
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Self-tuning Specialization Systems

Deliverable number: D12

Workpackage: Resource-Oriented Specialization (WP4)

Preparation date: 1 July 2004

Due date: 1 July 2004

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Tech. Univ. of Madrid (UPM),Univ. of Bristol, Univ. of

Southampton

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

This deliverable studies the development of self-tuning specialization techniques.

1 Introduction

Despite over 10 years of research on the specialisation of logic programs, there still exist re-

search challenges related to improving the actual specialisation capabilities (this is also true for

specialisation of other programming paradigms). For example, existing specialisers do not use

a sufficiently precise model of the compiler for the target system to guide their decisions during

specialisation. This means that specialisers can produce specialised code that is actually slower

than the original. Also, most specialisers focus solely on improving the execution speed, sacri-

ficing other resources such as code size and memory consumption. This means that the code size

and specialisation effort can be out of proportion with the actual improvement in speed.

Developing control techniques that are predictable, with reasonable specialisation complexity

and that can provide a good balance between resources, is a challenging but worthwhile research

objective.

2 Offline Self-Tuning

In the first part of the deliverable we present a self-tuning system, which derives its own special-

isation control using a genetic algorithm approach.

More precisely, we use an offline approach based on the recent fully automatic binding-time

analysis (BTA). The insight on which this paper is based, is that the annotations can form the

genes for a genetic algorithm.Indeed, annotations can easily be mutated, or even merged. The

key ingredients of success in our approach are:

• The fully automatic BTA provides a starting point for the algorithm. The BTA can be used

to check the safety of new annotation configurations. Alternatively, based on the starting

point provided by the BTA, a time-out value can be computed which can be used to discard

unsuccessful mutations (where specialisation takes too long or does not terminate).

• Overall termination and convergence is guaranteed as mutations only “generalise” (unfold

into memo, static into dynamic).

• Through the use of a representative sample of queries, actual figures for the particular

compiler and architecture are obtained. This allows for resource aware specialisation.

• The overall tradeoff between execution time, code size (and other factors such as speciali-

sation time) can be influenced by tuning the fitness function, used to discard bad mutations.

This deliverable, shows, empirically and through examples, how it avoids pitfalls which other

specialisers such as ECCE or MIXTUS fall into. We also show how we can achieve a good trade-

off between various resource considerations. It is also demonstrated on a series of benchmark

programs the practicality and performance of the approach.

3 Online Self-tuning

In this part of the deliverable we propose a framework for on-line partial deduction which, on

one hand allows finer-grained handling of control decisions by allowing the use of several control

strategies during a partial deduction session, and on the other hand allows the possibility of

exploring different candidate partial deductions.

Existing algorithms for partial deduction, given a local and a global control rule, deterministi-

cally produce a specialized program from an initial program and description of run-time queries.

In this work we propose a novel framework for partial deduction of logic programs which is

poly-controlled in that it can take into account repertoires of global control and local control

rules instead of a single, predetermined one. This framework is more flexible than existing ones

since it allows assigning different global and local control rules to different atoms. In addition,

this modification potentially transforms partial deduction from a greedy algorithm into a search-

based algorithm. As a result, sets of candidate specialized programs can be achieved, instead of

a single one.

In order to make the algorithm fully automatic, it is required the use of self-tuning techniques

which allow measuring the quality of the different candidate programs automatically. The frame-

work is resource aware in that it uses fitness functions which consider multiple factors such as

run-time and code size for the specialized programs. Finally, and in order to make the proposed

framework effective, we present pruning mechanisms which allow reducing the search space by

allowing code generation even for configurations which are not final and discuss the possibility

of using branch and bound explorations of the search-space. We also mention the possibility or

re-using previous selections in order to speed-up the specialization process for different queries

to a same program. The framework has been implemented in CiaoPP and the preliminary exper-

iments performed so far are promising.

2

Contents

1 Introduction 1

2 Offline Self-Tuning 1

3 Online Self-tuning 2

I Self-Tuning Resource Aware Specialisation for Prolog 1

4 Introduction 1

4.1 Other Approaches and Related Work . 2

5 Controlling Partial Deduction 3

5.1 Basics of Partial Deduction . 3

5.2 Some Pitfalls of Partial Deduction . 3

6 Offline Partial Deduction 7

7 Mutations 10

8 Deciding Fitness 13

9 Algorithm 15

10 Experiments 17

11 Summary and Future Work 21

II Poly-Controlled Partial Deduction and its application to Self-Tuning
Specialization 24

12 Introduction 24

13 Background 25

14 The Dilemma of Controlling Partial Deduction 27

15 Partial Deduction as a Greedy Algorithm 28

16 Poly-Controlled Partial Deduction 29

17 A motivating Example 31

18 Searching for all Specializations 32

19 Searching for All Specializations in our Motivating Example 34

20 Self-Tuning, Resource-Aware Partial Deduction 36

21 Speeding up Search in Poly-Controlled Partial Deduction 37

21.1 Search Strategy . 38

21.2 Reducing the Branching Factor . 38

22 Branch and Bound 39

23 Discussion and Future Work 40

Part I

Self-Tuning Resource Aware Specialisation

for Prolog
Abstract

The paper develops a self-tuning resource aware partial evaluation technique for Prolog

programs, which derives its own control strategies tuned for the underlying computer archi-

tecture and Prolog compiler using a genetic algorithm approach. The algorithm is based on

mutating the annotations of offline partial evaluation. Using a set of representative sample

queries it decides upon the fitness of annotations, controlling the trade-off between code ex-

plosion, speedup gained and specialisation time. The user can specify the importance of each

of these factors in determining the quality of the produced code, tailouring the specialisation

to the particular problem at hand. We present experimental results for our implemented tech-

nique on a series of benchmarks. The results are compared against the aggressive termination

based binding-time analysis and optimised using different measures for the quality of code.

We also show that our technique avoids some classical pitfalls of partial evaluation.

4 Introduction

Despite over 10 years of research on the specialisation of logic programs, there still exist re-

search challenges related to improving the actual specialisation capabilities (this is also true for

specialisation of other programming paradigms). For example, existing specialisers do not use

a sufficiently precise model of the compiler for the target system to guide their decisions during

specialisation. This means that specialisers can produce specialised code that is actually slower

than the original. Also, most specialisers focus solely on improving the execution speed, sacri-

ficing other resources such as code size and memory consumption. This means that the code size

and specialisation effort can be out of proportion with the actual improvement in speed.

Developing control techniques that are predictable, with reasonable specialisation complexity

and that can provide a good balance between resources, is a challenging but worthwhile research

objective.

In this paper we present a self-tuning system, which derives its own specialisation control

using a genetic algorithm approach.

Fitness scores are derived by actually running the specialised code and hence the particular

Prolog compiler and architecture are automatically taken into account.

1

More precisely, we use an offline approach based on the recent fully automatic binding-time

analysis (BTA)[CLGH04]. The insight on which this paper is based, is that the annotations can

form the genes for a genetic algorithm.1 Indeed, annotations can easily be mutated, or even

merged. The key ingredients of success in our approach are:

• The fully automatic BTA provides a starting point for the algorithm. The BTA can be used

to check the safety of new annotation configurations. Alternatively, based on the starting

point provided by the BTA, a time-out value can be computed which can be used to discard

unsuccessful mutations (where specialisation takes too long or does not terminate).

• Overall termination and convergence is guaranteed as mutations only “generalise” (unfold

into memo, static into dynamic).

• Through the use of a representative sample of queries, actual figures for the particular

compiler and architecture are obtained. This allows for resource aware specialisation.

• The overall tradeoff between execution time, code size (and other factors such as speciali-

sation time) can be influenced by tuning the fitness function, used to discard bad mutations.

This paper, shows, empirically and through examples, how it avoids pitfalls which other

specialisers such as ECCE [LMDS98] or MIXTUS [Sah93] fall into. We also show how we can

achieve a good tradeoff between various resource considerations. It is also demonstrated on a

series of benchmark programs the practicality and performance of the approach.

4.1 Other Approaches and Related Work

Such an approach has already proven to be highly successful in the context of optimising scien-

tific linear algebra software [WPD01]. In [WPD01] part of the installation procedure includes a

test and feedback cycle which optimises internal parameters to give the best performance for the

processor architecture, memory and cache.

A suitable low-level cost model would allow a partial evaluation system to make more in-

formed choices about the local control (e.g., is this unfolding step going to be detrimental to

performance) and global control (e.g., does this extra polyvariance really pay off).

There has been some promising initial work on cost models for logic and functional programs

in [AAV01, AV01, Vid04, BHH+04]. However, such a low-level cost model will depend on both

the particular Prolog compiler and on the target architecture and it is hence unlikely that one can

find an elegant mathematical model that is easy to manipulate and precise. It is also not entirely

1It is much less obvious to us how one could use a genetic algorithm to effectively optimize online specialisation.

2

clear how such a cost model could be used in practice to guide specialisation. It is possible that

the approach we present in this paper could make use of a low-level cost model to determine the

quality of specialised code, but a cost model may prove too inaccurate to give reliable results.

5 Controlling Partial Deduction

In the remainder of the paper we assume some basic knowledge of logic programming [Llo87].

5.1 Basics of Partial Deduction

Partial deduction [LS91] is a program specialisation technique for logic programs: given a logic

program P and some partially instantiated query Q, it derives a new program P ′, which is spe-

cialised for answering the query Q and all its possible instantiations. Partial deduction proceeds

by deriving a set of atoms A and by building for each element of A a possibly incomplete

SLDNF-tree using an unfolding rule. For every element of A, partial deduction produces a spe-

cialised predicate definition by extracting a specialised clause from every non-failing branch of

the tree built for it.

An important issue in partial deduction is the control. Here we distinguish between [MG95]

– global control: deciding which atoms to be put into A, and

– local control: deciding which trees to build for the elements of A.

The issue of control is important as it affects the correctness and termination of the specialisation

process, as well as the quality of the specialised program. Considerable effort has been devoted

to this crucial issue (see, e.g., the references in [LB02]), and the issue of correctness is well

understood and several powerful techniques (such as homeomorphic embedding) can be used to

ensure termination. However, the issue of the quality of the specialised program is still relatively

open. While it is well understood that unrestricted unfolding can be detrimental to the efficiency

of the specialised program, and that determinate unfolding can be used to avoid most pitfalls

related to this, the overall picture is unclear. Indeed, using just determinate unfolding will prevent

substantial efficiency gains in certain cases, and still may not prevent program slowdowns and

code explosion (with a limited efficiency gain). Below we elaborate on some of the pitfalls of

partial deduction in more detail, showing where it can go wrong and produce undesirable results.

