ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Specialization of Real Life CLP
Languages

Deliverable number: D6

Workpackage: Integrated Tool (WP7)

Preparation date: 1 March 2004

Due date: 1 March 2004

Classification: Public

Lead participant: Tech. Univ. of Madrid (UPM)

Partners contributed: Tech. Univ. of Madrid (UPM), Univ. of Southampton, Roskilde
Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998-2002).

Short description:

This deliverable reflects the progress made in this period in WP7 Tasks 7.1 and 7.2, on the
improvement of the mechanisms for analyzing and specializing real-life programs and the inte-
gration of these mechanisms into the first prototype. The two main areas of focus of the deliver-
able are developing techniques for a) dealing with large programs that are divided into modules
(including the case when each individual module is large), and b) dealing with language features
which are difficult to handle, such as builtins and “impure” predicates (including those that have
side-effects, are extra-logical, may raise errors or exceptions, etc.).

As decided in the first progress report, the work in these tasks has continued beyond the orig-
inally planned month 12 into month 16 in order to produce additional results. For this reason,
only a draft version of this deliverable was available in the first review. That draft version con-
tained only Part IV and preliminary versions of Parts | and VI of this final version. This final
deliverable includes all new Parts Il, 1l and V, updated versions of Parts | and VI, and, in order
to be self-contained, also Part IV unchanged.

1 Dealing with large, modular programs

As mentioned above, one of the fundamental areas of focus of this deliverable is to study and find
solutions to the difficulties posed by large, real-life, modular programs. Part | of the deliverable
(“A Generic Framework for Context-Sensitive Analysis of Modular Programs”, which has now
been published as a book chapter) presents the complete framework developed for the analysis
and specialization of modular programs. This framework analyzes or reanalizes each module as
needed, iterating over the module dependency graph and propagating among dependent modules
the analysis results obtained, until the analysis results stabilize (i.e., a fixpoint is reached). The
framework allows preprocessing a program fragment (a module) even if other parts of the system
are not available yet, with only minimal interface information needed. Although results of pre-
processing a separate module may be suboptimal, they often suffice for debugging the module
code. When all the code of the program is available a more accurate analysis and specialization
can be carried out. The increased precision obtained allows detecting new bugs that are due to
module interactions and also to produce a more highly optimized executable for the modular
program.

Part Il of the deliverable (“Experiments in Context-Sensitive Analysis of Modular Programs”)
reports on our additional progress in this area: the experimental evaluation of the behavior

of context-sensitive analysis and specialization of real-life programs decomposed in modules.
Since the previous period we have completed an implementation of the framew@ikaRP
and assessed its behavior and performance with a set of large, modular programs. We have
benchmarked the different models of analysis of modular programs proposed in previous work,
each with different characteristics and representing different trade-offs. We provide an empirical
comparison of these different models, as well as experimental data on the different choices left
open in those designs. We have also explored the scalability of these models by using larger
modular programs as benchmarks. In addition, the performance of the system when reanalyzing
a modular program after changes in the source code has also been measured, in order to explore
the ability of this approach to handle efficiently incremental changes in large systems. This as-
sessment shows that in some critical cases, the incremental approach provides significantly better
performance results than those achievable by analyzing the whole program at once.

Part Ill of the deliverable (“Efficient Local Unfolding with Ancestor Stacks for Full Prolog”,
to appear in the LOPSTR’04 proceedings) reports on our progress in improving the ability of
our specialization tools to deal with individual program modules which are large. This is impor-
tant because one of the issues that has prevented the integration of powerful partial evaluation
methods into practical compilers to date has been their efficiency. The most successful unfold-
ing rules used currently are based on structured orders applied over (coraggrorswhich
introduce significant overhead. In this period, we have proposed an efficient, prétadalin-
folding rule based on the notion of covering ancestors which can be used in combination with
any structural order and allows a stack-based implementation without losing any opportunities
for specialization. We have integrated these techniques in the common tool, in particular in the
partial evaluator embedded @iaoPP , and studied the resulting performance. Our experimen-
tal results show that they are significantly more efficient in time and somewhat more efficient in
memory usage than previous techniques.

2 Handling builtins and impure features

The second fundamental focus of the deliverable in order to deal with real-life programs is to
study and find solutions to the difficulties posed by certain language features which which are
difficult to handle. In particular, CLP languages typically have a number predefined predicates,
or builtins, which must be handled in a special way by analyzers and specializers. The usual
approach is to embed in the tool a table of the builtins that are understood by the tool, with
specific mechanisms to handle them. However, this approach is not extensible. We have proposed
instead an approach in which assertions describing builtins are used throughout the libraries of

2

the system (as opposed to the table embedded in the analyzer or specializer) which include the
appropriate information. The same approach can be used for parts of an application which are
written in foreign languages (e.g., C or Java). These assertions are presented in detail in the
manual of the Ciao and CiaoPP systems, and their use in partial evaluation is discussed for
example already in Part III.

Another important problem related to builtins is to guarantee that such builtins are called with
the correct argument modes and types. This can be tackleth@dgkavards analysisConditions
on the entry predicates are derived, which guarantee satisfaction of the assertions defining the
pre-conditions on builtins. In Part IV ("A Program Transformation for Backwards Analysis of
Logic Programs,” which has been published in the Proceedings of LOPSTR’03) we presented
a framework for performing backwards analysis within a standard abstract interpretation. The
approach is based on a transformation that makes the dependencies of the calls to builtins on
the initial goals explicit. The transformed program can be analyzed using a standard abstract
interpretation algorithm, rather than the special-purpose frameworks used for backwards analysis
in the literature.

Part V of the deliverable (“Flexible and Accurate Partial Deduction of Full Prolog using
Assertions and Backwards Analysis”) reports significant additional progress that we have made
during this period in the area of partial deduction of real-life CLP programs contamipgre
predicates. Impure predicates include those which may raise errors, exceptions or side-effects,
external predicates whose definition is not available, etc. Existing proposals allow obtaining
correct residual programs while still allowing non-leftmost unfolding steps, but at the cost of
accuracy: bindings and failure are not propagated backwards to predicates which are classified
as impure. Motivated by recent developments inliaekwardsanalysis of logic programs, we
have developed, implemented and integrated in the common tool a partial deduction algorithm
which can handle impure features and non-leftmost unfolding in a more accurate way and, thus,
we have made possible and show some optimizations which were not feasible using previously
proposed partial deduction techniques. We believe this is an important step forward compared
to existing approaches since the method developed is a) accurate, given that the classification of
pure versus impure is done at the level of atoms instead of predicates, b) flexible, as the user
can annotate programs using assertions, which can guide the partial deduction process, and c)
automatic, since backwards analysis can be used to automatically infer the required assertions.

Finally, we have also studied the precise requirements and implications that a precise anal-
ysis of builtins imposes on abstract domains. In particular, Part VI (“Set-Sharing is not always
redundant for Pair-Sharing”, now published in FLOPS’04) studies the case of the important and
popular “sharing” domain and proves that certain assumptions that had been made to simplify
the operations associated with this domain are in fact not valid in the presence of builtins.

3

Contents

Deliverable Description 1
1 Dealing with large, modular programs 1
2 Handling builtins and impure features 2

A Generic Framework for Context-Sensitive Analysis of Modular Pro-

grams 6
1 Summary 6
2 Introduction 6
3 A Non-Modular Context-Sensitive Analysis Framework 9
3.1 Program Analysis by Abstract Interpretation 9.
3.2 The Generic Non-Modular Analysis Framework 10
3.3 Predefined Procedures 11
4 The Flattening Approach to Modular Processing 12
4.1 Flattening a Program Unit vs. Modular Processing 13.
5 Design Goals for Analysis of Modular Programs 14
6 Analysis of Modular Programs: The Local Level 16
6.1 Solving the Imported Success Problem 18.
6.2 Solving the Imported Calls Problem 19
7 Analysis of Modular Programs: The Global Level 20
7.1 Parametersofthe Framework 21
7.2 Howthe GlobalLevelWorks 21
7.3 Updatingthe Global State 22
7.4 RecoveringfromaninvalidState 23
8 Using a Manual Scheduling Policy 23

Using an Automatic Scheduling Policy 24

9.1 Using Over-Approximating Success Policies 25.
9.2 Using Under-Approximating Success Policies 25.
9.3 Hybridpolicy e 26
9.4 Computation of an Intermodular Fixed-Point. 26
Some Practical Implementation Issues 27
10.1 Making Global Information Persistent 27
10.2 Splitting Global Information 28
10.3 Handling Libraries and Predefined Modules 29.

Discussion and Conclusions 31

Experiments in Context-Sensitive Analysis of Modular Programs 34

Summary 34
Introduction and Motivation 34
Analysis of modular programs 36
3.1 Modularprograms e e 36
3.2 Flattening a Program Unit vs. Modular Processing 36.
3.3 Analyzing one module atatime 37
3.3.1 Solving the Imported Success Problem 38.
3.3.2 Solving the Imported Calls Problem 39
3.4 Computing an intermodular fixed point 40
Empirical results 41
4.1 Brief description of the benchmarksused 42.
4.2 Analysis of a modular program fromscratch 43
4.3 Reanalysis of a modular program after a change inthecode 45. .
Conclusions 45

Efficient Local Unfolding with Ancestor Stacks for Full Prolog 57

Summary 57

2 Introduction 57

3 Background 58
4 The Usefulness of Ancestors 60
5 An Efficient Implementation for Local Unfolding 63

6 Assertion-based Unfolding for External Predicates 68
7 Experimental Results 70

IV A Program Transformation for Backwards Analysis of Logic Pro-

grams 74
1 Summary 74
2 Introduction 74
2.1 Making Derivations Observable15
2.1.1 Resultants Semantics L oo 75
2.2 Backwards Analysis Based on the Resultants Semantics 76. .
3 The Program Transformation 78
3.1 Resultants Semantics by Program Transformation 78 .
3.2 FromResultantstoBinary Clauses 79.
3.3 Transforming with Respectto Program Points 79.
3.4 Analysis of the Transformed Programs 81
3.5 Interpretation of the AnalysisResult 83
3.6 Analysisof Quicksort 83
3.7 Computing the Goal Conditions 84
3.8 The Relative Pseudo-Complement 86.
4 Related Work 86
5 Conclusion 87

V Partial deduction of real-life CLP programs containing impure pred-
icates using backwards analysis 89

1 Summary 89

2 Background 89
3 Non-Leftmost Unfolding in Partial Deduction 92
3.1 Non-Leftmost Unfolding and Impure Predicates 92
4 From Impure Predicates to Impure Atoms 94
4.1 BInding-Sensitiveness 94
4.2 Side-effects 95
4.3 Run-Time Errors 95
4.4 PureandEvaluable Atoms 96
5 Assertions about Purity of Atoms 97
6 Automatic Inference of Assertions by Backwards Analysis 98
6.1 The Backwards Analyzer 99
6.2 ThePartialDeducer 101
7 Conclusions 103
VI Set-Sharing is not always redundant for Pair-Sharing 104
1 Summary 104
2 Introduction 104
3 Preliminaries 106
4 Eliminating redundancy from Sharing 108
5 When redundant sets are no longer redundant 109
6 Combining Sharing with freeness 111
7 When independence among sets is relevant 115
8 Conclusion 118

References 120

Part |

A Generic Framework for
Context-Sensitive Analysis of Modular
Programs

1 Summary

Context-sensitive analysis provides information which is potentially more accurate than that pro-
vided by context-free analysis. Such information can then be applied in order to validate/debug
the program and/or to specialize the program obtaining important improvements. Unfortunately,
context-sensitive analysis of modular programs poses important theoretical and practical prob-
lems. One solution, used in several proposals, is to resort to context-free analysis. Other propos-
als do address context-sensitive analysis, but are only applicable when the description domain
used satisfies rather restrictive properties. In this paper, we argue that a general framework for
context-sensitive analysis of modular programs, i.e., one that allows using all the domains which
have proved useful in practice in the non-modular setting, is indeed feasible and very useful.
Driven by our experience in the design and implementation of analysis and specialization tech-
niques in the context of CiaoPP, the Ciao system preprocessor, in this paper we discuss a number
of design goals for context-sensitive analysis of modular programs as well as the problems which
arise in trying to meet these goals. We also provide a high-level description of a framework for
analysis of modular programs which does substantially meet these objectives. This framework
is generic in that it can be instantiated in different ways in order to adapt to different contexts.
Finally, the behavior of the different instantiations w.r.t. the design goals that motivate our work
is also discussed.

2 Introduction

Analysis of logic programs has received considerable theoretical and practical attention. A num-
ber of successful compile-time techniques have been proposed and implemented which allow
obtaining useful information on the program and using such information to debug, validate, and
specialize the program, obtaining important improvements in correctness and efficiency. Unfor-
tunately, most of the existing techniques are still only used in prototypes and, though numerous

6

experiments demonstrate their effectiveness, they have not made their way into existing real-life
systems. Perhaps one of the reasons for this is that most of these techniques were originally
designed to be applied to a complete, monolithic program, while programs in practice invari-
ably have a more complex structure combining a number of user modules with system libraries.
Clearly, organizing program code in this modular way has many practical advantages for both
program development and maintenance. On the other hand, performing global techniques such
as program analysis on modular programs differs from doing so in a monolithic setting in several
interesting ways and poses non-trivial problems which must be solved.

In this work we concentrate ostrict module systems in which procedures external to a
module arevisibleto it only if they are part of itsnterface The interface of a module usually
contains the names of tlexportedprocedures and the names of the procedumg®rtedfrom
other modules. The module can only import procedures which are among the ones exported by
the other modules. Procedures which are not exported are not visible outside the module.

Driven by our experience in the design and implementation of context-sensitive analysis and
specialization techniques in the CiaoPP system [PH03, HPBLGO03a], in this paper we present
a high level description of a framework for analysis of modular programs. This framework is
generic in that it can be instantiated in different ways in order to adapt to different contexts. The
correctness, accuracy, and efficiency of the different instantiations is discussed and compared.

The analysis of modular programs has been addressed in a number of previous works. How-
ever, most of them have focused on specific analyses with particular properties and using more
or less ad-hoc techniques. In [CDG93] a framework is proposed for performing compositional
analysis of logic programs in a modular fashion, using the concept opan programintro-
duced in [BGLM94a]. An open program is a program in which part of the code is not available to
the analyzer. Nevertheless, this interesting framework is valid only for a particular set of abstract
domains of analysis—those which arempositional

Another interesting framework for compositional analysis for logic programs is presented
in [VBOO], in this case, fobinding-time analysisAlthough the most natural way to describe ab-
stract interpretation-based binding-time analyses is arguably to use a top-down, goal-dependent
framework, in this work a goal-independent analysis framework is used in order to simplify
the handling of the issues stemming from modularity. The choice is based on the fact that
context-sensitivity brings important problems to a top-down analysis framework. Both this pa-
per and [CDG93] stress compositionality as a very attractive property, since it greatly facilitates
modular analysis. However, there are many useful abstract domains which do not meet this
property, and thus these approaches are not of general applicability.

In [Pro02] a control-flow analysis-based technique is proposed for call graph construction
in the context of object oriented languages. Although there has been other work in this area,

7

the novelty of this approach w.r.t. previous proposals is that it is context-sensitive. Also, [BJO3]
shows a way to perform modular class analysis by translating the object oriented program into
openDATALOG programs, in the sense of [BGLM94a]. These two contributions are tailored
to specific analysis domains with particular properties, so an important part of their work is not
generally applicable nor reusable in a general framework.

In [RRL99] a two-phase analysis is proposed for incomplete imperative programs, starting
with a fast, imprecise global analysis and then continuing with a (possibly context sensitive)
analysis for each module in the program. This approach is not abstract interpretation-based. Itis
interesting to see that it appears to follow from the theory of abstract interpretation that if in such
a two-pass approach the first pass “overshoots” the fixed-point, the maximum precision may not
be recovered in the second pass.

In [TJ94] a method for performing separate control-flow analysis by means of abstract in-
terpretation is proposed. This paper does not deal with the inter-modular approach studied
in the present work, although it does have points in common with our module-aware analysis
framework (Section 6). However, in this work the initial information needed by the abstract
interpretation-based analyzer is provided by other analysis techniques (types and effects tech-
niques), instead of taking advantage of the actual results from the analysis of the rest of the
modules in the program.

A preliminary study of the extension of analysis and specialization to the case of modular
programs was presented in [PHOO]. A full practical proposal for modular program analysis was
presented in [BAIBF01], which also presented some preliminary data from its implementation
in the context of the Ciao system. Also, an implementation of [BdiBH in the context of the
HAL system [GDMSO02] has been reported in [Net02].

The rest of the paper proceeds as follows: Section 3 presents a review of program analysis
based on abstract interpretation and of the non-modular framework that we use as a starting point.
Section 4 then presents some additional notation related to modular programs and a first, sim-
ple approach to extending the framework to handling such modular programs: the “flattening”
approach. This approach is used as baseline for comparison throughout the rest of the paper. Sec-
tion 5 then identifies a number of characteristics that are desirable of a modular analysis system
and which the simple approach does not meet in general. Achieving (at least a subset of) these
characteristics justifies the more involved approach presented in the rest of the paper. To this
end, Section 6 first discusses the modifications made to the analysis framework for non-modular
programs in order to be able to handle one module at a time. Section 7 then presents the actual
full framework for analysis of modular programs. The framework proposed is parametric on the
scheduling policies The following sections discuss two scheduling policies which are funda-
mentally different:manual schedulingSection 8), which corresponds to a scenario where one

8

or more users decide when and what modules to analyze individually (but in a context-sensitive
way), such as in distributed program development, auntdmatic schedulin¢Section 9), where

a full scheduling policy automatically determines in which order the modules will be analyzed
and continues until the process is completed (a fixed-point is reached). Section 10 addresses
some practical implementation issues, including persistence and handling of libraries. Finally,
Section 11 compares the behavior of the different instantiations of the generic framework pro-
posed together with that of the flattening approach w.r.t. the desirable design features discussed
in Section 5, and presents some conclusions.

3 A Non-Modular Context-Sensitive Analysis Framework

The aim of context-sensitive program analysis is, for a particular description domain, to take a
program and a set of initial call patterns and to annotate the program with information about the
current environment at each program point whenever that point is reached when executing calls
described by the initial call patterns.

3.1 Program Analysis by Abstract Interpretation

Abstract interpretation [CC77] is a technique for static program analysis in which execution of
the program is simulated on a description (or abstract) donmiain which is simpler than the
actual (or concrete) domaiDj. Values in the description domain and sets of values in the
actual domain are related via a pair of monotonic mappifags): abstractiona : oD _,

D, andconcretizationy : D,— 2D which form a Galois connection, i.e.

vz e 2l . y(a(x) Dx and YA€ D, a(y(\) = A

The set of all possible descriptions represents a description dahaivhich is usually a com-
plete lattice or cpo for which all ascending chains are finite. Note that in ggnesahduced by
C anda (insuch away thatA, X € D, : AC XN < ~(\) C ~(X)). Similarly, the operations of
least upper boundLl) andgreatest lower boun@1) mimic those oD in some precise sense.
A description\ € D, approximates set of concrete valuesc 2D jf a(x) C A. Correctness
of abstract interpretation guarantees that the descriptions computed approximate all of the actual
values which occur during execution of the program.

Different description domains may be used which capture different properties with different
accuracy and cost. Also, for a given description domain, program, and set of initial call patterns
there may be many different analysis graphs. However, for a given set of initial call patterns, a

9

program and abstract operations on the descriptions, there is a Ueggtianalysis graplwvhich
gives the most precise information possible.

3.2 The Generic Non-Modular Analysis Framework

We will now briefly describe the main ingredients of a generic context-sensitive analysis frame-
work which computes the least analysis graph. This framework generalizes the particular analy-
sis algorithms used in systems such as PLAI [MH90, MH92], GAIA [CV94], and the R)B(-

alyzer [KMM™98], and we believe captures the essence of most context-sensitive, non-modular
analysis systems. More details on this generic framework can be found in [HPMS00, PH96].

We first introduce some notatio@D andAD stand for descriptions in the abstract domain.

The expressio : CD denotes aall pattern This consists of a predicate call together with a
call description for that predicate call. Similarlg, : AD denotes an answer pattern, though it
will be referred to aAD when it is associated to a call pattefh: CD for the same predicate
call.

The least analysis graph for the program is implicitly represented in the algorithm by means
of two data structures, thaenswer tableand thedependency tableGiven the information in
these data structures it is straightforward to construct the graph and the associated program point
annotations. The answer table contains entries of the 8BrmCD +— AD. It is interpreted
as: the answer pattern for calls of the fo@Db to P is AD. A dependency is of the form® :

CDy = B, : CDy. This is interpreted as follows: if the procedurds called with description

CD, then this causes the proceduseo be called with descriptio@D,. The subindexeycan

be used in order to uniquely identify the program point witkinvhereB is called with calling
patternCD,. Dependency arcs represent the arcs in the program analysis graph from procedure
calls to the corresponding call pattern.

Intuitively, different analysis algorithms correspond to different graph traversal strategies
which place entries in the answer table and dependency table as new nodes and arcs in the
program analysis graph are encountered. To capture the different graph traversal strategies used
in different fixed-point algorithms, we use a priority queue. The queue contains the events to
process. Different priority strategies correspond to different analysis algorithms. Thus, the third,
and final, structure used in our generic framework asks queue

When an event being added to the tasks queue is already in the queue, a single event with the
maximum of the priorities is kept in the queue. Also, only one arc of the 8BrnCD = By, :

CD' for each tuplg P, CD, By,,) exists in the dependency table: the last one added. The same
holds for entries” : CD — AD for each tupl€ P, CD) in the answer table.

Figure 1 shows the architecture of the framework. Tulecorresponds to the (source)

10

ENGINE

Code Description
Domain
Operations

Dependency
Table

Builtin
Procedure
Function

Entries

Figure 1: Non-Modular Analysis Framework

code of the program to be analyzed. Bgtrieswe denote the initial starting points for analysis.

The boxDescription Domain Operationsepresents the definition of operations which are do-

main dependent. The circle representsAimalysis Enginewhich has the three data-structures
mentioned above, i.e., the answer table, the dependency table, and the tasks queue. Initially, for
each analysis these three structures are empty and the analysis engine takes care of processing
the events on the priority queue by repeatedly removing the highest priority event and calling
the appropriate event-handling function. This in turn consults and modifies the contents of the
answer and dependency tables. When the tasks queue becomes empty then the analysis engine
has reached a fixed-point. This implies that the least analysis graph has been found. We will use
AnalysisDa(Q, E) = (AT, DT) to denote that the analysis of progréhior initial descriptions

E indomainD,, produces the answer tabf&” with dependency tabl®T'.

3.3 Predefined Procedures

In order to simplify their presentation, formalizations of program analysis often do not consider
predefinedrocedures. However, in practice, program analysis implementations allow the use of
predefined (language built-in and/or library) procedtireghe programs to be analyzed. These
externalprocedures whose code is not available in the program being analyzed are often han-
dled in anad-hocway. Thus, in fairness, non-modular program analyses are more accurately
represented by adding to the framewobLaltin procedure functionvhich essentially hardwires

In our modular design, a library can be treated simply as (yet another) module in the program. However, special
practical considerations for them will be discussed in Section 10.3.

11

the answer table for these external procedures. This function is represented in Figure 1 by the
box builtin procedure function We will useCP and AP to denote, respectively, the set of all

call patterns and the set of all answer patterns. The builtin procedure function can be formalized
as a functionBF : CP — AP. For all call pattern? : CD whereP is a builtin procedure
BF(P : CD) returns a descriptioAD which is assumed to be correct in the sense that it is a safe
approximation, i.e. an over-approximation of the actual answer pattein f@D.

It is important to note that the data structures which are outside the analysis eruyine,
entries description domain operationandbuiltin procedure functiorare read-only. However,
though the code and entries are supposed to change for the analysis of each particular program,
the builtin procedure functiorran be considered to be fixed, for each description dorfainn
that it does not vary from the analysis of one program to another. Indeed, it can be considered
to be part of the analyzer. Thus, the builtin procedure function is not explicitly represented as an
input to the analysis algorithm.

4 The Flattening Approach to Modular Processing

We start by introducing some notation. We will useand m’ to denotemodules Given a
modulem, by imports(m) we denote the set of modules whieghimports. Figure 2 presents a
modular program. Modules are represented as boxes and there is an arrow tom’ iff m
importsm’. In our examplejmports(a) = {b, c}. By dependé&n) we refer to the set generated
by the transitive closure afnports, i.e. dependgn) is the least set such thanports(m) C
dependén) andm’ € dependgn) implies thatimports(m') C dependén). In our example,
depends(a) = {b,c,d, e, f}. Note that there may be circular dependencies among modules. In
our examplege € depends(d) andd € depends(e). A modulem is aleaf if depends(m) = 0.
In our example, the only leaf module fs By callersm) we denote the set of modules which
importm. In the examplecallers(e) = {b,¢,d}. Also, we definaelatedm) = callers(m) U
importgm). In our examplerelatedb) = {a, d, e}.

The program unitof a given modulen is the finite set of modules containing and the
modules on whichn dependsprogramunit(m) = {m} U depends(m). m is called thetop-
level module of its program unit. In our examplprogramunit(a) = {a,b,c,d,e, f} and
programunit(c) = {c¢,d,e, f}. A program unitU is self-contained in the sense thatm ¢
U :m! € imported(m) — m' € U.

Severalcompilation tasksuch as program analysis and specialization are traditionally con-
sideredglobal, as opposed ttocal. Usually, local tasks process one procedure at a time and all
the information required for performing the task can be obtained by inspecting that procedure.

12

Figure 2. An Example of Module Dependencies

In contrast, in global tasks the results of processing a part of the program (say, a procedure) may
be needed in order to process other parts of the program. Thus, global processing often requires
iterating on the whole program until a fixed-point is reached.

In a modular setting, it may well be the case that part of the information needed to perform
the task on (a procedure in) modute has to be computed in modules other than We will
refer to the information originated in modules different framasinter-modularinformation in
contrast to the information originatediin itself, which we will callintra-modular.

Example 4.1 In context-sensitive program analysis there is an information flow of both call and
success patterns to and from procedures in different modules. Thus, program analysis requires
inter-modular information. For example, the moduleeceives call patterns from modute
sincecallergc) = {a}, and it has to propagate the corresponding success patterasltoturn,

c provides{e, f} = importgc) with call patterns and receives success patterns from them.

4.1 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a moduldnas the difficulty thain may
not be self-contained. However, there should be no problem in applying the framewoik &
leaf module. Furthermore, given a global process such as program analysis, at least in principle,
it is not obvious that it makes much sense to apply the process to a madude. In principle,
it makes more sense to apply it to program units since they are conceptually self-contained. Thus,
given a modulen one natural approach seems to be to apply the tool (simultaneously) to all the
modules inU/ = program.unit(m).

Given a program unit/ it is always possible to build a single modute;,; which is equiv-
alent toU and which is a leaf. The process of constructing such a maduylg usually only
amounts to renaming apart identifiers in the different modulés so as to avoid name clashes.
We will useflattenNU) = m,; to denote that the modute s, is the result of renaming apart
the code in each module fit and concatenating its code into a monolithic modulg,;. This

13

points to a simple solution to the problem of processing modular programs (at least for the case in
which all the code is available): to transfopmogram_unit(m) into the equivalent monolithic
programm .. It is then straightforward to apply any tool for non-modular programs to the leaf
modulem .. Figure 3 represents the case in which the non-modular analysis framework is used
on the flattened program.

a ENGINE
a Description
/ \ Domain Dependency
b Operations Table Table Queue
c N
b c
d Builtin
Procedure
Function
Entries

Figure 3: Using non-modular analysis on a flattened program

Given the existence of an implementation for non-modular analysis, this approach is often
simple to apply. Also, this flattening approach has theoretical interest. It can be used, for exam-
ple, in order to compare the efficiency of different approaches to modular handling of programs
w.r.t. the flattening approach. However, as a practical way in which to actually perform analysis
of program units this approach has important drawbacks. This issue will be discussed in more
detail in Section 11.

5 Design Goals for Analysis of Modular Programs

Before presenting our proposals for analysis of modular programs, we will discuss the main
features which should be taken into account when designing and/or implementing a tool for
context-sensitive analysis of modular programs. As often happens in practice, some of the fea-
tures presented are conflicting with others and this might make it impossible to find a framework
which behaves optimally w.r.t. all of them.

Module-Awareness We consider a framewonkodule-awarevhen it has been designed with
modules in mind. Thus, it is applicable to a moduteby using the code of» and some “in-
terface” information for the modules importgm). Such interface information will in general

14

consist of a summary of previous analysis results for such modules, if such results are available,
or a safe approximation if they are not.

Though transforming a non-modular framework into a module-aware one may seem trivial,
it requires identifying precisely which is the required information on the result of applying the
tool in each of the modules importgm) which should be stored in order to apply the toohto
This corresponds in general to the inter-modular information. It is also desirable that the amount
of such information be minimal.

Example 5.1 The framework for non-modular analysis in Section 3 is indeed non-modular since

it requires the code of all procedures (except possibly for some predefined ones) to be available
to the analyzer. It will produce wrong results when applied to non-leaf modules since a missing
procedure can only be deemed as an error, unless the framework is aware that such a procedure
can be imported.

Correctness The results of applying the tool to a moduteshould produce results which are
correct The notion of correctness itself can in general be lifted from the non-modular case to
the modular case without great difficulties. A more complex issue is how to extend a framework
to the modular case in such a way that correctness is preserved.

Accuracy Similarly, the analysis results for a moduleshould be as accurate as possible. The
notion of accuracy can be defined by comparing the analysis results with those which would be
obtained using the flattening approach presented in Section 4.1 above, since the latter always
computes the most accurate information possible, which corresponds to the least analysis graph.

Termination A framework for analysis of modular programs should guarantee termination
(at least) in all cases in which the flattening approach terminates (which, typically, is for every
program). Such termination is guaranteed by choosing description domains with some specific
characteristics such as having finite height, finite ascending chains, etc., and/or incorporating a
widening operatar

Efficiency in Time The time required to apply the tool should be reasonable. We will under-
stand “reasonable” as not over an acceptable threshold on the time taken using the flattening
approach.

15

Efficiency in Memory In general, one of the main expected advantages of the modular ap-
proach is that the total amount of memory required to handle each module separately should be
smaller than that needed in the flattening approach.

No Need for Analyzing All Call Patterns Under certain circumstances, applying a tool on a
modulem may require processing only a subset of the call patterns rather than all call patterns
for m. In order to achieve this, the model must keep track of fine-grained dependencies. This
will allow marking exactly those call patterns which need processing. Other call patterns not
marked do not need to be processed.

Support for the Co-Existence of Multiple Program Units/Applications In a modular setting

it is often the case that a particular module is used in several applications. Support for software
reuse is thus a desirable feature. However, this poses additional and interesting challenges to the
tools, some of which will be discussed in Section 10.

Support for Source Changes What happens if the source of a module changes during process-
ing? Some tools will not allow this at all and if it happens all the processing has to start again
from scratch. This has the disadvantage that the tool is then not incremental since a (possibly
minor) change in a module invalidates the information for all the program unit. Other tools may
delete the information which may depend on the changed code, but still keep the information
which does not depend on it.

Persistence This feature indicates that the inter-modular information can be stored in a per-
sistent medium, such as a file stored on disk or a database, and allow later recovery of such
information.

6 Analysis of Modular Programs: The Local Level

As a first step towards introducing our analysis framework for modular programs, which will
be presented in Section 7 below, in this section we discuss the main ingredients which have to
be added to an analysis framework for non-modular programs in order to be able to handle one
module at a time.

Analyzing a module separately presents the difficulty that, from the point of view of analysis,
the code to be analyzed iiscompletein the sense that the code for procedures imported from
other modules is not available to analysis. More precisely, during analysis of a modbkre

16

ENGINE

Code Success policy

Description
Domain Global

m Operations Answer

Table

Local Local
Answer | |Dependency | | Tasks

Table Table Queue

Builtin
Procedure
Function

Entries

Temporary
Answer Table

Figure 4. Module-aware analysis framework

may be callsP : CD such that the procedur® is not defined inmn but instead it is imported

from another modulern’ € importgm). We refer to determining the value & to be used

for P : CD — AD as theimported success problemn addition, in order to obtain analysis
information form’ which is as accurate as possible we need to somehow propagate the call
P : CDtom/ so that the next time’ is analyzed such a call pattern is taken into account. We
refer to this as thenported calls problemNote that in this case analysis has to be module-aware
in order to determine whether a given procedure is either local or imported (or predefined).

