
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Benchmark Library

Deliverable number: D10

Workpackage: Resource-Oriented Specialization (WP4)

Preparation date: 1 May 2004

Due date: 1 May 2004

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Univ. of Southampton

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

In this deliverable we systematically study the influence of various factors on the perfor-

mance of Prolog programs. For this we have developed a benchmark library, along with a plat-

form independent benchmarking program. This program can be used to obtain the performance

characteristics of a particular hardware platform and Prolog compiler.

Contents

1 Introduction 2

1.1 Resource Aware Specialisation .2

1.2 Aim . 3

2 Building up the Perfomance Model 3

2.1 Multi-Platform Execution .5

3 Benchmarking 7

4 Language-dependant issues 10

5 Platform-dependant issues 11

6 Conclusion 13

A Empirical Results 14

1

1 Introduction

Software development is a costly task. This situation is being alleviated lately by softwarereuse,

which allows the construction of software systems from already written and tested software.

However, they tend to generate software systems which are not optimal with respect to the com-

puting resources they need. The benefits of these approaches are thus seldom available in the

realm of pervasive computing. In this context, there is a large number of computing devices

which may range from personal computers to PDAs, mobile phones, dedicated processors, smart

cards, wearable computers and such like. These devices have a wide range of performance char-

acteristics; often having a relatively small amount of computing resources [6]. Time efficiency

is an issue since often these devices have to operate on real-time tasks. Also, and possibly more

importantly, memory efficiency is an issue. If either the software used is too large to fit in the

device or needs too much memory to run, then it is simply not possible to use such software.

1.1 Resource Aware Specialisation

Program specialisationaims at improving the overall performance of programs by performing

source to source program transformations. A common approach evaluation is to exploit partial

knowledge about the input. Program specialisation techniques for logic programming languages

have advanced steadily over the past 20 years. Algorithms have been developed which increase

the amount of specialisation achieved, while still ensuring termination of the specialisation pro-

cess.

However, existing specialisation systems do not use a sufficiently precise model of the com-

piler of the target system to guide their decisions during specialisation. In addition to execu-

tion speed, there are many other important factors which are neglected by current specialisation

techniques such aspartial evaluation. Some of these factors are: size of the resulting (special-

ized) program, memory usage, and low-level implementation issues. While there is some recent

work [3] to address this, it is a largely ignored area and some of the problematic issues raised

in [5] are still valid today.

A suitable low-level cost modelwould allow a partial deduction system to make more in-

formed choices about the local control (e.g., is this unfolding step going to be detrimental to

performance) and global control (e.g., does this extra polyvariance really pay off). Some promis-

ing initial work on cost models for logic and functional programming has already been made

in [1, 2]. However, such a low-level cost model will depend on both the particular Prolog com-

piler and on the target architecture and it is hence unlikely that one can find an appropriate

mathematical theory. This means that further progress on the control of partial deduction will

2

probably not come from ever more refined mathematical techniques such as new well-quasi or-

ders, but probably more from heuristics andartificial intelligencetechniques such as case-based

reasoning or machine learning. For example, one might imagine aself-tuningsystem, which

derives its own cost model of the particular compiler and architecture by trial and error. Such an

approach has already proven to be highly successful in the context of optimising scientific linear

algebra software [7].

1.2 Aim

In this deliverable we systematically study the influence of various factors on the performance

of Prolog programs. For this we have developed a benchmark library, along with a platform

independent benchmarking program. This program can be used to obtain the performance char-

acteristics of a particular hardware platform and Prolog compiler.

There are several possible uses of the results obtained in this deliverable. First, the results

indeed show that hardware and Prolog system have a considerable influence on the performance

of Prolog programs, which Prolog specialisers and optimisers should be aware of. Second, our

results and tools should help us to derive a realistic low-level, empirical cost-model that can be

used to guide the next generation program specialisers. Finally, our program can also be used to

compare new Prolog systems or new hardware systems, and identify unexpected behaviour (e.g.,

a “bug” in the Ciao compiler was spotted by our benchmarking tool).

2 Building up the Perfomance Model

The first step in the assessment of the performance of a program that will be fitted to a device

with limited resources, is to break the measurement into simple tasks. We call these tasks:

atomic parameters. These parameters are the basis for empirically getting an idea of the various

of specialising, when this specialisation is a non-deterministic process. The following atomic

parameters can be identified in a Prolog program.