5.2 Some Pitfalls of Partial Deduction

One pitfall related to the local control (unfolding) is known as work duplication. The problem is

illustrated in the following example.

3

Let P be the program defined in Listing 1.
member(X,[X|T]).

member(X,[Y|T]) :- member(X,T).

inboth(X,L1,L2) :- member(X,L1),

member(X,L2).

Listing 1: The inboth/3 example

Let A = {inboth(a,L,[X,Y]), member(a,L)}. By performing non-leftmost non-

determinate unfolding for the call inboth(a,L,[X,Y]) in Figure 1 (and doing a single un-

folding step for member(a,L)), we obtain the partial deduction P ′ (Listing 2) of P with respect

to A.
member(a,[a|T]).

member(a,[Y|T]) :- member(a,T).

inboth(a,L,[a,Y]) :- member(a,L).

inboth(a,L,[X,a]) :- member(a,L).

Listing 2: Specialising Listing 1 for {inboth(a,L,[X,Y]), member(a,L)}

Let us examine the run-time goal G =← inboth(a,[h,g,f, e,d,c,b,a],[X,Y])

(which is an instance of an atom inA). Using the Prolog left-to-right computation rule the expen-

sive sub-goal← member(a,[h,g,f,e,d,c,b,a]) is only evaluated once in the original

program P , while it is executed twice in the specialised program P ′.

H
H
HHj

fail

← member(a, L),member(a, [])← member(a, L)

©
©

©©¼

← member(a, L),member(a, [Y])

HHHHj
← member(a, L)

¡
¡ª

← member(a, L),member(a, [X, Y])
?

← inboth(a, L, [X, Y])

{X/a}

{Y/a}

Figure 1: Non-leftmost non-determinate unfolding for Listing 2

The classical solution to this problem is to disallow non-leftmost unfolding unless it is de-

terministic (SP [Gal91, GB91, Gal93], ECCE [LMDS98]), or allow non-leftmost unfolding but

not left-propagate bindings (PADDY [Pre92], MIXTUS [Sah93]). Some partial evaluators, for in-

stance, SAGE [Gur94b, Gur94a] do not prevent such work duplication. This can result in huge

slowdowns (see, e.g., [BG95]).

However, non-leftmost non-determinate unfolding can sometimes have the opposite effect

and lead to big speed-ups, which are thus prevented. Furthermore, even determinate unfolding

can still lead to duplication of work, namely in unification with multiple heads:

4

Let us return to the program in Listing 1 with the set A = {inboth(X,[Y],[V,W])}.

The query can be fully unfolded producing the partial deduction P ′ (Listing 3) of P with respect

to A.
inboth(X,[X],[X,W]).

inboth(X,[X],[V,X]).

Listing 3: Specialising Listing 1 for {inboth(X,[Y],[V,W])}

No goal has been duplicated by the leftmost non-determinate unfolding, but the unification

X=Y for← inboth(X,[Y],[V,W]) has been duplicated in the residual code. This unifica-

tion can have a substantial cost when the corresponding actual terms are large.

Another trap of partial deduction is the possible loss of indexing. Indeed, Prolog systems

spend a lot of their time looking up clauses that match the current goal. When all calling argu-

ments are free, the system has no choice but to go through the clauses one by one. However, if

some of the arguments are (at least partially) instantiated then some clauses that do not match

can be skipped. This is achieved using argument indexing and takes analogy from indexing in

database systems. The standard Prolog indexing techniques rely on first argument clause in-

dexing; that is they by default index on the first argument. Indexing can provide an important

performance boost when searching over a large set of clauses.

Listing 4 is a a simple program with a collection of facts represented by p/2. By default

indexing will be performed on the first argument of p/2, and as long as the first argument in the

call to p/2 is instantiated we will benefit from the speedups of indexing.
index_test(f(_),Y,Z) :- p(Y,Z).

p(a,1).

p(b,2).

p(c,3).

p(d,4).

p(e,5).

p(f,6).

p(g,7).

p(h,8).

p(i,9).

p(j,10).

Listing 4: Example using clause indexing

During specialisation unfolding may change the behaviour of the clause indexing. Through

unfolding, facts may be subsumed by calling predicates, whose argument orderings differ. When

specialising Listing 4 for index test(A,B,C) it is safe to fully unfold the call to p/2,

as termination is guaranteed and it removes a level of redirection. Unfortunately in the newly

created index test 0/3 predicate (Listing 5), the first argument is no longer a useful basis

for clause indexing and as a result, the specialised code is substantially slower than the original

program (taking twice as long to complete the same benchmark).

5

index_test__0(f(_), a, 1).

index_test__0(f(_), b, 2).

index_test__0(f(_), c, 3).

index_test__0(f(_), d, 4).

index_test__0(f(_), e, 5).

index_test__0(f(_), f, 6).

index_test__0(f(_), g, 7).

index_test__0(f(_), h, 8).

index_test__0(f(_), i, 9).

index_test__0(f(_), j, 10).

Listing 5: Specialising Listing 4 for index test(A,B,C). The useful clause indexing has

been lost

In Ciao Prolog (and some others), the indexer allows programmers to select the argument(s)

to index on. This would be an alternative to not unfolding the call, but would still require that the

specialiser changes the indexing information. The classical solution is to avoid any reordering

of arguments, but this is not enough to prevent this problem. Using pure determinate unfolding

(no non-determinate unfolding except at the root of an SLD-tree) together with no argument

reordering avoids most of the problems. However, most determinate unfolding rules are not pure

and allow one non-determinate step, this is often important for precision (see benchmarks in

[LMDS98]). This is less of an issue in conjunctive partial deduction, see [JLM96].

Another related problem is the loss of indexing due to argument filtering. For example, take

the following program:

p(f(a,b)).

p(f(b,c)).

p(f(d,e)).

p(f(e,a)).

Specialising for p(f(X,Y)) produces the following specialised code:

p__1(a,b).

p__1(b,c).

p__1(d,e).

p__1(e,a).

Filtering has removed the f/2 structure and replaced it with two arguments representing the

substructure. Now, potentially the specialised program will run slower for a runtime query such

as p(f(X,a)), provided the underlying Prolog system provides “deep” indexing (e.g., Ciao

Prolog does allow this with the indexer package). This is because only the first argument is

6

indexed, and the lookup is on the second argument in the specialised program. However, most

Prolog systems only index on the top-level functor (e.g., SICStus) and hence there is actually

no slow-down. In fact the program can run faster as the functor f/2 no longer needs to be

deconstructed.

The behaviour of the indexing in different Prologs is a case where depending on the Prolog

the specialiser could behave differently to produce better quality code. Prolog systems also

impose a maximum number of arguments. Some Prolog systems do not, but after a certain limit

(e.g., 32) all further arguments are simply put into a list. As argument filtering can increase

the number of arguments, this must be taken into account by the specialiser. Other differences

may exist between Prologs and platforms, for example features such as tabling may influence the

performance of specialised programs.

In this section we have only scratched the surface of various ways in which existing partial

deduction techniques can go wrong (more pitfalls can be found in [VD88], most of which are

still valid today) . Also, even when partial deduction does achieve some speed improvement, this

may ensue an unacceptable explosion in the code size. It is clear that deriving a good specialised

program is a non-trivial pursuit, covered with many pitfalls and difficult to put into a simple

mathematical model.

The motivation of this paper is to provide a method for deriving specialisation control based

on the underlying architecture guided by trial and error, providing the user with the ability to

balance execution time against code explosion, or other program properties. The algorithm uses

empirical measurements to tackle issues that could prove difficult to handle using a purely math-

ematical model. We concentrate on offline partial deduction as it provides a clear separation

between specialisation and control.

6 Offline Partial Deduction

The main idea of offline partial deduction is to separate the specialisation process into two phases:

– First a binding-time analysis (BTA) is performed which, given a program and an approxi-

mation of the input available for specialisation, approximates all values within the program

and generates an annotated program.

– A (simplified) specialisation phase, which is guided by the annotations of the BTA.

This approach is illustrated in Figure 2 and is called offline because most control decisions

are taken beforehand.

In the remainder of the paper we will use the LOGENspecialisation system [LJVB04]. In

LOGENevery program point in every clause is annotated with a clause annotation, telling the

7

Figure 2: Offline Partial Evaluation

specialiser what to do when reaching this program point. Furthermore, every argument of every

predicate is annotated with a binding type, which tells the specialiser to what extent this argument

will be known at specialisation time.

Clause Annotations

Clause annotations indicate how each call in the program should be treated during specialisation.

Essentially, these annotations determine whether a call in the body of a clause is performed at

specialisation time or at run time. Clause annotations influence the local control [MG95]. For

the LOGENsystem [LJVB04] the main annotations are as follows:

• unfold: The call is unfolded under the control of the partial evaluator. The call is replaced

with the predicate body, performing all the needed substitutions. (Note: the predicate body

is itself annotated and will be re-examined by the partial evaluator.)

• memo: The call is not unfolded, but instead the call is generalised using the filter declara-

tion and specialised independently.

• call: The call is fully executed without further intervention by the partial evaluator.

• rescall: The call is left unmodified in the residual code.

8

Binding Types

Each argument of a predicate in an annotated program is given a binding type by means of

filter declarations. A binding type indicates something about the structure of an argument at

specialisation time. This information is used when the predicate is “memoed.” The basic binding

types are usually known as static and dynamic which are defined as follows:

• static: The argument is definitely known at specialisation time;

• dynamic: The argument is possibly unknown at specialisation time.

More precise binding types can be defined by means of regular type declarations, and combined

with basic binding types. For example, one can define types such as list skeletons.

The filter declarations influence the global control, since dynamic parts of arguments are

generalised away (that is, replaced by fresh variables) and the known, static parts are left un-

changed. They also influence whether arguments are “filtered out” in the specialised program.

Indeed, static parts are already known at specialisation time and hence do not have to be passed

around at runtime.

The paper [CLGH04] introduced an automatic binding-time analysis for LOGEN. The ana-

lysis used state-of-the-art termination analysis techniques, combined with a type-based abstract

interpretation for propagating the binding types combined. Safety of built-ins was guaranteed

using a database of allowed calling patterns (with respect to the propagated binding types). The

analysis was designed to be as aggressive as possible and is guided only by termination, it con-

tains no heuristics for quality of code. The algorithm described in this paper is designed to

complement the binding-time analysis of [CLGH04], providing control over the quality of the

produced specialised programs.