Figure 4 shows the architecture of an analysis framework which is module-aware. This
framework is an extension of the non-modular framework in Figure 1. One minor change is
that the read/write data structures internal to the analysis engine have been renamed with the
prefix “local”. So now we have thiecal answer tablethelocal dependency tabl@nd thdocal
task queueAlso, the box which represents the code now containadicating that it contains
the single modulen.

The shaded boxes in Figure 4 indicate the main differences w.r.t. the non-modular framework.
One is that in the module-aware framework there is an additional read-galg structure, the
global answer tablgor GAT for short. Its contents are identical in format to those in the answer
table of the non-modular framework. There are however some differences: (GAReon-
tains analysis results which were obtained previously to the current analysis step. @AThe
contains entries which correspond to predicates defingdportym), whereas all entries in the
local answer table (drAT for short) are for predicates definedrinitself. (3) Only information
of exported predicates is available@AT. TheLAT contains information for all predicatesin
regardless of whether they are exported or not.

2In fact, this data structure is read/write at the global level discussed in Section 7 below, but it is read-only as
regards our engine for analysis of one module.

17

6.1 Solving the Imported Success Problem

The second important difference is that the module-aware framework requires the usgcef a
cess policyor SPfor short, which is represented in Figure 4 with a shaded box surrounding the
GAT. TheSPcan be seen as an intermediator betweert3A€ and the analysis engine. The be-
havior of the analysis engine for predicates definea iremains exactly as befor8Pis needed
because though the information in t8AT will be used in order to obtain answer patterns for
imported predicates, given a call pattdPn CD it will often be the case that an entry of exactly
the form P : CD — AD does not exist irGAT. In such case, the information already present
in GAT may be of value in order to obtain a (temporary) answer pa&nNote that theGAT
together withSPwill allow solving the “imported success problem”.

In contrast, in many formalizations of non-modular analysis there is no explicit success pol-
icy. This is because if the call pattefh: CD has not been analyzed yet, the analysis algorithm
forces its computation. Thus, the results of analysis do not depend on any particular success
policy: when analysis reaches a fixed-point there is always an entry of thefar@D — AD
for any call pattern” : CD which appears in the analysis graph. Unfortunately, in a modular
setting it is not directly possible to force the analysis of predicates defined in other modules.
Those modules may have already been analyzed or they may be analyzed in the future. We will
simply do what we can given the information availabl€&3AT.

We will useG. AT to denote the set of all global answer tables. The success policy can be
formalized as a functios P : CP x GAT — AP. Several success policies can be defined
which provide over- or under-approximations of the exact answer pat@rnwith different de-
gree of accuracy. Note that this exact vaAl2™ is the one which the flattening approach would
compute. In this work we consider two kinds of success policies, those which are guaranteed
to always provide over-approximations, i&D~ T SR P : CD, AT'), and those which provide
under-approximations, i.eSRP : CD, AT) C AD~. We will use the superscript (resp~)
to indicate that a success policy over-approximates (resp. under-approximates). As will be dis-
cussed later in the paper, both over- and under-approximations are useful in different contexts
and for different purposes. Since it is always required to know whether a success policy over- or
under-approximates we will mark all success policies in either way.

Example 6.1 A very precise over-approximating success policy is the funciiBy, defined
below, already proposed in [PHOO]:

SP#,(P: CD,GAT) = topmost(CD) TAD capp AD where
app = {AD' | (P : CD' — AD) € AT and CDC CD'}

18

The functiontopmost obtains the topmost answer pattern for a call pattern. The notion of
topmost descriptionvas already introduced in [BCHP96]. Informally, a topmost description
keeps those properties which atewnwards closethereas it loses those ones which are not.
Note that takingT as answer pattern is a correct over-approximation, but often less accurate
than using topmost substitutions. For example, if a variable is known to be ground in the call
pattern, it will continue being ground in the answer pattern and takings the answer pattern
would lose this information. However, the fact that a variable is free on call does not guarantee
that it will keep on being free on success.

We refer to this success policy 8%°;,, because it useall entries inGAT which areappli-
cableto the call pattern in the sense that the call pattern already computed is more general than
the call being analyzed.

Example 6.2 The counter-part of P}, is the functionS P}, which is defined as:

SPy,(P:CD,GAT) = Uppy.,,,AD where
Eapp
app ={AD'| (P : CD' — AD') ¢ GAT and CD C CD}

Note the change in the direction of the applicability relation (the call pattern inGA& has to

be more particular than the one being analyzed) and the use of the lub operator instead of the
glb. Also, note that taking, for example, as an under-approximation is correct b&tP,,, is

more precise.

6.2 Solving the Imported Calls Problem

The third important difference w.r.t. the non-modular framework is the use @aéthporary an-
swer table(or TAT for short) and which is represented as a shaded box within the analysis engine
of Figure 4. This answer table will be used to store call patterns for imported predicates which
are not yet present IBAT and whose answer pattern has been obtained (approximated) using the
success policy on the entries currently storeG®Tl. The TAT is used as a cache for imported
call patterns and their corresponding answer patterns, thus avoiding having to repeatedly apply
the success policy on t&AT for equivalent call patterns, which is an expensive operation. Also,
after analysis of the current module is finished, the existence of Afesimplifies the way in
which the global data structures need to be updated. This will be discussed in more detail in
Section 7 below.

We usel\/lAnaIysiq;a(m, E..,SP,GAT) = (LAT,,, LDT,,, TAT,,) to denote that the module-
aware analysis framework retur0sAT,,, LDT,,, T AT);) when applied to module: for initial
call patternst,,, with SP andGAT.

19

SCHEDULER

Scheduling
Program Unit Policy

a

—

b c

N

d

ENGINE

Global Global Global
Answer |[Dependency || Tasks
Table Table Queue

Local
nswer | [Dependency | | Tasks

Entry
Policy

Figure 5: A two-level framework for analysis of modular programs

7 Analysis of Modular Programs: The Global Level

After discussing théocal-levelissues which appear when analyzing a module, in this section we
present a complete framework for the analysis of modular programs. Since analysis is a global
task, an analysis framework should not only deal with local-level information, but also with
global-level information. A graphical representation of our framework is depicted in Figure 5.
The main idea is that we have to add a higher-level component to the framework which takes care
of theinter-modularinformation, as opposed to tlirra-modularinformation which is handled

by the local-level subsystem described in the previous section.

As a result, analysis of modular programs is best seen as a two-level process. Note that the
inner, lightly shaded, rectangle corresponds exactly to Figure 4 as it is a module-aware analysis
system. It is interesting to see how the data structures in the global and local levels are indeed
very similar. The similarities and differences between @G%T andLAT have been discussed
already in Section 6 above. Regarding the global and local dependency GbBlgsaGdLDT
respectively), they are used in order to be able to propagate as precisely as possible which parts
of the analysis graph have to be recomputed. TI¥r is used in order to add events to the
global task queueGTQ) whereas thé.DT is used to add eventarcs) to be (re-)analyzed to
the local task queud.TQ). We can define the events to be processed at the global level using
different levels of granularity. As usual, the finer-grained these events are, the more detailed
and thus more effective the handling of the events can be. One obvious possibility is to use
modules as events. This means that all call patterns which correspond to a module are handled
simultaneously whenever the module is selected at the global level. A more refined possibility
is to keep events at the call pattern level. This, together with sufficiently detailed information in
the GDT will allow incrementality at the call pattern level rather than module level.

20

7.1 Parameters of the Framework

The framework has three parameters. Tnegram unitcorresponds to the program unit to

be analyzed. Note that the code may not be physically stored in the tool's memory since it is
already on external storage. However, the framework may maintain some information on the
program unit, such as dependencies among modsies)gly connected componengd any

other information which may be useful in order to guide analysis. In the figunertdggam unit

is represented, as an example, containing a program unit composed of four modules. The second
parameter is thentry policy which determines the way in which ti&TQ and GAT should be
initialized whenever analysis of a program unit is started. Depending on how the success policy
is defined, entries for all procedures exported in each of the modules in the program unit may be
required inGAT andGTQor not.

Finally, thescheduling policygletermines the order in which the entries in @eQshould be
processed. The efficiency with which the fixed-point is reached can differ very much from some
scheduling policies to others. Since the framework presented in Figure 5 has just one analysis
engine, processing a call pattern in a different module from that currently loaded has a relevant
cost associated to it, since this often requires context switching from the current module to a new
module. Thus, it is often a good idea to process all or many of the call patte@EQwhich
correspond to the module which is being analyzed in order to minimize the number of times the
analysis tool has to switch from one module to another. In the rest of the paper we consider
that events irGTQ are answer patterns which would benefit from (re-)analysis. The role of the
scheduling policy is to select a set of patterns fréMQ which must necessarily belong to the
same modulen to be analyzed. Note that a scheduling policy based on modules can always be
obtained by simply processing at each analysis step all eve@$@which correspond ta:.

7.2 How the Global Level Works

As already mentioned, analysis of a modular program starts by initializing the global data struc-
tures as indicated by the entry policy. At each step, the scheduling policy is used to determine
the setF,, of entries for modulen which are to be processed. They are removed @Y and
copied into the data structukntries The code of the module: is also copied t@ode Then,
MAnalysigm, E,,, SP) = (LAT,,, LDT,,, TAT,,) is computed. Then, the global data structures
are updated, as detailed in Section 7.3 below. As a result of this, new events may be added
to GTQ. Analysis terminates when there are no more events to proces3 @or when the
scheduling strategy does not select any further events.

Each entry irGTQis of one of the following three typesver-approximationunder-approximation

21

or invalid, according to the reason why they should be re-analyzed. An énhtry'P — AP

which is an over-approximation is markédl : CP —* AP. This indicates that the answer
pattern AP is possibly an over-approximation since it depends on a call pattern whose an-
swer pattern has been determined to be an over-approximation. In other words, the accuracy
of P: CP — AP may be improved by re-analysis. Similarly, under-approximations are marked

P : CP —~ AP and they indicate thatl P is probably an under-approximation since it de-
pends on a call pattern whose success pattern has increased. As a result, the call pattern should
be re-analyzed to guarantee correctness. Finally invalid entries are markedP —+ AP.

They indicate that the relation between the current answer pattrand one resulting from
recomputing it forP : C'P is unpredictable. This often indicates that the source code of the
module has changed in a way that the analysis results for some of the exported procedures are
just incompatible with previous ones. Handling this kind of events is discussed in more detail in
Section 7.4 below.

7.3 Updating the Global State

In Section 6 it has been presented how the local level subsystem, given a mqaale compute
the correspondingAT,,, LDT,,, andTAT,,. However, once analysis of modube is done, the
analysis results of module have to be used in order to update the global state prior to starting
analysis of any other module.

We now briefly discuss how this updating is done. For each initial call pafternC P
in Entrieswe compare the previous answer pattdrA with the newly computed ond P’. If
AP = AP’ then this call pattern has not been affected by the latest analysis. However, it is
also possible that the answer pattern “evolves” in different analysis iterations. If wgRise
the natural thing is that the new answer pattern is more specific than the previous one, i.e.,
AP’ C AP. In such case those call patterns which depend@anC' P can also improve their
success pattern. We use GB®T to locate all such patterns and we add them toGH&) with
the™ mark. Conversely, if we us€ P, the natural thing is thal P — AP’. We then add events
marked-.

In a typical situation, and if modules do not change, all even@Tli®will be approximations
of the same sign. This depends on the success policy used. If the success policy is¥Pkind
(resp. SP™) then the events which will be added @®TQ will also be over-approximations
(resp. under-approximations). In turn, when they are processed they will introduce other over-
approximations (resp. under-approximations).

TheTAT,, is also used to update the global state. All entriesAi,, are added t&AT and
GTQ marked with the same sign as the success policy used. Last, we also have to update the

22

GDT. For this, we first erase all entries for any of the call patterns which we have just analyzed,
and which are thus stored @mtries,,. Then we add an entry of the forth: CP — H : C'P' for

each imported proceduré which is reachable with call patte®iP’ from an initial call pattern

P : C'P. Note that this can easily be determined udumyr.

7.4 Recovering from an Invalid State

If code of a modulen has changed since it was last analyzed, it can be the case that the global
information available is invalid. This happens when in the results of re-analysisanly of the
exported predicates has an answer pattern which is incompatible with the previous results. In
this case, all information dependent on the new answer patterns might have become invalid, as
discussed in Section 7.2. The question is how to minimize the impact of such a situation.

The simplest solution is to (transitively) erase any information of other modules which de-
pends on the invalidated one. This solution may not be very efficient, as it ignores all results
of previous analyses of other modules even if the changes performed in the module are minor,
or only affect directly related modules. Another alternative is to launch an automatic recovery
process as soon as invalid analysis results are detected (see [BHlBH This process has to
reanalyze the modules directly affected by the invalidated answer pattern(s). If the new answer
patterns coincide with the old ones then the changes do not affect this module and the process
terminates. Otherwise, it continues transitively with the directly related modules.

8 Using a Manual Scheduling Policy

Consider, for example, the relevant case of independent development of different parts of the
program, which can then even be performed in parallel by different teams. In this setting, it
makes sense that the analyzer performs its job on the current module without analyzing other
modules in the program unit, i.e., it allows separate analysis. This will typically allow early
detection of compile-time errors in the current module without having to wait for the code of the
dependent modules to be fully developed. Moreover, in this setting, it is the user (or users) who
decide when and what to analyze. Thus, we refer to this an#meialsetting. Furthermore, we
assume that in this setting analysis for a moduléas to do its best with only the code for

plus the results of previous analyses (if any) of the modul@spands(m). These assumptions

have important implications. The setting allows the users of different modules to decide when
they should be processed. And thus, any module could be (re-)analyzed at any point. As a
result, strong requirements must hold for the whole approach to be correct. In return, the results

23

obtained may not be optimal (in terms of error detection, degree of optimization, etc., depending
on the particular tools) w.r.t. those achievable using automatic scheduling.

So the question is, is there any combination of the three parameters of the global analysis
framework which allows handling the manual setting? The answer to this question is yes. Our
earlier paper [BdIBH01] essentially describes such an instantiation of the analysis framework.
In the terminology of the current paper, the model in [BdIBH] corresponds to waiting until
the user requests that a moduien the program unit/ be analyzed. The success policy is over-
approximating. This guarantees that in the absence of invalidated entries@GT ®all events
will be marked*. This means that the analysis information available is correct, though perhaps
not as accurate as possible. Since the scheduling is manual, no other analyses should be triggered
until the user requires so. Finally, the entry policy is simply to includ&irQ an event such
asP : T —™T T per predicate exported by any of the moduledJito be analyzed (it is called
all entry policy). The initial events are required to be so general to keep the overall correctness
of the analysis while allowing the users to choose the order of the modules to be arfalyzed.
The model in [BdIBH 01] has the very important feature of being guaranteed to always provide
correct results without the need of reaching a global fixed-point.

9 Using an Automatic Scheduling Policy

In spite of the evident interest of the manual setting, there are situations in which the user is
interested in obtaining the most accurate analysis results possible. For this, it may be required to
analyze the modules in the program unit several times in order to converge to a distributed global
fixed-point. We will refer to this as theutomaticsetting, in which the user decides when to start
global analysis of a program unit. From then on it is the global analysis framework by means of
its scheduling policyvho decides when and what to analyze. Note that the manual and automatic
settings roughly correspond to scenario 1 and scenario 2 of [PHOO] respectively. Since we admit
circular dependencies among modules, the strategy has to be able to deal with such circularities
correctly and efficiently without entering infinite loops. The question now is what are the values
for the different parameters to our generic framework which should be used in order to obtain
satisfactory results? One major difference of the automatic setting w.r.t. the manual setting is that
in addition to over-approximations, now also under-approximations can be used. This is because
though under-approximations do not guarantee correctness in general, when an inter-modular
fixed-point is reached, analysis results are guaranteed to be correct. Below we consider the use

3In the case of the Ciao system it is possible to estry declarations (see for example [PBH00a]) in order to
improve the set of initial call patterns for analysis.

24

of SP* andSP~ separately.

9.1 Using Over-Approximating Success Policies

If a success policys P* is used, we are in a situation similar to the one in Section 8 in that
independently of how many times each module has been analyzed, if there have not been any
code changes, the analysis results are guaranteed to be correct. The main difference is that now
the system keeps on automatically requesting further analysis steps until a fixed-point is reached.

Regarding the entry policy, an important observation is that in the automatic mode, much
as in the case of intra-modular analysis, inter-modular analysis will eventually compute all call
patterns which are needed in order to obtain information which is correct w.r.t. calls, i.e., the set
of computed call patterns covers all possible calls which may occur at run-time for the class of
initial calls considered, i.e., those for the top-level of the program@iniThis will allow us to
use a different entry policy from that used in the manual mode: rather than introducing events
of the formP : T —* T in the GTQfor exported predicates in all modulesih it suffices to
introduce them for predicates exported by the top-levél @his entry policy is nametbp-level
entry policy). This has several important advantages: (1) It avoids analyzing all predicates for
the most general call pattern, since this may end up introducing plenty of call patterns which
are not used in our particular program ubiit (2) It will help to have a more guided scheduling
policy since there are no requests for processing a module until it is certain that a call pattern
should be analyzed. (3) If multiple specialization is being performed based on the set of call
patterns for each procedure (possibly proceeded by a minimization step for eliminating useless
versions [PH99]), the fact that a call pattern with the most general call pattern exists implies that
a non-optimized version of the predicate must always exist. Another way out of this problem is
to eliminate useless call patterns once an inter-modular fixed-point has been reached.

Since reaching a global fixed-point can be a costly task, one interesting possibility can be the
introduction of a time-out. The user can ask the system to request (re-)analysis as needed towards
improving the analysis information. However, if after performingnalysis steps the time-out is
reached before analysis+ 1 is finished, the global state corresponding to staieguaranteed
to be correct. In this case, the entry policy used has to be to introduce most general call patterns
for all exported predicates, either before starting analysis or when a time-out is reached.

9.2 Using Under-Approximating Success Policies

Another alternative is to us8P~. As a result, the analysis results are not guaranteed to be
correct until an inter-modular fixed-point is reached. Thus, it may take a large amount of time to

25

perform this global analysis. On the other hand, once a fixed-point is reached, the accuracy which
will be obtained is optimal, since it corresponds to the least analysis graph, which is exactly the
same which the flattening approach would have obtained.

Regarding the entry policy, the same discussion as above applies. The only difference being
that theGTQshould be initialized with events of the forfh: T —~ L since now the framework
computes under-approximations. Clearlyis an under-approximation of any description.

Another important thing to note is that, since the final results of automatic analysis are op-
timal, they do not depend on the use of a particular success p®htyor anotherSP; . Of
course, the efficiency usingP; can be very different from that obtained usisi, .

9.3 Hybrid policy

In practice we may wish to use a manual scheduling policy with an over-approximating success
policy during program development, and then use an automatic scheduling policy with an under-
approximating success policy just before program release, so as to ensure that the analysis is as
precise as possible, thus allowing as much optimization as possible in the final version.
Fortunately, in such a situation we can often reuse much of the analysis information obtained
using the over-approximating success policy. The reason is that if the analysis with the over-
approximating success policy has reached a fixed-point, the answers obtained for module
are as accurate as those obtained with an under-approximating success policy as long as there
are no cyclic dependencies between the modulegijmnds(m). Thus in the common case
that no modules are mutually dependent we can simply use the answer tables from the manual
scheduling policy and use an automatic scheduling policy with an over-approximating success
policy to obtain the fixed-point. Even in the case that some modules are mutually dependent
we can use this technique to compute the answers for the modules which do not contain cyclic
dependencies or do not depend on modules that contain them (e.g., leaf-modules).

9.4 Computation of an Intermodular Fixed-Point

Determining the optimal order in which the different modules in the program unit should be
analyzed in order to get to a fixed-point as efficiently as possible is not trivial and it is the topic
of ongoing work.

Finding good scheduling strategies for intra-modular analysis is a topic which has received
considerable attention and highly optimized algorithms exist which converge to a fixed-point
quickly. Unfortunately, it is not possible to directly translate the same heuristics used in the intra-
modular case to the inter-modular case. In the inter-modular case we have to take into account

26

the time required to change from analysis of one module to another since this typically means
reading a new module from disk. Thus, requests to process call patterns have to be grouped by
modules in order to reduce the number of times we change context.

Taking the heuristics in [PH96, HPMSO00] as a starting point we are investigating and ex-
perimenting with different scheduling policies which take into account different aspects of the
structure of the program unit such as dependencies, strongly connected components, etc. with
promising results. It also remains to be explored which of the approaches to success policy re-
sults in more efficiently reaching a global fixed-point and whether the heuristics to be applied in
either case coincide or are mostly different.

10 Some Practical Implementation Issues

In this section we discuss several issues not addressed in the previous sections and which are
very important in order to have practical implementations of context-sensitive analysis systems.
These issues are related to the persistence of global information and the analysis of libraries.

10.1 Making Global Information Persistent

The two-level framework presented in Section 7 needs to keep information both at the local and
global level. One relevant question, due to its practical implications, is where this global infor-
mation actually resides. One possibility is to have the global analysis tool running continuously
as a kind of “compilation server” which stores the global state in its program memory. In a
manualsetting, this global tool would wait for the user(s) to place requests to analyze modules.
When a request is received, the corresponding module is analyzed for the appropriate call pat-
terns and using the global information available at the time in the memory of the global analyzer.
After analysis terminates, the global information is updated and remembered by the process for
subsequent requests. If we are inaartomaticsetting, the global tool itself requests the analysis

of different modules until a global fixed-point (or a time-out) is reached.

This approach outlined above is not fully persistent in the sense that if the computer crashes
all information about the global state is lost and analysis would have to start from scratch again.
In order to implement the more general kind of persistence discussed in Section 5, a way to
save and restore the global state of analysis is needed. This requires storing the value of the
three global-level data-structureS AT, GDT, andGT(Q. A level of granularity which seems
appropriate in this context is clearly the module level. I.e., the global state of analysis is saved
and restored between two consecutive steps of (module) analysis, but not during the analysis of a
given module, which, from the point of view of the two-level framework, is an atomic operation.

27

The ability to save and restore the global state of analysis has several advantages:

1. The global tool does not need to be running continuously: it can save its state, stop, restart
when needed, and restore the global state. This is specially interesting when using a man-
ual scheduling policy, since two consecutive analysis requests can be separated by large
intervals.

2. Even if the automatic scheduling policy is used, any information about the global state
which is still valid can be directly used. This means that analysis camcbementain the
sense that (global level) analysis information which is known to be valid is reused.

10.2 Splitting Global Information

Consider the analysis of modutein the program unit/ = {a,b,c,d,e, f, g, h} depicted in

Figure 6. In principle, the global state includes information regarding exported predicates in any
of the modules ir/. As a result, if we can save the global state to disk and restore it, this would
involve storing and retrieving information about all moduled/inHowever, analysis df only
requires retrieving the information for modulesretated(m) The small boxes which appear on

the side of every module represent the portion of the global structures related to each module. To
analyze the modulg, the information of the global tables that we need is that of modulds

ande, as indicated by the dashed curved line.

This is straightforward to do in practice by splitting the information in the global data struc-
tures into several parts, each one associated to a module. This allows easily identifying the pieces
of global information which are needed in order to process a given module.

This optimization of the handling of global information has several advantages:

1. The time required to save and restore the information to disk is reduced since the total
amount of information transferred is smaller.

2. The use of the data structures during analysis can be more efficient since search space is
reduced.

3. The total amount of memory required in order to analyze a module can be significantly
reduced: only the local data structures plus a possibly very reduced part of the global data
structures are actually required to analyze the module.

One question which we have intentionally left open is where the persistent information should
reside. Infact, all the discussion above is independent on how and where the global state is stored,

28

as long as it is persistent. One possibility is to use a database which stores the global state and
information is grouped by modules in order to minimize the amount of information which has to
be retrieved or updated for each analysis. Another, very common, possibility is to store the global
information associated to each module to disk, in the same way as temporary information (such
as relocatable code) is stored in many traditional compilers. In fact, the actual implementation
of modular analysis in both CiaoPP and HAL [Net02] systems is based on this idea: a module
has am.reg file associated to it which contains the part of the global data structures which are
associated ton.

10.3 Handling Libraries and Predefined Modules

Many compilers and program development systems include a large number of predefined mod-
ules and libraries which can be readily reused by programmers —an obviously interesting feature
since it greatly reduces the time required to develop applications. From the point of view of

analysis, these predefined modules and libraries differ from user programs in a number of ways:

1. They are designed with reusability in mind and thus they can be used by a comparatively
large number of user programs.

2. Sometimes the source code for libraries and predefined modules may not be available. One
common reason for this is that they are implemented in a lower-level language.

3. The total amount of code available as libraries can be extremely large. Thus, reanalyzing
the libraries over and over again for slightly different call patterns can be costly.

Given these characteristics, it makes sense to develop a specialized treatment for libraries.
We propose the following scheme. For each library module, the analysis results for a suffi-
cient set of call patterns should be precomputed. This set should cover all possible correct call
patterns for the library. In addition, the answer pattern for those call patterns have to be an over-
approximation of the actual answers, independently of whett&Pa or SP~ success policy
is used for the programs which use such library. In addition, in order to provide more accurate
information, more particular call patterns which are expected to occur often in programs which
use that library module can also be included. This information is added @Afieof the pro-
gram units which use the library. Thus, the success policy will be able to use this information
directly for obtaining answer patterns. The reason for requiring pre-computed answer patterns
for library modules to be over-approximations is that, much in the same way as for predefined
procedures, even if an automatic scheduling policy is used, library modules are (in principle) not

29

i ‘%Anulwc
3 b \\ C
H EEN/IN
=], =],
d e -
f g - h

Figure 6: Using Distributed Scheduling and Local Data Structures

analyzed for calling patterns other than those which are pre-computed. Note that this is concep-
tually equivalent to considering the interface information of library modided-only since any
program using them can read this information, but no additional call patterns will be analyzed.
As a result, the global level framework will ignore new call patterns to library procedures that
might be generated during the analysis of user programs. More precisely, entries of the form
P : CP — AP in TAT such thatP is a library predicate do not need to be added toGH&)

since they will not be analyzed. In addition, no entries of the fétmCP — H : C P’ need be

added taGDT if H is a library predicate, since the answer pattern for library predicates is never
modified and thus those dependencies are useless.

Deciding which is the best set of call patterns for which a library module should be analyzed
is a non-trivial problem. One possibility can be to extract call patterns from correct programs
which use the library and study which are the call patterns most often used. Another possibility
is to have the library developer decide which are the call patterns of interest.

In spite of the considerations above, it is sometimes the case that we are interested in treating
a library module using the general scheme, i.e., effectively considering the library information
writable and allowing the analysis of new call patterns and the storage of the corresponding
results. This can be interesting if the source code of a library is available and the set of initial
call patterns for which it has been analyzed is not very representative. Note that hopefully this
will happen often only when the library is relatively new. Once the code of the library stabilizes
and a good set of initial patterns is obtained, it will generally be considered read-only. Allowing
reanalysis of a library can also be useful when we are interested in using the analysis results from
such call patterns to optimize the code of the library for the particular cases that correspond to
those calls. For this case it may be interesting to store the corresponding information locally to
the calling module, as opposed to inserting it into the library directories.

30

In summary, the implementation of the framework needs to treat libraries in a special way
and also allow applying the general scheme for some designated library modules.

11 Discussion and Conclusions

Table 1 summarizes some characteristics of the different instantiations of the generic framework
presented in the paper, in terms of the design features discussed in Section 5. The corresponding
entries for the flattening approach of Section 4 —our baseline as usual- are also provided for
comparison, listed in the column label€ldttening. TheManual column lists the characteristics
of the manual scheduling policy described in Section 8. The last two columns correspond to the
two instantiations of the automatic scheduling policy, which were presented in Sections 9.1 and
9.2 respectively. Automatic* (resp.Automatic™) indicate that an over-approximating (resp.
under-approximating) success policy is used.

The first three rows, i.eScheduling policy, Success policy, andEntry policy correspond
to the values of these parameters in each instantiation.

Allinstances of the framework for modular analysis sr@dule-awargin contrast td-latten-
ing, which is not. Both instances described of the modular framework proposed are incremental,
in the sense that only a subset (instead of every module) in the program unit needs to be re-
analyzed, and they also both achieve the goaatfneeding to reanalyze all call patteresery
time a module is considered for analysis.

Regarding correctness, both tRattening and Automatic™ approaches have in common
that correctness is only guaranteed when analysis comes to an end. This is because the approx-
imations used are under-approximations and thus the results are only guaranteed to be correct
when a (global) fixed-point is reached. However, inkhenual andAutomatic™ approaches the
information in the global state is correct after any number of local analysis steps.

On the other hand, both tHdattening and Automatic™ approaches are guaranteed to ob-
tain the most accurate information possible, i.e., the least analysis graph, when a fixed-point
is reached. In contrast, thdanual approach cannot guarantee optimal accuracy for two rea-
sons. The first one is that there is no guarantee that modules will be processed the number of
times that is necessary for an inter-modular fixed-point to be reached. Second, even if such a
fixed-point is reached, it may not be the least fixed-point. This is because this approach uses
over-approximations of the analysis results which are improved (“narrowed”) in the different
analysis iterations until a fixed-point is reached. On the other hand, if there are no circular de-
pendencies among predicates in different modules, then the fixed-point obtained will be the least
one, i.e., the most accurate.

31

Table 1: Comparison of Approaches to Modular Analysis

Flattening Manual Automatic* Automatic™
Scheduling policy automatic manual automatic automatic
Success policy SP~ SpP+ SpP+ SP~
Entry policy top-level all top-level top-level
Module-aware no yes yes yes
No Rean. of all CPs no n/a yes yes
Correct at fixed-point yes yes at fixed-point
Accurate yes no no circularities yes
Efficient in time yes n/a no no
Efficient in memory no yes yes yes
Termination finite asc. chains finite asc. chains finite chains | finite asc. chains

Regarding efficiency in time we will consider two cases. The first one is when we have to
perform analysis of the program unit from scratch. In this c&tgtening can be highly opti-
mized in order to converge quickly to a fixed-point. In contrast, in this situation the instances of
the modular framework have the disadvantage that loading and unloading modules during anal-
ysis introduces a significant overhead. As a result, in order to maintain the number of context
changes low, call patterns may be solicited from imported modules which use temporary infor-
mation and which are not needed in the final analysis graph. These call patterns which end up
being useless are known gsguriousversions. This problem also occurshiattening, though
to a much lesser degree if good algorithms are used. Therefore, the modular approaches may
end up performing work which is speculative, and thus the total amount of work performed in
the automatic approaches to modular analysis is in principle an upper bound of that needed in
Flattening.

On the other hand, consider the second case in which a relatively large amount of intra-
modular analysis has already taken place for the modules to be analyzed in our programming
unit and that the global information is persistent. In this case, the automatic approaches can
update their global data structures using the precomputed information, rather than starting from
scratch as is done iRlattening. In such a case the automatic approaches may perform much
less work tharFlattening. It is to be expected that once modutebecomes stable, i.e., it is
fully developed, it will quickly be analyzed for a relatively large set of calling patterns. In such
a case itis likely that it will be possible to analyze any other modulevhich usesn by simply
reusing the existing analysis results far This is specially true in the case lifrary modules
as discussed in Section 10.3.

32

Regarding the efficiency in terms of memory, it is to be expected that the instances of the
modular framework will outperform the non-modular, flattening approach. This was in fact
already observed in the case of [BdIB6iL]. Indeed, one important practical difficulty that
appears during the (monolithic) analysis of large programs is that the amount of information
which is kept in memory is very large and the storage needed can become too large to fit in
memory. The modular framework proposed needs less memory because: a) at each point in
time, only one module requires to be loaded in the code area, and b) the local answer table
only needs to hold entries for the module being analyzed, and not for other modules. Also, in
general, the total amount of memory required to store the global data structures is not very high
when compared to the memory required locally for the different modules. In addition, not all the
global data structures are required when analyzing a maedukeit only that associated with the
modules inrelated m).

Finally, regarding termination, except fBtattening, in which only one level of termination
is required, the three other cases require two levels of termination: at the intra-modular and at the
inter-modular level. IrFlattening, since analysis results increase monotonically until a fixed-
point is reached, termination is often guaranteed by considering description domains which do
not contain infinite ascending chains: no matter what the current description iS] Yowliich
is trivially guaranteed to be a fixed-point, is only a finite number of steps away. Exactly the
same condition is required for guaranteeing terminatioAudbmatic~. The manual approach
only requires guaranteeing intra-modular termination since the number of call patterns analyzed
is finite. However, in the cas@utomatic™, finite ascending chains are required for ensuring
local terminatiorand finite descending chains are required for ensuring global termination. As
a result, termination requires domains with finite chains, or appropriate widening operators.

