamic validation, and debugging for CLP programs, using semantic

approximations, and which can be integrated in an advanced program development environment

comprising a variety of co-existing tools [DHM00].

This framework has been implemented as a generic preprocessor composed of several tools.

Figure 1 depicts the overall architecture of the system. Hexagons represent the different tools

involved and arrows indicate the communication paths among the different tools.

6

:- false

:- check

:- checked
PREPROCESSOR

Info

semantic
comp-time run-time

system

error

user
run-time
error

output

Program
+

RT tests

Inspection

Syntax
checker

RT tests
Annotator

Assertion
Normalizer
& Lib Itf.

:- entry

Analysis

Diagnosis
Interactive

error/warning

warning
error/
syntax

Program

Comparator

:- check

Builtins/
Libs

Static
Analysis

...System
CLP

Figure 1: Architecture of the Preprocessor

Program verification and detection of errors is first performed at compile-time by using the

sufficient conditions shown in Table 2. I.e., by inferring properties of the program via abstract

interpretation-based static analysis and comparing this information against (partial) specifica-

tions written in terms of assertions. Such assertions are linguistic constructions which allow

expressing properties of programs.

Classical examples of assertions are type declarations (e.g., in the context of (C)LP those

used by [HL94, SHC96, BCC+02]). However, herein we are interested in supporting a much

more powerful setting in which assertions can be of a much more general nature, stating addi-

tionally other properties, some of which cannot always be determined statically for all programs.

These properties may include properties defined by means of user programs and extend beyond

the predefined set which may be natively understandable by the available static analyzers. Also,

in the proposed framework only a small number of (even zero) assertions may be present in the

program, i.e., the assertions are optional. In general, we do not wish to limit the programming

language or the language of assertions unnecessarily in order to make the validity of the asser-

tions statically decidable (and, consequently, the proposed framework needs to deal throughout

with approximations). We also propose a concrete language of assertions which allows writing

this kind of (partial) specifications for CLP [PBH00b].

The assertion language is also used by the preprocessor to express both the information in-

ferred by the analysis and the results of the comparisons performed against the specifications.1 As

can be derived from Table 2, these comparisons can result in proving statically (i.e., at compile-

time) that the assertions hold (i.e., they are validated) or that they are violated, and thus bugs

1Interestingly, the assertions are also quite useful for generating documentation automatically (see [Her00]).

7

have been detected. User-provided assertions (or parts of assertions) which cannot be statically

proved nor disproved are optionally translated into run-time tests. Both the static and the dy-

namic checking are provably safe in the sense that all errors flagged are definite violations of the

specifications.

The practical usefulness of the framework is illustrated by what is arguably the first and

most complete implementation of these ideas: CiaoPP,2 the Ciao system preprocessor [PBH00a,

HBPLG99]. Ciao is a public-domain, next-generation constraint logic programming system,

which supports ISO-Prolog, but also, selectively for each module, extensions and restrictions

such as, for example, pure logic programming, constraints, functions, objects, or higher-order.

Ciao is specifically designed to a) be highly extensible and b) support modular program analysis,

debugging, and optimization. The latter tasks are performed in an integrated fashion by CiaoPP.

CiaoPP, which incorporates analyses developed by several groups in the LP and CLP com-

munities, uses abstract interpretation to infer properties of program predicates and literals, in-

cluding types, modes and other variable instantiation properties, constraint independence, non-

failure, determinacy, bounds on computational cost, bounds on sizes of terms in the program,

etc. It processes modules separately, performing incremental analysis. CiaoPP can find errors at

compile-time (or perform partial verification) by checking how programs call system libraries.

This is possible since the expected behaviour of system predicates is also given in terms of as-

sertions This allows detecting errors in user programs even if they contain no assertions. Also,

the preprocessor can detect errors as well by checking the assertions present in the program or in

other modules used by the program. As already mentioned, assertions are completely optional.

Nevertheless, if the program is not correct, the more assertions are present in the program the

more likely it is for errors to be automatically detected. Thus, for those parts of the program

which are potentially buggy or for parts whose correctness is crucial, the programmer may de-

cide to invest more time in writing assertions than for other parts of the program which are more

stable. In addition, CiaoPP also performs program transformations and optimizations such as

multiple abstract specialization, parallelization (including granularity control), and inclusion of

run-time tests for assertions which cannot be checked completely at compile-time.

Finally, the implementation of the preprocessor is generic in that it can be easily customized

to different CLP systems and dialects and in that it is designed to allow the integration of addi-

tional analyses in a simple way. As a particularly interesting example, the preprocessor has been

adapted for use with the CHIP CLP(FD) system. This has resulted in CHIPRE, a preprocessor

for CHIP which has been shown to detect non-trivial programming errors in CHIP programs. In

the next section we show an example of a debugging session with CHIPRE. More information

2A demonstration of the system was performed at the meeting.

8

on the system can be found in [PBH00a].

4 A Sample Debugging Session with CHIPRE

In this section we will show some of the capabilities of our debugging framework through a

sample session with CHIPRE, an implemented instance of the framework. Consider Figure 2,

which contains a tentative version of a CHIP program for solving the ship scheduling problem, a

typical CLP(FD) benchmark.

Often, the results of static analysis are good indicators of bugs, even if no assertion is given.

This is because “strange” results often correspond to bugs. An important observation is that

plenty of static analyses, such as modes and regular types, compute over-approximations of the

success sets of predicates. Then, if such an over-approximation corresponds to the empty set then

this implies that such predicate never succeeds. Thus, unless the predicate is dead-code, this often

indicates that the code for the predicate is erroneous since every call either fails finitely (or raises

an error) or loops. If analysis is goal-dependent and thus also computes an over-approximation

of the calling states to the predicate, predicates which are dead-code can often be identified by

having an over-approximation of the calling states which corresponds to the empty set.

We now preprocess the current version of our example program using regular type [YS87,

DZ92, GdW94, GP02, VB02] analysis. Our implementation of regular types is goal-dependent

and thus computes over-approximations of both the success set and calling states of all predicates.

In addition, our analysis also computes over-approximations of the values of variables at each

program point. Once analysis information is available, the preprocessor automatically checks the

consistency of the analysis results and we get the following messages:

WARNING: Literal set_precedences(L, Sis, Dis)

at solve/7/1/5 does not succeed!

WARNING: Literal set_pre_lp(l, array_starts, Array_duration)

at set_precedences/3/1/4 does not succeed!

The first warning message refers to a literal (in particular, the 5th literal in the 1st clause of

solve/7) which calls the predicate set precedences/3, whose success type is empty.

Also, even if the success type of a predicate is not empty, i.e., there may be some calls which

succeed, it may be possible to detect that at a certain program point the given call to the predicate

cannot succeed because the type of the particular call is incompatible with the success type of the

predicate. This is the reason for the second warning message. Note that this kind of reasoning

can only be made if (1) the static analysis used infers properties which are downwards closed,

9

solve(Upper,Last,N,Dis,Mis,L,Sis):-

length(Sis, N),

Sis :: 0..Last,

Limit :: 0..Upper,

End :: 0..Last,

set_precedences(L, Sis, Dis),

cumulative(Sis, Dis, Mis, unused, unsed, Limit, End, unused),

min_max(labeling(Sis), End).

labeling([]).

labeling([H|T]):-

delete(X,[H|T],R,0,most_constrained),

indomain(X),

labeling(R).

set_precedences(L, Sis, Dis):-

Array_starts=..[starts|Sis], % starts(S1,S2,S3,...)

Array_durations=..[durations|Dis], % durations(D1,D2,D3,...)

initialize_prec(L,Array_starts),

set_pre_lp(l, array_starts, Array_durations).

set_pre_lp([], _, _).

set_pre_lp([After#>=Before|R], Array_starts, Array_durations):-

arg(After, Array_starts, S2),

arg(Before, Array_starts, S1),

arg(Before, Array_durations, D1),

S2 #>= S1 + D1,

set_pre_lp(R, Array_starts, array_durations).

initialize_prec(_,_).

Figure 2: A tentative ship program in CHIP

i.e., once they hold they keep on being valid during forward execution and (2) analysis computes

descriptions at each program point which, as already mentioned, is the case with our regular type

analysis. Note that the predicate set pre lp/3 can only succeed if the value at the first argu-

10

ment is compatible with a list. However, the call set pre lp(l, array starts, Array duration)

has the constant l at the first argument position. This is actually a bug, as the constant l should

instead be the variable L. Once we correct this bug, in subsequent preprocessing of the program

both warning messages disappear. In fact, the first one was also a consequence of the same bug

which propagated to the calling predicates of set precedences/3.

4.1 Aiding the Analyzer

In the ship program, all initial queries to the program are intended to be to the solve predicate.

However, the compiler has no way to automatically determine this. Thus, in the absence of more

information, the most general possible calls have to be assumed for all predicates in the program.3

One way to alleviate this is to provide entry assertion(s) which are assumed to cover all possible

initial calls to the program. Even the simplest entry declaration which can be given for predicate

solve, i.e., ‘:- entry solve/7.’, is very useful for goal-dependent static analysis. Since it

is the only entry assertion, the only calls to the rest of the predicates in the program are those

generated during computations of solve/7. This allows analysis to start from the predicate

solve/7 only, instead of from all predicates. Reducing the number (and generality) of starting

points for goal-dependent analysis by means of entry declarations often leads to increased

precision and reduced analysis times. However, analysis will still make no assumptions regarding

the arguments of the calls to solve/7 since there is no further information available. This could

be improved using a more accurate entry declaration such as the following:

:- entry solve/7 : int * int * int * list(int) * list(int) * list * term.

It gives the types of the seven arguments, and describes more precisely the valid input data. Note

that the assertion above also specifies a mode for the calling patterns. The first three arguments

are required to be instantiated to integers. The forth and fifth must be fully instantiated to lists

of integers. The sixth argument is (only) required to be instantiated to a list skeleton. Finally,

the seventh argument can be any possible term. Note that, by default, our assertion language

interprets properties in assertions as instantiation properties. However, the assertion language

also allows the use of compatibility properties if so desired [PBH00b].

4.2 Assertions for System Predicates

Consider a new version of the ship program, after correcting the typo involving L and introducing

the (simple) entry declaration ‘:- entry solve/7.’. When preprocessing the program the
3Note that this can be partly alleviated with a strict module system such as that of Ciao [CH00], in which only

exported predicates of a module can be subject to initial queries.

11

following messages are issued:

ERROR: Builtin predicate

cumulative(Sis,Dis,Mis,unused,unsed,Limit,End,unused)

at solve/7/1/6 is not called as expected (argument 5):

Called: ˆunsed

Expected: intlist_or_unused

ERROR: Builtin predicate arg(After,Array_starts,S2)

at set_pre_lp/3/2/1 is not called as expected (argument 2):

Called: ˆarray_starts

Expected: struct

Which indicate that the program is still definitely incorrect. Note that the preprocessor could

not detect this without the extra precision allowed by the entry assertion. In error messages

involving regular types, one important issue is not to confuse term constructors with type con-

structors. In order to improve the readability and conciseness of the error messages, the marker

ˆ is used to distinguish terms (constants) from regular types (which represent regular sets of

terms). By default, values represent regular types. However, if they are marked with ˆ they rep-

resent constants. In our example, intlist or unused is a type since it is not marked with

ˆ whereas ˆunsed is a constant. Note that though it is always possible to define a regular type

which contains a single constant such as unsed and distinguish terms from types by the context

in which the value appears, we opt by introducing the marker ˆ (“quote”) since in our experi-

ence this improves readability of error messages. Note that defining such type explicitly instead

would require inventing a new name for it and providing the definition of the type together with

the error message.

Coming back to the pending error messages, the first message is due to the fact that the

constant unused has been mistakingly typed as unsed in the fifth argument of the call to

the CHIP builtin predicate cumulative/8. As indicated in the error message, this predicate

requires the fifth argument to be of type intlist or unusedwhich was defined when writing

assertions for the system predicates in CHIP and which indicates that such argument must be

either the constant unused or a list of integers.

The automatic detection of this error at compile-time has been possible because the CHIP

builtins have been provided with assertions that describe their intended use. Though system

predicates are in principle considered correct under the assumption that they are called with

valid input data, it is often useful to check that they are indeed called with valid input data. In

fact, existing CLP systems perform this checking at run-time. The existence of such assertions

12

allows checking the calls to system predicates at compile-time in addition to run-time in CLP

systems which originally do not perform compile-time checking.

In the second message we have detected that we call the CHIP builtin predicate arg/3 with

the second argument bound to array starts which is a constant (as indicated by the marker

ˆ) and thus of arity zero. This is incompatible with the expected call type struct, i.e., a

structure with arity strictly greater than zero. In the current version of CHIP, this will generate

a run-time error, whereas in other systems such as Ciao and SICStus, this call would fail but

would not raise an error. Though we know the program is incorrect, the literal where the error

is flagged, arg(After, Array starts, S2) is apparently correct. We correct the first

error and leave detection of the cause for the second error for later.

The different behaviour of seemingly identical builtin predicates (such as arg/3 in the ex-

ample above) in different systems further emphasizes the benefits of describing builtin predicates

by means of assertions. They can be used for easily customizing static analysis for different sys-

tems, as assertions are easier to understand by naive users of the analysis than the hardwired

internal representation used in ad-hoc analyzers for a particular system.

4.3 Assertions for User-Defined Predicates

Up to now we have seen that the preprocessor is capable of issuing a good number of error

and warning messages even if the user does not provide any check assertions (assertions that

the system should check to hold). We believe that this is very important in practice. However,

adding assertions to programs can be useful for several reasons. One is that they allow further

semantic checking of the programs, since the assertions provided encode a partial specification

of the user’s intention, against which the analysis results can be compared. Another one is that

they also allow a form of diagnosis of the error symptoms detected, so that in some cases it is

possible to automatically locate the program construct responsible for the error.

Consider again the pending error message from the previous iteration over the ship program.

We know that the program is incorrect because (global) type analysis tells us that the variable

Array starts will be bound at run-time to the constant array starts. However, by just

looking at the definition of predicate set pre lp it is not clear where this constant comes from.

This is because the cause of this problem is not in the definition of set pre lp but rather in

that the predicate is being used incorrectly (i.e., its precondition is violated). We thus introduce

the following calls assertion, which describes the expected calls to the predicate:

:- calls set_pre_lp(A,B,C): (struct(B),struct(C)).

In this assertion we require that both the second and third parameters of the predicate, i.e., B

13

and C are structures with arity greater than zero, since in the program we are going to access the

arguments in the structure of B and C with the builtin predicate arg/3.

The next time our ship program is preprocessed, having added the calls assertion, besides

the pending error message of above regarding arg/3, we also get the following one:

ERROR: false assertion at set_precedences/3/1/4

unexpected call (argument 2):

Called: ˆarray_starts

Expected: struct

This message tells us the exact location of the bug, the fourth literal of the first clause for pred-

icate set precedences/3. This is because we have typed the constant array starts

instead of the variable Array starts in such literal.

Thus, as shown in the example above, user-provided check assertions may help in locating

the actual cause for an error. Also, as already mentioned, and maybe more obvious, user-provided

assertions may allow detecting errors which are not easy to detect automatically otherwise.

After correcting the bug located in the previous example, preprocessing the program once

again produces the following error message:

ERROR: false assertion at set_pre_lp/3/2/5

unexpected call (argument 3):

Called: ˆarray_durations

Expected: struct

which would not be automatically detected by the preprocessor without user-provided assertions.

The obvious correction is to replace array durations in the recursive call to set pre lp

in its second clause with Array durations.

After correcting this bug, preprocessing the program with the given assertions does not gen-

erate any more messages. Besides, the user provided calls assertion would have been proved

by analysis.

Additionally, if some part of an assertion for a user-defined predicate has not been proved

nor disproved during compile-time checking, it can be checked at run-time in the classical way,

i.e., run-time tests are added to the program which encode in some way the given assertions.

Introducing run-time tests by hand into a program is a tedious task and may introduce additional

bugs in the program. In the preprocessor, this is performed automatically upon user’s request.

Compile-time checking of assertions is conceptually more powerful than run-time checking.

However, it is also more complex. Since the results of compile-time checking are valid for any

14

query which satisfies the existing entry declarations, compile-time checking can be used both

to detect that an assertion is violated and to prove that an assertion holds for any valid query, i.e.,

the assertion is validated. The main problem with compile-time checking is that it requires the

existence of suitable static analyses which are capable of proving the properties of interest. For

conciseness, we have shown the possibilities of our system using only a (regular) type analysis.

However, the system is generic in that any program property (for which a suitable analysis exists

in the system) can be used for debugging. As mentioned before, currently CiaoPP can infer

types, modes and other variable instantiation properties, constraint independence, non-failure of

predicates, determinacy, bounds on computational cost, bounds on sizes of terms in the program,

and other properties.

More info: For more information, full versions of selected papers and technical reports, and/or to

download Ciao and other related systems please access http://www.clip.dia.fi.upm.es/.

15

Part II

Multivariant Non-Failure Analysis via

Standard Abstract Interpretation

5 Introduction

Non-failure analysis involves detecting at compile time that, for any call belonging to a particular

(possibly infinite) class of calls, a predicate will never fail. As an example, consider a predicate

defined by the following two clauses:

abs(X, Y) :- X >= 0, Y is X.

abs(X, Y) :- X < 0, Y is -X.

and assume that we know that this predicate will always be called with its first argument bound

to an integer, and the second argument a free variable. Obviously, for any particular call, one or

the other of the tests X >= 0 and X < 0 may fail; however, taken together, one of them will

always succeed. Thus, we can infer that calls to the predicate will never fail.

Being able to determine statically that a predicate will not fail has many applications. It is

essential for determining lower bounds on the computational cost of goals since without such

information a lower bound of almost zero (corresponding to an early failure) must often be

assumed [DLGHL97]. Detecting non-failure is also very useful in the context of parallelism

because it allows avoiding unnecessary speculative parallelism and ensuring no-slowdown prop-

erties for the parallelized programs (in addition to using the lower bounds mentioned previ-

ously to perform granularity control) [GPA+01]. Non-failure information is also instrumen-

tal in partial evaluation and other program transformations, such as reordering of calls, and

has also been used in query optimization in deductive databases [DL90]. It is also useful in

program debugging, where it allows verifying user assertions regarding non-failure of predi-

cates [HBPLG99, HPBLG03]. Finally, similar techniques can be used to detect the absence of

errors or exceptions when running particular predicates.

A practical non-failure analysis has been proposed by Debray et al. [DLGH97]. In a similar

way to the example above, this approach relies on first inferring mode and type information, and

then testing that the constraints in the clauses of the predicate are entailed by the types of the

input arguments, which is called a covering test. Covering cannot be inferred by examining the

constraints of each clause separately: it is necessary to collect them together and examine the

behavior of the predicate as a whole. Furthermore, non-failure of a given predicate depends on

16

non-failure of other predicates being called and also possibly on the constraints in such predi-

cates.

While [DLGH97] proposed the basic ideas behind non-failure analysis, only a simple, mono-

variant algorithm was proposed for propagating the non-failure information. In our experience

since that proposal, we have found a need to improve it in several ways. First, information prop-

agation needs to be improved, which leads us to a fixpoint propagation algorithm. Furthermore,

the analysis really needs to be multi–variant, which means that it should be able to infer sepa-

rate non-failure (and covering) information for different call patterns for a given predicate in a

program. This is illustrated by the following example which, although simple, captures the very

common case where the same (library) procedure is called from a program (in different points)

for different purposes:

Example 1 Consider the (exported) predicate mv/3 (which uses the library predicate qsort/2),

defined for the sake of discussion as follows:

mv(A,B,C):- qsort(A,B), !, C = B.

mv(A,B,C):- append(A,B,D), qsort(D, C).

Assume the following entry assertion for mv/3:

:- entry mv(A,B,C) : (list(A, num), list(B, num), var(C)).

which means that the predicate mv(A,B,C) will be called with A and B bound to lists of num-

bers, and C a free variable. A multi–variant non-failure analysis would infer two call patterns for

predicate qsort/2:

1. The call pattern qsort(A,B): (list(A,num), list(B,num)), for which the

analysis infers that it can fail and is not covered, and

2. the call pattern qsort(A,B): (list(A,num), var(B)), for which the analysis

infers that it will not fail and is covered.

