
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Specialization of Real Life CLP
Languages

Deliverable number: D6

Workpackage: Integrated Tool (WP7)

Preparation date: 1 March 2004

Due date: 1 March 2004

Classification: Public

Lead participant: Tech. Univ. of Madrid (UPM)

Partners contributed: Tech. Univ. of Madrid (UPM), Univ. of Southampton, Roskilde

Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

This deliverable reflects the progress made in this period in WP7 Tasks 7.1 and 7.2, on the

improvement of the mechanisms for analyzing and specializing real-life programs and the inte-

gration of these mechanisms into the first prototype. The two main areas of focus of the deliver-

able are developing techniques for a) dealing with large programs that are divided into modules

(including the case when each individual module is large), and b) dealing with language features

which are difficult to handle, such as builtins and “impure” predicates (including those that have

side-effects, are extra-logical, may raise errors or exceptions, etc.).

As decided in the first progress report, the work in these tasks has continued beyond the orig-

inally planned month 12 into month 16 in order to produce additional results. For this reason,

only a draft version of this deliverable was available in the first review. That draft version con-

tained only Part IV and preliminary versions of Parts I and VI of this final version. This final

deliverable includes all new Parts II, III and V, updated versions of Parts I and VI, and, in order

to be self-contained, also Part IV unchanged.

1 Dealing with large, modular programs

As mentioned above, one of the fundamental areas of focus of this deliverable is to study and find

solutions to the difficulties posed by large, real-life, modular programs. Part I of the deliverable

(“A Generic Framework for Context-Sensitive Analysis of Modular Programs”, which has now

been published as a book chapter) presents the complete framework developed for the analysis

and specialization of modular programs. This framework analyzes or reanalizes each module as

needed, iterating over the module dependency graph and propagating among dependent modules

the analysis results obtained, until the analysis results stabilize (i.e., a fixpoint is reached). The

framework allows preprocessing a program fragment (a module) even if other parts of the system

are not available yet, with only minimal interface information needed. Although results of pre-

processing a separate module may be suboptimal, they often suffice for debugging the module

code. When all the code of the program is available a more accurate analysis and specialization

can be carried out. The increased precision obtained allows detecting new bugs that are due to

module interactions and also to produce a more highly optimized executable for the modular

program.

Part II of the deliverable (“Experiments in Context-Sensitive Analysis of Modular Programs”)

reports on our additional progress in this area: the experimental evaluation of the behavior

of context-sensitive analysis and specialization of real-life programs decomposed in modules.

Since the previous period we have completed an implementation of the framework inCiaoPP

and assessed its behavior and performance with a set of large, modular programs. We have

benchmarked the different models of analysis of modular programs proposed in previous work,

each with different characteristics and representing different trade-offs. We provide an empirical

comparison of these different models, as well as experimental data on the different choices left

open in those designs. We have also explored the scalability of these models by using larger

modular programs as benchmarks. In addition, the performance of the system when reanalyzing

a modular program after changes in the source code has also been measured, in order to explore

the ability of this approach to handle efficiently incremental changes in large systems. This as-

sessment shows that in some critical cases, the incremental approach provides significantly better

performance results than those achievable by analyzing the whole program at once.

Part III of the deliverable (“Efficient Local Unfolding with Ancestor Stacks for Full Prolog”,

to appear in the LOPSTR’04 proceedings) reports on our progress in improving the ability of

our specialization tools to deal with individual program modules which are large. This is impor-

tant because one of the issues that has prevented the integration of powerful partial evaluation

methods into practical compilers to date has been their efficiency. The most successful unfold-

ing rules used currently are based on structured orders applied over (covering)ancestors, which

introduce significant overhead. In this period, we have proposed an efficient, practicallocal un-

folding rule based on the notion of covering ancestors which can be used in combination with

any structural order and allows a stack-based implementation without losing any opportunities

for specialization. We have integrated these techniques in the common tool, in particular in the

partial evaluator embedded inCiaoPP , and studied the resulting performance. Our experimen-

tal results show that they are significantly more efficient in time and somewhat more efficient in

memory usage than previous techniques.

2 Handling builtins and impure features

The second fundamental focus of the deliverable in order to deal with real-life programs is to

study and find solutions to the difficulties posed by certain language features which which are

difficult to handle. In particular, CLP languages typically have a number predefined predicates,

or builtins, which must be handled in a special way by analyzers and specializers. The usual

approach is to embed in the tool a table of the builtins that are understood by the tool, with

specific mechanisms to handle them. However, this approach is not extensible. We have proposed

instead an approach in which assertions describing builtins are used throughout the libraries of

2

the system (as opposed to the table embedded in the analyzer or specializer) which include the

appropriate information. The same approach can be used for parts of an application which are

written in foreign languages (e.g., C or Java). These assertions are presented in detail in the

manual of the Ciao and CiaoPP systems, and their use in partial evaluation is discussed for

example already in Part III.

Another important problem related to builtins is to guarantee that such builtins are called with

the correct argument modes and types. This can be tackled by abackwards analysis. Conditions

on the entry predicates are derived, which guarantee satisfaction of the assertions defining the

pre-conditions on builtins. In Part IV (“A Program Transformation for Backwards Analysis of

Logic Programs,” which has been published in the Proceedings of LOPSTR’03) we presented

a framework for performing backwards analysis within a standard abstract interpretation. The

approach is based on a transformation that makes the dependencies of the calls to builtins on

the initial goals explicit. The transformed program can be analyzed using a standard abstract

interpretation algorithm, rather than the special-purpose frameworks used for backwards analysis

in the literature.

Part V of the deliverable (“Flexible and Accurate Partial Deduction of Full Prolog using

Assertions and Backwards Analysis”) reports significant additional progress that we have made

during this period in the area of partial deduction of real-life CLP programs containingimpure

predicates. Impure predicates include those which may raise errors, exceptions or side-effects,

external predicates whose definition is not available, etc. Existing proposals allow obtaining

correct residual programs while still allowing non-leftmost unfolding steps, but at the cost of

accuracy: bindings and failure are not propagated backwards to predicates which are classified

as impure. Motivated by recent developments in thebackwardsanalysis of logic programs, we

have developed, implemented and integrated in the common tool a partial deduction algorithm

which can handle impure features and non-leftmost unfolding in a more accurate way and, thus,

we have made possible and show some optimizations which were not feasible using previously

proposed partial deduction techniques. We believe this is an important step forward compared

to existing approaches since the method developed is a) accurate, given that the classification of

pure versus impure is done at the level of atoms instead of predicates, b) flexible, as the user

can annotate programs using assertions, which can guide the partial deduction process, and c)

automatic, since backwards analysis can be used to automatically infer the required assertions.

Finally, we have also studied the precise requirements and implications that a precise anal-

ysis of builtins imposes on abstract domains. In particular, Part VI (“Set-Sharing is not always

redundant for Pair-Sharing”, now published in FLOPS’04) studies the case of the important and

popular “sharing” domain and proves that certain assumptions that had been made to simplify

the operations associated with this domain are in fact not valid in the presence of builtins.

3

Contents

Deliverable Description 1

1 Dealing with large, modular programs 1

2 Handling builtins and impure features 2

I A Generic Framework for Context-Sensitive Analysis of Modular Pro-
grams 6

1 Summary 6

2 Introduction 6

3 A Non-Modular Context-Sensitive Analysis Framework 9

3.1 Program Analysis by Abstract Interpretation .9

3.2 The Generic Non-Modular Analysis Framework10

3.3 Predefined Procedures .11

4 The Flattening Approach to Modular Processing 12

4.1 Flattening a Program Unit vs. Modular Processing13

5 Design Goals for Analysis of Modular Programs 14

6 Analysis of Modular Programs: The Local Level 16

6.1 Solving the Imported Success Problem .18

6.2 Solving the Imported Calls Problem .19

7 Analysis of Modular Programs: The Global Level 20

7.1 Parameters of the Framework .21

7.2 How the Global Level Works .21

7.3 Updating the Global State .22

7.4 Recovering from an Invalid State .23

8 Using a Manual Scheduling Policy 23

1

9 Using an Automatic Scheduling Policy 24

9.1 Using Over-Approximating Success Policies .25

9.2 Using Under-Approximating Success Policies25

9.3 Hybrid policy .26

9.4 Computation of an Intermodular Fixed-Point .26

10 Some Practical Implementation Issues 27

10.1 Making Global Information Persistent .27

10.2 Splitting Global Information .28

10.3 Handling Libraries and Predefined Modules .29

11 Discussion and Conclusions 31

II Experiments in Context-Sensitive Analysis of Modular Programs 34

1 Summary 34

2 Introduction and Motivation 34

3 Analysis of modular programs 36

3.1 Modular programs .36

3.2 Flattening a Program Unit vs. Modular Processing36

3.3 Analyzing one module at a time .37

3.3.1 Solving the Imported Success Problem38

3.3.2 Solving the Imported Calls Problem .39

3.4 Computing an intermodular fixed point .40

4 Empirical results 41

4.1 Brief description of the benchmarks used .42

4.2 Analysis of a modular program from scratch .43

4.3 Reanalysis of a modular program after a change in the code45

5 Conclusions 45

III Efficient Local Unfolding with Ancestor Stacks for Full Prolog 57

1 Summary 57

2

2 Introduction 57

3 Background 58

4 The Usefulness of Ancestors 60

5 An Efficient Implementation for Local Unfolding 63

6 Assertion-based Unfolding for External Predicates 68

7 Experimental Results 70

IV A Program Transformation for Backwards Analysis of Logic Pro-
grams 74

1 Summary 74

2 Introduction 74

2.1 Making Derivations Observable .75

2.1.1 Resultants Semantics .75

2.2 Backwards Analysis Based on the Resultants Semantics76

3 The Program Transformation 78

3.1 Resultants Semantics by Program Transformation78

3.2 From Resultants to Binary Clauses .79

3.3 Transforming with Respect to Program Points79

3.4 Analysis of the Transformed Programs .81

3.5 Interpretation of the Analysis Result .83

3.6 Analysis of Quicksort .83

3.7 Computing the Goal Conditions .84

3.8 The Relative Pseudo-Complement .86

4 Related Work 86

5 Conclusion 87

V Partial deduction of real-life CLP programs containing impure pred-
icates using backwards analysis 89

3

1 Summary 89

2 Background 89

3 Non-Leftmost Unfolding in Partial Deduction 92

3.1 Non-Leftmost Unfolding and Impure Predicates92

4 From Impure Predicates to Impure Atoms 94

4.1 Binding-sensitiveness .94

4.2 Side-effects .95

4.3 Run-Time Errors .95

4.4 Pure and Evaluable Atoms .96

5 Assertions about Purity of Atoms 97

6 Automatic Inference of Assertions by Backwards Analysis 98

6.1 The Backwards Analyzer .99

6.2 The Partial Deducer .101

7 Conclusions 103

VI Set-Sharing is not always redundant for Pair-Sharing 104

1 Summary 104

2 Introduction 104

3 Preliminaries 106

4 Eliminating redundancy from Sharing 108

5 When redundant sets are no longer redundant 109

6 Combining Sharing with freeness 111

7 When independence among sets is relevant 115

8 Conclusion 118

4

References 120

5

Part I

A Generic Framework for

Context-Sensitive Analysis of Modular

Programs

1 Summary

Context-sensitive analysis provides information which is potentially more accurate than that pro-

vided by context-free analysis. Such information can then be applied in order to validate/debug

the program and/or to specialize the program obtaining important improvements. Unfortunately,

context-sensitive analysis of modular programs poses important theoretical and practical prob-

lems. One solution, used in several proposals, is to resort to context-free analysis. Other propos-

als do address context-sensitive analysis, but are only applicable when the description domain

used satisfies rather restrictive properties. In this paper, we argue that a general framework for

context-sensitive analysis of modular programs, i.e., one that allows using all the domains which

have proved useful in practice in the non-modular setting, is indeed feasible and very useful.

Driven by our experience in the design and implementation of analysis and specialization tech-

niques in the context of CiaoPP, the Ciao system preprocessor, in this paper we discuss a number

of design goals for context-sensitive analysis of modular programs as well as the problems which

arise in trying to meet these goals. We also provide a high-level description of a framework for

analysis of modular programs which does substantially meet these objectives. This framework

is generic in that it can be instantiated in different ways in order to adapt to different contexts.

Finally, the behavior of the different instantiations w.r.t. the design goals that motivate our work

is also discussed.

2 Introduction

Analysis of logic programs has received considerable theoretical and practical attention. A num-

ber of successful compile-time techniques have been proposed and implemented which allow

obtaining useful information on the program and using such information to debug, validate, and

specialize the program, obtaining important improvements in correctness and efficiency. Unfor-

tunately, most of the existing techniques are still only used in prototypes and, though numerous

6

experiments demonstrate their effectiveness, they have not made their way into existing real-life

systems. Perhaps one of the reasons for this is that most of these techniques were originally

designed to be applied to a complete, monolithic program, while programs in practice invari-

ably have a more complex structure combining a number of user modules with system libraries.

Clearly, organizing program code in this modular way has many practical advantages for both

program development and maintenance. On the other hand, performing global techniques such

as program analysis on modular programs differs from doing so in a monolithic setting in several

interesting ways and poses non-trivial problems which must be solved.

In this work we concentrate onstrict module systems in which procedures external to a

module arevisible to it only if they are part of itsinterface. The interface of a module usually

contains the names of theexportedprocedures and the names of the proceduresimportedfrom

other modules. The module can only import procedures which are among the ones exported by

the other modules. Procedures which are not exported are not visible outside the module.

Driven by our experience in the design and implementation of context-sensitive analysis and

specialization techniques in the CiaoPP system [PH03, HPBLG03a], in this paper we present

a high level description of a framework for analysis of modular programs. This framework is

generic in that it can be instantiated in different ways in order to adapt to different contexts. The

correctness, accuracy, and efficiency of the different instantiations is discussed and compared.

The analysis of modular programs has been addressed in a number of previous works. How-

ever, most of them have focused on specific analyses with particular properties and using more

or less ad-hoc techniques. In [CDG93] a framework is proposed for performing compositional

analysis of logic programs in a modular fashion, using the concept of anopen program, intro-

duced in [BGLM94a]. An open program is a program in which part of the code is not available to

the analyzer. Nevertheless, this interesting framework is valid only for a particular set of abstract

domains of analysis—those which arecompositional.

Another interesting framework for compositional analysis for logic programs is presented

in [VB00], in this case, forbinding-time analysis. Although the most natural way to describe ab-

stract interpretation-based binding-time analyses is arguably to use a top-down, goal-dependent

framework, in this work a goal-independent analysis framework is used in order to simplify

the handling of the issues stemming from modularity. The choice is based on the fact that

context-sensitivity brings important problems to a top-down analysis framework. Both this pa-

per and [CDG93] stress compositionality as a very attractive property, since it greatly facilitates

modular analysis. However, there are many useful abstract domains which do not meet this

property, and thus these approaches are not of general applicability.

In [Pro02] a control-flow analysis-based technique is proposed for call graph construction

in the context of object oriented languages. Although there has been other work in this area,

7

the novelty of this approach w.r.t. previous proposals is that it is context-sensitive. Also, [BJ03]

shows a way to perform modular class analysis by translating the object oriented program into

openDATALOG programs, in the sense of [BGLM94a]. These two contributions are tailored

to specific analysis domains with particular properties, so an important part of their work is not

generally applicable nor reusable in a general framework.

In [RRL99] a two-phase analysis is proposed for incomplete imperative programs, starting

with a fast, imprecise global analysis and then continuing with a (possibly context sensitive)

analysis for each module in the program. This approach is not abstract interpretation-based. It is

interesting to see that it appears to follow from the theory of abstract interpretation that if in such

a two-pass approach the first pass “overshoots” the fixed-point, the maximum precision may not

be recovered in the second pass.

In [TJ94] a method for performing separate control-flow analysis by means of abstract in-

terpretation is proposed. This paper does not deal with the inter-modular approach studied

in the present work, although it does have points in common with our module-aware analysis

framework (Section 6). However, in this work the initial information needed by the abstract

interpretation-based analyzer is provided by other analysis techniques (types and effects tech-

niques), instead of taking advantage of the actual results from the analysis of the rest of the

modules in the program.

A preliminary study of the extension of analysis and specialization to the case of modular

programs was presented in [PH00]. A full practical proposal for modular program analysis was

presented in [BdlBH+01], which also presented some preliminary data from its implementation

in the context of the Ciao system. Also, an implementation of [BdlBH+01] in the context of the

HAL system [GDMS02] has been reported in [Net02].

The rest of the paper proceeds as follows: Section 3 presents a review of program analysis

based on abstract interpretation and of the non-modular framework that we use as a starting point.

Section 4 then presents some additional notation related to modular programs and a first, sim-

ple approach to extending the framework to handling such modular programs: the “flattening”

approach. This approach is used as baseline for comparison throughout the rest of the paper. Sec-

tion 5 then identifies a number of characteristics that are desirable of a modular analysis system

and which the simple approach does not meet in general. Achieving (at least a subset of) these

characteristics justifies the more involved approach presented in the rest of the paper. To this

end, Section 6 first discusses the modifications made to the analysis framework for non-modular

programs in order to be able to handle one module at a time. Section 7 then presents the actual

full framework for analysis of modular programs. The framework proposed is parametric on the

scheduling policies. The following sections discuss two scheduling policies which are funda-

mentally different:manual scheduling(Section 8), which corresponds to a scenario where one

8

or more users decide when and what modules to analyze individually (but in a context-sensitive

way), such as in distributed program development, andautomatic scheduling(Section 9), where

a full scheduling policy automatically determines in which order the modules will be analyzed

and continues until the process is completed (a fixed-point is reached). Section 10 addresses

some practical implementation issues, including persistence and handling of libraries. Finally,

Section 11 compares the behavior of the different instantiations of the generic framework pro-

posed together with that of the flattening approach w.r.t. the desirable design features discussed

in Section 5, and presents some conclusions.

3 A Non-Modular Context-Sensitive Analysis Framework

The aim of context-sensitive program analysis is, for a particular description domain, to take a

program and a set of initial call patterns and to annotate the program with information about the

current environment at each program point whenever that point is reached when executing calls

described by the initial call patterns.

3.1 Program Analysis by Abstract Interpretation

Abstract interpretation [CC77] is a technique for static program analysis in which execution of

the program is simulated on a description (or abstract) domain (Dα) which is simpler than the

actual (or concrete) domain (D). Values in the description domain and sets of values in the

actual domain are related via a pair of monotonic mappings〈α, γ〉: abstractionα : 2D →
Dα andconcretizationγ : Dα→ 2D which form a Galois connection, i.e.

∀x ∈ 2D : γ(α(x)) ⊇ x and ∀λ ∈ Dα : α(γ(λ)) = λ.

The set of all possible descriptions represents a description domainDα which is usually a com-

plete lattice or cpo for which all ascending chains are finite. Note that in generalv is induced by

⊆ andα (in such a way that∀λ, λ′ ∈ Dα : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)). Similarly, the operations of

least upper bound(t) andgreatest lower bound(u) mimic those of2D in some precise sense.

A descriptionλ ∈ Dα approximatesa set of concrete valuesx ∈ 2D if α(x) v λ. Correctness

of abstract interpretation guarantees that the descriptions computed approximate all of the actual

values which occur during execution of the program.

Different description domains may be used which capture different properties with different

accuracy and cost. Also, for a given description domain, program, and set of initial call patterns

there may be many different analysis graphs. However, for a given set of initial call patterns, a

9

program and abstract operations on the descriptions, there is a uniqueleast analysis graphwhich

gives the most precise information possible.

3.2 The Generic Non-Modular Analysis Framework

We will now briefly describe the main ingredients of a generic context-sensitive analysis frame-

work which computes the least analysis graph. This framework generalizes the particular analy-

sis algorithms used in systems such as PLAI [MH90, MH92], GAIA [CV94], and the CLP(R) an-

alyzer [KMM+98], and we believe captures the essence of most context-sensitive, non-modular

analysis systems. More details on this generic framework can be found in [HPMS00, PH96].

We first introduce some notation.CD andAD stand for descriptions in the abstract domain.

The expressionP : CD denotes acall pattern. This consists of a predicate call together with a

call description for that predicate call. Similarly,P : AD denotes an answer pattern, though it

will be referred to asAD when it is associated to a call patternP : CD for the same predicate

call.

The least analysis graph for the program is implicitly represented in the algorithm by means

of two data structures, theanswer tableand thedependency table. Given the information in

these data structures it is straightforward to construct the graph and the associated program point

annotations. The answer table contains entries of the formP : CD 7→ AD. It is interpreted

as: the answer pattern for calls of the formCD to P is AD. A dependency is of the formP :

CD0 ⇒ Bkey : CD1. This is interpreted as follows: if the procedureP is called with description

CD0 then this causes the procedureB to be called with descriptionCD1. The subindexkeycan

be used in order to uniquely identify the program point withinP whereB is called with calling

patternCD1. Dependency arcs represent the arcs in the program analysis graph from procedure

calls to the corresponding call pattern.

Intuitively, different analysis algorithms correspond to different graph traversal strategies

which place entries in the answer table and dependency table as new nodes and arcs in the

program analysis graph are encountered. To capture the different graph traversal strategies used

in different fixed-point algorithms, we use a priority queue. The queue contains the events to

process. Different priority strategies correspond to different analysis algorithms. Thus, the third,

and final, structure used in our generic framework is atasks queue.

When an event being added to the tasks queue is already in the queue, a single event with the

maximum of the priorities is kept in the queue. Also, only one arc of the formP : CD⇒ Bkey :

CD′ for each tuple(P, CD, Bkey) exists in the dependency table: the last one added. The same

holds for entriesP : CD 7→ AD for each tuple(P, CD) in the answer table.

Figure 1 shows the architecture of the framework. TheCodecorresponds to the (source)

10

Code

Entries

ENGINE

Queue
TasksDependency

Table
Answer
Table

Builtin
Procedure
Function

Description
Domain

Operations

Figure 1: Non-Modular Analysis Framework

code of the program to be analyzed. ByEntrieswe denote the initial starting points for analysis.

The boxDescription Domain Operationsrepresents the definition of operations which are do-

main dependent. The circle represents theAnalysis Engine, which has the three data-structures

mentioned above, i.e., the answer table, the dependency table, and the tasks queue. Initially, for

each analysis these three structures are empty and the analysis engine takes care of processing

the events on the priority queue by repeatedly removing the highest priority event and calling

the appropriate event-handling function. This in turn consults and modifies the contents of the

answer and dependency tables. When the tasks queue becomes empty then the analysis engine

has reached a fixed-point. This implies that the least analysis graph has been found. We will use

AnalysisDα
(Q, E) = (AT,DT) to denote that the analysis of programQ for initial descriptions

E in domainDα produces the answer tableAT with dependency tableDT .

3.3 Predefined Procedures

In order to simplify their presentation, formalizations of program analysis often do not consider

predefinedprocedures. However, in practice, program analysis implementations allow the use of

predefined (language built-in and/or library) procedures1 in the programs to be analyzed. These

externalprocedures whose code is not available in the program being analyzed are often han-

dled in anad-hocway. Thus, in fairness, non-modular program analyses are more accurately

represented by adding to the framework abuiltin procedure functionwhich essentially hardwires

1In our modular design, a library can be treated simply as (yet another) module in the program. However, special

practical considerations for them will be discussed in Section 10.3.

11

the answer table for these external procedures. This function is represented in Figure 1 by the

box builtin procedure function. We will useCP andAP to denote, respectively, the set of all

call patterns and the set of all answer patterns. The builtin procedure function can be formalized

as a functionBF : CP → AP. For all call patternP : CD whereP is a builtin procedure

BF (P : CD) returns a descriptionAD which is assumed to be correct in the sense that it is a safe

approximation, i.e. an over-approximation of the actual answer pattern forP : CD.

It is important to note that the data structures which are outside the analysis engine,code,

entries, description domain operations, andbuiltin procedure functionare read-only. However,

though the code and entries are supposed to change for the analysis of each particular program,

thebuiltin procedure functioncan be considered to be fixed, for each description domainDα, in

that it does not vary from the analysis of one program to another. Indeed, it can be considered

to be part of the analyzer. Thus, the builtin procedure function is not explicitly represented as an

input to the analysis algorithm.

4 The Flattening Approach to Modular Processing

We start by introducing some notation. We will usem andm′ to denotemodules. Given a

modulem, by imports(m) we denote the set of modules whichm imports. Figure 2 presents a

modular program. Modules are represented as boxes and there is an arrow fromm to m′ iff m

importsm′. In our example,imports(a) = {b, c}. By depends(m) we refer to the set generated

by the transitive closure ofimports, i.e. depends(m) is the least set such thatimports(m) ⊆
depends(m) andm′ ∈ depends(m) implies thatimports(m′) ⊆ depends(m). In our example,

depends(a) = {b, c, d, e, f}. Note that there may be circular dependencies among modules. In

our example,e ∈ depends(d) andd ∈ depends(e). A modulem is a leaf if depends(m) = ∅.
In our example, the only leaf module isf . By callers(m) we denote the set of modules which

import m. In the example,callers(e) = {b, c, d}. Also, we definerelated(m) = callers(m) ∪
imports(m). In our example,related(b) = {a, d, e}.

The program unitof a given modulem is the finite set of modules containingm and the

modules on whichm depends:programunit(m) = {m} ∪ depends(m). m is called thetop-

level module of its program unit. In our example,programunit(a) = {a, b, c, d, e, f} and

programunit(c) = {c, d, e, f}. A program unitU is self-contained in the sense that∀ m ∈
U : m′ ∈ imported(m)→ m′ ∈ U .

Severalcompilation taskssuch as program analysis and specialization are traditionally con-

sideredglobal, as opposed tolocal. Usually, local tasks process one procedure at a time and all

the information required for performing the task can be obtained by inspecting that procedure.

12

a

e fd

b c

Figure 2: An Example of Module Dependencies

In contrast, in global tasks the results of processing a part of the program (say, a procedure) may

be needed in order to process other parts of the program. Thus, global processing often requires

iterating on the whole program until a fixed-point is reached.

In a modular setting, it may well be the case that part of the information needed to perform

the task on (a procedure in) modulem has to be computed in modules other thanm. We will

refer to the information originated in modules different fromm asinter-modularinformation in

contrast to the information originated inm itself, which we will callintra-modular.

Example 4.1 In context-sensitive program analysis there is an information flow of both call and

success patterns to and from procedures in different modules. Thus, program analysis requires

inter-modular information. For example, the modulec receives call patterns from modulea

sincecallers(c) = {a}, and it has to propagate the corresponding success patterns toa. In turn,

c provides{e, f} = imports(c) with call patterns and receives success patterns from them.

4.1 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a modulem has the difficulty thatm may

not be self-contained. However, there should be no problem in applying the framework ifm is a

leaf module. Furthermore, given a global process such as program analysis, at least in principle,

it is not obvious that it makes much sense to apply the process to a modulem alone. In principle,

it makes more sense to apply it to program units since they are conceptually self-contained. Thus,

given a modulem one natural approach seems to be to apply the tool (simultaneously) to all the

modules inU = programunit(m).

Given a program unitU it is always possible to build a single modulemflat which is equiv-

alent toU and which is a leaf. The process of constructing such a modulemflat usually only

amounts to renaming apart identifiers in the different modules inU so as to avoid name clashes.

We will useflatten(U) = mflat to denote that the modulemflat is the result of renaming apart

the code in each module inU and concatenating its code into a monolithic modulemflat. This

13

points to a simple solution to the problem of processing modular programs (at least for the case in

which all the code is available): to transformprogram unit(m) into the equivalent monolithic

programmflat. It is then straightforward to apply any tool for non-modular programs to the leaf

modulemflat. Figure 3 represents the case in which the non-modular analysis framework is used

on the flattened program.

Builtin
Procedure
Function

ENGINE

Queue
TasksDependency

Table
Answer
Table

a

b

c

d

Entries

Description

Operations
Domain

a

d

b c

Figure 3: Using non-modular analysis on a flattened program

Given the existence of an implementation for non-modular analysis, this approach is often

simple to apply. Also, this flattening approach has theoretical interest. It can be used, for exam-

ple, in order to compare the efficiency of different approaches to modular handling of programs

w.r.t. the flattening approach. However, as a practical way in which to actually perform analysis

of program units this approach has important drawbacks. This issue will be discussed in more

detail in Section 11.

5 Design Goals for Analysis of Modular Programs

Before presenting our proposals for analysis of modular programs, we will discuss the main

features which should be taken into account when designing and/or implementing a tool for

context-sensitive analysis of modular programs. As often happens in practice, some of the fea-

tures presented are conflicting with others and this might make it impossible to find a framework

which behaves optimally w.r.t. all of them.

Module-Awareness We consider a frameworkmodule-awarewhen it has been designed with

modules in mind. Thus, it is applicable to a modulem by using the code ofm and some “in-

terface” information for the modules inimports(m). Such interface information will in general

14

consist of a summary of previous analysis results for such modules, if such results are available,

or a safe approximation if they are not.

Though transforming a non-modular framework into a module-aware one may seem trivial,

it requires identifying precisely which is the required information on the result of applying the

tool in each of the modules inimports(m) which should be stored in order to apply the tool tom.

This corresponds in general to the inter-modular information. It is also desirable that the amount

of such information be minimal.

Example 5.1 The framework for non-modular analysis in Section 3 is indeed non-modular since

it requires the code of all procedures (except possibly for some predefined ones) to be available

to the analyzer. It will produce wrong results when applied to non-leaf modules since a missing

procedure can only be deemed as an error, unless the framework is aware that such a procedure

can be imported.

Correctness The results of applying the tool to a modulem should produce results which are

correct. The notion of correctness itself can in general be lifted from the non-modular case to

the modular case without great difficulties. A more complex issue is how to extend a framework

to the modular case in such a way that correctness is preserved.

Accuracy Similarly, the analysis results for a modulem should be as accurate as possible. The

notion of accuracy can be defined by comparing the analysis results with those which would be

obtained using the flattening approach presented in Section 4.1 above, since the latter always

computes the most accurate information possible, which corresponds to the least analysis graph.

Termination A framework for analysis of modular programs should guarantee termination

(at least) in all cases in which the flattening approach terminates (which, typically, is for every

program). Such termination is guaranteed by choosing description domains with some specific

characteristics such as having finite height, finite ascending chains, etc., and/or incorporating a

widening operator.

Efficiency in Time The time required to apply the tool should be reasonable. We will under-

stand “reasonable” as not over an acceptable threshold on the time taken using the flattening

approach.

15

Efficiency in Memory In general, one of the main expected advantages of the modular ap-

proach is that the total amount of memory required to handle each module separately should be

smaller than that needed in the flattening approach.

No Need for Analyzing All Call Patterns Under certain circumstances, applying a tool on a

modulem may require processing only a subset of the call patterns rather than all call patterns

for m. In order to achieve this, the model must keep track of fine-grained dependencies. This

will allow marking exactly those call patterns which need processing. Other call patterns not

marked do not need to be processed.

Support for the Co-Existence of Multiple Program Units/Applications In a modular setting

it is often the case that a particular module is used in several applications. Support for software

reuse is thus a desirable feature. However, this poses additional and interesting challenges to the

tools, some of which will be discussed in Section 10.

Support for Source Changes What happens if the source of a module changes during process-

ing? Some tools will not allow this at all and if it happens all the processing has to start again

from scratch. This has the disadvantage that the tool is then not incremental since a (possibly

minor) change in a module invalidates the information for all the program unit. Other tools may

delete the information which may depend on the changed code, but still keep the information

which does not depend on it.

Persistence This feature indicates that the inter-modular information can be stored in a per-

sistent medium, such as a file stored on disk or a database, and allow later recovery of such

information.

6 Analysis of Modular Programs: The Local Level

As a first step towards introducing our analysis framework for modular programs, which will

be presented in Section 7 below, in this section we discuss the main ingredients which have to

be added to an analysis framework for non-modular programs in order to be able to handle one

module at a time.

Analyzing a module separately presents the difficulty that, from the point of view of analysis,

the code to be analyzed isincompletein the sense that the code for procedures imported from

other modules is not available to analysis. More precisely, during analysis of a modulem there

16

Dependency
Table

Tasks
Queue

Answer
Table

Global
Answer
Table

Success policy

Entries

ENGINE

Answer Table
Temporary

Local Local Local
m

Code
Domain

Description

Operations

Procedure
Builtin

Function

Figure 4: Module-aware analysis framework

may be callsP : CD such that the procedureP is not defined inm but instead it is imported

from another modulem′ ∈ imports(m). We refer to determining the value ofAD to be used

for P : CD 7→ AD as theimported success problem. In addition, in order to obtain analysis

information for m′ which is as accurate as possible we need to somehow propagate the call

P : CD to m′ so that the next timem′ is analyzed such a call pattern is taken into account. We

refer to this as theimported calls problem. Note that in this case analysis has to be module-aware

in order to determine whether a given procedure is either local or imported (or predefined).