In summary, the proposed two-level generic framework for analysis and its instantiations
meet a good subset of our stated objectives. We hope the discussion and the concrete proposal
presented in this paper will provide a better understanding of the handling of context-sensitive
program analysis on modular programs and contribute to the widespread use of such context-
sensitive analysis techniques for modular programs in practical systems. An implementation
of the framework, as a generalization of the pre-existing CiaoPP modular analysis components,
is currently being completed. In this context, we are experimenting with different scheduling
policies for the global level, for concrete, practical analysis situations.

33

Part Il
Experiments in Context-Sensitive Analysis
of Modular Programs

1 Summary

Several models for context-sensitive analysis of modular programs have been proposed, each
with different characteristics and representing different tradeoffs. The advantage of these context-
sensitive analyses is that they provide information which is potentially more accurate than that
provided by context-free analyses. Such information can then be applied to validating/debugging
the program and/or to specializing the program in order to obtain important performance im-
provements. Some very preliminary experimental results have also been reported for some of
these models which provided initial evidence on their potential. However, further experimen-
tation, which is needed in order to understand the many issues left open and to show that the
proposed modes scale and are usable in the context of large, real-life modular programs, was
left as future work. The aim of this paper is two-fold. On one hand we provide an empirical
comparison of the different models proposed in previous work, as well as experimental data on
the different choices left open in those designs. On the other hand we explore the scalability
of these models by using larger modular programs as benchmarks. The results have been ob-
tained from a realistic implementation of the models, integrated in a production-quality compiler
(CiaoPP/Ciao). Our experimental results shed light on the practical implications of the different
design choices and of the models themselves. We also show that context-sensitive analysis of
modular programs is indeed feasible in practice, and that in certain critical cases it provides bet-
ter performance results than those achievable by analyzing the whole program at once, specially
in terms on memory consumption and when reanalyzing after making changes to a program, as
is often the case during program development.

2 Introduction and Motivation

Global analysis of logic programs has received considerable theoretical and practical attention
and as a result it is now possible to infer a wide range of program properties with a considerable
degree of accuracy and for a significant number of programs. Also, tools have been developed
which in addition to inferring these properties, allow debugging, validating, and specializing

34

programs, achieving important improvements in both correctness and efficiency. However, most
of these techniques were originally designed to be applied to a complete, monolithic program.

In contrast, real programs invariably have a more complex structure combining a number of

user modules with other modules from system libraries. This is one of the reasons why most

global analysis tools are still prototypes and, though numerous experiments demonstrate their
effectiveness, they have not yet made their way into existing real-life programming systems.

Performing global analysis on modular programs differs from doing so in a monolithic setting
in several interesting ways and poses non-trivial problems which must be solved. A preliminary
study of the extension of analysis and specialization to the case of modular programs was pre-
sented in [PHOOQ]. A full practical proposal for context-sensitive analysis of modular programs
was presented in [BdIBHD1]. In fact, in [BdIBH"01] a collection of models was proposed,
each of them with different characteristics and representing different tradeoffs. Some very pre-
liminary experimental data was also reported for an implementation of some of these models in
the context of the Ciao system. Also, another implementation of [BAIBH in the context of
the HAL system [GDMSO02] was reported in [Net02]. This previous preliminary experimental
results provided initial evidence on the overall potential of the approach. However, it was left
as future work to perform further experimentation in order to understand the many issues left
open and to show that the proposed modes scale and are usable in the context of large, real-life
modular programs.

The aim of this paper is two-fold. On one hand we provide an empirical comparison of the
different models proposed in [BdIBH1], as well as experimental data on the different choices
left open in those designs. To this end we have completed a full implementation in CiaoPP of the
framework for context-sensitive analysis described in [PG#H and its different instances and
we have studied experimentally the behaviour of the resulting system. These results have been
compared with traditional, non modular analyses in several parameters.

Our second aim is to explore the scalability of these models and the implementation. To
this end we have used some larger modular programs as benchmarks, including some real-life
examples such as a working partial evaluator and parts of the Ciao compiler.

In the following Section we present an overview of the general problems in analyzing large
modular programs, and the solutions proposed in previous work, including the major design
tradeoffs. Section 4 then describes the tests performed and analyzes the results obtained. Finally,
Section 5 presents our conclusions.

35

3 Analysis of modular programs

As mentioned in the previous section, the framework used herein is based in [PHOOO®CH
where a detailed description of the issues related to the analysis of modular programs and the
different approaches to it can be found. The following subsections present an overall summary
of [PCH"04], with special emphasis on the issues that are most relevant to our experimental
study.

3.1 Modular programs

A program is said to be modular when its source code is distributed in several source units
named modules, and they contain language constructions to clearly define the interface of every
module with the rest of the modules in the program. This interface is composed of two sets of
predicates: the set of exported predicates (those accessible from other modules), and the set of
imported predicates. For concreteness, and because of its appropriateness for global analysis, in
our implementation we will use the module system of [CHOO]. This module syststridsin

the sense that procedures external to a module are visible to it only if they are pamiefrfesce

A predicate defined in a given module can be called from another module only if it appears in the
exported list of its module and in the imported list of the caller module, i.e., procedures which
are not exported are not visible outside the module in which they are defined.

We note the distinction betweeagtobal tasks andocal tasks. In global tasks the results of
processing a part of the program (say, a procedure or a module) may be needed in order to process
other parts of the program. In contrast, a local task processes only one procedure or module at a
time and, most importantly, all the information required for performing the task can be obtained
by inspecting that procedure or module. The fundamental issue is that global processing often
requires iterating on the whole program until a fixed-point is reached.

Context-sensitive program analysis is an example gliodal task: in a modular setting, it
may well be the case that part of the information needed to perform the analysis on (a procedure
in) modulem has to be computed in modules other thanwe will refer to the information orig-
inated in modules different from: asinter-modularinformation in contrast to the information
originated inm itself, which we will callintra-modular.

3.2 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a modulevhich belongs to a modular
program has the difficulty that may not be self-contained. However, there should be no prob-

36

lem in applying the framework ifn is a leaf module. Furthermore, given a global process such
as program analysis, at least in principle, it is not obvious that it makes much sense to apply the
process to a module: alone. In fact, it makes sense to apply analysis to the complete program
instead, since it is conceptually self-contained.

Given a modular progran® it is always possible to build a single modutey,,; which is
equivalent toP and which is a leaf. The process of constructing such a madujg usually
only amounts to renaming apart identifiers in the different moduleB 8o as to avoid name
clashes. We will us#étatten() = my,; to denote that the modute s, is the result of renaming
apart the code in each module ihand concatenating its code into a monolithic modulg,,.

This points to a simple solution to the problem of processing modular programs (at least for the
case in which all the code is available): to transfafhinto the equivalent monolithic program
myq. Itis then straightforward to apply any tool for non-modular programs to the leaf module
mq. In the rest of this work, we will refer to this approach as flattenedor monolithic
approach.

Assuming the existence of an implementation for non-modular analysis, this approach to an-
alyzing modular programs is often simple to apply. Also, the flattening approach has theoretical
interest: in our case it will be used to compare the efficiency of different approaches to modular
handling of programs w.r.t. it. However, as a practical way in which to actually perform analysis
of large program the flattening approach also has important potential drawbacks. The most im-
portant is that the complete program must be loaded into the analyzer, and thus large programs
may make the analyzer run out of memory. Moreover, as the internal analysis data structures
include information for all the program source code, in the monolithic case, analysis of a given
procedure may take more time than keeping in memory only the module in which it resides.
Another, perhaps more important drawback, is that the program must be self-contained: this can
be a problem if the analyzer is used while developing the program, when some modules are not
yet implemented, or if there are calls to external procedures, i.e., procedures for which the source
code is not available, or which are implemented in other languages.

3.3 Analyzing one module at a time

The approach taken in [PCH94] and implemented in CiaoPP is based on the separate analysis
of the modules in a modular program. The analyzer is invoked (possibly several times) for each
module in the program, in order to obtain the analysis results needed by the analysis of other
program modules. We denote the process of obtaining the answerAlalagany predicateP

4Several approaches have been proposed for the analysis of incomplete pragpemgrogramy for exam-
ple [BCHP96, BJO3].

37

fora callCD as: P : CD — AD. The analysis results obtained for the exported predicates of
every module are stored in@Global Answer TabléG AT).

Analyzing a module separately presents the difficulty that, from the point of view of analysis,
the code to be analyzed iiscompletein the sense that the code for procedures imported from
other modules is not available to analysis. More precisely, during the analysis of a meodule
there may be call® : CD such that the procedureis not defined inn but instead it is imported
from another module:’. We refer to determining the answer valuergQfAD (P : CD — AD) as
theimported success problerm addition, in order to obtain analysis information faf which
is as accurate as possible we need to somehow propagate tie:ca@D from m to m’ so that
the next timem’ is analyzed such a call pattern is taken into account. We refer to this as the
imported calls problem

3.3.1 Solving the Imported Success Problem

The imported success problem is solved by means siiczess poligyor SP for short. The
behavior of the analyzer for predicates definedrimemains exactly as before&SPis needed
because given a call pattefn : CD it will often be the case that an entry of exactly the form
P : CD — AD does not exist in the analysis results stored inGh&l" for m'. In such case, the
information already present may be of value in order to obtain a (temporary) answer p&itern
and continue the analysis of moduile

In contrast, in many formalizations of non-modular analysis there is no explicit success pol-
icy. This is because if the call pattefn: CD has not been analyzed yet, the analysis algorithm
forces its computation. Thus, the results of analysis do not depend on any particular success pol-
icy: when the analyzer reaches a fixed-point there is always an entry of thefor@D — AD
for any call patternP : CD which appears in the analysis graph. However, in a modular setting
it is often convenient to delay the analysis of predicates defined in other modules until those
modules are revisited. In general, those modules may have already been analyzed or they may
be analyzed in the future. We will simply do the best possible given the information available in
the GAT.

Several success policies can be defined which provide over- or under-approximations of the
exact answer pattevkD~ with different degree of accuracy. Note that this exact valDe is the
one which the flattening approach would compute. In this work we consider two kinds of success
policies, those which are guaranteed to always provide over-approximatiodsDi-e_ SR P :
CD, GAT), and those which provide under-approximations, iS&,P : CD,GAT) C AD™.
We will use the superscript (resp™) to indicate that a success policy over-approximates (resp.
under-approximates).

38

In the experiments shown in this work, a very precise over-approximating success policy has
been used, already proposed in [PH00] and defined as:

SP#,(P: CD,GAT) = topmost(CD) TAD capp AD' where
app={AD'| (P : CD' — AD') ¢ GAT andCD C CD'}

The functiontopmost obtains the topmost answer pattern for a call pattern. The notitopef

most descriptionwvas already introduced in [BCHP96]. Informally, while a topmost description
preserves the information on properties whichdoenwards closedhereas it loses those which

are not. Note that taking as answer pattern is also a correct over-approximation, but often less
accurate than using topmost substitutions. For example, if a variable is known to be ground in
the call pattern, it will continue being ground in the answer pattern and takiag the answer
pattern would lose this information. However, the fact that a variable is free on call does not
guarantee that it will keep on being free on success.

We refer to this success policy 49>/, because it useall entries inG AT which areappli-
cableto the call pattern in the sense that the call pattern already computed is more general than
the call being analyzed.

The counter-part of P/, is the functionS P, which is defined as:

SPy(P:CD,GAT) = Uppy,,,AD Where

app = {AD'| (P : CD' — AD') € GAT andCD' C CD}
Note the change in the direction of the applicability relation (the call pattern iG&Ehas to
be more particular than the one being analyzed) and the use of the lub operator instead of the glb.
Also, note that taking, for examplée, as an under-approximation is correct 3, is more
precise.

As shown in [PCHO04] usingSP* policies has the advantage that at any point during the
modular analysis, even when a fixpoint has not been reached yet, the information obtained for
each module is always a correct over-approximation. The drawback is that when the fixpoint
is reached it may not be minimal, i.e., information is not as precise as it could be. In contrast,
SPT policies obtain the least fixpoint (most precise information) but only produce correct results
when the fixpoint it reachedy P* policies can be useful during program development.

3.3.2 Solving the Imported Calls Problem

As the analysis is context-sensitive, the call patterns for imported predicates are only known
after the calling module is analyzed, but they cannot be processed until the imported module is
selected for (re)analysis. These call patterns are therefore stored in another global data structure,

39

the temporary answer tabléI’ AT for shortf. When the imported module is scheduled for
(re)analysis, all call patterns in tHeAT are used as input for the analyzer.

3.4 Computing an intermodular fixed point

The intermodular fixed-point algorithm of CiaoPP takes one module of the program that needs
(re)analysis, analyzes it storing the relevant informatio@ #il" and7 AT tables, and looks for
another module which needs reanalysis. When a module is analyzed, it updates the entries in
the global tables, and marks the modules which import it if the analysis results may improve
the results of those modules. An intermodular fixed-point has been reached when there are no
modules which need reanalysis.

Determining the optimal order in which the different modules in the program unit should be
analyzed in order to get to a fixed-point as efficiently as possible is not trivial. Finding good
scheduling strategies for intra-modular analysis is a topic which has received considerable at-
tention and highly optimized algorithms exist which converge to a fixed-point quickly. Unfortu-
nately, it is not possible to directly translate the same heuristics used in the intra-modular case to
the inter-modular case. In the inter-modular case we have to take into account the time required
to change from analysis of one module to another since this typically means reading a new mod-
ule from disk. Thus, requests to process call patterns have to be grouped by modules in order to
reduce the number of times we change context.

In the current implementation, two simple strategies have been used, in order to study the
behavior of the analysis of modular programs in clearly different scenarios. Both strategies take
the list of modules in a given order (a top-down and a bottom-up traversal of the intermodule
dependency graph, respectivdlyand traverse the list analyzing the modules which have pending
call patterns, updating the corresponding global tables with the analysis results. This process is
repeated until there are no pending call patterns for any module in the program.

We will refer to this intermodular fixed-point algorithm, scheduling one module at a time for
analysis as thenodular approach

SIn fact, GAT andT AT are implemented using the same table, Z&odl” entries are marked as needing reanal-
ysis, in order to provide more precise results than those obtained applying the success policy, as soon as the module

is scheduled for (re)analysis. There are more details in Section 7 and [@4}H
All modules which belong to the same cycle in the graph have been considered at the same depth, and therefore

those modules will be selected in any order.

40

4 Empirical results

The CiaoPP implementation of the framework summarized above has been tested by parameter-
izing it in several ways, in order to study the overall behavior of the system. Different tradeoffs
and characteristics of the analysis of modular programs have been studied:

Flattened vs. modular First, the flattened approach of Section 4.1 has been compared to the in-
termodular fixpoint of Section 7. Although itis predictable that the modular, separate anal-
ysis will be slower than the flattened approach (due to the overhead in loading/unloading
modules, etc.), it is interesting to study by how much. In addition, in some cases the
analysis of a whole program may be unfeasible due to hardware limitations, but in the
intermodular fixpoint approach this limitation can be overcoméhN# have to find an
example of this! **,

Intermodular scheduling policies Another aspect to study is related to the influence of the
module selection policy in the efficiency of the analysis. The scheduling policies used
have been already described in Section 7. We will refer to themaa® top_downand
naive bottomup, respectively.

Success policiesTwo success policies have been compared in both scheduling policies: an over-
approximating policyS P.},, and an under-approximating oneP,,,, as described in Sec-
tion 3.3. Although there may be other success policies, we estimate that these ones are the
most effective policies, as they bring the closest resultsHG .

Incremental analysis of modular programs Finally, the analysis of a modular program from
scratch using the monolithic approach has been compared to the reanalysis of that program
after making specific modifications in the source code. This comparison illustrates the
advantages of analyzing only the module which has changed (and the modules affected by
that change) instead of reanalyzing the whole program from scratch.

Three different kinds of source code modifications have been done: a simple change that
keeps the same analysis results, a modification in the source code such that exported pred-
icates produce after the change more general analysis results, and a change that results in
the exported predicates producing a more precise answer pattern.

Note that when there are changes in the source code which do not improve or invalidate
previous analysis results, nor generate new call patterns for imported modules, there are
clear advantages in using the modular approach, since only one module must be analyzed
at a time. In contrast, in the monolithic, non-modular analysis the whole program must be

41

analyzed. Also note that this kind of changes may occur more often if assertions are used
on a regular basis, as they can bring very precise answer patterns, similar to the results
provided during the analysis.

The second kind of change studied corresponds to performing a modification in an ex-
ported predicate which results in this predicate providing more general analysis results.
The change consists in the addition of a clause to all the exported predicates of a module
in which all arguments are free variableShis approach then forces the reanalysis of the
modules which call the changed module.

The third type of source change represents a change that makes the analysis results for ex-
ported predicates be more precise than the ones obtained before. This is done by removing
all clauses of exported predicates of a module except the first non recursiVe dhes

will bring in general analysis results which are more specific than the results previously
obtained, making them invalid in most cases, and producing the reanalysis of the calling
modules.

In following subsections the selected benchmark programs are described, and the results of
the tests are studied in detail. Two modes domains have been consid&réda simplified
version of thePos domain, andSharing-freenesswhich gets information on set sharing and
freeness.

4.1 Brief description of the benchmarks used

A brief description of the selected benchmarks follows:

aiakl This program is the initialization phase for abstract unification in the AKL analyzer (by
D. Sahlin and T. Sjland). It is composed by 4 modules, two of them import each other,
and therefore there is a cycle in the intermodular dependency graph.

ann This is the &-Prolog implementation of the MEL annotator (by K. Muthukumar, F. Bueno,
M. garda de la Banda, and M. Hermenegildo). In this case the code is distributed in 3
modules with no cycles in the intermodular dependency graph.

In the Sharing — Freeness domain this addition might not provide a more general analysis result, as this kind
of clause does not provide a top success substitution. However, the tests have been performed using the same change

also in the case dfharing — Freeness to make the tests homogeneous across the different domains.
8Mutually recursive predicates are also considered. If the exported predicate has only recursive clauses, they are

replaced by a fact with all arguments ground.

42

bid This program computes an opening bid for a bridge hand, by J. Conery. It is composed by 7
modules, with no cycles in the intermodular dependency graph.

boyer The boyer benchmark is a reduced version of the Boyer/Moore theorem prover (by E.
Tick). The program has been separated in four modules with a cycle between two modules.

hanoi This is the classic hanoi towers program, distributed in two simple modules with no cycles
in the intermodular graph.

peephole This program is the SB-Prolog peephole optimizer. In this case, the program is split
in three modules, but there are two cycles in the intermodular dependency graph, and there
are several intermodular cycles at the predicate call level.

prolog_read corresponds to a simplified version of the code used by the Ciao compiler for read-
ing terms. It is composed by three modules, having a cycle between two of them.

unfold_ is a fragment of the CiaoPP preprocessor which contains the partial evaluator. It is
distributed in 7 modules with no cycles between them, although many other modules of
CiaoPP source code, while not analyzed, are consulted in order to get assertion informa-
tion.

4.2 Analysis of a modular program from scratch

Table 2 shows the absolute times in milliseconds spent in analyzing the programs using the
flattening approach. For every benchmark, the number of modules is shown, and the total analysis
time is divided in several categories, represented by the following columns:

Load This column corresponds to the time spent in loading modules into Ciaopp system. This
time includes the time used for reading the module to be analyzed and the time spent in
reading the assertions of the imported modules (including system libraries).

Anal. This is the time spent in transforming the program to a normalized form, suitable for
analyzing it.

Gen. Corresponds to the task of generating the global information (referred to before as the
GAT andT AT tables). The information generated is related to the analysis results of all
exported and multifile predicates, new call patterns of imported predicates generated dur-
ing the analysis of each module, and the modules that import the module and can improve
their analysis results by reanalysis.

43

Total Time elapsed since the analyzer is called until it finishes completely. It is the sum of
previous columns, plus some extra time spent in other tasks, such as the generation of the
intermodular dependency graph, handling the list of modules to get the next module to be
analyzed, etc.

Tables 3 and 4 contain the time spent in analyzing the benchmarks withethandSharing-
freenesslomains, respectively, and using the different scheduling policies described in Section 7.
The numbers in these tables are relative to the monolithic analysis timenaiiebottomup
and naive top_down global scheduling policies are compared, as well askg, and SP},
success policies.

In these and the following tables referring to execution time, coléthmepresents the num-
ber of iterations of the intermodular fixed-point algorithm: it contains the total number of times
any module of the program is selected for (re)analysis. This number will always be greater or
equal tharMod. When the number of iterations is greater than the number of modules, some
modules have been reanalyzed several times in order to reach a fixed-point.

Theoverall row stands for the weighted overall results summarizing the different benchmarks
in a single set of numbers. These tables show thatStRe, success policy is clearly more
efficient thanSP,;, in both domains and both scheduling policies. T, success policy is
so inefficient when analyzing from scratch because this policy returas success pattern for
all the calls to imported predicates defined in modules which have not been analyzed yet, thus
causing more iterations thaP,}, (with some exceptions, such agkl andhanoi).

Comparing the scheduling policies, we only can observe a slight difference in the time taken
using thenaivetop.down or the naive bottomup strategies. This result seems to reflect that
the order of the modules, at least in simple approaches as the ones used in this work, is not so
relevant when analyzing a modular program as was initially expected.

Memory Consumption when analyzing from scratch. We now compare the maximum mem-

ory required for the analysis in the flattened and the modular approaches to the analysis of mod-
ular programs from scratch. Tables 5 and 6 show the maximum memory consumption during the
analysis of the flattened approach (coluManolithic), and the use of memory of the modular
approach (using both global scheduling policies described before) relative to the monolithic case
(columnsS P, andS P, for the corresponding success policies). The results show that the mod-
ular approach is clearly better in terms of maximum memory consumption than the monolithic
approach (except for the outlying value of @iekl testinSP.).

44

4.3 Reanalysis of a modular program after a change in the code

As explained in Section 4, we have also studied the incremental cost of reanalysis of a modular
program after a change, for different typical changes. The figures presented have been obtained
computing the weighted average of applying the given change in each module of the program and
then reanalysing the whole program. The weight of a module has been measured as the number
of clauses of the module. Numbers are relative to those of table 2.

In the first case, a simple change in a module with no implications in the analysis results
of that module has been tested. The results infth¢ and Sharing — freeness domains are
shown in Tables 7 and 8, respectively. In this test we can observe that the analysis domain used
is very relevant to the efficiency of the modular approach: the analysis of a complete program in
the Sharing — freeness domain is much more expensive than the reanalysis of a module, while
the difference is smaller (although still significant) in the cas®ef.

In addition, in the case of th€haring— freeness domain theunfold benchmark has more
relative impact on the results, since it is much more expensive than the rest of the benchmarks,
as can be seen in Table 2.

The second kind of change, a modification in the exported predicates of a module that makes
the analysis produce more general results, is shown in Tables 9 and 10. This change may in
general imply the reanalysis of the modules which import the changed module, and thus it means
that the time taken in reaching a new fixed-point will be greater than in the previous case. Never-
theless, the “overall” row shows that the reanalysis time is always smaller than the time spent in
analyzing the flattened program. As in the previous test, the analysis domain has a vital relevance
in the relative advantage of the modular approach.

Finally, Tables 11 and 12 show how the modular approach behaves in the case of a change
which produces more precise analysis results (making invalid former results). Similar conclu-
sions as before can be inferred from these tables.

5 Conclusions

We have provided an empirical study of several models proposed context-sensitive analysis of
modular programs with the objective of providing experimental evidence on the scalability of
these models and, specially, on the impact on performance of the different choices left open in
those models.

Our results shed light on the different choices available. In the case of analyzing a modular
program from scratch, the modular analysis approach is slower than the flattening approach (i.e.,
having the complete program in memory, and analyzing it as a whole), due to the impact of code

45

Def
Bench Mod || Load | Anal. | Gen.| Total
aiakl 4 905 16 82 1147
ann 3 891 334 | 229 1653
bid 7 1165 35| 187 1639
boyer 4 891 145| 154 1412
hanoi 2 699 8 41 852
peephole 3 1316 232| 316 2132
prologread| 3 856 344 | 372 1731
unfold 7 3359 2016 | 4156 9989
Sharing-freeness
Bench \ Mod H Load \ Anal. \ Gen.\ Total
aiakl 4 871 26 97 1151
ann 3 924 679 | 276 2069
bid 7 1148 49 | 229 1696
boyer 4 901 227 | 161 1482
hanoi 2 683 18 59 850
peephole 3 1266 573| 529 2603
prologread| 3 863 4660 | 1841 7519
unfold 7 3117 | 555083| 7874 | 566558

Table 2: Time spent in seconds by the monolithic analysis of different benchmark programs

and related analysis information load and unload times. On the other hand, it does imply a lower
maximum memory consumption which in some cases may be of advantage since it may allow
analyzing programs of a certain critical size that would not fit in memory using the flattening ap-
proach. Also, this suggests future work on reducing the time spent in loading/unloading modules
and storing analysis results.

We have also considered the case of reanalyzing a previously analyzed program, after making
changesto it. This is relevant because this is the standard situation during program development,
in which some modules change while others (and the libraries) remain unchanged. While in this
phase the analysis results may not be needed in order to obtain highly optimized programs they
are for static program validation and debugging. In this context the modular analysis, because of
its more incremental nature, shows clear advantage in both time and memory consumption over
the monolithic approach.

46

Global scheduling policy: naiveop_down

automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || #It | Load | Anal. | Gen. | Total || #It
aiakl 4 6.77| 10.94| 2.16| 6.02| 10| 559| 7.13| 155| 4.87| 9
ann 3 450 1.62| 1.65| 3.24| 7| 15.56| 3.68| 3.38| 9.87| 24
bid 7 7.15| 7.97| 1.34| 581 17| 12.62| 11.60| 2.32| 9.81| 28
boyer 4 2.83| 1.23| 0.66| 2.27| 5| 9.01| 267| 1.38| 6.39|| 15
hanoi 2 291| 587| 1.95| 277 4| 3.08| 525| 1.66| 2.85|| 4
peephole 3 270| 1.25| 0.69| 2.14| 5| 6.77| 3.52| 159| 5.02| 12
prologread| 3 490| 2.31| 0.78| 3.29| 6| 8.45| 3.30| 1.15| 5.28| 9
unfold. 7 3.60| 1.87| 0.85| 2.04| 9| 9.30| 3.69| 2.05| 4.93| 19
Overall 425| 1.94| 0.91| 2.82 9.05| 3.70| 2.00| 5.77
Global scheduling policy: naivbottomup
automatic SP* automatic SP~

Bench Mod || Load | Anal. | Gen. | Total || #It | Load | Anal. | Gen. | Total || #It
aiakl 4 6.40| 11.31| 1.85| 5.65| 10| 5.08| 7.63| 1.51| 4.63| 9
ann 3 449 1.44| 1.36| 3.12| 7 13.35| 3.29| 290| 852 21
bid 7 7.19| 8.23| 1.64| 583 17| 12.31| 11.29| 2.34| 9.62| 27
boyer 4 291| 1.32| 0.72| 2.30| 5| 8.81| 296| 1.44| 6.28| 15
hanoi 2 295| 6.50| 1.98| 2.82|| 4| 3.02| 550| 2.02| 2.86| 4
peephole 3 273| 1.24| 0.66| 2.14|| 5| 6.62| 3.33| 1.52| 4.92| 12
prologread| 3 420 1.88| 0.71| 2.81 6| 7.84| 3.58| 1.20| 5.03 9
unfold_ 7 3.44| 1.13| 0.43| 1.65| 10| 7.30| 2.32| 0.95| 3.41| 18
Overall 412 1.41| 0.58| 2.57 8.01| 2.80| 1.16| 4.85

Table 3: Non-modular vsS P andS P~ policies when analyzing in thBef domain.

47

Global scheduling policy: naiveop_down
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || #It || Load | Anal. | Gen. | Total || #It
aiakl 4 6.32| 11.58| 1.74| 5.47| 10| 6.11| 5.38| 1.33| 5.16/| 9
ann 3 443| 194| 157| 3.01|| 7| 15.71| 3.30| 3.10| 8.72| 25
bid 7 8.03| 7.39| 1.34| 6.23| 17 || 14.22| 9.71| 2.19| 10.56|| 28
boyer 4 2.73| 1.20| 0.76| 2.18| 5| 8.66| 2.42| 1.48| 6.05| 15
hanoi 2 3.07| 3.44| 1.42| 287| 4| 3.08| 239| 1.22| 283| 4
peephole 3 271| 1.16| 0.64| 1.88| 5| 8.24, 3.30| 1.60| 5.26/| 15
prologread| 3 497 1.43| 0.25| 157| 7| 848 1.35| 0.54| 1.99| 10
unfold 7 463| 1.32| 0.69| 1.33| 12| 11.42| 0.98| 155 1.04| 21
Overall 466| 1.32| 0.66| 1.36 10.17| 0.99| 1.43| 1.15
Global scheduling policy: naivbottomup
automatic SP* automatic SP~

Bench Mod || Load | Anal. | Gen. | Total || #It || Load | Anal. | Gen. | Total || #It
aiakl 4 5.76| 10.08| 1.87| 5.04| 10| 5.18| 5.04| 1.18| 4.42|| 9
ann 3 407 1.62| 1.13| 2.67| 7| 14.21| 3.24| 2.68| 7.99| 22
bid 7 7.21| 6.00| 1.24| 558 17| 11.73| 7.98| 1.72| 8.78| 27
boyer 4 2.77| 1.18| 0.74| 2.20|| 5| 10.68| 4.20| 2.01| 7.66| 15
hanoi 2 3.27| 3.94| 1.66| 3.07| 4| 3.14| 2.89| 142 293\ 4
peephole 3 3.85| 1.73| 0.87| 2.62| 5| 896| 3.69| 1.75| 5.72| 15
prologread| 3 573 1.90| 0.33| 1.98 7] 890, 1.30| 0.44| 1.99| 10
unfold. 7 5,00/ 1.29| 0.70| 1.31| 12| 9.06| 0.98| 0.96| 1.03|| 21
Overall 483 1.30| 0.68| 1.35 9.22| 0.99| 0.99| 1.13

Table 4: Non-modular vsSP* andSP~ policies when analyzing in th8haring-freenesdo-
main.

48

Global scheduling policy: naiveop_down

Bench Mod || Monolithic | SPT | SP~
aiakl 4 588480| 0.45| 2.63
ann 3 1770948 0.57| 0.72
bid 7 1169196/ 0.39| 0.46
boyer 4 1573700 0.66| 0.85
hanoi 2 342028| 0.79| 1.79
peephole 3 1679244| 0.38| 0.70
prologread| 3 1733272| 0.74| 0.87
unfold_ 7 3412184 0.79| 1.45
Overall 0.62| 1.05

Global scheduling policy: naivbottomup
Bench | Mod H Monolithic | SpPt | SP~

aiakl 4 588480 0.59| 0.80
ann 3 1770948 0.68| 0.74
bid 7 1169196/ 0.54| 0.53
boyer 4 1573700; 0.86| 0.86
hanoi 2 342028| 0.86| 0.86
peephole 3 1679244| 0.60| 0.66
prologread| 3 1733272| 0.82| 0.89
unfold 7 3412184 1.56| 1.59
Overall 0.94| 0.99

Table 5: Memory consumption of Non-modular vsP+ and S P~ policies when analyzing in
the Def domain.

49

Global scheduling policy: naiveop_down

Bench | Mod H Monolithic | SP+ | SP~

aiakl 4 654144 1.30| 0.74
ann 3 2209388| 0.57| 0.72
bid 7 1195852| 0.49| 0.53
boyer 4 1747848 0.61| 0.76
hanoi 2 409956, 0.68| 1.15
peephole 3 2248980/ 0.41| 0.65
prologread| 3 5385648 0.56| 0.81
unfold 7 11039512 0.62| 0.52
| Overall | 0.60| 0.65]

Global scheduling policy: naivbottomup

Bench Mod || Monolithic | SP* | SP~
aiakl 4 654144| 1.43| 0.73
ann 3 2209388| 0.67| 0.71
bid 7 1195852 0.74| 0.54
boyer 4 1747848 0.79| 0.77
hanoi 2 409956, 0.74| 1.15
peephole 3 2248980, 0.63| 0.65
prologread| 3 5385648, 0.59| 0.80
unfold 7 11039512 0.65| 0.69
Overall 0.67| 0.72

Table 6: Memory consumption of Non-modular V&P and SP~ policies when analyzing in
the Sharing-freenesdomain.