This in turn allows the analysis to infer that the predicate mv/3 will not fail and is covered (for

the call pattern expressed by the entry assertion).

However, a monovariant analysis only considers one call pattern per predicate. In par-

ticular, for predicate qsort/2, the call pattern used is qsort(A,B): (list(A,num),

term(B))4 (which is the result of “collapsing” all call patterns which can appear in the pro-

gram, so that precision is lost), for which it infers that qsort/2 can fail and is not covered. This

causes the analysis to infer that the predicate mv/3 can fail (since the calls to qsort/2 in both

clauses of predicate mv/3 are detected as failing) and is covered. 2

4term(B) means that argument B can be bound to any term.

17

In order to address the different shortcomings of [DLGH97] in this paper we start by casting

the ideas behind non-failure and covering analysis as an abstract interpretation [CC77]. This

then allows us to incorporate non-failure analysis into a (somewhat modified) standard, generic

abstract interpretation engine. This has several advantages. First of all, the analysis is now

based on a standard and well studied theoretical framework. But, most importantly, being able

to take advantage of standard and well developed analysis engines allows us to obtain a sim-

pler and more efficient implementation, with better propagation of information, performing an

efficient fixpoint. The non-failure and covering analyses can be performed alongside other ab-

stract interpretation based analyses, such as those for modes and types, in the same framework.

Furthermore, the analysis that we obtain is multi–variant (on calls and successes) thus inferring

separate non-failure (and covering) information for different call patterns for a given predicate

in a program. Finally, the abstract domain for non-failure can be easily enhanced to define a

domain for determinacy of predicates.

Abstract Interpretation [CC77] is often proposed as a means for inferring properties of pro-

grams at compile–time. It was shown by Bruynooghe [Bru87], Jones and Sondergaard [JS87],

Debray [DW88], and Mellish [Mel86] that this technique can be extended to flow analysis of

programs in logic programming languages, and several frameworks or particular analyses have

evolved since (e.g. [MU87, ST84, Wae88, WHD88]). Abstract interpretation formalizes the rela-

tion between analysis and semantics, and, therefore, it is inherently semantics sensitive, different

semantic definition styles yielding different approaches to program analysis. For logic programs

we distinguish between two main approaches, namely bottom–up analysis and top–down analy-

sis. We also distinguish between goal dependent and goal independent analyses. In this paper

we use a goal dependent framework, since non-failure analysis is inherently goal dependent.

In [Bru91], Bruynooghe describes a framework for the goal-dependent, top–down abstract in-

terpretation of logic programs. We use the PLAI/CiaoPP framework [HBPLG99, HPBLG03],

which follows [Bru91], but incorporates a number of optimizations and efficient fixpoint algo-

rithms, described in [MH90, MH92, HPMS00].

6 Preliminaries

We will denote C the universal set of constraints. We let θ ↓L be the constraint θ restricted to

the variables of the syntactic object L. We denote constraint entailment by |=, so that c1 |= c2

denotes that c1 entails c2.

An atom has the form p(t1, ..., tn) where p is a predicate symbol and the ti are terms. A literal

is either an atom or a constraint. A goal is a finite sequence of literals. A rule is of the form

18

H:- B where H , the head, is an atom and B, the body, is a possibly empty finite sequence

of literals. A constraint logic program, or program, is a finite set of rules. The definition of an

atom A in program P , defnP (A), is the set of variable renamings of rules in P such that each

renaming has A as a head and has distinct new local (but not head) variables.

The operational semantics of a program is in terms of its “derivations” which are sequences

of reductions between “states”. A state 〈G θ〉 consists of a goal G and a constraint store (or store

for short) θ. A state 〈L :: G θ〉, where L is a literal and :: denotes concatenation of sequences,

can be reduced as follows:

1. If L is a constraint and θ ∧ L is satisfiable, it is reduced to 〈G θ ∧ L〉.

2. If L is an atom, it is reduced to 〈B :: G θ〉 for some rule (L:-B) ∈ defnP (L).

assuming for simplicity that the underlying constraint solver is complete. We use S ;P S ′ to

indicate that in program P a reduction can be applied to state S to obtain state S ′. Also, S ;
∗
P S ′

indicates that there is a sequence of reduction steps from state S to state S ′. A derivation from

state S for program P is a sequence of states S0 ;P S1 ;P ... ;P Sn where S0 is S and there

is a reduction from each Si to Si+1. Given a non-empty derivation D, we denote by curr goal(D)

and curr store(D) the first goal and the store in the last state of D, respectively. E.g., if D is the

derivation S0 ;
∗
P Sn with Sn = 〈g :: G θ〉 then curr goal(D) = g and curr store(D) = θ.

A query is a pair (L, θ) where L is a literal and θ a store of an initial state 〈L θ〉. The set of all

derivations from Q for P is denoted derivations(P,Q). We will denote sets of queries by Q.

We extend derivations to Q as follows: derivations(P,Q) =
⋃

Q∈Q derivations(P,Q).

The observational behavior of a program is given by its “answers” to queries. A finite deriva-

tion from a query (L, θ) for program P is finished if the last state in the derivation cannot be

reduced. A finished derivation from a query (L, θ) is successful if the last state is of the form

〈nil θ′〉, where nil denotes the empty sequence. The constraint θ′ ↓L is an answer to (L, θ). We

denote by answers(P,Q) the set of answers to query Q. A finished derivation is failed if the last

state is not of the form 〈nil θ〉. Note that derivations(P,Q) contains not only finished deriva-

tions but also all intermediate derivations. A query Q finitely fails in P if derivations(P,Q) is

finite and contains no successful derivation.

Abstract Interpretation. Abstract interpretation [CC77] is a technique for static program ana-

lysis in which execution of the program is simulated on an abstract domain (Dα) which is simpler

than the actual, concrete domain (D). For this study, we restrict to complete lattices over sets

both for the concrete 〈2D,⊆〉 and abstract 〈Dα,v〉 domains.

Abstract values and sets of concrete values are related via a pair of monotonic mappings

〈α, γ〉: abstraction α : 2D → Dα, and concretization γ : Dα → 2D, such that ∀x ∈ 2D : γ(α(x)) ⊇

19

x and ∀y ∈ Dα : α(γ(y)) = y. In general v is defined so that the operations of least upper

bound (t) and greatest lower bound (u) mimic those of 2D in a precise sense:
∀λ, λ′ ∈ Dα : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)

∀λ1, λ2, λ
′ ∈ Dα : λ1 t λ2 = λ′ ⇔ γ(λ1) ∪ γ(λ2) = γ(λ′)

∀λ1, λ2, λ
′ ∈ Dα : λ1 u λ2 = λ′ ⇔ γ(λ1) ∩ γ(λ2) = γ(λ′)

Goal dependent abstract interpretation takes as input a program P , an abstract domain Dα,

and a description Qα of the possible initial queries to P , given as a set of abstract queries. An

abstract query is a pair (L, λ), where L is an atom (for one of the exported predicates) and

λ ∈ Dα describes the initial stores for L. A set Qα represents the set of queries γ(Qα), which

is defined as γ(Qα) = {(L, θ) | (L, λ) ∈ Qα ∧ θ ∈ γ(λ)}. Such an abstract interpretation

computes a set of triples Analysis(P,Qα, Dα) = {〈Lp, λ
c, λs〉 | p is a predicate of P}, where

Lp is a (program) atom for predicate p. Note that, the analysis being multivariant (on calls), it

may compute several tuples of the form 〈Lp, λ
c, λs〉 for different call patterns 〈Lp, λ

c〉 of each

predicate p (including different program atoms Lp). If p is detected to be dead code then λc =

λs = ⊥. As usual in abstract interpretation,⊥ denotes the abstract constraint such that γ(⊥) = ∅,

whereas > denotes the most general abstract constraint, i.e., γ(>) = D.

7 The Abstract Interpretation Framework

PLAI is an analysis system based on the abstract interpretation framework of Bruynooghe [Bru91]

with the optimizations described in [MH90]. The framework works on an abstraction of the

(SLD) AND-OR trees of the execution of a program for given entry points. The abstract AND-

OR graph makes it possible to provide information at each program point, a feature which is

crucial for many applications (such as, e.g., reordering, automatic parallelization, or garbage

collection).

Program points and abstract substitutions are related as follows. Consider a clause h:- p1, . . . , pn.

Let λi and λi+1 be the abstract substitutions to the left and right of the subgoal pi, 1 ≤ i ≤ n

in this clause. Then λi and λi+1 are, respectively, the abstract call substitution and the abstract

success substitution for the subgoal pi. For this same clause, λ1 is the abstract entry substitution

and λn+1 is the abstract exit substitution. Entry and exit substitutions are denoted respectively

βentry and βexit when projected on the variables of the clause head.

Computing the success substitution from the call substitution is done as follows (see Fig-

ure 3(a)). Given a call substitution λcall for a subgoal p, let h1, . . . , hm be the heads of clauses

which unify with p. Compute the entry substitutions β1entry, . . . , βmentry for these clauses.

Compute their exit substitutions β1exit, . . . , βmexit as explained below. Compute the success

substitutions λ1success, . . . , λmsuccess from the corresponding exit substitutions. At this point,

20

p

h1 hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

h

p1 pnλ1 λ2 λn λn+1......

(a) (b)

Figure 3: Illustration of the Top–Down Abstract Interpretation Process

all different success substitutions can be considered for the rest of the analysis, or a single

success substitution λsuccess for subgoal p computed by means of an aggregation operation for

λ1success, . . . , λmsuccess. This aggregator is usually the LUB (least upper bound) of the abstract

domain. In the first case the analysis is multi-variant on successes, in the second case it is not.

Computing the exit substitution from the entry substitution is straightforward (see Figure

3(b)). Given a clause h:- p1, . . . , pn and an entry substitution βentry for the clause head h, λ1

is the call substitution for p1. This one is computed simply by adding to βentry an abstraction

for the free variables in the clause. The success substitution λ2 for p1 is computed as explained

above (essentially, by repeating this same process for the clauses which match p1). Similarly,

λ3, . . . , λn+1 are computed. The exit substitution Bexit for this clause is precisely the projection

onto h of λn+1.

If, from a different subgoal in the program, a different entry substitution is computed for an

already analyzed clause, different call substitutions will appear (for p1 and possibly the other

subgoals). These substitutions can be collapsed using the LUB operation, or a different node in

the graph can be computed. In the latter solution, different nodes exist in the graph for each call

substitution and subgoal, thus yielding an analysis which is multi–variant on calls.

Note that the framework itself is domain independent. To instantiate it, a particular analysis

needs to define an abstract domain and abstract unification, and the v relation, which in turn

definest (LUB). Abstract unification is divided into two in the framework, so that it is required to

define: (1) how to compute the entry substitution for a clause C given a subgoal p (which unifies

with the head of C) and its call substitution; and (2) how to compute the success substitution

for a subgoal p given its call substitution and the exit substitution for a clause C whose head

unifies with p. We formalize this with functions entry to exit and call to success in Figure 4.

The domain dependent functions used there are:

• call to entry(p(ū), C, λ) which gives an abstract substitution describing the effects on

vars(C) of unifying p(ū) with head(C) given an abstract substitution λ describing ū,

21

• exit to success(λ, p(ū), C, β) which gives an abstract substitution describing ū accord-

ingly to β (which describes vars(head(C))) and the effects of unifying p(ū) with head(C)

under the abstract substitution λ describing ū,

• extend(λ, λ′) which extends abstract substitution λ to incorporate the information in λ′ in

a way that it is still consistent,

• project in(v̄, λ) which extends λ so that it refers to all of the variables v̄,

• project out(v̄, λ) which restricts λ to only the variables v̄.

entry to exit(C, βentry) ≡

A1 := project in(vars(C), βentry);

For i := 1 to length(C) do

Ai+1 := call to success(qi(ūi), Ai));

return project out(vars(head(C)), An+1);

call to success(p(ū), λcall) ≡

λ := project out(ū, λcall); λ′ := ⊥;

For each clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));

λ′ := λ′ t exit to success(λ, p(ū), C, βexit);

od;

return extend(λcall, λ
′);

Figure 4: The Top–Down Framework

In the presence of recursive predicates, analysis requires a fixpoint computation. In [MH90,

MH92] a fixpoint algorithm was proposed for the framework that localizes fixpoint computations

to only the strongly connected components of (mutually) recursive predicates. Additionally, an

initial approximation to the fixpoint is computed from the non-recursive clauses of the recur-

sive predicate. Fixpoint convergence is accelerated by updating this value with the information

from every clause analyzed in turn. The algorithm is (schematically) shown in Figure 5. For a

complete description see [MH90, MH92].

22

call to success recursive(p(ū), λcall) ≡

λ := project out(ū, λcall); λ′ := ⊥;

For each non-recursive clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));

λ′ := λ′ t exit to success(λ, p(ū), C, βexit);

od;

λ′′ := fixpoint(p(ū), λ, λ′);

return extend(λcall, λ
′′);

fixpoint(p(ū), λ, λ′) ≡

λ′′ := λ′;

For each recursive clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));

λ′′ := λ′′ t exit to success(λ, p(ū), C, βexit);

od;

If λ′′ = λ′ then return λ′′

else return fixpoint(p(ū), λ, λ′′);

Figure 5: The Fixpoint Computation

8 Abstract Framework, Domain, and Operations for Non-Failure

Analysis

In the non-failure analysis, the covering test is instrumental. In fact, covering can be seen as a

notion that characterizes the fact that execution of a query will not finitely fail, i.e., if it has fin-

ished derivations then at least one is successful. Note that, as in [DLGH97], non-failure does not

imply success: a predicate that is non-failing may nevertheless not produce an answer because it

does not terminate.

Definition 8.1 [Covering] Given computation state 〈g :: G θ〉 in the execution of program P ,

define the global answer constraint of goal g in store θ as:

c = ∨{ curr store(D′
i) | D

′
i ∈ derivations(P, 〈g, θ〉) and is maximal }

Let ū denote the variables of g already constrained in θ, call them the input variables. We say

that g is covered in θ iff θ↓ū|= c↓ū.

It is not difficult to show that, in a pure language, where failure can only be caused by

constraint store inconsistency, covering is a sufficient condition for non-failure. Indeed, if g

23

is covered in θ, i.e., θ ↓ū|= c ↓ū, then one of the disjunctions in (the projection of) c is entailed.

This corresponds to a (maximal) derivation of 〈g, θ〉, and this derivation cannot be failed, since,

if it were, it would be inconsistent, and no inconsistent constraint can be entailed by a consistent

one. Therefore, either such derivation is infinite, or, if finite, it is successful. Thus:

If g is covered in θ then 〈g, θ〉 does not finitely fail.

A key issue in non-failure analysis will thus be how to approximate the current store and

the global answer constraint so that covering can be effectively and accurately approximated.

In [DLGH97] such an approximation is defined in the following terms: A goal is non-failing if

there is a subset of clauses of the predicate which do not fail and which match the input types

of the goal. This “matching” is the so-called covering test, and basically amounts to the analysis

being able to gather, for each such clause, enough constraints on the input variables of the goal

to be able to prove that, for each of the variables, any element in the corresponding type satisfies

at least the constraint gathered for one clause. An analysis for non-failure thus needs to traverse

the clauses of a predicate to check non-failure of the clause body goals, collect constraints that

approximate the global answer constraint, and finally check that they cover the input types of the

original goal. In the rest of this section, we show how to accommodate the abstract interpretation

based framework of the previous section to perform these tasks, and define an abstract domain

suitable for them.

8.1 Abstract Domain

The abstractions for non-failure analysis are made of four components. The first two are (ab-

stractions of) constraints that represent the current store and the global answer constraint for the

current goal. This is the core part of the domain. The other two components carry the results of

the covering test, specifying if the current constraint store covers the global answer constraint,

and if this implies that the computation may fail or not. The covering and non-failure information

is represented by values of the set B = {>, 0̄, 1̄,⊥}, where 0̄ and 1̄ are not comparable in the

ordering. For covering, 0̄ is interpreted as “not covered” and 1̄ as covered. For non-failure, 0̄ is

interpreted as “not failing” and 1̄ as failing.

Definition 8.2 [Abstract Domain] Let Cα1 and Cα2 be abstract domains for C. The abstract

domain for non-failure is the set

F = {(s, c, o, f) | s ∈ Cα1 , c ∈ Cα2 , o ∈ B, f ∈ B}

The ordering in domain F is induced from that in B, so that (overloading v):

(s1, c1, o1, f1) v (s2, c2, o2, f2) iff f1 v f2

24

In an element (s, c, o, f) ∈ F , components s and c are abstractions α1 and α2 of the constraint

domain C. The usual approximations used (e.g., in [DLGH97]) are types (and modes) for s, and

a finite set of (concrete) constraints for c.

Definition 8.3 [Abstraction Function] The abstraction of a derivation D in the execution of pro-

gram P , such that curr store(D) = θ and curr goal(D) = g, and the input variables and global

answer constraint of g in θ are respectively ū and c, is α(D) = (θα1 , cα2 , o, f), where:

f =

{

1̄ if D is failed

0̄ otherwise
and o =

{

1̄ if θα1 ↓ū|=
α cα2 ↓ū

0̄ otherwise

It is easy to show that such an abstraction is correct, provided that α1 and α2 are also cor-

rect abstractions, and that the corresponding abstract covering test (|=α) correctly approximates

Definition 8.1. For α1 we have already mentioned the use of type and mode information. One

possibility for α2 is to use only those constraints appearing explicitly in the clause bodies of the

predicate whose covering test is to be performed (the current goal g in the derivation).

Example 2 Consider the following (contrived) predicates:

p(X,Y,Z):- X =< Y, q(X,Z).

q(X,Y):- X =< Y.

The global answer constraint for p(X,Y,Z) is X =< Y ∧ X =< Z, but it can be approximated

simply by X =< Y, the only constraint in the definition of p/3. 2

One rationale for the above choice might be that collecting all constraints in derivations may

not be possible during a compile-time analysis (since such constraints are only known during

execution), or may lead to non-termination of the analysis. However, the first problem can be

alleviated by proper abstractions of the tests (such as a depth-k abstraction, in a way similar

to [DRRS93]), and the second problem only occurs for recursive predicates. Thus, the most

simple solution to the termination problem is to avoid collecting constraints in recursive calls.5

Example 3 The global answer constraint for the predicate sorted/1 defined below includes a

constraint for each two elements in the input list, the length of which is not in general known at

compile-time.

sorted([]).

sorted([_]).

sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

5Note that this does not imply that recursive calls are simply ignored. They need to be considered to check that

they are indeed non-failing, even though their global answer constraint is not computed.

25

2

Our solution to this problem6 is to collect only constraints that refer literally to the predi-

cate arguments in the program clause head, which also excludes in general (but not always) the

constraints arising from recursive calls.

Example 4 Consider again the predicate sorted/1 defined in the previous example. We collect

constraints only for the clause head argument [X,Y|L], which amounts to only one constraint:

X =< Y (since the recursive call does not provide constraints for the head arguments that

appear literally in the program).

Consider, on the other hand, predicate p/3 of Example 2. In this case the complete global

answer constraint for p(X,Y,Z) will be collected: X =< Y ∧ X =< Z, since the two single

constraints can be “projected” onto the clause head. 2

Note that such a solution yields an under-approximation of the global answer constraints.

Given the use of type and mode information, which are in general over-approximations, we

have that, for any element (s, c, o, f) ∈ F , given current constraint store θ and global answer

constraint ω, s = θα1 is an over-approximation of θ, and c = ωα2 is an under-approximation

of ω. In this situation, it is not difficult to prove that θα1 ↓ū|=
α ωα2 ↓ū correctly approximates

covering: θ↓ū|= ω↓ū.