Figure 4 shows the architecture of an analysis framework which is module-aware. This

framework is an extension of the non-modular framework in Figure 1. One minor change is

that the read/write data structures internal to the analysis engine have been renamed with the

prefix “local”. So now we have thelocal answer table, thelocal dependency table, and thelocal

task queue. Also, the box which represents the code now containsm indicating that it contains

the single modulem.

The shaded boxes in Figure 4 indicate the main differences w.r.t. the non-modular framework.

One is that in the module-aware framework there is an additional read-only2 data structure, the

global answer table, or GAT for short. Its contents are identical in format to those in the answer

table of the non-modular framework. There are however some differences: (1) theGAT con-

tains analysis results which were obtained previously to the current analysis step. (2) TheGAT

contains entries which correspond to predicates defined inimports(m), whereas all entries in the

local answer table (orLAT for short) are for predicates defined inm itself. (3) Only information

of exported predicates is available inGAT. TheLAT contains information for all predicates inm

regardless of whether they are exported or not.

2In fact, this data structure is read/write at the global level discussed in Section 7 below, but it is read-only as

regards our engine for analysis of one module.

17

6.1 Solving the Imported Success Problem

The second important difference is that the module-aware framework requires the use of asuc-

cess policy, or SPfor short, which is represented in Figure 4 with a shaded box surrounding the

GAT. TheSPcan be seen as an intermediator between theGAT and the analysis engine. The be-

havior of the analysis engine for predicates defined inm remains exactly as before.SPis needed

because though the information in theGAT will be used in order to obtain answer patterns for

imported predicates, given a call patternP : CD it will often be the case that an entry of exactly

the formP : CD 7→ AD does not exist inGAT. In such case, the information already present

in GAT may be of value in order to obtain a (temporary) answer patternAD. Note that theGAT

together withSPwill allow solving the “imported success problem”.

In contrast, in many formalizations of non-modular analysis there is no explicit success pol-

icy. This is because if the call patternP : CD has not been analyzed yet, the analysis algorithm

forces its computation. Thus, the results of analysis do not depend on any particular success

policy: when analysis reaches a fixed-point there is always an entry of the formP : CD 7→ AD

for any call patternP : CD which appears in the analysis graph. Unfortunately, in a modular

setting it is not directly possible to force the analysis of predicates defined in other modules.

Those modules may have already been analyzed or they may be analyzed in the future. We will

simply do what we can given the information available inGAT.

We will useGAT to denote the set of all global answer tables. The success policy can be

formalized as a functionSP : CP × GAT → AP. Several success policies can be defined

which provide over- or under-approximations of the exact answer patternAD= with different de-

gree of accuracy. Note that this exact valueAD= is the one which the flattening approach would

compute. In this work we consider two kinds of success policies, those which are guaranteed

to always provide over-approximations, i.e.AD= v SP(P : CD, AT), and those which provide

under-approximations, i.e.,SP(P : CD, AT) v AD=. We will use the superscript+ (resp−)

to indicate that a success policy over-approximates (resp. under-approximates). As will be dis-

cussed later in the paper, both over- and under-approximations are useful in different contexts

and for different purposes. Since it is always required to know whether a success policy over- or

under-approximates we will mark all success policies in either way.

Example 6.1 A very precise over-approximating success policy is the functionSP+
All defined

below, already proposed in [PH00]:

SP+
All(P : CD, GAT) = topmost(CD) uAD′

∈app
AD′ where

app = {AD′ | (P : CD′ 7→ AD′) ∈ GAT and CDv CD′}

18

The functiontopmost obtains the topmost answer pattern for a call pattern. The notion of

topmost descriptionwas already introduced in [BCHP96]. Informally, a topmost description

keeps those properties which aredownwards closedwhereas it loses those ones which are not.

Note that taking> as answer pattern is a correct over-approximation, but often less accurate

than using topmost substitutions. For example, if a variable is known to be ground in the call

pattern, it will continue being ground in the answer pattern and taking> as the answer pattern

would lose this information. However, the fact that a variable is free on call does not guarantee

that it will keep on being free on success.

We refer to this success policy asSP+
All because it usesall entries inGAT which areappli-

cableto the call pattern in the sense that the call pattern already computed is more general than

the call being analyzed.

Example 6.2 The counter-part ofSP+
All is the functionSP−

All which is defined as:

SP−
All(P : CD, GAT) = tAD′

∈app
AD′ where

app = {AD′ | (P : CD′ 7→ AD′) ∈ GAT and CD′ v CD}

Note the change in the direction of the applicability relation (the call pattern in theGAT has to

be more particular than the one being analyzed) and the use of the lub operator instead of the

glb. Also, note that taking, for example,⊥ as an under-approximation is correct butSP−
All is

more precise.

6.2 Solving the Imported Calls Problem

The third important difference w.r.t. the non-modular framework is the use of thetemporary an-

swer table(or TAT for short) and which is represented as a shaded box within the analysis engine

of Figure 4. This answer table will be used to store call patterns for imported predicates which

are not yet present inGATand whose answer pattern has been obtained (approximated) using the

success policy on the entries currently stored inGAT. TheTAT is used as a cache for imported

call patterns and their corresponding answer patterns, thus avoiding having to repeatedly apply

the success policy on theGAT for equivalent call patterns, which is an expensive operation. Also,

after analysis of the current module is finished, the existence of theTAT simplifies the way in

which the global data structures need to be updated. This will be discussed in more detail in

Section 7 below.

We useMAnalysisDα
(m, Em, SP, GAT) = (LATm, LDTm, TATM) to denote that the module-

aware analysis framework returns(LATm, LDTm, TATM) when applied to modulem for initial

call patternsEm with SP andGAT.

19

Dependency
Table

Global
Tasks
Queue

Global

Policy
Entry

Scheduling
Policy

Answer
Table

Builtin
Procedure
Function

Success
Policy

Code

Entries

SCHEDULER

ENGINE

Answer Table
Temporary

Dependency
Table

Tasks
Queue

Answer
Table

Local Local Local
Global

Program Unit

Description

Operations
Domain

a

d

b c

Figure 5: A two-level framework for analysis of modular programs

7 Analysis of Modular Programs: The Global Level

After discussing thelocal-levelissues which appear when analyzing a module, in this section we

present a complete framework for the analysis of modular programs. Since analysis is a global

task, an analysis framework should not only deal with local-level information, but also with

global-level information. A graphical representation of our framework is depicted in Figure 5.

The main idea is that we have to add a higher-level component to the framework which takes care

of the inter-modularinformation, as opposed to theintra-modularinformation which is handled

by the local-level subsystem described in the previous section.

As a result, analysis of modular programs is best seen as a two-level process. Note that the

inner, lightly shaded, rectangle corresponds exactly to Figure 4 as it is a module-aware analysis

system. It is interesting to see how the data structures in the global and local levels are indeed

very similar. The similarities and differences between theGAT andLAT have been discussed

already in Section 6 above. Regarding the global and local dependency tables (GDT andLDT

respectively), they are used in order to be able to propagate as precisely as possible which parts

of the analysis graph have to be recomputed. TheGDT is used in order to add events to the

global task queue (GTQ) whereas theLDT is used to add events (arcs) to be (re-)analyzed to

the local task queue (LTQ). We can define the events to be processed at the global level using

different levels of granularity. As usual, the finer-grained these events are, the more detailed

and thus more effective the handling of the events can be. One obvious possibility is to use

modules as events. This means that all call patterns which correspond to a module are handled

simultaneously whenever the module is selected at the global level. A more refined possibility

is to keep events at the call pattern level. This, together with sufficiently detailed information in

theGDT will allow incrementality at the call pattern level rather than module level.

20

7.1 Parameters of the Framework

The framework has three parameters. Theprogram unitcorresponds to the program unit to

be analyzed. Note that the code may not be physically stored in the tool’s memory since it is

already on external storage. However, the framework may maintain some information on the

program unit, such as dependencies among modules,strongly connected components, and any

other information which may be useful in order to guide analysis. In the figure theprogram unit

is represented, as an example, containing a program unit composed of four modules. The second

parameter is theentry policy, which determines the way in which theGTQandGAT should be

initialized whenever analysis of a program unit is started. Depending on how the success policy

is defined, entries for all procedures exported in each of the modules in the program unit may be

required inGAT andGTQor not.

Finally, thescheduling policydetermines the order in which the entries in theGTQshould be

processed. The efficiency with which the fixed-point is reached can differ very much from some

scheduling policies to others. Since the framework presented in Figure 5 has just one analysis

engine, processing a call pattern in a different module from that currently loaded has a relevant

cost associated to it, since this often requires context switching from the current module to a new

module. Thus, it is often a good idea to process all or many of the call patterns inGTQwhich

correspond to the module which is being analyzed in order to minimize the number of times the

analysis tool has to switch from one module to another. In the rest of the paper we consider

that events inGTQare answer patterns which would benefit from (re-)analysis. The role of the

scheduling policy is to select a set of patterns fromGTQwhich must necessarily belong to the

same modulem to be analyzed. Note that a scheduling policy based on modules can always be

obtained by simply processing at each analysis step all events inGTQwhich correspond tom.

7.2 How the Global Level Works

As already mentioned, analysis of a modular program starts by initializing the global data struc-

tures as indicated by the entry policy. At each step, the scheduling policy is used to determine

the setEm of entries for modulem which are to be processed. They are removed fromGTQand

copied into the data structureEntries. The code of the modulem is also copied tocode. Then,

MAnalysis(m,Em, SP) = (LATm, LDTm, TATm) is computed. Then, the global data structures

are updated, as detailed in Section 7.3 below. As a result of this, new events may be added

to GTQ. Analysis terminates when there are no more events to process inGTQ or when the

scheduling strategy does not select any further events.

Each entry inGTQis of one of the following three types:over-approximation, under-approximation,

21

or invalid, according to the reason why they should be re-analyzed. An entryP : CP 7→ AP

which is an over-approximation is markedP : CP 7→+ AP . This indicates that the answer

patternAP is possibly an over-approximation since it depends on a call pattern whose an-

swer pattern has been determined to be an over-approximation. In other words, the accuracy

of P : CP 7→ AP may be improved by re-analysis. Similarly, under-approximations are marked

P : CP 7→− AP and they indicate thatAP is probably an under-approximation since it de-

pends on a call pattern whose success pattern has increased. As a result, the call pattern should

be re-analyzed to guarantee correctness. Finally invalid entries are markedP : CP 7→⊥ AP .

They indicate that the relation between the current answer patternAP and one resulting from

recomputing it forP : CP is unpredictable. This often indicates that the source code of the

module has changed in a way that the analysis results for some of the exported procedures are

just incompatible with previous ones. Handling this kind of events is discussed in more detail in

Section 7.4 below.

7.3 Updating the Global State

In Section 6 it has been presented how the local level subsystem, given a modulem, can compute

the correspondingLATm, LDTm, andTATm. However, once analysis of modulem is done, the

analysis results of modulem have to be used in order to update the global state prior to starting

analysis of any other module.

We now briefly discuss how this updating is done. For each initial call patternP : CP

in Entrieswe compare the previous answer patternAP with the newly computed oneAP ′. If

AP = AP ′ then this call pattern has not been affected by the latest analysis. However, it is

also possible that the answer pattern “evolves” in different analysis iterations. If we useSP+,

the natural thing is that the new answer pattern is more specific than the previous one, i.e.,

AP ′ @ AP . In such case those call patterns which depend onP : CP can also improve their

success pattern. We use theGDT to locate all such patterns and we add them to theGTQwith

the+ mark. Conversely, if we useSP−, the natural thing is thatAP @ AP ′. We then add events

marked−.

In a typical situation, and if modules do not change, all events inGTQwill be approximations

of the same sign. This depends on the success policy used. If the success policy is of kindSP+

(resp. SP−) then the events which will be added toGTQ will also be over-approximations

(resp. under-approximations). In turn, when they are processed they will introduce other over-

approximations (resp. under-approximations).

TheTATm is also used to update the global state. All entries inTATm are added toGAT and

GTQ marked with the same sign as the success policy used. Last, we also have to update the

22

GDT. For this, we first erase all entries for any of the call patterns which we have just analyzed,

and which are thus stored inentriesm. Then we add an entry of the formP : CP → H : CP ′ for

each imported procedureH which is reachable with call patternCP ′ from an initial call pattern

P : CP . Note that this can easily be determined usingLDT.

7.4 Recovering from an Invalid State

If code of a modulem has changed since it was last analyzed, it can be the case that the global

information available is invalid. This happens when in the results of re-analysis ofm any of the

exported predicates has an answer pattern which is incompatible with the previous results. In

this case, all information dependent on the new answer patterns might have become invalid, as

discussed in Section 7.2. The question is how to minimize the impact of such a situation.

The simplest solution is to (transitively) erase any information of other modules which de-

pends on the invalidated one. This solution may not be very efficient, as it ignores all results

of previous analyses of other modules even if the changes performed in the module are minor,

or only affect directly related modules. Another alternative is to launch an automatic recovery

process as soon as invalid analysis results are detected (see [BdlBH+01]). This process has to

reanalyze the modules directly affected by the invalidated answer pattern(s). If the new answer

patterns coincide with the old ones then the changes do not affect this module and the process

terminates. Otherwise, it continues transitively with the directly related modules.

8 Using a Manual Scheduling Policy

Consider, for example, the relevant case of independent development of different parts of the

program, which can then even be performed in parallel by different teams. In this setting, it

makes sense that the analyzer performs its job on the current module without analyzing other

modules in the program unit, i.e., it allows separate analysis. This will typically allow early

detection of compile-time errors in the current module without having to wait for the code of the

dependent modules to be fully developed. Moreover, in this setting, it is the user (or users) who

decide when and what to analyze. Thus, we refer to this as themanualsetting. Furthermore, we

assume that in this setting analysis for a modulem has to do its best with only the code form

plus the results of previous analyses (if any) of the modules independs(m). These assumptions

have important implications. The setting allows the users of different modules to decide when

they should be processed. And thus, any module could be (re-)analyzed at any point. As a

result, strong requirements must hold for the whole approach to be correct. In return, the results

23

obtained may not be optimal (in terms of error detection, degree of optimization, etc., depending

on the particular tools) w.r.t. those achievable using automatic scheduling.

So the question is, is there any combination of the three parameters of the global analysis

framework which allows handling the manual setting? The answer to this question is yes. Our

earlier paper [BdlBH+01] essentially describes such an instantiation of the analysis framework.

In the terminology of the current paper, the model in [BdlBH+01] corresponds to waiting until

the user requests that a modulem in the program unitU be analyzed. The success policy is over-

approximating. This guarantees that in the absence of invalidated entries in theGTQall events

will be marked+. This means that the analysis information available is correct, though perhaps

not as accurate as possible. Since the scheduling is manual, no other analyses should be triggered

until the user requires so. Finally, the entry policy is simply to include inGTQ an event such

asP : > 7→+ > per predicate exported by any of the modules inU to be analyzed (it is called

all entry policy). The initial events are required to be so general to keep the overall correctness

of the analysis while allowing the users to choose the order of the modules to be analyzed.3

The model in [BdlBH+01] has the very important feature of being guaranteed to always provide

correct results without the need of reaching a global fixed-point.

9 Using an Automatic Scheduling Policy

In spite of the evident interest of the manual setting, there are situations in which the user is

interested in obtaining the most accurate analysis results possible. For this, it may be required to

analyze the modules in the program unit several times in order to converge to a distributed global

fixed-point. We will refer to this as theautomaticsetting, in which the user decides when to start

global analysis of a program unit. From then on it is the global analysis framework by means of

its scheduling policywho decides when and what to analyze. Note that the manual and automatic

settings roughly correspond to scenario 1 and scenario 2 of [PH00] respectively. Since we admit

circular dependencies among modules, the strategy has to be able to deal with such circularities

correctly and efficiently without entering infinite loops. The question now is what are the values

for the different parameters to our generic framework which should be used in order to obtain

satisfactory results? One major difference of the automatic setting w.r.t. the manual setting is that

in addition to over-approximations, now also under-approximations can be used. This is because

though under-approximations do not guarantee correctness in general, when an inter-modular

fixed-point is reached, analysis results are guaranteed to be correct. Below we consider the use

3In the case of the Ciao system it is possible to useentrydeclarations (see for example [PBH00a]) in order to

improve the set of initial call patterns for analysis.

24

of SP+ andSP− separately.

9.1 Using Over-Approximating Success Policies

If a success policySP+ is used, we are in a situation similar to the one in Section 8 in that

independently of how many times each module has been analyzed, if there have not been any

code changes, the analysis results are guaranteed to be correct. The main difference is that now

the system keeps on automatically requesting further analysis steps until a fixed-point is reached.

Regarding the entry policy, an important observation is that in the automatic mode, much

as in the case of intra-modular analysis, inter-modular analysis will eventually compute all call

patterns which are needed in order to obtain information which is correct w.r.t. calls, i.e., the set

of computed call patterns covers all possible calls which may occur at run-time for the class of

initial calls considered, i.e., those for the top-level of the program unitU . This will allow us to

use a different entry policy from that used in the manual mode: rather than introducing events

of the formP : > 7→+ > in theGTQ for exported predicates in all modules inU , it suffices to

introduce them for predicates exported by the top-level ofU (this entry policy is namedtop-level

entry policy). This has several important advantages: (1) It avoids analyzing all predicates for

the most general call pattern, since this may end up introducing plenty of call patterns which

are not used in our particular program unitU . (2) It will help to have a more guided scheduling

policy since there are no requests for processing a module until it is certain that a call pattern

should be analyzed. (3) If multiple specialization is being performed based on the set of call

patterns for each procedure (possibly proceeded by a minimization step for eliminating useless

versions [PH99]), the fact that a call pattern with the most general call pattern exists implies that

a non-optimized version of the predicate must always exist. Another way out of this problem is

to eliminate useless call patterns once an inter-modular fixed-point has been reached.

Since reaching a global fixed-point can be a costly task, one interesting possibility can be the

introduction of a time-out. The user can ask the system to request (re-)analysis as needed towards

improving the analysis information. However, if after performingn analysis steps the time-out is

reached before analysisn + 1 is finished, the global state corresponding to staten is guaranteed

to be correct. In this case, the entry policy used has to be to introduce most general call patterns

for all exported predicates, either before starting analysis or when a time-out is reached.

9.2 Using Under-Approximating Success Policies

Another alternative is to useSP−. As a result, the analysis results are not guaranteed to be

correct until an inter-modular fixed-point is reached. Thus, it may take a large amount of time to

25

perform this global analysis. On the other hand, once a fixed-point is reached, the accuracy which

will be obtained is optimal, since it corresponds to the least analysis graph, which is exactly the

same which the flattening approach would have obtained.

Regarding the entry policy, the same discussion as above applies. The only difference being

that theGTQshould be initialized with events of the formP : > 7→− ⊥ since now the framework

computes under-approximations. Clearly,⊥ is an under-approximation of any description.

Another important thing to note is that, since the final results of automatic analysis are op-

timal, they do not depend on the use of a particular success policySP−
1 or anotherSP−

2 . Of

course, the efficiency usingSP−
1 can be very different from that obtained usingSP−

2 .

9.3 Hybrid policy

In practice we may wish to use a manual scheduling policy with an over-approximating success

policy during program development, and then use an automatic scheduling policy with an under-

approximating success policy just before program release, so as to ensure that the analysis is as

precise as possible, thus allowing as much optimization as possible in the final version.

Fortunately, in such a situation we can often reuse much of the analysis information obtained

using the over-approximating success policy. The reason is that if the analysis with the over-

approximating success policy has reached a fixed-point, the answers obtained for modulem

are as accurate as those obtained with an under-approximating success policy as long as there

are no cyclic dependencies between the modules independs(m). Thus in the common case

that no modules are mutually dependent we can simply use the answer tables from the manual

scheduling policy and use an automatic scheduling policy with an over-approximating success

policy to obtain the fixed-point. Even in the case that some modules are mutually dependent

we can use this technique to compute the answers for the modules which do not contain cyclic

dependencies or do not depend on modules that contain them (e.g., leaf-modules).

9.4 Computation of an Intermodular Fixed-Point

Determining the optimal order in which the different modules in the program unit should be

analyzed in order to get to a fixed-point as efficiently as possible is not trivial and it is the topic

of ongoing work.

Finding good scheduling strategies for intra-modular analysis is a topic which has received

considerable attention and highly optimized algorithms exist which converge to a fixed-point

quickly. Unfortunately, it is not possible to directly translate the same heuristics used in the intra-

modular case to the inter-modular case. In the inter-modular case we have to take into account

26

the time required to change from analysis of one module to another since this typically means

reading a new module from disk. Thus, requests to process call patterns have to be grouped by

modules in order to reduce the number of times we change context.

Taking the heuristics in [PH96, HPMS00] as a starting point we are investigating and ex-

perimenting with different scheduling policies which take into account different aspects of the

structure of the program unit such as dependencies, strongly connected components, etc. with

promising results. It also remains to be explored which of the approaches to success policy re-

sults in more efficiently reaching a global fixed-point and whether the heuristics to be applied in

either case coincide or are mostly different.

10 Some Practical Implementation Issues

In this section we discuss several issues not addressed in the previous sections and which are

very important in order to have practical implementations of context-sensitive analysis systems.

These issues are related to the persistence of global information and the analysis of libraries.

10.1 Making Global Information Persistent

The two-level framework presented in Section 7 needs to keep information both at the local and

global level. One relevant question, due to its practical implications, is where this global infor-

mation actually resides. One possibility is to have the global analysis tool running continuously

as a kind of “compilation server” which stores the global state in its program memory. In a

manualsetting, this global tool would wait for the user(s) to place requests to analyze modules.

When a request is received, the corresponding module is analyzed for the appropriate call pat-

terns and using the global information available at the time in the memory of the global analyzer.

After analysis terminates, the global information is updated and remembered by the process for

subsequent requests. If we are in anautomaticsetting, the global tool itself requests the analysis

of different modules until a global fixed-point (or a time-out) is reached.

This approach outlined above is not fully persistent in the sense that if the computer crashes

all information about the global state is lost and analysis would have to start from scratch again.

In order to implement the more general kind of persistence discussed in Section 5, a way to

save and restore the global state of analysis is needed. This requires storing the value of the

three global-level data-structures:GAT , GDT , andGTQ. A level of granularity which seems

appropriate in this context is clearly the module level. I.e., the global state of analysis is saved

and restored between two consecutive steps of (module) analysis, but not during the analysis of a

given module, which, from the point of view of the two-level framework, is an atomic operation.

27

The ability to save and restore the global state of analysis has several advantages:

1. The global tool does not need to be running continuously: it can save its state, stop, restart

when needed, and restore the global state. This is specially interesting when using a man-

ual scheduling policy, since two consecutive analysis requests can be separated by large

intervals.

2. Even if the automatic scheduling policy is used, any information about the global state

which is still valid can be directly used. This means that analysis can beincrementalin the

sense that (global level) analysis information which is known to be valid is reused.

10.2 Splitting Global Information

Consider the analysis of moduleb in the program unitU = {a, b, c, d, e, f, g, h} depicted in

Figure 6. In principle, the global state includes information regarding exported predicates in any

of the modules inU . As a result, if we can save the global state to disk and restore it, this would

involve storing and retrieving information about all modules inU . However, analysis ofb only

requires retrieving the information for modules inrelated(m). The small boxes which appear on

the side of every module represent the portion of the global structures related to each module. To

analyze the moduleb, the information of the global tables that we need is that of modulesa, d

ande, as indicated by the dashed curved line.

This is straightforward to do in practice by splitting the information in the global data struc-

tures into several parts, each one associated to a module. This allows easily identifying the pieces

of global information which are needed in order to process a given module.

This optimization of the handling of global information has several advantages:

1. The time required to save and restore the information to disk is reduced since the total

amount of information transferred is smaller.

2. The use of the data structures during analysis can be more efficient since search space is

reduced.

3. The total amount of memory required in order to analyze a module can be significantly

reduced: only the local data structures plus a possibly very reduced part of the global data

structures are actually required to analyze the module.

One question which we have intentionally left open is where the persistent information should

reside. In fact, all the discussion above is independent on how and where the global state is stored,

28

as long as it is persistent. One possibility is to use a database which stores the global state and

information is grouped by modules in order to minimize the amount of information which has to

be retrieved or updated for each analysis. Another, very common, possibility is to store the global

information associated to each module to disk, in the same way as temporary information (such

as relocatable code) is stored in many traditional compilers. In fact, the actual implementation

of modular analysis in both CiaoPP and HAL [Net02] systems is based on this idea: a modulem

has am.reg file associated to it which contains the part of the global data structures which are

associated tom.

10.3 Handling Libraries and Predefined Modules

Many compilers and program development systems include a large number of predefined mod-

ules and libraries which can be readily reused by programmers –an obviously interesting feature

since it greatly reduces the time required to develop applications. From the point of view of

analysis, these predefined modules and libraries differ from user programs in a number of ways:

1. They are designed with reusability in mind and thus they can be used by a comparatively

large number of user programs.

2. Sometimes the source code for libraries and predefined modules may not be available. One

common reason for this is that they are implemented in a lower-level language.

3. The total amount of code available as libraries can be extremely large. Thus, reanalyzing

the libraries over and over again for slightly different call patterns can be costly.

Given these characteristics, it makes sense to develop a specialized treatment for libraries.

We propose the following scheme. For each library module, the analysis results for a suffi-

cient set of call patterns should be precomputed. This set should cover all possible correct call

patterns for the library. In addition, the answer pattern for those call patterns have to be an over-

approximation of the actual answers, independently of whether aSP+ or SP− success policy

is used for the programs which use such library. In addition, in order to provide more accurate

information, more particular call patterns which are expected to occur often in programs which

use that library module can also be included. This information is added to theGAT of the pro-

gram units which use the library. Thus, the success policy will be able to use this information

directly for obtaining answer patterns. The reason for requiring pre-computed answer patterns

for library modules to be over-approximations is that, much in the same way as for predefined

procedures, even if an automatic scheduling policy is used, library modules are (in principle) not

29

a.reg

e.regd.reg

Analyze

b.reg c.reg

f.reg g.reg h.reg

a

b c

d e

f g h

Figure 6: Using Distributed Scheduling and Local Data Structures

analyzed for calling patterns other than those which are pre-computed. Note that this is concep-

tually equivalent to considering the interface information of library modulesread-only, since any

program using them can read this information, but no additional call patterns will be analyzed.

As a result, the global level framework will ignore new call patterns to library procedures that

might be generated during the analysis of user programs. More precisely, entries of the form

P : CP 7→ AP in TAT such thatP is a library predicate do not need to be added to theGTQ

since they will not be analyzed. In addition, no entries of the formP : CP → H : CP ′ need be

added toGDT if H is a library predicate, since the answer pattern for library predicates is never

modified and thus those dependencies are useless.

Deciding which is the best set of call patterns for which a library module should be analyzed

is a non-trivial problem. One possibility can be to extract call patterns from correct programs

which use the library and study which are the call patterns most often used. Another possibility

is to have the library developer decide which are the call patterns of interest.

In spite of the considerations above, it is sometimes the case that we are interested in treating

a library module using the general scheme, i.e., effectively considering the library information

writable and allowing the analysis of new call patterns and the storage of the corresponding

results. This can be interesting if the source code of a library is available and the set of initial

call patterns for which it has been analyzed is not very representative. Note that hopefully this

will happen often only when the library is relatively new. Once the code of the library stabilizes

and a good set of initial patterns is obtained, it will generally be considered read-only. Allowing

reanalysis of a library can also be useful when we are interested in using the analysis results from

such call patterns to optimize the code of the library for the particular cases that correspond to

those calls. For this case it may be interesting to store the corresponding information locally to

the calling module, as opposed to inserting it into the library directories.

30

In summary, the implementation of the framework needs to treat libraries in a special way

and also allow applying the general scheme for some designated library modules.

11 Discussion and Conclusions

Table 1 summarizes some characteristics of the different instantiations of the generic framework

presented in the paper, in terms of the design features discussed in Section 5. The corresponding

entries for the flattening approach of Section 4 –our baseline as usual– are also provided for

comparison, listed in the column labeledFlattening. TheManual column lists the characteristics

of the manual scheduling policy described in Section 8. The last two columns correspond to the

two instantiations of the automatic scheduling policy, which were presented in Sections 9.1 and

9.2 respectively.Automatic+ (resp.Automatic−) indicate that an over-approximating (resp.

under-approximating) success policy is used.

The first three rows, i.e.,Scheduling policy, Success policy, andEntry policy correspond

to the values of these parameters in each instantiation.

All instances of the framework for modular analysis aremodule-aware, in contrast toFlatten-

ing, which is not. Both instances described of the modular framework proposed are incremental,

in the sense that only a subset (instead of every module) in the program unit needs to be re-

analyzed, and they also both achieve the goal ofnot needing to reanalyze all call patternsevery

time a module is considered for analysis.

Regarding correctness, both theFlattening andAutomatic− approaches have in common

that correctness is only guaranteed when analysis comes to an end. This is because the approx-

imations used are under-approximations and thus the results are only guaranteed to be correct

when a (global) fixed-point is reached. However, in theManual andAutomatic+ approaches the

information in the global state is correct after any number of local analysis steps.

On the other hand, both theFlattening andAutomatic− approaches are guaranteed to ob-

tain the most accurate information possible, i.e., the least analysis graph, when a fixed-point

is reached. In contrast, theManual approach cannot guarantee optimal accuracy for two rea-

sons. The first one is that there is no guarantee that modules will be processed the number of

times that is necessary for an inter-modular fixed-point to be reached. Second, even if such a

fixed-point is reached, it may not be the least fixed-point. This is because this approach uses

over-approximations of the analysis results which are improved (“narrowed”) in the different

analysis iterations until a fixed-point is reached. On the other hand, if there are no circular de-

pendencies among predicates in different modules, then the fixed-point obtained will be the least

one, i.e., the most accurate.

31

Table 1: Comparison of Approaches to Modular Analysis
Flattening Manual Automatic+ Automatic−

Scheduling policy automatic manual automatic automatic

Success policy SP− SP+ SP+ SP−

Entry policy top-level all top-level top-level

Module-aware no yes yes yes

No Rean. of all CPs no n/a yes yes

Correct at fixed-point yes yes at fixed-point

Accurate yes no no circularities yes

Efficient in time yes n/a no no

Efficient in memory no yes yes yes

Termination finite asc. chains finite asc. chains finite chains finite asc. chains

Regarding efficiency in time we will consider two cases. The first one is when we have to

perform analysis of the program unit from scratch. In this case,Flattening can be highly opti-

mized in order to converge quickly to a fixed-point. In contrast, in this situation the instances of

the modular framework have the disadvantage that loading and unloading modules during anal-

ysis introduces a significant overhead. As a result, in order to maintain the number of context

changes low, call patterns may be solicited from imported modules which use temporary infor-

mation and which are not needed in the final analysis graph. These call patterns which end up

being useless are known asspuriousversions. This problem also occurs inFlattening, though

to a much lesser degree if good algorithms are used. Therefore, the modular approaches may

end up performing work which is speculative, and thus the total amount of work performed in

the automatic approaches to modular analysis is in principle an upper bound of that needed in

Flattening.

On the other hand, consider the second case in which a relatively large amount of intra-

modular analysis has already taken place for the modules to be analyzed in our programming

unit and that the global information is persistent. In this case, the automatic approaches can

update their global data structures using the precomputed information, rather than starting from

scratch as is done inFlattening. In such a case the automatic approaches may perform much

less work thanFlattening. It is to be expected that once modulem becomes stable, i.e., it is

fully developed, it will quickly be analyzed for a relatively large set of calling patterns. In such

a case it is likely that it will be possible to analyze any other modulem′ which usesm by simply

reusing the existing analysis results form. This is specially true in the case oflibrary modules,

as discussed in Section 10.3.