50

Global scheduling policy: naiveop.down
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.549| 1.629| 0.249| 0.742| 0.568| 0.758| 0.238| 0.752
ann 3 0.653| 0.319| 0.371| 0.728| 0.612| 0.344| 0.571| 0.707
bid 7 0.428| 0.648| 0.153| 0.740(0.627| 0.943| 0.195| 0.951
boyer 4 0.560| 0.621| 0.236| 0.695| 0.544| 0.547| 0.237| 0.706
hanoi 2 0.764| 1.708| 0.423| 0.865| 1.042| 1.958| 0.585| 1.117
peephole 3 0.634| 0.383| 0.242| 0.690(0.619| 0.356| 0.226| 0.685
prologread| 3 0.879| 0.656| 0.236| 0.920|| 0.804| 0.773| 0.214| 0.864
unfold 7 0.614| 0.728| 0.478| 0.683| 0.607| 0.552| 0.260| 0.547
Overall 0.621| 0.652| 0.422| 0.724| 0.649| 0.548| 0.267| 0.679
Global scheduling policy: naivbottomup
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.568| 1.458| 0.263| 0.780| 0.529| 0.754| 0.254| 0.719
ann 3 0.603| 0.326| 0.408| 0.708| 1.261| 0.961| 1.045| 1.463
bid 7 0.653] 1.175| 0.203| 1.030(| 0.431| 0.627| 0.158| 0.726
boyer 4 0.561| 0.645| 0.233| 0.694| 0.564| 0.603| 0.219| 0.696
hanoi 2 0.774| 1.708| 0.472| 0.876| 0.722| 1.500| 0.390| 0.831
peephole 3 0.655| 0.420| 0.264| 0.727| 0.642| 0.405| 0.234| 0.703
prologread| 3 0.728| 0.571| 0.184| 0.693| 0.728| 0.670| 0.203| 0.708
unfold. 7 0.574| 0.364| 0.105| 0.432| 0.581| 0.428| 0.134| 0.446
Overall 0.622| 0.418| 0.144| 0.610(0.648| 0.524| 0.189| 0.647

Table 7: Non-modular vsSP* andS P~ policies after touching a module in thee f domain.

51

Global scheduling policy: naiveop_.down
automatic SP* automatic SP~
Bench Mod || Load \ Anal. \ Gen.\ Total || Load \ Anal. \ Gen.\ Total
aiakl 4 0.576| 1.995| 0.238| 0.767| 0.576| 0.533| 0.197| 0.721
ann 3 0.609| 0.284| 0.436| 0.628| 0.622| 0.281| 0.645| 0.655
bid 7 0.470| 0.617| 0.146| 0.745] 0.443| 0.479| 0.140| 0.728
boyer 4 0.552| 0.383| 0.207| 0.660| 0.565| 0.401| 0.201| 0.657
hanoi 2 0.781| 0.963| 0.328| 0.877| 0.757| 0.722| 0.316| 0.846
peephole 3 0.674| 0.301| 0.223| 0.629| 0.647| 0.329| 0.263| 0.625
prologread| 3 0.733| 0.565| 0.086| 0.500| 0.710| 0.478| 0.101| 0.450
unfold 7 0.589| 0.025| 0.173| 0.032| 0.604| 0.025| 0.230| 0.033
| Overall | 0.610] 0.030] 0.169| 0.049]| 0.606| 0.029] 0.218] 0.049|
Global scheduling policy: naivbottomup
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.572| 2.262| 0.276| 0.794| 0.576| 0.505| 0.221| 0.732
ann 3 0.811| 0.315| 0.507| 0.791| 0.608| 0.300| 0.667 | 0.654
bid 7 0.456| 0.593| 0.134| 0.783| 0.523| 0.498| 0.139| 0.852
boyer 4 0.885| 0.458| 0.320| 1.031| 0.563| 0.371| 0.227| 0.662
hanoi 2 0.770| 0.944| 0.384| 0.879| 1.022| 0.759| 0.390| 1.171
peephole 3 0.674| 0.318| 0.235| 0.649| 0.668| 0.325| 0.240| 0.642
prologread| 3 0.731] 0.568| 0.092| 0.503|| 0.705| 0.441| 0.084| 0.421
unfold 7 0.799| 0.028| 0.134| 0.036| 0.613| 0.026| 0.112| 0.032
Overall 0.723| 0.034| 0.147| 0.055| 0.638| 0.030| 0.132| 0.049

Table 8: Non-modular vs.SP* and SP~ policies after touching a module in thigharing-
freenesgslomain.

52

Global scheduling policy: naiveop.down
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 1.465| 2.475| 0.509| 1.395(| 1.855| 3.150| 0.564| 1.773
ann 3 1.968| 0.772| 0.973| 1.605|| 3.814| 1.022| 1.524| 2.660
bid 7 1.516| 1.968| 0.329| 1.466| 3.817| 4.155| 0.675| 3.185
boyer 4 2.069| 0.949| 0.432| 1.674|| 2.102| 0.949| 0.444| 1.685
hanoi 2 0.522| 1.083| 0.407| 0.529| 1.017| 2.167| 0.675| 0.964
peephole 3 1.072| 0.466| 0.326| 0.948| 1.264| 0.546| 0.388| 1.092
prologread| 3 1.071| 0.907| 0.286| 0.970(| 3.001| 1.722| 0.515| 2.116
unfold 7 0.203| 0.134| 0.074| 0.148| 0.217| 0.143| 0.071| 0.152
Overall 0.998| 0.385| 0.168| 0.713| 1.693| 0.543| 0.221| 1.088
Global scheduling policy: naivbottomup
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 1.265| 2.158| 0.392| 1.225|| 1.503| 2.725| 0.470| 1.432
ann 3 1.734| 0.791| 1.291| 1.521| 4.320| 1.122| 1.713| 3.001
bid 7 1.444| 1.671| 0.280| 1.402 || 3.799| 4.497| 0.778| 3.238
boyer 4 2.096| 1.011| 0.498| 1.706|| 2.022| 0.961| 0.456| 1.618
hanoi 2 0.514| 1.125| 0.415| 0.525| 1.029| 2.208| 0.659| 0.970
peephole 3 1.074| 0.516| 0.355| 0.974 || 1.314| 0.535| 0.383| 1.126
prologread| 3 1.073| 0.781| 0.248| 0.885| 2.809| 1.458| 0.449| 1.919
unfold. 7 0.211| 0.085| 0.021| 0.119| 0.199| 0.082| 0.022| 0.114
Overall 0.956| 0.343| 0.138| 0.675| 1.682| 0.487| 0.190| 1.065

Table 9: Non-modular vsSP* andS P~ policies after adding a most general clause to exported
predicates in thée f domain.

53

Global scheduling policy: naiveop.down
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 1.630| 5.444| 0.495| 1.579| 2.106| 3.369| 0.528| 1.915
ann 3 3.232| 1.065| 1.285| 2.165|| 3.894| 1.514| 1.841| 2.645
bid 7 1.564| 1.553| 0.257| 1.434| 3.845| 2.958| 0.554| 3.068
boyer 4 2.006| 0.854| 0.514| 1.614| 1.998| 0.820| 0.555| 1.611
hanoi 2 0.529| 0.778| 0.328| 0.538| 1.033| 1.056| 0.418| 0.958
peephole 3 1.081| 0.382| 0.409| 0.856| 1.325| 0.463| 0.464| 1.008
prologread| 3 0.999| 0.747| 0.114| 0.648| 4.433| 1.781| 0.347| 1.748
unfold 7 0.196| 0.023| 0.033| 0.024| 0.218| 0.022| 0.042| 0.023
Overall 1.147| 0.031| 0.113| 0.055(| 1.896| 0.039| 0.182| 0.077
Global scheduling policy: naivbottomup
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 1.583| 5.487| 0.520| 1.591| 1.525| 2.897| 0.447| 1.423
ann 3 3.111| 0.911| 1.246| 2.011| 5.113| 1.971| 2.000| 3.398
bid 7 1.478| 1.311| 0.250| 1.365|| 3.612| 3.003| 0.605| 2.919
boyer 4 2.023| 0.916| 0.540| 1.631|| 2.041| 0.868| 0.493| 1.635
hanoi 2 0.533| 0.630| 0.266| 0.531| 1.045| 1.148| 0.492| 0.973
peephole 3 1.199| 0.399| 0.429| 0.927 || 1.374| 0.459| 0.480| 1.035
prologread| 3 1.014| 0.745| 0.117| 0.646 | 4.169| 1.710| 0.321| 1.658
unfold. 7 0.220| 0.022| 0.021| 0.024 || 0.197| 0.022| 0.018]| 0.024
Overall 1.147| 0.031| 0.105| 0.055|| 1.914| 0.040| 0.165| 0.078

Table 10: Non-modular vsS P™ andS P~ policies after adding a most general clause to exported
predicates in th&haring-freenesdomain.

54

Global scheduling policy: naiveop.down
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.587| 0.475| 0.213| 0.655| 0.343| 0.221| 0.171| 0.452
ann 3 2.018| 0.393| 0.459| 1.391|| 1.762| 0.390| 0.440| 1.258
bid 7 0.673| 0.662| 0.186| 0.837 | 0.375| 0.354| 0.139| 0.601
boyer 4 1.030| 0.158| 0.244| 0.901| 1.007| 0.142| 0.251| 0.882
hanoi 2 0.494| 0.958| 0.358| 0.505(| 0.204| 0.083| 0.236| 0.248
peephole 3 1.997| 0.606| 0.345| 1.565|| 1.791| 0.407| 0.262| 1.380
prologread| 3 0.796| 0.286| 0.128| 0.671| 0.803| 0.306| 0.107| 0.657
unfold 7 0.260| 0.230| 0.095| 0.197| 0.245| 0.184| 0.083| 0.174
Overall 0.849| 0.286| 0.138| 0.613| 0.716| 0.236| 0.118| 0.528
Global scheduling policy: naivbottomup
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.591| 0.658| 0.233| 0.653 || 0.346| 0.146| 0.160| 0.451
ann 3 1.666| 0.328| 0.379| 1.192| 1.455| 0.333| 0.391| 1.071
bid 7 0.758| 0.789| 0.241| 0.907| 0.395| 0.379| 0.132| 0.642
boyer 4 1.015| 0.135| 0.229| 0.874 | 1.041| 0.169| 0.255| 0.900
hanoi 2 0.501| 0.833| 0.260| 0.501| 0.207| 0.083| 0.195| 0.249
peephole 3 2.196| 0.611| 0.311| 1.683|| 1.688| 0.421| 0.259| 1.324
prologread| 3 0.749| 0.234| 0.096| 0.629| 0.759| 0.293| 0.099| 0.611
unfold. 7 0.221] 0.122| 0.034| 0.132|| 0.215| 0.107| 0.026| 0.123
Overall 0.836| 0.205| 0.085| 0.577| 0.668| 0.181| 0.072| 0.483

Table 11: Non-modular vsSP* andS P~ policies after removing all clauses of exported predi-
cates except the first non-recursive clause in/thh¢ domain.

95

Global scheduling policy: naiveop.down
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.720| 0.444| 0.236| 0.741| 0.459| 0.197| 0.170| 0.530
ann 3 1.587| 0.336| 0.343| 1.003|| 1.343| 0.327| 0.381| 0.932
bid 7 0.705| 0.547| 0.149| 0.822| 0.393| 0.282| 0.112| 0.603
boyer 4 1.041| 0.147| 0.296| 0.887| 1.020| 0.134| 0.280| 0.877
hanoi 2 0.525] 0.389| 0.249| 0.517 || 0.212| 0.037| 0.153| 0.245
peephole 3 1.937| 0.396| 0.253| 1.247| 1.749| 0.371| 0.282| 1.179
prologread| 3 0.818| 0.271| 0.039| 0.313| 0.681| 0.207| 0.039| 0.259
unfold 7 0.249| 0.000| 0.045| 0.003| 0.234| 0.000| 0.047| 0.003
Overall 0.832| 0.004| 0.070| 0.023| 0.684| 0.004| 0.071| 0.020
Global scheduling policy: naivbottomup
automatic SP* automatic SP~
Bench Mod || Load | Anal. | Gen. | Total || Load | Anal. | Gen. | Total
aiakl 4 0.757| 0.477| 0.232] 0.774| 0.463| 0.195| 0.171| 0.541
ann 3 1.639| 0.342| 0.373| 1.034| 1.373| 0.325| 0.345| 0.909
bid 7 0.710| 0.603| 0.162| 0.829| 0.381| 0.302| 0.132| 0.601
boyer 4 1.064| 0.143| 0.382| 0.947| 1.114| 0.127| 0.397| 0.950
hanoi 2 0.509| 0.444| 0.249| 0.504| 0.218| 0.037| 0.169| 0.261
peephole 3 2.066| 0.412| 0.279| 1.340|| 1.868| 0.416| 0.300| 1.241
prologread| 3 0.737| 0.269| 0.038| 0.303|| 0.676| 0.208| 0.036| 0.257
unfold. 7 0.234| 0.000| 0.024| 0.003 || 0.248| 0.000| 0.030| 0.003
Overall 0.847| 0.004| 0.058| 0.023| 0.715| 0.003| 0.061| 0.021

Table 12: Non-modular vsSP* andS P~ policies after removing all clauses of exported predi-
cates except the first non-recursive clause inrSharing-freenesdomain.

56

Part Ill
Efficient Local Unfolding with Ancestor
Stacks for Full Prolog

1 Summary

In spite of the important research efforts in the area, the integration of powerful partial evaluation
methods into practical compilers for logic programs is still far from reality. This is related both

to 1) efficiency issues and to 2) the complications of dealing with practical programs. Regarding
efficiency, the most successful unfolding rules used nowadays are based on structural orders
applied over (coveringdncestorsi.e., a subsequence of the atoms selected during a derivation.
Ancestor (sub)sequences are used to improve the specialization power of unfolding while still
guaranteeing termination and also to reduce the number of atoms for which the wfo or wqo has
to be checked. Unfortunately, maintaining the structure of the ancestor relation during unfolding
introduces significant overhead. We propose an efficient, pradtical unfolding rule based

on the notion of covering ancestors which can be used in combination with any structural order
and allows a stack-based implementation without losing any opportunities for specialization.
Regarding the second issue, we propose assertion-based techniques which allow our approach to
deal with real programs that include (Prolog) built-ins and external predicates in a very extensible
manner. Finally, we report on our implementation of these techniques in a practical partial
evaluator, embedded in a state of the art compiler which uses global analysis extensively (the
Ciao compiler and, specifically, its preprocesstinoPP). The performance analysis of the
resulting system shows that our techniques, in addition to dealing with practical programs, are
also significantly more efficient in time and somewhat more efficient in memory than traditional
tree-based implementations. We believe that our approach contributes to the practicality of state-
of-the-art partial evaluation techniques.

2 Introduction

In spite of the important research efforts in the area, the integratidartal Deduction(PD) [LS91,
Gal93] methods into compilers seems to be still far from reality. We believe that the general up-
take of PD methods is being hindered by two factors: the relative inefficiency of the PD method,
and the complications brought about by the treatment of real programs. Indeed, the integra-

57

tion of powerful strategies to the unfolding rule —like the use of structural orders combined with
the ancestor relation— can introduce a significant cost both in time and memory consumption
of the specialization process. Regarding the treatment of real programs which include external
predicates, non-declarative features, etc, the complications range from how to identify which
predicates include these non-declarative features (ad-hoc but difficult to maintain tables are often
used in practice for this purpose) to how to deal with such predicates during PD. A main ob-
jective of this paper is to contribute to the uptake of PE techniques by addressing some of these
issues.

State-of-the-art partial evaluators integrate terminating unfolding rules for local control based
on structural orders, like homeomorphic embedding [LBO2] which can obtain very powerful
optimizations. Moreover, they allow performing the ordering comparisonssmeEequencesf
the full sequence of the selected atoms. In particular, the useagfstordor refining sequences
of visited atoms, originally proposed in [BSM92], greatly improves the specialization power
of unfolding while still guaranteeing termination and also reduces the length of the sequences
for which admissibility of new atoms has to be checked. Unfortunately, having to maintain
dependency information for the individual atoms in each derivation during the generation of SLD
trees has turned out to introduce overheads which seem to cancel out the theoretical efficiency
gains expected. In order to address this issue, we introduce a novel unfolding rule based on
the notion of covering ancestors which allows a very efficient implementation technique based
on stacks. Our technique can significantly reduce the overhead incurred by the use of covering
ancestors without losing any opportunities for specialization. We outline as well a generalization
that allows certain non-leftmost unfoldings with the same assurances.

In order to deal with real programs that include (Prolog) built-ins and external predicates, we
rely on assertion-based techniques [PBHOOb]. The use of assertions prextieesibilityin the
sense that users and developers of partial evaluators can deal with new external predicates during
PE by just adding the proper assertions to these predicates —without having to maintain ad-hoc
tables or modifying the partial evaluator itself. We report on our implementation of our tech-
nique in a practical, state-of-the-art partial evaluator, embedded in a production compiler which
uses assertions and global analysis extensively@tae compiler [BCC"04] and, specifically,
its preprocessdaCiaoPP [HPBLGO3b]).

3 Background

We assume some basic knowledge on the terminology of logic programming. See for exam-
ple [LIo87b] for details. Very briefly, armatom A is a syntactic construction of the form

58

p(t1, ..., t,), wherep/n, with n > 0, is a predicate symbol ang, . . . , ¢, are terms. The func-
tion pred applied to atomd, i.e., pred(A), returns the predicate symbpfn for A. A clause
is of the formH < B where its head{ is an atom and its bodjg is a conjunction of atoms.
A definite programs a finite set of clauses. §oal (or query) is a conjunction of atoms. The
concept ofcomputation rulas used to select an atom within a goal for its evaluation.

Definition 3.1 (computation rule) A computation rules a functionk from goals to atoms. Let
G be a goal of the form— A;,... Ag, ..., Ax, k > 1. If R(G) =Ag we say thatdy is the
selectecatom inG.

The operational semantics of definite programs is based on derivations.

Definition 3.2 (derivation step) LetG be«— Ay, ..., Ay, ..., Ax. LetR be a computation rule
and letR(G) =Ag. LetC = H «— By,..., B, be arenamed apart clause iR. ThenG’ is
derivedfrom G and C via R if the following conditions hold:

0 = mgu(An, H)
G'is the goal — Q(Bl, R ,Bm,Al, . ,AR_17AR+1, .. 7Ak)

The definition above differs from standard formulations (such as that in [LIo87b]) in that the
atoms newly introduced i are not placed in the same position where the selected dtpm
used to be, but rather they are placed to the left of any atoéh iRor definite programs, this is
correct since goals are conjunctions, which enjoy the commutative property.

As customary, given a prograi and a goalz, an SLD derivationfor P U {G} consists
of a possibly infinite sequendé = G,, G, G, . .. of goals, a sequencé,, (s, . .. of properly
renamed apart clauses Bf and a sequena®, 6., ... of mgus such that eadfd;,; is derived
from GG; andC; 1 usingd;,,. A derivation step can be non-deterministic whégp unifies with
several clauses i, giving rise to several possible SLD derivations for a given goal. Such SLD
derivations can be organized 81D trees A finite derivationG = G, G4, Gs, ..., G, is called
successfuf G, is empty. In that case = 6,0 . . . 0, is called the computed answer for gaéal
Such a derivation is callefdiled if it is not possible to perform a derivation step with,.

In order to compute artial deduction(PD) [LS91], given an input program and a set of
atoms (goal), the first step consists in applyinguarfiolding ruleto compute finite (possibly
incomplete) SLD trees for these atoms. Given an atbnan unfolding rule computes a set
of finite SLD derivationsD;, ..., D,, (i.e., a possibly incomplete SLD tree) of the form =
A, ..., G; with computer answer substitutienfor : = 1, ..., n whose associated resultants are
0;(A) — G,. Therefore, this step returns the set of resultants, i.e., a program, associated to the

59

root-to-leaf derivations of these trees. We refer to [LB0Z2] for details. In order to ensure the
local termination of the PD algorithm while producing useful specializations, the unfolding rule
must incorporate some non-trivial mechanism to stop the construction of SLD trees. Nowadays,
well-founded orderings (wfo) [BSM92, MD96] and well-quasi orderings (wqo) [SG95, Leu98]
are broadly used in the context of on-line PE techniques (see, e.g., [Gal93, LMDS98, SG95]).
Formally, let<g be a wqo, we denote bytdmissible(A, (A, ..., A,), <s), with n > 0, the
truth value of the expressiord;, i € {1,...,n} : A <g A;. Inwfo, it is sufficient to verify
that the selected atom is strictly smaller than the previous comparable one (if one exists). Let
< be a wfo, byAdmissible(A, (A, ..., An), <), with n > 0, we denote the truth value of the
expressiom < A, if n > 1 andtrue if n = 0. We will denote bystructural ordera wfo or a wgo
(written as« to represent any of them). Among the structural orders, well-quasi orderings (and
homeomorphic embeddinigru60] in particular) have proved to be very powerful in practice.
State-of-the-art unfolding rules allow performing ordering comparisonssuEequences
the full sequence of the selected atoms of a derivation by organizing atorpsiofaree[Bru91],
achieving further specialization in many cases while still guaranteeing termination. The essence
of the most advanced techniques is based on the notioovalring ancestorlBSM92].

Definition 3.3 (ancestor relation) Given a derivation step andlz, B;, i = 1,...,m as in
Def. 3.2, we say thatl ; is theparentof the instance oB;,7 = 1, ..., m, in the resolvent and in
each subsequent goal where the instance originating fyrappears. Thencestorelation is
the transitive closure of the parent relation.

Usually, the ancestor test is only applied comparableatoms, i.e., ancestor atoms with the
same predicate symbol. This corresponds to the original notion of covering ancestors [BSM92].
Given an atomd and a derivatiorD, we denote byAncestors(A, D) the sequence of ancestors
of Ain D as defined in Def. 3.3. It captures the dependency relation implicit withioaf tree

It has been proved [BSM92] that any infinite derivation must have at least one inadmissi-
ble covering ancestosequence, i.e., a subsequence of the atoms selected during a derivation.
Therefore, it is sufficient to check the selected ordering relati@ver the covering ancestor
subsequences in order to detect inadmissible derivations. An SLD derivasiafeisith respect
to an order (wfo or wqo) if all covering ancestor sequences of the selected atoms are admissible
with respect to that order.

4 The Usefulness of Ancestors

We now illustrate some of the ideas discussed so far and, specially, the relevance of ancestor
tracking, through an example. Our running example is the program in Figure 7, which imple-

60

gsort([],R,R). partition([],_,[1.[)-

gsort([X|L],R,R2) :- partition([E|R],C,[E|Left1],Right) :-
partition(L,X,L1,L2), E =< C, patrtition(R,C,Left1,Right).
gsort(L2,R1,R2), partition([E|R],C,Left,[E|Right1]) :-
gsort(L1,R,[X|R1]). E > C, partition(R,C,Left,Rightl).

Figure 7: A quick-sort program

1.9s([t,1,1],R, [T}
v
2.p([1,1],1,L1,L2){1} 3.9s(L2,R1,)11}, 4.9s(L1, R, [1|R1]){
y{L1—[1]L]}
5.1=<1002 6.p(1],1,L,12) ", 3.qs(12,R1, [)) 1), 4.qs([2|L], R, [1[R1]) (1}
\

,3.qs(L2,R1,)}, 4.qs([1]L], B, [1[R1]) {1
y{L—[L7}
7.1 =< 11828} 8 p([], 1,1/, L2){1:28} 3 qs(L2,R1, [)){1}, 4.gs([t, 1|L'], R, [1|R1]){H}

- 6/p(L1LL2) ‘{1’2}

8.p([], 1,L/,12)1128} 3 gs(L2,R1, [|)11}, 4.9s([1, 1|L/], R, [1|R1]) 1}
y{L'—[,L2—[]}
3.gs([,R1, [){*}, 4.9s([1, 1], R, [1[R1]) 1)
y{r1'—[}
4.q9s([1,1],R, 1)
Y

,10.gs(L2’,R1/, [1])114} 11.9s(L1/, R, [1|R1/]) {14}

& 9[p(LLLL.L2) \“’4}

Figure 8: Derivation with Ancestor Annotations

ments the well known quick-sort algorithmgsort ”, using difference lists. Given an initial
query of the form—qsort(List,Result,ContwhereList is a list of numbers, the algorithm re-
turns inResulta sorted difference list which is a permutationLa$t and such that its continu-
ation isCont For example, for the query gsort([1,1,1], L,[]), the program should compute
L=[1,1,1] , constructing a finite SLD tree.

Consider now Fig. 8, which presents an incomplete SLD derivation for our quick-sort pro-
gram and the query- gsort([1,1, 1], R, []) using a leftmost unfolding rule. For conciseness,
predicatesgsort and partition are abbreviated ags andp, respectively in the figure.
Note that each atom is labeled with a number (an identifier) for future reféramcea super-
script which contains the list of ancestors of that atom. Let us assume that we usmibe-

9By abuse of notation, we keep the same number for each atom throughout the derivation although it may be
further instantiated (and thus modified) in subsequent steps. This will become useful for continuing the example
later.

61

B
N
5/ \6 7\

7/ \8

Figure 9: Proof tree for the example.

morphic embeddingrder [Leu98] as structural order. If we check admissibility w.r.t. the full
sequence of atoms, i.e., we do not use the ancestor relation, the derivation will stop when atom
number9, i.e.,p([1], 1,L/,L2'), is found for the second time. The reason is that this atom is not
strictly smaller than atom numbeérwhich was selected in the third step, indeed, they are equal
modulo renaming®

This unfolding rule is too conservative, since the process can proceed further without risk-
ing termination. The crucial point is that the execution of atom nunSb@oes not depend
on atom numbeb (and, actually, the unfolding d has been alreadgompletedwhen atom
number9 is being considered for unfolding). Figure 9 shows the proof tree associated to this
derivation where nodes are labeled with the numbers assigned to each atom, instead of the atoms
themselves. Note that, in order to decide whether or not to evaluate atom n@nibisronly
necessary to check that it is strictly smaller than atdnasd1, i.e., than those which are its
ancestorsn the proof tree. On the other hand, and as we saw before, if the full derivation is con-
sidered instead, as in Fig. 8, at@will be compared also with ato concluding imprecisely
that the derivation may not be safe.

Despite their obvious relevance, unfortunately the practical applicability of unfolding rules
based on the notion of covering ancestor is threatened by the overhead introduced by the im-
plementation of this notion. A naive implementation of the notion of ancestor keeps —for each
atom-— the list of its ancestors, as it is depicted in Fig. 8. This implementation is relatively ef-
ficient in time but presents a high overhead in memory consumption. Our experiments show
that the partial evaluator can run out of memory even for simple examples. A more reasonable
implementation maintains the proof tree as a global structure. This greatly reduces memory con-
sumption but the cost of traversing the tree for retrieving the ancestors of each atom introduces a
significant slowdown in the PE process. We argue that our implementation technique is efficient
in time and space, overcoming the above limitations.

10 et us note that the two calls to the builtin predicate which appear in the derivation can be executed since
the arguments are properly instantiated. However, they have not been considered in the admissibility test since these
calls do not endanger the termination of the derivation, as we will discuss in Sect. 6.

62

5 An Efficient Implementation for Local Unfolding

Our definition oflocal unfoldingis based on the notion @incestor depth

Definition 5.1 (ancestor depth) Given an SLD derivatiol) = G,,...,G,, with G,, =«
Ay, ..., Ag, k > 1, theancestor deptlof A; for i = 1,...,k, denoteddepth(A;, D) is the
cardinality of the ancestor relation faod; in D.

Intuitively, the ancestor depth of an atom in a goal is the depth at which this atom is located in
the proof tree associated to the derivation.

Definition 5.2 (local computation rule) A computation ruleR is local if VD = Go,...,G,
such thaty; =— A;y, ..., Ay, fori =0, .., n, it holds that:
depth(R(G;), D) > depth(A;;,D) Vj=1,...,m,

Intuitively, a computation rule is local if it always selects one of the atoms which is deepest in the
proof tree for the derivation. As a result, local computation rules traverse proof trees in a depth-
first fashion, though not necessarily left to right nor in any other fixed order. Thus, in principle,
in order to implement a local computation rule we need to record (part of) the derivation history
(its proof tree). Note that the computation rule used in most implementations of logic program-
ming languages, such as Prolog, always selects the leftmost atom. This computation rule, often
referred to as left-to-right computation rule, is clearly a local computation rule. Selecting the
leftmost atom in all goals guarantees that the selected atom is of maximal depth within the proof
tree as it is traversed in a depth-first fashion —without the need of storing any history about the
derivation.

An instrumental observation in our approach is that if the proof tree which is used in order
to capture the ancestor relation is traversed depth-first, left-to-right, it can be interpreted as an
activation tregASUS86]. In fact, the ancestor subsequence in any point in time corresponds to the
currentcontrol word[RS97] by simply regarding selected atoms as procedure calls. The control
word for each execution state can be seen as the set of procedures whose execution has started
and is not yet completed, bearing a strong relation with the stack of activation records which most
compilers use as a run-time data structure. This data structure takes normally the form of a stack,
and this suggests one of the central ideas of our approach: using stacks for storing ancestors.
Another important observation is that the control word idea does not need to be restricted to
leftmost computation and it works equally well as long as the computation rule is local. Indeed,
sibling atoms have the same ancestor depth, they can be selected in any order and the notion of
control word still applies. The advantages of computing the control word instead of the proof
tree are clear: the control word corresponds to a single branch in the proof tree from the current

63

selected atom to all its ancestors in the proof tree. Thus, the control word offers advantages
both from memory and time consumption. The main difficulty for computing control words is to
determine exactly when each item in the control word should be removed. To do this, we need to
know when the computation of each predicate is finished. In logic programming terminology this
corresponds to determining the success states for all predicates in the derivation. In principle,
success states are not observable in SLD resolution other than for the top-level query.

We now propose an easy-to-implement modification to SLD resolution as presented in Sec-
tion 3 in which success states for all internal calls are observable —and where the control word is
available at each state. We will refer to this resolution as SLD resolution with ancestor stacks,
or ASLDfor short. The proposed modification involves 1) augmenting goals withnaestor
stack which at each stage of the computation contains the control word of the derivation, which
corresponds tthe ancestors of the next atom which will be selected for resolwiwh 2) adding
pseudo-atoms to the goals used during resolution which mark a scope whose purpose is twofold:
2.1) when a mark is leftmost in a goal, it indicates that the current state corresponds to the suc-
cess state for the call which is now on top of the ancestor stack, i.e., the call is completed, and
the atom on top of the ancestor stack should be popped; 2.2) the atoms within the scope of the
leftmost mark have maximal ancestor depth and thus a local unfolding strategy can be easily
defined in the presence of these pseudo-atoms. We use the pseudd-af@ad as “pop”) to
indicate the end of a depth scope, i.e., after it we move up in the proof tree. It is guaranteed not
to clash with any existing predicate name.

The following two definitions present the derivation rules in our ASLD semantics. Now, a
stateS is a tuple of the form(G' 1 AS whereG is a goal andASis an ancestor stack (stackfor
short). To handle such stacks, we will use the usual stack operaéongy, which returns an
empty stackpush(AS Item), which pushestemonto the staclAS andpop(AS), which pops
an element fromAS In addition, we will use the operatiatontents(AS), which returns the
sequence of atoms containedASin the order in which they would be popped from the stack
ASand leavef®\Sunmodified.

Definition 5.3 (derive) LetG = «— Ay,...,Ag,..., A, be a goal withA; # 7. LetS =
(G1AS be a state and AS be a stack. kdbe a structural order. LeR be a computation rule
and letR(G) =Ag with Ap # 7. LetC = H «— By, ..., B,, be arenamed apart clause. Then
S" = (G'1 AS") is derivedfrom S and C' via R if the following conditions hold:

Admissible(Ag, contents(AS), <)
0 = mgu(Ag, H)
G'is the goal — 9(31, cee Bm; T ,Al, . ’AR717AR+1, - ,Ak)

64

AS" = push(AS ren((Ag)))

Thederive rule behaves as the one in Definition 3.2 but in addition: i) the markK‘pop”) is

added to the goal, and ii) a renamed apart copylgf denotedren(Ag), is pushed onto the
ancestor stack. As before, tderive rule is non-deterministic if several clausesfrunify with

the atomAy. However, in contrast to Definition 3.2, this rule can only be applied if 1) the
leftmost atom in the goal is not & mark, and 2) the current selected atdm together with its
ancestors does constitute an admissible sequence. If 1) holds but 2) does not, this derivation is
stopped and we refer to such a derivationnasimissible

Definition 5.4 (pop-derive) LetG = «— Ay, ..., A, be agoal withA; =7 . LetS = (G1AS
be a state and AS be a stack. TH&R= (G'1 AS") withG' =— A,, ..., A, and AS’ = pop(AS
is pop-derivedrom S.