8.2 Abstract Operations

Abstract values (s, c, o, f) ∈ F are built during analysis in the following way: f is carried along

during the abstract computation by the abstract operations below, o is computed from the cover-

ing test, c is collected as explained above, and for s, type and mode analysis is performed. Thus,

our analysis is in fact three-fold: it carries on mode, type, and non-failure analyses simultane-

ously. We focus now on the abstract operations for non-failure, given that those for types and

modes are standard:

• call to entry(p(ū), C, λ) solves head unification p(ū) = head(C), and checks that it is

consistent with the c component of λ. If it is not, it returns ⊥, otherwise, the resulting

abstraction.

If p(ū) ∈ C, i.e., if it happens to be a constraint itself, then no clause C exists, and p(ū)

itself is added to the c component. In this case the following exit to success function is

not called.
6However, we plan to investigate other solutions. In particular, the use of a depth-k abstraction seems to be a

very promising one.

26

• exit to success(λ, p(ū), C, β) adds the equations resulting from unification p(ū) = head(C)

to the c component of β and projects it onto vars(ū).

It is the projection performed here that gets rid of useless constraints, like in the case of

Example 4. Constraints that cannot be projected onto the (goal) variables ū are simply

dropped in the analysis.

• λ] λ′ adds abstraction λ to the set λ′ if λ is non-failing.

• extend(λ, λ′) performs the covering test for λ′ (a set of abstractions); if it is successful, the

c component of λ′ is merged with that of λ.

This operation uses the covering algorithm described in [DLGH97], which takes the global

answer constraint c and a type assignment for the input variables appearing in c. Given a

finite set of variables V , a type assignment over V is a mapping from V to a set of types.

This is computed from the type information in the first component of λ. Input variables

are determined from the mode information in that same component. The global answer

constraint is obtained as the disjunction of the c components of each abstraction in λ′.

8.3 Adapting the Analysis Framework

The framework described in the previous section is not adequate for non-failure analysis. The

main reason for this is that the aggregation function for the successive exit abstractions of the

different clauses is not the LUB anymore. In non-failure analysis, the constraints for each clause

need to be gathered together, and a covering test on the set of constraints needs to be performed.

Another difference is that the covering test should only consider constraints from clauses that are

not guaranteed to fail altogether;7 therefore the aggregator must be able to discriminate abstract

substitutions on this criterion.

We have adapted the definition of the call to success function to reflect the aggregation oper-

ator. The adapted definition is shown in Figure 6. Note that, as a result of this, λ′ in the algorithm

is not anymore an abstract substitution, but a set of them. This is input to extend, which is in

charge of the covering test.

When fixpoint computation is required, adapting the framework is a bit more involved. Ba-

sically, since the aggregation operator is not LUB, fixpoint detection cannot be performed right

after the success substitution has been computed. Normally, it is the LUB that is used for updat-

ing the successive approximations to the fixpoint value, and fixpoint detection works by simply

comparing the initial and the final values for the success substitution. In non-failure analysis,

7Note how this information could be used to improve the results of other analyses.

27

call to success(p(ū), λcall) ≡

λ := project out(ū, λcall); λ′ := ∅;

For each clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));

λ′ := λ′] exit to success(λ, p(ū), C, βexit);

od;

return extend(λcall, λ
′);

Figure 6: The Top–Down Framework for Non-Failure Analysis

the covering test must be performed first, and only after this one has been performed, the test

for the fixpoint can be done. The resulting algorithm is shown in Figure 7. It is basically a

simpler fixpoint iterator over the function call to success abandoning the sophisticated fixpoint

computation of Figure 5.

call to success recursive(p(ū), λcall) ≡

λ := project out(ū, λcall);

return fixpoint(p(ū), λ,⊥);

fixpoint(p(ū), λ, λ′) ≡

λ′′ := call to success(p(ū), λ);

If λ′′ = λ′ then return λ′′

else return fixpoint(p(ū), λ, λ′′);

Figure 7: The Fixpoint Computation for Non-Failure Analysis

A Running Example We now illustrate our analysis by means of a detailed example on how

it will proceed. Consider the program (fragment) below:

qsort(As,Bs):- qsort(As,Bs,[]).

qsort([X|L],R,R2) :-

partition(L,X,L1,L2), qsort(L2,R1,R2), qsort(L1,R,[X|R1]).

qsort([],R,R).

28

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- E >= C, partition(R,C,Left,Right1).

Let the abstract call pattern for atom qsort(As,Bs,[]) be

({list(As, num), var(Bs)}, true, 1, 0).

Upon entering the first clause defining qsort/3, the result of call to entry (restricted to

the head variables) is

({num(X), list(L, num), var(R), [](R2)}, true, 1, 0) 8

plus, additionally, {var(R1), var(L1), var(L2)} for the free variables in the clause. Once pro-

jected, this gives the call pattern for the first literal in that clause:

({list(L, num), num(X), var(L1), var(L2)}, true, 1, 0).

We omit the analysis of the partition predicate. After the fixpoint computation for this pred-

icate, however, we will have a set of three abstract elements corresponding to the abstraction

of the three clauses. For brevity, we express such set as a single abstraction where it is the c

component that is a set, instead.9 Note that this is possible because all other components (types,

modes, covering, non-failure) of the abstractions in the set are the same. Thus, we have:
({ list(L, num), num(X), list(L1, num), list(L2, num) },

{ L = [] ∧ L1 = [] ∧ L2 = [], L = [E|] ∧ E < X ∧ L1 = [E|],

L = [E|] ∧ E >= X ∧ L2 = [E|] }, 1, 0).

This is now extended (by abstract function extend) to the corresponding program point of the

clause of qsort. First, the covering test is performed, and it succeeds, since list(L, num), num(X)

covers indeed the global answer constraint projected onto the input variables:

(L = [E|] ∧ (E < X ∨ E >= X)) ∨ L = [].

Therefore, computation is still covered and non-failing. This, together with the projection of

the c component onto the variables of the first clause of qsort, yields success abstraction for

partition:
({ num(X), list(L, num), var(R), var(R1), [](R2),

list(L1, num), list(L2, num) }, true, 1, 0)

where the c component is still true since the projection onto the clause variables factors out the

previously computed global answer constraint. Now, analysis will proceed into call qsort(L2,R1,R2)

with

({list(L2, num), var(R1), [](R2)}, true, 1, 0).

8To be concise, we denote with [](A) that the type of A is that of the empty lists.
9This very same “trick” is used in the implementation.

29

Since this is basically the same call pattern that we started with, no new fixpoint computation

is started in this case.10 On the other hand, a new fixpoint computation is started for the second

recursive call qsort(L1,R,[X|R1]) with

({list(L1, num), var(R), num(X), list(R1, num)}, true, 1, 0).

This is a new call pattern for the qsort predicate, which initiates a new fixpoint computa-

tion. The fixpoint value obtained in this computation is the same abstraction, except for the type

of R which on output is a list. Finally, exit to success now lifts this result to the original goal

qsort(As,Bs,[]) giving:

({list(As, num), list(Bs, num)}, As = [|], 1, 0).

The analysis of the non-recursive clause immediately gives:

({[](As), [](Bs)}, As = [] ∧Bs = [], 1, 0),

and extend computes the covering test for the set of the above two abstractions with the initial

input abstraction, in which the input types are list(As, num). Certainly, this type covers the

(projected) global answer constraint As = [|] ∨ As = []. Thus, the goal is still covered and

non-failing.

Finally, since the abstraction now computed is only the result of a first iteration of the fix-

point computation, a new iteration is started. The result in this case is the same, and fixpoint

computation finishes with that very same result.

9 Implementation Results

We have constructed a prototype implementation in (Ciao) Prolog by adapting the framework

of the PLAI implementation and defining the abstract operations for non-failure analysis that

we have described in this paper. Most of these abstract operations have been implemented

by reusing code of the implementation in [DLGH97], such as for example, the covering algo-

rithm. We have incorporated the prototype in the Ciao/CiaoPP multiparadigm programming sys-

tem [HBPLG99, HPBLG03, BLGPH04] and tested it on the benchmarks used in the non-failure

analysis of Debray et al. [DLGH97], plus some benchmarks exhibiting paradigmatic behaviours,

plus a last group with those used in the cardinality analysis of Braem et al. [BCMH94]. These

two analyses are the closest related previous work that we are aware of. Some relevant results of

these tests for non-failure analysis are presented in Table 3. Program lists the program names,

N the number of predicates in the program, F and C are the number of non-failing predicates

detected by the non-failure analysis in [DLGH97], and the cardinality analysis in [BCMH94],

10Here, we save the reader from some more fixpoint iterations that will be taking place. However, the results are

as indicated.

30

respectively.

Note that our multi–variant analysis can infer several variants (call patterns) for the same

predicate, where some of them may be non-failing (resp. covered) and the other ones can be fail-

ing (resp. not covered). For instance, in the case of the program Mv in Table 3 (also described in

Example 1), which has 4 predicates (mv/3, qsort/2, partition/4 and append/3), the analy-

sis infers one variant for mv/3, which is non-failing and covered, 2 variants for qsort/2 (one of

them which is non-failing and covered, and the other one which is failing and not covered), one

variant for partition/4, which is non-failing and covered, and 3 variants for append/3 (2 of

them which are non-failing and covered, and the other one which is failing and not covered). For

this reason, and in order to make the results comparable, column AF shows two figures (both

corresponding to the analysis presented in this paper): the number of predicates such that all of

their variants (call patterns) are detected as non-failing, and (between parenthesis) the number

of predicates such that some of their variants are detected as non-failing (this second figure is

omitted if it is equal to the first one).

Similarly, ACov shows two figures (both corresponding to the analysis presented in this pa-

per): the number of predicates detected to cover all of their (calling) types (variants), and (be-

tween parenthesis), the number of predicates detected to cover some of their (calling) types. Cov

is the number of predicates detected to cover their (calling) types by the analysis in [DLGH97].

TAF and TF are the total time (in milliseconds) required by the analysis presented in this

paper and the analysis in [DLGH97] respectively (both of which include the time required to

derive the modes and types). The timings were taken on a medium-loaded Pentium IV Xeon

2.0Ghz with two processors, 1Gb of RAM memory, running Red Hat Linux 8.0, and averaging

several runs and eliminating the best and worst values. Ciao version 1.9.111 and CiaoPP-1.0

were used.

Analysis time averages (per predicate) are also provided in the last row of the table. From

these numbers, it is clear that the new implementation based on the abstract interpretation engine

is more efficient than the previous one. It is also more precise, as shown for example in the

benchmarks Mv, Zebra, Family, Blocks, Reach, and Plan.

10 Conclusions

We have described a non-failure analysis based on abstract interpretation, which extends the pre-

vious proposal of Debray et al. Our analysis improves in precision, and enjoys a clear theoretical

setting, and a simpler implementation. Also, the implementation is more efficient. The abstract

domain underlying the analysis can be easily modified to cater for a determinacy analysis. Such

31

Program N AF F C ACov Cov TAF TF
TAF

TF

Hanoi 2 2 2 N/A 2 2 33 242 0.14

Fib 1 1 1 N/A 1 1 17 22 0.77

Tak 1 1 1 N/A 1 1 9 11 0.82

Subs 1 1 1 N/A 1 1 5 33 0.15

Reverse 2 2 2 N/A 2 2 17 29 0.59

Mv 4 2 (4) 1 N/A 2 (4) 2 54 102 0.53

Zebra 6 2 1 N/A 5 (6) 4 1008 1100 0.92

Family 3 3 1 N/A 3 2 10 18 0.56

Blocks 7 1 (2) 0 N/A 4 (5) 4 30 59 0.51

Reach 2 2 0 N/A 2 1 19 30 0.63

Bid 20 5 (8) 5 N/A 14 (17) 14 3089 3369 0.92

Occur 4 1 (3) 1 N/A 1 (3) 1 69 78 0.88

Plan 16 5 (8) 3 0 11 (13) 10 2626 4128 0.64

Qsort 3 3 3 0 3 3 29 65 0.45

Qsort2 5 3 3 0 3 3 33 76 0.43

Queens 5 2 (3) 2 0 3 (4) 3 60 74 0.81

Pg 10 2 (3) 2 0 6 (9) 6 412 477 0.86

Mean 38 (/p) 58 (/p) 0.67 (/p)

Table 3: Accuracy and efficiency of the non-failure analysis (times in mS).

an analysis, provided with a depth-k abstraction, would be the abstract interpretation counterpart

of determinacy analyses such as that of [DRRS93]. We are currently working on the verification

of this proposition.

The implemented analysis we have described in this paper is currently integrated in CiaoPP,

and is being used for lower-bounds cost analysis, granularity control, and program debugging.

Arguably, although our presentation covers strictly constraint logic programming, the technique

could be easily applied to functional logic languages with similar results, as is indeed the case in

the Ciao system, where the analysis presented works without modification for Ciao’s functional

subset or for combinations of functions and predicates.

32

Part III

Abstraction-Carrying Code

11 Introduction

One of the most important challenges which computing research faces today is the development

of security techniques for verifying that the execution of a program (possibly) supplied by an

untrusted source is safe, i.e., it meets certain properties according to a predefined safety policy.

Proof-Carrying Code (PCC) [Nec97] is an enabling technology for mobile code safety which

proposes to associate safety information in the form of a certificate to programs. The certificate

(or proof) is created at compile time, and packaged along with the untrusted code. The consumer

who receives or downloads the code+certificate package can then run a checker which by a

straightforward inspection of the code and the certificate, can verify the validity of the certificate

and thus compliance with the safety policy. The key benefit of this “certificate-based” approach

to mobile code safety is that the consumer’s task is reduced from the level of proving to the level

of checking. Indeed the (proof) checker performs a task that should be much simpler, efficient,

and automatic than generating the original certificate.

The practical uptake of PCC greatly depends on the existence of a variety of enabling tech-

nologies which allow:

1. defining expressive safety policies covering a wide range of properties,

2. solving the problem of how to automatically generate the certificates (i.e., automatically

proving the programs correct), and

3. replacing a costly verification process by an efficient checking procedure on the consumer

side.

The main approaches applied up to now are based on theorem proving and type analysis. For

instance, in PCC the certificate is originally [Nec97] a proof in first-order logic of certain ver-

ification conditions and the checking process involves ensuring that the certificate is indeed a

valid first-order proof. λProlog is used in [AF99] to define a representation of lemmas and def-

initions which helps keep the proofs small. A recent proposal [BL02] uses temporal logic to

specify security policies in PCC. In Typed Assembly Languages [MWCG99], the certificate is

a type annotation of the assembly language program and the checking process involves a form

of type checking. Each of the different approaches possess their own set of stronger and weaker

33

points. Depending on the particular safety property and the available computing resources in the

consumer, some approaches are more suitable than others. In some cases the priority is to reduce

the size of the certificate as much as possible in order to fit in small devices or to cope with

scarce network access (as in, e.g., Oracle-based PCC [NR01] or Tactic-based PCC [AGH+04]),

whereas in other cases the priority is to reduce the checking time (as in, e.g., standard PCC

[Nec97] or lightweight bytecode verification [Ler03]). As a result of all this, a successful cer-

tificate infrastructure should have a wide set of enabling technologies available for the different

requirements.

In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses ab-

stract interpretation [CC77] as enabling technology to handle the above practical (and difficult)

challenges. Abstract interpretation is now a well established technique which has allowed the

development of very sophisticated global static program analyses that are at the same time auto-

matic, provably correct, and practical. The basic idea of abstract interpretation is to infer infor-

mation on programs by interpreting (“running”) them using abstract values rather than concrete

ones, thus obtaining safe approximations of the behavior of the program. The technique allows

inferring much richer information than, for example, traditional types. This includes data struc-

ture shape (with pointer sharing), bounds on data structure sizes, and other operational variable

instantiation properties, as well as procedure-level properties such as determinacy, termination,

non-failure, and bounds on resource consumption (time or space cost). Our proposal, ACC,

opens the door to the applicability of the above domains as enabling technology for PCC. Figure

8 presents an overview of ACC as performed in our system. The certification process carried out

by the code producer is depicted to the left of the figure while the checking process performed

by the code consumer appears to the right. In particular, ACC has the following fundamental

elements which can handle the aforementioned challenges:

1. The first element common to both producer and consumers is the Safety Policy. We rely

on an expressive class of safety policies based on “abstract”—i.e. symbolic—properties

over different abstract domains. Our framework is parametric w.r.t. the abstract domain(s)

of interest, which gives us generality and expressiveness.

2. The next element at the producer’s side is a fixpoint static Analyzer which automatically

infers an abstract model (or simply abstraction) about the mobile code which can then be

used to prove that the code is safe w.r.t. the given policy in a straightforward way. We

identify the particular subset of the analysis results which is sufficient for this purpose.

3. The verification condition generator, VCGen in the figure, generates, from the initial

safety policy and the abstraction, a Verification Condition (VC) which can be proved only

34

Domain Domain

OK OK

OK

Program

Checker

VCGenVCGen

Abstraction

Analyzer

Safety Policy Safety Policy

PRODUCER CONSUMER ,

Figure 8: Abstraction-Carrying Code in CiaoPP

if the execution of the code does not violate the safety policy. As in standard PCC methods,

this process is performed also by the consumers in order to have a trustworthy VC.

4. Finally, a simple, easy-to-trust (analysis) checker at the consumer’s side verifies the valid-

ity of the information on the mobile code. It is indeed a specialized abstract interpreter

whose key characteristic is that it does not need to iterate in order to reach a fixpoint (in

contrast to standard analyzers).

While ACC is a general approach, for concreteness we develop herein an incarnation of it in

the context of (Constraint) Logic Programming, (C)LP, because this paradigm offers a good

number of advantages, an important one being the maturity and sophistication of the analysis

tools available for it. Also for concreteness, we build on the algorithms of (and report on an

implementation on) CiaoPP [HPBLG03], the abstract interpretation-based preprocessor of the

Ciao multi-paradigm CLP system. CiaoPP uses modular, incremental abstract interpretation

as a fundamental tool to obtain information about programs. In CiaoPP, the semantic approx-

imations thus produced have been applied to perform high- and low-level optimizations during

program compilation, including transformations such as multiple abstract specialization, paral-

lelization, resource usage control, and program verification. More recently, novel and promising

applications of such semantic approximations are being applied in the more general context of

program development. We report on our extension of the framework to incorporate ACC and on

how this instantiation of ACC already shows promising results. Our approach is highly flexible

because it inherits the parametricity on the abstract domain and inference power of the abstract

interpretation engines used in (C)LP.

35

The paper is organized as follows. Section 12 introduces some notation and preliminary

notions on CLP and abstract interpretation. Section 13 describes the assertion language which

is used to define our safety policy. Section 14 formalizes the certification process performed in

CiaoPP to generate an abstraction of the program. In Section 15, we present the verification

condition generator which attests compliance of the abstraction with respect to the safety policy.

In Section 16, we introduce an abstract interpretation-based checker which validates the safety

certificate in the consumer. Section 17 reports some experiments performed in the CiaoPP-

based implementation. In Section 18, we sketch promising applications of our framework within

a pervasive computing environment. Finally, Section 19 discusses the work presented in this

paper and related work.

12 Preliminaries

We assume familiarity with constraint logic programming [JM94] (CLP) and the concepts of ab-

stract interpretation [CC77] which underlie most analyses in CLP. The remaining of this section

introduces some notation and recalls preliminary concepts on these topics.

12.1 Constraint Logic Programming

Terms are constructed from variables (e.g., X), functors (e.g., f) and predicates (e.g., p). We

denote by {X1 7→ t1, . . . , Xn 7→ tn} the substitution σ with σ(Xi) = ti for all i = 1, . . . , n (with

Xi 6= Xj if i 6= j) and σ(X) = X for any other variable X , where ti are terms. A renaming is a

substitution ρ for which there exists the inverse ρ−1 such that ρρ−1 ≡ ρ−1ρ ≡ id. We say that a

renaming ρ is a renaming substitution of term t1 w.r.t. term t2 if t2 = ρ(t1).

A constraint is essentially a conjunction of expressions built from predefined predicates. An

atom has the form p(t1, ..., tn) where p is a predicate symbol and the ti are terms. A literal is

either an atom or a constraint. A goal is a finite sequence of literals. A rule is of the form H:-B

where H , the head, is an atom and B, the body, is a possibly empty finite sequence of literals. A

CLP program, or program, is a finite set of rules.