32

Regarding the efficiency in terms of memory, it is to be expected that the instances of the

modular framework will outperform the non-modular, flattening approach. This was in fact

already observed in the case of [BdlBH+01]. Indeed, one important practical difficulty that

appears during the (monolithic) analysis of large programs is that the amount of information

which is kept in memory is very large and the storage needed can become too large to fit in

memory. The modular framework proposed needs less memory because: a) at each point in

time, only one module requires to be loaded in the code area, and b) the local answer table

only needs to hold entries for the module being analyzed, and not for other modules. Also, in

general, the total amount of memory required to store the global data structures is not very high

when compared to the memory required locally for the different modules. In addition, not all the

global data structures are required when analyzing a modulem, but only that associated with the

modules inrelated(m).

Finally, regarding termination, except forFlattening, in which only one level of termination

is required, the three other cases require two levels of termination: at the intra-modular and at the

inter-modular level. InFlattening, since analysis results increase monotonically until a fixed-

point is reached, termination is often guaranteed by considering description domains which do

not contain infinite ascending chains: no matter what the current description is, top (>), which

is trivially guaranteed to be a fixed-point, is only a finite number of steps away. Exactly the

same condition is required for guaranteeing termination ofAutomatic−. The manual approach

only requires guaranteeing intra-modular termination since the number of call patterns analyzed

is finite. However, in the caseAutomatic+, finite ascending chains are required for ensuring

local terminationand finite descending chains are required for ensuring global termination. As

a result, termination requires domains with finite chains, or appropriate widening operators.

In summary, the proposed two-level generic framework for analysis and its instantiations

meet a good subset of our stated objectives. We hope the discussion and the concrete proposal

presented in this paper will provide a better understanding of the handling of context-sensitive

program analysis on modular programs and contribute to the widespread use of such context-

sensitive analysis techniques for modular programs in practical systems. An implementation

of the framework, as a generalization of the pre-existing CiaoPP modular analysis components,

is currently being completed. In this context, we are experimenting with different scheduling

policies for the global level, for concrete, practical analysis situations.

33

Part II

Experiments in Context-Sensitive Analysis

of Modular Programs

1 Summary

Several models for context-sensitive analysis of modular programs have been proposed, each

with different characteristics and representing different tradeoffs. The advantage of these context-

sensitive analyses is that they provide information which is potentially more accurate than that

provided by context-free analyses. Such information can then be applied to validating/debugging

the program and/or to specializing the program in order to obtain important performance im-

provements. Some very preliminary experimental results have also been reported for some of

these models which provided initial evidence on their potential. However, further experimen-

tation, which is needed in order to understand the many issues left open and to show that the

proposed modes scale and are usable in the context of large, real-life modular programs, was

left as future work. The aim of this paper is two-fold. On one hand we provide an empirical

comparison of the different models proposed in previous work, as well as experimental data on

the different choices left open in those designs. On the other hand we explore the scalability

of these models by using larger modular programs as benchmarks. The results have been ob-

tained from a realistic implementation of the models, integrated in a production-quality compiler

(CiaoPP/Ciao). Our experimental results shed light on the practical implications of the different

design choices and of the models themselves. We also show that context-sensitive analysis of

modular programs is indeed feasible in practice, and that in certain critical cases it provides bet-

ter performance results than those achievable by analyzing the whole program at once, specially

in terms on memory consumption and when reanalyzing after making changes to a program, as

is often the case during program development.

2 Introduction and Motivation

Global analysis of logic programs has received considerable theoretical and practical attention

and as a result it is now possible to infer a wide range of program properties with a considerable

degree of accuracy and for a significant number of programs. Also, tools have been developed

which in addition to inferring these properties, allow debugging, validating, and specializing

34

programs, achieving important improvements in both correctness and efficiency. However, most

of these techniques were originally designed to be applied to a complete, monolithic program.

In contrast, real programs invariably have a more complex structure combining a number of

user modules with other modules from system libraries. This is one of the reasons why most

global analysis tools are still prototypes and, though numerous experiments demonstrate their

effectiveness, they have not yet made their way into existing real-life programming systems.

Performing global analysis on modular programs differs from doing so in a monolithic setting

in several interesting ways and poses non-trivial problems which must be solved. A preliminary

study of the extension of analysis and specialization to the case of modular programs was pre-

sented in [PH00]. A full practical proposal for context-sensitive analysis of modular programs

was presented in [BdlBH+01]. In fact, in [BdlBH+01] a collection of models was proposed,

each of them with different characteristics and representing different tradeoffs. Some very pre-

liminary experimental data was also reported for an implementation of some of these models in

the context of the Ciao system. Also, another implementation of [BdlBH+01] in the context of

the HAL system [GDMS02] was reported in [Net02]. This previous preliminary experimental

results provided initial evidence on the overall potential of the approach. However, it was left

as future work to perform further experimentation in order to understand the many issues left

open and to show that the proposed modes scale and are usable in the context of large, real-life

modular programs.

The aim of this paper is two-fold. On one hand we provide an empirical comparison of the

different models proposed in [BdlBH+01], as well as experimental data on the different choices

left open in those designs. To this end we have completed a full implementation in CiaoPP of the

framework for context-sensitive analysis described in [PCH+04] and its different instances and

we have studied experimentally the behaviour of the resulting system. These results have been

compared with traditional, non modular analyses in several parameters.

Our second aim is to explore the scalability of these models and the implementation. To

this end we have used some larger modular programs as benchmarks, including some real-life

examples such as a working partial evaluator and parts of the Ciao compiler.

In the following Section we present an overview of the general problems in analyzing large

modular programs, and the solutions proposed in previous work, including the major design

tradeoffs. Section 4 then describes the tests performed and analyzes the results obtained. Finally,

Section 5 presents our conclusions.

35

3 Analysis of modular programs

As mentioned in the previous section, the framework used herein is based in [PH00, PCH+04],

where a detailed description of the issues related to the analysis of modular programs and the

different approaches to it can be found. The following subsections present an overall summary

of [PCH+04], with special emphasis on the issues that are most relevant to our experimental

study.

3.1 Modular programs

A program is said to be modular when its source code is distributed in several source units

named modules, and they contain language constructions to clearly define the interface of every

module with the rest of the modules in the program. This interface is composed of two sets of

predicates: the set of exported predicates (those accessible from other modules), and the set of

imported predicates. For concreteness, and because of its appropriateness for global analysis, in

our implementation we will use the module system of [CH00]. This module system isstrict in

the sense that procedures external to a module are visible to it only if they are part of itsinterface.

A predicate defined in a given module can be called from another module only if it appears in the

exported list of its module and in the imported list of the caller module, i.e., procedures which

are not exported are not visible outside the module in which they are defined.

We note the distinction betweenglobal tasks andlocal tasks. In global tasks the results of

processing a part of the program (say, a procedure or a module) may be needed in order to process

other parts of the program. In contrast, a local task processes only one procedure or module at a

time and, most importantly, all the information required for performing the task can be obtained

by inspecting that procedure or module. The fundamental issue is that global processing often

requires iterating on the whole program until a fixed-point is reached.

Context-sensitive program analysis is an example of aglobal task: in a modular setting, it

may well be the case that part of the information needed to perform the analysis on (a procedure

in) modulem has to be computed in modules other thanm. We will refer to the information orig-

inated in modules different fromm asinter-modularinformation in contrast to the information

originated inm itself, which we will callintra-modular.

3.2 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a modulem which belongs to a modular

program has the difficulty thatm may not be self-contained. However, there should be no prob-

36

lem in applying the framework ifm is a leaf module. Furthermore, given a global process such

as program analysis, at least in principle, it is not obvious that it makes much sense to apply the

process to a modulem alone. In fact, it makes sense to apply analysis to the complete program

instead, since it is conceptually self-contained.

Given a modular programP it is always possible to build a single modulemflat which is

equivalent toP and which is a leaf. The process of constructing such a modulemflat usually

only amounts to renaming apart identifiers in the different modules inP so as to avoid name

clashes. We will useflatten(P) = mflat to denote that the modulemflat is the result of renaming

apart the code in each module inP and concatenating its code into a monolithic modulemflat.

This points to a simple solution to the problem of processing modular programs (at least for the

case in which all the code is available): to transformP into the equivalent monolithic program

mflat. It is then straightforward to apply any tool for non-modular programs to the leaf module

mflat. In the rest of this work, we will refer to this approach as theflattenedor monolithic

approach.

Assuming the existence of an implementation for non-modular analysis, this approach to an-

alyzing modular programs is often simple to apply. Also, the flattening approach has theoretical

interest: in our case it will be used to compare the efficiency of different approaches to modular

handling of programs w.r.t. it. However, as a practical way in which to actually perform analysis

of large program the flattening approach also has important potential drawbacks. The most im-

portant is that the complete program must be loaded into the analyzer, and thus large programs

may make the analyzer run out of memory. Moreover, as the internal analysis data structures

include information for all the program source code, in the monolithic case, analysis of a given

procedure may take more time than keeping in memory only the module in which it resides.

Another, perhaps more important drawback, is that the program must be self-contained: this can

be a problem if the analyzer is used while developing the program, when some modules are not

yet implemented, or if there are calls to external procedures, i.e., procedures for which the source

code is not available, or which are implemented in other languages.4

3.3 Analyzing one module at a time

The approach taken in [PCH+04] and implemented in CiaoPP is based on the separate analysis

of the modules in a modular program. The analyzer is invoked (possibly several times) for each

module in the program, in order to obtain the analysis results needed by the analysis of other

program modules. We denote the process of obtaining the answer valueAD of any predicateP

4Several approaches have been proposed for the analysis of incomplete programs (open programs), for exam-

ple [BCHP96, BJ03].

37

for a call CD as: P : CD 7→ AD. The analysis results obtained for the exported predicates of

every module are stored in aGlobal Answer Table(GAT).

Analyzing a module separately presents the difficulty that, from the point of view of analysis,

the code to be analyzed isincompletein the sense that the code for procedures imported from

other modules is not available to analysis. More precisely, during the analysis of a modulem

there may be callsP : CD such that the procedureP is not defined inm but instead it is imported

from another modulem′. We refer to determining the answer value ofP , AD (P : CD 7→ AD) as

the imported success problem. In addition, in order to obtain analysis information form′ which

is as accurate as possible we need to somehow propagate the callP : CD from m to m′ so that

the next timem′ is analyzed such a call pattern is taken into account. We refer to this as the

imported calls problem.

3.3.1 Solving the Imported Success Problem

The imported success problem is solved by means of asuccess policy, or SP for short. The

behavior of the analyzer for predicates defined inm remains exactly as before.SP is needed

because given a call patternP : CD it will often be the case that an entry of exactly the form

P : CD 7→ AD does not exist in the analysis results stored in theGAT for m′. In such case, the

information already present may be of value in order to obtain a (temporary) answer patternAD,

and continue the analysis of modulem.

In contrast, in many formalizations of non-modular analysis there is no explicit success pol-

icy. This is because if the call patternP : CD has not been analyzed yet, the analysis algorithm

forces its computation. Thus, the results of analysis do not depend on any particular success pol-

icy: when the analyzer reaches a fixed-point there is always an entry of the formP : CD 7→ AD

for any call patternP : CD which appears in the analysis graph. However, in a modular setting

it is often convenient to delay the analysis of predicates defined in other modules until those

modules are revisited. In general, those modules may have already been analyzed or they may

be analyzed in the future. We will simply do the best possible given the information available in

theGAT.

Several success policies can be defined which provide over- or under-approximations of the

exact answer patternAD= with different degree of accuracy. Note that this exact valueAD= is the

one which the flattening approach would compute. In this work we consider two kinds of success

policies, those which are guaranteed to always provide over-approximations, i.e.AD= v SP(P :

CD, GAT), and those which provide under-approximations, i.e.,SP(P : CD, GAT) v AD=.

We will use the superscript+ (resp−) to indicate that a success policy over-approximates (resp.

under-approximates).

38

In the experiments shown in this work, a very precise over-approximating success policy has

been used, already proposed in [PH00] and defined as:

SP+
All(P : CD, GAT) = topmost(CD) uAD′

∈app
AD′ where

app = {AD′ | (P : CD′ 7→ AD′) ∈ GAT andCDv CD′}

The functiontopmost obtains the topmost answer pattern for a call pattern. The notion oftop-

most descriptionwas already introduced in [BCHP96]. Informally, while a topmost description

preserves the information on properties which aredownwards closedwhereas it loses those which

are not. Note that taking> as answer pattern is also a correct over-approximation, but often less

accurate than using topmost substitutions. For example, if a variable is known to be ground in

the call pattern, it will continue being ground in the answer pattern and taking> as the answer

pattern would lose this information. However, the fact that a variable is free on call does not

guarantee that it will keep on being free on success.

We refer to this success policy asSP+
all because it usesall entries inGAT which areappli-

cableto the call pattern in the sense that the call pattern already computed is more general than

the call being analyzed.

The counter-part ofSP+
all is the functionSP−

all which is defined as:

SP−
All(P : CD, GAT) = tAD′

∈app
AD′ where

app = {AD′ | (P : CD′ 7→ AD′) ∈ GAT andCD′ v CD}

Note the change in the direction of the applicability relation (the call pattern in theGAT has to

be more particular than the one being analyzed) and the use of the lub operator instead of the glb.

Also, note that taking, for example,⊥ as an under-approximation is correct butSP−
all is more

precise.

As shown in [PCH+04] usingSP+ policies has the advantage that at any point during the

modular analysis, even when a fixpoint has not been reached yet, the information obtained for

each module is always a correct over-approximation. The drawback is that when the fixpoint

is reached it may not be minimal, i.e., information is not as precise as it could be. In contrast,

SP+ policies obtain the least fixpoint (most precise information) but only produce correct results

when the fixpoint it reached.SP+ policies can be useful during program development.

3.3.2 Solving the Imported Calls Problem

As the analysis is context-sensitive, the call patterns for imported predicates are only known

after the calling module is analyzed, but they cannot be processed until the imported module is

selected for (re)analysis. These call patterns are therefore stored in another global data structure,

39

the temporary answer table(TAT for short)5. When the imported module is scheduled for

(re)analysis, all call patterns in theTAT are used as input for the analyzer.

3.4 Computing an intermodular fixed point

The intermodular fixed-point algorithm of CiaoPP takes one module of the program that needs

(re)analysis, analyzes it storing the relevant information inGAT andTAT tables, and looks for

another module which needs reanalysis. When a module is analyzed, it updates the entries in

the global tables, and marks the modules which import it if the analysis results may improve

the results of those modules. An intermodular fixed-point has been reached when there are no

modules which need reanalysis.

Determining the optimal order in which the different modules in the program unit should be

analyzed in order to get to a fixed-point as efficiently as possible is not trivial. Finding good

scheduling strategies for intra-modular analysis is a topic which has received considerable at-

tention and highly optimized algorithms exist which converge to a fixed-point quickly. Unfortu-

nately, it is not possible to directly translate the same heuristics used in the intra-modular case to

the inter-modular case. In the inter-modular case we have to take into account the time required

to change from analysis of one module to another since this typically means reading a new mod-

ule from disk. Thus, requests to process call patterns have to be grouped by modules in order to

reduce the number of times we change context.

In the current implementation, two simple strategies have been used, in order to study the

behavior of the analysis of modular programs in clearly different scenarios. Both strategies take

the list of modules in a given order (a top-down and a bottom-up traversal of the intermodule

dependency graph, respectively6), and traverse the list analyzing the modules which have pending

call patterns, updating the corresponding global tables with the analysis results. This process is

repeated until there are no pending call patterns for any module in the program.

We will refer to this intermodular fixed-point algorithm, scheduling one module at a time for

analysis as themodular approach.

5In fact,GAT andTAT are implemented using the same table, andTAT entries are marked as needing reanal-

ysis, in order to provide more precise results than those obtained applying the success policy, as soon as the module

is scheduled for (re)analysis. There are more details in Section 7 and [PCH+04].
6All modules which belong to the same cycle in the graph have been considered at the same depth, and therefore

those modules will be selected in any order.

40

4 Empirical results

The CiaoPP implementation of the framework summarized above has been tested by parameter-

izing it in several ways, in order to study the overall behavior of the system. Different tradeoffs

and characteristics of the analysis of modular programs have been studied:

Flattened vs. modular First, the flattened approach of Section 4.1 has been compared to the in-

termodular fixpoint of Section 7. Although it is predictable that the modular, separate anal-

ysis will be slower than the flattened approach (due to the overhead in loading/unloading

modules, etc.), it is interesting to study by how much. In addition, in some cases the

analysis of a whole program may be unfeasible due to hardware limitations, but in the

intermodular fixpoint approach this limitation can be overcome **We have to find an

example of this! **.

Intermodular scheduling policies Another aspect to study is related to the influence of the

module selection policy in the efficiency of the analysis. The scheduling policies used

have been already described in Section 7. We will refer to them asnaive top downand

naivebottomup, respectively.

Success policiesTwo success policies have been compared in both scheduling policies: an over-

approximating policy,SP+
all, and an under-approximating one,SP−

all, as described in Sec-

tion 3.3. Although there may be other success policies, we estimate that these ones are the

most effective policies, as they bring the closest results toSP=.

Incremental analysis of modular programs Finally, the analysis of a modular program from

scratch using the monolithic approach has been compared to the reanalysis of that program

after making specific modifications in the source code. This comparison illustrates the

advantages of analyzing only the module which has changed (and the modules affected by

that change) instead of reanalyzing the whole program from scratch.

Three different kinds of source code modifications have been done: a simple change that

keeps the same analysis results, a modification in the source code such that exported pred-

icates produce after the change more general analysis results, and a change that results in

the exported predicates producing a more precise answer pattern.

Note that when there are changes in the source code which do not improve or invalidate

previous analysis results, nor generate new call patterns for imported modules, there are

clear advantages in using the modular approach, since only one module must be analyzed

at a time. In contrast, in the monolithic, non-modular analysis the whole program must be

41

analyzed. Also note that this kind of changes may occur more often if assertions are used

on a regular basis, as they can bring very precise answer patterns, similar to the results

provided during the analysis.

The second kind of change studied corresponds to performing a modification in an ex-

ported predicate which results in this predicate providing more general analysis results.

The change consists in the addition of a clause to all the exported predicates of a module

in which all arguments are free variables7. This approach then forces the reanalysis of the

modules which call the changed module.

The third type of source change represents a change that makes the analysis results for ex-

ported predicates be more precise than the ones obtained before. This is done by removing

all clauses of exported predicates of a module except the first non recursive one8. This

will bring in general analysis results which are more specific than the results previously

obtained, making them invalid in most cases, and producing the reanalysis of the calling

modules.

In following subsections the selected benchmark programs are described, and the results of

the tests are studied in detail. Two modes domains have been considered:Def , a simplified

version of thePos domain, andSharing-freeness, which gets information on set sharing and

freeness.

4.1 Brief description of the benchmarks used

A brief description of the selected benchmarks follows:

aiakl This program is the initialization phase for abstract unification in the AKL analyzer (by

D. Sahlin and T. Sj̈oland). It is composed by 4 modules, two of them import each other,

and therefore there is a cycle in the intermodular dependency graph.

ann This is the &-Prolog implementation of the MEL annotator (by K. Muthukumar, F. Bueno,

M. garćıa de la Banda, and M. Hermenegildo). In this case the code is distributed in 3

modules with no cycles in the intermodular dependency graph.

7In theSharing−Freeness domain this addition might not provide a more general analysis result, as this kind

of clause does not provide a top success substitution. However, the tests have been performed using the same change

also in the case ofSharing − Freeness to make the tests homogeneous across the different domains.
8Mutually recursive predicates are also considered. If the exported predicate has only recursive clauses, they are

replaced by a fact with all arguments ground.

42

bid This program computes an opening bid for a bridge hand, by J. Conery. It is composed by 7

modules, with no cycles in the intermodular dependency graph.

boyer The boyer benchmark is a reduced version of the Boyer/Moore theorem prover (by E.

Tick). The program has been separated in four modules with a cycle between two modules.

hanoi This is the classic hanoi towers program, distributed in two simple modules with no cycles

in the intermodular graph.

peephole This program is the SB-Prolog peephole optimizer. In this case, the program is split

in three modules, but there are two cycles in the intermodular dependency graph, and there

are several intermodular cycles at the predicate call level.

prolog read corresponds to a simplified version of the code used by the Ciao compiler for read-

ing terms. It is composed by three modules, having a cycle between two of them.

unfold is a fragment of the CiaoPP preprocessor which contains the partial evaluator. It is

distributed in 7 modules with no cycles between them, although many other modules of

CiaoPP source code, while not analyzed, are consulted in order to get assertion informa-

tion.

4.2 Analysis of a modular program from scratch

Table 2 shows the absolute times in milliseconds spent in analyzing the programs using the

flattening approach. For every benchmark, the number of modules is shown, and the total analysis

time is divided in several categories, represented by the following columns:

Load This column corresponds to the time spent in loading modules into Ciaopp system. This

time includes the time used for reading the module to be analyzed and the time spent in

reading the assertions of the imported modules (including system libraries).

Anal. This is the time spent in transforming the program to a normalized form, suitable for

analyzing it.

Gen. Corresponds to the task of generating the global information (referred to before as the

GAT andTAT tables). The information generated is related to the analysis results of all

exported and multifile predicates, new call patterns of imported predicates generated dur-

ing the analysis of each module, and the modules that import the module and can improve

their analysis results by reanalysis.

43

Total Time elapsed since the analyzer is called until it finishes completely. It is the sum of

previous columns, plus some extra time spent in other tasks, such as the generation of the

intermodular dependency graph, handling the list of modules to get the next module to be

analyzed, etc.

Tables 3 and 4 contain the time spent in analyzing the benchmarks with theDef andSharing-

freenessdomains, respectively, and using the different scheduling policies described in Section 7.

The numbers in these tables are relative to the monolithic analysis time. Thenaivebottomup

and naive top down global scheduling policies are compared, as well as theSP−
all andSP+

all

success policies.

In these and the following tables referring to execution time, column#It represents the num-

ber of iterations of the intermodular fixed-point algorithm: it contains the total number of times

any module of the program is selected for (re)analysis. This number will always be greater or

equal thanMod. When the number of iterations is greater than the number of modules, some

modules have been reanalyzed several times in order to reach a fixed-point.

Theoverall row stands for the weighted overall results summarizing the different benchmarks

in a single set of numbers. These tables show that theSP+
all success policy is clearly more

efficient thanSP−
all in both domains and both scheduling policies. TheSP−

all success policy is

so inefficient when analyzing from scratch because this policy returns⊥ as success pattern for

all the calls to imported predicates defined in modules which have not been analyzed yet, thus

causing more iterations thanSP+
all (with some exceptions, such asaiakl andhanoi).

Comparing the scheduling policies, we only can observe a slight difference in the time taken

using thenaive top down or the naivebottomup strategies. This result seems to reflect that

the order of the modules, at least in simple approaches as the ones used in this work, is not so

relevant when analyzing a modular program as was initially expected.

Memory Consumption when analyzing from scratch. We now compare the maximum mem-

ory required for the analysis in the flattened and the modular approaches to the analysis of mod-

ular programs from scratch. Tables 5 and 6 show the maximum memory consumption during the

analysis of the flattened approach (columnMonolithic), and the use of memory of the modular

approach (using both global scheduling policies described before) relative to the monolithic case

(columnsSP+
all andSP−

all for the corresponding success policies). The results show that the mod-

ular approach is clearly better in terms of maximum memory consumption than the monolithic

approach (except for the outlying value of theaiakl test inSP+
all).

44

4.3 Reanalysis of a modular program after a change in the code

As explained in Section 4, we have also studied the incremental cost of reanalysis of a modular

program after a change, for different typical changes. The figures presented have been obtained

computing the weighted average of applying the given change in each module of the program and

then reanalysing the whole program. The weight of a module has been measured as the number

of clauses of the module. Numbers are relative to those of table 2.

In the first case, a simple change in a module with no implications in the analysis results

of that module has been tested. The results in theDef andSharing − freeness domains are

shown in Tables 7 and 8, respectively. In this test we can observe that the analysis domain used

is very relevant to the efficiency of the modular approach: the analysis of a complete program in

theSharing−freeness domain is much more expensive than the reanalysis of a module, while

the difference is smaller (although still significant) in the case ofDef .

In addition, in the case of theSharing−freeness domain theunfold benchmark has more

relative impact on the results, since it is much more expensive than the rest of the benchmarks,

as can be seen in Table 2.

The second kind of change, a modification in the exported predicates of a module that makes

the analysis produce more general results, is shown in Tables 9 and 10. This change may in

general imply the reanalysis of the modules which import the changed module, and thus it means

that the time taken in reaching a new fixed-point will be greater than in the previous case. Never-

theless, the “overall” row shows that the reanalysis time is always smaller than the time spent in

analyzing the flattened program. As in the previous test, the analysis domain has a vital relevance

in the relative advantage of the modular approach.

Finally, Tables 11 and 12 show how the modular approach behaves in the case of a change

which produces more precise analysis results (making invalid former results). Similar conclu-

sions as before can be inferred from these tables.

5 Conclusions

We have provided an empirical study of several models proposed context-sensitive analysis of

modular programs with the objective of providing experimental evidence on the scalability of

these models and, specially, on the impact on performance of the different choices left open in

those models.

Our results shed light on the different choices available. In the case of analyzing a modular

program from scratch, the modular analysis approach is slower than the flattening approach (i.e.,

having the complete program in memory, and analyzing it as a whole), due to the impact of code

45

Def

Bench Mod Load Anal. Gen. Total

aiakl 4 905 16 82 1147

ann 3 891 334 229 1653

bid 7 1165 35 187 1639

boyer 4 891 145 154 1412

hanoi 2 699 8 41 852

peephole 3 1316 232 316 2132

prolog read 3 856 344 372 1731

unfold 7 3359 2016 4156 9989

Sharing-freeness

Bench Mod Load Anal. Gen. Total

aiakl 4 871 26 97 1151

ann 3 924 679 276 2069

bid 7 1148 49 229 1696

boyer 4 901 227 161 1482

hanoi 2 683 18 59 850

peephole 3 1266 573 529 2603

prolog read 3 863 4660 1841 7519

unfold 7 3117 555083 7874 566558

Table 2: Time spent in seconds by the monolithic analysis of different benchmark programs

and related analysis information load and unload times. On the other hand, it does imply a lower

maximum memory consumption which in some cases may be of advantage since it may allow

analyzing programs of a certain critical size that would not fit in memory using the flattening ap-

proach. Also, this suggests future work on reducing the time spent in loading/unloading modules

and storing analysis results.

We have also considered the case of reanalyzing a previously analyzed program, after making

changes to it. This is relevant because this is the standard situation during program development,

in which some modules change while others (and the libraries) remain unchanged. While in this

phase the analysis results may not be needed in order to obtain highly optimized programs they

are for static program validation and debugging. In this context the modular analysis, because of

its more incremental nature, shows clear advantage in both time and memory consumption over

the monolithic approach.

46

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total #It Load Anal. Gen. Total #It

aiakl 4 6.77 10.94 2.16 6.02 10 5.59 7.13 1.55 4.87 9

ann 3 4.50 1.62 1.65 3.24 7 15.56 3.68 3.38 9.87 24

bid 7 7.15 7.97 1.34 5.81 17 12.62 11.60 2.32 9.81 28

boyer 4 2.83 1.23 0.66 2.27 5 9.01 2.67 1.38 6.39 15

hanoi 2 2.91 5.87 1.95 2.77 4 3.08 5.25 1.66 2.85 4

peephole 3 2.70 1.25 0.69 2.14 5 6.77 3.52 1.59 5.02 12

prolog read 3 4.90 2.31 0.78 3.29 6 8.45 3.30 1.15 5.28 9

unfold 7 3.60 1.87 0.85 2.04 9 9.30 3.69 2.05 4.93 19

Overall 4.25 1.94 0.91 2.82 9.05 3.70 2.00 5.77

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total #It Load Anal. Gen. Total #It

aiakl 4 6.40 11.31 1.85 5.65 10 5.08 7.63 1.51 4.63 9

ann 3 4.49 1.44 1.36 3.12 7 13.35 3.29 2.90 8.52 21

bid 7 7.19 8.23 1.64 5.83 17 12.31 11.29 2.34 9.62 27

boyer 4 2.91 1.32 0.72 2.30 5 8.81 2.96 1.44 6.28 15

hanoi 2 2.95 6.50 1.98 2.82 4 3.02 5.50 2.02 2.86 4

peephole 3 2.73 1.24 0.66 2.14 5 6.62 3.33 1.52 4.92 12

prolog read 3 4.20 1.88 0.71 2.81 6 7.84 3.58 1.20 5.03 9

unfold 7 3.44 1.13 0.43 1.65 10 7.30 2.32 0.95 3.41 18

Overall 4.12 1.41 0.58 2.57 8.01 2.80 1.16 4.85

Table 3: Non-modular vs.SP+ andSP− policies when analyzing in theDef domain.

47

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total #It Load Anal. Gen. Total #It

aiakl 4 6.32 11.58 1.74 5.47 10 6.11 5.38 1.33 5.16 9

ann 3 4.43 1.94 1.57 3.01 7 15.71 3.30 3.10 8.72 25

bid 7 8.03 7.39 1.34 6.23 17 14.22 9.71 2.19 10.56 28

boyer 4 2.73 1.20 0.76 2.18 5 8.66 2.42 1.48 6.05 15

hanoi 2 3.07 3.44 1.42 2.87 4 3.08 2.39 1.22 2.83 4

peephole 3 2.71 1.16 0.64 1.88 5 8.24 3.30 1.60 5.26 15

prolog read 3 4.97 1.43 0.25 1.57 7 8.48 1.35 0.54 1.99 10

unfold 7 4.63 1.32 0.69 1.33 12 11.42 0.98 1.55 1.04 21

Overall 4.66 1.32 0.66 1.36 10.17 0.99 1.43 1.15

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total #It Load Anal. Gen. Total #It

aiakl 4 5.76 10.08 1.87 5.04 10 5.18 5.04 1.18 4.42 9

ann 3 4.07 1.62 1.13 2.67 7 14.21 3.24 2.68 7.99 22

bid 7 7.21 6.00 1.24 5.58 17 11.73 7.98 1.72 8.78 27

boyer 4 2.77 1.18 0.74 2.20 5 10.68 4.20 2.01 7.66 15

hanoi 2 3.27 3.94 1.66 3.07 4 3.14 2.89 1.42 2.93 4

peephole 3 3.85 1.73 0.87 2.62 5 8.96 3.69 1.75 5.72 15

prolog read 3 5.73 1.90 0.33 1.98 7 8.90 1.30 0.44 1.99 10

unfold 7 5.00 1.29 0.70 1.31 12 9.06 0.98 0.96 1.03 21

Overall 4.83 1.30 0.68 1.35 9.22 0.99 0.99 1.13

Table 4: Non-modular vs.SP+ andSP− policies when analyzing in theSharing-freenessdo-

main.

48

Global scheduling policy: naivetop down

Bench Mod Monolithic SP+ SP−

aiakl 4 588480 0.45 2.63

ann 3 1770948 0.57 0.72

bid 7 1169196 0.39 0.46

boyer 4 1573700 0.66 0.85

hanoi 2 342028 0.79 1.79

peephole 3 1679244 0.38 0.70

prolog read 3 1733272 0.74 0.87

unfold 7 3412184 0.79 1.45

Overall 0.62 1.05

Global scheduling policy: naivebottomup

Bench Mod Monolithic SP+ SP−

aiakl 4 588480 0.59 0.80

ann 3 1770948 0.68 0.74

bid 7 1169196 0.54 0.53

boyer 4 1573700 0.86 0.86

hanoi 2 342028 0.86 0.86

peephole 3 1679244 0.60 0.66

prolog read 3 1733272 0.82 0.89

unfold 7 3412184 1.56 1.59

Overall 0.94 0.99

Table 5: Memory consumption of Non-modular vs.SP+ andSP− policies when analyzing in

theDef domain.

49

Global scheduling policy: naivetop down

Bench Mod Monolithic SP+ SP−

aiakl 4 654144 1.30 0.74

ann 3 2209388 0.57 0.72

bid 7 1195852 0.49 0.53

boyer 4 1747848 0.61 0.76

hanoi 2 409956 0.68 1.15

peephole 3 2248980 0.41 0.65

prolog read 3 5385648 0.56 0.81

unfold 7 11039512 0.62 0.52

Overall 0.60 0.65

Global scheduling policy: naivebottomup

Bench Mod Monolithic SP+ SP−

aiakl 4 654144 1.43 0.73

ann 3 2209388 0.67 0.71

bid 7 1195852 0.74 0.54

boyer 4 1747848 0.79 0.77

hanoi 2 409956 0.74 1.15

peephole 3 2248980 0.63 0.65

prolog read 3 5385648 0.59 0.80

unfold 7 11039512 0.65 0.69

Overall 0.67 0.72

Table 6: Memory consumption of Non-modular vs.SP+ andSP− policies when analyzing in

theSharing-freenessdomain.