Figure 3 is the match program taken from the DPPD library of benchmarks [Leu02]. The

program is a naı̈ve string matcher; the match/2 succeeds if the given pattern occurs in the

string. The program has been annotated for the LOGENsystem using the automatic binding-time

analysis, the specialisation query will contain a static pattern but the string to search will be

dynamic. The analysis has concluded that the first and last calls can be safely unfolded, i.e. they

are guaranteed to terminate at specialisation time. The recursive call in the second match1/4

clause has been marked memo and cannot be safely unfolded.

Using the above annotation and the specialisation query match([a,c], A), LOGEN will

produce the following specialised program:

9

match(Pat, T) : −

match1(Pat, T, Pat, T)
︸ ︷︷ ︸

unfold

.

match1([], Ts, P, T).

match1([A| Ps], [B| Ts], P, [X|T]) : −

A\ == B,
︸ ︷︷ ︸

rescall

match1(P, T, P, T).
︸ ︷︷ ︸

memo

match1([A|Ps], [A|Ts], P, T) : −

match1(Ps, Ts, P, T).
︸ ︷︷ ︸

unfold

: −filter match(static, dynamic).

: −filter match1(static, dynamic, static, dynamic).

Figure 3: Annotated match program

match([a,c], A) :- match__0(A).

match__0([A|B]) :-

a\==A, match1__1(B, B).

match__0([a,A|B]) :-

c\==A, match1__1([A|B], [A|B]).

match__0([a,c|_]).

match1__1([A|_], [_|B]) :-

a\==A, match1__1(B, B).

match1__1([a,A|_], [_|B]) :-

c\==A, match1__1(B, B).

match1__1([a,c|_], _).

Listing 6: Specialising match/2 using the annotations in Figure 3

7 Mutations

Offline specialisation takes an annotated program as input. In this section we examine how

annotations can be mutated and thus form the basis of a genetic algorithm aimed at improving

annotations.

A single set of annotations for a program is represented by an annotation configuration (Def-

inition 1).

Definition 1 (annotation configuration) (α, β) is an annotation configuration for some pro-

gram P where α ∈ Σ∗
c , Σc = {u,m, c, r}, β ∈ Σ∗

f , Σf = {s, d}

The length of α is the number of body literals in P and the length of β is the sum of the arity

of the predicates in P . A configuration represents a set of annotations for the program P . With

10

u, m, c, r, s, and d representing unfold, memo, call, rescall, static and dynamic respectively.

For example, the annotations from the match program (Figure 3) are represented by the an-

notation configuration ((u, r, m, u,), (s, d, s, d, s, d)).

The binding-time analysis concentrates on termination and provides a set of aggressive an-

notations, doing as much work as possible at specialisation time. However, this does not always

produce the best specialised programs. As already discussed, there are some circumstances

where it is better not to perform an operation at specialisation time or to discard some static

information.

The algorithm presented searches for “better” annotation configurations which, while less

aggressive than the configuration provided by the binding-time analysis, may produce better

specialised code. The algorithm explores the possible mutations (Definition 2) of the current

annotation configuration. A mutation of a configuration is defined as a new annotation config-

uration but with one of the annotations modified. The mutations produce new, less aggressive

annotations. For example, a call marked as unfold can be turned into memo, or an argument that

was previously static is treated as dynamic. This changes the behaviour of the specialiser.

Definition 2 (mutation) Let C be a annotation configuration for P , fc and ff are mapping

functions defined as fc = {u 7→ m, c 7→ r}, ff = {s 7→ d}. If C is of the form (αXα′, β)

and X ∈ dom(fc) then the annotation configuration (αfc(X)α′, β) is a mutation of C. If C is

of the form (α, βXβ ′) and X ∈ dom(ff) then the annotation configuration (α, βf(X)β ′) is a

mutation of C.

Definition 3 (set of mutations) mutations(C) is defined as the set of all possible mutations of

C.

Table 1 shows the initial set of mutations for the match program in Figure 3. The initial

configuration of match has five possible mutations, the mutated element has been underlined in

each mutation.

It is possible that a mutated annotation configuration may be unsafe. Generalising more

arguments, or memoising rather than unfolding calls, may have repercussions throughout the

rest of the program. The annotation configuration may be unsafe for a number of reasons:

- The filter information may be incorrect. Marking an argument as dynamic or memoing a

call rather than unfolding may change the propagation of static data throughout the pro-

gram.

- A built-in that was previously safe to call, may now not be sufficiently instantiated at

specialisation time.

11

Original ((u, r,m, u), (s, d, s, d, s, d))

1 ((m, r,m, u), (s, d, s, d, s, d))

2 ((u, r,m,m), (s, d, s, d, s, d))

3 ((u, r,m, u), (d, d, s, d, s, d))

4 ((u, r,m, u), (s, d, d, d, s, d))

5 ((u, r,m, u), (s, d, s, d, d, d))

Table 1: Initial set of mutations for match

- The specialisation process may fail to terminate. Information that previously guaranteed

termination may have been generalised away.

Unsafe annotations will not produce valid specialised programs and are therefore of little use.

Given an unsafe annotation configuration the automatic binding-time analysis algorithm can be

used to find the next safe configuration. This may require that further calls are marked as memo

or that the filter information is propagated correctly.

The entire binding-time analysis algorithm is complex; however, it is sufficient to run only

the filter propagation and built-in safety checking. Non-termination of the specialisation process

can then be monitored using timeouts. A sensible value for the timeout can be estimated using

the specialisation and runtime of the original annotated program as a base.

Using the filter propagation and built-in checking on the annotations in Table 1 produces the

new safe annotations in Table 2.

Original ((u, r,m, u), (s, d, s, d, s, d))

1 ((m, r,m, u), (s, d, s, d, s, d))

2 ((u, r,m,m), (s, d, s, d, s, d))

3’ ((u, r,m, u), (d, d, d, d, d, d))

4 ((u, r,m, u), (s, d, d, d, s, d))

5’ ((u, r,m, u), (s, d, d, d, d, d))

Table 2: Mutation after filter propagation

Two of the mutations have been detected as unsafe and have been modified accordingly.

Figure 4 shows the tree of these mutations. Running the filter propagation has further mutated

the annotation configuration producing new configurations with multiple mutated elements.

12

Figure 4: Safe annotation configurations after filter propagation

It is also possible to run the full binding-time analysis algorithm to find the safe set of muta-

tions (Table 3). The termination analysis has detected that, in additional to the filters, one of the

annotations must be changed from unfold to memo.

Original ((u, r,m, u), (s, d, s, d, s, d))

1 ((m, r,m, u), (s, d, s, d, s, d))

2 ((u, r,m,m), (s, d, s, d, s, d))

3’ ((u, r,m,m), (d, d, d, d, d, d))

4’ ((u, r,m,m), (s, d, d, d, s, d))

5’ ((u, r,m,m), (s, d, d, d, d, d))

Table 3: Mutation after full automatic binding-time analysis

8 Deciding Fitness

To explore the search space effectively, it is essential to be able to assess the quality of a particular

annotation configuration. Empirical testing is used to determine the quality of the specialised

code. However, each annotation configuration can be used to specialise the same program for

13

different sets of static data. It is impractical to test for all possible sets of of static data, so instead

a representative set of sample queries is used. These queries are provided by the user. It is

important that the sample queries accurately reflect the type of queries of interest as the program

will be optimised with these queries in mind.

The quality of the annotation configuration is calculated using characteristics from the spe-

cialisation process:

execution time – The actual execution time of the sample queries. The sample queries are

benchmarked over a number of executions to obtain a final execution time. This allows

the algorithm to optimise for the fastest program.

compiled code size – The size of the produced specialised code. The size is taken after compila-

tion into byte code. Specialisation can result in large code explosion, sometimes for a very

small gain.

specialisation time – The time taken to specialise the program for the sample queries. In situa-

tions where the program is to be re-specialised frequently it may be desirable to take into

account the actual specialisation time during optimisation.

It would be possible to measure additional characteristics that may be of interest to the user.

For example, the memory usage during execution.

The different characteristics contain different units and cannot easily be combined. To allow

comparison between the different characteristics, they are first normalised. Normalising the

values against a common base case produces a new value, where 1.0 signifies it is the same as

the base case, a value of 2.0 indicates it is twice as good as the base case and a value of 0.5

indicates it is twice as bad as the base case.

A fully dynamic annotation configuration (Definition 4) with all calls marked as rescall or

memo is used as a base case. The fully dynamic annotation configuration produces specialised

code which has the same behaviour as the original program, as all static data is discarded during

specialisation and no calls are made at specialisation time. Each characteristic is normalised by

dividing the value with the same characteristic from the dynamic annotation configuration.

Definition 4 (dynamic annotation configuration) The annotation configuration (α, β) is fully

dynamic if α ∈ Σ∗
c′ , Σc′ = {m, r}, β ∈ Σ∗

f ′ , Σf ′ = {d}.

Where the length of α is the number of body literals in P and the length of β is the sum of the

arity of the predicates in P .

14

While it would be possible to optimise the program for a single characteristic, much more

interesting optimisations can be made by combining the different characteristics into a single

score.2 A fitness function (Definition 5) is used to determine the score given the characteristics.

Definition 5 (fitness function) The fitness function is used to determine the quality of an an-

notation configuration based on its measured characteristics. The function takes as input the

normalised values for specialisation time (spectime), execution (speedup) and code size reduc-

tion (reduction).

The choice of fitness function is important in determining the quality of code for the par-

ticular requirements. The fitness function is used to balance the tradeoff between the different

characteristics. A simple scoring function to find fastest specialised program would only take

into account the execution time. However, sometimes the most aggressive annotations can cause

dramatic code explosion with little actual gain in execution time. Using a scoring function based

on both the execution time and compiled code size ensures a balance is maintained between the

two characteristics.

For example, say the original program executes in 200ms and is 4, 000 bytes. Annotation

configuration A executes in 100ms and is 30, 000 bytes while annotation configuration B exe-

cutes in 120ms but is only 5, 000 bytes. It may be desirable to choose B, which while slightly

slower is much smaller than A.

Currently the default fitness function is defined as score = speedupα×reductionβ×spectimeγ

where the α, β and γ values reflect the importance of the characteristics.

9 Algorithm

Using the concepts defined in the previous sections the complete algorithm is now presented.

The algorithm is given an initial starting annotation configuration and returns the best annotation

configurations found according to the set fitness function.