Example 12.1 (CLP Program) The main predicate, create streams/2, of the following

CLP program receives a list of numbers which correspond to certain file names, and returns in

the second argument the list of file handlers (streams) associated to the (opened) files:

create_streams([],[]).

create_streams([N|NL],[F|FL]):-

36

number_codes(N,ChInN), app("/tmp/",ChInN,Fname),

safe_open(Fname,write,F), create_streams(NL,FL).

safe_open(Fname,Mode,Stream):-

atom_codes(File,Fname), open(File,Mode,Stream).

The call number codes(N,ChInN) receives the number N and returns in ChInN the list

of the ASCII codes of the characters comprising a representation of N. Then, it uses the well-

known list concatenation predicate app/3. The call atom codes(File,Fname) receives

in Fname a list of ASCII codes and returns the atom File made up of the corresponding char-

acters. Also, a call such as open(File,Mode,Stream) opens the file named File and

returns in Stream the stream associated with the file. The argument Mode can have any of

the values: read, write, or append. Predicates number codes/2, atom codes/2, and

open/3 are ISO-standard Prolog predicates, and thus they are available in CiaoPP.

12.2 Abstract Interpretation

A distinguishing feature of our approach is that a class of safety policies can be defined for the

different abstract domains available in the system. In particular, safety properties are expressed

as substitutions in the context of an abstract domain (Dα) which is simpler than the selected

concrete domain (D). An abstract value is a finite representation of a, possibly infinite, set of

actual values in the concrete domain. Our approach relies on the abstract interpretation theory

[CC77], where the set of all possible abstract semantic values which represents Dα is usually a

complete lattice or cpo which is ascending chain finite. However, for this study, abstract inter-

pretation is restricted to complete lattices over sets, both for the concrete 〈2D,⊆〉 and abstract

〈Dα,v〉 domains. Abstract values and sets of concrete values are related via a pair of mono-

tonic mappings 〈α, γ〉: abstraction α : 2D → Dα, and concretization γ : Dα → 2D, such that

∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v is induced by ⊆ and α.

Similarly, the operations of least upper bound (t) and greatest lower bound (u) mimic those of

2D in a precise sense. In this framework an abstract property is defined as an abstract substitu-

tion which allows us to express properties, in terms of an abstract domain, that the execution of

a program must satisfy. The description domain we use in our examples is the following regular

type domain [DZ92].

Example 12.2 (regular type domain) We refer to the regular type domain as eterms, since it is

the name it has in CiaoPP. Abstract substitutions in eterms [VB02], over a set of variables

V , assign a regular type to each variable in V . We use in our examples term as the most

37

general type (i.e., term ≡ > corresponds to all possible terms). We also allow parametric types

such as list(T) which denotes lists whose elements are all of type T. Type list is clearly

equivalent to list(term). Also, list(T)v listv term for any type T. The least general

substitution ⊥ assigns the empty set of values to each variable.11

Apart from predefined types, in the eterms domain, one can have user-defined regular types

declared by means of Regular Unary Logic programs [FSVY91]. For instance, in the context of

mobile code, it is a safety issue whether the code tries to access files which are not related to the

application in the machine consuming the code. A very simple safety policy can be to enforce

that the mobile code only accesses temporary files. In a UNIX system this can be controlled

(under some assumptions) by ensuring that the file resides in the directory /tmp/. The following

regular type safe name defines this notion of safety:12

:- regtype safe_name/1.

safe_name("/tmp/"||L) :- list(L,alphanum_code).

:- regtype alphanum_code/1.

alphanum_code(X):- member(X,"abcdefghijklmnopqrstuvwzyz").

alphanum_code(X):- member(X,"ABCDEFGHIJKLMNOPQRSTUVWXYZ").

alphanum_code(X):- member(X,"0123456789").

The abstract property made up of substitution {X 7→safe name} expresses that X is bound to a

string which starts by the prefix “/tmp/” followed by a list of alpha-numerical characters. In

the following, we write simply safe name(X) to represent it.

13 An Assertion Language to Specify the Safety Policy

The purpose of a safety policy is to specify precisely the conditions under which the execution

of a program is considered safe. We propose the use of (a subset of) the high-level assertion

language [PBH00b] available in CiaoPP to define an expressive class of safety policies in the

context of constraint logic programs.

Assertions are syntactic objects which allow expressing a wide variety of high-level proper-

ties of (in our case CLP-) programs. Examples are assertions which state information on entry

points to a program module, assertions which describe properties of built-ins, assertions which

provide some type declarations, cost bounds, etc. The original assertion language [PBH00b]

11Let us note that certain abstract domains assign a different meaning to⊥. In these cases, a distinguished symbol

(i.e., an extra ⊥) can always be added to represent unreachable points.
12The regtype declarations are used to define new regular types in CiaoPP.

38

available in CiaoPP is composed of several assertion schemes. Among them, we simply con-

sider the two following schemes for the purpose of this paper, which intuitively correspond to

the traditional pre- and postcondition on procedures.

calls(B, {λ1
Pre; . . . ; λ

n
Pre}): They express properties which should hold in any call to a given

predicate similarly to the traditional precondition. B is a predicate descriptor, i.e., it has

a predicate symbol as main functor and all arguments are distinct free variables, and λi
Pre,

i = 1, . . . , n, are abstract properties about execution states. The resulting assertion should

be interpreted as “in all activations of B at least one property λi
Pre should hold in the

calling state.”

success(B, [λPre,]λPost): This assertion schema is used to describe a postcondition which must

hold on all success states for a given predicate. B is a predicate descriptor, and λPre and

λPost are abstract properties about execution states. λPre is optional and must be evaluated

w.r.t. the store at the calling state to the predicate while condition λPost is evaluated at the

success state. If the optional λPre is present, then λPost is only required to hold in those

success states which correspond to call states satisfying λPre. Note that several success

assertions with different λPre may be given.

Therefore, abstract properties λPre and λPost in assertions allow us to express conditions, in terms

of an abstract domain, that the execution of a program must satisfy. Each condition is an abstract

substitution corresponding to the variables in some atom. In existing approaches, safety policies

usually correspond to some variants of type safety (which may also control the correct access of

memory or array bounds [NL98]). In our system, the (co-)existence of several domains allows

expressing a wider range of properties using the assertion language. They include a wide class

of safety policies based on modes, types, non-failure, termination, determinacy, non-suspension,

non-floundering, cost bounds, and their combinations.

In the CiaoPP preprocessor, the assertion language allows us to define the safety policy for

the run-time system in the presence of foreign functions, built-ins, etc. In general, it is the task of

the compiler designer to define the safety policies associated to the predefined system predicates.

In addition to these assertions, the user can optionally provide further assertions manually for

user-defined predicates.

Example 13.1 (Safety Policy) Figure 9 shows the assertions which are relevant to the program

in our running example. The first four rows correspond to calls assertions, whereas the last

three are success assertions. Out of the four calls, the first three are predefined in the

system. The last user-defined assertion for predicate safe open provides a simple way to

39

calls(number codes(X,Y), {(num(X);list(Y,numcodes))})

calls(atom codes(X,Y), {(constant(X);string(Y))})

calls(open(X,Y, Z), {constant(X),io mode(Y)})

calls(safe open(Fname, ,), {safe name(Fname)})

success(number codes(X,Y), >, {num(X),list(Y,numcodes)})

success(atom codes(X,Y),>, {constant(X),string(Y)})

success(open(X,Y,Z), >, {constant(X),io mode(Y),stream(Z)})

Figure 9: Assertions for the example

guarantee that all calls to open are safe. It can be read as “the calling conventions for pred-

icate safe open require that the first argument be a safe name”. The assertion for open

is predefined in our system and it requires that, upon success, the first variable to be of type

constant, the second a proper io mode and the last one of type stream.

In contrast to traditional approaches, assertions are not compulsory for every predicate. Thus,

the user can decide how much effort to put into writing assertions: the more of them there are,

the more complete the partial correctness of the program is described and more possibilities to

detect problems. Indeed, pre- and post-conditions are frequently provided by programmers since

they are often easy to write and very useful for generating program documentation. Nevertheless,

the analysis algorithm is able to obtain safe approximations of the program behavior even if no

assertions are given. This is not always the case in other approaches such as classical program

verification, in which loop invariants are actually required. Such invariants are hard to find and

existing automated techniques are generally not sufficient to infer them, so that often they have

to be provided by hand.

14 Certifying Programs by Static Analysis

This section introduces (part of) the certification process, as sketched to the left of Figure 8,

carried out by the producer, namely the generation of a certificate to attest the adherence of the

program to the safety policy. The generation of the verification condition from the certificate is

discussed in the next section.

40

14.1 Using Analysis Results as Certificates

Given an initial program P , we first define its Safety Policy by means of a set of assertions AS

in the context of an abstract domain Dα, as introduced in Sect. 13. The domain is appropriately

chosen among a repertoire of Domains available in the system. The assertions are obtained from

the assertions for system predicates and those provided by the user. Once the safety policy is

specified, a standard Analyzer is run. Our certification method is based on the following idea:

An abstraction of the program computed by abstract interpretation-based analyzers

can play the role of certificate for attesting program safety.

Global program analysis is becoming a practical tool in constraint logic program compilation

in which information about calls, answers, and the effect of the constraint store on variables at

different program points is computed statically [HWD92, VD92, MH92, SCWY91, BdlBH94].

Essentially, an analyzer returns an abstraction of P ’s execution in terms of the abstract domain

Dα. The underlying theory, formalized in terms of abstract interpretation [CC77], and the related

implementation techniques are well understood for several general types of analysis and, in par-

ticular, for top-down analysis of Prolog [Deb89, Deb92, Bru91, MH92, MSJ94, CV94]. Several

generic analysis engines, such as the one implemented in the CiaoPP system [HPMS00, MH92,

MH90], GAIA [CV94], and the CLP(R) analyzer facilitate construction of such top-down an-

alyzers. These generic engines have the description domain and functions on this domain as

parameters. As it appears in Figure 8, in principle the analyzer is domain–independent. This al-

lows plugging in different abstract Domains provided suitable interfacing functions are defined.

From the user point of view, it is sufficient to specify the particular abstract domain desired during

the generation of the safety assertions. Different domains give analyzers which provide different

types of information and degrees of accuracy. The core of each generic abstract interpretation-

based engine is an algorithm for efficient fixed-point computation [MH90, MH92, CDMV93].

In order to analyze a program, traditional (goal dependent) abstract interpreters for (C)LP

programs receive as input, in addition to the program and the abstract domain, a set of calling

patterns CP . A calling pattern is a description of the calling modes (or entries) into the program.

For simplicity, we assume that P comes enhanced with its entries CP . In particular, a set of

calling patterns Q consists of a set of pairs of the form 〈A : CP 〉where A is a predicate descriptor

and CP is an abstract substitution (i.e., a condition of the run-time bindings) of A expressed as

CP ∈ Dα.13 Given a program P and a call pattern CP in the context of an abstract domain

13In principle, calling patterns are only required for exported predicates. The analysis algorithm is able to generate

them automatically for the remaining internal predicates. Nevertheless, they can still be automatically generated by

assuming > (i.e., no initial data) for all exported predicates (although the idea is to improve this information in the

initial calling patterns).

41

Dα, this analyzer constructs an and–or graph (or analysis graph) for Q which can be viewed as a

finite representation of the (possibly infinite) set of (possibly infinite) AND-OR trees explored by

the concrete execution of Q in P [Bru91]. The analysis graph corresponds to (or approximates)

the abstract semantics of the program and entry [Bru91]. The graph has two sorts of nodes:

or–nodes and and–nodes. Or–nodes correspond to literals whilst and–nodes to rules. Both kinds

of nodes are interleaved in the graph and connected as follows. An or–node has arcs to those

and–nodes which correspond to the rules whose head unifies with the literal it represents. An

and–node for a rule H :– B1, . . . , Bn has n arcs to the or–nodes which corresponds to the literals

Bi in the body of the rule.

The important point here is that the analysis graph computed by an abstract interpretation-

based analyzer represents an abstract model (or abstraction) of the program. The following

section recalls the concrete analysis algorithm of [HPMS00] which computes an analysis graph

and identifies the fragment of the information stored in such graph which is sufficient in order to

play the role of safety certificate.

14.2 The Analysis Algorithm

The program analysis graph is implicitly represented in the algorithm implemented in CiaoPP

[HPMS00] by means of two data structures, the answer table and the dependency arc table.

Given the information in these it is straightforward to construct the graph and the associated

program point annotations. The answer table contains entries of the form A : CP 7→ AP where

A is always a base form. This corresponds to an OR-node in the analysis graph of the form

〈A : CP 7→ AP〉. It is interpreted as “the answer pattern for calls to A satisfying precondition (or

call substitution), CP, accomplishes postcondition (or success substitution), AP.” A dependency

arc is of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2. This is interpreted as follows: if the rule

with Hk as head is called with description CP0 then this causes literal Bk,i to be called with

description CP2. The remaining part CP1 is the program annotation just before Bk,i is reached

and contains information about all variables in rule k. CP1 is not really necessary, but is included

for efficiency. Dependency arcs represent the arcs in the program analysis graph from atoms in a

rule body to an atom node.

Intuitively, the analysis algorithm is just a graph traversal algorithm which places entries in

the answer table and dependency arc table as new nodes and arcs in the program analysis graph

are encountered. To capture the different graph traversal strategies used in different fixed-point

algorithms, we use a priority queue. Thus, the third, and final, structure used in our algorithms

is a prioritized event queue. Events are of three forms:

• newcall(A : CP) which indicates that a new calling pattern for atom A with description

42

CP has been encountered.

• arc(R) which indicates that the rule referred to in R needs to be (re)computed from the

position indicated.

• updated(A : CP) which indicates that the answer description to calling pattern A with

description CP has been changed.

The generic analysis algorithm of [HPMS00] is given in Figure 10. It is defined in terms of five

abstract operations on the description domain Dα of interest:

• Arestrict(CP, V) performs the abstract restriction of a description CP to the set of variables

in the set V , denoted vars(V);

• Aextend(CP, V) extends the description CP to the variables in the set V ;

• Aadd(C, CP) performs the abstract operation of conjoining the actual constraint C with the

description CP;

• Aconj(CP1, CP2) performs the abstract conjunction of two descriptions;

• Alub(CP1, CP2) performs the abstract disjunction of two descriptions.

Apart from the parametric description domain-dependent functions, the algorithm has several

other undefined functions. The functions add event and next event respectively add an event

to the priority queue and return (and delete) the event of highest priority.

When an event being added to the priority queue is already in the priority queue, a single event

with the maximum of the priorities is kept in the queue. When an arc Hk : CP⇒ [CP′′]Bk,i : CP′

is added to the dependency arc table, it replaces any other arc of the form Hk : CP⇒ []Bk,i : in

the table and the priority queue. Similarly when an entry Hk : CP 7→ AP is added to the answer

table, it replaces any entry of the form Hk : CP 7→ . Note that the underscore () matches any

description, and that there is at most one matching entry in the dependency arc table or answer

table at any time.

The function initial guess returns an initial guess for the answer to a new calling pattern.

The default value is ⊥ but if the calling pattern is more general than an already computed call

then its current value may be returned.

The algorithm centers around the processing of events on the priority queue in main loop,

which repeatedly removes the highest priority event and calls the appropriate event-handling

function. When all events are processed it calls remove useless calls. This procedure traverses

the dependency graph given by the dependency arcs from the initial calling patterns S and marks

43

analyze(S)
foreach A : CP ∈ S

add event(newcall(A : CP))
main loop()

main loop()
while E := next event()

if (E = newcall(A : CP))
new calling pattern(A : CP)

elseif (E = updated(A : CP))
add dependent rules(A : CP)

elseif (E = arc(R))
process arc(R)

endwhile
remove useless calls(S)

new calling pattern(A : CP)
foreach rule Ak :- Bk,1, . . . , Bk,nk

CP0 :=
Aextend(CP, vars(Bk,1, . . . , Bk,nk

))
CP1 := Arestrict(CP0, vars(Bk,1))
add event(arc(

Ak : CP⇒ [CP0] Bk,1 : CP1))
AP := initial guess(A : CP)
if (AP 6= ⊥)

add event(updated(A : CP))
add A : CP 7→ AP to answer table

add dependent rules(A : CP)
foreach arc of the form

Hk : CP0 ⇒ [CP1] Bk,i : CP2

in graph
where there exists renaming σ

s.t. A : CP = (Bk,i : CP2)σ
add event(arc(

Hk : CP0 ⇒ [CP1] Bk,i : CP2))

process arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2)
if (Bk,i is not a constraint)

add Hk : CP0 ⇒ [CP1] Bk,i : CP2

to dependency arc table
W := vars(Ak :- Bk,1, . . . , Bk,nk

)
CP3 := get answer(Bk,i : CP2, CP1,W)
if (CP3 6= ⊥ and i 6= nk)

CP4 := Arestrict(CP3, vars(Bk,i+1))
add event(arc(

Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4))
elseif (CP3 6= ⊥ and i = nk)

AP1 := Arestrict(CP3, vars(Hk))
insert answer info(H : CP0 7→ AP1)

get answer(L : CP2, CP1,W)
if (L is a constraint)

return Aadd(L, CP1)
else

AP0 := lookup answer(L : CP2)
AP1 := Aextend(AP0,W)
return Aconj(CP1, AP1)

lookup answer(A : CP)
if (there exists a renaming σ s.t.

σ(A : CP) 7→ AP in answer table)
return σ−1(AP)

else
add event(newcall(σ(A : CP)))
where σ is a renaming s.t.
σ(A) is in base form
return ⊥

insert answer info(H : CP 7→ AP)
AP0 := lookup answer(H : CP)
AP1 := Alub(AP, AP0)
if (AP0 6= AP1)

add (H : CP 7→ AP1) to answer table
add event(updated(H : CP))

Figure 10: Fixpoint Analyzer

those entries in the dependency arc and answer table which are reachable. The remainder are

removed.

The function new calling pattern initiates processing of the rules in the definition of atom

44

A, by adding arc events for each of the first literals of these rules, and determines an initial

answer for the calling pattern and places this in the table. The function add dependent rules

adds arc events for each dependency arc which depends on the calling pattern (A : CP) for which

the answer has been updated. The function process arc performs the core of the analysis. It

performs a single step of the left-to-right traversal of a rule body. If the literal Bk,i is an atom,

the arc is added to the dependency arc table. The current answer for the call Bk,i : CP2 is

conjoined with the description CP1 from the program point immediately before Bk,i to obtain

the description for the program point after Bk,i. This is either used to generate a new arc event

to process the next literal in the rule if Bk,i is not the last literal; otherwise the new answer for

the rule is combined with the current answer in insert answer info. The function get answer

processes a literal. If it is a constraint, it is simply abstractly added to the current description.

If it is an atom, the current answer to that atom for the current description is looked up; then

this answer is extended to the variables in the rule the literal occurs in and conjoined with the

current description. The functions lookup answer and insert answer info lookup an answer

for a calling pattern in the answer table, and update the answer table entry when a new answer is

found, respectively. The function lookup answer also generates newcall events in the case that

there is no entry for the calling pattern in the answer table.

A central idea in this work is that, for certifying program safety, it suffices to send the infor-

mation stored in the analysis answer table. In contrast to this analysis algorithm, a simple checker

can be designed for validating the answer table without requiring the use of the arc dependency

table at all (as we show in Sect. 16). The theory of abstract interpretation guarantees that the

answer table is a safe approximation of the runtime behavior (see [Bru91, HPMS00, PH96] for

details). The following example shows an answer table computed by CiaoPP.