The pop-derive rule is used when the leftmost atom in the resolvent is anark. Its effect is
to eliminate from the ancestor stack the topmost atom, which is guaranteed not to belong to the
ancestors of any selected atom in any possible continuation of this derivation.

Computation for a querys starts from the stat€, = (Gl1empty). Given a non-empty
derivation D, we denote bycurr_goal(D) andcurr_ancestoréD) the goal and the stack in the
last state inD, respectively. At each step of a derivatiGhat most one rule, eitheaterive or
pop-derive, can be applied depending on whether the first atomuin_goal(D) is a mark |
or not.

Example 5.5 Fig. 10 illustrates the ASLD derivation corresponding to the derivation with ex-
plicit ancestor annotations of Fig. 8. Sometimes, rather than writing the atoms themselves, we
use the same numbers assigned to the corresponding atoms in Fig. 8. Each step has been ap-
propriately labeled with the applied derivation rule. Although reldernal-derivéhas not been
presented yet, we can just assume that the code for the external predic&eavailable and
has the expected behavior.

It should be noted that, in the last state, the stack contains exactly the ancestors of
partition([1],1,L1’,L2") , l.e., the atomd and1, since the previous calls to
partition have already finished and thus their corresponding atoms have been popped off the
stack. Thus, the admissibility test feartition([1],1,L1",L2") succeeds, and unfold-
ing can proceed further without risking termination. Note tbativesteps w.r.t. a clause which
is a fact are always followed by@op-deriveand thus they are optimized in the figure (and in the
implementation, described in Section 7) by not pushing the selected4tanto the stack and
not including a1 mark into the goal which would immediately pdp from the stack.

65

({as(t 1 LR DH)
(2,5,4, 1} asmma(s. 1,118,)
(56, 18,4, 1 1 pars((t, 1 124, 12) 4501 1 11 D)

(6, 1,84, T 1 pare(s,) o0t 520 a1, 10 D
{7,8,1,71,3,4, 1 }[part([1], 1,L7L2%:1;:;::([1, 1],1,L1,L2),q9s([1, 1, 1],R, [])])
(8,1, 1,8,4, 11 et 4 12) moen(b, L2 (0, 1 D
(0121184 1} [pare(th .1, 12), el 1) 0021 (0,2, D)
(1,84, 1} fpare((t 11,¢117,051,d§;§,6qs<[17 L 1)80))

(s M
({4, 1 }1gsore([1. 1, 1R,)

(fpars (4 L, L20,10, 15, 1 1 11 (e 2 (1 asors(ls 5 D)

Figure 10: ASLD Derivation for the example

Finally, since the goals obtained by ASLD resolution may contain atoms of the fomesultants
are cleaned up before being transferred to the global control level or during the code generation
phase by simply eliminating all atoms of the forin

It is easy to see that for each ASLD derivatibry there is a corresponding SLD derivation
D with the same computed answer substitution and the same goal witho(t ttems. Such
SLD derivation is the one obtained by performing the sa®vesteps (with exactly the same
clauses) using the same computation rule and by ignoringdipederivesteps since goals in
SLD resolution do not contairf atoms. We will usesimplify(Dgs) = D to denote thaD is
the SLD derivation which corresponds fzy.

We would now like to impose a condition on the computation rule which allows ensuring that
the contents of the stack are precisely the ancestors of the atom to be selected.

Definition 5.6 (depth-preserving) A computation ruleR is depth-preservingf for each non-
empty goalz = «— Ay,..., Ay with A; #7,R(G) = Agand 1T ¢ {Ay, ..., Ag}.

Intuitively, a depth-preserving computation rule always returns an atom which is strictly to the
left of the first (leftmost) T mark. Note that] is used to separate groups of atoms which are

66

at different depth in the proof tree. Thus, the notion of depth-preserving computation rules in
ASLD resolution isequivalento that of local computation rules in SLD resolution.

Proposition 5.7 (ancestor stack)Let Ds be an ASLD derivation for initial querys in pro-
gram P via a depth-preservingomputation rule. LetD be an SLD derivation such that
simplify(Ds) = D. Letcurr_goal(Dg) = Ay, ..., Ay, T,...With A; #1 fori=1,... n.
Letcurr_ancestors(Dg) = AS. Thengontents(AS) = Ancestors(A;, D) fori=1,... n.

The next theorem guarantees that we do not lose any specialization opportunities by using our
stack-based implementation for ancestors instead of the more complex tree-based implementa-
tion, i.e., our proposed semantics will not stop “too early”. It is a consequence of the above
proposition and the results in [BSM92].

Theorem 5.8 (accuracy)Let D be an SLD derivation for querg in a program P via a local
computation rule. Let be a structural order. If the derivatio® is safe w.r.ta then there
exists an ASLD derivatiols for G and P via a depth-preserving computation rule such that
simplify(Ds) = D.

Note that since our semantics disables performing any further steps as soon as inadmissible
sequences are detected, not all local SLD derivations have a corresponding ASLD derivation.
However, if a local SLD derivation is safe, then its correspondingderivation can be found.

It is interesting to note that we can allow more flexible computation rules which are not
necessarily depth-preserving while still ensuring termination. For instance, consider state

(Av,... Ap, T, Ag, .. 1[P1|P)

with T ¢ {A,,..., A,} and a non depth-preserving computation rule which selects the &tom
to the right of the T mark. Then, rulederivewill check admissibility ofAz w.r.t. all atoms in
the stack P, | P]. However, the topmost atof, is an ancestor only of the ators to the left of
Apg but itis not an ancestor of ;. The more] marks the computation rule jumps over to select
an atom, the more atoms which do not belong to the ancestors of the selected atom will be in the
stack, thus, the more accuracy and efficiency we lose. In any case, the stack will always be an
over-approximation of the actual set of ancestord gf

In principle, our local unfolding rule based on ancestor stacks can be used within any PD
framework, including Conjunctive Partial Deduction (CPD). It should be noted that some CPD
examples may require the use of an unfolding rule which is not depth-preserving to obtain the
optimal specialization. As we discuss above, we cannot ensure accuracy results in these cases
but in turn the use of local unfolding will clearly improve the efficiency of the PD process.

67

6 Assertion-based Unfolding for External Predicates

Most of real-life Prolog programs use predicates which are not defined in the program (module)
being developed. We will refer to such predicategdernal Examples of external predicates

are the traditional “built-in” predicates such as arithmetic operations (&3., , <, =<, etc.) or

basic input/output facilities. We will also consider as external predicates those defined in a dif-
ferent module, predicates written in another language, etc. This section deals with the difficulties
which suchexternalpredicates pose during PD.

When an aton¥, such thapred(A) = p/n is an external predicate, is selected during PD,
it is not possible to apply théeriverule in Definition 3.2 due to several reasons. First, we may
not have the code defining'n and, even if we have it, the derivation step may introduce in the
residual program calls to predicates which are private to the mdduléherep/n is defined. In
spite of this, if the executable code for the external predigateis available, and under certain
conditions, it can be possible to fully evaluate calls to external predicates at specialization time.
We useExec(Sys, M, A) to denote the execution of atafon a logic programming systeffys
(e.g.,Ciao or Sicstus) in which the modul& where the external predicatgn is defined has
been loaded. In the case of logic prografagec(Sys, M, A) can return zero, one, or several
computed answers fa¥/ U A and then execution can either terminate or loop. We will use sub-
stitution sequences [CRV02] to represent the outcome of the execution of external predicates. A
substitution sequends either a finite sequence of the fof, . .., 6,,), n > 0, or an incomplete
sequence of the forn¥,,...,0,, 1), n > 0, or an infinite sequenc®,,...,0;,...),i € IN",
wherelN™ is the set of positive natural numbers ahdndicates that the execution loops. We say
that an executionniversally terminateg Exec(Sys, M, A) = (64,...,0,),n > 0.

In addition to producing substitution sequences, it can be the case that the execution of atoms
for (external) predicates produces other outcomes such as side-effects, errors, and exceptions.
Note that this precludes the evaluation of such atoms to be performed at PE time, since those
effects need to be performed at run-time. We say that an expresgwealigblevhen its execu-
tion 1) universally terminates, 2) it does not produce side-effects, 3) it is sufficiently instantiated
to be executed, 4) it does not issue errors and 5) it does not generate exceptions. Clearly, some
of the above properties are not computable (e.g., termination is undecidable in the general case).
However, it is often possible to determine sosudficient condition$SC') which aredecidable
and ensure that, if an atorh satisfies such conditions, thehis evaluable. IntuitivelySC' can
be thought of as a traditional precondition which ensures a certain behaviour of the execution of
a procedure provided they are satisfied. To formalize this, we propose to usethputational
assertions” which are part of the assertion language [PBHOOGjawdPP in order to express
that a certain predicate is evaluable under certain conditions. The following definition introduces

68

the notion of areval annotationas (part of) a computational assertion. We igse® denote the
empty substitution, i.e¥ ¢ ,id(t) = ¢.

Definition 6.1 (eval annotations) Let p/n be an external predicate defined in modile The
assertion- trust comp p(X1,...,.Xn) : SC + eval. inthe code forM is a cor-
rect eval annotatiorior predicatep/n in a logic programming systetsiys if, V6, the expression
6(SC) is evaluable, and

if Exec(Sys, M,0(SC)) = (id) thenf(p(X1, ..., Xn)) is evaluable

One of the advantages of using this kind of assertion is that it makes it possible to deal with new
external predicates (e.g., written in other languages) in user programs or in the system libraries
without having to modify the partial evaluator itself. Also, the fact that the assertions are co-
located with the actual code defining the external predicate, i.e., in the mofl{és opposed

to being in a large table inside the PD system) makes it more difficult for the assertion to be left
out of sync when a modification is made to the external predicate. We believe this to be very
important to the maintainability of a real application or system library.

Example 6.2 The computational assertions @iaoPP for the builtin predicate< include,
among others, the following one:

.- trust comp A =< B : (arithexpr(A), arithexpr(B)) + eval.

which states that if predicate</2 is called with both arguments instantiated to a term of type
arithexpr , then the call is evaluable. The typethexpr corresponds to arithmetic ex-
pressions which, as expected, are built out of numbers and the usual arithmetic operators. The
typearithexpr is expressed in Ciao as a unary regular logic program. This allows using the
underlying Ciao system in order to effectively decide whether a termasitdrexpr or not.

The following definition extends our ASLD semantics by providing a new eXeernal-derive,
for evaluating calls to external predicates. Given a sequence of substitidions. , 6,,), we
defineSubst({61,...,0,)) = {01,...,0,}.

Definition 6.3 (external-derive) Let Sys be a logic programming system. Let
G:HAl,...,AR,...,Ak

be a goal. LetS = (G1AS be a state and AS a stack. LBtbe a computation rule such
that R(G) =Agr with pred(Agr) = p/n an external predicate from modul®/. LetC be a
renamed apart assertion trust comp p(X1,...,Xn) : SC + eval. Then,S" =

69

(G'1 AS'") is external-derivedrom S and C' via R in Sys if: 1) 0 = mgu(Ag, p(X1,..., Xn)),
2) Exec(Sys, M, (SC)) = (id), 3) § € Subst(Exec(Sys, M, Ag)), 4) G' is the goal

O(Ar,..., Ap_1, Apsr, ..., Ap)
5)AS’ = AS.

Notice that, since after computiriexec(Sys, M, Ar) the computation ofi, is finished, there

is no need to push (a copy of); into ASand the ancestor stack is not modified by étéernal-

derive rule. This rule can be nondeterministic if the substitution sequence for the selected atom
Apg contains more than one element, i.e., the execution of external predicates is not restricted to
atoms which are deterministic. The fact thit is evaluable implies universal termination. This

in turn guarantees that in any ASLD tree, given a n6d@ which an external atom has been
selected for further resolution, only a finite number of descendants exist&od they can be
obtained in finite time.

Example 6.4 Consider the assertion in Example 6.2 and the at&masid 7, which are of the
form1=<1, in the ASLD derivation of Fig. 8. Both atoms can be evaluated because

Exec(ciao, arithmetic, (arithexpr(1), arithexpr(1))) = (id)

This is a sufficient condition fdExec(ciao, arithmetic, (1 =< 1)) to be evaluable. Its execution
returnsExec(ciao, arithmetic, (1 =< 1)) = (id).

7 Experimental Results

We have implemented in our PD system the unfolding rule we propose, together with other
variations in order to evaluate the efficiency of our proposal. Our PD system has been in-
tegrated in a practical state of the art compiler which uses global analysis extensively: the
CiaoPP preprocessor [HPBLGO3b]. For the tests, the whole system has been compiled us-
ing Ciao 1.11#275 [BCC04], with the bytecode generation option. All of our experiments have
been performed on a Pentium 4 at 2.4GHz and 512MB RAM running GNU Linux RH9.0. The
Linux kernel used is 2.4.25.

The results in terms of execution time are presented in Table 13. The programs used as
benchmarks are indicated in tBenchcolumn. We have chosen a number of classical programs
for the analysis and PD of logic programs as benchmarks. In order to factor out the cost of
global control, we have used in our experiments initial queries which can be fully unfolded using
homeomorphic embedding with ancestors. The progrdwisor3 s a variation of the advisor

70

Execution Times Relative Speed Up
Bench Relation | Trees | Stacks| MEcce || Relation | Trees || MEcce
advisor3 144 192 106 1240 1.36| 1.81|| 11.70
nrev.80 mem | 106490| 15040| 64970 oo | 7.08 4.32
nrev_38 998 2804 806 4370 1.24| 3.48 5.42
permute? mem 5226| 2800| 34680 oo | 1.87| 12.39
permute6 476 614 336 3530 1.42| 1.83 10.51
query 166 214 116 1290 1.43| 1.84| 11.12
gsort80 mem| 98514| 8970, 71870 oo | 10.98 8.01
gsort33 686 2432 454 4580 1.51| 5.36|| 10.09
rev_80 984 1102 960 1400 1.02| 1.15 1.46
zebra 1562 2276 994 || 186620 1.57| 2.29| 187.75
Overall mem| 7.19 12.25

Table 13: Comparison of Proof Trees Vs.Ancestor Stacks (Execution Time)

program in the DPPD [Leu02] library. The prograopgery andzebra are classical bench-
marks for program analysis. Progragesort 80 andqgsort _33 correspond to the quick-sort
program shown in the paper with pseudo-random lists of natural numbers of length 80 and 33
respectively.nrev 80 andnrev _38 correspond to the well-known naive reverse with lists of

80 and 38 natural numbersev _80 is a reverse program with linear complexity which uses an
accumulator. The initial query is, as before, a list of 80 natural numbers. Fipaliyute is a
permutation program which uses a nondeterministic deletion predicate. It is partially evaluated
w.r.t. a list of 6 and 7 elements respectively. Nonead¥isor3 , query , norzebra can be

fully unfolded using homeomorphic embedding over the full sequence of selected atoms. Also,
nrev and, as seen in the running exammeort are potentially not fully unfolded if the in-

put lists contain repetitions unless ancestors are considered. In the table, the following group
of columns show execution time of the unfolding process with the different implementations of
unfolding:

Relation We refer to an implementation where each atom in the resolvent is annotated with the
list of atoms which are in its ancestor relation, as done in the example in Figure 8.

Trees This column refers to the implementation where the ancestor relations of the different
atoms are organized in a proof tree.

Stacks The columnStacksrefers to our proposed implementation based on ancestor stacks.

71

MEcce We have also measured the time that it takes to process the same benchmarks using
Leuschel's M-Ecce (modular Ecce [Leu02]) system, compiled with the same version of
Ciao and in the same machine.

The last set of columns compare the relative measures of the different approaches w.r.t. the
Stacksalgorithm. Finally, in the last row, labelegdverall, we summarize the results for the dif-
ferent benchmarks using a weighted mean, which places more importance on those benchmarks
with relatively larger unfolding figures. We use as weight for each program its actual unfolding
time. We believe that this weighted mean is more informative than the arithmetic mean, as, for
example, doubling the speed in which a large unfolding tree is computed is more relevant than
achieving this for small trees.

Let us explain the results in Table 13. Times are in milliseconds, measunirigne and
are computed as the arithmetic mean of five runs. Three entries Retla¢gion column contain
the value “mem”, instead of a number, to indicate that the PD system has run out of memory.
For each of these three cases, we have repeated the experiment with the largest possible initial
guery thatRelation can handle in our system before running out of memory. This explains that
the three benchmarks are specialized w.r.t. two different initial queries. As it can be seen in
the column for relative speedugelation is quite efficient in time for those benchmarks it can
handle, though a bit slower than the one based on stacks. However, its memory consumption is
extremely high, which makes this implementation inadmissible in practice. Regarding column
Trees the implementation based on proof trees has a good memory consumption but is slower
thanRelation due to the overhead of traversing the tree for retrieving the ancestors of each atom.
In comparison to M-ecce, the results provide evidence that our proof tree-based implementation
is indeed comparable to state of the art systems, since the execution times are similar in some
cases or even better in others. The last set of columns compares the relative execution times
of the different approaches w.r.t. tl#acksalgorithm which is the fastest in all cases. Indeed,
Stacksis even faster than the implementation based on explicitly storing all ancestors of all atoms
(Relation) while having a memory consumption comparable to (and in fact, slightly better than)
the implementation based on proof trees. The actual speedup ranges from 1.15 in the case of
rev _80 to 10.98 in the case afsort _80. This variation is due to the different shapes which
the proof trees can have for the (derivations in the) SLD tree. In the cas® gfthe speedup
is low since the SLD tree consists of a single derivation whose proof tree has a single branch.
Thus, in this case considering the ancestor sequence is indeed equivalent to considering the whole
sequence of selected atoms. But note that this only happens for binary clauses. It is also worth
noticing that the speedup achieved by 8tacks implementation increases with the size of the
SLD tree, as can be seen in the three benchmarks which have been specialized w.r.t. different

72

gueries. The overall resulting speedup of our proposed unfolding rule over other existing ones is
significant: over 7 times faster than our tree-based implementation.

We have also studied the memory required by the unfolding process (for lack of space details
are in [PAHO5a]). As for the case of execution time, Btacks algorithm presents lower
consumption than any other algorithm for all programs studied. The memory required by
the Relation algorithm precludes it from its practical usage. RegardingStaeksalgorithm,
not only it is significantly faster than the implementation based on trees. Also it provides a
relatively important reduction (1.18 overall, computed again using a weighted mean) in memory
consumption ovefrees which already has a good memory usage.

Altogether, when the results of Table 13 and the memory figures are combined, they pro-
vide evidence that our proposed techniques allow significant speedups while at the same time
requiring somewhat less memory than tree based implementations and much better memory con-
sumptions than implementations where the ancestor relation is directly computed. This suggests
that our techniques are indeed effective and can contribute to making PD a practical tool.

As for future work, we plan to provide additional solutions for the problems involved in
non-leftmost unfolding for programs with extra logical predicates beyond those presented in the
literature [Leu94, EGM97, AHV02, LB02]. In particular, the intensive use of static analysis
techniques in this context seems particularly promising. In our case we plan to take advantage of
the fact that our PD system is integrateddmoPP which includes extensive program analysis
facilities.

73

Part IV
A Program Transformation for Backwards
Analysis of Logic Programs

1 Summary

The input to backwards analysis is a program together with properties that are required to hold
at given program points. The purpose of the analysis is to derive initial goals or pre-conditions
that guarantee that, when the program is executed, the given properties hold. The solution for
logic programs presented here is based on a transformation of the input program, which makes
explicit the dependencies of the given program points on the initial goals. The transformation is
derived from theesultantssemantics of logic programs. The transformed program is then anal-
ysed using a standard abstract interpretation. The required pre-conditions on initial goals can be
deduced from the analysis results without a further fixpoint computation. For the modes back-
wards analysis problem, this approach gives the same results as previous work, but requires only
a standard abstract interpretation framework and no special properties of the abstract domain.

2 Introduction

The input to backwards analysis is a program together with properties that are required to hold
at given program points. The purpose of the analysis is to derive initial goals or pre-conditions
that guarantee that, when the program is executed, the given properties hold. Discussion of the
motivation for backwards analysis is given by King and Lu [KLO2b] and Genaim and Codish
[GCO1]. For example, in a logic program, it is useful to know which instantiation modes of
goals will definitely not produce run-time instantiation errors caused calls to built-in predicates
with insufficiently instantiated arguments [KLO2b], and which calls are sufficiently instantiated
to ensure termination [GCO1]. By contrast, program analysis frameworks usually start with given
goals, and derive properties that hold at various program points, when those goals are executed.
An essential aspect of static analysis using abstractions or approximations is that the analysis
results aresafe Backwards analysis algorithms have distinctive characteristics in this regard.
The final result, namely (a description of) the set of initial goals that guarantee the establishment
of the given properties, should be anderapproximation of the actual set of goals that satisfy
the requirements. Analyses usually yield @rer approximation, this has led investigators to

74

develop special abstract interpretations that give an under approximation.

In this paper we develop a method for using standard abstraction and over-approximation
techniques, and still obtain valid results for backwards analysis. This is achieved by analysing
not the original program, but rather a transformed program that makes explicit the dependencies
between the given properties and initial goals.

The method is presented in terms of (constraint) logic programs. The essential idea is to
transform a given progran® into another program (or rather meta-program) whose semantics
is adependencyelation(A, B), whereB is a call at some specified program point, ahd an
atomic goal forP. Analysis of this transformed program yields an over-approximation of the set
of dependencies betweehand B, which can then be examined to find godlghat guarantee
some required property d@s.

2.1 Making Derivations Observable

The transformation to be presented in Section 3 makes explicit the dependencies of program
points on initial goals. The transformation can be viewed as the implementation of a more ex-
pressive semantics than usual. Standard semantics (such as least Herbrand models, c-semantics,
s-semantics, call and success patterns for atomic goals, and so on) do not record explicitly
the relationship between initial goals and specific program points. r@sidtants semantics
[GLM96, GG94] provides a sufficiently expressive framework.

2.1.1 Resultants Semantics

A resultantis a formulaQ; «— @, whereQ;, Q, are conjunctions of atorks If ¢, is an atom
the resultant is @lause Variables occurring irQ, but not inQ; are implicitly existentially
guantified. All other variables are free in the resultant.

Definition 2.1 OL(P)

Given a definite progran®, the resultants semantic8,,(P) is the set of all resultant$
p(X)0 +— Rsuchthap(X) is a“most general” atom for some predicate ity and« p(X), ..., «—
R is an SLD- derivation (with a computation rule selecting the leftmost atoR).of « p(X)
with computed answe. Such a resultant represents a partial computation of the go&l). We
include the zero-length derivations of fopfiX) « p(X).

1standard terminology and notation for logic programming is used [LIo87al].
2Strictly speaking?r (P) contains equivalence classes of resultants with respect to variable renaming, rather

than resultants themselves.

75

From here on the leftmost computation rule is assumed and the suldsanifl, (P) is omitted.
There is also a fixpoint definition @@ (P); abstract interpretation of the resultants and related
semantics was considered in [CLMO1].

Other standard semantics can be derived as abstractiaf$/of. The subset of elements
p(X)0 «— R € O(P) whereR = true is isomorphic to the s-semantics [BGLM94b], from which
in turn the c-semantics [Cla79] and the least Herbrand model [LIo87a] can be derived by com-
puting all instances and ground instances respectively. Calls generated by a given goal can also
be derived fromO(P). The set of calls that arise from a given atomic gdah a leftmost SLD
derivation is given by the setlls(P, A) = {B10 | H < By,..., B, € O(P),mgu(A, H) = 6}.
We assume as usual thatis standardised apart from the elementgP).

2.2 Backwards Analysis Based on the Resultants Semantics

The possibility of using the resultants semantics for backwards analysis does not seem to have
been considered previously. The relatiBre calls(P, A) can be read backwards; givéh A is
a goal that invokes a calb.

We can capture the essential information about the dependencies between calls and goals
using thedownwards closuref O(P), denotedD*(P). That is,O*(P) is O(P) extended with
all the instances obtained by substitutions for free variables, which are variables occurring in the
resultants’ heads. Then define a relatidycalled thegoal dependencselation for P.

D(A,B)= (A~ B,...,B, € OF(P))

The goal dependency relation for a program is closely related to the binary clause semantics of
Codish and Taboch [CT99] (but is downwards closed with respect to the free variables).

Proposition 2.2 Let P be a program, and be the goal dependency relation féx. Then (i)
if D(A, B) thenB € calls(P, A), and (ii) for all goalsA and B € calls(P, A), there exists a
substitutions such thatD(Ao, B).

Proof 2.3 (i). If D(A, B) thenO(P) containsA’ — B, ..., B/ suchthatd — B,..., B, isan
instance obtained by a substitution, ggyfor the variables inA’. Hencemgu(A, A") = 6 and
B = Bj6, and soB € calls(P, A) (ii) If B € calls(P, A) thenO(P) containsA’ — By, ..., B/,
mgu(A,A’) = o and B = Bjo. The instancedoc «— B,..., B is thus contained in the
downwards closur®*(P) and henceD(Ao, B) holds.

Definition 2.4 Let P be a program and be the goal dependency relation fbr Let© and
be properties of atoms; that is, for every atoin©(A) and ®(A) are either true or false. We

76

say that acall-dependency) — & follows fromD if there does not exisP(A, B) such that
O(A) A =®(B).

Definition 2.5 A property© is calleddownwards closei, wheneve©(A) holds,©(Ay) holds
for all substitutionsp.

Proposition 2.6 Let P be a program, and be the goal dependency relation f6% Suppose
© — & follows fromD, and that© is a downwards closed property. Then for all godlsand
B € calls(P, A), ©(A) — ®(B).

Proof 2.7 Let A be a goal, such thab(A) holds. For allB € calls(P, A), we must establish that
®(B) holds. For each suclB there exists some instaneer such thatD(Ao, B) by Proposition
2.2. ©(Ao) holds sinceo is a downwards closed property. Hen®é¢B) holds since® — ¢
follows fromD.

Proposition 2.6 establishes that we can use the goal dependency relation of a program in order
to establish dependencies between goals and calls, provided that the properties on goals are
downwards closed. The next proposition shows that we can use over-approximations of the goal
dependency relation to deduce dependencies.

Proposition 2.8 Let S be a goal dependency relation and Etbe a relation includings. Then,
if the call-dependency — & follows fromS’, it also follows fromsS.

Proof 2.9 Suppose tha® — & follows fromS’. Then there does not exiBX(A, B) € S’ such
that©(A) A ~P(B). Hence such a pair does not existreither, and s® — & follows froms.

We can also explain how our approach achieves the “under-approximations” of the conditions on
initial goals discussed earlier. Given a call propebtysuppose& — & follows from the goal
dependency relatiof. In an over-approximation db, we will in general be able to establish
dependencie®’ — @, such that®’ — ©. Put another way, the larger the approximation is,
the more chance there is of finding a counterexariffld, B) such thatd(A) A —=®(B) . The
greater the over-approximation, the more restrictive are the propérties which®’ — & can
be shown.

The backwards analysis method can now be summarised in the following way. The concrete
semantics on which we define properties is the goal dependency relatfon a given pro-
gram. Given a program® we define a transformed program containing a predicate whose logical
consequences contain the goal dependency relatidgsing abstract interpretation of the trans-
formed program, we compute approximation@pfwhich can be used to establish dependencies
between goals and calls, as proved in Propositions 2.6 and 2.8.

7

We shall also define an even more refined transformed program, whose semantics is restricted
to a subset of the goal dependency relatidncontaining tuplesD(A, B) where B is a call
occurring at one of a specified program points.

Basing our approach on a downwards closed semantics allows a straightforward approach
to implementation, using for example the framework presented in [GBS95]. Our analyses are
based on the c-semantics [Cla79]. Given a progfartet C(P) be the c-semantics d?, which
contains the set of atomic logical consequenceB.of

3 The Program Transformation

First, the resultants semantics is formulated as a program transformation.

3.1 Resultants Semantics by Program Transformation

A resultantA — (@ is represented as a meta-predicRied, Q). Let P be a program. For each
program clauséf < Ds,..., D, (n > 0) in P we producen clauses.

R(H7 (QaD27 <. 7Dn)> = R(DDQ)
R(Hv (Q7D37 s 7Dn>) — DlaR(D2;Q)

R(H,Q) «— D1,...,D,_1,R(D,,Q)

For each unit clausé/ < true produce a single clausg(H, true) « true. Finally, for each
predicatep we add a claus® (p(z), p(z)) wherep(z) is a most general call to.

In the bodies of the clauses f& there are calls to the original program atoms, D, and
SO on, so it is assumed that the clausesHaare included in the transformed program. These
object program calls could have been writtRD;, true), R(D,, true) respectively sincel is
in the minimal model of the program iff there is a ground instance of a resultant true
in the resultants semantics of the program. If this modification were made, the transformation
corresponds closely to the fixpoint definition of the resultants semantics [GLM96].

We denote byResp the collection of clauses defining the predic&eas shown above, to-
gether withP itself.

Proposition 3.1 Let P be a program. Then for all resultantd «— G € O*(P), R(A,G) €
C(Resp).

Proof 3.2 (Outline). A derivation corresponding to a resultant can be represented as an AND-
OR proof tree. The proof is by induction on the depth of AND-OR trees.

78

Note thatC(Resp) contains more instances of resultants than d9&éP). Specifically, local
variables in resultants are also instantiated, as well as head variables. The transformed program
thus represents an approximation of the dependency relation. In practice this is not a loss in
precision, since clearly no dependencies will be derived between local variables in resultants and
head variables.

3.2 From Resultants to Binary Clauses

The program above can be modified to yield (the downwards closure of) binary clauses [CT99].
Only the first call in the right-hand-side of the resultants is recorded, rather than the whole
resultant. A resultanti; < A, in which bothA; and A, are atoms is called lainary clause In
the binary clause semantics, a resultdnt- By, ..., B, is abstracted tal — B;.

The transformed program corresponding to the binary clauses is as follows. A meta-predicate
B(A;, Ay) represents the binary resultafif < A,.

B(H,Q) < B(D1, Q).
B(H,Q) « D1, B(D», Q).

B(H7Q) — Dl?"'aDn—laB(D'le)‘

As before, we add a clau#¥p(z), p(z)) for each predicate wherep(z) is a most general call to
p. Note that a unit clause iR produces no clauses f#. Let Binp be the transformed program
consisting ofP together with the clauses defining the predidats shown above.

Proposition 3.3 Let P be a program. Then for all resultantd — By,...,B, € O"(P),
B(A, Bl) S C(Blnp)

C(Binp) is an over approximation of the goal dependency relatiorPfoAs was the case for the
resultants prograrResp, the downwards closure of local variables is included in the reldfion
in C(Blnp)

3.3 Transforming with Respect to Program Points

Next, a further simplification is made, when calls at specified program points are to be observed,
rather than all calls. A meta-predicddep(A;, A,) is defined, whose meaning is that there is a
clauseA; — A, in the binary clause semantics, aAgdis a call at one of the specified program
points to be observed.

LetH «— B,,...,B;,..., B, be aclause in a program. Suppose that we wish to observe
calls toB; in this clause body, and determine some property of initial goals which establish some

79

property of B;. In the semantics, only the binary clauses of the ferm- 5; are to be observed:
no other calls other than those &) need be recorded.

To achieve this, we simply modify the binary clause transformation shown above. Specif-
ically, instead of the clauses of forifi(p(z), p(z)), we create base case clauses for the given
program points.

For instance, for the claudé — D, ..., D,,..., D, with one pointD, to be observed, the
following clauses foDep are generated.

Dep(H,D;) <~ D;y...,D;—1 Dep(H,Q) < Dep(D1, Q).
Dep(H7 Q) — D17 Dep(D27 Q)

Dep(H7 Q) — D17 < 'aanla Dep(Dn7Q)

For each body atom to be observed, we add one clause similar to the ohe &trove. We
can see that the only atoms that can appear in the second argunfisspt afe instances ab.
Denote byDep,, the transformed program consisting/@together with the clauses definibgp
as shown above.

Proposition 3.4 Let P be a program, and D,,, ..., D;, } be a set of body atoms from clauses
in P. LetDep, be the transformed program consisting/®ftogether with the clauses defining
Dep as shown above. Then for all resultamts— D,,,... € O*(P), whereD;,, is an instance
of one of the specified atonep(A, D;,) € C(Depp).

The transformation can be refined (with respect to computational efficiency) by having a separate
Dep predicate corresponding to each predicat®imhat is, each occurrence bep(p(t), Q) in
the transformed program is replacedibp,,(, Q).
The transformation can be varied by observing in the second argumBap afot the actual
call, but simply one or more variables from the call. This is illustrated in the next example.