Unification:

Unification is at the basis of Prolog execution, and hence it is important to get a good idea of

its cost when modelling the performance of a system. The idea behind unification, which was

borrowed from automated theorem proving [4], is that two terms match if you can instantiate

their variables to values in such a way that the two expressions become identical. This binary

operation would attempt to make its two operands the same, however complex the data object

3

is. Thus, in our experiments we refer to two types of unification: simple and deep. By simple

unification an arbitrary list of unbounded variables gets unified to another list of the same length:

[X1, X2, . . . , Xn] = [Y1, Y2, . . . , Yn]

On the other hand, we also examine the unification of more complex terms, where the binding is

deeplywrapped by compound terms:

f1 (f2 (· · · fm (X1, X2, . . . , Xn) · · ·)) = f1 (f2 (· · · fm (Y1, Y2, . . . , Yn) · · ·))

These two types of unification are taggedunification/n anddeep unif/n , wheren is

the length of the list in the first case and thearity of the predicate in the latter one.

Accessibility:

In logic programming, the clauses of a predicate can be defined either statically, dynamically, or

even accessed from a mass storage device. The time to validate a query depends on this factor.

We use the following definitions:

PS = {p(X1, X2, . . . , Xn)← ∀ 0 ≤ i < n, 0 ≤ Xi < m}
PD = {assert(p(X1, X2, . . . , Xn))← ∀ 0 ≤ i < n, 0 ≤ Xi < m}

and then the goalG =← p(C, C, . . . , C), C = m/2 is executed for each program:PS ∪
{G}, PD ∪ {G} to test the difference between a predicate that is defined statically and a dy-

namic one.

Pio = {read(Stream, PS)← ∀ 0 ≤ i < n, 0 ≤ Xi < m}

The above definition is used at a later stage to measure the time it takes to read a set of clauses

from a mass storage device.

Coroutining:

Coroutines passively evaluate consistency conditions, as opposed to the traditional approach in

declarative languages. Although they are inadequate as a general constraint mechanism, corou-

tining allows the designer to define more complex constraints. In our benchmarking procedure,

thecall residue/2 andwhen/2 built-ins are tested in order to analyse the overhead intro-

duced by coroutining. These built-ins are used to wrap a call to another procedure, discarding

the coroutining relevant information – we are only interested in measuring the overhead. Thus,

we have:

4

call_residue(X,_).

when(ground(a),X).

whereX is bound to either a simple unification, as described above, or to a more complexnaive

reverseexample to test scalability. Again, the arity used in the declaration of this test will be

passed around toX.

Arithmetic:

Differentiating between the complexity associated to integer or floating-point arithmetic is de-

sired in most empirical models. We run the following test:

Y =
n∑

i=1

m∏
j=1

Xi,j

wherem, n ∈ IN are the number of variables in each term, and the number of terms respec-

tively. This is being implemented bysum prod/3 , which is then used in the following four

benchmarks:non float/n for Xi,j ∈ IN , float/n for Xi,j ∈ IR, small int/n and

small float/n whenXi,j ≈ 0.

2.1 Multi-Platform Execution

In order to compare figures, we need to identify which specifications are in use at the time we

run the benchmarks. Firstly, we can identify the Prolog by an internal tag used in most systems.

which_prolog(ciao) :-

current_prolog_flag(version,Info), nonvar(Info),

Info = ciao(_,_),!.

which_prolog(sicstus) :-

current_prolog_flag(version,Info), atom(Info),

sub_atom(Info,0,7,_,’SICStus’),!.

which_prolog(swi) :-

(current_prolog_flag(unix,_);

current_prolog_flag(windows,_)),!.

which_prolog(xsb) :-

xsb_configuration(engine_mode,’slg-wam’),!.

Some Prolog languages have significant differences throughout their development, while oth-

ers have a less active developing. Identifying the version number could be of interest in those

very dynamic Prologs.