To explore the search space the algorithm uses a beam search. The beam search explores

the neighbours at each node (in this case the single mutations), and only descends into the W

best nodes for each level, where W is described as the width of the beam. The search terminates

when the W best nodes remain unchanged through an iteration.

Figure 5 demonstrates the beam search for W = 2. The values in the nodes represent the

scores, a higher score representing a better selection. At each level the search proceeds by

selecting the best two solutions.
2It may also be possible to use a multi-objective genetic algorithm with multiple fitness functions. Further

research is needed to investigate this possibility.

15

Figure 5: Beam search for W = 2

Figure 6 outlines the algorithm. Starting with an initial annotated program, the algorithm

proceeds to find mutations of the initial configuration. Each mutation is checked for safety by

running the filter propagation and then the safe configurations are benchmarked. At each iteration

the best annotations are chosen and the algorithm continues. When no further improvements

are found, the algorithm terminates. The depth of the search tree is bounded by the number

of annotations, as at each generation at least one annotation must be made less aggressive. The

filter propagation allows multiple annotations to be modified in a single step, effectively skipping

levels in the search tree.

Algorithm 1 describes the self-tuning algorithm in psuedo code. It uses Definition 6 to mea-

sure the characteristics of an annotation configuration.

Definition 6 (test conf) Given a program P , an annotation configuration C, a specialisation

goal Gsp and a runtime query Grt, test conf (P,C,Gsp, Grt) returns the tuple (ST,RT, SS).

Where ST is the time taken to specialise P for the goal Gsp, producing the specialised program

P ′. RT is the execution time of P ′ for the goal Grt and SS is the compiled code size of P ′

For example, running the algorithm on the index test/3 example (Listing 4) produces

the annotations in Figure 7. The annotations have be tuned for time and speed. The algorithm

has discovered that the call should not be unfolded (as it is detrimental to performace) and has

marked it as memo. The tuned annotations produced specialised code that is twice as fast as the

aggressive annotations.

Figure 8 is the self-tuned output for the match/2 program (Figure 3), optimised for both

size and time. The algorithm has decided that while the first call can be safely unfolded, better

code can be produced by memoing the call instead. The produced code is nearly two times

smaller than the aggressive annotations and runs faster (full details can be found in Table 4).

16

Figure 6: Self-tuning overview

index test(f(), Y, Z) : − p(Y, Z)
︸ ︷︷ ︸

memo

.

. . .

Figure 7: Final annotations for index test/3, optimised for time and size

10 Experiments

Table 4 presents the results of running3 the self-tuning algorithm on a series of benchmarks taken

from the DPPD library [Leu02]:

advisor – A simple expert system.

3Benchmarks were performed on a 2.5Ghz Pentium with 512MB running SICStus Prolog 3.11.1

17

Algorithm 1 Self-tuning algorithm
Input:Program P

Input:Initial annotation configuration Cinit

Input:Specialisation goal Gsp

Input:Runtime goal Grt

Input:Beam width W

1: Cdyn = fully dynamic annotation configuration for P

2: (STdyn, RTdyn, SSdyn) = TestConf(P ,Cdyn,Gsp,Grt)

3: Cache = {Cdyn 7→ fitness func(1, 1, 1)}

4: CS = {Cinit}

5: repeat

6: CSsafe = CS

7: for all C ∈ CS do

8: msafe = safe set of mutations(C)

9: CSsafe = CSsafe ∪msafe

10: end for

11: for all C ∈ CSsafe do

12: if C /∈ dom(Cache) then

13: (ST,RT, SS) = TestConf(P ,C,Gsp,Grt)

14: ST ′ = ST/STdyn

15: RT ′ = RT/RTdyn

16: SS ′ = SS/SSdyn

17: Score = fitness func(ST ′, RT ′, SS ′)

18: Cache = Cache ∪ {C 7→ Score}

19: end if

20: end for

21: Previous = CS

22: CS = Choose best W configurations based on scores from Cache

23: until CS = Previous

inboth – The inboth example form Section 5.2.

index test – The indexing example from Section 5.2.

match – A simple naı̈ve pattern matcher.

18

match(Pat, T) : −

match1(Pat, T, Pat, T)
︸ ︷︷ ︸

memo

.

match1([], Ts, P, T).

match1([A| Ps], [B| Ts], P, [X|T]) : −

A\ == B,
︸ ︷︷ ︸

rescall

match1(P, T, P, T).
︸ ︷︷ ︸

memo

match1([A|Ps], [A|Ts], P, T) : −

match1(Ps, Ts, P, T).
︸ ︷︷ ︸

unfold

: −filter match(static, dynamic).

: −filter match1(static, dynamic, static, dynamic).

Figure 8: Final annotations for match/2, optimised for time and size

missionaires – A program for the missionaries and cannibals problem.

regexp – A program testing whether a string matches a regular expression (using difference

lists).

relative – A simple expert system.

vanilla bd – A vanilla meta-interpreter, with a “contrived” object program invented by Bart

Demoen.

Each test program has five enteries in the table: the original program, the program after

specialising it using the annotations derived by the BTA of [CLGH04], and the results from the

self-tuning algorithm with three different fitness functions:

time – The normalised time to execute the specialised program. score = speedup.

size – The normalised size of the byte compiled specialised program. score = reduction.

time & size – An equally weighting of the normalised execution time and program size. score =

speedup × reduction.

The execution time, compiled code size and specialisation time are the non-normalised char-

acteristics from Section 8. The optimisation time is the total time taken to find the annotation

configuration, the starting configurations were provided by the BTA. The number of attempted

19

Benchmark Fitness Execution Compiled Code Specialisation Optimisation Attempted

Program Function Time Size (bytes) Time Time Configurations

advisor original 700ms 4098 - - -

advisor BTA 700ms 13929 20ms - -

advisor time 430ms 9256 20ms 21s 14

advisor size 700ms 4098 20ms 10s 16

advisor time & size 440ms 4784 20ms 23s 16

inboth original 850ms 1453 - - -

inboth BTA 450ms 4717 20ms - -

inboth time 370ms 3942 20ms 21s 20

inboth size 820ms 1289 20ms 17s 26

inboth time & size 470ms 1673 20ms 24s 23

index test original 2570ms 1753 - - -

index test BTA 5270ms 1675 20ms - -

index test time 2570ms 1753 20ms 21s 4

index test size 5270ms 1675 20ms 3s 4

index test time & size 2570ms 1753 20ms 21s 4

match original 800ms 1037 - - -

match BTA 510ms 2204 20ms - -

match time 440ms 1487 20ms 7s 7

match size 800ms 1037 20ms 5s 8

match time & size 440ms 1487 20ms 10s 8

missionaries original 4710ms 6701 - - -

missionaries BTA 4710ms 55956 80ms - -

missionaries time 3490ms 11802 60ms 2332s 505

missionaries size 3880ms 6259 80ms 413s 688

missionaries time & size 3830ms 6263 60ms 3386s 715

regexp original 3540ms 1620 - - -

regexp BTA 810ms 1417 20ms - -

regexp time 810ms 1417 20ms 44s 19

regexp size 810ms 1417 20ms 16s 24

regexp time & size 810ms 1417 20ms 55s 24

relative original 1400ms 2544 - - -

relative BTA 320ms 2356 20ms - -

relative time 270ms 5411 20ms 47s 33

relative size 280ms 2364 20ms 37s 40

relative time & size 280ms 2364 20ms 28s 22

vanilla bd original 430ms 9891 - - -

vanilla bd BTA 760ms 8369 20ms - -

vanilla bd time 260ms 9092 20ms 142s 21

vanilla bd size 760ms 8369 20ms 87s 14

vanilla bd time & size 260ms 8938 20ms 142s 21

Table 4: Experimental results for the self-tuning algorithm

configurations is the actual number of different annotations that were tested during the search.

Note, the three enteries for the different fitness functions were timed independently of each other,

in practice the cache could be reused for the different searches.

The results show that the highly aggressive configurations provided by the termination driven

binding-time analysis do not neccessarily produce the best code, either in terms of code size or

20

execution time. In both the missionaries and advisor examples the BTA configuration suffers

from a code explosion for no actual gain. The missionaries example suffers an eight-fold increase

in size, while the advisor example is three times larger; with neither program running any faster.

The aggressive unfolding in the index test example also suffers a performance penalty, the loss

of the clause indexing causes the BTA configuration to run two times slower than the original.

Another interesting example is vanilla demoen. The purpose of the example was to show that

under some circumstances meta-interpretation has the advantage of creating terms late and that

removing the meta-interpretation can actually slow down the program. Our algorithm here has

avoided the pitfall and has actually found a specialisation that improves upon the original but

does not suffer from the problem of creating terms too early.

Solely using execution time as a measure for the quality of code is not always ideal either.

The advisor, inboth, missionaries and relative examples all suffer from an explosion in code size

when optimised only for execution time. Balancing execution time against code size produces

some interesting results. For example, the missionaries program’s fastest solution is 35% faster

than the original with an 75% increase in code size; balancing code size with execution time

finds a solution which is 23% faster than the original and is also actually 7% smaller. In the three

other examples, the comprimise solution finds configurations which perform marginally slower

than the fastest, but without the code explosion.

11 Summary and Future Work

This paper has presented a self-tuning, resource-aware offline specialisation technique. The main

insight was that the annotations of offline partial evaluation can be used as the basis of a genetic

algorithm. Indeed, the fitness of annotations can be evaluated by trial and error using a set of

representative sample queries on some target Prolog system and hardware, taking properties such

as execution time and code size into account. This makes our approach both resource aware and

able to fine-tune itself to new hardware or Prolog systems. Furthermore, annotations can be

mutated by toggling individual clause or predicate annotations. To reduce the search space we

make use of a recent fully automatic binding-time analysis [CLGH04] in order to adapt unsafe

mutations (of which there are many) into safe ones. The binding-time analysis also provides a

valid starting point for our algorithm.

The empirical evaluation or our technique has been very encouraging. We have shown that

our self-tuning algorithms avoids pitfalls of ordinary partial evaluation, while being able to find

better specialised code in terms of speedup, code size or both. For example, the results show

that the binding-time analysis of [CLGH04] can lead to large code explosion for little gain in

21

efficiency, while our algorithm finds a much better tradeoff.

In future it would be useful to examine whether one can use a cost model in place of the

representative sample queries to evaluate the runtime of the specialised programs. Another im-

portant area of future research is the efficiency of the genetic algorithm. While searching for

the final configuration, the algorithm may try many different configurations. This is costly as

each configuration must be tested for safety, specialised and then benchmarked. To optimise the

algorithm we must either speed up the total time taken per configuration, or reduce the number

of configurations that are tested.