Example 14.1 (Abstraction) Take the initial calling pattern

〈create streams(X, Y), {list(X, num)}〉

which indicates that calls to create streams are performed with a list of numbers in the first

argument. The answer table computed by CiaoPP contains (among others) these entries:

45

Predicate Calling Pattern Success Pattern

create streams(A,B) list(A,num) list(A, num),list(B, stream)

number codes(A,B) num(A) num(A),list(B,numcodes)

generate(A,B) list(A,numcodes) list(A,numcodes),sf(B)

app(A,B,C) A="/tmp/", A="/tmp/",

list(B,numcodes) list(B,numcodes),sf(C)

safe open(A,B,C) sf(A),B=write sf(A),B=write,stream(B)

atom codes(A,B) sf(B) constant(A),sf(B)

open(A,B,C) constant(A), constant(A),B=write,

B=write stream(C)

The first entry should be interpreted as: all calls to predicate create streams provide as

input a list of numbers in the first argument and, upon success, they yield lists of numbers and

streams, respectively, in each of its two arguments. It is interesting to note that CiaoPP creates

the auxiliary type:

sf("/tmp/"||A):-list(A,numcodes).

to represent lists of numbers starting by the prefix "/tmp/". Moreover, we use the notation

V ar = constant to denote that the system generates a new type whose only element is this con-

stant, as it happens: for write, in the entries for safe open and open and, for "/tmp/",

in the entry for app.

Clearly, sf v safe name. This will allow CiaoPP to infer that calls to open performed

within this program satisfy the simple safety policy discussed in Example 13.1. Therefore, the

information stored in the answer table is sufficient to attest the safety policy.

In order to increase accuracy, analyzers are usually multivariant on calls (see, e.g., [HPMS00]).

Indeed, though not visible in this example, CiaoPP incorporates a multivariant analysis, i.e.,

more than one triple 〈A : CP1 7→ AP1〉,. . ., 〈A : CPn 7→ APn〉 n > 1 with CPi 6= APi for some

i, j may be computed for the same predicate descriptor A.

It is important to note that our approach would work directly in other programming paradigms,

such as imperative or functional programming (the latter already covered in our current system),

as long as a static analyzer/checker is available. Note that the fundamental components of the

approach (fixpoint semantics and abstract interpretation) have both been widely applied also in

these paradigms.

46

15 The Verification Condition

As part of the certification process carried out by the code producer, the verification condition

generator (VCGen in Fig. 8) extracts, from the initial assertions and abstraction, a Verification

Condition (VC) which can be proved only if the execution of the code does not violate the safety

policy. If VC can be proved (marked as OK in Fig. 8), then the certificate (i.e., the abstraction) is

sent together with the program P to the code consumer. Sections 14.1 and 15 give further details

on the Abstraction and the VCGen process, respectively.

Definition 15.1 (VC – verification condition) Let AT be an analysis answer table computed

for a program P and a set of calling patterns Q in the abstract domain Dα. Let S be an assertion.

Then, the verification condition, V C(S,AT), for S w.r.t. AT is defined as follows:

V C(S,AT) ::=

∧

〈A:CP 7→AP 〉∈AT

(ρ(CP) v λ1
Prec ∨ . . . ∨ ρ(CP) v λn

Prec)

if S = calls(B, {λ1
Prec; . . . ; λ

n
Prec})

∧

〈A:CP 7→AP 〉∈AT

ρ(CP) u λPrec = ⊥ ∨ ρ(AP) v λPost

if S = success(B, λPrec, λPost)

where ρ is a variable renaming substitution of A w.r.t. B.

If AS is a finite set of assertions, then its verification condition, V (AS,AT), is the conjunc-

tion of the verification conditions of the elements of AS.

Roughly speaking, the VC generated according to Def. 15.1 is a conjunction of boolean ex-

pressions (possibly containing disjunctions) whose validity ensures the consistency of a set of

assertions w.r.t. the answer table computed by Analysis. It distinguishes two different cases

depending on the kind of assertion. For calls assertions, the VC requires that at least one precon-

dition λi
Prec be a safe approximation of all existing abstract calling patterns for the atom B. In the

case of success assertions, there are two cases for them to hold. The first one indicates that the

precondition is never satisfied and, thus, the assertion trivially holds (and the postcondition does

not need to be tested). The second corresponds to the case in which the success substitutions

computed by analysis for the predicate are more particular than the one required by the assertion.

Example 15.2 (Verification Condition) Consider the answer table generated in Example 14.1

47

and the calls and success assertions of Figure 9. According to Def. 15.1, the VC is:

(num(X) v (num(X); list(Y, numcodes))∧

sf(Y) v (constant(X); string(Y))∧

constant(X), Y = write v constant(X), io mode(Y)∧

sf(X) v safe name(X)∧

num(X), list(Y, numcodes) v num(X), list(Y, numcodes)∧

constant(X), sf(Y) v constant(X), string(Y)∧

constant(X), Y = write, stream(Z) v constant(X), io mode(Y), stream(Z))

Each conjunct corresponds to an assertion in Fig. 9 in the same order they appear there. Thus,

the first four conjuncts are for the calls assertions and the last three for the success assertions.

The validity of the whole conjunction can be easily proved by taking into account the following

(trivial) relations between the elements in the domain:

sf(X) v string(X)

X = write v io mode(X)

Note that the first two conjuncts contain a disjunction in the right condition. In the second one,

the condition sf(Y) v (constant(X); string(Y)) holds because sf(Y) v string(Y).

Therefore, upon creating the answer table and generating the VC, the validity of the whole

boolean condition is checked by resolving each conjunct separately. Note that each conjunct

consists of comparisons of pairs of abstract substitutions, which simply return either true or false

but do not compute any substitution. This validation may yield three different possible status:

i) the VC is indeed checked and the AT is considered a valid abstraction (marked as OK), ii) it

is disproved, and thus the certificate is not valid and the code is definitely not safe to run (we

should obviously correct the program before continuing the process); iii) it cannot be proved nor

disproved. The latter case happens because some properties are undecidable and the analyzer

performs approximations in order to always terminate. Therefore, it may not be able to infer

precise enough information to verify the conditions. The user can then provide a more refined

description of initial calling patterns or choose a different, finer-grained, domain. Although, it

is not shown in the picture, in both the ii) and iii) cases, the certification process needs to be

restarted until achieving a VC which meets i).

The following theorem states the soundness of the VC. Intuitively, it amounts to saying that

if the VC holds, then the execution of the program will preserve all safety assertions. Following

the notation of [Nec97], we write BV C when V C is valid.

48

Theorem 15.3 (Soundness of the Verification Condition) Let AT be an analysis answer table

for a program P and a set of calling patterns Q in an abstract domain Dα (as defined in Fig-

ure 10). Let AS be a set of assertions. Let V C(AS,AT) be the verification condition for AS

w.r.t. AT (generated as stated in Def. 15.1). If BV C(AS,AT), then P satisfies all assertions in

AS for all computations described by Q.

This result derives from the fact that the static analysis algorithm of [HPMS00] computes a safe

approximation of the stores reached during computation.

16 Checking Safety in the Consumer

The checking process performed by the consumer is illustrated in the right hand side of Fig. 8.

Initially, the supplier sends the program P together with the certificate to the consumer. To retain

the safety guarantees, the consumer can provide a new set of assertions which specify the Safety

Policy required by this particular consumer. It should be noted that ACC is very flexible in that

it allows different implementations on the way the safety policy is provided. Clearly, the same

assertions AS used by the producer can be sent to the consumer. But, more interestingly, the

consumer can decide to impose a weaker safety condition which can still be proved with the sub-

mitted abstraction. Also, the imposed safety condition can be stronger and it may not be proved

if it is not implied by the current abstraction (which means that the code would be rejected).

From the provided assertions, the consumer must generate again a trustworthy VC and use the

incoming certificate to efficiently check that the VC holds. Thus, in the validation process, a

code consumer not only checks the validity of the answer table but it also (re-)generates a trust-

worthy VC. The validation of AT is carried out by the Analysis Checker. The re-generation of

V C (and its corresponding validation) is identical to the process already discussed in the previ-

ous section. Therefore, this section describes only the former part of the validation process, i.e.,

algorithm check.

Although global analysis is now routinely used as a practical tool, it is still unacceptable

to run the whole Analysis to validate the certificate since it involves considerable cost. One

of the main reasons is that the analysis algorithm is an iterative process which often computes

answers (repeatedly) for the same call due to possible updates introduced by further computa-

tions. At each iteration, the algorithm has to manipulate rather complex data structures—which

involve performing updates, lookups, etc.—until the fixpoint is reached. The whole validation

process is centered around the following observation: the checking algorithm can be defined as

a very simplified “one-pass” analyzer. The computation of the Analysis algorithm can be un-

derstood as: Analysis = fixpoint(analysis step). I.e., a process which repeatedly performs a

49

traversal of the analysis graph (denoted by analysis step) until the computed information does

not change. The idea is that the simple, non-iterative, analysis step process can play the role

of abstract interpretation-based checker (or simply analysis checker). In other words, check

≡ analysis step. Intuitively, since the certification process already provides the fixpoint result

as certificate, an additional analysis pass over it cannot change the result. Thus, as long as the

answer table is valid, one single execution of analysis step validates the certificate.

The next definition presents our abstract interpretation-based checking algorithm. It receives

as an additional input a Certificate (which is the analysis fixpoint). In a single traversal, it con-

structs a program analysis graph by using the information in Certificate. The algorithm is devised

as a graph traversal procedure which places entries in a local answer table, AT , as new nodes

in the program analysis graph are encountered. Thus, it handles two distinct answer tables: the

local AT + the incoming Certificate. The final goal of the checking is to reconstruct the analysis

graph and compare the results with the information stored in Certificate. As long as Certificate is

valid, both results coincide and, thus, the certificate is guaranteed to be valid w.r.t. the program.

Definition 16.1 (Analysis Checker) Let P be a normalized14 program and Q be a set of calling

patterns in the abstract domain Dα. Let Certificate be an answer table (or safety certificate) as

defined in Figure 10. The validation of Certificate is performed by the procedure check depicted

in Figure 11. The algorithm uses a local answer table, AT , to compute the results (initially it

does not contain any entry).

Following the presentation of the analysis algorithm in Section 14.2, we assume that the

program P and the answer table are global parameters throughout the algorithm. The checking

algorithm proceeds as follows. As in the analysis algorithm, the procedure process arc is aimed

at computing the resulting description CPa after processing a given atom Bk,i. The computed

result is used to process the next literal in the rule when Bk,i is not the last one. Otherwise, the

computed result constitutes indeed the computed answer for the rule. The difference w.r.t. the

analyzer is that the answer is combined with the corresponding answer supplied by the certifi-

cation process in Certificate. If Certificate is valid, the comparison should hold; otherwise the

process prompts an error and the program is not safe to run.

Example 16.2 Consider again the program of Ex. 12.1, now in normalized form:

create_streams(X,Y):- X=[],Y=[].

create_streams(X,Y):- X=[N|NL], Y=[F|FL],

14For clarity of presentation, in the algorithm we assume that all rule heads are normalized, i.e., H is of the form

p(X1, ..., Xn) where X1, ..., Xn are distinct free variables.

50

check(Q, Certificate)

foreach A : CP ∈ Q

process node(A : CP, Certificate)

return Valid

process node(A : CP, Certificate)

if (∃ a renaming σ s.t. σ(A : CP 7→ AP) in Certificate)

then add (A : CP 7→ AP) to AT

else return Error

foreach rule Ak ← Bk,1, . . . , Bk,nk
in P

W := vars(Ak, Bk,1, . . . , Bk,nk
)

CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk
))

CPRb := Arestrict(CPb, Bk,1)

foreach Bk,i in the rule body i = 1, ..., nk

CPa := process arc(Bk,i : CPRb, CPb,W, Certificate)

if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1))

CPb := CPa

CPRb := CPRa

AP1 := Arestrict(CPa, vars(Ak))

AP2 := Alub(AP1, σ
−1(AP))

if AP <> AP2 then return Error

process arc(Bk,i : CPRb, CPb,W, Certificate)

if Bk,i is a constraint then CPa := Aadd (Bk,i, CPb)

elseif (6 ∃ a renaming σ s.t. σ(Bk,i : CPRb 7→ AP ′) in AT)

then process node (Bk,i : CPRb, Certificate)

AP1 := Aextend (ρ−1(AP),W) where ρ is a renaming s.t.

ρ(Bk,i : CPRb 7→ AP) in AT

CPa := Aconj (CPb, AP1)

return CPa

Figure 11: Abstract Interpretation-based Checking in CiaoPP

number_codes(N,ChInN), generate(ChInN,Fname),

safe_open(Fname,write,F), create_streams(NL,FL).

51

the calling pattern 〈create streams(X, Y), {list(X, num)}〉 and the answer table, denoted by

Certificate, of Ex. 14.1. We describe the more representative steps that algorithm check performs

in order to validate the answer table. First, procedure process node looks up an answer for

the initial calling pattern in Certificate and adds the entry

〈create streams(X, Y) : list(X, num) 7→ AP = list(X, num), list(Y, streams)〉

in the answer table AT (note that, for short, we use AP to denote this particular answer pat-

tern). Since there are two rules defining create streams the outermost loop performs two

iterations:

Iter 1. We start by describing the processing of the first rule (although the order is irrelevant).

Since the first atom X=[] in the rule body is a constraint, its description is computed within

procedure process arc by adding its abstract description, i.e., {nil(X)}, to the initial

description {list(X, num)}, resulting in {nil(X)}. Similarly, the analysis for the second

constraint adds {nil(Y)} to the former description producing {nil(X),nil(Y)}.

Upon exiting the innermost loop, the disjunction of this description with the answer stored

in Certificate is calculated:

AP := Alub ({nil(X), nil(Y)}, AP)

since nil(X) t list(X, num) and the same happens for Y. Thus, the certificate holds for

this rule.

Iter 2. In the second iteration, we find six atoms in the rule body. Thus, the innermost loop

performs the following six steps. The first two traversals deal with the constraints for X and

Y, and are similar to Iter 1. They produce the calling pattern {list(X,num),rt2(Y)}

where the auxiliary regular type rt2 is created by CiaoPP to represent a term whose top-

level functor is a list constructed with F as head and FL as tail. For simplicity, we just write

this description as {list(X,num),Y=[F|FL]} in the following.

The next atom, number codes, in the rule body is not a constraint, thus, process arc

checks whether it has been processed before. Since this is not the case, it recursively

executes process node in order to get an answer for it. By using its predefined defini-

tion, that process node gives the answer {num(N),list(ChInN,numcodes)} for

it. This answer is conjoined with the description of the program point inmediately before

the atom, i.e.:

{list(X, num), Y = [F|FL], num(N), list(ChInN, numcodes)} :=

Aconj({num(N), list(ChInN, numcodes)}, {list(X, num), Y = [F|FL]})

Similarly, nodes generate and safe open are processed producing the final descrip-

52

tion after processing safe open, labeled as CP :

CP = {list(X, num), Y = [stream|FL], num(N),

list(ChInN, numcodes), sf(Fname), stream(F)}

Finally, there is another call to create streams. Now, process node finds out that

AT already contains an answer pattern for this predicate. Then, both calling patterns are

conjoined: AP := Aconj(CP, AP) . Upon return from process arc, it performs the dis-

junction of the computed answer with the answer supplied by Certificate: AP := Alub(AP, AP) .

Since the result AP coincides with the one in the certificate, the proof is validated and the

algorithm terminates in a single graph traversal for the initial query.

The following theorem ensures that algorithm check is able to validate safety certificates which

are stored in a valid analysis answer table.

Theorem 16.3 (partial correctness) Let P be a program, let Q be a set of calling patterns in an

abstract domain Dα. Let Certificate be an answer table P and Q as defined in Figure 10. Then,

check(Q, Certificate) terminates and validates Certificate in P .

The theorem can be demonstrated by showing that check is a simplified version of Analysis

[HPMS00] in two main aspects. One is that no control structure is needed in order to guarantee

that a fixpoint is reached. This eliminates the need for the “event queue” of tha analysis algorithm

in Fig. 10. The second is that since only one traversal of the analysis graph is to be performed,

no detailed dependency information is required. This eliminates the need for the “dependency

arc table” of the analysis algorithm. As a result, check is a suitable procedure for determining

the validity of the certificate.

Another issue is the efficiency of the checking algorithm. Our point to justify an efficient

behavior of check for validating an answer table is that it performs a single graph traversal.

Indeed, for a regular type domain, [Cha00] demonstrates that directional type-checking for logic

programs is fixed-parameter linear. The next section reports experimental evidence of efficiency

issues.

17 Experimental Results

In this section we show some experimental results aimed at studying two crucial points for the

practicality of our proposal: the checking time as compared to the analysis time, and the size

of certificates. We have implemented the checker as a simplification of the generic abstract in-

terpretation system of CiaoPP. It should be noted that this is an efficient, highly optimized,

53

Analysis Checking Speedup Source Byte Code Certificate

Bench PA An TA PC Ch TC A/C TA/TC Source ByteC B/S Cert C/S

aiakl 2 87 89 2 71 72 1.2 1.2 1555 3805 2.4 3090 2.0

ann 22 452 474 18 254 272 1.8 1.7 12745 43884 3.4 24475 1.9

bid 4 56 60 4 35 38 1.6 1.6 4945 10376 2.1 5939 1.2

boyer 9 143 151 7 85 92 1.7 1.6 11010 32522 3.0 12300 1.1

browse 3 14 17 3 12 15 1.2 1.2 2589 8467 3.3 1661 0.6

deriv 2 86 88 1 19 20 4.6 4.4 957 4221 4.4 288 0.3

grammar 2 10 12 2 9 11 1.1 1.1 1598 3182 2.0 1259 0.8

hanoiapp 2 25 26 2 16 18 1.5 1.5 1172 2264 1.9 2325 2.0

mmatrix 1 13 14 1 10 11 1.3 1.3 557 1053 1.9 880 1.6

occur 2 16 18 2 10 12 1.7 1.6 1367 6903 5.0 1098 0.8

progeom 2 13 15 2 9 11 1.5 1.4 1619 3570 2.2 2148 1.3

read 9 792 801 8 488 497 1.6 1.6 11843 24619 2.1 25359 2.1

qplan 13 1411 1424 11 962 973 1.5 1.5 9983 33472 3.4 20509 2.1

qsortapp 1 20 21 1 12 14 1.6 1.5 664 1176 1.8 2355 3.5

query 5 11 15 4 9 12 1.2 1.3 2090 8833 4.2 531 0.3

rdtok 8 141 149 6 43 49 3.3 3.1 13704 15354 1.1 6533 0.5

serialize 2 40 42 2 17 19 2.3 2.2 987 3801 3.9 1779 1.8

warplan 8 173 181 7 108 115 1.6 1.6 5203 23971 4.6 15305 2.9

witt 16 196 212 14 72 86 2.7 2.5 17681 41760 2.4 19131 1.1

zebra 3 94 97 3 90 92 1.1 1.0 2284 5396 2.4 4058 1.8

Overall 1.63 1.61 1 2.66 1.44

Table 4: Checking Time and Certificate Size

state-of-the-art analysis system and which is part of a working compiler. Both the analysis and

checker are parametric w.r.t. the abstract domain. In these experiments they both use the same

implementation of the domain-dependent functions of the sharing+freeness domain [MH91].

We have selected this domain because the information it infers is very useful for reasoning about

instantiation errors, which is a crucial aspect for the safety of logic programs. The whole system

is implemented in Ciao 1.11#200 [BCC+02] with compilation to bytecode. All of our experi-

ments have been performed on a Pentium 4 at 2.4GHz and 512MB RAM running GNU Linux

RH9.0. The Linux kernel used is 2.4.25, customized with the hrtime patch to provide improved

precision and resolution in time measurements.

Execution times are given in milliseconds and measure runtime. They are computed as the

54

arithmetic mean of five runs. A relatively wide range of programs has been used as benchmarks.

They are the same ones used in [HPMS00], where they are described in some detail. For each

benchmark, the columns for Analysis are the following: PA is the time required by the prepro-

cessing phase, in which program clauses are processed and stored in the format required by the

analyzer. The analysis time proper is shown in column An. The actual time needed for analysis

–the sum of these two times– is shown in column TA. Similarly, in the case of checking, three

columns are shown. The preprocessing phase, PC , includes asserting the certificate in addition

to asserting the program to be analyzed. As the figures show, the overhead required for assert-

ing the certificate is negligible. Column Ch is the time for executing the checking algorithm.