5

which_version(Version) :-

current_prolog_flag(version,Info), nonvar(Info),

Info = ciao(Version,_),!.

which_version(Version) :-

current_prolog_flag(version,Info), atom(Info),

pick_using(’ ’,Info,Version),!.

which_version(Version) :-

current_prolog_flag(executable,Info), atom(Info),

pick_using(’-’,Info,Ver),

prefix_using(’/’,Ver,Version),!.

which_version(Version) :-

xsb_configuration(version,Version),!.

Based on this information, we can identify the operating system as well as the architecture as

follows.

which_os(OS) :- which_prolog(ciao),!,get_os(OS).

which_os(OS) :-

current_prolog_flag(host_type,Info), atom(Info),

pick_using(’-’,Info,OS),!.

which_os(OS) :-

current_prolog_flag(arch,Info), atom(Info),

pick_using(’-’,Info,Sys),

pure_atom(Sys,OS),!.

which_os(OS) :-

xsb_configuration(os_type,OS),!.

which_arch(Arch) :- which_prolog(ciao),!,get_arch(Arch).

which_arch(Arch) :-

current_prolog_flag(host_type,Info), atom(Info),

prefix_using(’-’,Info,Arch),!.

which_arch(Arch) :-

current_prolog_flag(arch,Info), atom(Info),

prefix_using(’-’,Info,Arch),!.

which_arch(Arch) :-

xsb_configuration(host_cpu,Arch),!.

6

These predicates are used to obtain information about the system. By passing an ungrounded

variable as argument, e.g.which arch(X) , knowing thatX will be unified to an atom1 that

represents the architecture, e.g.i86 . A grounded argument could be used for language-specific

built-ins. For example:

(which_prolog(xsb) -> table p/2 ; true)

is used to perform tabling onp/2 only when the program is executed in XSB Prolog.

3 Benchmarking

Evaluating the performance of devices with restrictive computational and storage capabilities is

an extremely complex matter, and it is an unrealistic assumption to expect any set of benchmarks

to tell the whole story. In fact, such a performance measurement would depend on so many

factors that many people have justifiably questioned the usefulness of benchmarking. However,

we believe that useful information can be retrieved from the benchmarking process, and that

building an empirical model from these results is advantageous.

generate
benchmark load execution

loop
[b1, b2, ..., bn]

Results

model .pl

Figure 1: Structure of the algorithm

The main part of our benchmarking algorithm is divided into three processes, as shown in

Figure 1. This has been coded in Prolog by the predicatebenchmark/1 , where the argument

is a list [b1/a1,b2/a2,...,bn/an] = [H|T] of experiments to be executed. For each

element of the list,bi is an atom that represents the experiment andai ∈ IN is the arity involved

in the experimentation. For instance,b1/a1 = unification/10 refers to performing a

1Note that these atoms are not unique. For instance,which arch/1 will unify the argument topowerpc on

SICStus andppc on Ciao, and both cases refer to the same platform: a PowerPC processor.

7

unification of two lists, each of them with a length of10 elements. In terms of its implementation,

an entry forbi is looked up on amodellibrary. This entry defines the semantics associated with

bi.

benchmark([]).

benchmark([H|T]) :-

construct_name(H,Name,TmpFile),

which_prolog(Prolog),

flags(Prolog,Flags),

map(H,Exported), H = [HH|_],

open(TmpFile,write,In),

write_headings(In,[Name,Exported,Flags,Prolog,HH]),

generate_benchmark(In,H),

close(In),

load_and_execution_loop(H,Name),

benchmark(T).

Following the execution ofwrite heading/2 andgenerate benchmark/2 , a tem-

porary file is generated for each experimentbi. The write heading/2 predicate provides

the right declarations, according to the Prolog being used. Next,generate benchmark/2

creates a the main structure on which the measurement is based on. In order to obtain some

meaningful timings, the benchmarking process has to be repeated many times within the mea-

surement. This repetition, however, increases the overhead of simple actions, such ascall/1 .

Thus, the temporary file created resembles a structure that avoids this overhead by means of three

predicates:repeat/2 , call once/0 , anddo benchmark/2 .

repeat(A,A). do_benchmark(A) :-

repeat(A,B) :- repeat(A,_),

A>1, call_once,

C is A-1, fail.

repeat(C,B). do_benchmark(_).