50

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.549 1.629 0.249 0.742 0.568 0.758 0.238 0.752

ann 3 0.653 0.319 0.371 0.728 0.612 0.344 0.571 0.707

bid 7 0.428 0.648 0.153 0.740 0.627 0.943 0.195 0.951

boyer 4 0.560 0.621 0.236 0.695 0.544 0.547 0.237 0.706

hanoi 2 0.764 1.708 0.423 0.865 1.042 1.958 0.585 1.117

peephole 3 0.634 0.383 0.242 0.690 0.619 0.356 0.226 0.685

prolog read 3 0.879 0.656 0.236 0.920 0.804 0.773 0.214 0.864

unfold 7 0.614 0.728 0.478 0.683 0.607 0.552 0.260 0.547

Overall 0.621 0.652 0.422 0.724 0.649 0.548 0.267 0.679

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.568 1.458 0.263 0.780 0.529 0.754 0.254 0.719

ann 3 0.603 0.326 0.408 0.708 1.261 0.961 1.045 1.463

bid 7 0.653 1.175 0.203 1.030 0.431 0.627 0.158 0.726

boyer 4 0.561 0.645 0.233 0.694 0.564 0.603 0.219 0.696

hanoi 2 0.774 1.708 0.472 0.876 0.722 1.500 0.390 0.831

peephole 3 0.655 0.420 0.264 0.727 0.642 0.405 0.234 0.703

prolog read 3 0.728 0.571 0.184 0.693 0.728 0.670 0.203 0.708

unfold 7 0.574 0.364 0.105 0.432 0.581 0.428 0.134 0.446

Overall 0.622 0.418 0.144 0.610 0.648 0.524 0.189 0.647

Table 7: Non-modular vs.SP+ andSP− policies after touching a module in theDef domain.

51

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.576 1.995 0.238 0.767 0.576 0.533 0.197 0.721

ann 3 0.609 0.284 0.436 0.628 0.622 0.281 0.645 0.655

bid 7 0.470 0.617 0.146 0.745 0.443 0.479 0.140 0.728

boyer 4 0.552 0.383 0.207 0.660 0.565 0.401 0.201 0.657

hanoi 2 0.781 0.963 0.328 0.877 0.757 0.722 0.316 0.846

peephole 3 0.674 0.301 0.223 0.629 0.647 0.329 0.263 0.625

prolog read 3 0.733 0.565 0.086 0.500 0.710 0.478 0.101 0.450

unfold 7 0.589 0.025 0.173 0.032 0.604 0.025 0.230 0.033

Overall 0.610 0.030 0.169 0.049 0.606 0.029 0.218 0.049

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.572 2.262 0.276 0.794 0.576 0.505 0.221 0.732

ann 3 0.811 0.315 0.507 0.791 0.608 0.300 0.667 0.654

bid 7 0.456 0.593 0.134 0.783 0.523 0.498 0.139 0.852

boyer 4 0.885 0.458 0.320 1.031 0.563 0.371 0.227 0.662

hanoi 2 0.770 0.944 0.384 0.879 1.022 0.759 0.390 1.171

peephole 3 0.674 0.318 0.235 0.649 0.668 0.325 0.240 0.642

prolog read 3 0.731 0.568 0.092 0.503 0.705 0.441 0.084 0.421

unfold 7 0.799 0.028 0.134 0.036 0.613 0.026 0.112 0.032

Overall 0.723 0.034 0.147 0.055 0.638 0.030 0.132 0.049

Table 8: Non-modular vs.SP+ and SP− policies after touching a module in theSharing-

freenessdomain.

52

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 1.465 2.475 0.509 1.395 1.855 3.150 0.564 1.773

ann 3 1.968 0.772 0.973 1.605 3.814 1.022 1.524 2.660

bid 7 1.516 1.968 0.329 1.466 3.817 4.155 0.675 3.185

boyer 4 2.069 0.949 0.432 1.674 2.102 0.949 0.444 1.685

hanoi 2 0.522 1.083 0.407 0.529 1.017 2.167 0.675 0.964

peephole 3 1.072 0.466 0.326 0.948 1.264 0.546 0.388 1.092

prolog read 3 1.071 0.907 0.286 0.970 3.001 1.722 0.515 2.116

unfold 7 0.203 0.134 0.074 0.148 0.217 0.143 0.071 0.152

Overall 0.998 0.385 0.168 0.713 1.693 0.543 0.221 1.088

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 1.265 2.158 0.392 1.225 1.503 2.725 0.470 1.432

ann 3 1.734 0.791 1.291 1.521 4.320 1.122 1.713 3.001

bid 7 1.444 1.671 0.280 1.402 3.799 4.497 0.778 3.238

boyer 4 2.096 1.011 0.498 1.706 2.022 0.961 0.456 1.618

hanoi 2 0.514 1.125 0.415 0.525 1.029 2.208 0.659 0.970

peephole 3 1.074 0.516 0.355 0.974 1.314 0.535 0.383 1.126

prolog read 3 1.073 0.781 0.248 0.885 2.809 1.458 0.449 1.919

unfold 7 0.211 0.085 0.021 0.119 0.199 0.082 0.022 0.114

Overall 0.956 0.343 0.138 0.675 1.682 0.487 0.190 1.065

Table 9: Non-modular vs.SP+ andSP− policies after adding a most general clause to exported

predicates in theDef domain.

53

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 1.630 5.444 0.495 1.579 2.106 3.369 0.528 1.915

ann 3 3.232 1.065 1.285 2.165 3.894 1.514 1.841 2.645

bid 7 1.564 1.553 0.257 1.434 3.845 2.958 0.554 3.068

boyer 4 2.006 0.854 0.514 1.614 1.998 0.820 0.555 1.611

hanoi 2 0.529 0.778 0.328 0.538 1.033 1.056 0.418 0.958

peephole 3 1.081 0.382 0.409 0.856 1.325 0.463 0.464 1.008

prolog read 3 0.999 0.747 0.114 0.648 4.433 1.781 0.347 1.748

unfold 7 0.196 0.023 0.033 0.024 0.218 0.022 0.042 0.023

Overall 1.147 0.031 0.113 0.055 1.896 0.039 0.182 0.077

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 1.583 5.487 0.520 1.591 1.525 2.897 0.447 1.423

ann 3 3.111 0.911 1.246 2.011 5.113 1.971 2.000 3.398

bid 7 1.478 1.311 0.250 1.365 3.612 3.003 0.605 2.919

boyer 4 2.023 0.916 0.540 1.631 2.041 0.868 0.493 1.635

hanoi 2 0.533 0.630 0.266 0.531 1.045 1.148 0.492 0.973

peephole 3 1.199 0.399 0.429 0.927 1.374 0.459 0.480 1.035

prolog read 3 1.014 0.745 0.117 0.646 4.169 1.710 0.321 1.658

unfold 7 0.220 0.022 0.021 0.024 0.197 0.022 0.018 0.024

Overall 1.147 0.031 0.105 0.055 1.914 0.040 0.165 0.078

Table 10: Non-modular vs.SP+ andSP− policies after adding a most general clause to exported

predicates in theSharing-freenessdomain.

54

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.587 0.475 0.213 0.655 0.343 0.221 0.171 0.452

ann 3 2.018 0.393 0.459 1.391 1.762 0.390 0.440 1.258

bid 7 0.673 0.662 0.186 0.837 0.375 0.354 0.139 0.601

boyer 4 1.030 0.158 0.244 0.901 1.007 0.142 0.251 0.882

hanoi 2 0.494 0.958 0.358 0.505 0.204 0.083 0.236 0.248

peephole 3 1.997 0.606 0.345 1.565 1.791 0.407 0.262 1.380

prolog read 3 0.796 0.286 0.128 0.671 0.803 0.306 0.107 0.657

unfold 7 0.260 0.230 0.095 0.197 0.245 0.184 0.083 0.174

Overall 0.849 0.286 0.138 0.613 0.716 0.236 0.118 0.528

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.591 0.658 0.233 0.653 0.346 0.146 0.160 0.451

ann 3 1.666 0.328 0.379 1.192 1.455 0.333 0.391 1.071

bid 7 0.758 0.789 0.241 0.907 0.395 0.379 0.132 0.642

boyer 4 1.015 0.135 0.229 0.874 1.041 0.169 0.255 0.900

hanoi 2 0.501 0.833 0.260 0.501 0.207 0.083 0.195 0.249

peephole 3 2.196 0.611 0.311 1.683 1.688 0.421 0.259 1.324

prolog read 3 0.749 0.234 0.096 0.629 0.759 0.293 0.099 0.611

unfold 7 0.221 0.122 0.034 0.132 0.215 0.107 0.026 0.123

Overall 0.836 0.205 0.085 0.577 0.668 0.181 0.072 0.483

Table 11: Non-modular vs.SP+ andSP− policies after removing all clauses of exported predi-

cates except the first non-recursive clause in theDef domain.

55

Global scheduling policy: naivetop down

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.720 0.444 0.236 0.741 0.459 0.197 0.170 0.530

ann 3 1.587 0.336 0.343 1.003 1.343 0.327 0.381 0.932

bid 7 0.705 0.547 0.149 0.822 0.393 0.282 0.112 0.603

boyer 4 1.041 0.147 0.296 0.887 1.020 0.134 0.280 0.877

hanoi 2 0.525 0.389 0.249 0.517 0.212 0.037 0.153 0.245

peephole 3 1.937 0.396 0.253 1.247 1.749 0.371 0.282 1.179

prolog read 3 0.818 0.271 0.039 0.313 0.681 0.207 0.039 0.259

unfold 7 0.249 0.000 0.045 0.003 0.234 0.000 0.047 0.003

Overall 0.832 0.004 0.070 0.023 0.684 0.004 0.071 0.020

Global scheduling policy: naivebottomup

automatic SP+ automatic SP−

Bench Mod Load Anal. Gen. Total Load Anal. Gen. Total

aiakl 4 0.757 0.477 0.232 0.774 0.463 0.195 0.171 0.541

ann 3 1.639 0.342 0.373 1.034 1.373 0.325 0.345 0.909

bid 7 0.710 0.603 0.162 0.829 0.381 0.302 0.132 0.601

boyer 4 1.064 0.143 0.382 0.947 1.114 0.127 0.397 0.950

hanoi 2 0.509 0.444 0.249 0.504 0.218 0.037 0.169 0.261

peephole 3 2.066 0.412 0.279 1.340 1.868 0.416 0.300 1.241

prolog read 3 0.737 0.269 0.038 0.303 0.676 0.208 0.036 0.257

unfold 7 0.234 0.000 0.024 0.003 0.248 0.000 0.030 0.003

Overall 0.847 0.004 0.058 0.023 0.715 0.003 0.061 0.021

Table 12: Non-modular vs.SP+ andSP− policies after removing all clauses of exported predi-

cates except the first non-recursive clause in theSharing-freenessdomain.

56

Part III

Efficient Local Unfolding with Ancestor

Stacks for Full Prolog

1 Summary

In spite of the important research efforts in the area, the integration of powerful partial evaluation

methods into practical compilers for logic programs is still far from reality. This is related both

to 1) efficiency issues and to 2) the complications of dealing with practical programs. Regarding

efficiency, the most successful unfolding rules used nowadays are based on structural orders

applied over (covering)ancestors, i.e., a subsequence of the atoms selected during a derivation.

Ancestor (sub)sequences are used to improve the specialization power of unfolding while still

guaranteeing termination and also to reduce the number of atoms for which the wfo or wqo has

to be checked. Unfortunately, maintaining the structure of the ancestor relation during unfolding

introduces significant overhead. We propose an efficient, practicallocal unfolding rule based

on the notion of covering ancestors which can be used in combination with any structural order

and allows a stack-based implementation without losing any opportunities for specialization.

Regarding the second issue, we propose assertion-based techniques which allow our approach to

deal with real programs that include (Prolog) built-ins and external predicates in a very extensible

manner. Finally, we report on our implementation of these techniques in a practical partial

evaluator, embedded in a state of the art compiler which uses global analysis extensively (the

Ciao compiler and, specifically, its preprocessorCiaoPP). The performance analysis of the

resulting system shows that our techniques, in addition to dealing with practical programs, are

also significantly more efficient in time and somewhat more efficient in memory than traditional

tree-based implementations. We believe that our approach contributes to the practicality of state-

of-the-art partial evaluation techniques.

2 Introduction

In spite of the important research efforts in the area, the integration ofPartial Deduction(PD) [LS91,

Gal93] methods into compilers seems to be still far from reality. We believe that the general up-

take of PD methods is being hindered by two factors: the relative inefficiency of the PD method,

and the complications brought about by the treatment of real programs. Indeed, the integra-

57

tion of powerful strategies to the unfolding rule –like the use of structural orders combined with

the ancestor relation– can introduce a significant cost both in time and memory consumption

of the specialization process. Regarding the treatment of real programs which include external

predicates, non-declarative features, etc, the complications range from how to identify which

predicates include these non-declarative features (ad-hoc but difficult to maintain tables are often

used in practice for this purpose) to how to deal with such predicates during PD. A main ob-

jective of this paper is to contribute to the uptake of PE techniques by addressing some of these

issues.

State-of-the-art partial evaluators integrate terminating unfolding rules for local control based

on structural orders, like homeomorphic embedding [LB02] which can obtain very powerful

optimizations. Moreover, they allow performing the ordering comparisons oversubsequencesof

the full sequence of the selected atoms. In particular, the use ofancestorsfor refining sequences

of visited atoms, originally proposed in [BSM92], greatly improves the specialization power

of unfolding while still guaranteeing termination and also reduces the length of the sequences

for which admissibility of new atoms has to be checked. Unfortunately, having to maintain

dependency information for the individual atoms in each derivation during the generation of SLD

trees has turned out to introduce overheads which seem to cancel out the theoretical efficiency

gains expected. In order to address this issue, we introduce a novel unfolding rule based on

the notion of covering ancestors which allows a very efficient implementation technique based

on stacks. Our technique can significantly reduce the overhead incurred by the use of covering

ancestors without losing any opportunities for specialization. We outline as well a generalization

that allows certain non-leftmost unfoldings with the same assurances.

In order to deal with real programs that include (Prolog) built-ins and external predicates, we

rely on assertion-based techniques [PBH00b]. The use of assertions providesextensibilityin the

sense that users and developers of partial evaluators can deal with new external predicates during

PE by just adding the proper assertions to these predicates –without having to maintain ad-hoc

tables or modifying the partial evaluator itself. We report on our implementation of our tech-

nique in a practical, state-of-the-art partial evaluator, embedded in a production compiler which

uses assertions and global analysis extensively (theCiao compiler [BCC+04] and, specifically,

its preprocessorCiaoPP [HPBLG03b]).

3 Background

We assume some basic knowledge on the terminology of logic programming. See for exam-

ple [Llo87b] for details. Very briefly, anatom A is a syntactic construction of the form

58

p(t1, . . . , tn), wherep/n, with n ≥ 0, is a predicate symbol andt1, . . . , tn are terms. The func-

tion pred applied to atomA, i.e., pred(A), returns the predicate symbolp/n for A. A clause

is of the formH ← B where its headH is an atom and its bodyB is a conjunction of atoms.

A definite programis a finite set of clauses. Agoal (or query) is a conjunction of atoms. The

concept ofcomputation ruleis used to select an atom within a goal for its evaluation.

Definition 3.1 (computation rule) A computation ruleis a functionR from goals to atoms. Let

G be a goal of the form← A1, . . . , AR, . . . , Ak, k ≥ 1. If R(G) =AR we say thatAR is the

selectedatom inG.

The operational semantics of definite programs is based on derivations.

Definition 3.2 (derivation step) LetG be← A1, . . . , AR, . . . , Ak. LetR be a computation rule

and letR(G) =AR. Let C = H ← B1, . . . , Bm be a renamed apart clause inP . ThenG′ is

derivedfromG andC viaR if the following conditions hold:

θ = mgu(AR, H)

G′ is the goal← θ(B1, . . . , Bm, A1, . . . , AR−1, AR+1, . . . , Ak)

The definition above differs from standard formulations (such as that in [Llo87b]) in that the

atoms newly introduced inG′ are not placed in the same position where the selected atomAR

used to be, but rather they are placed to the left of any atom inG. For definite programs, this is

correct since goals are conjunctions, which enjoy the commutative property.

As customary, given a programP and a goalG, an SLD derivationfor P ∪ {G} consists

of a possibly infinite sequenceG = G0, G1, G2, . . . of goals, a sequenceC1, C2, . . . of properly

renamed apart clauses ofP , and a sequenceθ1, θ2, . . . of mgus such that eachGi+1 is derived

from Gi andCi+1 usingθi+1. A derivation step can be non-deterministic whenAR unifies with

several clauses inP , giving rise to several possible SLD derivations for a given goal. Such SLD

derivations can be organized inSLD trees. A finite derivationG = G0, G1, G2, . . . , Gn is called

successfulif Gn is empty. In that caseθ = θ1θ2 . . . θn is called the computed answer for goalG.

Such a derivation is calledfailed if it is not possible to perform a derivation step withGn.

In order to compute apartial deduction(PD) [LS91], given an input program and a set of

atoms (goal), the first step consists in applying anunfolding rule to compute finite (possibly

incomplete) SLD trees for these atoms. Given an atomA, an unfolding rule computes a set

of finite SLD derivationsD1, . . . , Dn (i.e., a possibly incomplete SLD tree) of the formDi =

A, . . . , Gi with computer answer substitutionθi for i = 1, . . . , n whose associated resultants are

θi(A) ← Gi. Therefore, this step returns the set of resultants, i.e., a program, associated to the

59

root-to-leaf derivations of these trees. We refer to [LB02] for details. In order to ensure the

local termination of the PD algorithm while producing useful specializations, the unfolding rule

must incorporate some non-trivial mechanism to stop the construction of SLD trees. Nowadays,

well-founded orderings (wfo) [BSM92, MD96] and well-quasi orderings (wqo) [SG95, Leu98]

are broadly used in the context of on-line PE techniques (see, e.g., [Gal93, LMDS98, SG95]).

Formally, let≤S be a wqo, we denote byAdmissible(A, (A1, . . . , An),≤S), with n ≥ 0, the

truth value of the expression∀Ai, i ∈ {1, . . . , n} : A ≤S Ai. In wfo, it is sufficient to verify

that the selected atom is strictly smaller than the previous comparable one (if one exists). Let

< be a wfo, byAdmissible(A, (A1, . . . , An), <), with n ≥ 0, we denote the truth value of the

expressionA < An if n ≥ 1 andtrue if n = 0. We will denote bystructural ordera wfo or a wqo

(written as/ to represent any of them). Among the structural orders, well-quasi orderings (and

homeomorphic embedding[Kru60] in particular) have proved to be very powerful in practice.

State-of-the-art unfolding rules allow performing ordering comparisons oversubsequencesof

the full sequence of the selected atoms of a derivation by organizing atoms in aproof tree[Bru91],

achieving further specialization in many cases while still guaranteeing termination. The essence

of the most advanced techniques is based on the notion ofcovering ancestors[BSM92].

Definition 3.3 (ancestor relation) Given a derivation step andAR, Bi, i = 1, . . . ,m as in

Def. 3.2, we say thatAR is theparentof the instance ofBi, i = 1, . . . ,m, in the resolvent and in

each subsequent goal where the instance originating fromBi appears. Theancestorrelation is

the transitive closure of the parent relation.

Usually, the ancestor test is only applied oncomparableatoms, i.e., ancestor atoms with the

same predicate symbol. This corresponds to the original notion of covering ancestors [BSM92].

Given an atomA and a derivationD, we denote byAncestors(A, D) the sequence of ancestors

of A in D as defined in Def. 3.3. It captures the dependency relation implicit within aproof tree.

It has been proved [BSM92] that any infinite derivation must have at least one inadmissi-

ble covering ancestorsequence, i.e., a subsequence of the atoms selected during a derivation.

Therefore, it is sufficient to check the selected ordering relation/ over the covering ancestor

subsequences in order to detect inadmissible derivations. An SLD derivation issafewith respect

to an order (wfo or wqo) if all covering ancestor sequences of the selected atoms are admissible

with respect to that order.

4 The Usefulness of Ancestors

We now illustrate some of the ideas discussed so far and, specially, the relevance of ancestor

tracking, through an example. Our running example is the program in Figure 7, which imple-

60

qsort([],R,R).

qsort([X|L],R,R2) :-

partition(L,X,L1,L2),

qsort(L2,R1,R2),

qsort(L1,R,[X|R1]).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right) :-

E =< C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :-

E > C, partition(R,C,Left,Right1).

Figure 7: A quick-sort program

1.qs([1, 1, 1], R, []){}

��
2.p([1, 1], 1, L1, L2){1},3.qs(L2, R1, []){1},4.qs(L1, R, [1|R1]){1}

{L1 7→[1|L]}��
5.1 =< 1{1,2},6.p([1], 1, L, L2){1,2},3.qs(L2, R1, []){1},4.qs([1|L], R, [1|R1]){1}

��

6. p([1],1,L,L2)
{1,2}

,3.qs(L2, R1, []){1},4.qs([1|L], R, [1|R1]){1}
{L 7→[1|L′]}��

7.1 =< 1{1,2,6},8.p([], 1, L′, L2){1,2,6},3.qs(L2, R1, []){1},4.qs([1, 1|L′], R, [1|R1]){1}

��
8.p([], 1, L′, L2){1,2,6},3.qs(L2, R1, []){1},4.qs([1, 1|L′], R, [1|R1]){1}

{L′ 7→[],L2 7→[]}��
3.qs([], R1, []){1},4.qs([1, 1], R, [1|R1]){1}

{R1′ 7→[]}��
4.qs([1, 1], R, [1]){1}

��

9. p([1],1,L1’,L2’)
{1,4}

,10.qs(L2′, R1′, [1]){1,4},11.qs(L1′, R, [1|R1′]){1,4}
@A

GF�
�
�
�
�
�
�
�
�
�
�
�

Figure 8: Derivation with Ancestor Annotations

ments the well known quick-sort algorithm, “qsort ”, using difference lists. Given an initial

query of the form←qsort(List,Result,Cont), whereList is a list of numbers, the algorithm re-

turns inResulta sorted difference list which is a permutation ofList and such that its continu-

ation isCont. For example, for the query← qsort([1, 1, 1], L, []), the program should compute

L=[1,1,1] , constructing a finite SLD tree.

Consider now Fig. 8, which presents an incomplete SLD derivation for our quick-sort pro-

gram and the query← qsort([1, 1, 1], R, []) using a leftmost unfolding rule. For conciseness,

predicatesqsort and partition are abbreviated asqs and p, respectively in the figure.

Note that each atom is labeled with a number (an identifier) for future reference9 and a super-

script which contains the list of ancestors of that atom. Let us assume that we use thehomeo-

9By abuse of notation, we keep the same number for each atom throughout the derivation although it may be

further instantiated (and thus modified) in subsequent steps. This will become useful for continuing the example

later.

61

�� ��1

wwoooooooo
�� #+OOOOOOO

OOOOOOO

2

�����
��

��?
??

??
3

�� ��4

{� ����
�� ��?

???

5 6

�����
��

��?
??

??
9 10 11

7 8

Figure 9: Proof tree for the example.

morphic embeddingorder [Leu98] as structural order. If we check admissibility w.r.t. the full

sequence of atoms, i.e., we do not use the ancestor relation, the derivation will stop when atom

number9, i.e.,p([1], 1, L′, L2′), is found for the second time. The reason is that this atom is not

strictly smaller than atom number6 which was selected in the third step, indeed, they are equal

modulo renaming.10

This unfolding rule is too conservative, since the process can proceed further without risk-

ing termination. The crucial point is that the execution of atom number9 does not depend

on atom number6 (and, actually, the unfolding of6 has been alreadycompletedwhen atom

number9 is being considered for unfolding). Figure 9 shows the proof tree associated to this

derivation where nodes are labeled with the numbers assigned to each atom, instead of the atoms

themselves. Note that, in order to decide whether or not to evaluate atom number9, it is only

necessary to check that it is strictly smaller than atoms4 and1, i.e., than those which are its

ancestorsin the proof tree. On the other hand, and as we saw before, if the full derivation is con-

sidered instead, as in Fig. 8, atom9 will be compared also with atom6 concluding imprecisely

that the derivation may not be safe.

Despite their obvious relevance, unfortunately the practical applicability of unfolding rules

based on the notion of covering ancestor is threatened by the overhead introduced by the im-

plementation of this notion. A naive implementation of the notion of ancestor keeps –for each

atom– the list of its ancestors, as it is depicted in Fig. 8. This implementation is relatively ef-

ficient in time but presents a high overhead in memory consumption. Our experiments show

that the partial evaluator can run out of memory even for simple examples. A more reasonable

implementation maintains the proof tree as a global structure. This greatly reduces memory con-

sumption but the cost of traversing the tree for retrieving the ancestors of each atom introduces a

significant slowdown in the PE process. We argue that our implementation technique is efficient

in time and space, overcoming the above limitations.

10Let us note that the two calls to the builtin predicate=< which appear in the derivation can be executed since

the arguments are properly instantiated. However, they have not been considered in the admissibility test since these

calls do not endanger the termination of the derivation, as we will discuss in Sect. 6.

62

5 An Efficient Implementation for Local Unfolding

Our definition oflocal unfoldingis based on the notion ofancestor depth.

Definition 5.1 (ancestor depth)Given an SLD derivationD = G0, . . . , Gm with Gm =←
A1, . . . , Ak, k ≥ 1, the ancestor depthof Ai for i = 1, . . . , k, denoteddepth(Ai, D) is the

cardinality of the ancestor relation forAi in D.

Intuitively, the ancestor depth of an atom in a goal is the depth at which this atom is located in

the proof tree associated to the derivation.

Definition 5.2 (local computation rule) A computation ruleR is local if ∀D = G0, . . . , Gn

such thatGi =← Ai1, . . . , Aimi
for i = 0, .., n, it holds that:

depth(R(Gi), D) ≥ depth(Aij, D) ∀j = 1, . . . ,mi

Intuitively, a computation rule is local if it always selects one of the atoms which is deepest in the

proof tree for the derivation. As a result, local computation rules traverse proof trees in a depth-

first fashion, though not necessarily left to right nor in any other fixed order. Thus, in principle,

in order to implement a local computation rule we need to record (part of) the derivation history

(its proof tree). Note that the computation rule used in most implementations of logic program-

ming languages, such as Prolog, always selects the leftmost atom. This computation rule, often

referred to as left-to-right computation rule, is clearly a local computation rule. Selecting the

leftmost atom in all goals guarantees that the selected atom is of maximal depth within the proof

tree as it is traversed in a depth-first fashion –without the need of storing any history about the

derivation.

An instrumental observation in our approach is that if the proof tree which is used in order

to capture the ancestor relation is traversed depth-first, left-to-right, it can be interpreted as an

activation tree[ASU86]. In fact, the ancestor subsequence in any point in time corresponds to the

currentcontrol word[RS97] by simply regarding selected atoms as procedure calls. The control

word for each execution state can be seen as the set of procedures whose execution has started

and is not yet completed, bearing a strong relation with the stack of activation records which most

compilers use as a run-time data structure. This data structure takes normally the form of a stack,

and this suggests one of the central ideas of our approach: using stacks for storing ancestors.

Another important observation is that the control word idea does not need to be restricted to

leftmost computation and it works equally well as long as the computation rule is local. Indeed,

sibling atoms have the same ancestor depth, they can be selected in any order and the notion of

control word still applies. The advantages of computing the control word instead of the proof

tree are clear: the control word corresponds to a single branch in the proof tree from the current

63

selected atom to all its ancestors in the proof tree. Thus, the control word offers advantages

both from memory and time consumption. The main difficulty for computing control words is to

determine exactly when each item in the control word should be removed. To do this, we need to

know when the computation of each predicate is finished. In logic programming terminology this

corresponds to determining the success states for all predicates in the derivation. In principle,

success states are not observable in SLD resolution other than for the top-level query.

We now propose an easy-to-implement modification to SLD resolution as presented in Sec-

tion 3 in which success states for all internal calls are observable –and where the control word is

available at each state. We will refer to this resolution as SLD resolution with ancestor stacks,

or ASLD for short. The proposed modification involves 1) augmenting goals with anancestor

stack, which at each stage of the computation contains the control word of the derivation, which

corresponds tothe ancestors of the next atom which will be selected for resolution, and 2) adding

pseudo-atoms to the goals used during resolution which mark a scope whose purpose is twofold:

2.1) when a mark is leftmost in a goal, it indicates that the current state corresponds to the suc-

cess state for the call which is now on top of the ancestor stack, i.e., the call is completed, and

the atom on top of the ancestor stack should be popped; 2.2) the atoms within the scope of the

leftmost mark have maximal ancestor depth and thus a local unfolding strategy can be easily

defined in the presence of these pseudo-atoms. We use the pseudo-atom↑ (read as “pop”) to

indicate the end of a depth scope, i.e., after it we move up in the proof tree. It is guaranteed not

to clash with any existing predicate name.

The following two definitions present the derivation rules in our ASLD semantics. Now, a

stateS is a tuple of the form〈G AS〉 whereG is a goal andASis an ancestor stack (orstackfor

short). To handle such stacks, we will use the usual stack operations:empty, which returns an

empty stack,push(AS, Item), which pushesItemonto the stackAS, andpop(AS), which pops

an element fromAS. In addition, we will use the operationcontents(AS), which returns the

sequence of atoms contained inAS in the order in which they would be popped from the stack

ASand leavesASunmodified.

Definition 5.3 (derive) Let G = ← A1, . . . , AR, . . . , Ak be a goal withA1 6= ↑ . Let S =

〈G AS〉 be a state and AS be a stack. Let/ be a structural order. LetR be a computation rule

and letR(G) =AR with AR 6= ↑ . LetC = H ← B1, . . . , Bm be a renamed apart clause. Then

S ′ = 〈G′ AS ′〉 is derivedfromS andC viaR if the following conditions hold:

Admissible(AR, contents(AS), /)

θ = mgu(AR, H)

G′ is the goal← θ(B1, . . . , Bm, ↑ , A1, . . . , AR−1, AR+1, . . . , Ak)

64

AS ′ = push(AS, ren((AR)))

Thederive rule behaves as the one in Definition 3.2 but in addition: i) the mark↑ (“pop”) is

added to the goal, and ii) a renamed apart copy ofAR, denotedren(AR), is pushed onto the

ancestor stack. As before, thederive rule is non-deterministic if several clauses inP unify with

the atomAR. However, in contrast to Definition 3.2, this rule can only be applied if 1) the

leftmost atom in the goal is not a↑ mark, and 2) the current selected atomAR together with its

ancestors does constitute an admissible sequence. If 1) holds but 2) does not, this derivation is

stopped and we refer to such a derivation asinadmissible.

Definition 5.4 (pop-derive) Let G = ← A1, . . . , Ak be a goal withA1 = ↑ . LetS = 〈G AS〉
be a state and AS be a stack. ThenS ′ = 〈G′ AS ′〉 with G′ =← A2, . . . , Ak andAS ′ = pop(AS)

is pop-derivedfromS.

Thepop-derive rule is used when the leftmost atom in the resolvent is a↑ mark. Its effect is

to eliminate from the ancestor stack the topmost atom, which is guaranteed not to belong to the

ancestors of any selected atom in any possible continuation of this derivation.

Computation for a queryG starts from the stateS0 = 〈G empty〉. Given a non-empty

derivationD, we denote bycurr goal(D) andcurr ancestors(D) the goal and the stack in the

last state inD, respectively. At each step of a derivationD at most one rule, eitherderive or

pop-derive, can be applied depending on whether the first atom incurr goal(D) is a mark ↑
or not.

Example 5.5 Fig. 10 illustrates the ASLD derivation corresponding to the derivation with ex-

plicit ancestor annotations of Fig. 8. Sometimes, rather than writing the atoms themselves, we

use the same numbers assigned to the corresponding atoms in Fig. 8. Each step has been ap-

propriately labeled with the applied derivation rule. Although ruleexternal-derivehas not been

presented yet, we can just assume that the code for the external predicate=< is available and

has the expected behavior.