The benchmarking itself must produce timings with enough granuality to distinguish between

the best cases, meaning that the time taken to benchmark each configuration cannot easily be

reduced. In the case where a benchmark is run multiple times to produce reliable results, it may

be possible to change the measurement taken, instead using the number of iterations possible in

a given time period.

At each iteration in the beam search, single stage mutations are added to the set of configu-

rations. There is currently no attempt at genetic crossover,4 combining configurations with good

performance in the hope of finding a better one. Of course, naı̈vely breeding configurations may

not produce better answers, but there are situations where combining two independent muta-

tions will allow the algorithm to converge on the final solution faster. Further work is needed

to determine when configurations can be combined and an initial starting point could be muta-

tions affecting different predicates, or by using some form of dependency analysis. It may also

be possible to divide large programs into smaller sections for optimisation. While this can re-

move possible optimisations, it increases the scalability of the algorithm. Another possible way

to improve the scalability is to introduce randomness into our algorithm (i.e., not compute and

evaluate all possible mutations but only some random subset).

The binding-time analysis [CLGH04] is an iterative algorithm. During the algorithm de-

scribed in this paper, the BTA is run on many different configurations to ensure that they are

safe. Most of the configurations differ only slightly from ones previously analysed. The BTA

algorithm, along with the specialisation process itself, could be modified to reuse previous inter-

mediate results. If a subset of a program has been seen before (with the same annotations) then it

is possible some of the analysis can be reused. This should provide good opportunities to speed

up the safety analysis for each configuration.

The system lends itself well to parallelisation. The different configurations can be tested on

different machines. Care must be taken in the interpretation of the results, since the algorithm

4Strictly speaking our current algorithm is actually closer to an evolutionary algorithm rather than a genetic

algorithm [ES03].

22

tunes towards the performance of the installed Prolog system and underlying architecture. While

the results can be normalised between machines of differing speeds providing a fair indication

of speed, it will not take into account any differences in the actual architecture, which may affect

performance. Initial results of parallelisation look promising; running the missionaries example

on two computers (with similar specifications) produces a 96% improvement in execution time

compared with the execution time on a single machine. Further investigation is needed to fully

explore this avenue. In previous work [STK97] the specialisation process itself was parallelised,

distributing the work over a network of work stations.

Acknowledgements

We would like to thank Michael Roskopf, Bart Demoen, John Gallagher, and all the other part-

ners of the ASAP project for their help and input.

23

Part II

Poly-Controlled Partial Deduction and its

application to Self-Tuning Specialization
Abstract

Given a local and a global control rule, existing algorithms for partial deduction de-

terministically produce a specialized program from an initial program and description of

run-time queries. In this work we propose a novel framework for partial deduction of logic

programs which is poly-controlled in that it can take into account repertoires of global con-

trol and local control rules instead of a single, predetermined one. This framework is more

flexible than existing ones since it allows assigning different global and local control rules to

different atoms. In addition, this modification potentially transforms partial deduction from

a greedy algorithm into a search-based algorithm. As a result, sets of candidate specialized

programs can be achieved, instead of a single one. In order to make the algorithm fully

automatic, it is required the use of self-tuning techniques which allow measuring the quality

of the different candidate programs automatically. The framework is resource aware in that

it uses fitness functions which consider multiple factors such as run-time and code size for

the specialized programs. Finally, and in order to make the proposed framework effective,

we present pruning mechanisms which allow reducing the search space by allowing code

generation even for configurations which are not final and discuss the possibility of using

branch and bound explorations of the search-space.

12 Introduction

The goal of partial deduction is to speedup programs by performing certain computation steps

at compile-time rather than at run-time. The quality of the code generated by partial deduction

greatly depends on the control strategy used. Traditional partial deduction algorithms are para-

metric w.r.t. the so-called global control and local control rules. The issue of devising good

control rules has received considerable attention.

However, it is well known that sometimes partial deduction can slow-down programs and it

is rather difficult to predict the performance results of different control strategies. If, in addi-

tion to time-performance, we also take into account the size and memory usage of the residual

program, then selecting good control rules becomes an extremely difficult task. The existence

of sophisticated control rules which behave (almost) optimally for all programs is still far from

24

reality. Thus, it seems interesting to be able to develop a program transformation framework

which (1) can flexibly use different control strategies for different atoms and (2) can generate

several candidate specializations which can be experimentally compared for efficiency, in terms

of multiple factors such as size of the specialized program and time- and memory-efficiency of

such specialized program.

In order to do so, several difficulties have to be overcome. Traditional on-line techniques

for partial deduction of logic programs are not very well suited for self-tuning specialization

techniques for several reasons. One is that the algorithm does not provide a self-contained spe-

cialized program until the partial deduction algorithm has computed a set of atoms which is

closed, moment in which partial deduction terminates. Another one is that the algorithm as-

sumes the existence of a global control and a local control rule which behaves well for all atoms

in the specialized program. However, in practical situations it can be very useful to be able to

use different global and local control rules for different atoms.

In this work we propose a framework for on-line partial deduction which allows using dif-

ferent global and local control rules for different atoms. Optionally, an algorithm can be devised

which, instead of a single specialized program, generates a set of candidate specialized programs.

The framework is self-tuning in that it uses empirical evaluations for selecting the best candidates

by means of a fitness function. It is also resource-aware in that multiple factors, such as size of

specialized programs and their memory consumption can be taken into account by the fitness

function in addition to the natural consideration of time-efficiency of the specialized programs.

In order to be able to effectively explore the search space introduced by the use of several con-

trol strategies, the framework allows pruning intermediate states thanks to the use of a closure

operation which allows generating code even for sets of atoms which are not closed. We also

sketch the possibility of using branch and bound in order to efficiently explore the search space

while obtaining specialized programs which are guaranteed to behave optimally w.r.t. the fitness

function of interest.

13 Background

We assume some basic knowledge on the terminology of logic programming. See for ex-

ample [Llo87] for details. Very briefly, an atom A is a syntactic construction of the form

p(t1, . . . , tn), where p/n, with n ≥ 0, is a predicate symbol and t1, . . . , tn are terms. The func-

tion pred applied to atom A, i.e., pred(A), returns the predicate symbol p/n for A. A clause is

of the form H ← B where its head H is an atom and its body B is a conjunction of atoms. A

definite program is a finite set of clauses. A goal (or query) is a conjunction of atoms. The con-

25

cept of computation rule is used to select an atom within a goal for its evaluation. A computation

rule is a function R from goals to atoms. Let G be a goal of the form← A1, . . . , AR, . . . , Ak,

k ≥ 1. If R(G) =AR we say that AR is the selected atom in G. The operational semantics of

definite programs is based on derivations. We provide the definition of a derivation step below.

See [Llo87] for more details.

Definition 7 (derivation step) Let G be ← A1, . . . , AR, . . . , Ak. Let R be a computation rule

and let R(G) =AR. Let C = H ← B1, . . . , Bm be a renamed apart clause in P . Then G′ is

derived from G and C viaR if the following conditions hold:
θ = mgu(AR, H)

G′ is the goal ← θ(AR−1, B1, . . . , Bm, A1, AR+1, . . . , Ak)

As customary, given a program P and a goal G, an SLD derivation for P ∪ {G} consists of

a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence C1, C2, . . . of properly

renamed apart clauses of P , and a sequence θ1, θ2, . . . of mgus such that each Gi+1 is derived

from Gi and Ci+1 using θi+1. A derivation step can be non-deterministic when AR unifies with

several clauses in P , giving rise to several possible SLD derivations for a given goal. Such SLD

derivations can be organized in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn is called

successful if Gn is empty. In that case θ = θ1θ2 . . . θn is called the computed answer for goal G.

Such a derivation is called failed if it is not possible to perform a derivation step with Gn.

In order to compute a partial deduction (PD) [LS91], given an input program and a set

of atoms (goal), the first step consists in applying an unfolding rule to compute finite (pos-

sibly incomplete) SLD trees for these atoms. Given an atom A, an unfolding rule computes

a set of finite SLD derivations D1, . . . , Dn (i.e., a possibly incomplete SLD tree) of the form

Di = A, . . . , Gi with computer answer substitution θi for i = 1, . . . , n whose associated resul-

tants are θi(A)← Gi. Therefore, this step returns the set of resultants, i.e., a program, associated

to the root-to-leaf derivations of these trees. The set of resultants for the computed SLD tree

is called a partial deduction (PD) for the initial goal (query). We refer to [LB02] for details.

In order to ensure the local termination of the PD algorithm while producing useful specializa-

tions, the unfolding rule must incorporate some non-trivial mechanism to stop the construction

of SLD trees. Nowadays, well-founded orderings (wfo) [BSM92, MD96] and well-quasi order-

ings (wqo) [SG95, Leu98] are broadly used in the context of on-line PE techniques (see, e.g.,

[Gal93, LMDS98, SG95]). In addition to local termination, an abstraction operator is applied

to properly add the atoms in the right-hand sides of resultants to the set of atoms to be partially

evaluated. This abstraction operator performs the global control and is in charge of guaranteeing

that the number of atoms which are generated remains finite by replacing atoms by more general

ones, i.e., by losing precision in order to guarantee termination.

26

14 The Dilemma of Controlling Partial Deduction

As mentioned above, there exist many powerful local and global control rules to choose from.

Just as an example, in the case of local control, one of the decisions which have to be taken is

whether to allow non-leftmost unfolding or not. It is well known that performing unfolding steps

w.r.t. atoms which are not leftmost can slow-down programs. Also, in the presence of impure

predicates, non-leftmost unfolding can even produce incorrect results. A detailed discussion on

the correctness on non-leftmost unfolding can be found in [APG05], which is included as part of

Deliverable D06. On the other hand, performing non-leftmost unfolding can provide important

speedups in other cases. See the program in Listing 7.

exp(Base,Exp,Res):- exp_ac(Exp,Base,1,Res).

exp_ac(0,_,Res,Res).

exp_ac(Exp,Base,Tmp,Res):-

Exp > 0,

Exp1 is Exp - 1,

NTmp is Tmp * Base,

exp_ac(Exp1,Base,NTmp,Res).

Listing 7: The exponential/3 example

If we specialize it w.r.t. the query exp(Base,2,Res), enabling non-leftmost unfolding

allows to unroll the recursive calls and the residual code is:

exp(A,2,B) :- C is 1*A, B is C*A.