As opposed to naively doing a recursive loop, where the body is repeatedly called (A times)

and the measurements are significantly affected by the overhead ofcall/1 , the structure shown

above does not incur in a big overhead. Asdo benchmark/1 runs it will fail and backtrack

to another execution ofrepeat/2 , until A>1 is not satisfied any more. On backtracking the

variable bindings are undone, leading to less memory overhead.

8

Due to the varied nature of the benchmarks, it is not practicable to run a number of times (A)

each experiment and then compare the timing information. We propose that, having generated

the temporary file, all benchmarks run as much as they need to overcome a threshold. But we

keep this limit constant and measure number of runs instead. In this way, results are normalised

with respect to this constant time, allowing a fairer comparison.

RUN-Ref = 1s +
NS

Figure 2: Execution loop

Figure 2 depicts the implementation ofexecution loop/4 , showing a double nested loop

that is committed to level up the number of executions, until the reference (threshold) of 1 sec is

achieved. This loop is affected by the internal variableN, which stores the number of executions

that have taken place in the last iteration. In this way, when the measured time (Time) is still far

from Ref = 1s, i.e. Diff is large, we get greater increments among iterations than whenDiff

is small. The Prolog code for this is:

execution_loop(Param,_,N,Time) :-

ground(Time), Time >= 1000, !,

retractall(repetitions(_)),

assert(repetitions(N)),

report(Param,N,Time).

execution_loop(read/Arity,Module,_,_) :-

repetitions(N), Bench_Call =.. [bench_read,T,N],

call(Module:Bench_Call),

which_prolog(P),

inform(P,read/Arity,T,N),

report(read/Arity,N,T).

execution_loop(Param/Arity,Module,N,Time) :-

ground(Time), Diff is 1000 - Time, Diff > 0, !,

9

step(S), N1 is N + S * Diff,

atom_concat(bench_,Param,BenchCall),

Bench_Call =.. [BenchCall,T,N1],

call(Module:Bench_Call),

which_prolog(P),

inform(P,Param/Arity,T,N1),

execution_loop(Param/Arity,Module,N1,T).

4 Language-dependant issues

The benchmarking methodology described in the previous section reports a number of results

measured inkilo-instructions/second. As both platforms and languages were varied during the

tests, it is important to differentiate between issues that concern the language in use and issues

that relate to the platform itself. In this section we compare 4 different Prologs running on the

same platform: a PowerPC G4 processor, Mac OS X 10.3, 512 Mb RAM. Firstly, our benchmark

set has been tested inSICStus v.3.11.1. Secondly, we wanted to devise the overhead of running

SICStus v.3.12.0in the Virtual PC 7.0.1 emulator. Thirdly, we testedCiao 1.11 #221and,

fourthly, SWI 5.2.3.

0

50

100

150

200

250

300

350

call/10: reverse/10: call_with_nrev/10:

SICStus Virtual SICStus Ciao SWI

Figure 3: Same platform, different Prologs (call -related functions)

It can be observed from Figure 3 that the SICStus and Ciao Prologs clearly outperform SWI.

10

This difference becomes even more evident when the complexity of the predicate increases, as

we can see from comparing the set of experiments with the other two. Despite the big overhead

introduced by the emulator, it was still faster to run SICStus onVirtual PC than SWI.

Despite that, Figure 4 depicts how SWI remarkably surpasses both SICStus and Ciao in I/O

access efficiency. Additionally, the best arithmetic (both integer and floating point) performance

was obtained in Ciao Prolog.

0

5

10

15

20

25

30

35

40

45

50

write/10: read/10: non_float/10: float/10: small_int/10: small_float/10:

SICStus Virtual SICStus Ciao SWI

Figure 4: Same platform, different Prologs (I/O and arithmetics)

5 Platform-dependant issues

Clearly, differences on the performance of an application due to the language in which it has

been implemented, does not normally overturn a designer into a different choice. In this section,

we examine the effect of running our benchmarks in several platforms.

Exploring the consequences of benchmarking in several platforms could lead to wrong inter-

pretation of the results, due to significant performance differences. For instance, we do not want

to come up with the conjecture that a 2GHz processor is faster than its 1GHz counterpart, but

are rather interested in the benefit than an extra 512Mb of memory would make. This is why we

normalise all the results in this section, to the first test running on a PowerPC G4 processor, Mac

OS X 10.3, 512 Mb RAM.