Example 3.5 Let P be the “naive reverse” program. Suppose the call that we wish to observe
is app(Ys,[X],Zs) in the recursive clause faev as shown in Figure 11. For example, we
suppose that we require thatteger(X) holds whenever this call is encountered. However,
the transformation is independent of the actual property. The transformed program, shown in
Figure 11, consists oP together with the clauses definidgev/2 anddapp/3 (representing

the meta-predicateBep,, and Dep,,,,). In place of the callapp(Ys,[X],Zs) in the final
argument, we observe only the variable

Next, we apply standard static analysis techniques to the transformed program.

80

drev([X|Xs],Zs,X) : rev([l,[])-
rev(Xs,Ys). rev([X|Xs],Zs) :-
drev([X]|Xs],Zs,Q) : rev(Xs,Ys),app(Ys,[X],Zs).
drev(Xs,Ys,Q). app([],Ys,Ys).
drev([X|Xs],Zs,Q) : app([X|Xs],Ys,[X|Zs]) :-
rev(Xs,Ys), dapp(Ys,[X],Zs,Q). app(Xs,Ys,Zs).
dapp([X|Xs],Ys,[X|Zs].Q) :-
dapp(Xs,Ys,Zs,Q).

Figure 11: Transformed Naive Reverse Program for Backwards Analysis

3.4 Analysis of the Transformed Programs

The transformed program can be input to an abstract interpretation framework. In the experi-
ments carried out so far, analysis was based on the c-semantics abstracted using pre-interpretations
[GBS95]. A pre-interpretation is a mapping from terms into a (finite) dondaimefined by a
pre-interpretation functiod. For each n-ary function symbg| .J contains a functiod®”™ — D,

written J(f(dy,...,d,)) = d for dy,...,d,,d € D. A mappinga is defined inductively as

a(c) = dwhereJ(c) = d, for O-ary functions:, anda(f(t1,...,t,)) = J(f(a(tr), ..., a(t,)))

for terms with functions of arity greater than 0. An abstract “domain program” is generated
by abstract compilation, in the style introduced by Codish and Demoen [CD93]. A bottom-up
analysis of the domain program yields its c-semantics.”.be a program and(P) its minmal
model, which is identical to the c-semantics in this case. R-€éte the abstract domain pro-
gram for some pre-interpretatioh The safety result is that for all atométy, . .., t,) € C(P),

pla(ty),...,at,)) € C(PY).

Example 3.6 We analyse the above example where we wish to establish the property dependency
of the propertyapp(Ys,[X],Zs) —integer(X) . A simple type domain could be used,
consisting of the typemt, listint, other. We construct an abstract “domain program” as
described in [GBS95], based on the pre-interpretation constructed from the program’s function
symbols and the given types.

[| — listint [int | other] — other [other | other] — other
[listint | other] — other int | int] — other [listint | int] — other
[other | int] — other int | listint] — listint [listint | listint] — other
[

other | listint] — other

The pre-interpretation is encoded as a predicaté2 corresponding to the pre-interpretation.

81

rev(X1,X2):-

[—X1,]] —X2.

rev(X1,X2):-

rev(X3,X4),app(X4,X5,X2),

[X6|X3] —X1,[] —X7,[X6]X7] —X5.
app(X1,X2,X2):-

[—X1.

app(X1,X2,X3):-

app(X4,X2,X5),[X6|X4] —X1,[X6|X5] —X83.
drev(X1,X2,X3):-

rev(X4,X5),[X3|X4] —X1.
drev(X1,X2,X3):-
rev(X4,X5),dapp(X5,X6,X2,X3),
[X7|X4] —X1,[] —X8,[X7|X8] —X6.
drev(X1,X2,X3):-

drev(X4,X5,X3),[X6|X4], —X1.
dapp(X1,X2,X3,X4):-
dapp(X5,X2,X6,X4),[X7|X5] —X1,[X7|X6] —X3.

Figure 12: Domain Program for Backwards Analysis of Naive Reverse

82

app(istint,X1,X1) rev(istintlistint) drev(istint,X1,int)
app(istint,int,other) rev(other,other) drev(ther,X1,int)
appEther,other,other) drev(other, X1 listint)
appEther,int,other) drev(other,X,other)
appEther listint,other)

Figure 13: Least model of program in Figure 12, over domain of simple types

The domain program is shown in Figure 12. Its least model over the pre-interpretation for the
domain of simple types is shown in Figure 13.

3.5 Interpretation of the Analysis Result

Examining the results in Figure 13, we see a number of abstract factsdoer. (There are
no results fordapp derived since no call tapp affects the given program point.) The results
show that wheneverev(X,Y) is called withX a list of integers, theiX is an integer at the
given program point. This is indicated by the fact tldatv(listint, X1, int) is in the model
of the abstract program, and there are no other tuptes(listint, X1,Y) whereY # int. By
contrast, there is a tupkrev(other, X1, int) but there is also a tuplérev(other, X1, listint), SO
although goals of the formev(other,Y) mightestablish the property, they are mpiaranteed
to establish it.

In terms of the discussion in Section 2.2, the goal dependéney ¢ follows from the
abstract relation, wher®(rev(X,Y)) is true if X is a list of integers, an@(app(Ys, [X], Zs)) is
true is this call arises from the specified program point, diglan integer.

Example 3.7 Let P be thequicksortprogram, for which backwards analysis was considered in
[KLO2b]. Suppose we wish to check the calls to the built-in predicatesid <. The intention

is that these predicates require their argument to be ground when called in order to prevent
run-time instantiation errors. The transformedicksortprogram, which includes the original
clauses forquicksort is shown in Figure 14.

3.6 Analysis of Quicksort

We perform groundness analysis on the program in Figure 14. A pre-interpretation over the do-
main elementg andng (standing fogroundandnon-ground is constructed. This is equivalent

83

gsort([],Ys,Ys). dgsort([X|Xs],Ys,Zs,Q) :-

gsort([X|Xs],Ys,Zs) :- dpartition(Xs,X,Us,Vs,Q).
partition(Xs,X,Us,Vs), dgsort([X|Xs],Ys,Zs,Q) :-
gsort(Us,Ys,[X|Ws]), partition(Xs,X,Us,Vs),
gsort(Vs,Ws,Zs). dgsort(Us,Ys,[X|Ws],Q).
partition([],Z,[I.[]). dgsort([X|Xs],Ys,Zs,Q) :-
partition([X|Xs],Z,Ys,[X|Zs]) :- partition(Xs,X,Us,Vs),
X > Z, partition(Xs,Z,Ys,Zs). gsort(Us,Ys,[X|Ws]),
partition([X|Xs],Z,[X|Ys],Zs) :- dgsort(Us,Ys,[X|Ws],Q).
X < Z, partition(Xs,Z,Ys,Zs). dpartition([X|Xs],Z,Ys,[X|Zs],X > 2).

dpartition([X|Xs],Z,Ys,[X|Zs],Q) :-

X > Z, dpartition(Xs,Z,Ys,Zs,Q).
dpartition([X|Xs],Z,[X|Ys],Zs,X <Z).
dpartition([X|Xs],Z,[X|Ys],Zs,Q) :-

X < Z, dpartition(Xs,Z,Ys,Zs,Q).

Figure 14: Transformed Quicksort Program for Backwards Analysis

to the Pbsboolean domain.

|—¢g [glgl —¢g [glngl —ng [ng|gl — ng [ng|ng] — ng

After generating the domain program, the least model is computed and is shown in Figure 15.
(When computing the minimal model we assign the success ngpegsandg<g to the built-
ins).

Examining the results via the relatidgsort , we see that the only calls tsort(X,Y,2)
that guarantee that the required groundness propertesandg<g are those in whickX is
ground. The argumen¥andZ are completely independent of the property. &partition :
note that a variablX1 occurs in both the final argument dpartition and in the second ar-
gument ofpartition . This variable can be instantiated §wr ng. Thus the second argument
of partition has to be ground to establighrg andg<g. In addition, the arguments of and
< are ground if either the first argumentgsrtition or the third and fourth are ground. These
are the same results reported by King and Lu [KLO2b], summarisegas(X; V (X3 A Xy))
in the notation of BS, whereX,, ..., X, are the arguments @lartition

3.7 Computing the Goal Conditions

For examples such as the ones discussed above, the required properties of the input goals that
guarantee the observed property were derived informally by examining the abstract tuples. We

84

partition (9,X1,0,9) gsort (g,X1,X1)
gsort (ng,ng,g9)
gsort (ng,ng,ng)

dpartition (ng,X1,ng,X2,g<X1) dgsort (ng,X1,X2,ng>ngQ)

dpartition (ng,X1,9,X2,g<X1) dgsort (ng,X1,X2,ng>Q)
dpatrtition (ng,X1,ng,X2,ng<X1) dgsort (ng,X1,X2,g>ng)
dpartition (9,X1,ng,X2,g<X1) dgsort (ng,X1,X2,ng<ng)
dpartition (9,X1,0,X2,g<X1) dgsort (ng,X1,X2,ng<Q)
dpatrtition (ng,X1,X2,ng,g>X1) dgsort (ng,X1,X2,g<ng)
dpartition (ng,X1,X2,9,g>X1) dgsort (g,X1,X2,9>g)
dpartition (ng,X1,X2,ng,ng>X1) dgsort (g,X1,X2,9<Q)
dpartition (9,X1,X2,ng,g>X1) dgsort (ng,X1,X2,9>0)
dpatrtition (9,X1,X2,0,0>X1) dgsort (ng,X1,X2,g9<Q)

Figure 15: Least model of program in Figure 14, over groundness domain

now explain how to do this systematically.
Let Dep(A, B) be the abstract dependency relation returned by the analysis, which is a finite
set of tuples. Letb be the property required in the call; that is, we seek cBliwhere®(B)
is true. Consider the sét = {A | Dep(A, B) A ®(B)}. S is the set of calls thapossibly
establishe®(B). Now consider candidate propert®ghat hold for all elements of. For each
such property, check whether there exiBtp (A, B) such thato(A) and—®(B). If there is,
the candidate property is eliminated. For all other candidate properties, we have established that
© — & follows from the abstract dependency relation.
We illustrate this process for thgiicksort example. Consider the relatialgsort shown
in Figure 15. The required property is thifg > g) and®(g < g) are true andb is false for all
other arguments of and<. The tuples in the abstradgjsort relation in which® holds are
the following.
dgsort (g,X1,X2,0>0)
dgsort (g,X1,X2,9<Q)
dgsort (ng,X1,X2,9>0)

dgsort (ng,X1,X2,9<Q)
A candidate property is then that the first argumengsbrt can be eitheg or ng, to

establish the required property. However, we can search the relation to find a counterexample to
the candidate property that the first argumemntgs such as dgsom@,X1,X2,ng<g). However

85

we can find no counterexample to the property that the first argumeant ldence we have
established thaisort(¢,X1,X2) — &.

3.8 The Relative Pseudo-Complement

Domains which possess a relative pseudo-complement allow a more direct method. Giacobazzi
and Scozzari [GS98] identified a property of abstract domains that allows analyses to be re-
versible. This property is central to the approach of King and Lu [KLO2b, KLO3]. The key prop-
erty is that the domain possesseaslative pseudo-complemesperator. We quote the definition
as given by King and Lu. LeD be an abstract domain with meet and join operatiodLl.
Letd;, d, be elements oD. The pseudo-complement &f relative tod,, denotedi; = d is the
greatest element whose meet withis less thanl,: thatis,d; = dy = U{d € D | dMNd; C ds}.

To take Example 3.7 again, trggandng astrue andfalse respectively. The set of abstract tu-
ples for saydpartition in Figure 15, can be rewritten as the following boolean expression, in
the domain Bs, which possesses a relative pseudo-complement operation;(B&rg) means
X>YANX<Y).

dpartition(Xy, Xo, X3, X4, q(X5, X)) =

(Xo = Xe) A (X1 AX3AX5) V(X1 AX3AXs) V(X AX3AX5)V
(X1 AXsAXs) V(XTI AX3AXs) V(X AXGAXs) V(X1 A Xy A X5)V
(XiAXGAX) V(XTAXGAXs) V(XA XA X5))

The pseudo-complement of the above boolean expression relative to the desired property
X5 A X givesXs A (X7 V (X3 A Xy)), which is equivalent to the result derived in Example 3.7,
and the same as that reported by King and Lu [KLO2b] for this predicate.

4 Related Work

The most closely related work is that of King and Lu [KLO2b, KL03], who describe a method
for backwards analysis of logic programs, and report results for the domain of ground and non-
ground modes. Their results have all been reproduced by the technique shown above, but a formal
proof of equivalence has not yet been constructed. Their approach requires the construction of
an abstract interpretation which under-approximates the concrete semantics. This requires the
definition of a universal projection operator, and requires a condensing domain possessing a
relative pseudo-complement operator. The fixpoint computation uses a greatest fixpoint rather
than the standard least fixpoint. Our approach appears to be more flexible in the sense that a

86

wide variety of domains can be used for the analysis, not only condensing domains. The relative
pseudo-complement, if it exists, can be used in our approach to extract the result from the abstract
program, but is not essential.

Mesnardet al. [Mes96, MNO1] have also performed termination inference, which is a form
of backwards analysis.Their approach uses a greatest fixpoint, and in this respect seems to align
more with the approach of King and Lu.

Thebinary clausesemantics of Codish and Taboch [CT99] was used to make loops observ-
able, by deriving an explicit relationship between a calls and its successor calls. The transforma-
tion presented here can be targeted to observe any program points of interest, not only loops, but
the spirit of the approach is the same. In later work based on binary clause semantics, Genaim
and Codish [GCO01] perform termination inference which involves backwards analysis. However,
they use the framework of King and Lu for the backwards analysis, rather than the binary clause
semantics.

Binary clause semantics is derived from the more general and expressive resultants semantics
[GLM96, GG94]. We do not know of any implemented applications of resultants semantics, apart
from the present work and that of [CT99, GCO01], nor any previous suggestion that resultants
semantics could form the basis for backwards analysis.

The approach of transforming programs to realise non-standard semantics is also followed
in the query-answetransformations, which include magic-set transformations and its relations
[DR94, BMSUS86]. There, the aim is to simulate a top-down goal-directed computation, in a
bottom-up semantic framework. A related approach is advocated by Codish and Sgndergaard
[CSO02]. Different semantics for logic programs can be represented by meta-interpreters, which
are also written as logic programs. Codish and Genaim’s implementation of the binary semantics
[GCO1] follows this style.

5 Conclusion

A method for backwards analysis of logic programs has been presented. Given a program, and
one or more specified body calls, a program transformation is performed. In the transformed
program, the dependencies between the selected calls and initial goals is made explicit. Anal-
ysis of the transformed program using abstract interpretation yields an over-approximation of
the dependency relation, and it was proved that dependencies could safely be derived from the
approximation.

In contrast to previous work on backwards analysis, our approach requires no special prop-
erties of the abstract domain, nor any non-standard operations such as universal projection, or

87

a greatest fixpoint computation. This is put forward as an advantage of our approach, since
implementations can be based on existing abstract interpretation tools.

Experimental results carried out so far indicate that this method is of similar complexity
to other reported work on backwards analysis, and gives equivalent precision at least over the
Boolean domain Bs. A detailed analytical comparison is difficult due to the great differences
between the two approaches. Itis indeed quite surprising that two such different algorithms yield
the same results in experiments carried out so far.

Our use of downwards closed semantics does not seem to be essential to our general ap-
proach, but does allow a simpler analysis and implementation.

88

PartV

Partial deduction of real-life CLP
programs containing impure predicates
using backwards analysis

1 Summary

Partial deduction is a program transformation technique which specializes a program w.r.t. its
static data. If the program contaimspurepredicates, it is known that unfolding steps for atoms
which are not leftmost is problematic. Impure predicates include those which may raise errors,
exceptions or side-effects, external predicates whose definition is not available, etc. Existing
proposals allow obtaining correct residual programs while still allowing non-leftmost unfolding
steps, but at the cost of accuracy: bindings and failure are not propagated backwards to predicates
which are classified as impure. Motivated by recent developments iaitlevardsanalysis of

logic programs, we propose a partial deduction algorithm which can handle impure features
and non-leftmost unfolding in a more accurate way. We outline by means of examples some
optimizations which are not feasible using existing partial deduction techniques. We argue that
our proposal goes beyond existing ones and is a) accurate, since the classification of pure vs
impure is done at the level of atoms instead of predicates, b) flexible, as the user can annotate
programs using assertions, which can guide the partial deduction process, and c) automatic, since
backwards analysis can be used to automatically infer the required assertions. Our approach has
been implemented in the context ©faoPP , the abstract interpretation-based preprocessor of
theCiao logic programming system.

2 Background

We assume some basic knowledge on the terminology of logic programming. See for ex-
ample [LIo87b] for details. Very briefly, aatom A is a syntactic construction of the form
p(ti,...,t,), wherep/n, with n > 0, is a predicate symbol and, ..., t, are terms. The
function pred applied to atomA, i.e., pred(A), returns the predicate symbpfn for A. A
clauseis of the formH «— B where its head? is an atom and its body is a conjunction

of atoms. Adefinite programs a finite set of clauses. goal (or query) is a conjunction of

89

atoms. The concept afomputation ruleis used to select an atom within a goal for its eval-
uation. The operational semantics of definite programs is based on derivations. Consider a
programP and a goalG of the form«— A,,..., Ag,..., A;. Let R be a computation rule
such thatR(G) =Ag. LetC = H « By,...,B, be a renamed apart clause in program

P. Thené(A,,...,Ar_1,B1,..., Bm, Ary1, ..., Ay) is derivedfrom G and C via R where

0 = mgu(Ag, H). An SLD derivationfor P U {G} consists of a possibly infinite sequence

G = Gy, Gy, Gy, ... Of goals, a sequencg,, (s, . . . of properly renamed apart clausesfgfand

a sequencé,, 6, ... of mgus such that eadfi;; is derived fromG; andC;,; usingf;,;. A
derivation step can be non-deterministic whég unifies with several clauses iR, giving rise

to several possible SLD derivations for a given goal. Such SLD derivations can be organized in
SLD trees A finite derivationG = Gy, Gy, G, ..., G, is calledsuccessfuilf G,, is empty. In

that case¢) = 0,0, ...46, is called the computed answer for g@gal Such a derivation is called
failed if it is not possible to perform a derivation step with,. We will also allowincomplete
derivations in which, though possible, no further resolution step is performed. We refer to SLD
resolution restricted to the case of leftmost unfolding as LD resolution.

Partial Deduction (PD) [LS91, Gal93] is a program transformation technique which special-
izes a program w.r.t. part of its known input data. Hence sometimes also known as program
specialization. Informally, given an input program and a set of atoms, the PD algorithm applies
an unfolding rulein order to compute finite (possibly incomplete) SLD trees for these atoms.
This process returns a setrmekultants(or residual rules), i.e., a residual program, associated to
the root-to-leaf derivations of these trees. Each unfolding step during partial deduction can be
conceptually divided into two steps. First, given a geald, ..., Ag, ..., A; the computation
rule determines the selected atotp. Second, it must be decided whether unfolding (or evalu-
ation) of Ay is profitable It must be noted that the unfolding process requires the introduction
of this profitability test in order to guarantee that unfolding terminates. Also, unfolding usually
continues as long as some evidence is found that further unfolding will improve the quality of
the resultant program.

Most of real-life Prolog programs use predicates which are not defined in the program (mod-
ule) being developed. We will refer to such predicatesxsrnal Examples of external predi-
cates are traditional “built-in” predicates such as arithmetic operationsi&?y.,, <, =<, etc.),
basic input/output facilities, and predicates defined in libraries. We will also consider as external
predicates those defined in a different module, predicates written in another language, etc. The
trivial computation rule which always returns the leftmost atom in a goal is interesting in that
it avoids several correctness and efficiency issues in the context of PD of full Prolog programs.
Such issues are discussed in depth throughout this extended abstract. When a (leftmo$g) atom
is selected during PD, withred(Ar) = p/n being an external predicate, it may not be possible

90

to unfold A for several reasons. First, we may not have the code definingnd, even if we

have it, unfolding4 z may introduce in the residual program calls to predicates which are private
to the module where thg/n is defined. Also, it can be the case that the execution of atoms
for (external) predicates produces other outcomes such as side-effects, errors, and exceptions.
Note that this precludes the evaluation of such atoms to be performed at PD time, since those
effects need to be performed at run-time. In spite of this, if the executable code for the external
predicatep/n is available, and under certain conditions, it can be possible to fully evalyate

at specialization time. The notion e¥aluableatom [PAHO5b] captures the requirements which
allow executing external predicates at PD time. Informally, an atom is evaluable if its execution
satisfies four conditions: 1) it universally terminates, 2) it does not produce side-effects, 3) it does
not issue errors and 4) it is binding insensitive. We es&(E') to denote that the expressidh

is evaluable. We will discuss all these properties in depth in Section 4.

Since some of the above properties are not computable (e.g., termination is undecidable in the
general case), [PAHO5b] proposes to deternsiniicient condition§SC) which aredecidable
and ensure that, if the atom satisfies such conditions, then it is evaluable. To formalize this,
“computationalassertions” —which are part of the assertion language [PBHOOLjiawdPP
[HPBLGO5]- express that a certain predicate is evaluable under certain conditions.

The following definition recalls the notion of aval annotationfrom [PAHO5b] as (part
of) a computational assertion. We usgec(Sys, M, A) to denote that the execution of atom
A on a logic programming systesiys (e.g.,Ciao or Sicstus) in which the modul&/ where
the external predicate/n is defined has been loaded. In the case of logic programs, the value
of Exec(Sys, M, A) is a pair consisting of a possibly empty set of computed answer&/for
A together with and indicator of whether the computation terminates or (possibly) loops. In
particular we say thaExec(Sys, M, A) trivially succeedswritten astriv_suc, when it returns a
set containing only the empty computed answer and a termination indicator.

Definition 2.1 (eval annotations) [PAHO5b] Letp/n be an external predicate defined in mod-
ule M. The assertion = trust comp p(X1,...,Xn) : SC + eval. ” in the code
for M is a correcteval annotatioffior predicatep/n in a logic programming systeiys if, vV A
st A=0(p(X1,...,Xn)),

1. eval(#(SC)), and

2. Exec(Sys, M,0(S(C)) trivially succeeds= eval(A).

91

3 Non-Leftmost Unfolding in Partial Deduction

It is well-known thatnon-leftmostunfolding is essential in partial deduction in some cases for
the satisfactory propagation of static information (see, e.g., [LB02]). Informally, given a goal
— Ay, ..., A,, itcan happen that the profitable criterion does not hold for the leftmost dtom

For example, ifA4; is an atom for an internal predicate, it might not be profitable to select
because 1) unfolding; endangers termination (for examphke, may homeomorphically embed
[Leu98] some selected atom in its sequence of covering ancestors), or 2) tha atimifies with
several clause heads (for example, some unfolding rules do not unfold non-deterministically for
atoms other than the initial query). f; is an atom for an external predicate, it can happen that
Ay is not sufficiently instantiated so as to be executed at this moment. It may nevertheless be
profitable to unfold atoms other than the leftmost. Therefore, it can be interesting to define a
computation rule which is able to detect the above circumstances and “jump over” atoms whose
profitability criterion is not satisfied in order to proceed with the specialization of another atom
in the goal as long as it is correct.

3.1 Non-Leftmost Unfolding and Impure Predicates

For pure logic programs without builtins, non-leftmost unfolding is safe thanks to the indepen-
dence of the computation rule (see for example [LIo8#b]ynfortunately, non-leftmost unfold-

ing poses several problems in the contextudif Prolog programs witimpurepredicates, where
such independence does not hold anymore.

For instanceyar/l is animpurepredicate since, under LD resolutiorgr(X),X=a suc-
ceeds with computed answéfawhereas<=a,var(X) fails. They are not equivalent since the
independence of the computation rule does not hold. Thus, given the-goadr(X),X=a |,
if we allow the non-leftmost unfolding step which binds the variakl¢he goal will fail, either
at specialization time or at run-time, whereas the initial goal succeeds in LD resolution. The
above problem was early detected [Sah93] and it is known as the problesclqgiropagation of
bindings In addition to this, it is also problematic theckpropagation of failurén the presence
of impure predicates. There are atomdor impure predicates such that A, fail behaves
differently from «— fail. For instance, we have to ensure that failure to the right of a call to
write does not prevent the generation of the residual cailktice nor its execution at runtime.

There are satisfactory solutions in the literature (see, e.g.,[Leu94, EGM97, AHV02, LB02])
which allow unfolding non-leftmost atoms while avoiding the backpropagation of bindings and

13Although safe, non-leftmost unfolding presents problems with pure programs too since it may introduce extra
backtracking over the atoms to the left. We are not concerned with such efficiency issues here.

92

pure |
eval
’ predicate sideff_free error_free bind_ins \ termin
var(X) true true nonvar(X) true
nonvar(X) true true nonvar(X) true
write(X) false true ground(X) true
assert(X) false nonvar(X) ground(X) true
AisB true arithexp(B) true true
A<=B true arithexp(Anarithexp(B) | ground(A)y\ground(B) true
A>=B true arithexp(Anarithexp(B) | ground(Ay\ground(B) true
ground(X) true true ground(X) true
A=B true true true true
append(A,B,C) true true true list(A) Vvlist(C)

Table 14: Purity conditions for some predefined predicates.

failure. Basically, the common idea is to represent explicitly the bindings by using unification
[Leu94] or residual case expressions [AHV02] rather than backpropagating them (and thus ap-
plying them onto leftmost atoms). This guarantees that the resulting program is correct, but it
definitely introduces some inaccuracy, since bindings (and failure) generated during unfolding of
non-leftmost atoms are hidden from atoms to the left of the selected one. It should be noted that
preventing backpropagation by introducing equalities can be a bad idea from the performance
point of view too (see, e.g., [VD88]). Thus, these solutions should be applied only when it is
really necessary, since backpropagation can 1) lead to early detection of failure, which may result
in important speedups and 2) make the profitability criterion for the leftmost atom to hold, which
may result in more aggressive unfolding. Thus, if backpropagation is disabled, some interesting
specializations can no longer be achieved.

It should also be noted that the backpropagation problem is very much related to that of
reorderingof atoms within a goal. Such reordering transformation can be of interest for achiev-
ing powerful optimizations like tupling, for effectively handling the conjunction of atoms like
conjunctive PD [DSGJ99] and for the use of efficient stack-based unfolding rules [PAHO5b].

93

4 From Impure Predicates to Impure Atoms

As mentioned in Section 3.1 above, existing techniques for PD allow the unfolding of non-
leftmost atoms by combining a classification of predicates into pure and impure with techniques
for avoiding backpropagation of binding and failure in the case of impure predicates. In order to
classify predicates as pure or impure, existing methods [LB02] are based on simple reachability
analysis. As soon as an impure predigatan be reached from a predicat@lsog is considered
impure and backpropagation is not allowed. In other words, impurity is defined at the level
of predicates. Unfortunately, this notion of impurity quickly expands from a predicate to all
predicates which use it.

Our work improves on existing techniques by providing a more refined notion of impurity.
Rather than being defined at the level of predicates, we define purity at the level of individual
atoms. This is of interest since it is often the case that some atoms for a predicate are pure
whereas others are impure. As an example, the aten(X) is impure (binding sensitive),
whereas the atomar(f(X)) is not (it is no longer binding sensitive). This alloweducing
substantially the situations in which backpropagation has to be avoided. In the following, we
characterize three different classes of impurities: binding-sensitiveness, errors and side effects.

4.1 Binding-sensitiveness

A binding-sensitivgoredicate is characterized by having a different success or failure behaviour
under leftmost execution if bindings are backpropagated onto it. Examples of binding-sensitive
predicates arear/1, nonvar/l, atom/1, number/1, ground/l, However,

rather than considering all atoms for such predicates as binding-sensitive, we propose to define
binding sensitiveness at the atom level. The reason is that the fact that some atoms for the
predicates above are indeed binding sensitive does not necessarily mean that all atoms for such
predicates are. As we have seen above, the atorqf (X)) is certainly not binding sensitive

since its truth value is not changed by applying any substitution, i.e., the atom will not succeed
in any context.

Definition 4.1 (binding insensitive atom) An atomA is binding insensitivedenotedind_ins(A),
if ¥ sequence of variablgs(y, . .., Xx) s.t. X; € vars(A),i = 1,..., k andV sequence of terms
(t1,...,tx), thegoak— (X; = t1,..., X} = ty, A) succeeds in LD resolution with computed an-
swero iff the goal<— (A, X; =t4,..., X} = 1) also succeeds in LD resolution with computed
answero.

Let us note that in the definition above we are only concerned with successful derivations, which
we aim at preserving. However, we are not in principle concerned about preserving infinite

94

failure. For examples— (A, X = t) and— (X = ¢, A) might have the same set of answers but a
different termination behaviour. In particular, the former might have an infinite derivation under
LD resolution while the second may finitely fail. More on this in Section 6.

If the atom contains no variables, binding insensitiveness trivially holds. The following
proposition directly follows from the definition of binding insensitive atom.

Proposition 4.2 Let A be a ground atom. TheA is binding insensitive.

In spite of its simplicity, Proposition 4.2 can be quite useful in practice, since it may allow
considering a good number of atoms as binding insensitive even if the predicate is in principle
binding sensitive. All this without the need of sophisticated analyses.

4.2 Side-effects

Predicate for which 0(p(X1, ..., Xn)), fail and fail are not equivalent in LD resolution are
termed as Side-effectsin [Sah93].

Definition 4.3 (side-effect-free atom)An atomA is side-effect freedenotedsideff_free(A), if
the run-time behaviour ot A, fail is equivalent to that of~ fail.

Since side-effects have to be preserved in the residual program, we have to avoid any kind of
backpropagation which can anticipate failure and, therefore, hides the existing side-effect.

4.3 Run-Time Errors

There are some predicates whose call patterns are expected to be of certain type and/or instanti-
ation state. If an atom does not correspond to the intended call pattern, the executidmailf

issue someun-time errors Since we consider such run-time errors as part of the behaviour of

a program, we will require that partial deduction produces program whose behaviour w.r.t. run-
time errors is identical to that of the original program, i.e., run-time errors must not be introduced
to nor removed from the program.

For instance, the predefined predicai@ requires its second argument to be an arithmetic
expression. If that is detected not to be the case at run-time, an error is issued. Clearly, back-
propagation is dangerous in the context of atoms which may issue run-time errors, since it can
anticipate the failure of a call to the left f/2 (thus omitting the error), or it can make the
call tois/2 not to issue an error (if there is some free variable in the second argument which
gets instantiated to an arithmetic expression after backpropagation). The following definition
introduces the notion adrror freeatom.

95

Definition 4.4 (error-free atom) An atomA is error-free denotecerror_free(A), if the execu-
tion of A does not issue any error.

Somewhat surprising this condition for PD corresponds to that used in [KL0O2a] for computing
safe call patterns. Unfortunately, the way in which errors are issued can be implementation
dependent. Some systems may write error messages and continue execution, others may write
error messages and make the execution of the atom fail, others may halt the execution, others
may raise exceptions, etc. Though errors are often handled using side-effects, we will make a
distinction between side-effects and errors for two reasons. First, side-effects can be an expected
outcome of the execution, whereas run-time errors should not occur in successful executions.
Second, it is often the case that predicates which contain side-effects produce them for all (or
most of) atoms for such predicate. However, predicates which can generate run-time errors can
be guaranteed not to issue errors when certain preconditions about the call are satisfied, i.e., when
the atom is well-moded and well-typed. A practical implication of the above distinction is that
simple, reachability analysis will be used for propagating side-effects at the level of predicates,
whereas a more refined, atom-based classification will be used in the case of error-freeness.

4.4 Pure and Evaluable Atoms

Given the definitions of binding insensitive, side-effect free, and error free atoms, it is useful to
define aggregate properties which summarize the effect of such individual properties.

Definition 4.5 (pure atom) An atomA is pure denotecpure(A), if

bind_ins(A) A error_free(A) A sideff_free(A)

In order to provide a precise definition of evaluable atom, we need to introduce first the notion
of terminating atom.

Definition 4.6 (terminating atom) An atomA isterminating denotedermin(A), if the LD tree
for — A is finite.

The definition above is equivalent tmiversal terminationi.e., the search for all solutions to the
atom can be performed in finite time.

Definition 4.7 (evaluable atom) An atomA is evaluabledenoteceval(A), if pure(A)Atermin(A).

96

The notion of evaluable atoms can be extended in a natural way to boolean expressions composed
of conjunction and disjunctions of atoms.

Table 14 presents sufficient conditions which guarantee that the atoms for the corresponding
predicates satisfy the purity properties discussed above, vemghexp(X)stands forX being
an arithmetic expression. For example, unification is pure and evaluable, whereas the library
predicateappend/3 is pure but only evaluable if either the first or third argument is bound to a
list skeleton.