Consider now the program in Listing 8 below:

p(B):- C is B + 1, q(C).

q(1).

q(2).

q(3).

q(4).

q(5).

q(6).

Listing 8: The p/1 example

Since the call C is B + 1 to the built-in predicate is/2 is not sufficiently instantiated to be

executed (B is not yet bound to an arithmetic expression), it is required to enable non-leftmost

unfolding in order to unfold the call q(C). However, such unfolding generates the following

residual code shown in Listing 9 below:

p(A) :- 1 is A+1.

p(A) :- 2 is A+1.

p(A) :- 3 is A+1.

p(A) :- 4 is A+1.

p(A) :- 5 is A+1.

27

p(A) :- 6 is A+1.

Listing 9: The residual code for p/1

This code is less efficient than the original definition of p/1, since the indexing for predicate

q/1 is lost and the calls to built-in is/2 have to be speculatively performed until a success is

found, if any. In summary, the same feature of a local control rule, i.e., whether to allow non-

leftmost unfolding, can be beneficial for certain calls (atoms) and can be counter productive in

others.

15 Partial Deduction as a Greedy Algorithm

As it is well known, greedy algorithms are characterized by starting from an initial configuration

(or state) Conf0 and repeatedly applying a transformation rule T which given a configuration

Confi produces a successor configuration Confi+1 s.t. Confi+1=T (Confi) until a configuration

Confn, n ≥ 0, is reached which satisfies certain condition which guarantees that Conff is final.

It is possible to consider traditional partial deduction frameworks as greedy algorithms. See

Algorithm 2. A configuration Confi is a pair 〈Si, Hi〉 s.t. Si is the set of atoms yet to be handled

by the algorithm and Hi is the set of atoms already handled by the algorithm. Indeed, in Hi not

only we store atoms but also the result of applying global control to such atoms, i.e., members

of Hi are pairs of the form 〈Ai, A
′
i〉. Correctness of the algorithm requires that each A′

i is an

abstraction of Ai, i.e., Ai = A′
iθ.

Given a set of atoms S which describe the potential queries to the program, the initial con-

figuration is of the form 〈S, ∅〉. In each iteration of the algorithm, an atom Ai from S is selected

(line 5). Then, global control and local control as defined by the Abstract and Unfold rules,

respectively, are applied (lines 6 and 7). This builds an SLD-tree for A′
i, a generalization of Ai

as determined by Abstract, using the predefined unfolding rule Unfold. Once the SLD-tree τi

is computed, the leaves in its resultants, i.e., the atoms in the residual code for A′
i are collected

by the function leaves. Those atoms in leaves(τi) which are not a variant of an atom handled

in previous iterations of the algorithm are added to the set of atoms to be considered. We use

B ≡ A to denote that B and A are variants, i.e., they are equal modulo variable renaming. A

configuration is final when it is of the form 〈∅, H〉. The specialized program corresponds to
⋃

〈A,A′〉∈Hn
resultants(A′). Note that this algorithm differs from those in [Gal93, LB02] in that

once an atom Ai is abstracted into A′
i, code for A′

i will be generated, and it will not be abstracted

any further no matter which other atoms are handled in later iterations of the algorithm. As a

result, the set of atoms it generates are not guaranteed to be independent. Two atoms are in-

dependent when they have no common instance. However, the pairs in H allow to uniquely

28

Algorithm 2 Greedy Partial Deduction algorithm
Input:Program P

Input:Set of atoms of interest S

Input:A global control rule Abstract

Input:A local control rule Unfold

Output: A partial deduction for P and S, encoded by Hi

1: i = 0

2: H0 = ∅

3: S0 = S

4: repeat

5: Ai = Select(Si)

6: A′
i = Abstract(Hi, Ai)

7: τi = Unfold(P,A′
i)

8: Hi+1 = Hi ∪ {〈Ai, A
′
i〉}

9: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, 〉 ∈ Hi+1 . B 6≡ A}

10: i = i + i

11: until Si = ∅

determine the version to use at each program point. Since code generation produces a new predi-

cate name per entry in H , independence is guaranteed, and thus the specialized program will not

produce more solutions than the original one. The ECCE system [Leu02] can be made to behave

as Algorithm 2 by setting the parent abstraction flag to off.

16 Poly-Controlled Partial Deduction

As we have seen, in the greedy algorithm given a configuration 〈Si, Hi〉, and once we decide

to continue the computation using Ai ∈ Si, there only one successor configuration which is

T (〈Si, Hi〉). However, it is well known that several control strategies exist which can be of

interest in different circumstances. It is indeed a rather difficult endeavour to find a pair of global

control and local control rules which behaves well in all settings. Thus, rather than considering a

single global control and local control rule, at least in principle one can be interested in applying

different local and global control rules to different atoms. Unfortunately this is something which

existing algorithms for partial deduction do not cater for.

If we allow different combinations of global and local control rules, given a configuration,

29

there is no longer a single successor in the computation of the algorithm but possibly several

ones. In fact, given a set of unfolding rules U = {Unfold1, . . . , Unfoldi} and a set of abstraction

functions G = {Abstract1, . . . , Abstractj}, there are i× j possible combinations.

Algorithm 3 Poly-Controlled Partial Deduction algorithm
Input:Program P

Input:Set of atoms of interest S

Input:Set of unfolding rules U

Input:Set of generalization functions G

Input:Selection function Pick

Output: A partial deduction for P and S, encoded by Hi

1: i = 0

2: H0 = ∅

3: S0 = S

4: repeat

5: Ai = Select(Si)

6: 〈Abstract, Unfold〉 = Pick(Ai, Hi,G,U)

7: A′
i = Abstract(Hi, Ai)

8: τi = Unfold(P,A′
i)

9: Hi+1 = Hi ∪ {〈Ai, A
′
i, Unfold〉}

10: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≡ A}

11: i = i + 1

12: until Si = ∅

Algorithm 3 shows a poly-controlled partial deduction algorithm. We refer to this algorithm

as poly-controlled because it allows the use of multiple control strategies and use different ones

for different atoms. The choice of the control strategy to apply during the handling of each

atom is performed by the Pick function which given an atom Ai, a history Hi, and a set of global

control rules and a set of local control rules, picks up a pair 〈Abstract, Unfold〉 among all possible

ones. This algorithm differs from the greedy algorithm seen in Section 15 in several ways. One

is that rather than receiving as input an abstraction function and an unfolding rule, it receives a

set of global control rules and a set of local control rules. Another difference is that the tuples

in set Hi now contain not only an atom and the result of abstracting it, but also the unfolding

rule which has been picked for unfolding such atom. This is needed in order to use exactly such

unfolding rule during the code generation phase. Indeed, the specialized program corresponds

30

to
⋃

〈A,A′,Unfold〉∈Hn
resultants(A′, Unfold), where the function resultants is now parametric

w.r.t. the unfolding rule. This allows applying the same unfolding rule during unfolding as it was

applied during the execution of Algorithm 3. The third and final difference corresponds to the

addition of the non-deterministic function Pick used in line 6, and whose behaviour has already

been described above.

Clearly, different choices for the Pick function will result in different specialized programs.

It is important to note that the finer-grained control of poly-controlled partial deduction can

potentially produce specialized programs which are hard or even impossible to obtain by using

off-the-shelf control strategies. Also, the addition of the Pick function conceptually makes the

poly-controlled partial deduction algorithm being composed of three levels of control, the local

control, the global control, and the search control, which is determined by the function Pick.

Note that the inclusion of the history as an input argument to Pick allows to make informed

decisions and not only random ones.

17 A motivating Example

We now show in Listing 10 a program which defines the predicate main/3 which contains calls

to the predicates exp/3 and p/1 defined as before:

main(A,B,C):- exp(B,2,Result), p(A).

Listing 10: A motivating example

If we specialize this program w.r.t. the query main(A,B,C) using leftmost unfolding, the

residual code we get is:

main(A,B,C) :-

D is 1*B,

exp_ac_1(1,B,D,C),

p_1(A).

exp_ac_1(1,A,B,C) :- D is B*A, exp_ac_2(0,A,D,C).

exp_ac_2(0,_1,A,A).

p_1(A) :- B is A+1, q_1(B).

q_1(1).

q_1(2).

q_1(3).

q_1(4).

q_1(5).

q_1(6).

Listing 11: Result with leftmost unfolding

31

Note that none of the calls to the built-in predicate is/2 is sufficiently instantiated to be

executed at specialization time. Since only leftmost unfolding is allowed, the unfolding trees

computed are not very deep, resulting in a large number of residual predicates. On the other

hand, if we choose to enable non-leftmost unfolding, the residual program we obtain is:
main(A,B,C) :- D is 1*B, C is D*B, 1 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 2 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 3 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 4 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 5 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 6 is A+1.

Listing 12: Result with leftmost unfolding

where only an SLD tree has been required, and thus no auxiliary predicates are defined. Unfor-

tunately, neither the program in Listing 11 nor the one in Listing 12 is optimal. This is because,

in order to achieve an optimal result, non-leftmost unfolding should be used for atoms for predi-

cate exp/3, but only leftmost unfolding should be used for atoms for predicate p/1, as already

discussed above.

18 Searching for all Specializations

As we have seen, the poly-controlled algorithm can provide better specializations that those

achievable by traditional partial deduction algorithms by assigning different control strategies

to different atoms. However, the improvements achieved rely on the behaviour of the function

Pick. Unfortunately, choosing a good Pick function can be a very hard task. Another alternative

is, instead of deciding a priori, the control strategy to apply to each atom, to generate several

candidate partial deductions and then decide a posteriori which specialized program to use. This

can be done by computing all possible combinations of global and local control rules and explore

the whole search space in order to generate not only a specialized program but rather a collection

of specialized programs.

Algorithm 4 shows an all-solutions search-based algorithm. In this case, there is no longer

a single successor configuration state for each atom to unfold, but several of them. This can be

interpreted as, given G={A1, . . . , Aj} and U={U1, . . . , Ui}, we now have a set of transformation

operators T A1

U1
, . . . , T A1

Ui
, . . . , T

Aj

Ui
. Obviously, in general we will be interested in selecting only

one specialized program out of all final programs obtained. However, doing this a posteriori

allows to make much more informed decisions.