11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

G4 (Mac) G4 (Win @

VirtualPC)

G4 (1 Gb) AMD

(Linux)

AMD (Win) P4 (Linux) P3 (Linux) P4 (Win) 2

GHz

P4 (Win)

1.2 GHz

Dual G5

(Mac)

reverse/10: call_with_nrev/10: call_residue_with_nrev/10: when_with_nrev/10:

Figure 5: Naive reverse and coroutining

Figure 5 shows that there are two issues that add on to the complexity of thenaive reverseal-

gorithm, when using coroutining. Firstly, as it could be expected, there is the amount of memory

in the system. It can easily be observed that there is less slow down due to coroutining where the

system has more memory. Secondly, the operating system also plays an important role. Figure 5

shows that there is a significant added complexity by running the same experiments in exactly

the same platform (AMD), but using Windows instead of Linux.

In Figure 6 we run the sum of a set of products across different platforms. The core of the

benchmark consists of two recursive predicates that iterate a number of times.

prod_list([], Ini) :- initial_value(Ini).

prod_list([A|B], C) :-

prod_list(B, D),

C is A*D.

sum_prod(_, [], Ini) :- initial_value(Ini).

sum_prod(A, [B|C], D) :-

prod_list(A, B),

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
4
(M

ac
)

G
4
(W

in
 @

 V
ir
tu

al
PC

)

G
4
(1

 G
b)

A
M
D
 (
Li
nu

x)

A
M
D
 (
W
in
)

P4
 (
Li
nu

x)

P3
 (
Li
nu

x)

P4
 (
W
in
)
2
G
H
z

P4
 (
W
in
)
1.

2
G
H
z

D
ua

l G
5
(M

ac
)

non_float/10: float/10: small_int/10: small_float/10:

Figure 6: Arithmetic operations

sum_prod(A, C, E),

D is B+E.

To select whether we want to run this experiment using integer or floating-point arithmetics, the

initial value binds the variableIni to one of the following values:

int float

multiplication 1 1.0

sum 0 0.0

6 Conclusion

We have presented an empirical approach to the performance model in resource-aware special-

isation. Our framework is based on individually benchmarking those parameters that affect the

specialisation, and reasoning from the results obtained. Important resource-awareness aspects

have been analysed. We include in this deliverable extensive experimentation showing a broad

comparison among languages and platforms used in the specialisation process. We believe that

13

our methodology can lead to an improvement in the way program specialisers work, especially

in resource-aware applications, by introducing additional heuristics to the process.

References

[1] E. Albert, S. Antoy, and G. Vidal. Measuring the Effectiveness of Partial Evaluation in Func-

tional Logic Languages. InProc. of 10th Int’l Workshop on Logic-based Program Synthesis

and Transformation (LOPSTR’2000), pages 103–124. Springer LNCS 2042, 2001.

[2] E. Albert and G. Vidal. Source-Level Abstract Profiling for Multi-Paradigm Declarative

Programs. InProc. of 11th Int’l Workshop on Logic-based Program Synthesis and Transfor-

mation, LOPSTR’2001, 2001.

[3] S. Debray. Resource-bounded partial evaluation. InProceedings of PEPM’97, the ACM Sig-

plan Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages

179–192, Amsterdam, The Netherlands, 1997. ACM Press.

[4] J. A. Robinson. A Machine Oriented Logic based on the Resolution Principle.Journal of

the ACM, 10:163–174, 1963.

[5] R. Venken and B. Demoen. A partial evaluation system for Prolog: Theoretical and practical

considerations.New Generation Computing, 6(2 & 3):279–290, 1988.

[6] M. Weiser. The Computer for the 21st Century.Scientific American, 265(3):94–104, 1991.

[7] R. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of software and

the atlas project.Parallel Computing, 27(1–2):3–35, 2001.

A Empirical Results

The following results were obtained using an arity of 10. The measurement unit iskilo instruction

/ seconds.