It should be noted that, in the last state, the stack contains exactly the ancestors of

partition([1],1,L1’,L2’) , i.e., the atoms4 and1, since the previous calls to

partition have already finished and thus their corresponding atoms have been popped off the

stack. Thus, the admissibility test forpartition([1],1,L1’,L2’) succeeds, and unfold-

ing can proceed further without risking termination. Note thatderivesteps w.r.t. a clause which

is a fact are always followed by apop-deriveand thus they are optimized in the figure (and in the

implementation, described in Section 7) by not pushing the selected atomAR onto the stack and

not including a ↑ mark into the goal which would immediately popAR from the stack.

65

〈{qs([1, 1, 1], R, [])} []〉
derive��

〈{2,3,4, ↑ } [qsort([1, 1, 1], R, [])]〉
derive��

〈{5,6, ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
external−derive��

〈{6, ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])〉]
derive��

〈{7,8, ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
external−derive��

〈{8, ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
derive,pop−derive��

〈{ ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
pop−derive��

〈{ ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉
pop−derive��

〈{3,4, ↑ } [qsort([1, 1, 1], R, [])]〉
derive,pop−derive��

〈{4, ↑ } [qsort([1, 1, 1], R, [])]〉
derive��

〈{part([1], 1, L1′, L2′),10,11, ↑ , ↑ } [qsort([1, 1], R, [1]), qsort([1, 1, 1], R, [])]〉

Figure 10: ASLD Derivation for the example

Finally, since the goals obtained by ASLD resolution may contain atoms of the form↑ , resultants

are cleaned up before being transferred to the global control level or during the code generation

phase by simply eliminating all atoms of the form↑ .

It is easy to see that for each ASLD derivationDS there is a corresponding SLD derivation

D with the same computed answer substitution and the same goal without the↑ atoms. Such

SLD derivation is the one obtained by performing the samederivesteps (with exactly the same

clauses) using the same computation rule and by ignoring thepop-derivesteps since goals in

SLD resolution do not contain↑ atoms. We will usesimplify(DS) = D to denote thatD is

the SLD derivation which corresponds toDS.

We would now like to impose a condition on the computation rule which allows ensuring that

the contents of the stack are precisely the ancestors of the atom to be selected.

Definition 5.6 (depth-preserving) A computation ruleR is depth-preservingif for each non-

empty goalG =← A1, . . . , Ak with A1 6= ↑ ,R(G) = AR and ↑ /∈ {A1, . . . , AR}.

Intuitively, a depth-preserving computation rule always returns an atom which is strictly to the

left of the first (leftmost)↑ mark. Note that↑ is used to separate groups of atoms which are

66

at different depth in the proof tree. Thus, the notion of depth-preserving computation rules in

ASLD resolution isequivalentto that of local computation rules in SLD resolution.

Proposition 5.7 (ancestor stack)Let DS be an ASLD derivation for initial queryG in pro-

gram P via a depth-preservingcomputation rule. LetD be an SLD derivation such that

simplify(DS) = D. Let curr goal(DS) = A1, . . . , An, ↑ , . . . with Ai 6= ↑ for i = 1, . . . , n.

Let curr ancestors(DS) = AS. Then,contents(AS) = Ancestors(Ai, D) for i = 1, . . . , n.

The next theorem guarantees that we do not lose any specialization opportunities by using our

stack-based implementation for ancestors instead of the more complex tree-based implementa-

tion, i.e., our proposed semantics will not stop “too early”. It is a consequence of the above

proposition and the results in [BSM92].

Theorem 5.8 (accuracy)Let D be an SLD derivation for queryG in a programP via a local

computation rule. Let/ be a structural order. If the derivationD is safe w.r.t/ then there

exists an ASLD derivationDS for G andP via a depth-preserving computation rule such that

simplify(DS) = D.

Note that since our semantics disables performing any further steps as soon as inadmissible

sequences are detected, not all local SLD derivations have a corresponding ASLD derivation.

However, if a local SLD derivation is safe, then its correspondingDS derivation can be found.

It is interesting to note that we can allow more flexible computation rules which are not

necessarily depth-preserving while still ensuring termination. For instance, consider state

〈A1, . . . , An, ↑ , AR, . . . [P1|P]〉

with ↑ /∈ {A1, . . . , An} and a non depth-preserving computation rule which selects the atomAR

to the right of the↑ mark. Then, rulederivewill check admissibility ofAR w.r.t. all atoms in

the stack[P1|P]. However, the topmost atomP1 is an ancestor only of the atomsAi to the left of

AR but it is not an ancestor ofAR. The more↑ marks the computation rule jumps over to select

an atom, the more atoms which do not belong to the ancestors of the selected atom will be in the

stack, thus, the more accuracy and efficiency we lose. In any case, the stack will always be an

over-approximation of the actual set of ancestors ofAR.

In principle, our local unfolding rule based on ancestor stacks can be used within any PD

framework, including Conjunctive Partial Deduction (CPD). It should be noted that some CPD

examples may require the use of an unfolding rule which is not depth-preserving to obtain the

optimal specialization. As we discuss above, we cannot ensure accuracy results in these cases

but in turn the use of local unfolding will clearly improve the efficiency of the PD process.

67

6 Assertion-based Unfolding for External Predicates

Most of real-life Prolog programs use predicates which are not defined in the program (module)

being developed. We will refer to such predicates asexternal. Examples of external predicates

are the traditional “built-in” predicates such as arithmetic operations (e.g.,is/2 , <, =<, etc.) or

basic input/output facilities. We will also consider as external predicates those defined in a dif-

ferent module, predicates written in another language, etc. This section deals with the difficulties

which suchexternalpredicates pose during PD.

When an atomA, such thatpred(A) = p/n is an external predicate, is selected during PD,

it is not possible to apply thederiverule in Definition 3.2 due to several reasons. First, we may

not have the code definingp/n and, even if we have it, the derivation step may introduce in the

residual program calls to predicates which are private to the moduleM wherep/n is defined. In

spite of this, if the executable code for the external predicatep/n is available, and under certain

conditions, it can be possible to fully evaluate calls to external predicates at specialization time.

We useExec(Sys, M, A) to denote the execution of atomA on a logic programming systemSys

(e.g.,Ciao or Sicstus) in which the moduleM where the external predicatep/n is defined has

been loaded. In the case of logic programs,Exec(Sys, M, A) can return zero, one, or several

computed answers forM ∪ A and then execution can either terminate or loop. We will use sub-

stitution sequences [CRV02] to represent the outcome of the execution of external predicates. A

substitution sequenceis either a finite sequence of the form〈θ1, . . . , θn〉, n ≥ 0, or an incomplete

sequence of the form〈θ1, . . . , θn,⊥〉, n ≥ 0, or an infinite sequence〈θ1, . . . , θi, . . .〉, i ∈ IN∗,

whereIN∗ is the set of positive natural numbers and⊥ indicates that the execution loops. We say

that an executionuniversally terminatesif Exec(Sys, M, A) = 〈θ1, . . . , θn〉, n ≥ 0.

In addition to producing substitution sequences, it can be the case that the execution of atoms

for (external) predicates produces other outcomes such as side-effects, errors, and exceptions.

Note that this precludes the evaluation of such atoms to be performed at PE time, since those

effects need to be performed at run-time. We say that an expression isevaluablewhen its execu-

tion 1) universally terminates, 2) it does not produce side-effects, 3) it is sufficiently instantiated

to be executed, 4) it does not issue errors and 5) it does not generate exceptions. Clearly, some

of the above properties are not computable (e.g., termination is undecidable in the general case).

However, it is often possible to determine somesufficient conditions(SC) which aredecidable

and ensure that, if an atomA satisfies such conditions, thenA is evaluable. Intuitively,SC can

be thought of as a traditional precondition which ensures a certain behaviour of the execution of

a procedure provided they are satisfied. To formalize this, we propose to use the “computational

assertions” which are part of the assertion language [PBH00b] ofCiaoPP in order to express

that a certain predicate is evaluable under certain conditions. The following definition introduces

68

the notion of aneval annotationas (part of) a computational assertion. We useid to denote the

empty substitution, i.e.,∀ t , id(t) = t.

Definition 6.1 (eval annotations) Let p/n be an external predicate defined in moduleM . The

assertion:- trust comp p(X1,...,Xn) : SC + eval. in the code forM is a cor-

rect eval annotationfor predicatep/n in a logic programming systemSys if, ∀θ, the expression

θ(SC) is evaluable, and

if Exec(Sys, M, θ(SC)) = 〈id〉 thenθ(p(X1, ..., Xn)) is evaluable

One of the advantages of using this kind of assertion is that it makes it possible to deal with new

external predicates (e.g., written in other languages) in user programs or in the system libraries

without having to modify the partial evaluator itself. Also, the fact that the assertions are co-

located with the actual code defining the external predicate, i.e., in the moduleM (as opposed

to being in a large table inside the PD system) makes it more difficult for the assertion to be left

out of sync when a modification is made to the external predicate. We believe this to be very

important to the maintainability of a real application or system library.

Example 6.2 The computational assertions inCiaoPP for the builtin predicate≤ include,

among others, the following one:

:- trust comp A =< B : (arithexpr(A), arithexpr(B)) + eval.

which states that if predicate=</2 is called with both arguments instantiated to a term of type

arithexpr , then the call is evaluable. The typearithexpr corresponds to arithmetic ex-

pressions which, as expected, are built out of numbers and the usual arithmetic operators. The

typearithexpr is expressed in Ciao as a unary regular logic program. This allows using the

underlying Ciao system in order to effectively decide whether a term is anarithexpr or not.

The following definition extends our ASLD semantics by providing a new rule,external-derive,

for evaluating calls to external predicates. Given a sequence of substitutions〈θ1, . . . , θn〉, we

defineSubst(〈θ1, . . . , θn〉) = {θ1, . . . , θn}.

Definition 6.3 (external-derive) LetSys be a logic programming system. Let

G =← A1, . . . , AR, . . . , Ak

be a goal. LetS = 〈G AS〉 be a state and AS a stack. LetR be a computation rule such

that R(G) =AR with pred(AR) = p/n an external predicate from moduleM . Let C be a

renamed apart assertion:- trust comp p(X1,...,Xn) : SC + eval. Then,S ′ =

69

〈G′ AS ′〉 is external-derivedfrom S andC viaR in Sys if: 1) σ = mgu(AR, p(X1, ..., Xn)),

2) Exec(Sys, M, σ(SC)) = 〈id〉, 3) θ ∈ Subst(Exec(Sys, M, AR)), 4) G′ is the goal

θ(A1, . . . , AR−1, AR+1, . . . , Ak)

5)AS ′ = AS.

Notice that, since after computingExec(Sys, M, AR) the computation ofAR is finished, there

is no need to push (a copy of)AR into ASand the ancestor stack is not modified by theexternal-

derive rule. This rule can be nondeterministic if the substitution sequence for the selected atom

AR contains more than one element, i.e., the execution of external predicates is not restricted to

atoms which are deterministic. The fact thatAR is evaluable implies universal termination. This

in turn guarantees that in any ASLD tree, given a nodeS in which an external atom has been

selected for further resolution, only a finite number of descendants exist forS and they can be

obtained in finite time.

Example 6.4 Consider the assertion in Example 6.2 and the atoms5 and 7, which are of the

form 1=<1 , in the ASLD derivation of Fig. 8. Both atoms can be evaluated because

Exec(ciao, arithmetic, (arithexpr(1), arithexpr(1))) = 〈id〉

This is a sufficient condition forExec(ciao, arithmetic, (1 =< 1)) to be evaluable. Its execution

returnsExec(ciao, arithmetic, (1 =< 1)) = 〈id〉.

7 Experimental Results

We have implemented in our PD system the unfolding rule we propose, together with other

variations in order to evaluate the efficiency of our proposal. Our PD system has been in-

tegrated in a practical state of the art compiler which uses global analysis extensively: the

CiaoPP preprocessor [HPBLG03b]. For the tests, the whole system has been compiled us-

ing Ciao 1.11#275 [BCC+04], with the bytecode generation option. All of our experiments have

been performed on a Pentium 4 at 2.4GHz and 512MB RAM running GNU Linux RH9.0. The

Linux kernel used is 2.4.25.

The results in terms of execution time are presented in Table 13. The programs used as

benchmarks are indicated in theBenchcolumn. We have chosen a number of classical programs

for the analysis and PD of logic programs as benchmarks. In order to factor out the cost of

global control, we have used in our experiments initial queries which can be fully unfolded using

homeomorphic embedding with ancestors. The programadvisor3 is a variation of the advisor

70

Execution Times Relative Speed Up

Bench Relation Trees Stacks MEcce Relation Trees MEcce

advisor3 144 192 106 1240 1.36 1.81 11.70

nrev 80 mem 106490 15040 64970 ∞ 7.08 4.32

nrev 38 998 2804 806 4370 1.24 3.48 5.42

permute7 mem 5226 2800 34680 ∞ 1.87 12.39

permute6 476 614 336 3530 1.42 1.83 10.51

query 166 214 116 1290 1.43 1.84 11.12

qsort80 mem 98514 8970 71870 ∞ 10.98 8.01

qsort33 686 2432 454 4580 1.51 5.36 10.09

rev 80 984 1102 960 1400 1.02 1.15 1.46

zebra 1562 2276 994 186620 1.57 2.29 187.75

Overall mem 7.19 12.25

Table 13: Comparison of Proof Trees Vs.Ancestor Stacks (Execution Time)

program in the DPPD [Leu02] library. The programsquery andzebra are classical bench-

marks for program analysis. Programsqsort 80 andqsort 33 correspond to the quick-sort

program shown in the paper with pseudo-random lists of natural numbers of length 80 and 33

respectively.nrev 80 andnrev 38 correspond to the well-known naive reverse with lists of

80 and 38 natural numbers.rev 80 is a reverse program with linear complexity which uses an

accumulator. The initial query is, as before, a list of 80 natural numbers. Finally,permute is a

permutation program which uses a nondeterministic deletion predicate. It is partially evaluated

w.r.t. a list of 6 and 7 elements respectively. None ofadvisor3 , query , nor zebra can be

fully unfolded using homeomorphic embedding over the full sequence of selected atoms. Also,

nrev and, as seen in the running example,qsort are potentially not fully unfolded if the in-

put lists contain repetitions unless ancestors are considered. In the table, the following group

of columns show execution time of the unfolding process with the different implementations of

unfolding:

Relation We refer to an implementation where each atom in the resolvent is annotated with the

list of atoms which are in its ancestor relation, as done in the example in Figure 8.

Trees This column refers to the implementation where the ancestor relations of the different

atoms are organized in a proof tree.

Stacks The columnStacksrefers to our proposed implementation based on ancestor stacks.

71

MEcce We have also measured the time that it takes to process the same benchmarks using

Leuschel’s M-Ecce (modular Ecce [Leu02]) system, compiled with the same version of

Ciao and in the same machine.

The last set of columns compare the relative measures of the different approaches w.r.t. the

Stacksalgorithm. Finally, in the last row, labeledOverall, we summarize the results for the dif-

ferent benchmarks using a weighted mean, which places more importance on those benchmarks

with relatively larger unfolding figures. We use as weight for each program its actual unfolding

time. We believe that this weighted mean is more informative than the arithmetic mean, as, for

example, doubling the speed in which a large unfolding tree is computed is more relevant than

achieving this for small trees.

Let us explain the results in Table 13. Times are in milliseconds, measuringruntime, and

are computed as the arithmetic mean of five runs. Three entries in theRelation column contain

the value “mem”, instead of a number, to indicate that the PD system has run out of memory.

For each of these three cases, we have repeated the experiment with the largest possible initial

query thatRelation can handle in our system before running out of memory. This explains that

the three benchmarks are specialized w.r.t. two different initial queries. As it can be seen in

the column for relative speedups,Relation is quite efficient in time for those benchmarks it can

handle, though a bit slower than the one based on stacks. However, its memory consumption is

extremely high, which makes this implementation inadmissible in practice. Regarding column

Trees, the implementation based on proof trees has a good memory consumption but is slower

thanRelation due to the overhead of traversing the tree for retrieving the ancestors of each atom.

In comparison to M-ecce, the results provide evidence that our proof tree-based implementation

is indeed comparable to state of the art systems, since the execution times are similar in some

cases or even better in others. The last set of columns compares the relative execution times

of the different approaches w.r.t. theStacksalgorithm which is the fastest in all cases. Indeed,

Stacksis even faster than the implementation based on explicitly storing all ancestors of all atoms

(Relation) while having a memory consumption comparable to (and in fact, slightly better than)

the implementation based on proof trees. The actual speedup ranges from 1.15 in the case of

rev 80 to 10.98 in the case ofqsort 80 . This variation is due to the different shapes which

the proof trees can have for the (derivations in the) SLD tree. In the case ofrev , the speedup

is low since the SLD tree consists of a single derivation whose proof tree has a single branch.

Thus, in this case considering the ancestor sequence is indeed equivalent to considering the whole

sequence of selected atoms. But note that this only happens for binary clauses. It is also worth

noticing that the speedup achieved by theStacks implementation increases with the size of the

SLD tree, as can be seen in the three benchmarks which have been specialized w.r.t. different

72

queries. The overall resulting speedup of our proposed unfolding rule over other existing ones is

significant: over 7 times faster than our tree-based implementation.

We have also studied the memory required by the unfolding process (for lack of space details

are in [PAH05a]). As for the case of execution time, theStacks algorithm presents lower

consumption than any other algorithm for all programs studied. The memory required by

the Relation algorithm precludes it from its practical usage. Regarding theStacksalgorithm,

not only it is significantly faster than the implementation based on trees. Also it provides a

relatively important reduction (1.18 overall, computed again using a weighted mean) in memory

consumption overTrees, which already has a good memory usage.

Altogether, when the results of Table 13 and the memory figures are combined, they pro-

vide evidence that our proposed techniques allow significant speedups while at the same time

requiring somewhat less memory than tree based implementations and much better memory con-

sumptions than implementations where the ancestor relation is directly computed. This suggests

that our techniques are indeed effective and can contribute to making PD a practical tool.

As for future work, we plan to provide additional solutions for the problems involved in

non-leftmost unfolding for programs with extra logical predicates beyond those presented in the

literature [Leu94, EGM97, AHV02, LB02]. In particular, the intensive use of static analysis

techniques in this context seems particularly promising. In our case we plan to take advantage of

the fact that our PD system is integrated inCiaoPP which includes extensive program analysis

facilities.

73

Part IV

A Program Transformation for Backwards

Analysis of Logic Programs

1 Summary

The input to backwards analysis is a program together with properties that are required to hold

at given program points. The purpose of the analysis is to derive initial goals or pre-conditions

that guarantee that, when the program is executed, the given properties hold. The solution for

logic programs presented here is based on a transformation of the input program, which makes

explicit the dependencies of the given program points on the initial goals. The transformation is

derived from theresultantssemantics of logic programs. The transformed program is then anal-

ysed using a standard abstract interpretation. The required pre-conditions on initial goals can be

deduced from the analysis results without a further fixpoint computation. For the modes back-

wards analysis problem, this approach gives the same results as previous work, but requires only

a standard abstract interpretation framework and no special properties of the abstract domain.

2 Introduction

The input to backwards analysis is a program together with properties that are required to hold

at given program points. The purpose of the analysis is to derive initial goals or pre-conditions

that guarantee that, when the program is executed, the given properties hold. Discussion of the

motivation for backwards analysis is given by King and Lu [KL02b] and Genaim and Codish

[GC01]. For example, in a logic program, it is useful to know which instantiation modes of

goals will definitely not produce run-time instantiation errors caused calls to built-in predicates

with insufficiently instantiated arguments [KL02b], and which calls are sufficiently instantiated

to ensure termination [GC01]. By contrast, program analysis frameworks usually start with given

goals, and derive properties that hold at various program points, when those goals are executed.

An essential aspect of static analysis using abstractions or approximations is that the analysis

results aresafe. Backwards analysis algorithms have distinctive characteristics in this regard.

The final result, namely (a description of) the set of initial goals that guarantee the establishment

of the given properties, should be anunderapproximation of the actual set of goals that satisfy

the requirements. Analyses usually yield anover approximation, this has led investigators to

74

develop special abstract interpretations that give an under approximation.

In this paper we develop a method for using standard abstraction and over-approximation

techniques, and still obtain valid results for backwards analysis. This is achieved by analysing

not the original program, but rather a transformed program that makes explicit the dependencies

between the given properties and initial goals.

The method is presented in terms of (constraint) logic programs. The essential idea is to

transform a given programP into another program (or rather meta-program) whose semantics

is adependencyrelation〈A, B〉, whereB is a call at some specified program point, andA is an

atomic goal forP . Analysis of this transformed program yields an over-approximation of the set

of dependencies betweenA andB, which can then be examined to find goalsA that guarantee

some required property ofB.

2.1 Making Derivations Observable

The transformation to be presented in Section 3 makes explicit the dependencies of program

points on initial goals. The transformation can be viewed as the implementation of a more ex-

pressive semantics than usual. Standard semantics (such as least Herbrand models, c-semantics,

s-semantics, call and success patterns for atomic goals, and so on) do not record explicitly

the relationship between initial goals and specific program points. Theresultants semantics

[GLM96, GG94] provides a sufficiently expressive framework.

2.1.1 Resultants Semantics

A resultantis a formulaQ1 ← Q2 whereQ1, Q2 are conjunctions of atoms11. If Q1 is an atom

the resultant is aclause. Variables occurring inQ2 but not inQ1 are implicitly existentially

quantified. All other variables are free in the resultant.

Definition 2.1 OL(P)

Given a definite programP , the resultants semanticsOL(P) is the set of all resultants12

p(X̄)θ ← R such thatp(X̄) is a “most general” atom for some predicate inP , and← p(X̄), . . . ,←
R is an SLD- derivation (with a computation rule selecting the leftmost atom) ofP ∪{← p(X̄)}
with computed answerθ. Such a resultant represents a partial computation of the goalp(X̄). We

include the zero-length derivations of formp(X̄)← p(X̄).

11Standard terminology and notation for logic programming is used [Llo87a].
12Strictly speakingOL(P) contains equivalence classes of resultants with respect to variable renaming, rather

than resultants themselves.

75

From here on the leftmost computation rule is assumed and the subscriptL inOL(P) is omitted.

There is also a fixpoint definition ofO(P); abstract interpretation of the resultants and related

semantics was considered in [CLM01].

Other standard semantics can be derived as abstractions ofO(P). The subset of elements

p(X̄)θ ← R ∈ O(P) whereR = true is isomorphic to the s-semantics [BGLM94b], from which

in turn the c-semantics [Cla79] and the least Herbrand model [Llo87a] can be derived by com-

puting all instances and ground instances respectively. Calls generated by a given goal can also

be derived fromO(P). The set of calls that arise from a given atomic goalA in a leftmost SLD

derivation is given by the setcalls(P, A) = {B1θ | H ← B1, . . . , Bn ∈ O(P), mgu(A, H) = θ}.
We assume as usual thatA is standardised apart from the elements ofO(P).

2.2 Backwards Analysis Based on the Resultants Semantics

The possibility of using the resultants semantics for backwards analysis does not seem to have

been considered previously. The relationB ∈ calls(P, A) can be read backwards; givenB, A is

a goal that invokes a callB.

We can capture the essential information about the dependencies between calls and goals

using thedownwards closureof O(P), denotedO+(P). That is,O+(P) isO(P) extended with

all the instances obtained by substitutions for free variables, which are variables occurring in the

resultants’ heads. Then define a relationD, called thegoal dependencyrelation forP .

D(A, B) ≡ (A← B, . . . , Bn ∈ O+(P))

The goal dependency relation for a program is closely related to the binary clause semantics of

Codish and Taboch [CT99] (but is downwards closed with respect to the free variables).

Proposition 2.2 Let P be a program, andD be the goal dependency relation forP . Then (i)

if D(A, B) thenB ∈ calls(P, A), and (ii) for all goalsA and B ∈ calls(P, A), there exists a

substitutionσ such thatD(Aσ, B).

Proof 2.3 (i). If D(A, B) thenO(P) containsA′ ← B′
1, . . . , B

′
n such thatA← B, . . . , Bn is an

instance obtained by a substitution, sayθ, for the variables inA′. Hencemgu(A, A′) = θ and

B = B′
1θ, and soB ∈ calls(P, A) (ii) If B ∈ calls(P, A) thenO(P) containsA′ ← B′

1, . . . , B
′
n,

mgu(A, A′) = σ and B = B′
1σ. The instanceAσ ← B, . . . , B′

nσ is thus contained in the

downwards closureO+(P) and henceD(Aσ, B) holds.

Definition 2.4 Let P be a program andD be the goal dependency relation forP . LetΘ andΦ

be properties of atoms; that is, for every atomA, Θ(A) andΦ(A) are either true or false. We

76

say that acall-dependencyΘ → Φ follows fromD if there does not existD(A, B) such that

Θ(A) ∧ ¬Φ(B).

Definition 2.5 A propertyΘ is calleddownwards closedif, wheneverΘ(A) holds,Θ(Aϕ) holds

for all substitutionsϕ.

Proposition 2.6 Let P be a program, andD be the goal dependency relation forP . Suppose

Θ → Φ follows fromD, and thatΘ is a downwards closed property. Then for all goalsA, and

B ∈ calls(P, A), Θ(A)→ Φ(B).

Proof 2.7 LetA be a goal, such thatΘ(A) holds. For allB ∈ calls(P, A), we must establish that

Φ(B) holds. For each suchB there exists some instanceAσ such thatD(Aσ, B) by Proposition

2.2. Θ(Aσ) holds sinceΘ is a downwards closed property. HenceΦ(B) holds sinceΘ → Φ

follows fromD.

Proposition 2.6 establishes that we can use the goal dependency relation of a program in order

to establish dependencies between goals and calls, provided that the properties on goals are

downwards closed. The next proposition shows that we can use over-approximations of the goal

dependency relation to deduce dependencies.

Proposition 2.8 LetS be a goal dependency relation and letS ′ be a relation includingS. Then,

if the call-dependencyΘ→ Φ follows fromS ′, it also follows fromS.

Proof 2.9 Suppose thatΘ → Φ follows fromS ′. Then there does not existD(A, B) ∈ S ′ such

thatΘ(A)∧¬Φ(B). Hence such a pair does not exist inS either, and soΘ→ Φ follows fromS.

We can also explain how our approach achieves the “under-approximations” of the conditions on

initial goals discussed earlier. Given a call propertyΦ, supposeΘ → Φ follows from the goal

dependency relationD. In an over-approximation ofD, we will in general be able to establish

dependenciesΘ′ → Φ, such thatΘ′ → Θ. Put another way, the larger the approximation is,

the more chance there is of finding a counterexampleD(A, B) such thatΘ(A) ∧ ¬Φ(B) . The

greater the over-approximation, the more restrictive are the propertiesΘ′ for whichΘ′ → Φ can

be shown.

The backwards analysis method can now be summarised in the following way. The concrete

semantics on which we define properties is the goal dependency relationD for a given pro-

gram. Given a programP we define a transformed program containing a predicate whose logical

consequences contain the goal dependency relationD. Using abstract interpretation of the trans-

formed program, we compute approximations ofD, which can be used to establish dependencies

between goals and calls, as proved in Propositions 2.6 and 2.8.

77

We shall also define an even more refined transformed program, whose semantics is restricted

to a subset of the goal dependency relationD, containing tuplesD(A, B) whereB is a call

occurring at one of a specified program points.

Basing our approach on a downwards closed semantics allows a straightforward approach

to implementation, using for example the framework presented in [GBS95]. Our analyses are

based on the c-semantics [Cla79]. Given a programP , let C(P) be the c-semantics ofP , which

contains the set of atomic logical consequences ofP .

3 The Program Transformation

First, the resultants semantics is formulated as a program transformation.

3.1 Resultants Semantics by Program Transformation

A resultantA ← Q is represented as a meta-predicateR(A, Q). Let P be a program. For each

program clauseH ← D1, . . . , Dn (n > 0) in P we producen clauses.

R(H, (Q,D2, . . . , Dn))← R(D1, Q)

R(H, (Q,D3, . . . , Dn))← D1,R(D2, Q)

· · ·
R(H, Q)← D1, . . . , Dn−1,R(Dn, Q)

For each unit clauseH ← true produce a single clauseR(H, true) ← true. Finally, for each

predicatep we add a clauseR(p(x̄), p(x̄)) wherep(x̄) is a most general call top.

In the bodies of the clauses forR there are calls to the original program atomsD1, D2 and

so on, so it is assumed that the clauses forP are included in the transformed program. These

object program calls could have been writtenR(D1, true),R(D2, true) respectively sinceA is

in the minimal model of the program iff there is a ground instance of a resultantA ← true

in the resultants semantics of the program. If this modification were made, the transformation

corresponds closely to the fixpoint definition of the resultants semantics [GLM96].

We denote byResP the collection of clauses defining the predicateR as shown above, to-

gether withP itself.

Proposition 3.1 Let P be a program. Then for all resultantsA ← G ∈ O+(P), R(A, G) ∈
C(ResP).

Proof 3.2 (Outline). A derivation corresponding to a resultant can be represented as an AND-

OR proof tree. The proof is by induction on the depth of AND-OR trees.

78

Note thatC(ResP) contains more instances of resultants than doesO+(P). Specifically, local

variables in resultants are also instantiated, as well as head variables. The transformed program

thus represents an approximation of the dependency relation. In practice this is not a loss in

precision, since clearly no dependencies will be derived between local variables in resultants and

head variables.

3.2 From Resultants to Binary Clauses

The program above can be modified to yield (the downwards closure of) binary clauses [CT99].

Only the first call in the right-hand-side of the resultants is recorded, rather than the whole

resultant. A resultantA1 ← A2 in which bothA1 andA2 are atoms is called abinary clause. In

the binary clause semantics, a resultantA← B1, . . . , Bn is abstracted toA← B1.

The transformed program corresponding to the binary clauses is as follows. A meta-predicate

B(A1, A2) represents the binary resultantA1 ← A2.

B(H, Q)← B(D1, Q).

B(H, Q)← D1,B(D2, Q).

· · ·
B(H, Q)← D1, . . . , Dn−1,B(Dn, Q).

As before, we add a clauseB(p(x̄), p(x̄)) for each predicatep wherep(x̄) is a most general call to

p. Note that a unit clause inP produces no clauses forB. Let BinP be the transformed program

consisting ofP together with the clauses defining the predicateB as shown above.

Proposition 3.3 Let P be a program. Then for all resultantsA ← B1, . . . , Bn ∈ O+(P),

B(A, B1) ∈ C(BinP).

C(BinP) is an over approximation of the goal dependency relation forP . As was the case for the

resultants programResP , the downwards closure of local variables is included in the relationB
in C(BinP).

3.3 Transforming with Respect to Program Points

Next, a further simplification is made, when calls at specified program points are to be observed,

rather than all calls. A meta-predicateDep(A1, A2) is defined, whose meaning is that there is a

clauseA1 ← A2 in the binary clause semantics, andA2 is a call at one of the specified program

points to be observed.

Let H ← B1, . . . , Bj, . . . , Bn be a clause in a programP . Suppose that we wish to observe

calls toBj in this clause body, and determine some property of initial goals which establish some

79

property ofBj. In the semantics, only the binary clauses of the formA← Bj are to be observed:

no other calls other than those toBj need be recorded.

To achieve this, we simply modify the binary clause transformation shown above. Specif-

ically, instead of the clauses of formB(p(x̄), p(x̄)), we create base case clauses for the given

program points.

For instance, for the clauseH ← D1, . . . , Dj, . . . , Dn with one pointDj to be observed, the

following clauses forDep are generated.

Dep(H, Dj)← D1 . . . , Dj−1 Dep(H, Q)← Dep(D1, Q).

Dep(H, Q)← D1, Dep(D2, Q).

· · ·
Dep(H, Q)← D1, . . . , Dn−1, Dep(Dn, Q).

For each body atom to be observed, we add one clause similar to the one forDj above. We

can see that the only atoms that can appear in the second argument ofDep are instances ofDj.

Denote byDepP the transformed program consisting ofP together with the clauses definingDep

as shown above.

Proposition 3.4 Let P be a program, and{Dj1 , . . . , Djk
} be a set of body atoms from clauses

in P . Let DepP be the transformed program consisting ofP together with the clauses defining

Dep as shown above. Then for all resultantsA ← Dji
, . . . ∈ O+(P), whereDji

is an instance

of one of the specified atoms,Dep(A, Dji
) ∈ C(DepP).