The main difference of this algorithm w.r.t. Algorithm 3 is that there are now two additional

data structures. One is Confs, which contains the configurations which are currently being ex-

plored. Another one is Sols, which stores the set of solutions found by the algorithm. As it is well

32

Algorithm 4 All-candidates Search-based Partial Deduction algorithm
Input:Program P

Input:Set of atoms of interest S

Input:Set of unfolding rules U

Input:Set of generalization functions G

Output: Set of partial deductions Sols

1: H0 = ∅

2: S0 = S

3: create(Confs); Confs = push(〈S0, H0〉, Confs)

4: Sols = ∅

5: repeat

6: 〈Si, Hi〉 = pop(Confs)

7: Ai = Select(Si)

8: Candidates = {〈Abstract, Unfold〉 | Abstract ∈ G, Unfold ∈ U}

9: repeat

10: Candidates = Candidates− {〈Abstract, Unfold〉}

11: A′
i = Abstract(Hi, Ai)

12: τi = Unfold(P,A′
i)

13: Hi+1 = Hi ∪ {〈Ai, A
′
i, Unfold〉}

14: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≡ A}

15: if Si+1=∅ then

16: Sols = Sols ∪ {Hi+1}

17: else

18: push(〈Si+1, Hi+1〉,Confs)

19: end if

20: until Candidates = ∅

21: i = i + 1

22: until empty stack(Confs)

known, the use of different data structures for Confs provides different traversals of the search

space. Currently, Algorithm 4 uses a stack, which means that the search space will be traversed

in a depth-first fashion. Now the algorithm does not work with single configurations but rather

with stacks of configurations. The process terminates when the stack of configurations to handle

is empty, i.e. all final configurations have been reached.

33

{exp_ac(0),p(X)}

{exp_ac(1),p(X)}

{q(X)}

{p(X)}

{} {}

{}

{}

{p(X)}

{q(X)}

nlnl

nl

nl

nl

l

l

l

l

l l

l nl

{}

{main}

nl

1

3

5

2

4

Figure 9: Search space for the motivating example

19 Searching for All Specializations in our Motivating Exam-

ple

Consider again the motivating example in Listing 10. Consider also two local control rules, one

which performs leftmost unfolding only, and the other one which also performs non-leftmost,

i.e., U={leftmost,nonleftmost} and one global control rule id which always returns the same

atom, i.e., G={id}. By applying our all solution poly-controlled Algorithm 4 we get five dif-

ferent specialized programs. In particular, Solution1 corresponds to the program in Listing 11

and Solution5 to the program in Listing 12. In addition, our algorithm also produces three other

candidate programs which are not easily achieved automatically unless poly-controlled special-

ization is used.

The search space for this example is shown in Figure 9. There, each configuration is repre-

sented with a circle. Configurations which are final are marked with a square around the circle.

As can be seen, the whole search space for the example consists of 12 configurations, 7 of which

are not final and 5 are final, and thus correspond to different candidate solutions, as already men-

tioned. Each configuration is adorned with the set of atoms yet to be handled, i.e., Si in the

algorithm. Each node can have two descendants, which are indicated with arcs. Arcs are labeled

either l, for leftmost or nl for non-leftmost. The set of nodes already handled is not shown

explicitly in each node, but it is implicitly represented by traversing the tree from each node up-

wards up to the root, since an atom is handled in each node. For example, in the case of Solution3,

34

Program Run Time Code Size Speedup Code Reduction

Original 5890 1606 1.00 1.00

Solution1 3652 1596 1.61 1.01

Solution2 5138 1543 1.15 1.04

Solution3 2931 1379 2.01 1.16

Solution4 3962 1326 1.49 1.21

Solution5 7223 1321 0.82 1.22

Table 5: Comparison of Solutions

the history is {〈q(B), q(B), nl〉, 〈p(A), p(A), l〉, 〈exp ac(1, A,B,C), exp ac(1, A,B,C), nl〉,

〈main(A,B,C),main(A,B,C), l〉}. Also, some nodes only have one descendant linked by

two arcs to its parent. This indicates that the two control strategies considered produce equiv-

alent configurations. This allows reducing the search space and is discussed in more detail in

Section 21 below.

Table 5 provides a comparison of the different candidate solutions together with the original

program. The first column indicates the program we refer to in each row. The second column

provides an indication of the run-time efficiency of the different programs. Since the overall

execution time of this program is very small, and in order to obtain measurements which make

sense, this time has been obtained by running the query main(8,9,Result) a million times

and subtracting the time required by an empty loop which performs a million iterations. The

third column compares the sizes of the different programs. This size is in number of bytes of

the program compiled into byte-code using Ciao-1.11 and after subtracting the size of an empty

program. Finally, the last two columns compare the run-time and code-size of the different

programs with that of the original program.

As it can be seen, not all programs obtained by partial deduction are necessarily faster than

the original one. In particular, Solution5, the one obtained using non-leftmost unfolding for all

cases is less efficient than the original one. This is indicated by an speedup lower than 1, which

is 0.82 in this case. On the other hand, the speedup obtained by Solution1 is 1.61, but it is still

far from the fastest program, which is Solution3 with an speedup of 2.01. As regards code size,

in this particular case all solutions achieved are smaller than the original program, though it is

well-known that in some cases partial deduction can produce programs which are significantly

larger than the original one. The smallest program is Solution5, with a code reduction of 1.22,

but which happens to be the slowest program of all, including the original one.

If both the speedup and code reduction factors are taken into account, the most promising

programs are Solution3 and Solution4, neither of which are achievable by using one unfolding

35

rule for all atoms. If code size is not a very pressing issue, then Solution3 is probably the best one,

but otherwise Solution4 should be used, since a relative small increase in program size provides

significant time performance improvement. The choice between the two solutions mentioned

will depend on the fitness function used, which can put more emphasis in one factor or another.

20 Self-Tuning, Resource-Aware Partial Deduction

Though Algorithm 4 can be used to automatically generate a large number of candidate special-

ized programs to choose from, we need some mechanism to select just one of them since the goal

of partial deduction is to obtain a specialized program, not many.

There are obviously several criteria which can be used to decide how good a specialized

program is. Possibly, the most obvious one is the time-efficiency of the specialized program.

However, there are some complications associated to evaluating such time-efficiency. There are

several possibilities which could be taken into account. One can be the use of static cost analysis.

Cost analysis can aim at obtaining upper or lower bounds on computational cost or even average

cost. Each of these three possibilities are of interest, and can be applied in different situations.

Yet another possibility is to measure run-times. This approach, though simpler, has the problem

that we need a set of test cases which are representative of the class of run-time queries which

will be performed.

Another factor which we are probably interested in considering is the size of the resulting

programs. This feature of programs is fairly easy to measure. However, depending on the re-

sources available in the platform in which the specialized code will run, this can be of higher or

lower importance. Also, even in cases where code size is not much of an issue, it can happen that

different specialized programs have similar time-efficiency but some of them can be significantly

larger than others.

Finally the memory-consumption of the specialized code is also an issue, especially if the

program will run on devices with limited resources, as is the case in embedded systems and per-

vasive computing. Similarly to the case of time-efficiency, both static and dynamic approaches

can be used, with similar pros and cons as discussed above for time-efficiency. The framework

we propose in this work is resource-aware since it can take all the above criteria into account.

Another goal of our framework is that it should be fully automatic. I.e., there should be no

need for human intervention in order to decide which of the candidate specializations is the best.

We refer to this as a self-tuning approach. As we will see later on, our framework currently

uses test cases in order to obtain information about the quality of the specialized programs. This

information is then summarized by a fitness function which assigns a numeric value to each can-

36

didate specialization and which reflects how good the corresponding program is. The framework

is parametric w.r.t. the fitness function so that the method can be applied with different aims in

mind. Some times we may be interested in achieving code which is as time-efficient as possi-

ble, whereas in other cases memory-efficiency can be a primary aim. It is important to note that

this search-based approach to partial deduction is also of interest when only run-time is taken

into account. Even in such case there is no control strategy alone which is guaranteed to always

produce the most-efficient code for all compilers and architectures.

21 Speeding up Search in Poly-Controlled Partial Deduction

Though the search-based approach presented in Section 18 above is definitely appealing, it can

present important drawbacks in practice. One is that even for relatively small programs, the num-

ber of candidate programs can be too large to make the approach effective in practice. One first

obvious optimization is to eliminate configurations which are direct descendants in the search

tree from the same node and which happen to be equivalent. I.e., it will relatively often be the

case that given a configuration Conf there are more than one T A
U and T A′

U ′ with (A,U) 6= (A′, U ′)

s.t. T A
U (Conf) = T A′

U ′ (Conf). This optimization is easy to implement, not very costly to exe-

cute, and reduces search space significantly. For example, in the search space in Figure 9, which

already includes this optimization, if this optimization were not applied then it would contain 19

configurations, instead of 12 and there would be 9 candidate solutions instead of 5.

In addition to the elimination of redundant configurations, and as is often done in many

search-based algorithms, in order to reduce the search space, one would like to be able to prune

away branches which are not promising. For this, we need to be able to apply the fitness function

not only on configurations which are final, but also on intermediate configurations. The problem

here is that the partial evaluation algorithm is not devised in such a way that a consistent program

can be obtained for any set of atoms. If such set of atoms is not closed, then the union of the

partial deductions for the atoms in the set does not correspond to a self-contained program.

The solution we propose in this case is the use of an additional function close, which given

any configuration deterministically produces a new configuration which is closed and which

uses the original definitions of the corresponding procedures for all atoms not handled yet by the

algorithm.

Interestingly, this function can be achieved as a particular case of Algorithm 3 by using G=

{dynamic} and U= {one-step}. The abstraction function dynamic abstracts away the value

of all arguments and the unfolding rule one-step performs just one unfolding step. Once the

close function terminates, the set of atoms obtained is closed and we can apply the usual code

37

generation phase, as presented in Section 16 to achieve the specialized program. This allows

applying the evaluation function to all configurations in the search space, and not only those

which are final.

21.1 Search Strategy

Once we have the possibility of generating code and applying the fitness functions to non-final

configuration, the frequency with which we apply the close function and evaluate configurations

is an open issue. Also, the number of candidate configurations which we may decide to have

simultaneously is also open.

It is important to note that the process of applying the fitness function to a configuration can

help prune branches and thus reduce the search space to be explored, it will in general be a costly

task since it involves generating code, compiling, and running the program for the given set of

test cases. There is thus a clear trade-off between how often we apply the fitness function and

the number of nodes explored. By applying the fitness function too often, can even slow-down

the search process, since the time taken to close configurations and evaluate them can actually

be higher than the time needed to further expand the configuration and apply the fitness function

only in the final states reachable from such configuration. Also, pruning non-final configurations

from the search tree can avoid finding the optimal program possible, since the fitness function is

not guaranteed to be increasing nor decreasing. It can be the case that a configuration with low

value in the fitness function can lead to a final configuration which is optimal.