14

G4 (Mac) P4 (Linux)

unification/10 1450.53 3115.62

deepunif/10 1446.32 3065.53

lookup/10 2074.23 5397.99

assert/10 39.84 124.79

call/10 259.79 719.65

when/10 176.7 403.77

reverse/10 94.06 235.45

call with nrev/10 89.06 241.28

whenwith nrev/10 80.61 187.29

write/10 8.71 14.9

read/10 9.15 12.03

non float/10 29.21 65.52

float/10 20.53 47.58

small int/10 27.72 61.13

small float/10 19.96 24.51

Table 1: Benchmarks in Ciao Prolog

15

G4 (Mac) G4 (Win @ VirtualPC) G4 (1 Gb) Dual G5 (Mac)

unification/10 2297.92 1052.4 2422.11 6266.83

deepunif/10 2284.21 995.19 2602.08 6415.05

lookup/10 3079.8 1490.27 3531.58 9764.85

call/10 293.14 157.04 314.43 801.47

when/10 150.5 73.64 166.33 345.62

reverse/10 100 62.41 111 306.12

call with nrev/10 91.5 54.51 100 263.16

assert/10 121.9 53.91 132.04 304.88

call residue/10 38.02 19.16 40.1 85.71

call residuewith nrev/10 38.23 19.92 42.48 92.94

whenwith nrev/10 69.7 38.47 79.69 181.16

write/10 11.25 4.23 11.83 20.97

read/10 9.07 3.58 10.05 20.87

non float/10 19.53 11.53 22 69

float/10 14.14 8.95 15.52 39.41

small int/10 19.37 11.57 21.52 65.45

small float/10 13.34 8.15 15.33 37.82

Table 2: PowerPC Benchmarking in SICStus Prolog

16

AMD (Linux) P4 (Linux) P3 (Linux)

unification/10 1772.5 5322.12 2185

deepunif/10 1767.5 4562.5 2172.5

lookup/10 2557.5 8190.59 3722.5

call/10 225.23 571.08 295

when/10 103.73 252.43 128.21

reverse/10 91.58 233.64 114.68

call with nrev/10 82.24 203.25 100

assert/10 94.7 235.85 102.88

call residue/10 27.65 72.05 32.85

call residuewith nrev/10 32.59 80.13 36.5

whenwith nrev/10 57.6 137.36 68.87

write/10 6.63 14.93 7.22

read/10 4.74 11.63 5.77

non float/10 17.22 57.08 22.79

float/10 13.68 35.82 18.29

small int/10 17.35 57.08 22.36

small float/10 12.9 35.87 16.64

Table 3: Benchmarks in SICStus Prolog for Linux

17

AMD (Win) P4 (Win) 2 GHz P4 (Win) 1.2 GHz

unification/10 2900.1 4003.83 3445.25

deepunif/10 2843.16 4202.77 3441.5

lookup/10 4785.68 8436.56 5488.5

call/10 317.34 501.73 379

when/10 144.34 199.68 156.84

reverse/10 130.68 285.68 158.43

call with nrev/10 113.48 222.82 135.65

assert/10 122.37 189.11 131.1

call residue/10 33.51 47.56 34.56

call residuewith nrev/10 39.88 60.9 41.45

whenwith nrev/10 78.49 132.07 135.65

write/10 9.08 12.07 9.96

read/10 7.53 10.5 8.98

non float/10 25.5 49.33 31.13

float/10 20.85 30.45 25.6

small int/10 25.47 48.94 31.07

small float/10 19.17 26.93 24.39

Table 4: Benchmarks in SICStus Prolog for Windows

G4 (Mac) AMD (Win) P4 (Win) 2 GHz P4 (Win) 1.2 GHz

unification/10 160.78 165.07 443.03 203.2

deepunif/10 178.22 179.94 404.89 201.5

assert/10 132.47 116.92 233.27 121.19

lookup/10 409.38 420.94 668.48 455.22

call/10 146.94 143.35 258.53 155.21

reverse/10 18.82 18.22 30.53 20.45

call with nrev/10 19 17.55 30.73 19.75

write/10 26.13 31.02 46.88 35.77

read/10 45.73 47.78 65.7 49.6

non float/10 5.2 5.32 8.2 5.81

float/10 5.07 5.3 8.16 5.84

small int/10 5.34 5.3 8.25 6.02

small float/10 4.79 4.92 7.38 5.5

Table 5: Benchmarks in SWI Prolog

18