Finally, TC is the total time for checking. The columns under Speedup compare analysis and

checking times. As can be seen in columns A/C and TA/TC , the checking algorithm is faster

than the analysis algorithm in all cases. The actual speedup ranges from almost none, as in the

case of zebra, to over four times faster in the case of deriv. The last row summarizes the results

for the different benchmarks using a weighted mean, which places more importance on those

benchmarks with relatively larger analysis times. We use as weight for each program its actual

analysis time. We believe that this weighted mean is more informative than the arithmetic mean,

as, for example, doubling the speed in which a large and complex program is analyzed (checked)

is more relevant than achieving this for small, simple programs. Overall, the speedup is 1.63 in

just analysis time, or 1.61 if we also take into account the preprocessing time. We believe that

the achieved speedup is significant taking into account that CiaoPP’s analyzer for this domain

is highly optimized and converges very efficiently [PH96]. However, it is to be expected that, for

other domains and implementations, the relative gains will be higher.

The second part of the table studies the size of the certificates, coded in compact (fastread)

format, for the different benchmarks and compares it to the size of the source code for the same

program and to the size of the corresponding bytecode. To make this comparison fair, we subtract

4180 bytes from the size of the bytecode for each program: the size of the bytecode for an

empty program in this version of Ciao (minimal top-level drivers and exception handlers for any

executable). The results show the size of the certificate to be quite reasonable. It ranges from 0.3

times the size of the source code (for deriv) to 3.5 (in the case of qsortapp). Overall, it is 1.44

times the size of the source code. We consider this acceptable since in general Prolog programs

are quite compact (up to 10 times more compact than equivalent imperative programs). In fact,

the size of source plus certificate is smaller (1+1.44) than that of the bytecode (2.66).

55

18 Resource-Aware Abstraction Carrying Code

It is well-known that abstract interpretation techniques allow inferring much richer information

than, for example, traditional types. This information will allow us specifying safety policies

involving not only traditional safety issues (e.g., that the code will not write on specific areas

of the disk) but also resource-related issues (e.g., that it will not compute for more than a given

amount of time, or that it will not take up an amount of memory or other resources above a

certain threshold) and, thus, achieving further expressiveness. For instance, let us assume that

the consumer will only accept purely computational tasks, i.e., tasks that have no side effects,

and only those of polynomial (actually, at most quadratic) complexity. This safety policy can be

expressed at the producer for this particular program using the following success assertions:

:- check comp reverse(A,B)

+ sideff(free).

:- check comp reverse(A,B)

: list * var

+ steps_ub(o(exp(length(A),2))).

The first (computational –comp) assertion states that it should be verified that the computation

is pure in the sense that it does not produce any side effects (such as opening a file, etc.). The

second (also computational) assertion states that it should be verified that if the predicate is called

with a list in the first argument and a free variable in the second one, then there is an upper bound

for the cost of this predicate in O(n2), i.e., quadratic in n, where n is the length of the first list

(represented as length(A)). Implicitly, we are assuming that the code will be accepted at the

receiving end, provided all assertions can be checked, i.e., the intended semantics expressed in

the above assertions determines the safety condition. This can be a policy agreed a priori or

exchanged dynamically.

Abstract interpretation-based techniques are able to reason about computational properties

which can be useful for controlling efficiency issues. CiaoPP can infer lower and upper bounds

on the sizes of terms and the computational cost of predicates [DLGHL94, DLGHL97]. Cost

bounds are expressed as functions on the sizes of the input arguments and yield the number of

resolution steps. Various measures can be used for the “size” of the input, such as list-length,

term-size, term-depth, integer-value, etc. For instance, the answer table computed by the an-

alyzers available in CiaoPP contains, among others, the following information for the above

program and entry:

:- true pred reverse(A,B)

: (list(A), var(B))

56

=>(list(A), list(B))

+ (not_fails, is_det, sideff(free),

steps_ub(0.5*exp(length(A),2)+1.5*length(A)+1)).

which states that if the precondition holds (after “:”), then the output is also a list and, moreover,

the procedure is deterministic and does not fail, it does not contain side-effects, and calls to this

procedure take at most 0.5 (length(A))2 + 1.5 length(A) + 1 resolution steps.

Given this information, the verification condition is computed as stated in Definition 15.1:

{ steps ub(0.5 ∗ exp(length(A), 2) + 1.5 ∗ length(A) + 1)),

not fails, is det, sideff(free)} v {steps ub(o(exp(length(A), 2)))}

whose validity can be easly proved by showing that:

0.5 (length(A))2 + 1.5 length(A) + 1 v O(n2).

This allows CiaoPP to infer that calls to reverse performed within this program satisfy the

resource-aware safety policy discussed. The output shows that the “status” of the three check

assertions has become checked, which means that they have been validated and thus the pro-

gram is safe to run (according to the intended meaning):

:- checked comp reverse(A,B)

+ sideff(free).

:- checked comp reverse(A,B)

: list * var

+ steps_ub(o(exp(length(A),2))).

Thus, we have verified that the safety condition is met and that the code is indeed safe to run (for

now on the producer side). The analysis results above can themselves be used as the cost and

safety certificate to attest a safe and efficient use of procedure reverse on the receiving side.

In the consumer side, a receiver could use our method to accept/reject code which ad-

heres/does not adhere to some specification, including usage of computing resources (in time

and/or space). For instance, let us assume that a consumer with very limited computing resources

is assigned to perform a computation using this code. Then, the following “check” assertion can

be used for such particular node:

:- check comp reverse(A,B)

: (list(A, term), var(B))

+ steps_ub(length(A) + 1).

57

which expresses that the consumer node will not accept an implementation of reverse with

complexity bigger than linear. In order to guarantee that the cost assertion holds, the certificate

should contain upper bounds on computational cost. Then, the code receiver proceeds to validate

the certificate. The task of checking that a given expression is an upper bound is definitely sim-

pler than that of obtaining the most accurate possible upper bound. If the certificate is not valid,

the code is discarded. If it is valid, the code will be accepted only if the upper bound in the cer-

tificate is lower or equal than that stated in the assertion. In our example, the certificate contains

the (valid) information that reverse will take at most 0.5 (length(A))2 + 1.5 length(A) + 1

resolution steps. However, the assertion requires the cost to be at most length(A) + 1 reso-

lution steps. A comparison between these cost functions does not allow proving that the code

received by the consumer satisfies the efficiency requirements imposed (i.e. the assertion cannot

be proved).15 This means that the consumer will reject the code.

Resource-aware ACC becomes interesting when developing software to be deployed by de-

vices with a bounded amount of computing resources [Wei91], like in pervasive computing.

Indeed, pervasive computing is characterized by having a relatively large number of untrusted

computing devices which interact. Thus, when modeling such a system, it is not realistic to con-

sider one device in isolation: it will receive plenty of mobile data from the environment. In this

context, the safety of the deployed software is crucial, as the cost of recalling unfit devices can

be prohibitive. On the other hand, these platforms are becoming ever smaller and more powerful,

and are embedded everywhere, even in living organisms. They can contain sophisticated models

of our personal environment that help us to make everyday decisions; they have the power to do

mathematical and logical reasoning in order to perform intelligent tasks. As a result, verification

and validation techniques are necessary but have to keep pace with the huge requirements for

intelligent, user-oriented applications that must run on devices with a minimum of computing

resources. In this context, there is a large number of computing devices which may range from

personal computers to PDAs, mobile phones, dedicated processors, smart cards, wearable com-

puters and such like. As a result, time efficiency is an issue since often these devices have to

operate on real-time tasks. Also, and possibly more importantly, memory efficiency is an issue.

Therefore, compile-time (and run-time) tools for the certification of CLP programs with resource

consumption assurances seem to play a very promising role. As we have seen throughtout the

above example, one can use resource-aware ACC in order to decide if either the received soft-

ware used is too large to fit in the device or needs too much memory to run. In these cases, it is

simply not possible to use such software and the code should be rejected.

15Indeed, the lower bound cost analysis in fact disproves the assertion, which is clearly invalid.

58

In spite of being essential to verify safety, when developing software for deployment on

Smart Cards (and similar ambient computing devices), it is important to simplify the (safety)

verification process and reduce its resource usage. Indeed, Smart Cards typically provide less

than 4Kb of RAM while it is possible to use only up to 128Kb for storing the application and

static data. Such resource considerations tend to dominate the development process for pervasive

systems, forcing developers to write low-level code from scratch, as mobile system developers

have found in their own experience. We argue that ACC (as well as PCC techniques based on cer-

tificates which are computed outside the device) constitute a good scenario for the certification

of software deployed in pervasive systems. They compute tamper-proof certificates which sim-

plify code verification and pass them along with the code. In ACC, the burden on the consumer

side is reduced by using a simple one-traversal checker, which is a very simplified and efficient

abstract interpreter which does not need to compute a fixpoint. The benchmark results in Section

17 show that the speedup achieved by the checking is approximately 1.63 in just analysis time

which, we believe, makes our approach practically applicable in pervasive contexts. A similar

proposal is presented in [Ros98] to split the type-based bytecode verification of the KVM (an

embedded variant of the JVM) in two phases, where the producer first computes the certificate

by means of a type-based dataflow analyzer and then the consumer simply checks that the types

provided in the code certificate are valid. This approach is extended in [KK04] to real world Java

Software. As in our case, the validation can be done in a single, linear pass over the bytecode.

However, these approaches are designed limited to types, whereas our approach supports a very

rich set of domains especially well-suited for this purpose, including complex properties such as

computational and memory cost, non-failure, determinacy, etc. (as we have seen in the examples

in this section) and possibly even combining several of them.

19 Discussion and Related Work

The idea of using the results of abstract interpretation for program verification and debugging is

not new. For instance, CiaoPP [HPBLG03] already uses a combination of abstract interpreta-

tion, abstract specialization, and a flexible assertion language, to perform program debugging,

verification, and optimization with a wide variety of domains. Other approaches to abstract

verification and debugging have also been proposed (see [CGLV00, HPBLG03] for further refer-

ences). The main contribution of this work is to introduce, implement, and (preliminarily) bench-

mark abstraction-carrying code (ACC) as a novel enabling technology for PCC, which follows

the standard strategy of associating safety certificates to programs but it is based throughout on

the use of such abstract interpretation techniques. We argue that ACC is highly flexible due to

59

the parametricity on the abstract domain inherited from the analysis engines used in (C)LP. Our

approach differs from existing approaches to PCC in several aspects. In our case, the certificate

is computed automatically on the producer side by an abstract interpretation-based analyzer and

the certificate takes the form of a particular subset of the analysis results. The burden on the

consumer side is reduced by using a simple one-traversal checker, which is a very simplified and

efficient abstract interpreter which does not need to compute a fixpoint.

A type-level dataflow analysis of Java virtual machine bytecode is also the basis of most

existing verifiers [LY97, Ler03], and some are loosely based on abstract interpretation. These

analyses allow proving that the program is correct w.r.t. type-related correctness conditions. In

[Ros98] a proposal is presented to split the type-based bytecode verification of the KVM (an

embedded variant of the JVM) in two phases, where the producer first computes the certificate

by means of a type-based dataflow analyzer and then the consumer simply checks that the types

provided in the code certificate are valid. As in our case, the second phase can be done in a

single, linear pass over the bytecode. However, these approaches are designed limited to types,

whereas our approach is inherently parametric and thus supports a very rich set of domains,

and possibly even combining several of them. We believe that ACC provides novel means for

certifying security by enhancing mobile code with certificates which guarantee that the execution

of the (in principle untrusted) code received from another node in the network is safe but also,

as mentioned above, efficient, according to a predefined safety policy which includes properties

related to resource consumption.

Let us note that the checker is part of the trusted computing base and, hence, the code con-

sumer has to trust also the domain operations. Other approaches to PCC use logic-based verifica-

tion methods as enabling technology, an example is [WN04] which formalises a simple assembly

language with procedures and presents a safety policy for arithmetic overflow in Isabelle/HOL.

We argue that our proposal brings the expressiveness, flexibility and automation which is inherent

in the abstract interpretation techniques developed in logic programming to this area. The coex-

istence of several abstract domains in our framework is somewhat related to the notion of models

to capture the security-relevant properties of code, as addressed in the work on Model-Carrying

Code (MCC) [SVB+03]. MCC enables code consumers to try out different security policies of

interest and select one that can be statically proved to be consistent with the model associated

to the untrusted code. However, models are intended to describe low-level properties and their

combination has not been studied, which differs from our idea of combining (high-level) abstract

domains.

Another difference between our work and other related work is that the instance that we have

described is actually defined at the source-level, whereas in existing PCC frameworks the code

supplier typically packages the certificate with the object code rather than with the source code

60

(both are untrusted). Actually, both approaches are of interest from our point of view (and, in

fact, our approach can also be applied to bytecode). Clearly, in many cases the source code is

simply not available to the consumer and even when there is a choice between object and source

code, using object code means reducing the trusted computing base in the consumer since there

is no need for a compiler. However, open-source code is becoming much more relevant these

days (in fact, Ciao and CiaoPP are themselves GNU-licensed and available in source code

for reviewing and modification). As a result, it is now realistic to expect that a relatively large

amount of untrusted source code is available to the consumer. The advantages of open-source

with respect to safety are important since it allows inspecting the code and applying powerful

techniques for program analysis and validation which allow inferring information which may be

difficult to observe in low-level, compiled code. This allows handling richer properties which in

turn potentially allow more expressive safety policies.

61

Part IV

Some Techniques for Automated,

Resource-Aware Distributed and Mobile

Computing in a Multi-Paradigm

Programming System

20 Introduction

Distributed parallel execution systems speed up applications by splitting tasks into processes

whose execution is assigned to different nodes in a high-bandwidth network. GRID systems

[FKNT99] in particular attempt to use for this purpose widely distributed sets of machines, often

crossing several administrative domain boundaries. Many interesting challenges arise in this

context.

A number of now classical problems have to be solved when this process is viewed from the

producer side, i.e., from the point of view of the machine in charge of starting and monitoring

a particular execution of a given application (or a part of such an application) by splitting the

tasks into processes whose execution is assigned to different nodes (i.e., consumers) on receiving

sides of the network. A fundamental problem involved in this process is detecting which tasks

composing the application are independent and can thus be executed in parallel. Much work has

been done in the areas of parallelizing compilers and parallel languages in order to address this

problem. While obviously interesting, herein we will concentrate instead on other issues.

In this sense, a second fundamental problem, and which has also received considerable atten-

tion (even if less than the previous one), is the problem of grouping and scheduling such tasks,

i.e., assigning tasks to remote processors, and very specially the particular issue of ensuring that

the tasks involve sufficient computational cost when compared to the task creation and communi-

cation costs and other such practical overheads. Due to these overheads, and if the granularity of

parallel tasks (i.e., the work necessary for their complete execution) is too small, it may happen

that the costs are larger than the benefits of their parallel execution. Of course, the concept of

small granularity is relative: it depends on the concrete system or set of systems where parallel

programs are running. Thus, a resource-aware method has to be devised whereby the granular-

ity of parallel tasks and their number can be controlled. We will call this the task scheduling

62

and granularity control problem. In order to ensure that effective speedup can be obtained from

remote execution it is obviously desirable to devise a solution where load and task distribution

decisions are made automatically, specially in the context of non-embarrassingly parallel and/or

irregular computations in which hand-coded approaches are difficult and tedious to apply.

Interestingly, when viewed from the consumer side, and in an open setting such as that of

the GRID and other similar overlay computing systems, additional and novel challenges arise.

In more traditional distributed parallelism situations (e.g., on clusters) receivers are assumed

to be either dedicated and/or to trust and simply accept (or take, in the case of work-stealing

schedulers) available tasks. In a more general setting, the administrative domain of the receiver

can be completely different from that of the producer. Moreover, the receiver is possibly being

used for other purposes (e.g., as a general-purpose workstation) in addition to being a party

to the distributed computation. In this environment, interesting security- and resource-related

issues arise. In particular, in order to accept some code and a particular task to be performed, the

receiver must have some assurance of the correctness and characteristics of the code received

and also of the kind of load the particular task is going to pose. A receiver should be free to

reject code that does not adhere to a particular safety policy involving more traditional safety

issues (e.g., that it will not write on specific areas of the disk) or resource-related issues (e.g.,

that it will not compute for more than a given amount of time, or that it will not take up an amount

of memory or other resources above a certain threshold). Although it is obviously possible to

interrupt a task after a certain time or if it starts taking too much memory this will be wasteful of

resources and require recovery measures. It is clearly more desirable to be able to detect these

situations a priori.

Recent approaches to mobile code safety involve associating safety information in the form

of a certificate to programs [Nec97, LY97, MWCG99, APH04]. The certificate (or proof) is cre-

ated at compile time, and packaged along with the untrusted code. The consumer who receives

or downloads the code+certificate package can then run a verifier which by a straightforward

inspection of the code and the certificate, can verify the validity of the certificate and thus com-

pliance with the safety policy. It appears interesting to devise means for certifying security by

enhancing mobile code with certificates which guarantee that the execution of the (in principle

untrusted) code received from another node in the network is safe but also, as mentioned above,

efficient, according to a predefined safety policy which includes properties related to resource

consumption.

In this paper we present in a tutorial way a number of general solutions to these problems,

and illustrate them through their implementation in the context of a multi-paradigm language

and program development environment that we have developed, Ciao [BCC+02]. This system

includes facilities for parallel and distributed execution, an assertion language for specifying

63

complex programs properties (including safety and resource-related properties), and compile-

time and run-time tools for performing automated parallelization and resource control, as well as

certification of programs and efficient checking of such certificates.

Our system allows coding complex programs combining the styles of logic, constraint, func-

tional, and a particular version of object-oriented programming. Programs which include logic

and constraint programming (CLP) constructs have been shown to offer a particularly interesting

case for studying the issues that we are interested in [Her97]. These programming paradigms

pose significant challenges to parallelization and task distribution, which relate closely to the

more difficult problems faced in traditional parallelization. This includes the presence of highly

irregular computations and dynamic control flow, non-trivial notions of independence, the pres-

ence of dynamically allocated, complex data structures containing pointers, etc. In addition,

the advanced state of program analysis technology and the expressiveness of existing abstract

analysis domains used in the analysis of these paradigms has become very useful for defining,

manipulating, and inferring a wide range of properties including independence, bounds on data

structure sizes, computational cost, etc.

After first reviewing our approach to solving the granularity control problem using program

analysis and transformation techniques, we propose a technique for resource-aware security in

mobile code based on safety certificates which express properties related to resource usage. In-

tuitively, we use the granularity information (computed by the cost analysis carried out to decide

the distribution of tasks on the producer side) in order to generate so-called cost certificates

which are packaged along with the untrusted code. The idea is that the receiving side can re-

ject code which brings cost certificates (which it cannot validate or) which have too large cost

requirements in terms of computing resources (in time and/or space) and accept mobile code

which meets the established requirements.

The rest of the paper proceeds as follows. After briefly presenting in Section 21 the basic

techniques used for inferring complex properties in our approach, including upper and lower

bounds on resource usage, Section 22 reviews our approach to the use of bounds on data struc-

ture sizes and computational cost to perform automatic granularity control. Section 23 then

discusses our approach to resource-aware mobile code certification. Section 24 finally presents

our conclusions.

64

21 Inferring Complex Properties Including Term Sizes and

Costs

In order to illustrate our approach in a concrete setting, we will use CiaoPP [HPBLG03]

throughout the paper. CiaoPP is a component of the Ciao programming environment which

performs several tasks including automated parallelization and resource control, as well as cer-

tification of programs, and efficient checking of such certificates. CiaoPP uses throughout the

now well-established technique of abstract interpretation [CC77]. This technique has allowed

the development of very sophisticated global static program analyses which are at the same time

automatic, provably correct, and practical. The basic idea of abstract interpretation is to in-

fer information on programs by interpreting (“running”) them using abstract values rather than

concrete ones, thus obtaining safe approximations of program behavior. The technique allows

inferring much richer information than, for example, traditional types. The fact that at the heart

of Ciao lies an efficient logic programming-based kernel language allows the use in CiaoPP

of the very large body of approximation domains, inference techniques and tools for abstract

interpretation-based semantic analysis which have been developed to a powerful and mature

level in this area (see, e.g., [Bru91, MH92, CC92, HPMS00] and their references) and which are

integrated in CiaoPP. As a result of this, CiaoPP can infer at compile-time, always safely, and

with a significance degree of precision, a wide range of properties such as data structure shape

(including pointer sharing), bounds on data structure sizes, determinacy, termination, non-failure,

bounds on resource consumption (time or space cost), etc.