Our implementation is parametric w.r.t. two values. One is the number of levels in the search

tree which should be expanded before applying the fitness function. The other is the maximum

number of configurations which can remain “active” after a selection process. Note that this

number does not necessarily correspond to the maximum number of candidates active in any

point in time. It only affects states in depth-levels as indicated by the depth limit.

21.2 Reducing the Branching Factor

In spite of the possibility of eliminating redundant configurations and non-promising branches,

an interesting possibility which is worthwhile to explore in practice is the use poly-controlled

partial deduction with more restrictive capabilities in order to reduce the cost of exploring the

search space. For example, rather than allowing different local and global control rules for

different atoms with the same predicate symbol, we can also restrict ourselves to configurations

which always use the same unfolding and abstraction rule for all atoms of a predicate. This

restriction will greatly reduce the branching factor of our algorithm since, handling of an atom

38

Ai will become deterministic as soon as we have previously considered an atom for the same

predicate: it is compulsory to use exactly the same local and global control as before.

Though this simplification may appear too restrictive, it is also often the case that though it

can be interesting to use different control rules for different predicates, it is likely that the same

control rule will behave well for all instances of a predicate. In this case, it is important that we

do not prune too early, since otherwise the fact that we have applied a particular control strategy

in an atom for the predicate can force the application of the same control strategy all over the

descendants in the search tree from that configuration. An intermediate solution which is worth

exploring is to define control at the level of modes for a predicate. This means that two calls

to a predicate with the same instantiation level in their arguments have to use the same control

strategy, but not if they have different instantiation patterns.

22 Branch and Bound

A well known technique for pruning configurations which definitely cannot improve over exist-

ing solutions is known as Branch and Bound. This technique involves the use of two components

for estimating the fitness of an intermediate configuration. One which is actual and another which

maximizes or minimizes the possible value in case of completing the configuration. Since in our

case we aim at maximizing the value of the fitness function, the approximation has to provide

an upper bound over the incomplete part of the configuration. If the combination of such upper

bound and the current fitness of the configuration are lower than some of the existing solutions,

then there is no point in further expanding the given configuration.

It is important to note that the original program is a final configuration, so we can take the

value of the fitness function over the initial program as a lower bound of the value which the

fitness function will take in the best solution found. In addition, and as the search continues,

further final configurations will be found which will possibly increase the fitness value of the

best solution so far.

If the fitness function takes the size of the resulting program as one factor, we can take for

a configuration conf =〈S,H〉 then we can take as current value the size of the resultant in the

atoms in H and take as estimate zero for the atoms in S plus any further atom added by the close

function.

When taking execution time as a factor one possibility is to use a profiler such as that de-

scribed in Deliverable D16, which allows defining cost centers. The profiler splits the total

execution time among the different predicates in the program. When a cost center is defined, it

accumulates the execution time of all computations started from such predicate. Thus, given a

39

configuration 〈S,H〉 by defining a cost center in every atom in Close(〈S,H〉) = CP which is not

already in H , when running the CP , the time reported by the profiler for predicates in H does

not include the time actually required for atoms which are not in H . If the total time taken by

predicates related to atoms in H is higher than the best time already found, again there is no point

in further expanding this node. A similar reasoning could be applied for memory-consumption

of the specialized program, though our profiler does not currently provide the required support.

23 Discussion and Future Work

The poly-controlled partial deduction framework opens up the door to many interesting possibil-

ities. As we have seen in our motivating example, it can achieve specialized programs which are

difficult to find otherwise given a set of existing control strategies.

However, it can be very costly unless good search strategies are used. In Sections 21 and 22

we have proposed several ways of reducing the cost of traversing the search space. In addition

to this, a relatively simple idea but which, to the best of our knowledge, is not exploited in actual

partial evaluation systems is that different procedures have different relative importance on the

overall time efficiency of the program. Thus, it can be a good idea to obtain data on the cost of the

different procedures by means of profiling in order to be able to make more informed decisions

at partial evaluation time.

For example, for procedures with little impact on the run-time of the program, less aggressive

control strategies can be used, whereas in calls to predicates with an important cost, more ag-

gressive strategies should be used. Also, the branching factor could be varied for different atoms

according to the importance of the atom being handled. If the atom has important weight, we

should probably try out more different alternatives than in other less important predicates.

Our implementation of poly-controlled partial deduction seems to provide very promising

results. It remains as future work to experimentally try poly-controlled partial deduction on a

larger set of programs, using different search control and evaluate thoroughly what the cost and

benefits of the proposed approach are. Also, in a context in which a program can be repeatedly

specialized for different call patterns it seems feasible to reuse previous results of poly-controlled

specialization in order to help us reduce the branching factor. This can be achieved by storing the

best control strategy found for previous atoms, i.e., the ones which are selected in the program

which is chosen by the fitness function. This idea, combined with the restriction of having just

one control strategy per instantiation pattern for a predicate, as discussed above, seem most

promising in order to implement a system which can efficiently specialize different initial call

patterns for the same program.

40

References

[AAV01] Elvira Albert, Sergio Antoy, and Germán Vidal. Measuring the Effectiveness of

Partial Evaluation in Functional Logic Languages. In Proc. of 10th Int’l Workshop on

Logic-based Program Synthesis and Transformation (LOPSTR’2000), LNCS 2042,

pages 103–124. Springer-Verlag, 2001.

[APG05] E. Albert, G. Puebla, and J. Gallagher. A Partial Deducer Assisted by Predefined

Assertions and a Backwards Analyzer. In 5th International Workshop on the Imple-

mentation of Logics (WIL’04), March 2005.

[AV01] Elvira Albert and Germán Vidal. Source-Level Abstract Profiling for Multi-

Paradigm Declarative Programs. In Proc. of 11th Int’l Workshop on Logic-based

Program Synthesis and Transformation, LOPSTR’2001, 2001.

[BG95] Antony F. Bowers and Corin A. Gurr. Towards fast and declarative meta-

programming. In K. R. Apt and F. Turini, editors, Meta-logics and Logic Program-

ming, pages 137–166. MIT Press, 1995.

[BHH+04] B. Brassel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Runtime Profiling of Func-

tional Logic Programs. In Proc. of the 14th Int’l Symp. on Logic-based Program

Synthesis and Transformation (LOPSTR’04), pages 178–189, 2004.

[BSM92] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding

Infinite Unfolding during Partial Deduction. New Generation Computing, 1(11):47–

79, 1992.

[CLGH04] Stephen-John Craig, Michael Leuschel, John Gallagher, and Kim Henriksen. Fully

automatic Binding Time Analysis for Prolog. In Sandro Etalle, editor, Logic Based

Program Synthesis and Transformation, 14th International Workshop, pages 61–70,

2004.

[ES03] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer-

Verlag, 2003.

[Gal91] John Gallagher. A system for specialising logic programs. Technical Report TR-91-

32, University of Bristol, November 1991.

[Gal93] J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of

PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, pages 88–98. ACM Press, 1993.

41

[GB91] John Gallagher and Maurice Bruynooghe. The derivation of an algorithm for pro-

gram specialisation. New Generation Computing, 9(3 & 4):305–333, 1991.

[Gur94a] C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Lan-

guage Gödel. PhD thesis, Department of Computer Science, University of Bristol,

January 1994.

[Gur94b] C. A. Gurr. Specialising the ground representation in the logic programming lan-

guage Gödel. In Y. Deville, editor, Logic Program Synthesis and Transformation.

Proceedings of LOPSTR’93, Workshops in Computing, pages 124–140, Louvain-

La-Neuve, Belgium, 1994. Springer-Verlag.

[JLM96] Jesper Jørgensen, Michael Leuschel, and Bern Martens. Conjunctive partial deduc-

tion in practice. In John Gallagher, editor, Logic Program Synthesis and Transfor-

mation. Proceedings of LOPSTR’96, LNCS 1207, pages 59–82, Stockholm, Sweden,

August 1996. Springer-Verlag.

[LB02] Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through

partial deduction: Control issues. Theory and Practice of Logic Programming, 2(4

& 5):461–515, July & September 2002.

[Leu98] Michael Leuschel. On the power of homeomorphic embedding for online termina-

tion. In Giorgio Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503,

pages 230–245, Pisa, Italy, September 1998. Springer-Verlag.

[Leu02] Michael Leuschel. The ECCE partial deduction system and the DPPD library of

benchmarks. Obtainable via http://www.ecs.soton.ac.uk/˜mal, 1996-

2002.

[LJVB04] Michael Leuschel, Jesper Jørgensen, Wim Vanhoof, and Maurice Bruynooghe. Of-

fline specialisation in Prolog using a hand-written compiler generator. Theory and

Practice of Logic Programming, 4(1):139–191, 2004.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,

1987.

[LMDS98] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation

and polyvariance in partial deduction of normal logic programs. ACM Transactions

on Programming Languages and Systems, 20(1):208–258, January 1998.

42

[LS91] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The

Journal of Logic Programming, 11:217–242, 1991.

[MD96] B. Martens and D. De Schreye. Automatic finite unfolding using well-founded mea-

sures. The Journal of Logic Programming, 28(2):89–146, August 1996.

[MG95] B. Martens and J. Gallagher. Ensuring global termination of partial deduction while

allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95, pages

597–611, Shonan Village Center, Japan, June 1995. MIT Press.

[Pre92] Steven Prestwich. The PADDY partial deduction system. Technical Report ECRC-

92-6, ECRC, Munich, Germany, 1992.

[Sah93] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation

Computing, 12(1):7–51, 1993.

[SG95] M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Super-

compilation. In Proc. of ILPS’95, pages 465–479. The MIT Press, 1995.

[STK97] Michael Sperber, Peter Thiemann, and Hervert Klaeren. Distributed partial evalu-

ation. In Proceedings of the second international symposium on Parallel symbolic

computation, pages 80–87. ACM Press, 1997.

[VD88] Raf Venken and Bart Demoen. A partial evaluation system for Prolog: Theoretical

and practical considerations. New Generation Computing, 6(2 & 3):279–290, 1988.

[Vid04] G. Vidal. Cost-Augmented Partial Evaluation of Functional Logic Programs.

Higher-Order and Symbolic Computation, 17(1-2):7–46, 2004.

[WPD01] R. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of soft-

ware and the atlas project. Parallel Computing, 27(1–2):3–35, 2001.

43