The transformation can be refined (with respect to computational efficiency) by having a separate

Dep predicate corresponding to each predicate inP . That is, each occurrence ofDep(p(t̄), Q) in

the transformed program is replaced byDepp(t̄, Q).

The transformation can be varied by observing in the second argument ofDep not the actual

call, but simply one or more variables from the call. This is illustrated in the next example.

Example 3.5 Let P be the “naive reverse” program. Suppose the call that we wish to observe

is app(Ys,[X],Zs) in the recursive clause forrev as shown in Figure 11. For example, we

suppose that we require thatinteger(X) holds whenever this call is encountered. However,

the transformation is independent of the actual property. The transformed program, shown in

Figure 11, consists ofP together with the clauses definingdrev/2 anddapp/3 (representing

the meta-predicatesDeprev and Depapp). In place of the callapp(Ys,[X],Zs) in the final

argument, we observe only the variableX.

Next, we apply standard static analysis techniques to the transformed program.

80

drev([X|Xs],Zs,X) :-

rev(Xs,Ys).

drev([X|Xs],Zs,Q) :-

drev(Xs,Ys,Q).

drev([X|Xs],Zs,Q) :-

rev(Xs,Ys), dapp(Ys,[X],Zs,Q).

dapp([X|Xs],Ys,[X|Zs],Q) :-

dapp(Xs,Ys,Zs,Q).

rev([],[]).

rev([X|Xs],Zs) :-

rev(Xs,Ys),app(Ys,[X],Zs).

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :-

app(Xs,Ys,Zs).

Figure 11: Transformed Naive Reverse Program for Backwards Analysis

3.4 Analysis of the Transformed Programs

The transformed program can be input to an abstract interpretation framework. In the experi-

ments carried out so far, analysis was based on the c-semantics abstracted using pre-interpretations

[GBS95]. A pre-interpretation is a mapping from terms into a (finite) domainD, defined by a

pre-interpretation functionJ . For each n-ary function symbolf , J contains a functionDn → D,

written J(f(d1, . . . , dn)) = d for d1, . . . , dn, d ∈ D. A mappingα is defined inductively as

α(c) = d whereJ(c) = d, for 0-ary functionsc, andα(f(t1, . . . , tn)) = J(f(α(t1), . . . , α(tn)))

for terms with functions of arity greater than 0. An abstract “domain program” is generated

by abstract compilation, in the style introduced by Codish and Demoen [CD93]. A bottom-up

analysis of the domain program yields its c-semantics. LetP be a program andC(P) its minmal

model, which is identical to the c-semantics in this case. LetP J be the abstract domain pro-

gram for some pre-interpretationJ . The safety result is that for all atomsp(t1, . . . , tn) ∈ C(P),

p(α(t1), . . . , α(tn)) ∈ C(P J).

Example 3.6 We analyse the above example where we wish to establish the property dependency

of the propertyapp(Ys,[X],Zs) ↔integer(X) . A simple type domain could be used,

consisting of the typesint, listint, other. We construct an abstract “domain program” as

described in [GBS95], based on the pre-interpretation constructed from the program’s function

symbols and the given types.

[] −→ listint [int | other] −→ other [other | other] −→ other

[listint | other] −→ other [int | int] −→ other [listint | int] −→ other

[other | int] −→ other [int | listint] −→ listint [listint | listint] −→ other

[other | listint] −→ other

The pre-interpretation is encoded as a predicate→/2 corresponding to the pre-interpretation.

81

rev(X1,X2):-

[] →X1,[] →X2.

rev(X1,X2):-

rev(X3,X4),app(X4,X5,X2),

[X6|X3] →X1,[] →X7,[X6|X7] →X5.

app(X1,X2,X2):-

[] →X1.

app(X1,X2,X3):-

app(X4,X2,X5),[X6|X4] →X1,[X6|X5] →X3.

drev(X1,X2,X3):-

rev(X4,X5),[X3|X4] →X1.

drev(X1,X2,X3):-

rev(X4,X5),dapp(X5,X6,X2,X3),

[X7|X4] →X1,[] →X8,[X7|X8] →X6.

drev(X1,X2,X3):-

drev(X4,X5,X3),[X6|X4], →X1.

dapp(X1,X2,X3,X4):-

dapp(X5,X2,X6,X4),[X7|X5] →X1,[X7|X6] →X3.

Figure 12: Domain Program for Backwards Analysis of Naive Reverse

82

app(listint,X1,X1) rev(listint,listint) drev(listint,X1,int)

app(listint,int,other) rev(other,other) drev(other,X1,int)

app(other,other,other) drev(other,X1,listint)

app(other,int,other) drev(other,X,other)

app(other,listint,other)

Figure 13: Least model of program in Figure 12, over domain of simple types

The domain program is shown in Figure 12. Its least model over the pre-interpretation for the

domain of simple types is shown in Figure 13.

3.5 Interpretation of the Analysis Result

Examining the results in Figure 13, we see a number of abstract facts fordrev . (There are

no results fordapp derived since no call toapp affects the given program point.) The results

show that wheneverrev(X,Y) is called withX a list of integers, thenX is an integer at the

given program point. This is indicated by the fact thatdrev(listint, X1, int) is in the model

of the abstract program, and there are no other tuplesdrev(listint, X1, Y) whereY 6= int. By

contrast, there is a tupledrev(other, X1, int) but there is also a tupledrev(other, X1, listint), so

although goals of the formrev(other,Y) mightestablish the property, they are notguaranteed

to establish it.

In terms of the discussion in Section 2.2, the goal dependencyΘ → Φ follows from the

abstract relation, whereΘ(rev(X, Y)) is true if X is a list of integers, andΦ(app(Ys, [X], Zs)) is

true is this call arises from the specified program point, andX is an integer.

Example 3.7 Let P be thequicksortprogram, for which backwards analysis was considered in

[KL02b]. Suppose we wish to check the calls to the built-in predicates≥ and<. The intention

is that these predicates require their argument to be ground when called in order to prevent

run-time instantiation errors. The transformedquicksortprogram, which includes the original

clauses forquicksort, is shown in Figure 14.

3.6 Analysis of Quicksort

We perform groundness analysis on the program in Figure 14. A pre-interpretation over the do-

main elementsg andng (standing forgroundandnon-ground) is constructed. This is equivalent

83

qsort([],Ys,Ys).

qsort([X|Xs],Ys,Zs) :-

partition(Xs,X,Us,Vs),

qsort(Us,Ys,[X|Ws]),

qsort(Vs,Ws,Zs).

partition([],Z,[],[]).

partition([X|Xs],Z,Ys,[X|Zs]) :-

X ≥ Z, partition(Xs,Z,Ys,Zs).

partition([X|Xs],Z,[X|Ys],Zs) :-

X < Z, partition(Xs,Z,Ys,Zs).

dqsort([X|Xs],Ys,Zs,Q) :-

dpartition(Xs,X,Us,Vs,Q).

dqsort([X|Xs],Ys,Zs,Q) :-

partition(Xs,X,Us,Vs),

dqsort(Us,Ys,[X|Ws],Q).

dqsort([X|Xs],Ys,Zs,Q) :-

partition(Xs,X,Us,Vs),

qsort(Us,Ys,[X|Ws]),

dqsort(Us,Ys,[X|Ws],Q).

dpartition([X|Xs],Z,Ys,[X|Zs],X ≥ Z).

dpartition([X|Xs],Z,Ys,[X|Zs],Q) :-

X ≥ Z, dpartition(Xs,Z,Ys,Zs,Q).

dpartition([X|Xs],Z,[X|Ys],Zs,X <Z).

dpartition([X|Xs],Z,[X|Ys],Zs,Q) :-

X < Z, dpartition(Xs,Z,Ys,Zs,Q).

Figure 14: Transformed Quicksort Program for Backwards Analysis

to the POS boolean domain.

[] −→ g [g | g] −→ g [g | ng] −→ ng [ng | g] −→ ng [ng | ng] −→ ng

After generating the domain program, the least model is computed and is shown in Figure 15.

(When computing the minimal model we assign the success modesg≥g andg<g to the built-

ins).

Examining the results via the relationdqsort , we see that the only calls toqsort(X,Y,Z)

that guarantee that the required groundness propertiesg≥g andg<g are those in whichX is

ground. The argumentsY andZ are completely independent of the property. Fordpartition ,

note that a variableX1 occurs in both the final argument ofdpartition and in the second ar-

gument ofpartition . This variable can be instantiated byg or ng. Thus the second argument

of partition has to be ground to establishg≥g andg<g. In addition, the arguments of≥ and

< are ground if either the first argument ofpartition or the third and fourth are ground. These

are the same results reported by King and Lu [KL02b], summarised asX2 ∧ (X1 ∨ (X3 ∧X4))

in the notation of POS, whereX1, . . . , X4 are the arguments ofpartition .

3.7 Computing the Goal Conditions

For examples such as the ones discussed above, the required properties of the input goals that

guarantee the observed property were derived informally by examining the abstract tuples. We

84

partition (g,X1,g,g) qsort (g,X1,X1)

qsort (ng,ng,g)

qsort (ng,ng,ng)

dpartition (ng,X1,ng,X2,g<X1) dqsort (ng,X1,X2,ng≥ng)

dpartition (ng,X1,g,X2,g<X1) dqsort (ng,X1,X2,ng≥g)

dpartition (ng,X1,ng,X2,ng<X1) dqsort (ng,X1,X2,g≥ng)

dpartition (g,X1,ng,X2,g<X1) dqsort (ng,X1,X2,ng<ng)

dpartition (g,X1,g,X2,g<X1) dqsort (ng,X1,X2,ng<g)

dpartition (ng,X1,X2,ng,g≥X1) dqsort (ng,X1,X2,g<ng)

dpartition (ng,X1,X2,g,g≥X1) dqsort (g,X1,X2,g≥g)

dpartition (ng,X1,X2,ng,ng≥X1) dqsort (g,X1,X2,g<g)

dpartition (g,X1,X2,ng,g≥X1) dqsort (ng,X1,X2,g≥g)

dpartition (g,X1,X2,g,g≥X1) dqsort (ng,X1,X2,g<g)

Figure 15: Least model of program in Figure 14, over groundness domain

now explain how to do this systematically.

Let Dep(A, B) be the abstract dependency relation returned by the analysis, which is a finite

set of tuples. LetΦ be the property required in the call; that is, we seek callsB whereΦ(B)

is true. Consider the setS = {A | Dep(A, B) ∧ Φ(B)}. S is the set of calls thatpossibly

establishesΦ(B). Now consider candidate propertiesΘ that hold for all elements ofS. For each

such property, check whether there existsDep(A, B) such thatΘ(A) and¬Φ(B). If there is,

the candidate property is eliminated. For all other candidate properties, we have established that

Θ→ Φ follows from the abstract dependency relation.

We illustrate this process for thequicksort example. Consider the relationdqsort shown

in Figure 15. The required property is thatΦ(g ≥ g) andΦ(g < g) are true andΦ is false for all

other arguments of≥ and<. The tuples in the abstractdqsort relation in whichΦ holds are

the following.
dqsort (g,X1,X2,g≥g)

dqsort (g,X1,X2,g<g)

dqsort (ng,X1,X2,g≥g)

dqsort (ng,X1,X2,g<g)
A candidate property is then that the first argument ofqsort can be eitherg or ng, to

establish the required property. However, we can search the relation to find a counterexample to

the candidate property that the first argument isng, such as dqsort(ng,X1,X2,ng<g). However

85

we can find no counterexample to the property that the first argument isg. Hence we have

established thatqsort(g,X1,X2) → Φ.

3.8 The Relative Pseudo-Complement

Domains which possess a relative pseudo-complement allow a more direct method. Giacobazzi

and Scozzari [GS98] identified a property of abstract domains that allows analyses to be re-

versible. This property is central to the approach of King and Lu [KL02b, KL03]. The key prop-

erty is that the domain possesses arelative pseudo-complementoperator. We quote the definition

as given by King and Lu. LetD be an abstract domain with meet and join operationsu andt.

Let d1, d2 be elements ofD. The pseudo-complement ofd1 relative tod2, denotedd1 ⇒ d2 is the

greatest element whose meet withd1 is less thand2: that is,d1 ⇒ d2 = t{d ∈ D | du d1 v d2}.
To take Example 3.7 again, treatg andng astrue andfalse respectively. The set of abstract tu-

ples for say,dpartition in Figure 15, can be rewritten as the following boolean expression, in

the domain POS, which possesses a relative pseudo-complement operation (hereq(X, Y) means

X ≥ Y ∧X < Y).

dpartition(X1, X2, X3, X4, q(X5, X6)) ≡
(X2 ↔ X6) ∧ ((X̄1 ∧ X̄3 ∧X5) ∨ (X̄1 ∧X3 ∧X5) ∨ (X̄1 ∧ X̄3 ∧ X̄5)∨
(X1 ∧ X̄3 ∧X5) ∨ (X1 ∧X3 ∧X5) ∨ (X̄1 ∧ X̄4 ∧X5) ∨ (X̄1 ∧X4 ∧X5)∨
(X̄1 ∧ X̄4 ∧ X̄5) ∨ (X1 ∧ X̄4 ∧X5) ∨ (X1 ∧X4 ∧X5))

The pseudo-complement of the above boolean expression relative to the desired property

X5 ∧X6 givesX2 ∧ (X1 ∨ (X3 ∧X4)), which is equivalent to the result derived in Example 3.7,

and the same as that reported by King and Lu [KL02b] for this predicate.

4 Related Work

The most closely related work is that of King and Lu [KL02b, KL03], who describe a method

for backwards analysis of logic programs, and report results for the domain of ground and non-

ground modes. Their results have all been reproduced by the technique shown above, but a formal

proof of equivalence has not yet been constructed. Their approach requires the construction of

an abstract interpretation which under-approximates the concrete semantics. This requires the

definition of a universal projection operator, and requires a condensing domain possessing a

relative pseudo-complement operator. The fixpoint computation uses a greatest fixpoint rather

than the standard least fixpoint. Our approach appears to be more flexible in the sense that a

86

wide variety of domains can be used for the analysis, not only condensing domains. The relative

pseudo-complement, if it exists, can be used in our approach to extract the result from the abstract

program, but is not essential.

Mesnardet al. [Mes96, MN01] have also performed termination inference, which is a form

of backwards analysis.Their approach uses a greatest fixpoint, and in this respect seems to align

more with the approach of King and Lu.

Thebinary clausesemantics of Codish and Taboch [CT99] was used to make loops observ-

able, by deriving an explicit relationship between a calls and its successor calls. The transforma-

tion presented here can be targeted to observe any program points of interest, not only loops, but

the spirit of the approach is the same. In later work based on binary clause semantics, Genaim

and Codish [GC01] perform termination inference which involves backwards analysis. However,

they use the framework of King and Lu for the backwards analysis, rather than the binary clause

semantics.

Binary clause semantics is derived from the more general and expressive resultants semantics

[GLM96, GG94]. We do not know of any implemented applications of resultants semantics, apart

from the present work and that of [CT99, GC01], nor any previous suggestion that resultants

semantics could form the basis for backwards analysis.

The approach of transforming programs to realise non-standard semantics is also followed

in thequery-answertransformations, which include magic-set transformations and its relations

[DR94, BMSU86]. There, the aim is to simulate a top-down goal-directed computation, in a

bottom-up semantic framework. A related approach is advocated by Codish and Søndergaard

[CS02]. Different semantics for logic programs can be represented by meta-interpreters, which

are also written as logic programs. Codish and Genaim’s implementation of the binary semantics

[GC01] follows this style.

5 Conclusion

A method for backwards analysis of logic programs has been presented. Given a program, and

one or more specified body calls, a program transformation is performed. In the transformed

program, the dependencies between the selected calls and initial goals is made explicit. Anal-

ysis of the transformed program using abstract interpretation yields an over-approximation of

the dependency relation, and it was proved that dependencies could safely be derived from the

approximation.

In contrast to previous work on backwards analysis, our approach requires no special prop-

erties of the abstract domain, nor any non-standard operations such as universal projection, or

87

a greatest fixpoint computation. This is put forward as an advantage of our approach, since

implementations can be based on existing abstract interpretation tools.

Experimental results carried out so far indicate that this method is of similar complexity

to other reported work on backwards analysis, and gives equivalent precision at least over the

Boolean domain POS. A detailed analytical comparison is difficult due to the great differences

between the two approaches. It is indeed quite surprising that two such different algorithms yield

the same results in experiments carried out so far.

Our use of downwards closed semantics does not seem to be essential to our general ap-

proach, but does allow a simpler analysis and implementation.

88

Part V

Partial deduction of real-life CLP

programs containing impure predicates

using backwards analysis

1 Summary

Partial deduction is a program transformation technique which specializes a program w.r.t. its

static data. If the program containsimpurepredicates, it is known that unfolding steps for atoms

which are not leftmost is problematic. Impure predicates include those which may raise errors,

exceptions or side-effects, external predicates whose definition is not available, etc. Existing

proposals allow obtaining correct residual programs while still allowing non-leftmost unfolding

steps, but at the cost of accuracy: bindings and failure are not propagated backwards to predicates

which are classified as impure. Motivated by recent developments in thebackwardsanalysis of

logic programs, we propose a partial deduction algorithm which can handle impure features

and non-leftmost unfolding in a more accurate way. We outline by means of examples some

optimizations which are not feasible using existing partial deduction techniques. We argue that

our proposal goes beyond existing ones and is a) accurate, since the classification of pure vs

impure is done at the level of atoms instead of predicates, b) flexible, as the user can annotate

programs using assertions, which can guide the partial deduction process, and c) automatic, since

backwards analysis can be used to automatically infer the required assertions. Our approach has

been implemented in the context ofCiaoPP , the abstract interpretation-based preprocessor of

theCiao logic programming system.

2 Background

We assume some basic knowledge on the terminology of logic programming. See for ex-

ample [Llo87b] for details. Very briefly, anatom A is a syntactic construction of the form

p(t1, . . . , tn), wherep/n, with n ≥ 0, is a predicate symbol andt1, . . . , tn are terms. The

function pred applied to atomA, i.e., pred(A), returns the predicate symbolp/n for A. A

clauseis of the formH ← B where its headH is an atom and its bodyB is a conjunction

of atoms. Adefinite programis a finite set of clauses. Agoal (or query) is a conjunction of

89

atoms. The concept ofcomputation ruleis used to select an atom within a goal for its eval-

uation. The operational semantics of definite programs is based on derivations. Consider a

programP and a goalG of the form← A1, . . . , AR, . . . , Ak. Let R be a computation rule

such thatR(G) =AR. Let C = H ← B1, . . . , Bm be a renamed apart clause in program

P . Thenθ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak) is derived from G andC via R where

θ = mgu(AR, H). An SLD derivationfor P ∪ {G} consists of a possibly infinite sequence

G = G0, G1, G2, . . . of goals, a sequenceC1, C2, . . . of properly renamed apart clauses ofP , and

a sequenceθ1, θ2, . . . of mgus such that eachGi+1 is derived fromGi andCi+1 usingθi+1. A

derivation step can be non-deterministic whenAR unifies with several clauses inP , giving rise

to several possible SLD derivations for a given goal. Such SLD derivations can be organized in

SLD trees. A finite derivationG = G0, G1, G2, . . . , Gn is calledsuccessfulif Gn is empty. In

that caseθ = θ1θ2 . . . θn is called the computed answer for goalG. Such a derivation is called

failed if it is not possible to perform a derivation step withGn. We will also allowincomplete

derivations in which, though possible, no further resolution step is performed. We refer to SLD

resolution restricted to the case of leftmost unfolding as LD resolution.

Partial Deduction (PD) [LS91, Gal93] is a program transformation technique which special-

izes a program w.r.t. part of its known input data. Hence sometimes also known as program

specialization. Informally, given an input program and a set of atoms, the PD algorithm applies

an unfolding rulein order to compute finite (possibly incomplete) SLD trees for these atoms.

This process returns a set ofresultants(or residual rules), i.e., a residual program, associated to

the root-to-leaf derivations of these trees. Each unfolding step during partial deduction can be

conceptually divided into two steps. First, given a goal← A1, . . . , AR, . . . , Ak the computation

rule determines the selected atomAR. Second, it must be decided whether unfolding (or evalu-

ation) ofAR is profitable. It must be noted that the unfolding process requires the introduction

of this profitability test in order to guarantee that unfolding terminates. Also, unfolding usually

continues as long as some evidence is found that further unfolding will improve the quality of

the resultant program.

Most of real-life Prolog programs use predicates which are not defined in the program (mod-

ule) being developed. We will refer to such predicates asexternal. Examples of external predi-

cates are traditional “built-in” predicates such as arithmetic operations (e.g.,is/2 , <, =<, etc.),

basic input/output facilities, and predicates defined in libraries. We will also consider as external

predicates those defined in a different module, predicates written in another language, etc. The

trivial computation rule which always returns the leftmost atom in a goal is interesting in that

it avoids several correctness and efficiency issues in the context of PD of full Prolog programs.

Such issues are discussed in depth throughout this extended abstract. When a (leftmost) atomAR

is selected during PD, withpred(AR) = p/n being an external predicate, it may not be possible

90

to unfoldAR for several reasons. First, we may not have the code definingp/n and, even if we

have it, unfoldingAR may introduce in the residual program calls to predicates which are private

to the module where thep/n is defined. Also, it can be the case that the execution of atoms

for (external) predicates produces other outcomes such as side-effects, errors, and exceptions.

Note that this precludes the evaluation of such atoms to be performed at PD time, since those

effects need to be performed at run-time. In spite of this, if the executable code for the external

predicatep/n is available, and under certain conditions, it can be possible to fully evaluateAR

at specialization time. The notion ofevaluableatom [PAH05b] captures the requirements which

allow executing external predicates at PD time. Informally, an atom is evaluable if its execution

satisfies four conditions: 1) it universally terminates, 2) it does not produce side-effects, 3) it does

not issue errors and 4) it is binding insensitive. We useeval(E) to denote that the expressionE

is evaluable. We will discuss all these properties in depth in Section 4.

Since some of the above properties are not computable (e.g., termination is undecidable in the

general case), [PAH05b] proposes to determinesufficient conditions(SC) which aredecidable

and ensure that, if the atom satisfies such conditions, then it is evaluable. To formalize this,

“computationalassertions” –which are part of the assertion language [PBH00b] ofCiaoPP

[HPBLG05]– express that a certain predicate is evaluable under certain conditions.

The following definition recalls the notion of aneval annotationfrom [PAH05b] as (part

of) a computational assertion. We useExec(Sys, M, A) to denote that the execution of atom

A on a logic programming systemSys (e.g.,Ciao or Sicstus) in which the moduleM where

the external predicatep/n is defined has been loaded. In the case of logic programs, the value

of Exec(Sys, M, A) is a pair consisting of a possibly empty set of computed answers forM ∪
A together with and indicator of whether the computation terminates or (possibly) loops. In

particular we say thatExec(Sys, M, A) trivially succeeds, written astriv suc, when it returns a

set containing only the empty computed answer and a termination indicator.

Definition 2.1 (eval annotations) [PAH05b] Letp/n be an external predicate defined in mod-

ule M . The assertion “:- trust comp p(X1,...,Xn) : SC + eval. ” in the code

for M is a correcteval annotationfor predicatep/n in a logic programming systemSys if, ∀ A

s.t.A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and

2. Exec(Sys, M, θ(SC)) trivially succeeds⇒ eval(A).

91

3 Non-Leftmost Unfolding in Partial Deduction

It is well-known thatnon-leftmostunfolding is essential in partial deduction in some cases for

the satisfactory propagation of static information (see, e.g., [LB02]). Informally, given a goal

← A1, . . . , An, it can happen that the profitable criterion does not hold for the leftmost atomA1.

For example, ifA1 is an atom for an internal predicate, it might not be profitable to selectA1

because 1) unfoldingA1 endangers termination (for example,A1 may homeomorphically embed

[Leu98] some selected atom in its sequence of covering ancestors), or 2) the atomA1 unifies with

several clause heads (for example, some unfolding rules do not unfold non-deterministically for

atoms other than the initial query). IfA1 is an atom for an external predicate, it can happen that

A1 is not sufficiently instantiated so as to be executed at this moment. It may nevertheless be

profitable to unfold atoms other than the leftmost. Therefore, it can be interesting to define a

computation rule which is able to detect the above circumstances and “jump over” atoms whose

profitability criterion is not satisfied in order to proceed with the specialization of another atom

in the goal as long as it is correct.

3.1 Non-Leftmost Unfolding and Impure Predicates

For pure logic programs without builtins, non-leftmost unfolding is safe thanks to the indepen-

dence of the computation rule (see for example [Llo87b]).13 Unfortunately, non-leftmost unfold-

ing poses several problems in the context offull Prolog programs withimpurepredicates, where

such independence does not hold anymore.

For instance,var/1 is animpurepredicate since, under LD resolution,var(X),X=a suc-

ceeds with computed answerX/awhereasX=a,var(X) fails. They are not equivalent since the

independence of the computation rule does not hold. Thus, given the goal← var(X),X=a ,

if we allow the non-leftmost unfolding step which binds the variableX, the goal will fail, either

at specialization time or at run-time, whereas the initial goal succeeds in LD resolution. The

above problem was early detected [Sah93] and it is known as the problem ofbackpropagation of

bindings. In addition to this, it is also problematic thebackpropagation of failurein the presence

of impure predicates. There are atomsA for impure predicates such that← A, fail behaves

differently from← fail. For instance, we have to ensure that failure to the right of a call to

write does not prevent the generation of the residual call towrite nor its execution at runtime.

There are satisfactory solutions in the literature (see, e.g.,[Leu94, EGM97, AHV02, LB02])

which allow unfolding non-leftmost atoms while avoiding the backpropagation of bindings and

13Although safe, non-leftmost unfolding presents problems with pure programs too since it may introduce extra

backtracking over the atoms to the left. We are not concerned with such efficiency issues here.

92

pure

eval

predicate sideff free error free bind ins termin

var(X) true true nonvar(X) true

nonvar(X) true true nonvar(X) true

write(X) false true ground(X) true

assert(X) false nonvar(X) ground(X) true

A is B true arithexp(B) true true

A <= B true arithexp(A)∧arithexp(B) ground(A)∧ground(B) true

A >= B true arithexp(A)∧arithexp(B) ground(A)∧ground(B) true

ground(X) true true ground(X) true

A = B true true true true

append(A,B,C) true true true list(A)∨list(C)

Table 14: Purity conditions for some predefined predicates.

failure. Basically, the common idea is to represent explicitly the bindings by using unification

[Leu94] or residual case expressions [AHV02] rather than backpropagating them (and thus ap-

plying them onto leftmost atoms). This guarantees that the resulting program is correct, but it

definitely introduces some inaccuracy, since bindings (and failure) generated during unfolding of

non-leftmost atoms are hidden from atoms to the left of the selected one. It should be noted that

preventing backpropagation by introducing equalities can be a bad idea from the performance

point of view too (see, e.g., [VD88]). Thus, these solutions should be applied only when it is

really necessary, since backpropagation can 1) lead to early detection of failure, which may result

in important speedups and 2) make the profitability criterion for the leftmost atom to hold, which

may result in more aggressive unfolding. Thus, if backpropagation is disabled, some interesting

specializations can no longer be achieved.

It should also be noted that the backpropagation problem is very much related to that of

reorderingof atoms within a goal. Such reordering transformation can be of interest for achiev-

ing powerful optimizations like tupling, for effectively handling the conjunction of atoms like

conjunctive PD [DSGJ+99] and for the use of efficient stack-based unfolding rules [PAH05b].

93

4 From Impure Predicates to Impure Atoms

As mentioned in Section 3.1 above, existing techniques for PD allow the unfolding of non-

leftmost atoms by combining a classification of predicates into pure and impure with techniques

for avoiding backpropagation of binding and failure in the case of impure predicates. In order to

classify predicates as pure or impure, existing methods [LB02] are based on simple reachability

analysis. As soon as an impure predicatep can be reached from a predicateq, alsoq is considered

impure and backpropagation is not allowed. In other words, impurity is defined at the level

of predicates. Unfortunately, this notion of impurity quickly expands from a predicate to all

predicates which use it.

Our work improves on existing techniques by providing a more refined notion of impurity.

Rather than being defined at the level of predicates, we define purity at the level of individual

atoms. This is of interest since it is often the case that some atoms for a predicate are pure

whereas others are impure. As an example, the atomvar(X) is impure (binding sensitive),

whereas the atomvar(f(X)) is not (it is no longer binding sensitive). This allowsreducing

substantially the situations in which backpropagation has to be avoided. In the following, we

characterize three different classes of impurities: binding-sensitiveness, errors and side effects.

4.1 Binding-sensitiveness

A binding-sensitivepredicate is characterized by having a different success or failure behaviour

under leftmost execution if bindings are backpropagated onto it. Examples of binding-sensitive

predicates arevar/1, nonvar/1, atom/1, number/1, ground/1, However,

rather than considering all atoms for such predicates as binding-sensitive, we propose to define

binding sensitiveness at the atom level. The reason is that the fact that some atoms for the

predicates above are indeed binding sensitive does not necessarily mean that all atoms for such

predicates are. As we have seen above, the atomvar(f(X)) is certainly not binding sensitive

since its truth value is not changed by applying any substitution, i.e., the atom will not succeed

in any context.

Definition 4.1 (binding insensitive atom) An atomA isbinding insensitive, denotedbind ins(A),

if ∀ sequence of variables〈X1, . . . , Xk〉 s.t.Xi ∈ vars(A), i = 1, . . . , k and∀ sequence of terms

〈t1, . . . , tk〉, the goal← (X1 = t1, . . . , Xk = tk, A) succeeds in LD resolution with computed an-

swerσ iff the goal← (A, X1 = t1, . . . , Xk = tk) also succeeds in LD resolution with computed

answerσ.

Let us note that in the definition above we are only concerned with successful derivations, which

we aim at preserving. However, we are not in principle concerned about preserving infinite

94

failure. For example,← (A, X = t) and← (X = t, A) might have the same set of answers but a

different termination behaviour. In particular, the former might have an infinite derivation under

LD resolution while the second may finitely fail. More on this in Section 6.

If the atom contains no variables, binding insensitiveness trivially holds. The following

proposition directly follows from the definition of binding insensitive atom.

Proposition 4.2 LetA be a ground atom. ThenA is binding insensitive.

In spite of its simplicity, Proposition 4.2 can be quite useful in practice, since it may allow

considering a good number of atoms as binding insensitive even if the predicate is in principle

binding sensitive. All this without the need of sophisticated analyses.

4.2 Side-effects

Predicatesp for which θ(p(X1, ..., Xn)), fail andfail are not equivalent in LD resolution are

termed as “side-effects” in [Sah93].

Definition 4.3 (side-effect-free atom)An atomA is side-effect free, denotedsideff free(A), if

the run-time behaviour of← A, fail is equivalent to that of← fail.

Since side-effects have to be preserved in the residual program, we have to avoid any kind of

backpropagation which can anticipate failure and, therefore, hides the existing side-effect.

4.3 Run-Time Errors

There are some predicates whose call patterns are expected to be of certain type and/or instanti-

ation state. If an atomA does not correspond to the intended call pattern, the execution ofA will

issue somerun-time errors. Since we consider such run-time errors as part of the behaviour of

a program, we will require that partial deduction produces program whose behaviour w.r.t. run-

time errors is identical to that of the original program, i.e., run-time errors must not be introduced

to nor removed from the program.

For instance, the predefined predicateis/2 requires its second argument to be an arithmetic

expression. If that is detected not to be the case at run-time, an error is issued. Clearly, back-

propagation is dangerous in the context of atoms which may issue run-time errors, since it can

anticipate the failure of a call to the left ofis/2 (thus omitting the error), or it can make the

call to is/2 not to issue an error (if there is some free variable in the second argument which

gets instantiated to an arithmetic expression after backpropagation). The following definition

introduces the notion oferror freeatom.

95

Definition 4.4 (error-free atom) An atomA is error-free, denotederror free(A), if the execu-

tion ofA does not issue any error.

Somewhat surprising this condition for PD corresponds to that used in [KL02a] for computing

safe call patterns. Unfortunately, the way in which errors are issued can be implementation

dependent. Some systems may write error messages and continue execution, others may write

error messages and make the execution of the atom fail, others may halt the execution, others

may raise exceptions, etc. Though errors are often handled using side-effects, we will make a

distinction between side-effects and errors for two reasons. First, side-effects can be an expected

outcome of the execution, whereas run-time errors should not occur in successful executions.