5 Assertions about Purity of Atoms

In this section, we provide the concrete syntax of the assertions we propose to use to state the
conditions under which atoms for a predicate are pure. Our assertions may isalfideent
conditions(SC') which aredecidableand ensure that, if the atom satisfies such conditions, then
it meets the property.

We say that the execution of an atotnfor p/n on a logic programming systesys (e.g.,
Ciao or Sicstus) in which the modul/ (where the external predicate¢n is defined) has been
loadedstrivially succeedsdenoted bytriv_suc(Sys, M, A), when its execution terminates and
succeeds only once with the empty computed answer, that is, it performs no bindings.

Definition 5.1 (binding insensitive assertion)Let p/n be a predicate defined in moduld .
The assertion = trust comp p(X1,...,Xn) : SC + bind.ins. ” in the code for
M is a correctbinding insensitive assertidior predicatep/n in a logic programming system
Sysif, VAst.A=0(p(Xy,...,X,)),

1. eval(d(SC)), and
2. triv_suc(Sys, M, 0(SC)) = bind_ins(A).

The fourth column in Fig. 14 comprises the information stated in several binding insensitive as-
sertions for a few predefined builtins@iao . In particular, this column represents the sufficient
conditions GC in Def. 5.1) for the predicates in the first colump(X1, ..., Xn) in Def. 5.1).

For instance, the predicate is B is bind_ins if ground(B).

Definition 5.2 (error-free assertion) Let p/n be a predicate defined in modulé. The asser-
tion “:- trust comp p(X1,...,.Xn) : SC + error_free. ” in the code forM is a
correct error-free assertiofor predicatep/n in a logic programming systerfiys if, vV A s.t.
A=0(p(Xy,..., X)),

97

1. eval(#(SC)), and

2. triv_suc(Sys, M, 0(SC)) = error_free(A).

For instance, the SC for predicag#?2 states that the second argument is an arithmetic expres-
sion. This condition guarantees error free calls to predisé2e .

Definition 5.3 (side-effect free assertion)Let p/n be an external predicate defined in module
M. The assertion- trust comp p(X1,...,.Xn) + sideff_free. in the code forM is

a correctside-effect free assertidor predicatep/n in a logic programming systeisiys if, V6,
the execution of(p(X1, ..., Xn)) does not produce any side effect.

In contrast to the two previous assertions, side-effect assertions are unconditional, i.e., their SC
always takes the value true. For brevity, both in the text and in the implementation we omit the
SC from them.

Example 5.4 The following assertions are predefinedGrao for predicateground/1

.- trust comp ground(X) : true + error_free.
.- trust comp ground(X) + sideff free.
.- trust comp ground(X) : ground(X) + bind_ins.

An important thing to note is that rather than using the ovenal assertions of [PAHO5b],
we prefer to have separate assertions for each of the different properties required for an atom to
be evaluable. There are several reasons for this. On one hand, it will allow us the use of separate
analysis for inferring each of these properties (e.g., a simple reachability analysis is sufficient for
unconditional side-effects while more elaborated analysis tools are needed for error and bind-
ing sensitiveness). Also, it will allow reusing such assertions for other purposes different from
partial deduction. For instance, side-effect and error free assertions are also interesting for other
purposes (like, e.g., for program verification, for automatic parallelization) and are frequently
required by programmers separately. Finadlyal assertions include termination which is not
required for ensuring correctness w.r.t. computed answers (see Sect. 4).

6 Automatic Inference of Assertions by Backwards Analysis

Recent developments in backwards analysis of logic program [HKLO4, Gal04, KLO2a] have
pointed out novel applications in termination analysis and inference of call patterns which are
guaranteed not to produce any runtime error. In this section, we outline a new application of

98

\
Backwards Program w/ Partial Partial
Analyzer Assertions Deducer Evaluation

" A
Predefined
Assertions [Entry Goal |

Figure 16: Backwards Analysis in Non-leftmost Partial Deduction

backwards analysis for automatically inferring binding insensitive, error free and side-effect free
annotations which are useful to this purpose. Automatically figuring out when a substitution
can be safely backpropagated onto a call whose execution reaches an impure predicate has been
considered a difficult challenge and, to our knowledge, no accurate, satisfactory solution exists.
Fig. 16 illustrates the PD scheme based on assertions and backwards analysis that we have im-
plemented irCiaoPP . Initially, given aProgram and a set oPredefined Assertions
for the external predicates, tiBackwards Analyzer obtains aProgram w/ Assertions
which includeserror_free, sideff_free andbind_ins assertions for all user predicates. Notice
that this is a goal-independent process which can be started in our system regardless PD being
performed or not. Afterwards, and independently from the backwards analysis process, the user
can decide to partially evaluate the program. To do so, an initial call has to be provided by means
of anEntry Goal . A Partial Deducer is executed from such program and entry with the only
consideration that, whenever a non-leftmost unfolding step needs to be performed, it will take
into account the information available in the generated (and predefined) assertions.

6.1 The Backwards Analyzer

Regarding the analyzer, we rely on the backwards analysis technique of [Gal04]. In this ap-
proach, the user first identifies a number of properties that are required to hold at body atoms
at specific program points. A meta-program is then automatically constructed, which captures
the dependencies between initial goals and the specified program points. This meta-program is
based on theesultantssemantics of logic programs, in which the meaning of a program is the set

of all pairsA, R whereA = A’f and there is an LD derivation from A’ to — R with computed
answerd. An abstraction of the resultants semantics is then defined, containing allAgaifs

such thatd = A’6 and there is an LD derivation from A’ to <~ B, By, ..., B,, with computed
answerd, where B corresponds to one of the specified program points. The semantics is cap-

99

:- module(main_prog,[main/2],[]).
;- use_module(comp,[long_comp/2],[]).

main(X,Y) :- problem(X,Y), q(X).
= T
problem(a,Y):- ground(Y),long_comp(a,Y). comp ’term _typing

problem(b,Y):- ground(Y),long_comp(b,Y).

q(a).
Figure 17: Example Program

tured by a meta-program defining a meta-predidéa2e, such thatd(A,B) is a consequence of

the meta-program whenever a pdirB as defined above exists. Standard abstract interpretation
techniques are applied to the meta-program; from the results of the analysis, conditions on initial
goals can be derived which guarantee that all the given properties hold whenever the specified
program points are reached.

As it appears in the figure, the analyzer starts from a program and an initial set of assertions
which state the properties of interest defined in Sect. 5 for the external predicates. Essentially,
the analysis algorithm propagates this information backwards in order to get the appropriate
assertions for all predicates. Let us illustrate the idea by means of an example.

Example 6.1 Consider the predefined assertionsGrao for predicateground/1 of Ex. 5.4
and theCiao program in Fig. 17 whose modular structure appears to the riggrtm _typing

is the name of the module @iao whereground/1 is defined (and thus where the assertions
forground/1 are). Predicatdong _comp/2 is externally defined in modut®mp where also
these predefined assertions for it are:

.- trust comp long_comp(X,Y) : true + error_free.
.- trust comp long_comp(X,Y) + sideff_free.
.- trust comp long_comp(X,Y) : ground(Y) + bind_ins.

From the program and the available assertions (fumg _.comp/2 andground/1), the back-
wards analyzer infers the following assertions fwoblem/2

.- trust comp problem(X,Y) : true + error_free.
.- trust comp problem(X,Y) + sideff_free.
.- trust comp problem(X,Y) : ground(Y) + bind_ins.

100

Backwards analysis of the above program, with analysis over a simple domain with elements
ground and nonground , yields the following dependencies, represented using the meta-
predicated(A,B) described above.

d(problem(X,ground), long_comp(ground,ground)).
d(problem(X,nonground), long_comp(ground,nonground)).

These facts imply that whenever a galbblem(X,Y) is made wherg ' is ground, any subse-
guent assertions concerning binding insensitivity are satisfied; specifically, cisgo_comp(X,Y)
satisfy the sufficient condition for being binding insensitive,gm@und(Y) . Hence the last as-
sertion (binding insensitivity) oproblem(X,Y) is established. The analysis results &2
also clearly establish first two assertions problem(X,Y) , with conditiontrue , since any
call to problem(X,Y) is guaranteed to satisfy all the (trivial) error-freeness and side-effect-
freeness assertions.

The last assertion indicates that calls performegbtoblem(X,Y) with the second argu-
ment being ground are binding insensitive. This will be very useful information for the special-
izer.

6.2 The Partial Deducer

In our system, we use a standard partial deducer based ohsamvable-preserving unfolding
rule defined as follows.

Definition 6.2 (observable-preserving unfolding rule) We say that an unfolding rule abservable-
preservingf, for any goal<— A;,..., Ag, ..., A,, it always selects an atomy for unfolding
such that all atomsl,, ..., Ar_, are pure.

The fact that our system relies on the assertions for purity defined in Section 5 allow us to
ensure that our PD schemecisrrectin the sense that the partially evaluated program preserves
the runtime behaviour (or observables) of the original one w.r.t. the predefined assertions. Of
course, when itis not possible to perform an observable preserving selection, our implementation
resorts to the usual solution which consists in hiding bindings and failure instead of performing
backpropagation.

Let us see an example.

Example 6.3 Consider a deterministic unfolding rule (i.e., an unfolding rule which cannot per-
form non-deterministic steps other than the first one). Given the program of Ex. 6.1 and the
entry goal: “ :- entry main(X,a). " The unfolding rule performs an initial step and

101

derives the goabroblem(X,a),q(X) . Now, it cannot select the atopnoblem(X,a) be-

cause its execution performs a non deterministic step. Fortunately, the assertions inferred for

problem(X,Y) in Ex. 6.1 allow us to jump over this atom and specialize {3t) . In par-

ticular, the first two assertions do not pose any restriction because their conditiortsuare,

thus, there is no problem related to errors or side-effects. From the last assertion, we know that

the above call is binding insensitive, since the conditignround(a) ” trivially succeeds.
Ifatomq(X) is evaluated first, then variabkégets instantiated ta. Now, the unfolding rule

already can select the deterministic atpnoblem(a,a) and obtain the clauserhain(a,a):-

long .comp(a,a). " as partially evaluated program. Note that the residual dathg _comp(a,a)

is not evaluated at PD time because the given assertions for this external predicate do not guar-

antee that such evaluation terminates. The interesting point to note is that, without the use of

assertions, the derivation is stopped when the apoablem(X,a) Is selected because any

call to problem is considered potentially dangerous since its execution reaches a binding sen-

sitive predicate. The specialized program in this case is:

main(A,a) :- problem_1(A,a), q_1(A).

problem_1(a,a) :- long_comp(a,a).
problem_1(b,a) :- long_comp(b,a).

q_1(a).

Intuitively, this residual program is less efficient than our specialization since the execution
of a call such agnain(b,a) would immediately fail in our specialized program whereas it
would nevertheless execute the calldng _.comp(b,a) inthe above program which is bound
to fail afterwards.

As already mentioned in Section 4.2, our safety conditions for non-leftmost unfolding preserve
computed answers, but has the well-known implication that an infinite failure can be transformed
into a finite failure. However, in our framework this will only happen for predicates which do
not have side-effects, since non-leftmost unfolding is only allowed in the presence of pure atoms.
Nevertheless, our framework can be easily extended to preserve also infinite failure by including
termination as an additional property that non-leftmost unfolding has to take into account, i.e.
this implies requiring that all atoms to the left of the selected atom should be evaluable and not
only pure (see Section 4.4).

The following theorem states that our PD schemeagectin the sense that the partially
evaluated program preserves the runtime behaviour of the original one w.r.t. the predefined as-
sertions. We assume a correct partial evaluator implementing the traditional PD algorithm (like

102

the one in [Gal93]) with the only modification of using a safe unfolding rule for performing
non-leftmost unfolding steps as defined in Def. 6.2.

Theorem 6.4 (correctness)Let AS be a set of correct assertions. LBtbe a program and~
be a goal. LetPE be a partial evaluator based on a safe unfolding rile Then,PE(P, G)
preserves the runtime behaviour Biw.r.t. AS.

7 Conclusions

In the case of leftmost unfoldingyal assertions can be used in order to determine whether eval-
uation of atoms for external predicates can be fully evaluated at specialization time or not. Such
eval assertions should be present whenever possible for all library (including builtin) predicates.
Though the presence of such assertions is not required, as the lack of assertions is interpreted as
the predicate not being evaluable under any circumstances, theenarassertions are present
for external predicates, the more profitable partial deduction will be. Ideatly,assertions can
be provided by the system developers and the user does not need to aldlaagsertion.

If non-leftmost unfolding is allowed, the following conditions are required: given a goal
— Ay,..., AR, ..., A,, backpropagation of bindings and failure for the executiod gfis only
allowed if pure(A;) A ... A pure(Agr_1). An important distinction w.r.t. the case of leftmost
unfolding above is thgture assertions are of interest not only for external predicates but also for
internal, i.e., user-defined predicates. As already mentioned, the Igckehssertions must be
interpreted as the predicate not being pure, since impure atoms can be reached from them. Thus,
for non-leftmost unfolding to be able to “jJump over” internal predicates, it is required that such
pure assertions are available not only for external predicates, but also for predicates internal to the
module. Such assertions can be manually added by the user or, much more interestingly, as our
system does, by backwards analysis. Indeed, we believe that manual introduction of assertions
about purity of goals is too much of a burden for the user. Therefore, accurate non-leftmost
unfolding becomes a realistic possibility only thanks to the availability of backwards analysis.

103

Part VI
Set-Sharing is not always redundant for
Pair-Sharing

1 Summary

Sharing among program variables is vital information when analyzing logic programs. This
information is often expressed either as sets or as pairs of program variables that (may) share.
That is, either as set-sharing or as pair-sharing. It has been recently argued that (a) set-sharing is
interesting not as an observable property in itself, but as an encoding for accurate pair-sharing,
and that (b) such an encoding is in fact redundant and can be significantly simplified without loss
of pair-sharing accuracy. We show that this is not the case when set-sharing is combined with
other kinds of information, such as the popular freeness and in the presence of certain builtins.

2 Introduction

Program analysis is the process of inferring at compile—time inferring information about run—
time properties of programs. In logic programs one of the most studied run-time properties is
sharingamong program variables. Two program variables share in a given run-time store if the
terms to which they are bound have at least one run-time variable in common. A set of program
variables share if they all have at least one run-time variable in common. The former kind of
sharing is callegbair-sharingwhile the latter is calledet-sharing Any of the two may be target
observables of an analysis.

The importance (and hence popularity) of sharing comes from two sources. First, sharing
information is in itself vital for several applications such as exploitation of independent AND-
parallelism [JL92, BdIBH99], occurs check reduction [Pla84, Son86], and compile-time garbage
collection [MWB90]. And second, sharing can be used to accurately keep track of other inter-
esting run-time properties such faisenesga program variable is free in a run-time store if it is
either unbound or bound to a run-time variable).

Sharing analysis has therefore raised an enormous amount of interest in our research com-
munity, with many different analysis domains being proposed in the literature (see e.g., [Son86,
JL89, MH91, BC93, KS94]). Two of the best known sharing analysis domains3ué defined
by Sgndergaard [Son86] astharing defined by Jacobs and Langen [JL89, JL92]. The main

104

difference between these two domains is the way in which they represent sharing information:
while ASub keeps track opairs of program variables that possibly sha®baring keeps track
of setsof program variables that possibly share certain variable occurrences.

These differences have subtle consequences. On the one hand, the pair sharing encoding
in ASub allows it to keep track of linear program variables (a program variabli@esr in a
run-time store if it is bound to a term which does not have multiple occurrences of the same
run-time variable). Linearity information, in turn, allowsSub to improve the accuracy of the
abstract sharing operations. On the other hand, the set sharing enco8inaring allows it
to represent several other kinds of information (such as groundness and sharing dependencies)
which also result in more accurate abstract operations. In fact, when combined with linearity,
Sharing is strictly more accurate thaASub. In practice, this accuracy improvement has
proved to be significant [CMB95].

As a result,Sharing became the standard choice for sharing analysis, usually combined
with other kinds of information such as freeness or structural information, even though its com-
plexity can have significant impact on efficiency. However, the benefits of using set sharing for
sharing analysis have been recently questioned (see [CFW94, BHZ97, BHZ02]). As a paradigm
of the case, we cite the title of a paper by Bagnara, Hill, and Zaffanella: “Set-Sharing is redundant
for Pair-Sharing” [BHZ97, BHZ02]. In this paper, the authors state the following

Assumption: The goal of sharing analysis for logic programs is to detect wpaihs
of variables are definitely independent (namely they cannot be bound to terms having
one or more variables in common).

As far as we know this assumption is true. In the literature we can find no reference
to the “independence of setof variables”. All the proposed applications of sharing
analysis (compile-time optimizations, occur-check reduction and so on) are based on
information about the independencepaiirs of variables.

Based on the above assumption, the authors focus on defining a simpler verSibarioig
which is however as precise as far as pair-sharing is concerned. This new simpler domain, re-
ferred to in the future a§'S”, is obtained by eliminating fror®haring information which is
considered “redundant” w.r.t. the pair-sharing property. This elimination allows further simplifi-
cation of the abstract operationsSty” which can significantly improve its efficiency.

The popularity of theSharing domain combined with the great accuracy and efficiency
results obtained fo5S” (and the clarity with which the authors explained the intricacies of
the Sharing domain), ensured the paper had a significant impact on the community, with
many researchers now accepting that set-sharing is indeed redundant for pair-sharing (see, e.qg.,
[KSH99, CSS99, LS00, LS02)).

105

The aim of this paper is to prove that this is not always the case. In particular, we will
show that: (1) There exist applications which use set-sharing analysis (combined with freeness)
to infer properties other than sharing between pairs of variables; and (2) When combined with
information capable of distinguishing among the different variable occurrences represented by
Sharing , this domain can yield results not obtainable with”, including better pair-sharing
Such a combination is found in at least two common situations: v@fering is used as a
carrier for other analyses (such as freeness), and when the analysis process is improved with
extra information (such as in-lined knowledge of the semantics of some predicates, for example
builtins). Possible approaches to combmg” with other kinds of information without losing
accuracy are also suggested.

We believe our insights will contribute to the better understanding of an abstract domain
which, while being one of the most popular and more intensively studied abstract domains ever
defined, remains somewhat misunderstood.

3 Preliminaries

Let us start by introducing our notation as well as the basics oStieing domain [JL89,
JL92]. In doing this we will mainly follow the extremely clear summary presented in [BHZ97].
Given a setS, p(S) denotes the powerset 6f andp,(S) denotes the set of all the finite subsets
of S. V denotes a denumerable set of variablésr € (V) denotes a finite set of variables,
called thevariables of intereste.g., the variables of a program). The set of variables in a syntactic
objecto is denotedars(o). 7y is the set of first order terms ovet A substitutiory is a mapping
0 . V — Ty, whose application to variableis denoted by:f. Substitutions are denoted by the
set of their bindingsd = {x — x0 | 26 # x}. We define the image of a substituti@ras the set
img(6) o U{vars(z0) | x € Var}.

The Sharing domain is formally defined as follows. L&tH o o(SG), whereSG o
{S CVar|S # 0}. Each elemenf € SG is called asharing set We will write sharing sets
as strings with the variables that belong to it, e.g., sharing:set, 2} will be denotedryz. A
sharing set of size 2 is calledsharing pair

The functionocc(f, v) obtains a sharing set that represents the occurrence of vatiable
through the variables of interest as per the substitution

occ(6,v) o {z € Var |v € vars(z0)}
The abstraction of a substituti@ns obtained by computing all relevant sharing sets:
a(f) of {occ(8,v) | v € img(0)}.
Abstract elementh € SH approximates substitutiof iff «(6) C sh. Conversely, the

106

concretization okh € SH is the set of all substitutions approximatedddy Projection over a
setV C Var is given by
proj(sh,V) € {SNV | S € sh[V]}
where, for any syntactic objeatand abstractionh € SH,
shlo] € {S € sh | S Nwars(o) # 0}.
The pairwise (or binary) union of two abstractions is defined as:
shy W shy {8, US, | Sy € shy, Sy € shy}.
The closure under (or star) union of an abstract elerskeig defined as the least sét* that
satisfies:
sh* = shU{S1USy|S1,S, € sh*}.
Abstract unification for a substitutichis given by extending to the set of bindingstothe
following abstract unification operation for a binding:
amgu(sh,x +— t) = (sh\ (shlx] U sh[t])) U (sh|x]* & sh[t]*).
The set-sharing lattice is thus given by the set
SS ¥ {(sh,U)|sh € SH,U C Var,¥S € sh: S CUYU{L, T}
which is a complete lattice ordered by s defined as follows. For elemens, (shy, Uy), (she, Us)} C
SS:

1 <gss5d
d<ss T
(Shl, Ul) <sg (ShQ,UQ) iff U =U, andsh1 C shs.

The lifting of U, proj, andamgu defined overS H to define the abstract operatiansProj,
and Amgu over SS is straightforward.

Example 1.Let Var = {z,y, z} be the set of variables of interest and consider the substitutions
0, = {x — f(u,u,v),y — g(u,v,w,0),z — h(u)} andfy = {z — u,y — u,z — 1}. Then,

shy = a(0;) = {zy,xyz,y}, where sharing setyz represents the occurrence of variablen

x,y andz, sharing setry represents the occurrence of variablan x andy, and sharing sej
represents the occurrence of variahleando in y. Similarly, we have thath, = «(6;) = {xy}
where sharing sety represents the occurrence of variablen » andy. LetU = Var. We

then have thatsh., U) <gss (shy,U) and thus(shy,U) U (she,U) = (shy,U). Finally, let

V = {x,y}, Proj((shy,U),V) = ({zy,y},V). Note that the sharing sety in the projected
abstraction represents not only the occurrence of variablg also that ob. ¢

107

4 Eliminating redundancy from Sharing

One of the main insights in [CFW94, BHZ97] regarding Blearing domain is the detection

of sets which are redundant (and can thus be safely eliminated or not produced) as far as pair-
sharing is concerned. Given an elemehtof SH, sharing setS' € sh is redundantw.r.t. pair
sharing if and only if all its sharing pairs can be extracted from other subseétsaiich also
appear insh. Formally, letpairs(S) o {zy | z,y € S,z # y}. Then,S is redundant iff

pairs(S) = U{pcm“s(T) | T € sh,T C S}

Example 2.Consider the abstractioth = {zy, zz,yz, zyz} defined oveV ar = {x,y, z}. Itis
easy to see that set/z € sh is redundant w.r.t. pair sharing.

Based on this insight, a closure operajor, SH — SH, is defined in [BHZ97] to add to
eachsh € SH the set of elements which are redundantsior Formally:

p(sh) € {S € SG|VreS:S e shlz]}.

This function is then used to define a new domé&is¥ which is the quotient o5'S w.r.t. the
new equivalence relation induced pyelementsi; andd, are equivalent iffp(d;) = p(ds). The
authors prove that (a) the addition of redundant elements does not cause any precision loss as far
as pair-sharing is concerned, i.e., ti& is as good a$'S at representing pair-sharing, and that
(b) p is a congruence w.r.t. the abstract operatidnsgu, LI and Proj. Thus, they conclude that
SSPis as good as'S also for propagating pair-sharing through the analysis process.

The above insight is used by [BHZ97] to perform two major changes t&haing do-
main. Firstly, redundant elements can be eliminated (although experimental results suggest that
this is not always advantageous). And secondly, addition of redundant elements can be avoided
by replacing the star union with the binary union operation without loss of accuracy. This is a
very important change since it can have significant impact on efficiency by simplifying one of
the most expensive abstract operationSharing

The results obtained in [BHZ97] are indeed interesting and can be very useful in some con-
texts. However, there are situations in which the lack of redundant sets can lead to loss of
accuracy w.r.t. pair sharing, and even incorrect results if the full expressive poBéaahg
is assumed to be still present$b?.

Example 3. Consider the abstractions; = {x,y, z, xy, xz,yz} andshy, = {z,y, z, xy, vz, yz, ryz}
defined ovelVar = {xz,y, z}, and note thap(sh,) = shs, i.e., the sharing setyz is redundant
for shy.

108

Consider the Prolog builtim == y which succeeds if program variablesandy are bound
at run-time to identical terms. A sophisticated implementation oSthaing domain (such as
that of [BdIBH94]) could take advantage of this information and eliminate every single sharing
set in which the program variablaesandy appear but not together (since all variables which
occur inxz must also occur iy, and vice versa). Thus, correct and precise abstractions of a
situation in which the builtin was successfully executed in stores represented fand sh.,
will becomesh) = {z, zy} andshl, = {z, zy, xyz}, respectively. However, it is easy to see that
pairs(sh}) # pairs(shl), sincez is definitely independent of bothandy in sk} while it might
still share with them insh),. ©

The above example shows tl&ttaring can make use of the information provided by other
sources in order to improve the pair-sharing accuracy of its elements, while the same action
might lead to incorrect results for elements$$” if redundant sharing sets had actually been
eliminated from those elements. As we will see in the following sections, this can happen when
using information coming not only from builtins, but also from other domains (such as freeness)
which are usually combined with set-sharing. Furthermore, useful information other than sharing
can be inferred from combinations 8haring and other sources which are not possible with
SSP.

5 When redundant sets are no longer redundant

The problem illustrated in the previous example is rooted in the always surprising complexity of
the information encoded by elements%f. As indicated by [BHZ97, BHZ02], elements 61
can encode definite groundness (exgs ground), groundness dependencies (e.g.biécomes
ground thery is ground), and sharing dependencit$iowever, as we will see in this section,
these are only by-products of the main property represented by elemesif$: athe different
variable occurrences shared by each set of program variables.

The groundness of variable and the sharing independence between variabbasly (i.e.,
the fact thatr andy are known not to share) can be expressed by an eleshentS H as follows:

ground(x) iff VS € sh: x ¢ S
indep(z,y) iff VS € sh:zy € S
whereground(z) represents the fact that variablés ground in all substitutions abstracted by

sh, andindep(x,y) represents the fact that variablesandy do not share in any substitution
abstracted byh € SH.

1The fact that it also encodes independence (e.daes not share with) was probably obviated because this is
also encoded by pair-sharing.

109

Groundness dependenciessin € SH can be easily obtained from the above statements in
the following way. Let us assume thatis known to be ground. We can then mod#y by
enforcingvs € sh : x ¢ S to hold, i.e., by eliminating every € sh such thatr € S. If we
can then prove that the same statement holds for some other varia@evould then know that
the implicationground(z) — ground(y) holds forsh. This simply illustrates the well known
result thatSharing subsumes the groundness dependency domaifi The same method
can be used for obtaining other dependencies for eleméni§ SH. The following were used
in [BAIBH99] for simplifying parallelization tests:

1. ground(xy) A ... A ground(x,) — ground(y) if
VS € sh: ifye Sthen{zy,...,2,} NS #0

2. ground(xi) A ... A ground(z,) — indep(y, z) if
VS € sh: if {y,z} C Sthen{zy,...,z,} NS #0

3. indep(x1,y1) A ... Nindep(,, yn) — ground(z) if
VS € sh: if z € Sthen3j € [1,n], {z;,y;} TS

4. indep(x1, 1) A ... Nindep(Tn, yn) — indep(w, 2) if
VS € sh: if {w,z} C Sthen3j € [1,n], {z;,y;} TS

Let us now characterize in a similar way the (non-symmetrical) propettyrs(x,y) ex-
pressed by an elememt € SH as follows:

covers(z,y) iff VS € sh: if y € Sthenz € S

wherecovers(x, y) indicates that variablg shares all its variables with variableand, therefore,
every sharing set in which appears must also contain We can now derive other sharing
dependencies for amh € SH, such as:

5. covers(xi,y1) A ... A covers(xy,y,) — ground(z) if
VS esh: if ze Sthen3je [1,n], y; €5, z; ¢S

6. covers(xi,y1) A ... A covers(zn,y,) — indep(w, z) if
VS e sh: if {w,z} CSthen3je[l,n], y; €8, z; €S

7. covers(xy,y1) A ... A covers(xp,yn) — covers(w, z) if
VS esh:ifzeS,w¢gSthendj e [1,n], y; €5, z; €S

110

It is important to note that while the expressions with ogtyund(x) andindep(x,y) ele-
ments can also hold for any element$$”, this is not true for the expressions with coverage
information.

Example 4.Consider again the abstractions introduced by Exampie,3= {z, v, z, vy, xz,yz}
andshe = {x,y, z,zy,xz,yz, xyz} which are defined oveVar = {z,y,z}. Let us assume
that both abstractions belong &haring . While implicationcovers(z,y) A covers(y, z) —
indep(x, z) holds forsh4, it does not hold forsh,. If we now consider theS'S” domain, both
abstractions would be represented by the elementTherefore, the implication should not hold
for shyin SS”. ¢

In order to understand why, consider the differences between the expregsiong(z) iff
VS € sh . x ¢ S, andindep(z,y) iff VS € sh : zy € S, and the expressiotvers(x,y)
iff VS € sh :if y € Sthenz € S. While in the first two the sharing sets which violate the
right hand side of the expressions would always include the redundant set (if any), those which
violate the last expression would not. Thus, to assume coverage might result in the subset of
a redundant set being eliminated without the redundant set itself being eliminated. In this way
sharing sets which are considered redundant at some point, might become non redundant once
coverage information is added and, therefore, their elimination (or non generation) can lead to
incorrect information. For example, consider the substitutior- {xyz, zy, zz,yz}. While the
problematic sets foground(x) andindep(z, y) in sh arexyz, vy, vz andxyz, vy, respectively,
the only one forovers(x,y) isyz. But onceyz is removed fronmsh, xyz is no longer redundant:
it is the only sharing set able (whencoversy) to represent the possible sharing betweemd
Y.

As a result, sharing sets initially redundant for pair-sharing can prove useful whenever com-
bined with other sources of information (coming from builtins, other analysis domains, etc.)
capable of distinguishing between the variable occurrences represented by the redundant sharing
sets and the variable occurrences represented by their subsets, so that, once the extra information
is added, a sharing set previously identified as redundant will no longer be so.

6 Combining Sharing with freeness

In this section we will use the popular combinationSifaring with freeness information to
illustrate two points. First, that very common sources of information (such as freeness) can
distinguish between variable occurrences, an ability which can be exploited in ways that can
make a redundant set no longer redundant. Thus, it can be advantageous not to eliminate them.
And second, that the goal of sharing analysis for logic programs is not only to detect which pairs

111

of variables are definitely independent, but also to detect (or propagate) many other kinds of
information.

In order to illustrate these points we will use the notioraofive sharing sets [CH94]. A
sharing setS € sh is said to beactivefor storec € ~(sh) iff S € a(c). All sharing sets
{S1,--+,S,} C sh are said to be activat the same timé there exists a store € ~(sh) such
thatVl < i < n,S; € a(c). If only the information inSharing is taken into account, then all
sharing sets in anyh € SH can be active at the same time.

Example 5.Consider the set-sharing abstractign= {z, xy, yz} defined oveV ar = {x,y, z}.
All sets insh can be active at the same time since there exists a stor@,-sgy: = f(u,v),y =
f(v,w),z = f(w)}, such thatx(d) = sh. In particular,u is the variable represented by sharing
setx, v is represented byy, andw is represented byz. ¢

However, this is not always the case when considering information outside the scope of
Sharing . In some cases, two or more sharing sets cannot be active at the same time since,
thanks to some extra information, we can determine that these sharing sets must represent the
same variable(s) occurrence.

Example 6.Consider again the set-sharing abstractibn= {x, zy,yz} defined ovear =
{z,y, 2}, and let us now assumgand > are known to be free variables. As pointed out in
[CH94], since each sharing set in an abstraction represents a different occurrence of one or more
variables, no two sharing sets containing the same free variable can be active at the same time
(the same variable cannot be a different occurrence). In our exampésdy =z cannot be active
at the same time since there is no concrete store with fpaitind > free, such that both share a
variable not shared with anyone else (sharingys¢andy also shares a different variable with
x (sharing sety). ¢

Knowing which sharing sets in abstractieh can be active at the same time according to
Q2 is useful because we can use thois notion to divilénto {shy, - - -, sh,} such thatsh =
shy U...Ush,, Vi,1 < i < n all sets insh; can be active at the same time, anglj, 1 < j <
n:j#1i,shj C sh;.

Example 7.Consider again the abstractieh = {z, zy, yz} defined oveVar = {z,y, z}. If
y andz are known to be free variablesh can be divided into two different seté§y, xy} and
{z,yz}, whose sharing sets can all be active at the same time. The former represents the concrete
stores in whiche definitely shares a variable with(which is actually known to beg itself), and
x might also have some variable which is not shared with anyone else. The latter represents the
stores in which the free variablgsand: are aliased and might have some variables which are
not shared with anyone else.
Note that the differenth; together with() describe disjoints sets of concrete stores. Fur-

112

thermore, even thougfi J, v(sh;)) N v(Q2) is still equivalent toy(sh) N v(€2) (which justifies

the correctness of dividingh into the differentsh; in the presence d?), it is often the case
thatJ, v(shi;) C v(sh), as it happens in the above example. As a result, it is generally easier
to understand the concretizationgf and(2 by means of the concretization of eadh and().