All this information is expressed by the compiler using assertions: syntactic objects which

allow expressing “abstract”—i.e. symbolic—properties over different abstract domains. In par-

ticular, we use the high-level assertion language of [PBH00b], which actually implements a

two-way communication with the system: it allows providing information to the analyzer as well

as representing its results.

As a very simple example, consider the following procedure inc all/2, which increments

all elements of a list by adding one to each of them (we use functional notation for conciseness):

inc_all([]) := [].

inc_all([H|T]) := [H+1 | inc_all(T)].

Assume that analysis of the rest of the program has determined that this procedure will be called

providing a list of numbers as input. The output from CiaoPP for this program then includes

the following assertion:

:- true pred inc_all(A,B)

65

: (list(A,num), var(B))

=> (list(A,num), list(B,num), size_lb(B,length(A))

+ (not_fails, is_det, steps_lb(2*length(A)+1)).

Such “true pred” assertions specify in a combined way properties of both: “:” the entry

(i.e., upon calling) and “=>” the exit (i.e., upon success) points of all calls to the procedure, as

well as some global properties of its execution. The assertion expresses that procedure inc all

will produce as output a list of numbers B, whose length is at least (size lb) equal to the

length of the input list, that the procedure will never fail (i.e., an output value will be computed

for any possible input), that it is deterministic (only one solution will be produced as output for

any input), and that a lower bound on its computational cost (steps lb) is 2 length(A) + 1

execution steps (where the cost measure used in the example is the number of procedure calls,

but it can be any other arbitrary measure). This simple example illustrates type inference, non-

failure and determinism analyses, as well as lower-bound argument size and computational cost

inference. The same cost and size results are actually obtained from the upper bounds analyses

(indicating that in this case the results are exact, rather than approximations). Note that obtaining

a non-infinite upper bound on cost also implies proving termination of the procedure.

As can be seen from the example, in our approach cost bounds (upper or lower) are expressed

as functions on the sizes of the input arguments and yield bounds on the number of execution

steps required by the computation. Various measures are used for the “size” of an input, such as

list-length, term-size, term-depth, integer-value, etc. Types, modes, and size measures are first

automatically inferred by the analyzers and then used in the size and cost analysis.

While it is beyond the scope of this paper to fully explain all the (generally abstract interpretation-

based) techniques involved in this process (see, e.g., [HPBLG03, DLGHL94, DLGHL97] and

their references), we illustrate through a simple example the fundamental intuition behind our

lower bound cost estimation technique.

Consider again the simple inc all procedure above and the assumption that type and mode

inference has determined that it will be called providing a list of numbers as input. Assume again

that the cost unit is the number of procedure calls. In a first approximation, and for simplicity, we

also assume that the cost of performing an addition is the same as that of a procedure call. With

these assumptions the exact cost function of procedure inc all is Costinc all(n) = 2 n + 1,

where n is the size (length) of the input list.

In order to obtain a lower bound approximation of the previous cost function, CiaoPP’s anal-

yses first determine, based on the mode and type information inferred, that the argument size

metric to be used is list length. An interesting problem with estimating lower bounds is that in

general it is necessary to account for the possibility of failure of a call to the procedure (because

66

of, e.g., an inadmissible argument) leading to a trivial lower bound of 0. For this reason, the

lower bound cost analyzer uses information inferred by non-failure analysis [DLGH97], which

can detect procedures and goals that can be guaranteed not to fail, i.e., to produce at least one

solution (which would indeed be the case for inc all) or not terminate.

In general, in order to determine the work done by (recursive) clauses, it is necessary to be

able to estimate the size of input arguments in the procedure calls in the body of the procedure,

relative to the sizes of the input arguments. For this, we use an abstraction of procedure defi-

nitions called a data dependency graph. Our approach to cost analysis consists of the following

steps:

1. Use data dependency graphs to determine the relative sizes of variable bindings at different

program points.

2. Use the size information to set up difference equations representing the computational cost

of procedures

3. Compute lower/upper bounds to the solutions of these difference equations to obtain esti-

mates of task granularities.

The size of an output argument in a procedure call depends, in general, on the size of the input

arguments in that call. For this reason, for each output argument we use an expression which

yields its size as a function of the input data sizes. For the inc all procedure let Size2inc all(n)

denote the size of the output argument (the second) as a function of the size of its first (input)

argument n. Once we have determined that the size measure to use is list length, and the size

relationship which says that the size of the input list to the recursive call is the size of the input list

of the procedure head minus one, the following difference equation can be set up for inc all/2:

Size2inc all(0) = 0 (boundary condition from base case),

Size2inc all(n) = 1 + Size2inc all(n− 1).

The solution of this difference equation obtained is Size2inc all(n) = n.

Let CostLp(n) denote a lower bound on the cost (number of resolution steps) of a call to

procedure p with an input of size n. Given all the assumptions above, and the size relations

obtained, the following difference equation can be set up for the cost of inc all/2:

CostLinc all(0) = 1 (boundary condition from base case),

CostLinc all(n) = 1 + CostLinc all(n− 1).

67

The solution obtained for this difference equation is CostLinc all(n) = 2 n + 1. In this case,

the lower bound inferred is the exact cost (the upper bound cost analysis also infers the same

function). In our approach, sometimes the solutions of the difference equations need to be in fact

approximated by a lower bound (a safe approximation) when the exact solution cannot be found.

The upper bound cost estimation case is very similar to the lower bound one, although simpler,

since we do not have to account for the possibility of failure.

22 Controlling Granularity in Distributed Computing

As mentioned in Section 20, and in view of the techniques introduced in Section 21, we now dis-

cuss the task scheduling and granularity control problem, assuming that the program is already

parallelized.16 The aim of such distributed granularity control is to replace parallel execution

with sequential execution or vice-versa based on some conditions related to task size and over-

heads. The benefits from controlling parallel task size will obviously be greater for systems with

greater parallel execution overheads. In fact, in many architectures (e.g. distributed memory mul-

tiprocessors, workstation “farms”, GRID systems, etc.) such overheads can be very significant

and in them automatic parallelization cannot in general be done realistically without granularity

control. In some other architectures where the overheads for spawning goals in parallel are small

(e.g. in small shared memory multiprocessors) granularity control is not essential but it can also

achieve important improvements in speedup.

Granularity control has been studied in the context of traditional programming [KL88, MG89],

functional programming [Hue93, HLA94], and also logic programming [Kap88, DLH90, ZTD+92,

DL93, LGHD94, LGHD96]. In [LGHD96] we proposed a general granularity control model and

reported on its application to the case of logic programs. This model proposes (efficient) con-

ditions based on the use of information available on task granularity in order to choose between

parallel and sequential execution. The problems to be solved in order to perform granularity con-

trol following this approach include, on one hand, estimating the cost of tasks, of the overheads

associated with their parallel execution, and of the granularity control technique itself. On the

other hand there is also the problem of devising, given that information, efficient compile-time

and run-time granularity control techniques.

Performing accurate granularity control at compile-time is difficult because some of the in-

formation needed to evaluate communication and computational costs, as for example input data

16In the past two decades, quite significant progress has been made in the area of automatically parallelizing

programs in the context of logic and constraint programs, and some of the challenges have been tackled quite

effectively there –see, for example, [GPA+01, Her97, CC94] for an overview of this area.

68

size, is only known at run-time. A useful strategy is to do as much work as possible at compile-

time, and postpone some final decisions to run-time. This can be achieved by generating at

compile-time cost functions which estimate task costs as a function of input data size, which

are then evaluated at run-time when such size is known. Then, after comparing costs of sequen-

tial and parallel executions (including all overheads), it is possible to determine which type of

execution is profitable.

The approximation of these cost functions can be based either on some heuristics (e.g., pro-

filing) or on a safe approximation (i.e. an upper or lower bound). We were able to show that if

upper or lower bounds on task costs are available, under a given set of assumptions, it is possible

to ensure that some parallel, distributed executions will always produce speedup (and also that

some others are best executed sequentially). Because of these results, we will in general require

the cost information to be not just an approximation, but rather a well-defined bound on the ac-

tual execution cost. In particular, we will use the techniques for inferring upper- and lower-bound

cost functions outlined in the previous section.

Assuming that such functions or similar techniques for determining task costs and overheads

are given, the remainder of the granularity control task is to devise a way to actually compute such

costs and then dynamically control task creation and scheduling using such information. Again

the approach of doing as much of the work as possible at compile-time seems advantageous. In

our approach, a transformation of the program is performed at compile time such that the cost

computations and spawning decisions are encoded in the program itself, and in the most efficient

way possible. The idea is to perform any remaining computations and decisions at run-time

when the parameters missing at compile-time, such as data sizes or node load are available. In

particular, the transformed programs will perform (generally) the following tasks: computing the

sizes of data that appear in cost functions; evaluating the cost functions of the tasks to be executed

in parallel using those data sizes; safely approximating the spawning and scheduling overheads

(often also a function of data sizes); comparing these quantities to decide whether to schedule

tasks in parallel or sequentially; deciding whether granularity control should be continued or not;

etc.

As an example, consider the inc all procedure of Section 21 and the program expression:

..., Y = inc_all(X) & M = r(Z), ...

which indicates that the procedure call inc all(X) is to be made available for execution in par-

allel with the call to r(Z) (we assume that analysis has determined that inc all(X) and r(Z)

are independent, by, e.g., ensuring that there are no pointers between the data structures pointed

to by X,Y and Z,M. From Section 21 we know that the cost function inferred for inc all is

69

CostL
inc all(n) = 2 n + 1. Assume also that the cost of scheduling a task is constant and equal to

100 computation steps. The previous goal would then be transformed into the following one:

..., (2*length(X)+1 > 100 -> Y = inc_all(X) & M = r(Z)

; Y = inc_all(X), M = r(Z)), ...

where (if -> then ; else) is syntax for an if-then-else and “,” denotes sequential exe-

cution as usual. Thus, when 2∗length(X)+1 (i.e., the lower bound on the cost of inc all(X))

is greater than the threshold, the task is made available for parallel execution and not otherwise.

Many optimizations are possible. In this particular case, the program expression can be simpli-

fied to:

..., (length(X) > 50 -> Y = inc_all(X) & M = r(Z)

; Y = inc_all(X), M = r(Z)), ...

and, assuming that length gt(L,N) succeeds if the length of L is greater than N (its im-

plementation obviously only requires to traverse at most the n first elements of list), it can be

expressed as:

..., (length_gt(LX,50) -> Y = inc_all(X) & M = r(Z)

; Y = inc_all(X), M = r(Z)), ...

As mentioned before, scheduling costs are often also a function of data sizes (e.g., commu-
nication costs). For example, assume that the cost of executing remotely Y = inc all(X)

is 0.1 (length(X) + length(Y)), where length(Y) is the size of the result, an upper bound on
which (actually, exact size) we know to be length(X). Thus, our comparison would now be:

2 length(X) + 1 > 0.1 (length(X) + length(Y)) ≡

2 length(X) + 1 > 0.1 (length(X) + length(X)) ≡

2 length(X) + 1 > 0.2 length(X) ∼=

2 length(X) > 0.2 length(X) ≡

2 > 0.2

Which essentially means that the task can be scheduled for parallel execution for any input size.

Conversely, with a communication cost greater than 0.5(length(X)+length(Y)) the conclusion

would be that it would never be profitable to run in parallel.

These ideas have been implemented and integrated in the CiaoPP system, which uses the in-

formation produced by its analyzers to perform combined compile–time/run–time resource con-

trol. The more realistic example in Figure 12 (a quick-sort program coded using logic program-

ming) illustrates additional optimizations performed by CiaoPP in addition to cost function

simplification, which include improved term size computation and stopping performing granu-

larity control below certain thresholds. The concrete transformation produced by CiaoPP adds

70

:- module(qsort, [qsort/2], [assertions]).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).

partition([E|R],C,[E|Left1],Right):-

E < C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

E >= C, partition(R,C,Left,Right1).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

Figure 12: A qsort program.
g_qsort([X|L],R) :-

partition_o3_4(L,X,L1,L2,S1,S2),

(S2>7 -> (S1>7 -> g_qsort(L2,R2) & g_qsort(L1,R1)

; g_qsort(L2,R2), s_qsort(L1,R1))

; (S1>7 -> s_qsort(L2,R2), g_qsort(L1,R1)

; s_qsort(L2,R2), s_qsort(L1,R1))),

append(R1,[X|R2],R).

g_qsort([],[]).

Figure 13: The qsort program transformed for granularity control

a clause: “qsort(X1,X2) :- g_qsort(X1,X2).” (to preserve the original entry point)

and produces g qsort/2, the version of qsort/2 that performs granularity control (where

s qsort/2 is the sequential version) is shown in Figure 13.
Note that if the lengths of the two input lists to the recursive calls to qsort are greater than

a threshold (a list length of 7 in this case) then versions which continue performing granularity
control are executed in parallel. Otherwise, the two recursive calls are executed sequentially. The
executed version of each such call depends on its grain size: if the length of its input list is not
greater than the threshold then a sequential version which does not perform granularity control
is executed. This is based on the detection of a recursive invariant: in subsequent recursions this
goal will not produce tasks with input sizes greater than the threshold, and thus, for all of them,

71

execution should be performed sequentially and, obviously, no granularity control is needed.
Procedure partition o3 4/6:

partition_o3_4([],_B,[],[],0,0).

partition_o3_4([E|R],C,[E|Left1],Right,S1,S2) :-

E<C, partition_o3_4(R,C,Left1,Right,S3,S2), S1 is S3+1.

partition_o3_4([E|R],C,Left,[E|Right1],S1,S2) :-

E>=C, partition_o3_4(R,C,Left,Right1,S1,S3), S2 is S3+1.

is the transformed version of partition/4, which “on the fly” computes the sizes of its third

and fourth arguments (the automatically generated variables S1 and S2 represent these sizes

respectively) [LGH95].

23 Resource-Aware Mobile Computing

Having reviewed the issue of granularity control, and following the classification of issues of

Section 20 we now turn our attention to some resource-related issues on the receiver side. In an

open setting, such as that of the GRID and other similar overlay computing systems, receivers

must have some assurance that the received code is safe to run, i.e., that it adheres to some

conditions (the safety policy) regarding what it will do. We follow current approaches to mobile

code safety, based on the technique of Proof-Carrying Code (PCC) [Nec97], which as mentioned

in Section 20 associate safety certificates to programs. A certificate (or proof) is created by the

code supplier for each task at compile time, and packaged along with the untrusted mobile code

sent to (or taken by) other nodes in the network. The consumer node who receives or takes

the code+certificate package (plus a given task to do within that code) can then run a checker

which by a straightforward inspection of the code and the certificate can verify the validity of

the certificate and thus compliance with the safety policy. The key benefit of this approach is

that the consumer is given by the supplier the capacity of ensuring compliance with the desired

safety policy in a simple and efficient way. Indeed the (proof) checker used at the receiving side

performs a task that should be much simpler, efficient, and automatic than generating the original

certificate. For instance, in the first PCC system [Nec97], the certificate is originally a proof in

first-order logic of certain verification conditions and the checking process involves ensuring that

the certificate is indeed a valid first-order proof.

The main practical difficulty of PCC techniques is in generating safety certificates which at

the same time:

• allow expressing interesting safety properties,

72

• can be generated automatically and,

• are easy and efficient to check.

Our approach to mobile code safety [APH04] directly addresses these problems. It uses approxi-

mation techniques, generally based on abstract interpretation, and it has been implemented using

the facilities available in CiaoPP and discussed in the previous sections. These techniques offer

a number of advantages for dealing with the aforementioned issues. The expressiveness of the

properties that can be handled by the available abstract domains (and which can be used in a wide

variety of assertions) will be implicitly available to define a wide range of safety conditions cov-

ering issues like independence, types, freeness from side effects, access patterns, bounds on data

structure sizes, bounds on cost, etc. Furthermore, the approach inherits the inference power of

the abstract interpretation engines to automatically generate and validate the certificates. In the

following, we review our standard mobile code certification process and discuss the application

in parallel distributed execution.

Certification in the Supplier: The certification process starts from an initial program and a set

of assertions provided by the user on the producer side, which encode the safety policy that the

program should meet, and which are to be verified. Consider for example the following (naive)

reverse program (where append is assumed to be defined as in Figure 12):

:- entry reverse/2 : list * var.

reverse([]) := [].

reverse([H|L]) := ˜append(reverse(L), [H]).

Let us assume also that we know that the consumer will only accept purely computational tasks,

i.e., tasks that have no side effects, and only those of polynomial (actually, at most quadratic)

complexity. This safety policy can be expressed at the producer for this particular program using

the following assertions:

:- check comp reverse(A,B)

+ sideff(free).

:- check comp reverse(A,B)

: list * var

+ steps_ub(o(exp(length(A),2))).

The first (computational –comp) assertion states that it should be verified that the computation

is pure in the sense that it does not produce any side effects (such as opening a file, etc.). The

second (also computational) assertion states that it should be verified that there is an upper bound

73

for the cost of this predicate in O(n2), i.e., quadratic in n, where n is the length of the first list

(represented as length(A)). Implicitly, we are assuming that the code will be accepted at the

receiving end, provided all assertions can be checked, i.e., the intended semantics expressed in

the above assertions determines the safety condition. This can be a policy agreed a priori or

exchanged dynamically.

Note that, unlike traditional safety properties such as, e.g., type correctness, which can be re-

garded as platform independent, resource-related properties should take into account issues such

as load and available computing resources in each particular system. Thus, for resource-related

properties different nodes may impose different policies for the acceptance of tasks (mobile

code).

Generation of the Certificate: In our approach, given the previous assertions defining the

safety policy, the certificate is automatically generated by an analysis engine (which in the

particular case of CiaoPP is based on the goal dependent, i.e., context-sensitive, analyzer of

[HPMS00]). This analysis algorithm receives as input a set of entries (included in the program

like the entry assertion of the example above) which define the base, boundary assumptions on

the input data. These base assumptions can be checked at run-time on the actual input data (in

our example the type of the input is stated to be a list). The computation of the analysis process

terminates when a fixpoint of a set of equations is reached. Thus, the results of analysis are often

called the analysis fixpoint.

Due to space limitations, and given that it is now well understood, we do not describe here

the analysis algorithm (details can be found in, e.g., [Bru91, HPMS00]). The important point to

note is that the certification process is based on the idea that the role of certificate can be played

by a particular and small subset of the analysis results (i.e., of the analysis fixpoint) computed

by abstract interpretation-based analyses.

For instance, the analyzers available in CiaoPP infer, among others, the following informa-

tion for the above program and entry:

:- true pred reverse(A,B)

: (list(A), var(B))

=> (list(A), list(B))

+ (not_fails, is_det, sideff(free),

steps_ub(0.5*exp(length(A),2)+1.5*length(A)+1)).

stating that the output is also a list, that the procedure is deterministic and will not fail, that it

does not contain side-effects, and that calls to this procedure take at most 0.5 (length(A))2 +

1.5 length(A)+ 1 resolution steps. In addition, given this information, the output shows that the

74

“status” of the three check assertions has become checked, which means that they have been

validated and thus the program is safe to run (according to the intended meaning):

:- checked comp reverse(A,B)

+ sideff(free).

:- checked comp reverse(A,B)

: list * var

+ steps_ub(o(exp(length(A),2))).

Thus, we have verified that the safety condition is met and that the code is indeed safe to run (for

now on the producer side). The analysis results above can themselves be used as the cost and

safety certificate to attest a safe and efficient use of procedure reverse on the receiving side.