Second, it is often the case that predicates which contain side-effects produce them for all (or

most of) atoms for such predicate. However, predicates which can generate run-time errors can

be guaranteed not to issue errors when certain preconditions about the call are satisfied, i.e., when

the atom is well-moded and well-typed. A practical implication of the above distinction is that

simple, reachability analysis will be used for propagating side-effects at the level of predicates,

whereas a more refined, atom-based classification will be used in the case of error-freeness.

4.4 Pure and Evaluable Atoms

Given the definitions of binding insensitive, side-effect free, and error free atoms, it is useful to

define aggregate properties which summarize the effect of such individual properties.

Definition 4.5 (pure atom) An atomA is pure, denotedpure(A), if

bind ins(A) ∧ error free(A) ∧ sideff free(A)

In order to provide a precise definition of evaluable atom, we need to introduce first the notion

of terminating atom.

Definition 4.6 (terminating atom) An atomA is terminating, denotedtermin(A), if the LD tree

for← A is finite.

The definition above is equivalent touniversal termination, i.e., the search for all solutions to the

atom can be performed in finite time.

Definition 4.7 (evaluable atom)An atomA isevaluable, denotedeval(A), if pure(A)∧termin(A).

96

The notion of evaluable atoms can be extended in a natural way to boolean expressions composed

of conjunction and disjunctions of atoms.

Table 14 presents sufficient conditions which guarantee that the atoms for the corresponding

predicates satisfy the purity properties discussed above, wherearithexp(X)stands forX being

an arithmetic expression. For example, unification is pure and evaluable, whereas the library

predicateappend/3 is pure but only evaluable if either the first or third argument is bound to a

list skeleton.

5 Assertions about Purity of Atoms

In this section, we provide the concrete syntax of the assertions we propose to use to state the

conditions under which atoms for a predicate are pure. Our assertions may includesufficient

conditions(SC) which aredecidableand ensure that, if the atom satisfies such conditions, then

it meets the property.

We say that the execution of an atomA for p/n on a logic programming systemSys (e.g.,

Ciao or Sicstus) in which the moduleM (where the external predicatep/n is defined) has been

loadedtrivially succeeds, denoted bytriv suc(Sys, M, A), when its execution terminates and

succeeds only once with the empty computed answer, that is, it performs no bindings.

Definition 5.1 (binding insensitive assertion)Let p/n be a predicate defined in moduleM .

The assertion “:- trust comp p(X1,...,Xn) : SC + bind ins. ” in the code for

M is a correctbinding insensitive assertionfor predicatep/n in a logic programming system

Sys if, ∀ A s.t.A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and

2. triv suc(Sys, M, θ(SC))⇒ bind ins(A).

The fourth column in Fig. 14 comprises the information stated in several binding insensitive as-

sertions for a few predefined builtins inCiao . In particular, this column represents the sufficient

conditions (SC in Def. 5.1) for the predicates in the first column (p(X1, ..., Xn) in Def. 5.1).

For instance, the predicateA is B is bind ins if ground(B).

Definition 5.2 (error-free assertion) Let p/n be a predicate defined in moduleM . The asser-

tion “ :- trust comp p(X1,...,Xn) : SC + error free. ” in the code forM is a

correct error-free assertionfor predicatep/n in a logic programming systemSys if, ∀ A s.t.

A = θ(p(X1, . . . , Xn)),

97

1. eval(θ(SC)), and

2. triv suc(Sys, M, θ(SC))⇒ error free(A).

For instance, the SC for predicateis/2 states that the second argument is an arithmetic expres-

sion. This condition guarantees error free calls to predicateis/2 .

Definition 5.3 (side-effect free assertion)Let p/n be an external predicate defined in module

M . The assertion:- trust comp p(X1,...,Xn) + sideff free. in the code forM is

a correctside-effect free assertionfor predicatep/n in a logic programming systemSys if, ∀θ,

the execution ofθ(p(X1, ..., Xn)) does not produce any side effect.

In contrast to the two previous assertions, side-effect assertions are unconditional, i.e., their SC

always takes the value true. For brevity, both in the text and in the implementation we omit the

SC from them.

Example 5.4 The following assertions are predefined inCiao for predicateground/1 :

:- trust comp ground(X) : true + error_free.

:- trust comp ground(X) + sideff_free.

:- trust comp ground(X) : ground(X) + bind_ins.

An important thing to note is that rather than using the overalleval assertions of [PAH05b],

we prefer to have separate assertions for each of the different properties required for an atom to

be evaluable. There are several reasons for this. On one hand, it will allow us the use of separate

analysis for inferring each of these properties (e.g., a simple reachability analysis is sufficient for

unconditional side-effects while more elaborated analysis tools are needed for error and bind-

ing sensitiveness). Also, it will allow reusing such assertions for other purposes different from

partial deduction. For instance, side-effect and error free assertions are also interesting for other

purposes (like, e.g., for program verification, for automatic parallelization) and are frequently

required by programmers separately. Finally,eval assertions include termination which is not

required for ensuring correctness w.r.t. computed answers (see Sect. 4).

6 Automatic Inference of Assertions by Backwards Analysis

Recent developments in backwards analysis of logic program [HKL04, Gal04, KL02a] have

pointed out novel applications in termination analysis and inference of call patterns which are

guaranteed not to produce any runtime error. In this section, we outline a new application of

98

Program

���

�
	Backwards

Analyzer
// Program w/

Assertions
//
�

�
	Partial

Deducer
// Partial
Evaluation

Predefined
Assertions

OO

Entry Goal

OO

Figure 16: Backwards Analysis in Non-leftmost Partial Deduction

backwards analysis for automatically inferring binding insensitive, error free and side-effect free

annotations which are useful to this purpose. Automatically figuring out when a substitution

can be safely backpropagated onto a call whose execution reaches an impure predicate has been

considered a difficult challenge and, to our knowledge, no accurate, satisfactory solution exists.

Fig. 16 illustrates the PD scheme based on assertions and backwards analysis that we have im-

plemented inCiaoPP . Initially, given aProgram and a set ofPredefined Assertions

for the external predicates, theBackwards Analyzer obtains aProgram w/ Assertions

which includeserror free, sideff free andbind ins assertions for all user predicates. Notice

that this is a goal-independent process which can be started in our system regardless PD being

performed or not. Afterwards, and independently from the backwards analysis process, the user

can decide to partially evaluate the program. To do so, an initial call has to be provided by means

of anEntry Goal . A Partial Deducer is executed from such program and entry with the only

consideration that, whenever a non-leftmost unfolding step needs to be performed, it will take

into account the information available in the generated (and predefined) assertions.

6.1 The Backwards Analyzer

Regarding the analyzer, we rely on the backwards analysis technique of [Gal04]. In this ap-

proach, the user first identifies a number of properties that are required to hold at body atoms

at specific program points. A meta-program is then automatically constructed, which captures

the dependencies between initial goals and the specified program points. This meta-program is

based on theresultantssemantics of logic programs, in which the meaning of a program is the set

of all pairsA, R whereA = A′θ and there is an LD derivation from← A′ to← R with computed

answerθ. An abstraction of the resultants semantics is then defined, containing all pairsAθ,B

such thatA = A′θ and there is an LD derivation from← A′ to← B, B1, . . . , Bm with computed

answerθ, whereB corresponds to one of the specified program points. The semantics is cap-

99

:- module(main_prog,[main/2],[]).

:- use_module(comp,[long_comp/2],[]).

main(X,Y) :- problem(X,Y), q(X).

problem(a,Y):- ground(Y),long_comp(a,Y).

problem(b,Y):- ground(Y),long_comp(b,Y).

q(a).

main prog

vvnnnn **TTTTT

comp term typing

Figure 17: Example Program

tured by a meta-program defining a meta-predicated/2 , such thatd(A,B) is a consequence of

the meta-program whenever a pairA, B as defined above exists. Standard abstract interpretation

techniques are applied to the meta-program; from the results of the analysis, conditions on initial

goals can be derived which guarantee that all the given properties hold whenever the specified

program points are reached.

As it appears in the figure, the analyzer starts from a program and an initial set of assertions

which state the properties of interest defined in Sect. 5 for the external predicates. Essentially,

the analysis algorithm propagates this information backwards in order to get the appropriate

assertions for all predicates. Let us illustrate the idea by means of an example.

Example 6.1 Consider the predefined assertions inCiao for predicateground/1 of Ex. 5.4

and theCiao program in Fig. 17 whose modular structure appears to the right.term typing

is the name of the module inCiao whereground/1 is defined (and thus where the assertions

for ground/1 are). Predicatelong comp/2 is externally defined in modulecomp where also

these predefined assertions for it are:

:- trust comp long_comp(X,Y) : true + error_free.

:- trust comp long_comp(X,Y) + sideff_free.

:- trust comp long_comp(X,Y) : ground(Y) + bind_ins.

From the program and the available assertions (forlong comp/2 andground/1), the back-

wards analyzer infers the following assertions forproblem/2 :

:- trust comp problem(X,Y) : true + error_free.

:- trust comp problem(X,Y) + sideff_free.

:- trust comp problem(X,Y) : ground(Y) + bind_ins.

100

Backwards analysis of the above program, with analysis over a simple domain with elements

ground and nonground , yields the following dependencies, represented using the meta-

predicated(A,B) described above.

d(problem(X,ground), long_comp(ground,ground)).

d(problem(X,nonground), long_comp(ground,nonground)).

These facts imply that whenever a callproblem(X,Y) is made whereY is ground, any subse-

quent assertions concerning binding insensitivity are satisfied; specifically, calls tolong comp(X,Y)

satisfy the sufficient condition for being binding insensitive, i.e.,ground(Y) . Hence the last as-

sertion (binding insensitivity) onproblem(X,Y) is established. The analysis results ford/2

also clearly establish first two assertions onproblem(X,Y) , with conditiontrue , since any

call to problem(X,Y) is guaranteed to satisfy all the (trivial) error-freeness and side-effect-

freeness assertions.

The last assertion indicates that calls performed toproblem(X,Y) with the second argu-

ment being ground are binding insensitive. This will be very useful information for the special-

izer.

6.2 The Partial Deducer

In our system, we use a standard partial deducer based on anobservable-preserving unfolding

rule defined as follows.

Definition 6.2 (observable-preserving unfolding rule)We say that an unfolding rule isobservable-

preservingif, for any goal← A1, . . . , AR, . . . , An, it always selects an atomAR for unfolding

such that all atomsA1, . . . , AR−1 are pure.

The fact that our system relies on the assertions for purity defined in Section 5 allow us to

ensure that our PD scheme iscorrect in the sense that the partially evaluated program preserves

the runtime behaviour (or observables) of the original one w.r.t. the predefined assertions. Of

course, when it is not possible to perform an observable preserving selection, our implementation

resorts to the usual solution which consists in hiding bindings and failure instead of performing

backpropagation.

Let us see an example.

Example 6.3 Consider a deterministic unfolding rule (i.e., an unfolding rule which cannot per-

form non-deterministic steps other than the first one). Given the program of Ex. 6.1 and the

entry goal: “ :- entry main(X,a). ” The unfolding rule performs an initial step and

101

derives the goalproblem(X,a),q(X) . Now, it cannot select the atomproblem(X,a) be-

cause its execution performs a non deterministic step. Fortunately, the assertions inferred for

problem(X,Y) in Ex. 6.1 allow us to jump over this atom and specialize firstq(X) . In par-

ticular, the first two assertions do not pose any restriction because their conditions aretrue ,

thus, there is no problem related to errors or side-effects. From the last assertion, we know that

the above call is binding insensitive, since the condition “ground(a) ” trivially succeeds.

If atomq(X) is evaluated first, then variableXgets instantiated toa. Now, the unfolding rule

already can select the deterministic atomproblem(a,a) and obtain the clause “main(a,a):-

long comp(a,a). ” as partially evaluated program. Note that the residual calllong comp(a,a)

is not evaluated at PD time because the given assertions for this external predicate do not guar-

antee that such evaluation terminates. The interesting point to note is that, without the use of

assertions, the derivation is stopped when the atomproblem(X,a) is selected because any

call to problem is considered potentially dangerous since its execution reaches a binding sen-

sitive predicate. The specialized program in this case is:

main(A,a) :- problem_1(A,a), q_1(A).

problem_1(a,a) :- long_comp(a,a).

problem_1(b,a) :- long_comp(b,a).

q_1(a).

Intuitively, this residual program is less efficient than our specialization since the execution

of a call such asmain(b,a) would immediately fail in our specialized program whereas it

would nevertheless execute the call tolong comp(b,a) in the above program which is bound

to fail afterwards.

As already mentioned in Section 4.2, our safety conditions for non-leftmost unfolding preserve

computed answers, but has the well-known implication that an infinite failure can be transformed

into a finite failure. However, in our framework this will only happen for predicates which do

not have side-effects, since non-leftmost unfolding is only allowed in the presence of pure atoms.

Nevertheless, our framework can be easily extended to preserve also infinite failure by including

termination as an additional property that non-leftmost unfolding has to take into account, i.e.

this implies requiring that all atoms to the left of the selected atom should be evaluable and not

only pure (see Section 4.4).

The following theorem states that our PD scheme iscorrect in the sense that the partially

evaluated program preserves the runtime behaviour of the original one w.r.t. the predefined as-

sertions. We assume a correct partial evaluator implementing the traditional PD algorithm (like

102

the one in [Gal93]) with the only modification of using a safe unfolding rule for performing

non-leftmost unfolding steps as defined in Def. 6.2.

Theorem 6.4 (correctness)Let AS be a set of correct assertions. LetP be a program andG

be a goal. LetPE be a partial evaluator based on a safe unfolding ruleU . Then,PE(P, G)

preserves the runtime behaviour ofP w.r.t. AS.

7 Conclusions

In the case of leftmost unfolding,eval assertions can be used in order to determine whether eval-

uation of atoms for external predicates can be fully evaluated at specialization time or not. Such

eval assertions should be present whenever possible for all library (including builtin) predicates.

Though the presence of such assertions is not required, as the lack of assertions is interpreted as

the predicate not being evaluable under any circumstances, the moreeval assertions are present

for external predicates, the more profitable partial deduction will be. Ideally,eval assertions can

be provided by the system developers and the user does not need to add anyeval assertion.

If non-leftmost unfolding is allowed, the following conditions are required: given a goal

← A1, . . . , AR, . . . , An, backpropagation of bindings and failure for the execution ofAR is only

allowed if pure(A1) ∧ . . . ∧ pure(AR−1). An important distinction w.r.t. the case of leftmost

unfolding above is thatpure assertions are of interest not only for external predicates but also for

internal, i.e., user-defined predicates. As already mentioned, the lack ofpure assertions must be

interpreted as the predicate not being pure, since impure atoms can be reached from them. Thus,

for non-leftmost unfolding to be able to “jump over” internal predicates, it is required that such

pure assertions are available not only for external predicates, but also for predicates internal to the

module. Such assertions can be manually added by the user or, much more interestingly, as our

system does, by backwards analysis. Indeed, we believe that manual introduction of assertions

about purity of goals is too much of a burden for the user. Therefore, accurate non-leftmost

unfolding becomes a realistic possibility only thanks to the availability of backwards analysis.

103

Part VI

Set-Sharing is not always redundant for

Pair-Sharing

1 Summary

Sharing among program variables is vital information when analyzing logic programs. This

information is often expressed either as sets or as pairs of program variables that (may) share.

That is, either as set-sharing or as pair-sharing. It has been recently argued that (a) set-sharing is

interesting not as an observable property in itself, but as an encoding for accurate pair-sharing,

and that (b) such an encoding is in fact redundant and can be significantly simplified without loss

of pair-sharing accuracy. We show that this is not the case when set-sharing is combined with

other kinds of information, such as the popular freeness and in the presence of certain builtins.

2 Introduction

Program analysis is the process of inferring at compile–time inferring information about run–

time properties of programs. In logic programs one of the most studied run-time properties is

sharingamong program variables. Two program variables share in a given run-time store if the

terms to which they are bound have at least one run-time variable in common. A set of program

variables share if they all have at least one run-time variable in common. The former kind of

sharing is calledpair-sharingwhile the latter is calledset-sharing. Any of the two may be target

observables of an analysis.

The importance (and hence popularity) of sharing comes from two sources. First, sharing

information is in itself vital for several applications such as exploitation of independent AND-

parallelism [JL92, BdlBH99], occurs check reduction [Pla84, Son86], and compile-time garbage

collection [MWB90]. And second, sharing can be used to accurately keep track of other inter-

esting run-time properties such asfreeness(a program variable is free in a run-time store if it is

either unbound or bound to a run-time variable).

Sharing analysis has therefore raised an enormous amount of interest in our research com-

munity, with many different analysis domains being proposed in the literature (see e.g., [Son86,

JL89, MH91, BC93, KS94]). Two of the best known sharing analysis domains areASub defined

by Søndergaard [Son86] andSharing defined by Jacobs and Langen [JL89, JL92]. The main

104

difference between these two domains is the way in which they represent sharing information:

while ASub keeps track ofpairsof program variables that possibly share,Sharing keeps track

of setsof program variables that possibly share certain variable occurrences.

These differences have subtle consequences. On the one hand, the pair sharing encoding

in ASub allows it to keep track of linear program variables (a program variable islinear in a

run-time store if it is bound to a term which does not have multiple occurrences of the same

run-time variable). Linearity information, in turn, allowsASub to improve the accuracy of the

abstract sharing operations. On the other hand, the set sharing encoding inSharing allows it

to represent several other kinds of information (such as groundness and sharing dependencies)

which also result in more accurate abstract operations. In fact, when combined with linearity,

Sharing is strictly more accurate thanASub. In practice, this accuracy improvement has

proved to be significant [CMB+95].

As a result,Sharing became the standard choice for sharing analysis, usually combined

with other kinds of information such as freeness or structural information, even though its com-

plexity can have significant impact on efficiency. However, the benefits of using set sharing for

sharing analysis have been recently questioned (see [CFW94, BHZ97, BHZ02]). As a paradigm

of the case, we cite the title of a paper by Bagnara, Hill, and Zaffanella: “Set-Sharing is redundant

for Pair-Sharing” [BHZ97, BHZ02]. In this paper, the authors state the following

Assumption: The goal of sharing analysis for logic programs is to detect whichpairs

of variables are definitely independent (namely they cannot be bound to terms having

one or more variables in common).

As far as we know this assumption is true. In the literature we can find no reference

to the “independence of asetof variables”. All the proposed applications of sharing

analysis (compile-time optimizations, occur-check reduction and so on) are based on

information about the independence ofpairsof variables.

Based on the above assumption, the authors focus on defining a simpler version ofSharing

which is however as precise as far as pair-sharing is concerned. This new simpler domain, re-

ferred to in the future asSSρ, is obtained by eliminating fromSharing information which is

considered “redundant” w.r.t. the pair-sharing property. This elimination allows further simplifi-

cation of the abstract operations inSSρ which can significantly improve its efficiency.

The popularity of theSharing domain combined with the great accuracy and efficiency

results obtained forSSρ (and the clarity with which the authors explained the intricacies of

the Sharing domain), ensured the paper had a significant impact on the community, with

many researchers now accepting that set-sharing is indeed redundant for pair-sharing (see, e.g.,

[KSH99, CSS99, LS00, LS02]).

105

The aim of this paper is to prove that this is not always the case. In particular, we will

show that: (1) There exist applications which use set-sharing analysis (combined with freeness)

to infer properties other than sharing between pairs of variables; and (2) When combined with

information capable of distinguishing among the different variable occurrences represented by

Sharing , this domain can yield results not obtainable withSSρ, including better pair-sharing.

Such a combination is found in at least two common situations: whenSharing is used as a

carrier for other analyses (such as freeness), and when the analysis process is improved with

extra information (such as in-lined knowledge of the semantics of some predicates, for example

builtins). Possible approaches to combineSSρ with other kinds of information without losing

accuracy are also suggested.

We believe our insights will contribute to the better understanding of an abstract domain

which, while being one of the most popular and more intensively studied abstract domains ever

defined, remains somewhat misunderstood.

3 Preliminaries

Let us start by introducing our notation as well as the basics of theSharing domain [JL89,

JL92]. In doing this we will mainly follow the extremely clear summary presented in [BHZ97].

Given a setS, ℘(S) denotes the powerset ofS, and℘f (S) denotes the set of all the finite subsets

of S. V denotes a denumerable set of variables.V ar ∈ ℘f (V) denotes a finite set of variables,

called thevariables of interest(e.g., the variables of a program). The set of variables in a syntactic

objecto is denotedvars(o). TV is the set of first order terms overV. A substitutionθ is a mapping

θ : V → TV , whose application to variablex is denoted byxθ. Substitutions are denoted by the

set of their bindings:θ = {x 7→ xθ | xθ 6= x}. We define the image of a substitutionθ as the set

img(θ)
def
=

⋃
{vars(xθ) | x ∈ V ar}.

The Sharing domain is formally defined as follows. LetSH
def
= ℘(SG), whereSG

def
=

{S ⊆ V ar | S 6= ∅}. Each elementS ∈ SG is called asharing set. We will write sharing sets

as strings with the variables that belong to it, e.g., sharing set{x, y, z} will be denotedxyz. A

sharing set of size 2 is called asharing pair.

The functionocc(θ, v) obtains a sharing set that represents the occurrence of variablev

through the variables of interest as per the substitutionθ.

occ(θ, v)
def
= {x ∈ V ar | v ∈ vars(xθ)}

The abstraction of a substitutionθ is obtained by computing all relevant sharing sets:

α(θ)
def
= {occ(θ, v) | v ∈ img(θ)}.

Abstract elementsh ∈ SH approximates substitutionθ iff α(θ) ⊆ sh. Conversely, the

106

concretization ofsh ∈ SH is the set of all substitutions approximated bysh. Projection over a

setV ⊆ V ar is given by

proj(sh, V)
def
= {S ∩ V | S ∈ sh[V]}

where, for any syntactic objecto and abstractionsh ∈ SH,

sh[o]
def
= {S ∈ sh | S ∩ vars(o) 6= ∅}.

The pairwise (or binary) union of two abstractions is defined as:

sh1] sh2
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2}.

The closure under (or star) union of an abstract elementsh is defined as the least setsh∗ that

satisfies:

sh∗ = sh ∪ {S1 ∪ S2 | S1, S2 ∈ sh∗}.

Abstract unification for a substitutionθ is given by extending to the set of bindings ofθ the

following abstract unification operation for a binding:

amgu(sh, x 7→ t) = (sh \ (sh[x] ∪ sh[t])) ∪ (sh[x]∗] sh[t]∗).

The set-sharing lattice is thus given by the set

SS
def
= {(sh, U)|sh ∈ SH,U ⊆ V ar,∀S ∈ sh : S ⊆ U} ∪ {⊥,>}

which is a complete lattice ordered by≤SS defined as follows. For elements{d, (sh1, U1), (sh2, U2)} ⊆
SS:

⊥ ≤SS d

d ≤SS >
(sh1, U1) ≤SS (sh2, U2) iff U1 = U2 andsh1 ⊆ sh2.

The lifting of∪, proj, andamgu defined overSH to define the abstract operationst, Proj,

andAmgu overSS is straightforward.

Example 1.Let V ar = {x, y, z} be the set of variables of interest and consider the substitutions

θ1 = {x 7→ f(u, u, v), y 7→ g(u, v, w, o), z 7→ h(u)} andθ2 = {x 7→ u, y 7→ u, z 7→ 1}. Then,

sh1 = α(θ1) = {xy, xyz, y}, where sharing setxyz represents the occurrence of variableu in

x, y andz, sharing setxy represents the occurrence of variablev in x andy, and sharing sety

represents the occurrence of variablesw ando in y. Similarly, we have thatsh2 = α(θ2) = {xy}
where sharing setxy represents the occurrence of variableu in x andy. Let U = V ar. We

then have that(sh2, U) ≤SS (sh1, U) and thus(sh1, U) t (sh2, U) = (sh1, U). Finally, let

V = {x, y}, Proj((sh1, U), V) = ({xy, y}, V). Note that the sharing setxy in the projected

abstraction represents not only the occurrence of variableu but also that ofv. �

107

4 Eliminating redundancy from Sharing

One of the main insights in [CFW94, BHZ97] regarding theSharing domain is the detection

of sets which are redundant (and can thus be safely eliminated or not produced) as far as pair-

sharing is concerned. Given an elementsh of SH, sharing setS ∈ sh is redundantw.r.t. pair

sharing if and only if all its sharing pairs can be extracted from other subsets ofS which also

appear insh. Formally, letpairs(S)
def
= {xy | x, y ∈ S, x 6= y}. Then,S is redundant iff

pairs(S) =
⋃
{pairs(T) | T ∈ sh, T ⊂ S}

Example 2.Consider the abstractionsh = {xy, xz, yz, xyz} defined overV ar = {x, y, z}. It is

easy to see that setxyz ∈ sh is redundant w.r.t. pair sharing.�
Based on this insight, a closure operator,ρ : SH → SH, is defined in [BHZ97] to add to

eachsh ∈ SH the set of elements which are redundant forsh. Formally:

ρ(sh)
def
= {S ∈ SG | ∀x ∈ S : S ∈ sh[x]∗}.

This function is then used to define a new domainSSρ which is the quotient ofSS w.r.t. the

new equivalence relation induced byρ: elementsd1 andd2 are equivalent iffρ(d1) = ρ(d2). The

authors prove that (a) the addition of redundant elements does not cause any precision loss as far

as pair-sharing is concerned, i.e., thatSSρ is as good asSS at representing pair-sharing, and that

(b) ρ is a congruence w.r.t. the abstract operationsAmgu, t andProj. Thus, they conclude that

SSρ is as good asSS also for propagating pair-sharing through the analysis process.

The above insight is used by [BHZ97] to perform two major changes to theSharing do-

main. Firstly, redundant elements can be eliminated (although experimental results suggest that

this is not always advantageous). And secondly, addition of redundant elements can be avoided

by replacing the star union with the binary union operation without loss of accuracy. This is a

very important change since it can have significant impact on efficiency by simplifying one of

the most expensive abstract operations inSharing .

The results obtained in [BHZ97] are indeed interesting and can be very useful in some con-

texts. However, there are situations in which the lack of redundant sets can lead to loss of

accuracy w.r.t. pair sharing, and even incorrect results if the full expressive power ofSharing

is assumed to be still present inSSρ.

Example 3. Consider the abstractionssh1 = {x, y, z, xy, xz, yz} andsh2 = {x, y, z, xy, xz, yz, xyz}
defined overV ar = {x, y, z}, and note thatρ(sh1) = sh2, i.e., the sharing setxyz is redundant

for sh2.

108

Consider the Prolog builtinx == y which succeeds if program variablesx andy are bound

at run-time to identical terms. A sophisticated implementation of theSharing domain (such as

that of [BdlBH94]) could take advantage of this information and eliminate every single sharing

set in which the program variablesx andy appear but not together (since all variables which

occur inx must also occur iny, and vice versa). Thus, correct and precise abstractions of a

situation in which the builtin was successfully executed in stores represented bysh1 andsh2,

will becomesh′1 = {z, xy} andsh′2 = {z, xy, xyz}, respectively. However, it is easy to see that

pairs(sh′1) 6= pairs(sh′2), sincez is definitely independent of bothx andy in sh′1 while it might

still share with them insh′2. �
The above example shows thatSharing can make use of the information provided by other

sources in order to improve the pair-sharing accuracy of its elements, while the same action

might lead to incorrect results for elements ofSSρ if redundant sharing sets had actually been

eliminated from those elements. As we will see in the following sections, this can happen when

using information coming not only from builtins, but also from other domains (such as freeness)

which are usually combined with set-sharing. Furthermore, useful information other than sharing

can be inferred from combinations ofSharing and other sources which are not possible with

SSρ.

5 When redundant sets are no longer redundant

The problem illustrated in the previous example is rooted in the always surprising complexity of

the information encoded by elements ofSH. As indicated by [BHZ97, BHZ02], elements ofSH

can encode definite groundness (e.g.,x is ground), groundness dependencies (e.g., ifx becomes

ground theny is ground), and sharing dependencies.14 However, as we will see in this section,

these are only by-products of the main property represented by elements ofSH: the different

variable occurrences shared by each set of program variables.

The groundness of variablex, and the sharing independence between variablesx andy (i.e.,

the fact thatx andy are known not to share) can be expressed by an elementsh ∈ SH as follows:

ground(x) iff ∀S ∈ sh : x 6∈ S

indep(x, y) iff ∀S ∈ sh : xy 6⊆ S

whereground(x) represents the fact that variablex is ground in all substitutions abstracted by

sh, andindep(x, y) represents the fact that variablesx andy do not share in any substitution

abstracted bysh ∈ SH.

14The fact that it also encodes independence (e.g.,x does not share withy) was probably obviated because this is

also encoded by pair-sharing.

109

Groundness dependencies insh ∈ SH can be easily obtained from the above statements in

the following way. Let us assume thatx is known to be ground. We can then modifysh by

enforcing∀S ∈ sh : x 6∈ S to hold, i.e., by eliminating everyS ∈ sh such thatx ∈ S. If we

can then prove that the same statement holds for some other variabley, we would then know that

the implicationground(x) → ground(y) holds forsh. This simply illustrates the well known

result thatSharing subsumes the groundness dependency domainDef . The same method

can be used for obtaining other dependencies for elementssh of SH. The following were used

in [BdlBH99] for simplifying parallelization tests:

1. ground(x1) ∧ . . . ∧ ground(xn)→ ground(y) if

∀S ∈ sh : if y ∈ S then{x1, . . . , xn} ∩ S 6= ∅

2. ground(x1) ∧ . . . ∧ ground(xn)→ indep(y, z) if

∀S ∈ sh : if {y, z} ⊆ S then{x1, . . . , xn} ∩ S 6= ∅

3. indep(x1, y1) ∧ . . . ∧ indep(xn, yn)→ ground(z) if

∀S ∈ sh : if z ∈ S then∃j ∈ [1, n], {xj, yj} ⊆ S

4. indep(x1, y1) ∧ . . . ∧ indep(xn, yn)→ indep(w, z) if

∀S ∈ sh : if {w, z} ⊆ S then∃j ∈ [1, n], {xj, yj} ⊆ S

Let us now characterize in a similar way the (non-symmetrical) propertycovers(x, y) ex-

pressed by an elementsh ∈ SH as follows:

covers(x, y) iff ∀S ∈ sh : if y ∈ S thenx ∈ S

wherecovers(x, y) indicates that variabley shares all its variables with variablex and, therefore,

every sharing set in whichy appears must also containx. We can now derive other sharing

dependencies for anysh ∈ SH, such as:

5. covers(x1, y1) ∧ . . . ∧ covers(xn, yn)→ ground(z) if

∀S ∈ sh : if z ∈ S then∃j ∈ [1, n], yj ∈ S, xj 6∈ S

6. covers(x1, y1) ∧ . . . ∧ covers(xn, yn)→ indep(w, z) if

∀S ∈ sh : if {w, z} ⊆ S then∃j ∈ [1, n], yj ∈ S, xj 6∈ S

7. covers(x1, y1) ∧ . . . ∧ covers(xn, yn)→ covers(w, z) if

∀S ∈ sh : if z ∈ S, w 6∈ S then∃j ∈ [1, n], yj ∈ S, xj 6∈ S

110

It is important to note that while the expressions with onlyground(x) andindep(x, y) ele-

ments can also hold for any element ofSSρ, this is not true for the expressions with coverage

information.

Example 4.Consider again the abstractions introduced by Example 3,sh1 = {x, y, z, xy, xz, yz}
andsh2 = {x, y, z, xy, xz, yz, xyz} which are defined overV ar = {x, y, z}. Let us assume

that both abstractions belong toSharing . While implicationcovers(x, y) ∧ covers(y, x) →
indep(x, z) holds forsh1, it does not hold forsh2. If we now consider theSSρ domain, both

abstractions would be represented by the elementsh1. Therefore, the implication should not hold

for sh1 in SSρ. �
In order to understand why, consider the differences between the expressionsground(x) iff

∀S ∈ sh : x 6∈ S, andindep(x, y) iff ∀S ∈ sh : xy 6⊆ S, and the expressioncovers(x, y)

iff ∀S ∈ sh : if y ∈ S thenx ∈ S. While in the first two the sharing sets which violate the

right hand side of the expressions would always include the redundant set (if any), those which

violate the last expression would not. Thus, to assume coverage might result in the subset of

a redundant set being eliminated without the redundant set itself being eliminated. In this way

sharing sets which are considered redundant at some point, might become non redundant once

coverage information is added and, therefore, their elimination (or non generation) can lead to

incorrect information. For example, consider the substitutionsh = {xyz, xy, xz, yz}. While the

problematic sets forground(x) andindep(x, y) in sh arexyz, xy, xz andxyz, xy, respectively,

the only one forcovers(x, y) is yz. But onceyz is removed fromsh, xyz is no longer redundant:

it is the only sharing set able (whenx coversy) to represent the possible sharing betweenx and

y.