Let us use this to show how the direct-product domain [CC78taring and freeness can be
used to improve pair-sharing.

Example 8.Consider the abstractioh = {zy, zz, yz, xyz} defined over program variablesy
and:z. If we knew thatz, y, andz are free we could divideh into the setssh; = {zy}, shy =
{zz},shs = {yz} andshy = {xyz}. Now, sh; represents stores in whichis known to be
ground, which is not true according to our freeness information. Thus, its sharing getat

be eliminated fromsh. The same reasoning appliessto, andshs. Thus,sh can be simplified

to {zyz} indicating that all variables definitely share (which of course also implies their definite
pair-sharing dependencies). Note that if thexgget did not belong to the abstraction, the con-
cretization ofsh in the context of freeness would be empty (indicating a failure in the program).
<&

The above example shows how the direct-product domaifi$sf and freeness might be
incorrect if the full power of set-sharing is assumed to be still presestif This occurs
whenever a redundant set is known to contain a free variable, since it would then appear in an
sh; without one or more of its subsets. Thus, the set would no longer be redundant.féx
simple solution would be to behave as if redundant sets containing free variables were present in
the SS” abstractions even if they do not appear explicitly in them. It would be easy to think that
such solution does not lose accuracy w.r.t. pair sharing. This is, however, not true.

Example 9. Consider the set-sharing abstractiolh = {zy,zz,yz} defined overVar =
{z,y, z}. If we knew thaty andz were free, we could divideh into the setsh, = {zy, zz} and
shy = {yz}, respectively representing the concrete stores in whishares withy andz, which
do not share among them, and those in whiafloes not share with anyone apdhares with
z. Note that these two situations are mutually exclusive. This allow us to prove (among others)
that:
indep(y, z) iff —indep(z,y) and indep(y, z) iff —indep(x, z).

This is crucial pair-sharing information (e.g., for automatic AND-parallelization, as we will see
in the next section). If the redundant setz could have been eliminated froeh, the above
expression might not hold, since the variables might then be aliased to the same free variable,
thus capturing also the case in which all of them are definitely dependent of eachvother.

Let us now show how combiningharing and freeness information, as done for example in
Sharing+Freeness [MH91], yields interesting kinds of information other than the sharing

113

itself, information which is the goal of such analyses for several applications.

Example 10. Consider again the set-sharing abstractibn= {zy, zz,yz} defined ovelV ar =
{z,y,z}. As mentioned above, if we knew thatand > were free, we could divideh into the
setssh; = {zy,zz} andshy = {yz}. The concrete stores represented by these sets can in fact
be described much more accurately than we did in the previous example: ¥hilepresents
stores in whiche is bound to a term with two (and only two) non-aliased free variahjesn@

z), shy represents those stores in whicls ground, and; andz are free aliased variables. As a
result, we can be surg only represents stores in whiahis bound to a non-variable term.

Definite information about non-variable bindings is used, for example, to determine whether
dynamic scheduled goals waiting for a program variable to become non-variable can be woken
up, as performed by [dIBMS95]. However, such information cannot be obtained if redundant
sets containing free variables are eliminated.

Example 11.Consider the set-sharing abstractiofis= {zy,zz,yz} above andkh’ = sh U
{zyz} wherey andz are known to be free, we could dividé’ into the setsh; = {xy, 2z} and

shy = {yz} andshs = {xyz}. The first two are as above, while the third represents stores in
which all x, y and z share the same variables (withpossibly being a free variable). Thusy
does not only represent stores in whicks bound to a non-variable term.

Definite knowledge about non-variable bindings is not the only kind of useful information
that can be inferred from combinirgharing and freeness. The combination can also be used
to detect new bindings added by some body literal.

Example 12.Consider again the set-sharing abstraction= {zy,xz,yz} wherey andz are

known to be free. Let us assume thatis the abstract call for body literalx, y, 2) (i.e., the ab-
straction at the program point right before executing the literal) andsthat {zy, xz, yz, zyz}

is the abstract answer fpfz, y, 2) (i.e., the abstraction at the program point right after executing
the literal) withy and z still known to be free. The addition of sharing set: means that a

new binding aliasing andz might have been introduced byz, y, z). However, if the abstract
answer is found to be identical to the call, we can be sure that none of the three program
variables has been further instantiated (since they are still known to be free) nor any new aliasing
introduced among therg.

The above kind of information is used, for example, for detecting non-strict independence
[CH94] as we will see in the next section. As shown in the above example, this information
cannot be inferred if redundant sets might have been eliminated (or not produced).

114

7 When independence among sets is relevant

This section uses the well-known application of automatic parallelization within the independent
AND-parallelism model [Con83] to illustrate how some applications (a) require independence
among sets (as opposed to pairs) of variables, and (b) can benefit from contbirargg

with freeness information in ways which would not be possible Wifif. The relevance of this
application comes from the fact that it is not only one of the best known applications of sharing
information, but also the one for which tisharing domain was developed.

In the independent AND-parallelism model goalsandg, in the sequence,, g> can be run
in parallel in constraint storeif g, is independent of; for storec. In this context, independence
refers to the conditions that the run-time behavior of these goals must satisfy in order to guarantee
the correctness and efficiency of their parallelization w.r.t. their sequential execution. This can be
expressed as follows: goal is independent of goaj, for storec iff the execution ofy, in ¢ has
the same number of computation steps, cost, and answers as thahafny storec’ obtained
from executingy; in c.

Note that the general independence condition introduced above is thus neither symmetric nor
established between pairs of variables, as assumed by [BHZ97, BHZ02]. However, this general
notion of independence is indeed rarely used. Instead, sufficient (and thus simpler) conditions are
generally used to ensure independence. These conditions can be divided into two main groups:
a priori and a posteriori. A priori conditions can always be checked prior to the execution of the
goals involved, while a posteriori conditions can be based on the actual behaviour of the goals to
be run in parallel.

A priori conditions are more popular even though they can be less accurate. The reasons
are twofold. First, they can only be based on the characteristics of thecsdokthe variables
belonging to the goals to be run in parallel. Thus, they are relatively simple. And second,
they can be used as run-time tests without actually running the goals themselves. This is useful
whenever the conditions cannot be proved correct at compile-time. Note that a priori conditions
must be symmetric: goalg andg, are independent fariff ¢; is independent of, for ¢ and g,
is independent of; for c.

The most general a priori condition, callpabjection independenceas defined in [dIBHMOO]
as follows: goalg, andg, are independent farif for any variabler € vars(g,) Nvars(gs), = is
uniquely defined by (i.e., ground), and the constraint obtained by conjoining the projection of
overvars(g;) and the projection of overvars(gs) entails (i.e., logically implies) the constraint
obtained by projecting overvars(g,) U vars(gs).

Example 13.Consider the literalg(z), ¢(y), r(z) and constraint = {z = y + z}. The pro-

115

jection of c over the sets of variables containing either one or two variables fram, 2} is the
empty constraintrue. Thus, we can ensure that every pair of literals, gay andq(y), can run

in parallel. However, no literal can run in parallel with the goal formed by the conjunction of the
other two literals, e.gp(z) cannot run in parallel with goaf(y), »(z), since the projection af
over{z,y, z} is c itself, which is indeed not entailed byue. ¢

Therefore, as mentioned in both [MBdIBH99] and [dIBBH96], in general projection inde-
pendence does indeed rely on the independence of a ps@tsdf variables. However, for the
Herbrand case projection independence is equivalent to the better known a priori condition called
strict independencgeavhich was introduced in [Con83, DeG87] and formally defined and proved
correct in [HR95]. It states that goals and g, are strictly independent for substitutioniff
vars(gy) do not share withvars(g,) for 6, i.e., iff vars(g160) Nwvars(g.0) = . Itis easy to prove
that this is equivalent to requiring that for every pair of variablgs: € vars(g),y € vars(gs),

x andy do not share.

Therefore, only for a priori conditions and the Herbrand domain, is parallelization based on
the independence of pairs of variables. And even in this case&sitheng domain is more
powerful thanSS” when combined with other kinds of information.

Example 14.Consider again the abstractiopls = {zy, xz,yz,zyz} andsh’ = {zy, xz,yz}
defined oveV ar = {z,y, z}. Example 9 illustrated how the formula

indep(y, z) iff —indep(x,y) and indep(y, z) iff —indep(z, 2)

holds forsh’ but not forsh wheny andz are known to be free.

Consider the automatic parallelization of sequential gdg),q(z),r(x) for the usual
case of the a priori condition strict independence and the Herbrand domain. In the absence of any
information regarding the state of the store occurring right before the sequential goal is executed,
the compiler could rewrite the sequential goal into the following parallel goal (leftmost column):

116

(indep(y,z) -> (indep(y,z) -> (indep(y,z) ->
(indep(x,y) ->
(indep(x,z) ->
pP(y)&q(z)&r(x)
; py)&(a(2).r(x))
)

(p(y)&a(2)).r(x) (p(y)&0a(2)).r(x) (p(y)&a(2)).r(x)
)
;indep(x,z2) -> ; ;indep(x,z) ->
p(y).(a(z)&r(x)) p(y).(a(z)&r(x)) p(y).(a(z)&r(x))

p(y),a(2),r(x) ; p(Y).a(2).r(x)
)))

where the operat@& represents parallel execution of two goals, and the run-timesp(x,y)
succeeds if the two variables do not share at run-time. The middle and right columns represent
the simplifications that can be performed to the parallel goal in the contet’ aind sh, re-
spectively. This is because while tastiep(X,y) is known to falil ifindep(y,z) succeeds

for both sh andsh’, testindep(x,z) is known to succeed ihdep(y,z) fails for sh’ but

not for sh. Thus,indep(x,z) still needs to be tested at run-time with the resulting loss of
efficiency.o

The assumption is also incorrect when considering a posteriori conditions, even those asso-
ciated to the Herbrand domain. In particular, strict independence has been generalised to several
different [HR95] a posteriori notions aion-strict independenc& hese notions allow goals that
share variables to run in parallel as long as the bindings established for those shared variables
satisfy certain conditions. For example, one of the simpler notions only aljpwgsinstantiate
a shared variable and does not allow any aliasing (of different shared variables) to be created
during the execution of; that might affect goals to the right. Thus, for this notion, the condi-
tions are established between thiadingsintroduced by the two goals over their respective set
of variables, and cannot be expressed using only sharing between pairs of variables.

There has been at least one attempt [CH94] at inferring non-strict independence at compile-
time using the abstract doma8haring+Freeness . The inference is based on two condi-
tions. The first ensures that (C1) no shared variables are further instantiagedTyis is done
by requiring that (a) all shared variables share through variables known to be free in the abstract
call of g; (all sharing sets in the abstract call containing shared variables also contain a free vari-
able), and (b) all these variables must remain free in the abstract answefatifsuch sharing
sets still contain a free variable after the analysig;9f This first condition can be detected in
the S'S” domain since the existence of a free variable in every sharing pair ensures the existence

117

of a free variable in the “redundant” sharing set. Thus, the absence of such sharing set is not a
problem.

This is not however the case for the second condition, which ensures that no aliasing is intro-
duced among shared variables by requiring C1 and, additionally, that (C2) there is no introduction
in the abstract answer of any sharing set resulting from the union of several sets such that none
contain the same free variable, and at least two contain variables belonging to both goals.

Example 15.Consider again the set-sharing abstraction= {zy,zz,yz} wherey andz are
known to be free. Let us assume thatis the abstract call for body(z, vy, z), ¢(z,y, z) and
thatsh' = {zy, xz,yz, zyz} is the abstract answer fefx, y, z) with y andz still known to be

free. All sharing sets ik containing variables from both literals contain a free variable which
remains free irsh’. Thus, C1 is satisfied. However, there exists argetin sh’ which can be
obtained by unioning at least two setgandzz in sh which contain variables from both literals

and have no variable in common known to be freg/inThe appearance of such a set represents
the possible aliasing af andz by p(x,y, z). This appearance violates C2 and thus the goals
cannot run in parallel. Note that if the abstract answer was found to be identigal(ie., if

the redundant setyz was absent), we would have been able to ensure that none of the three
program variables had been further instantiated nor any new aliasing introduced among them.
Therefore, we could have ensured thais independent of; for the stores represented by

and the associated freeness information, thus allowing their parallel exeaution.

The above example illustrates the fact that an equivalent inference cannot be performed in the
S.SP domain augmented with freenassless care is taken when considering redundant sharing
sets which include program variables known to be fréhis is because the inference strongly
depends on distinguishing between the different bindings introduced during execution of the
goals to be runin parallel, and as a result, on distinguishing between the different shared variables
represented by the abstractions in the domain. Thus, elimination of redundant sets can render
the method incorrect. One possible solution is to always assume that redundant sets containing
free variables are present when combinkg’ with freeness information. However, as shown
in Example 9, this might be imprecise. Another, more accurate solution, is to only eliminate
redundant sets which do not contain variables known to be free.

8 Conclusion

We have shown that the power of set-sharing does not come from representing sets of variables
that share, but from representing different variable occurrences. As a result, eliminating from
Sharing information which is considered “redundant” w.r.t. the pair-sharing property as per-

118

formed inSS? can have unexpected consequences. In particular, &haring is combined

with some other kinds of information capable of distinguishing among variable occurrences in a
way that can make a redundant set no longer redundant, it can yield results not obtainable with
SSP, including better pair-sharing Furthermore, there exist applications which &ering

analysis (combined with freeness) to infer properties other than sharing between pairs of vari-
ables and which cannot be inferredSf7 is used instead. We have proposed some possible
solutions to this problem.

119

References

[AHV02]

[ASUSE]

[BCO3]

[BCC+04]

[BCHPY6]

[BdIBHY4]

[BAIBHO9]

[BdIBH+01]

[BGLM94a]

E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languagekurnal of Functional and Logic Programming
2002(1), 2002.

A. V. Aho, R. Sethi, and J. D. UllmanCompilers — Principles, Techniques and
Tools Addison-Wesley, 1986.

M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness — all
atonce. IrProc. Third International Workshop on Static Analygiages 153-164.
Springer LNCS 724, 1993.

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, Bpé&z-Gar@m, and

G. Puebla (Eds.). The Ciao System. Reference Manual (v1.10). Technical Report
CLIP3/97.1.10(04), School of Computer Science (UPM), August 2004. Available
at http://clip.dia.fi.upm.es/Software/Ciao/

F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. IBuropean Symposium on Programmimgimber 1058
in LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

F. Bueno, M. Gara de la Banda, and M. Hermenegildo. The PLAI Abstract
Interpretation System. Technical Report CLIP2/94.0, Computer Science Dept.,
Technical U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain, February 1994.

F. Bueno, M. Garia de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Program-
ming. ACM Transactions on Programming Languages and Syst2h(8):189—
238, March 1999.

F. Bueno, M. Garia de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for Inter-module Analysis and Optimizing Compilation.
In Logic-based Program Synthesis and Transformatimmmber 2042 in LNCS,
pages 86—102. Springer-Verlag, March 2001.

A. Bossi, M. Gabbrieli, G. Levi, and M.C. Meo. A compositional semantics for
logic programs.Theoretical Computer SciencE22(1,2):3—47, 1994.

120

[BGLM94b] Annalisa Bossi, Maurizio Gabbrielli, Giorgio Levi, and Maurizio Martelli. The

[BHZ97]

[BHZ02]

[BJO3]

[BMSUS6]

[Bru9il]

[BSM92]

[CCT77]

[CC79]

[CD93]

[CDGO3]

s-semantics approach: Theory and applicatialmsirnal of Logic Programming
19/20:149-197, 1994.

R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-
sharing. InStatic Analysis Symposiymages 53—-67. Springer-Verlag, 1997.

R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-
sharing.Theoretical Computer Scienc277(1-2):3-46, 2002.

F. Besson and T. Jensen. Modular class analysis with datalofOtininterna-
tional Symposium on Static Analysis, SAS 2008nber 2694 in LNCS. Springer,
2003.

F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange
ways to implement logic programs. Proceedings of the's ACM SIGMOD-
SIGACT Symposium on Principles of Database Systta&s.

M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
ProgramsJournal of Logic Programmingl0:91-124, 1991.

M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoid-
ing Infinite Unfolding during Partial DeductionNew Generation Computing
1(11):47-79, 1992.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principles of Programming Languagages 238—
252, 1977.

P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Sixth ACM Symposium on Principles of Programming Langugugges 269—
282, San Antonio, Texas, 1979.

M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional
logic programs and a magic wand. In D. Miller, editBrpceedings of the 1993
International Symposium on Logic Programming, VancouWVdi Press, 1993.

M. Codish, S.K. Debray, and R. Giacobazzi. Compositional analysis of modular
logic programs. IrProc. POPL'93 1993.

121

[CFWO94]

[CHO4]

[CHOO]

[Cla79]

[CLMO1]

[CMB*95]

[Con83]

[CRVO02]

[CS02]

[CSS99]

A. Cortesi, G. Fig, and W. Winsborough. The quotient of an abstract interpre-
tation for comparing static analyses. GULP-PRODE’94 Joint Conference on
Declarative Programmingpages 372-397, 1994.

D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Informatiorl994 International Static
Analysis Symposiummumber 864 in LNCS, pages 297-313, Namur, Belgium,
September 1994. Springer-Verlag.

D. Cabeza and M. Hermenegildo. A New Module System for Prolognter-
national Conference on Computational Logic, CL20@0mber 1861 in LNAI,
pages 131-148. Springer-Verlag, July 2000.

K. Clark. Predicate logic as a computational formalism. Technical Report DOC
79/59, Imperial College, London, Department of Computing, 1979.

Marco Comini, Giorgio Levi, and Maria Chiara Meo. A theory of observables for
logic programslinformation and Computatiqri69(1):23-80, 2001.

M. Codish, A. Mulkers, M. Bruynooghe, M. Géec de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining Domains.
ACM Transactions on Programming Languages and Syst&ii(4):28-44, Jan-
uary 1995.

J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic
Programs PhD thesis, The University of California At Irvine, 1983. Technical
Report 204.

B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence Based Abstract In-
terpretation of Prolog.Theory and Practice of Logic Programming(1):25-84,
2002.

Michael Codish and Harald Sgndergaard. Meta-circular abstract interpretation in
prolog. In Torben Mogensen, David Schmidt, and I. Hal Sudburough, edTtoes,
Essence of Computation: Complexity, Analysis, Transformationme 2566 of
Lecture Notes in Computer Scienpages 109-134. Springer-Verlag, 2002.

Michael Codish, Harald Sgndergaard, and Peter J. Stuckey. Sharing and ground-
ness dependencies in logic program&CM Transactions on Programming Lan-
guages and Systenl(5):948-976, 1999.

122

[CT99]

[CV94]

[DeG87]

[dIBBH96]

[dIBHMOO]

[dIBMS95]

[DR94]

[DSGJ"99]

[EGMO7]

[Gal93]

Michael Codish and Cohavit Taboch. A semantic basic for the termination analy-
sis of logic programsThe Journal of Logic Programming1(1):103-123, 1999.

B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for ProlodCM Transactions on Programming
Languages and Systeni$(1):35-101, 1994.

D. DeGroot. A Technique for Compiling Execution Graph Expressions for Re-
stricted AND-parallelism in Logic Programs. Int'| Supercomputing Confer-
ence pages 80-89, Athens, 1987. Springer Verlag.

M. Garda de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent
And-Parallelism in CLP. IrProgramming Languages: Implementation, Logics,
and Programsnumber 1140 in LNCS, pages 77-91, Aachen, Germany, Septem-
ber 1996. Springer-Verlag.

M. Garda de la Banda, M. Hermenegildo, and K. Marriott. Independence in
CLP Languages ACM Transactions on Programming Languages and Systems
22(2):269-339, March 2000.

M. Garda de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Con-
straint Logic Programs with Dynamic Scheduling. 1895 International Logic
Programming Symposiunpages 417-431, Portland, Oregon, December 1995.
MIT Press, Cambridge, MA.

S. Debray and R. Ramakrishnan. Abstract Interpretation of Logic Programs Using
Magic TransformationsJournal of Logic Programmingl8:149-176, 1994.

Danny De Schreye, Robert @k, Jesper Jgrgensen, Michael Leuschel, Bern
Martens, and Morten Heine Sgrensen. Conjunctive partial deduction: Founda-
tions, control, algorithms and experimend&®urnal of Logic Programming41(2

& 3):231-277, November 1999.

S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP
with Dynamic Scheduling and CCP. Rroc. of the ACM Sigplan PEPM’97
pages 137-150. ACM Press, New York, 1997.

J.P. Gallagher. Tutorial on specialisation of logic programsProceedings of
PEPM'93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulatigrpages 88-98. ACM Press, 1993.

123

[Gal04] J. Gallagher. A Program Transformation for Backwards Analysis of Logic Pro-
grams. InLogic Based Program Synthesis and Transformation: 13th International
Symposium, LOPSTR 2Q08umber 3018 in LNCS, pages 92-105. Springer-
Verlag, 2004.

[GBS95] J. Gallagher, D. Boulanger, and H.gsam. Practical model-based static analysis
for definite logic programs. In J. W. Lloyd, editd?yoc. of International Logic
Programming Symposiurpages 351-365, 1995.

[GCO1] S. Genaim and M. Codish. Inferring termination conditions of logic programs
by backwards analysis. limternational Conference on Logic for Programming,
Artificial intelligence and reasoningsolume 2250 ofSpringer Lecture Notes in
Artificial Intelligence pages 681—-690, 2001.

[GDMS02] Maria J. Gar@a de la Banda, Bart Demoen, Kim Marriott, and Peter J. Stuckey. To
the Gates of HAL: A HAL Tutorial. Ininternational Symposium on Functional
and Logic Programmingpages 47-66, 2002.

[GG94] Maurizio Gabbrielliand Roberto Giacobazzi. Goal independency and call patterns
in the analysis of logic programs. Proceedings of the 1994 ACM Symposium
on Applied Computing, SAC 199dages 394 — 399, 1994.

[GLM96] Maurizio Gabbrielli, Giorgio Levi, and Maria Chiara Meo. Resultants semantics
for Prolog. Journal of Logic and Computatio®(4):491-521, 1996.

[GS98] R. Giacobazzi and F Scozzari. A logical model for relational abstract domains.
ACM Transactions on Programming Languages and Syst26(5):1067-1109,
1998.

[HKLO4] Jacob M. Howe, Andy King, and Lunjin Lu. Analysing Logic Programs by Rea-
soning Backwards. In Maurice Bruynooghe and Kung-Kiu Lau, editiggram
Development in Computational LogitNCS, pages 380—-393. Springer-Verlag,
May 2004.

[HPBLGO3a] M. Hermenegildo, G. Puebla, F. Bueno, and &&z-Garta. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessdfthin
International Static Analysis Symposium (SAS'08)mber 2694 in LNCS, pages
127-152. Springer-Verlag, June 2003.

124

[HPBLGO3b] M. Hermenegildo, G. Puebla, F. Bueno, and &é&z-Gar@m. Program Develop-

[HPBLGO5]

[HPMSO00]

[HR95]

[JL89]

[JL92]

[KLO2a]

[KLO2D]

[KLO3]

[KMM +98]

[Kru60]

ment Using Abstract Interpretation (and The Ciao System PreprocessBrpdn
of SAS'03pages 127-152. Springer LNCS 2694, 2003.

Manuel V. Hermenegildo, Geram Puebla, Francisco Bueno, and Pedopéz-
Garda. Integrated Program Debugging, Verification, and Optimization Using
Abstract Interpretation (and The Ciao System PreprocesSognce of Computer
Programming (2694), 2005.

M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic ProgramsACM Transactions on Programming Languages
and System22(2):187-223, March 2000.

M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Con-
ditions. Journal of Logic Programming22(1):1-45, 1995.

D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. 11989 North American Conference on Logic Pro-
gramming MIT Press, October 1989.

D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent
And-Parallelism. Journal of Logic Programming13(2 and 3):291-314, July
1992.

A. King and L. Lu. A Backward Analysis for Constraint Logic Prograrieory
and Practice of Logic Programmingage 32, July 2002. (Theory and Practice of
Logic Programming was formally known as The Journal of Logic Programming).

Andy King and Lunjin Lu. A backward analysis for constraint logic programs.
Theory and Practice of Logic Programming(4-5):514-547, 2002.

Andy King and Lunjin Lu. Forward versus backward verification of logic pro-
grams. INICLP’2003 (to appear)2003.

A. Kelly, A. Macdonald, K. Marriott, H. Sgndergaard, and P.J. Stuckey. Optimiz-
ing compilation for CLPR). ACM Transactions on Programming Languages and
Systems20(6):1223-1250, 1998.

J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture.
Transactions of the American Mathematical Soci88.210-225, 1960.

125

[KS94] A. King and P. Soper. Depth-k Sharing and Freenesktérnational Conference
on Logic ProgrammingMIT Press, June 1994.

[KSH99] Andy King, Jan-Georg Smaus, and Patricia M. Hill. Quotienting share for depen-
dency analysis. lEuropean Symposium on Programmipages 59-73, 1999.

[LBO2] Michael Leuschel and Maurice Bruynooghe. Logic program specialisation
through partial deduction: Control issue3heory and Practice of Logic Pro-
gramming 2(4 & 5):461-515, July & September 2002.

[Leu94] Michael Leuschel. Partial evaluation of the “real thing”. In Laurent Fribourg and
Franco Turini, editors, Logic Program Synthesis and Transformation — Meta-
Programming in LogicProceedings of LOPSTR’94 and META;24cture Notes
in Computer Science 883, pages 122-137, Pisa, Italy, June 1994. Springer-Verlag.

[Leu98] Michael Leuschel. On the power of homeomorphic embedding for online termi-
nation. In Giorgio Levi, editor, Static Analysi®roceedings of SAS'9&NCS
1503, pages 230-245, Pisa, Italy, September 1998. Springer-Verlag.

[Leu02] Michael Leuschel. TheccEe partial deduction system and tlmeepPD library
of benchmarks. Obtainable viatp://www.ecs.soton.ac.uk/"mal :
1996-2002.

[LIo87a] J. W. Lloyd. Logic Programming Springer-Verlag, 1987.

[LIo87Db] J.W. Lloyd. Foundations of Logic ProgrammingSpringer, second, extended
edition, 1987.

[LMDS98] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling general-
isation and polyvariance in partial deduction of normal logic prograh€M
Transactions on Programming Languages and Syst@®4):208-258, January
1998.

[LS91] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programnhimg.
Journal of Logic Programmingl1:217-242, 1991.

[LSO0] Giorgio Levi and Fausto Spoto. Non pair-sharing and freeness analysis through
linear refinement. IfPartial Evaluation and Semantic-Based Program Manipula-
tion, pages 52-61, 2000.

126

[LSO02]

[MBdIBH99]

[MD96]

[Mes96]

[MH90]

[MH91]

[MH92]

[MNO1]

[MWBOO]

[Net02]

Vitaly Lagoon and Peter Stuckey. Precise pair-sharing analysis of logic programs.
In Principles and Practice of Declarative Programmingages 99-108. ACM
Press, 2002.

K. Muthukumar, F. Bueno, M. Gara de la Banda, and M. Hermenegildo. Auto-
matic Compile-time Parallelization of Logic Programs for Restricted, Goal-level,
Independent And-parallelismJournal of Logic Programming38(2):165-218,
February 1999.

B. Martens and D. De Schreye. Automatic finite unfolding using well-founded
measuresThe Journal of Logic Programmin@8(2):89-146, August 1996.

F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-
grams. In M. J. Maher, editodpint International Conference and Symposium on
Logic Programmingpages 7—-21. MIT Press, 1996.

K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Al-
gorithm for Top-down Abstract Interpretation of Logic Programs. Technical Re-
port ACT-DC-153-90, Microelectronics and Computer Technology Corporation
(MCC), Austin, TX 78759, April 1990.

K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretatiot®94a Interna-
tional Conference on Logic Programmingages 49—63. MIT Press, June 1991.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract InterpretationJournal of Logic Programming
13(2/3):315-347, July 1992.

F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. 8tatic Analysis Symposiywolume
2126 ofLNCS pages 93-110, 2001.

A. Mulkers, W. Winsborough, and M. Bruynooghe. Analysis of Shared Data
Structures for Compile-Time Garbage Collection in Logic Programs.Prit
ceedings of the Seventh International Conference on Logic Programpeaggs
747-762, Jerusalem, Israel, June 1990. MIT Press.

Nicholas Nethercote. The Analysis System of HAL. Master’s thesis, Monash
University, 2002.

127

[PAHO5a]

[PAHO5b]

[PBHO0a]

[PBHOOb]

[PCH'04]

[PH96]

[PH99]

[PHOO]

G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with An-
cestor Stacks for Full Prolog. Technical Report CLIP2/2005.0, Technical Univer-
sity of Madrid, February 2005.

G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with An-
cestor Stacks for Full Prolog. [b4th International Symposium on Logic-based
Program Synthesis and TransformatjuNCS. Springer-Verlag, 2005. To appear.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors,Analysis and Visualization Tools for Constraint Programmingmber
1870 in LNCS, pages 23-61. Springer-Verlag, September 2000.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. IAnalysis and Visualization Tools for Constraint Pro-
gramming pages 23-61. Springer LNCS 1870, 2000.

G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. faade la Banda,

K. Marriott, and P. J. Stuckey. A Generic Framework for Context-Sensitive Analy-
sis of Modular Programs. In M. Bruynooghe and K. Lau, editBregram Devel-
opment in Computational Logic, A Decade of Research Advances in Logic-Based
Program Developmenhumber 3049 in LNCS, pages 234-261. Springer-Verlag,
Heidelberg, Germany, August 2004.

G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. Imternational Static Analysis Symposiunumber 1145
in LNCS, pages 270-284. Springer-Verlag, September 1996.

G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Ap-
plication to Program Parallelizationl. of Logic Programming. Special Issue on
Synthesis, Transformation and Analysis of Logic Progra#ig2&3):279-316,
November 1999.

G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. Bpecial Issue on Optimization and Implemen-
tation of Declarative Programming Language®lume 30 ofElectronic Notes in
Theoretical Computer Sciendélsevier - North Holland, March 2000.

128

[PHO3]

[Plag4]

[Pro02]

[RRL99]

[RS97]

[Sah93]

[SG95]

[Son86]

[TJ94]

[VBOO]

[VD88]

G. Puebla and M. Hermenegildo. Abstract Specialization and its Applica-
tions. InACM Partial Evaluation and Semantics based Program Manipulation
(PEPM’'03), pages 29-43. ACM Press, June 2003. Invited talk.

D. A. Plaisted. The occur-check problem in prolog.Ihiternational Symposium
on Logic Programmingpages 272-281, Silver Spring, MD, February 1984. At-
lantic City, IEEE Computer Society.

Christian W. Probst. Modular Control Flow Analysis for Libraries. Static
Analysis Symposium, SAS,0®lume 2477 olLNCS pages 165-179. Springer-
Verlag, 2002.

A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysis of program fragments.
In ESEC/FSE’'99volume 1687 oL NCS pages 235-252. Springer-Verlag, 1999.

G. Rozenberg and A. Salomaa, editordandbook of Formal Languages: Word
Language Grammawolume 1. Springer-Verlag, 1997.

D. Sahlin. Mixtus: An automatic partial evaluator for full Prold¢ew Generation
Computing 12(1):7-51, 1993.

M.H. Sgrensen and R. Gdék. An Algorithm of Generalization in Positive Super-
compilation. InProc. of ILPS’95 pages 465—-479. The MIT Press, 1995.

H. Sondergaard. An application of abstract interpretation of logic programs: occur
check reduction. IrEuropean Symposium on Programming, LNCS, J#8)es
327-338. Springer-Verlag, 1986.

Y. M. Tang and P. Jouvelot. Separate abstract interpretation for control-flow anal-
ysis. InTheoretical Aspects of Computer Software (TACS, 8djmber 789 in
LNCS. Springer, 1994.

W. Vanhoof and M. Bruynooghe. Towards modular binding-time analysis for first-
order mercury. IrSpecial Issue on Optimization and Implementation of Declara-
tive Programming Languagegolume 30 ofElectronic Notes in Theoretical Com-
puter ScienceElsevier - North Holland, March 2000.

R. Venken and B. Demoen. A partial evaluation system for prolog: some practical
considerationsNew Generation Computing:279-290, 1988.

129