In general the verification process requires first generating a verification condition [APH04]

that encodes the information in the check assertions to be verified and then checking this con-

dition against the information available from analysis. This validation may yield three different

possible status: i) the verification condition is indeed checked and the fixpoint is considered a

valid certificate, ii) it is disproved, and thus the certificate is not valid and the code is definitely

not safe to run (we should obviously correct the program before continuing the process); and iii)

it cannot be proved nor disproved. Case iii) occurs because the most interesting properties are in

general undecidable. The analysis process in order to always terminate is based on approxima-

tions, and may not be able to infer precise enough information to verify the conditions. The user

can then provide a more refined description of initial entries or choose a different, finer-grained,

abstract domain. However, despite the inevitable theoretical limitations, the analysis algorithms

and abstract domains have been proved very effective in practice. In both the ii) and iii) cases,

the certification process needs to be restarted until achieving a verification condition which meets

i). If it succeeds, the fixpoint constitutes a valid certificate and can be sent to the receiving side

together with the program.

Validation in the Consumer: The validation process performed by the consumer node is sim-

ilar to the above certification process except that the analysis engine is replaced by an analysis

checker. The definition of the analysis checker is centered around the observation that the check-

ing algorithm can be defined as a very simplified “one-pass” analyzer. Intuitively since the

certification process already provides the fixpoint result as certificate, an additional analysis pass

over it cannot change the result. Thus, as long as the fixpoint is valid, one single execution of the

abstract interpreter validates the certificate.

As it became apparent in the above example, the interesting point to note is that abstract

interpretation-based techniques are able to reason about computational properties which can be

75

useful for controlling efficiency issues in a mobile computing environment and in distributed

parallelism platforms. We consider the case of the receiver of a task in a parallel distributed

system such as a GRID. This receiver (the code consumer) could use this method to reject code

which does not adhere to some specification, including usage of computing resources (in time

and/or space). Reconsider for example the previous reverse program and assume that a node with

very limited computing resources is assigned to perform a computation using this code. Then,

the following “check” assertion can be used for such particular node:

:- check comp reverse(A,B)

: (list(A, term), var(B))

+ steps_ub(length(A) + 1).

which expresses that the consumer node will not accept an implementation of reverse with

complexity bigger than linear. In order to guarantee that the cost assertion holds, the certificate

should contain upper bounds on computational cost. Then, the code receiver proceeds to validate

the certificate. The task of checking that a given expression is an upper bound is definitely sim-

pler than that of obtaining the most accurate possible upper bound. If the certificate is not valid,

the code is discarded. If it is valid, the code will be accepted only if the upper bound in the cer-

tificate is lower or equal than that stated in the assertion. In our example, the certificate contains

the (valid) information that reverse will take at most 0.5 (length(A))2 + 1.5 length(A) + 1

resolution steps. However, the assertion requires the cost to be at most length(A) + 1 reso-

lution steps. A comparison between these cost functions does not allow proving that the code

received by the consumer satisfies the efficiency requirements imposed (i.e. the assertion cannot

be proved).17 This means that the consumer will reject the code. Similar results would be ob-

tained if the worst case complexity property steps ub(o(length(A))) was used in the

above check assertion, instead of steps ub(length(A) + 1).

Finally, and interestingly, note that the certificate can also be used to approximate the actual

costs of execution and make decisions accordingly. Since the code receiver knows the data sizes,

it can easily apply them to the cost functions (once they are verified) and obtain values that safely

predict the time and space that the task received will consume.

24 Conclusions

We have presented an abstract interpretation-based approach to resource-aware distributed and

mobile computing and discussed their implementation in the context of a multi-paradigm pro-

17Indeed, the lower bound cost analysis in fact disproves the assertion, which is clearly invalid.

76

gramming system. Our framework uses modular, incremental, abstract interpretation as a fun-

damental tool to infer resource and safety information about programs. We have shown this

information, including lower bounds on cost and upper bounds on data sizes, can be used to per-

form high-level optimizations such as resource-aware task granularity control. Moreover, cost

information and, in particular, upper bounds, inferred during the previous process are relevant

to certifying and validating mobile programs which may have constraints in terms of comput-

ing resources (in time and/or space). In essence, we believe that our proposals can contribute

to bringing increased flexibility, expressiveness and automation of important resource-awareness

aspects in the area of mobile and distributed computing.

References

[AF99] A. Appel and A. Felty. Lightweight Lemmas in lambda-Prolog. In Proc. of

ICLP’99, pages 411–425. MIT Press, 1999.

[AGH+04] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource

guarantees for smart devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,

and T. Muntean, editors, Proceedings of CASSIS’04, LNCS. Springer, 2004. To

appear.

[AM94] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes

through types to assertions. Formal Aspects of Computing, 6(6):743–765, 1994.

[AP93] K. R. Apt and D. Pedreschi. Reasoning about termination of pure PROLOG pro-

grams. Information and Computation, 1(106):109–157, 1993.

[APH04] E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-based Ap-

proach to Mobile Code Safety. In Proc. of Compiler Optimization meets Compiler

Verification (COCV’04), April 2004.

[BCC+02] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a, and G. Puebla

(Eds.). The Ciao System. Reference Manual (v1.10). The ciao system documen-

tation series–TR, School of Computer Science, Technical University of Madrid

(UPM), June 2002. System and on-line version of the manual available at

http://clip.dia.fi.upm.es/Software/Ciao/.

77

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-

dard Prolog Programs. In European Symposium on Programming, number 1058 in

LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

[BCMH94] C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis

of prolog. In Proc. International Symposium on Logic Programming, pages 457–

471, Ithaca, NY, November 1994. MIT Press.

[BDD+97] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-

ski, and G. Puebla. On the Role of Semantic Approximations in Validation and

Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop on

Automated Debugging–AADEBUG’97, pages 155–170, Linköping, Sweden, May

1997. U. of Linköping Press.

[BdlBH94] F. Bueno, M. Garcı́a de la Banda, and M. Hermenegildo. Effectiveness of Global

Analysis in Strict Independence-Based Automatic Program Parallelization. In

International Symposium on Logic Programming, pages 320–336. MIT Press,

November 1994.

[BDM97] J. Boye, W. Drabent, and J. Małuszyński. Declarative diagnosis of constraint

programs: an assertion-based approach. In Proc. of the 3rd. Int’l Workshop on

Automated Debugging–AADEBUG’97, pages 123–141, Linköping, Sweden, May

1997. U. of Linköping Press.

[BL02] A. Bernard and P. Lee. Temporal logic for proof-carrying code. In Proc. of

CADE’02, pages 31–46. Springer LNCS, 2002.

[BLGPH04] F. Bueno, P. López-Garcı́a, G. Puebla, and M. Hermenegildo. The Ciao Prolog

Preprocessor. Technical Report CLIP1/04, Technical University of Madrid (UPM),

Facultad de Informática, 28660 Boadilla del Monte, Madrid, Spain, January 2004.

[Bou93] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro-

gramming Languages Design and Implementation’93, pages 46–55, 1993.

[Bru87] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs.

Technical Report CW62, Department of Computer Science, Katholieke Univer-

siteit Leuven, October 1987.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic

Programs. Journal of Logic Programming, 10:91–124, 1991.

78

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth

ACM Symposium on Principles of Programming Languages, pages 238–252, 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic

programs. The Journal of Logic Programming, 13(2 and 3):103–179, 1992.

[CC94] J. Chassin and P. Codognet. Parallel Logic Programming Systems. Computing

Surveys, 26(3):295–336, September 1994.

[CDMV93] B. Le Charlier, O. Degimbe, L. Michael, and P. Van Hentenryck. Optimization

Techniques for General Purpose Fixpoint Algorithms: Practical Efficiency for the

Abstract Interpretation of Prolog. In Workshop on Static Analysis, pages 15–26.

Springer-Verlag, September 1993.

[CGLV00] M. Comini, R. Gori, G. Levi, and P. Volpe. Abstract Interpretation based Verifica-

tion of Logic Programs. Electr. Notes Theor. Comput. Sci., 30(1), 2000.

[CH00] D. Cabeza and M. Hermenegildo. The Ciao Module System: A New Module

System for Prolog. In Special Issue on Parallelism and Implementation of (C)LP

Systems, volume 30 of Electronic Notes in Theoretical Computer Science. Elsevier

- North Holland, March 2000.

[Cha00] W. Charatonik. Directional Type Checking for Logic Programs: Beyond Discrim-

inative Types. In Proc. of ESOP 2000, pages 72–87. LNCS 1782, 2000.

[CLMV96] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic

programs by abstract diagnosis. In M. Dams, editor, Analysis and Verification

of Multiple-Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture

Notes in Computer Science, pages 22–50. Springer-Verlag, 1996.

[CLMV99] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of

Logic Programming, 39(1–3):43–93, 1999.

[CLV95] M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In 1995

International Logic Programming Symposium, pages 275–287, Portland, Oregon,

December 1995. MIT Press, Cambridge, MA.

[CV94] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic

Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming

Languages and Systems, 16(1):35–101, 1994.

79

[Deb89] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Pro-

grams. ACM Transactions on Programming Languages and Systems, 11(3):418–

450, 1989.

[Deb92] S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Inter-

pretation, volume 13(1–2). North-Holland, July 1992.

[Der93] P. Deransart. Proof methods of declarative properties of definite programs. Theo-

retical Computer Science, 118:99–166, 1993.

[DHM00] P. Deransart, M. Hermenegildo, and J. Maluszynski. Analysis and Visualization

Tools for Constraint Programming. Number 1870 in LNCS. Springer-Verlag,

September 2000.

[DL90] S.K. Debray and N.-W. Lin. Static Estimation of Query Sizes in Horn Programs. In

Third International Conference on Database Theory, Lecture Notes in Computer

Science 470, pages 515–528, Paris, France, December 1990. Springer-Verlag.

[DL93] S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions

on Programming Languages and Systems, 15(5):826–875, November 1993.

[dlBHB+96] M. Garcı́a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,

G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs. ACM

Transactions on Programming Languages and Systems, 18(5):564–615, Septem-

ber 1996.

[DLGH97] S.K. Debray, P. López-Garcı́a, and M. Hermenegildo. Non-Failure Analysis for

Logic Programs. In 1997 International Conference on Logic Programming, pages

48–62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

[DLGHL94] S.K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin. Estimat-

ing the Computational Cost of Logic Programs. In Static Analysis Symposium,

SAS’94, number 864 in LNCS, pages 255–265, Namur, Belgium, September 1994.

Springer-Verlag.

[DLGHL97] S.K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin. Lower Bound

Cost Estimation for Logic Programs. In 1997 International Logic Programming

Symposium, pages 291–305. MIT Press, Cambridge, MA, October 1997.

80

[DLH90] S.K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic

Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and

Implementation, pages 174–188. ACM Press, June 1990.

[DNTM88] W. Drabent, S. Nadjm-Tehrani, and J. Małuszyński. The Use of Assertions in

Algorithmic Debugging. In Proceedings of the Intl. Conf. on Fifth Generation

Computer Systems, pages 573–581, 1988.

[DNTM89] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with

assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming in Logic

Programming, pages 501–522. MIT Press, 1989.

[DRRS93] S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C. Sekar. Extracting

Determinacy in Logic Programs. In 1993 International Conference on Logic Pro-

gramming, pages 424–438. MIT Press, June 1993.

[DW88] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs.

Journal of Logic Programming, 5(3):207–229, September 1988.

[DZ92] P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types

in Logic Programming, pages 157–187. MIT Press, 1992.

[Fer87] G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177–

198, 1987.

[FKNT99] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, editors. The Grid: Blueprint for a

New Computing Infrastructure. Morgan-Kaufmann, 1999.

[FSVY91] T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for

logic programs. In Proc. LICS’91, pages 300–309, 1991.

[GdW94] J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic

programs. In Pascal Van Hentenryck, editor, Proc. of the 11th International Con-

ference on Logic Programming, pages 599–613. MIT Press, 1994.

[GP02] J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite

Tree Automata for Set-Based Analysis of Logic Programs. In Fourth Interna-

tional Symposium on Practical Aspects of Declarative Languages, number 2257 in

LNCS, pages 243–261. Springer-Verlag, January 2002.

81

[GPA+01] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-

tion of Prolog Programs: a Survey. ACM Transactions on Programming Languages

and Systems, 23(4):472–602, July 2001.

[HBPLG99] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garcı́a. Program Analy-

sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999

Int’l. Conference on Logic Programming, pages 52–66, Cambridge, MA, Novem-

ber 1999. MIT Press.

[Her97] M. Hermenegildo. Automatic Parallelization of Irregular and Pointer-Based Com-

putations: Perspectives from Logic and Constraint Programming. In Proceedings

of EUROPAR’97, volume 1300 of LNCS, pages 31–46. Springer-Verlag, August

1997.

[Her00] M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Interna-

tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages

1345–1361. Springer-Verlag, July 2000.

[HL94] P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge

MA, 1994.

[HLA94] L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to Guide

Parallel Thread Creation. In Proc. ACM Conf. on Lisp and Functional Program-

ming, June 1994.

[HPB99] M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-

ifications, and an Extensible Assertion Language for Program Validation and De-

bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The

Logic Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-

Verlag, July 1999.

[HPBLG03] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a. Program Develop-

ment Using Abstract Interpretation (and The Ciao System Preprocessor). In 10th

International Static Analysis Symposium (SAS’03), number 2694 in LNCS, pages

127–152. Springer-Verlag, June 2003.

[HPMS00] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of

Constraint Logic Programs. ACM Transactions on Programming Languages and

Systems, 22(2):187–223, March 2000.

82

[Hue93] L. Huelsbergen. Dynamic Language Parallelization. Technical Report 1178, Com-

puter Science Dept. Univ. of Wisconsin, September 1993.

[HWD92] M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Prac-

tical Compilation Tool. Journal of Logic Programming, 13(4):349–367, August

1992.

[JM94] J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of

Logic Programming, 19/20:503–581, 1994.

[JS87] N. Jones and H. Sondergaard. A semantics-based framework for the abstract inter-

pretation of prolog. In Abstract Interpretation of Declarative Languages, chapter 6,

pages 124–142. Ellis-Horwood, 1987.

[Kap88] S. Kaplan. Algorithmic Complexity of Logic Programs. In Logic Programming,

Proc. Fifth International Conference and Symposium, (Seattle, Washington), pages

780–793, 1988.

[KK04] K. Klohs and U. Kastens. Memory Requirements of Java Bytecode Verification on

Limited Devices. In Proc. of Compiler Optimization meets Compiler Verification

(COCV’04), 2004.

[KL88] B. Kruatrachue and T. Lewis. Grain Size Determination for Parallel Processing.

IEEE Software, January 1988.

[Ler03] Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal

of Automated Reasoning, 30(3-4):235–269, 2003.

[LGH95] P. López-Garcı́a and M. Hermenegildo. Efficient Term Size Computation for Gran-

ularity Control. In International Conference on Logic Programming, pages 647–

661, Cambridge, MA, June 1995. MIT Press, Cambridge, MA.

[LGHD94] P. López-Garcı́a, M. Hermenegildo, and S.K. Debray. Towards Granularity Based

Control of Parallelism in Logic Programs. In Hoon Hong, editor, Proc. of First

International Symposium on Parallel Symbolic Computation, PASCO’94, pages

133–144. World Scientific, September 1994.

[LGHD96] P. López-Garcı́a, M. Hermenegildo, and S.K. Debray. A Methodology for Granu-

larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-

putation, Special Issue on Parallel Symbolic Computation, 22:715–734, 1996.

83

[LS88] Y. Lichtenstein and E. Y. Shapiro. Abstract algorithmic debugging. In R. A. Kowal-

ski and K. A. Bowen, editors, Fifth International Conference and Symposium on

Logic Programming, pages 512–531, Seattle, Washington, August 1988. MIT.

[LY97] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1997.

[Mel86] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third Interna-

tional Conference on Logic Programming, number 225 in LNCS, pages 463–475.

Springer-Verlag, July 1986.

[MG89] C. McGreary and H. Gill. Automatic Determination of Grain Size for Efficient

Parallel Processing. Communications of the ACM, 32, 1989.

[MH90] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Al-

gorithm for Top-down Abstract Interpretation of Logic Programs. Technical Re-

port ACT-DC-153-90, Microelectronics and Computer Technology Corporation

(MCC), Austin, TX 78759, April 1990.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and

Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-

tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable

Dependency Using Abstract Interpretation. Journal of Logic Programming,

13(2/3):315–347, July 1992.

[MSJ94] K. Marriott, H. Søndergaard, and N.D. Jones. Denotational Abstract Interpretation

of Logic Programs. ACM Transactions on Programming Languages and Systems,

16(3):607–648, 1994.

[MU87] H. Mannila and E. Ukkonen. Flow Analysis of Prolog Programs. In Fourth IEEE

Symposium on Logic Programming, pages 205–214, San Francisco, California,

September 1987. IEEE Computer Society.

[MWCG99] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed as-

sembly language. ACM Transactions on Programming Languages and Systems,

21(3):527–568, 1999.

[Nec97] G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM

Press, 1997.

84

[NL98] G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.

In Proc. of the ’98 Conference on Programming Language Design and Implemen-

tation. ACM Press, 1998.

[NR01] G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In

Proceedings of POPL’01, pages 142–154. ACM Press, 2001.

[PBH00a] G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program

Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,

editors, Analysis and Visualization Tools for Constraint Programming, number

1870 in LNCS, pages 63–107. Springer-Verlag, September 2000.

[PBH00b] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint

Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,

Analysis and Visualization Tools for Constraint Programming, number 1870 in

LNCS, pages 23–61. Springer-Verlag, September 2000.

[PBH00c] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic

Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-

gram Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages

273–292. Springer-Verlag, 2000.

[PH96] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Ana-

lysis of Logic Programs. In International Static Analysis Symposium, number 1145

in LNCS, pages 270–284. Springer-Verlag, September 1996.

[Ros98] K. Rose, E. Rose. Lightweight bytecode verification. In OOPSALA Workshop on

Formal Underpinnings of Java, 1998.

[SCWY91] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Sup-

porting Full Prolog on the Basic Andorra Model. In 1991 International Conference

on Logic Programming, pages 443–456. MIT Press, June 1991.

[SHC96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:

an efficient purely declarative logic programming language. JLP, 29(1–3), October

1996.

[ST84] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs. The-

oretical Computer Science, 34:227–240, 1984.

85

[SVB+03] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-

carrying code: A practical approach for safe execution of untrusted applications.

In Proc. of SOSP’03, pages 15–28. ACM, 2003.

[VB02] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic

programs. In International Static Analysis Symposium, number 2477 in LNCS,

pages 102–116. Springer-Verlag, September 2002.

[VD92] P. Van Roy and A.M. Despain. High-Performace Logic Programming with the

Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54–68, January

1992.

[Vet94] E. Vetillard. Utilisation de Declarations en Programmation Logique avec Con-

straintes. PhD thesis, U. of Aix-Marseilles II, 1994.

[Wae88] A. Waern. An Implementation Technique for the Abstract Interpretation of Prolog.

In Fifth International Conference and Symposium on Logic Programming, pages

700–710, Seattle,Washington, August 1988.

[Wei91] M. Weiser. The computer for the twenty-first century. Scientific American,

3(265):94–104, September 1991.

[WHD88] R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow

Analysis of Logic Programs. In Fifth International Conference and Symposium on

Logic Programming, pages 684–699. MIT Press, August 1988.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying Machine Code Safety: Shallow

Versus Deep Embedding. In 17th Int. Conference on Theorem Proving in Higher

Order Logics, number 3223 in LNCS. Springer, 2004.

[YS87] E. Yardeni and E. Shapiro. A Type System for Logic Programs. Concurrent

Prolog: Collected Papers, pages 211–244, 1987.

[ZTD+92] X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan.

Towards an Efficient Compile-Time Granularity Analysis Algorithm. In Proc. of

the 1992 International Conference on Fifth Generation Computer Systems, pages

809–816. Institute for New Generation Computer Technology (ICOT), June 1992.

86