As a result, sharing sets initially redundant for pair-sharing can prove useful whenever com-

bined with other sources of information (coming from builtins, other analysis domains, etc.)

capable of distinguishing between the variable occurrences represented by the redundant sharing

sets and the variable occurrences represented by their subsets, so that, once the extra information

is added, a sharing set previously identified as redundant will no longer be so.

6 Combining Sharing with freeness

In this section we will use the popular combination ofSharing with freeness information to

illustrate two points. First, that very common sources of information (such as freeness) can

distinguish between variable occurrences, an ability which can be exploited in ways that can

make a redundant set no longer redundant. Thus, it can be advantageous not to eliminate them.

And second, that the goal of sharing analysis for logic programs is not only to detect which pairs

111

of variables are definitely independent, but also to detect (or propagate) many other kinds of

information.

In order to illustrate these points we will use the notion ofactivesharing sets [CH94]. A

sharing setS ∈ sh is said to beactive for storec ∈ γ(sh) iff S ∈ α(c). All sharing sets

{S1, · · · , Sn} ⊆ sh are said to be activeat the same timeif there exists a storec ∈ γ(sh) such

that∀1 ≤ i ≤ n, Si ∈ α(c). If only the information inSharing is taken into account, then all

sharing sets in anysh ∈ SH can be active at the same time.

Example 5.Consider the set-sharing abstractionsh = {x, xy, yz} defined overV ar = {x, y, z}.
All sets insh can be active at the same time since there exists a store, sayθ = {x = f(u, v), y =

f(v, w), z = f(w)}, such thatα(θ) = sh. In particular,u is the variable represented by sharing

setx, v is represented byxy, andw is represented byyz. �
However, this is not always the case when considering information outside the scope of

Sharing . In some cases, two or more sharing sets cannot be active at the same time since,

thanks to some extra information, we can determine that these sharing sets must represent the

same variable(s) occurrence.

Example 6.Consider again the set-sharing abstractionsh = {x, xy, yz} defined overV ar =

{x, y, z}, and let us now assumey and z are known to be free variables. As pointed out in

[CH94], since each sharing set in an abstraction represents a different occurrence of one or more

variables, no two sharing sets containing the same free variable can be active at the same time

(the same variable cannot be a different occurrence). In our example,xy andyz cannot be active

at the same time since there is no concrete store with bothy andz free, such that both share a

variable not shared with anyone else (sharing setyz) andy also shares a different variable with

x (sharing setxy). �
Knowing which sharing sets in abstractionsh can be active at the same time according to

Ω is useful because we can use thois notion to dividesh into {sh1, · · · , shn} such thatsh =

sh1 ∪ . . . ∪ shn, ∀i, 1 ≤ i ≤ n all sets inshi can be active at the same time, and¬∃j, 1 ≤ j ≤
n : j 6= i, shj ⊆ shi.

Example 7.Consider again the abstractionsh = {x, xy, yz} defined overV ar = {x, y, z}. If

y andz are known to be free variables,sh can be divided into two different sets,{x, xy} and

{x, yz}, whose sharing sets can all be active at the same time. The former represents the concrete

stores in whichx definitely shares a variable withy (which is actually known to bey itself), and

x might also have some variable which is not shared with anyone else. The latter represents the

stores in which the free variablesy andz are aliased andx might have some variables which are

not shared with anyone else.�
Note that the differentshi together withΩ describe disjoints sets of concrete stores. Fur-

112

thermore, even though(
⋃

i γ(shi)) ∩ γ(Ω) is still equivalent toγ(sh) ∩ γ(Ω) (which justifies

the correctness of dividingsh into the differentshi in the presence ofΩ), it is often the case

that
⋃

i γ(shi) ⊂ γ(sh), as it happens in the above example. As a result, it is generally easier

to understand the concretization ofsh andΩ by means of the concretization of eachshi andΩ.

Let us use this to show how the direct-product domain [CC79] ofSharing and freeness can be

used to improve pair-sharing.

Example 8.Consider the abstractionsh = {xy, xz, yz, xyz} defined over program variablesx, y

andz. If we knew thatx, y, andz are free we could dividesh into the setssh1 = {xy}, sh2 =

{xz}, sh3 = {yz} andsh4 = {xyz}. Now, sh1 represents stores in whichz is known to be

ground, which is not true according to our freeness information. Thus, its sharing sets (xy) can

be eliminated fromsh. The same reasoning applies tosh2 andsh3. Thus,sh can be simplified

to {xyz} indicating that all variables definitely share (which of course also implies their definite

pair-sharing dependencies). Note that if the setxyz did not belong to the abstraction, the con-

cretization ofsh in the context of freeness would be empty (indicating a failure in the program).

�
The above example shows how the direct-product domain ofSSρ and freeness might be

incorrect if the full power of set-sharing is assumed to be still present inSSρ. This occurs

whenever a redundant set is known to contain a free variable, since it would then appear in an

shi without one or more of its subsets. Thus, the set would no longer be redundant forshi. A

simple solution would be to behave as if redundant sets containing free variables were present in

theSSρ abstractions even if they do not appear explicitly in them. It would be easy to think that

such solution does not lose accuracy w.r.t. pair sharing. This is, however, not true.

Example 9. Consider the set-sharing abstractionsh = {xy, xz, yz} defined overV ar =

{x, y, z}. If we knew thaty andz were free, we could dividesh into the setssh1 = {xy, xz} and

sh2 = {yz}, respectively representing the concrete stores in whichx shares withy andz, which

do not share among them, and those in whichx does not share with anyone andy shares with

z. Note that these two situations are mutually exclusive. This allow us to prove (among others)

that:

indep(y, z) iff ¬indep(x, y) and indep(y, z) iff ¬indep(x, z).

This is crucial pair-sharing information (e.g., for automatic AND-parallelization, as we will see

in the next section). If the redundant setxyz could have been eliminated fromsh, the above

expression might not hold, since the variables might then be aliased to the same free variable,

thus capturing also the case in which all of them are definitely dependent of each other.�
Let us now show how combiningSharing and freeness information, as done for example in

Sharing+Freeness [MH91], yields interesting kinds of information other than the sharing

113

itself, information which is the goal of such analyses for several applications.

Example 10. Consider again the set-sharing abstractionsh = {xy, xz, yz} defined overV ar =

{x, y, z}. As mentioned above, if we knew thaty andz were free, we could dividesh into the

setssh1 = {xy, xz} andsh2 = {yz}. The concrete stores represented by these sets can in fact

be described much more accurately than we did in the previous example: Whilesh1 represents

stores in whichx is bound to a term with two (and only two) non-aliased free variables (y and

z), sh2 represents those stores in whichx is ground, andy andz are free aliased variables. As a

result, we can be suresh only represents stores in whichx is bound to a non-variable term.�

Definite information about non-variable bindings is used, for example, to determine whether

dynamic scheduled goals waiting for a program variable to become non-variable can be woken

up, as performed by [dlBMS95]. However, such information cannot be obtained if redundant

sets containing free variables are eliminated.

Example 11.Consider the set-sharing abstractionssh = {xy, xz, yz} above andsh′ = sh ∪
{xyz} wherey andz are known to be free, we could dividesh′ into the setssh1 = {xy, xz} and

sh2 = {yz} andsh3 = {xyz}. The first two are as above, while the third represents stores in

which all x, y andz share the same variables (withx possibly being a free variable). Thus,sh′

does not only represent stores in whichx is bound to a non-variable term.�

Definite knowledge about non-variable bindings is not the only kind of useful information

that can be inferred from combiningSharing and freeness. The combination can also be used

to detect new bindings added by some body literal.

Example 12.Consider again the set-sharing abstractionsh = {xy, xz, yz} wherey andz are

known to be free. Let us assume thatsh is the abstract call for body literalp(x, y, z) (i.e., the ab-

straction at the program point right before executing the literal) and thatsh′ = {xy, xz, yz, xyz}
is the abstract answer forp(x, y, z) (i.e., the abstraction at the program point right after executing

the literal) withy andz still known to be free. The addition of sharing setxyz means that a

new binding aliasingy andz might have been introduced byp(x, y, z). However, if the abstract

answer is found to be identical to the callsh, we can be sure that none of the three program

variables has been further instantiated (since they are still known to be free) nor any new aliasing

introduced among them.�

The above kind of information is used, for example, for detecting non-strict independence

[CH94] as we will see in the next section. As shown in the above example, this information

cannot be inferred if redundant sets might have been eliminated (or not produced).

114

7 When independence among sets is relevant

This section uses the well-known application of automatic parallelization within the independent

AND-parallelism model [Con83] to illustrate how some applications (a) require independence

among sets (as opposed to pairs) of variables, and (b) can benefit from combiningSharing

with freeness information in ways which would not be possible withSSρ. The relevance of this

application comes from the fact that it is not only one of the best known applications of sharing

information, but also the one for which theSharing domain was developed.

In the independent AND-parallelism model goalsg1 andg2 in the sequenceg1, g2 can be run

in parallel in constraint storec if g2 is independent ofg1 for storec. In this context, independence

refers to the conditions that the run-time behavior of these goals must satisfy in order to guarantee

the correctness and efficiency of their parallelization w.r.t. their sequential execution. This can be

expressed as follows: goalg2 is independent of goalg1 for storec iff the execution ofg2 in c has

the same number of computation steps, cost, and answers as that ofg2 in any storec′ obtained

from executingg1 in c.

Note that the general independence condition introduced above is thus neither symmetric nor

established between pairs of variables, as assumed by [BHZ97, BHZ02]. However, this general

notion of independence is indeed rarely used. Instead, sufficient (and thus simpler) conditions are

generally used to ensure independence. These conditions can be divided into two main groups:

a priori and a posteriori. A priori conditions can always be checked prior to the execution of the

goals involved, while a posteriori conditions can be based on the actual behaviour of the goals to

be run in parallel.

A priori conditions are more popular even though they can be less accurate. The reasons

are twofold. First, they can only be based on the characteristics of the storec and the variables

belonging to the goals to be run in parallel. Thus, they are relatively simple. And second,

they can be used as run-time tests without actually running the goals themselves. This is useful

whenever the conditions cannot be proved correct at compile-time. Note that a priori conditions

must be symmetric: goalsg1 andg2 are independent forc iff g1 is independent ofg2 for c andg2

is independent ofg1 for c.

The most general a priori condition, calledprojection independence, was defined in [dlBHM00]

as follows: goalsg1 andg2 are independent forc if for any variablex ∈ vars(g1)∩vars(g2), x is

uniquely defined byc (i.e., ground), and the constraint obtained by conjoining the projection ofc

overvars(g1) and the projection ofc overvars(g2) entails (i.e., logically implies) the constraint

obtained by projectingc overvars(g1) ∪ vars(g2).

Example 13.Consider the literalsp(x), q(y), r(z) and constraintc ≡ {x = y + z}. The pro-

115

jection ofc over the sets of variables containing either one or two variables from{x, y, z} is the

empty constrainttrue. Thus, we can ensure that every pair of literals, sayp(x) andq(y), can run

in parallel. However, no literal can run in parallel with the goal formed by the conjunction of the

other two literals, e.g.,p(x) cannot run in parallel with goalq(y), r(z), since the projection ofc

over{x, y, z} is c itself, which is indeed not entailed bytrue. �

Therefore, as mentioned in both [MBdlBH99] and [dlBBH96], in general projection inde-

pendence does indeed rely on the independence of a pair ofsetsof variables. However, for the

Herbrand case projection independence is equivalent to the better known a priori condition called

strict independence, which was introduced in [Con83, DeG87] and formally defined and proved

correct in [HR95]. It states that goalsg1 andg2 are strictly independent for substitutionθ iff

vars(g1) do not share withvars(g2) for θ, i.e., iff vars(g1θ)∩ vars(g2θ) = ∅. It is easy to prove

that this is equivalent to requiring that for every pair of variablesxy, x ∈ vars(g1), y ∈ vars(g2),

x andy do not share.

Therefore, only for a priori conditions and the Herbrand domain, is parallelization based on

the independence of pairs of variables. And even in this case, theSharing domain is more

powerful thanSSρ when combined with other kinds of information.

Example 14.Consider again the abstractionssh = {xy, xz, yz, xyz} andsh′ = {xy, xz, yz}
defined overV ar = {x, y, z}. Example 9 illustrated how the formula

indep(y, z) iff ¬indep(x, y) and indep(y, z) iff ¬indep(x, z)

holds forsh′ but not forsh wheny andz are known to be free.

Consider the automatic parallelization of sequential goalp(y),q(z),r(x) for the usual

case of the a priori condition strict independence and the Herbrand domain. In the absence of any

information regarding the state of the store occurring right before the sequential goal is executed,

the compiler could rewrite the sequential goal into the following parallel goal (leftmost column):

116

(indep(y,z) -> (indep(y,z) -> (indep(y,z) ->

(indep(x,y) ->

(indep(x,z) ->

p(y)&q(z)&r(x)

; p(y)&(q(z),r(x))

)

; (p(y)&q(z)),r(x) (p(y)&q(z)),r(x) (p(y)&q(z)),r(x)

)

; indep(x,z) -> ; ; indep(x,z) ->

p(y),(q(z)&r(x)) p(y),(q(z)&r(x)) p(y),(q(z)&r(x))

; p(y),q(z),r(x) ; p(y),q(z),r(x)

)))

where the operator& represents parallel execution of two goals, and the run-time testindep(x,y)

succeeds if the two variables do not share at run-time. The middle and right columns represent

the simplifications that can be performed to the parallel goal in the context ofsh′ andsh, re-

spectively. This is because while testindep(x,y) is known to fail if indep(y,z) succeeds

for bothsh andsh′, testindep(x,z) is known to succeed ifindep(y,z) fails for sh′ but

not for sh. Thus, indep(x,z) still needs to be tested at run-time with the resulting loss of

efficiency.�
The assumption is also incorrect when considering a posteriori conditions, even those asso-

ciated to the Herbrand domain. In particular, strict independence has been generalised to several

different [HR95] a posteriori notions ofnon-strict independence. These notions allow goals that

share variables to run in parallel as long as the bindings established for those shared variables

satisfy certain conditions. For example, one of the simpler notions only allowsg1 to instantiate

a shared variable and does not allow any aliasing (of different shared variables) to be created

during the execution ofg1 that might affect goals to the right. Thus, for this notion, the condi-

tions are established between thebindingsintroduced by the two goals over their respective set

of variables, and cannot be expressed using only sharing between pairs of variables.

There has been at least one attempt [CH94] at inferring non-strict independence at compile-

time using the abstract domainSharing+Freeness . The inference is based on two condi-

tions. The first ensures that (C1) no shared variables are further instantiated byg1. This is done

by requiring that (a) all shared variables share through variables known to be free in the abstract

call of g1 (all sharing sets in the abstract call containing shared variables also contain a free vari-

able), and (b) all these variables must remain free in the abstract answer ofg1 (all such sharing

sets still contain a free variable after the analysis ofg1). This first condition can be detected in

theSSρ domain since the existence of a free variable in every sharing pair ensures the existence

117

of a free variable in the “redundant” sharing set. Thus, the absence of such sharing set is not a

problem.

This is not however the case for the second condition, which ensures that no aliasing is intro-

duced among shared variables by requiring C1 and, additionally, that (C2) there is no introduction

in the abstract answer of any sharing set resulting from the union of several sets such that none

contain the same free variable, and at least two contain variables belonging to both goals.

Example 15.Consider again the set-sharing abstractionsh = {xy, xz, yz} wherey andz are

known to be free. Let us assume thatsh is the abstract call for bodyp(x, y, z), q(x, y, z) and

thatsh′ = {xy, xz, yz, xyz} is the abstract answer forp(x, y, z) with y andz still known to be

free. All sharing sets insh containing variables from both literals contain a free variable which

remains free insh′. Thus, C1 is satisfied. However, there exists a setxyz in sh′ which can be

obtained by unioning at least two setsxy andxz in sh which contain variables from both literals

and have no variable in common known to be free insh. The appearance of such a set represents

the possible aliasing ofy andz by p(x, y, z). This appearance violates C2 and thus the goals

cannot run in parallel. Note that if the abstract answer was found to be identical tosh (i.e., if

the redundant setxyz was absent), we would have been able to ensure that none of the three

program variables had been further instantiated nor any new aliasing introduced among them.

Therefore, we could have ensured thatg2 is independent ofg1 for the stores represented bysh

and the associated freeness information, thus allowing their parallel execution.�
The above example illustrates the fact that an equivalent inference cannot be performed in the

SSρ domain augmented with freenessunless care is taken when considering redundant sharing

sets which include program variables known to be free. This is because the inference strongly

depends on distinguishing between the different bindings introduced during execution of the

goals to be run in parallel, and as a result, on distinguishing between the different shared variables

represented by the abstractions in the domain. Thus, elimination of redundant sets can render

the method incorrect. One possible solution is to always assume that redundant sets containing

free variables are present when combiningSSρ with freeness information. However, as shown

in Example 9, this might be imprecise. Another, more accurate solution, is to only eliminate

redundant sets which do not contain variables known to be free.

8 Conclusion

We have shown that the power of set-sharing does not come from representing sets of variables

that share, but from representing different variable occurrences. As a result, eliminating from

Sharing information which is considered “redundant” w.r.t. the pair-sharing property as per-

118

formed inSSρ can have unexpected consequences. In particular, whenSharing is combined

with some other kinds of information capable of distinguishing among variable occurrences in a

way that can make a redundant set no longer redundant, it can yield results not obtainable with

SSρ, including better pair-sharing. Furthermore, there exist applications which useSharing

analysis (combined with freeness) to infer properties other than sharing between pairs of vari-

ables and which cannot be inferred ifSSρ is used instead. We have proposed some possible

solutions to this problem.

119

References

[AHV02] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-

paradigm declarative languages.Journal of Functional and Logic Programming,

2002(1), 2002.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers – Principles, Techniques and

Tools. Addison-Wesley, 1986.

[BC93] M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness – all

at once. InProc. Third International Workshop on Static Analysis, pages 153–164.

Springer LNCS 724, 1993.

[BCC+04] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and

G. Puebla (Eds.). The Ciao System. Reference Manual (v1.10). Technical Report

CLIP3/97.1.10(04), School of Computer Science (UPM), August 2004. Available

athttp://clip.dia.fi.upm.es/Software/Ciao/ .

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-

dard Prolog Programs. InEuropean Symposium on Programming, number 1058

in LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

[BdlBH94] F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. The PLAI Abstract

Interpretation System. Technical Report CLIP2/94.0, Computer Science Dept.,

Technical U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del

Monte, Madrid-Spain, February 1994.

[BdlBH99] F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Abstract

Interpretation in Automatic Parallelization: A Case Study in Logic Program-

ming. ACM Transactions on Programming Languages and Systems, 21(2):189–

238, March 1999.

[BdlBH+01] F. Bueno, M. Garćıa de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and

P. Stuckey. A Model for Inter-module Analysis and Optimizing Compilation.

In Logic-based Program Synthesis and Transformation, number 2042 in LNCS,

pages 86–102. Springer-Verlag, March 2001.

[BGLM94a] A. Bossi, M. Gabbrieli, G. Levi, and M.C. Meo. A compositional semantics for

logic programs.Theoretical Computer Science, 122(1,2):3–47, 1994.

120

[BGLM94b] Annalisa Bossi, Maurizio Gabbrielli, Giorgio Levi, and Maurizio Martelli. The

s-semantics approach: Theory and applications.Journal of Logic Programming,

19/20:149–197, 1994.

[BHZ97] R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-

sharing. InStatic Analysis Symposium, pages 53–67. Springer-Verlag, 1997.

[BHZ02] R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-

sharing.Theoretical Computer Science, 277(1-2):3–46, 2002.

[BJ03] F. Besson and T. Jensen. Modular class analysis with datalog. In10th Interna-

tional Symposium on Static Analysis, SAS 2003, number 2694 in LNCS. Springer,

2003.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange

ways to implement logic programs. InProceedings of the 5th ACM SIGMOD-

SIGACT Symposium on Principles of Database Systems, 1986.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic

Programs.Journal of Logic Programming, 10:91–124, 1991.

[BSM92] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoid-

ing Infinite Unfolding during Partial Deduction.New Generation Computing,

1(11):47–79, 1992.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In

Fourth ACM Symposium on Principles of Programming Languages, pages 238–

252, 1977.

[CC79] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.

In Sixth ACM Symposium on Principles of Programming Languages, pages 269–

282, San Antonio, Texas, 1979.

[CD93] M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional

logic programs and a magic wand. In D. Miller, editor,Proceedings of the 1993

International Symposium on Logic Programming, Vancouver. MIT Press, 1993.

[CDG93] M. Codish, S.K. Debray, and R. Giacobazzi. Compositional analysis of modular

logic programs. InProc. POPL’93, 1993.

121

[CFW94] A. Cortesi, G. Fiĺe, and W. Winsborough. The quotient of an abstract interpre-

tation for comparing static analyses. InGULP-PRODE’94 Joint Conference on

Declarative Programming, pages 372–397, 1994.

[CH94] D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-

parallelism Using Sharing and Freeness Information. In1994 International Static

Analysis Symposium, number 864 in LNCS, pages 297–313, Namur, Belgium,

September 1994. Springer-Verlag.

[CH00] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. InInter-

national Conference on Computational Logic, CL2000, number 1861 in LNAI,

pages 131–148. Springer-Verlag, July 2000.

[Cla79] K. Clark. Predicate logic as a computational formalism. Technical Report DOC

79/59, Imperial College, London, Department of Computing, 1979.

[CLM01] Marco Comini, Giorgio Levi, and Maria Chiara Meo. A theory of observables for

logic programs.Information and Computation, 169(1):23–80, 2001.

[CMB+95] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcı́a de la Banda, and

M. Hermenegildo. Improving Abstract Interpretations by Combining Domains.

ACM Transactions on Programming Languages and Systems, 17(1):28–44, Jan-

uary 1995.

[Con83] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic

Programs. PhD thesis, The University of California At Irvine, 1983. Technical

Report 204.

[CRV02] B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence Based Abstract In-

terpretation of Prolog.Theory and Practice of Logic Programming, 2(1):25–84,

2002.

[CS02] Michael Codish and Harald Søndergaard. Meta-circular abstract interpretation in

prolog. In Torben Mogensen, David Schmidt, and I. Hal Sudburough, editors,The

Essence of Computation: Complexity, Analysis, Transformation, volume 2566 of

Lecture Notes in Computer Science, pages 109–134. Springer-Verlag, 2002.

[CSS99] Michael Codish, Harald Søndergaard, and Peter J. Stuckey. Sharing and ground-

ness dependencies in logic programs.ACM Transactions on Programming Lan-

guages and Systems, 21(5):948–976, 1999.

122

[CT99] Michael Codish and Cohavit Taboch. A semantic basic for the termination analy-

sis of logic programs.The Journal of Logic Programming, 41(1):103–123, 1999.

[CV94] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic

Abstract Interpretation Algorithm for Prolog.ACM Transactions on Programming

Languages and Systems, 16(1):35–101, 1994.

[DeG87] D. DeGroot. A Technique for Compiling Execution Graph Expressions for Re-

stricted AND-parallelism in Logic Programs. InInt’l Supercomputing Confer-

ence, pages 80–89, Athens, 1987. Springer Verlag.

[dlBBH96] M. Garćıa de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. InProgramming Languages: Implementation, Logics,

and Programs, number 1140 in LNCS, pages 77–91, Aachen, Germany, Septem-

ber 1996. Springer-Verlag.

[dlBHM00] M. Garćıa de la Banda, M. Hermenegildo, and K. Marriott. Independence in

CLP Languages.ACM Transactions on Programming Languages and Systems,

22(2):269–339, March 2000.

[dlBMS95] M. Garćıa de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Con-

straint Logic Programs with Dynamic Scheduling. In1995 International Logic

Programming Symposium, pages 417–431, Portland, Oregon, December 1995.

MIT Press, Cambridge, MA.

[DR94] S. Debray and R. Ramakrishnan. Abstract Interpretation of Logic Programs Using

Magic Transformations.Journal of Logic Programming, 18:149–176, 1994.

[DSGJ+99] Danny De Schreye, Robert Glück, Jesper Jørgensen, Michael Leuschel, Bern

Martens, and Morten Heine Sørensen. Conjunctive partial deduction: Founda-

tions, control, algorithms and experiments.Journal of Logic Programming, 41(2

& 3):231–277, November 1999.

[EGM97] S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP

with Dynamic Scheduling and CCP. InProc. of the ACM Sigplan PEPM’97,

pages 137–150. ACM Press, New York, 1997.

[Gal93] J.P. Gallagher. Tutorial on specialisation of logic programs. InProceedings of

PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-

Based Program Manipulation, pages 88–98. ACM Press, 1993.

123

[Gal04] J. Gallagher. A Program Transformation for Backwards Analysis of Logic Pro-

grams. InLogic Based Program Synthesis and Transformation: 13th International

Symposium, LOPSTR 2003, number 3018 in LNCS, pages 92–105. Springer-

Verlag, 2004.

[GBS95] J. Gallagher, D. Boulanger, and H. Sağlam. Practical model-based static analysis

for definite logic programs. In J. W. Lloyd, editor,Proc. of International Logic

Programming Symposium, pages 351–365, 1995.

[GC01] S. Genaim and M. Codish. Inferring termination conditions of logic programs

by backwards analysis. InInternational Conference on Logic for Programming,

Artificial intelligence and reasoning, volume 2250 ofSpringer Lecture Notes in

Artificial Intelligence, pages 681–690, 2001.

[GDMS02] Maŕıa J. Garćıa de la Banda, Bart Demoen, Kim Marriott, and Peter J. Stuckey. To

the Gates of HAL: A HAL Tutorial. InInternational Symposium on Functional

and Logic Programming, pages 47–66, 2002.

[GG94] Maurizio Gabbrielli and Roberto Giacobazzi. Goal independency and call patterns

in the analysis of logic programs. InProceedings of the 1994 ACM Symposium

on Applied Computing, SAC 1994, pages 394 – 399, 1994.

[GLM96] Maurizio Gabbrielli, Giorgio Levi, and Maria Chiara Meo. Resultants semantics

for Prolog.Journal of Logic and Computation, 6(4):491–521, 1996.

[GS98] R. Giacobazzi and F Scozzari. A logical model for relational abstract domains.

ACM Transactions on Programming Languages and Systems, 20(5):1067–1109,

1998.

[HKL04] Jacob M. Howe, Andy King, and Lunjin Lu. Analysing Logic Programs by Rea-

soning Backwards. In Maurice Bruynooghe and Kung-Kiu Lau, editors,Program

Development in Computational Logic, LNCS, pages 380–393. Springer-Verlag,

May 2004.

[HPBLG03a] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-

ment Using Abstract Interpretation (and The Ciao System Preprocessor). In10th

International Static Analysis Symposium (SAS’03), number 2694 in LNCS, pages

127–152. Springer-Verlag, June 2003.

124

[HPBLG03b] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-

ment Using Abstract Interpretation (and The Ciao System Preprocessor). InProc.

of SAS’03, pages 127–152. Springer LNCS 2694, 2003.

[HPBLG05] Manuel V. Hermenegildo, Gerḿan Puebla, Francisco Bueno, and Pedro López-

Garćıa. Integrated Program Debugging, Verification, and Optimization Using

Abstract Interpretation (and The Ciao System Preprocessor).Science of Computer

Programming, (2694), 2005.

[HPMS00] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis

of Constraint Logic Programs.ACM Transactions on Programming Languages

and Systems, 22(2):187–223, March 2000.

[HR95] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-

Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Con-

ditions. Journal of Logic Programming, 22(1):1–45, 1995.

[JL89] D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable

Aliasing in Logic Programs. In1989 North American Conference on Logic Pro-

gramming. MIT Press, October 1989.

[JL92] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent

And-Parallelism. Journal of Logic Programming, 13(2 and 3):291–314, July

1992.

[KL02a] A. King and L. Lu. A Backward Analysis for Constraint Logic Programs.Theory

and Practice of Logic Programming, page 32, July 2002. (Theory and Practice of

Logic Programming was formally known as The Journal of Logic Programming).

[KL02b] Andy King and Lunjin Lu. A backward analysis for constraint logic programs.

Theory and Practice of Logic Programming, 2(4-5):514–547, 2002.

[KL03] Andy King and Lunjin Lu. Forward versus backward verification of logic pro-

grams. InICLP’2003 (to appear), 2003.

[KMM +98] A. Kelly, A. Macdonald, K. Marriott, H. Søndergaard, and P.J. Stuckey. Optimiz-

ing compilation for CLP(R). ACM Transactions on Programming Languages and

Systems, 20(6):1223–1250, 1998.

[Kru60] J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.

Transactions of the American Mathematical Society, 95:210–225, 1960.

125

[KS94] A. King and P. Soper. Depth-k Sharing and Freeness. InInternational Conference

on Logic Programming. MIT Press, June 1994.

[KSH99] Andy King, Jan-Georg Smaus, and Patricia M. Hill. Quotienting share for depen-

dency analysis. InEuropean Symposium on Programming, pages 59–73, 1999.

[LB02] Michael Leuschel and Maurice Bruynooghe. Logic program specialisation

through partial deduction: Control issues.Theory and Practice of Logic Pro-

gramming, 2(4 & 5):461–515, July & September 2002.

[Leu94] Michael Leuschel. Partial evaluation of the “real thing”. In Laurent Fribourg and

Franco Turini, editors, Logic Program Synthesis and Transformation — Meta-

Programming in Logic.Proceedings of LOPSTR’94 and META’94, Lecture Notes

in Computer Science 883, pages 122–137, Pisa, Italy, June 1994. Springer-Verlag.

[Leu98] Michael Leuschel. On the power of homeomorphic embedding for online termi-

nation. In Giorgio Levi, editor, Static Analysis.Proceedings of SAS’98, LNCS

1503, pages 230–245, Pisa, Italy, September 1998. Springer-Verlag.

[Leu02] Michael Leuschel. TheECCE partial deduction system and theDPPD library

of benchmarks. Obtainable viahttp://www.ecs.soton.ac.uk/˜mal ,

1996-2002.

[Llo87a] J. W. Lloyd. Logic Programming. Springer-Verlag, 1987.

[Llo87b] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended

edition, 1987.

[LMDS98] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling general-

isation and polyvariance in partial deduction of normal logic programs.ACM

Transactions on Programming Languages and Systems, 20(1):208–258, January

1998.

[LS91] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.The

Journal of Logic Programming, 11:217–242, 1991.

[LS00] Giorgio Levi and Fausto Spoto. Non pair-sharing and freeness analysis through

linear refinement. InPartial Evaluation and Semantic-Based Program Manipula-

tion, pages 52–61, 2000.

126

[LS02] Vitaly Lagoon and Peter Stuckey. Precise pair-sharing analysis of logic programs.

In Principles and Practice of Declarative Programming, pages 99–108. ACM

Press, 2002.

[MBdlBH99] K. Muthukumar, F. Bueno, M. Garcı́a de la Banda, and M. Hermenegildo. Auto-

matic Compile-time Parallelization of Logic Programs for Restricted, Goal-level,

Independent And-parallelism.Journal of Logic Programming, 38(2):165–218,

February 1999.

[MD96] B. Martens and D. De Schreye. Automatic finite unfolding using well-founded

measures.The Journal of Logic Programming, 28(2):89–146, August 1996.

[Mes96] F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-

grams. In M. J. Maher, editor,Joint International Conference and Symposium on

Logic Programming, pages 7–21. MIT Press, 1996.

[MH90] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Al-

gorithm for Top-down Abstract Interpretation of Logic Programs. Technical Re-

port ACT-DC-153-90, Microelectronics and Computer Technology Corporation

(MCC), Austin, TX 78759, April 1990.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and

Freeness of Program Variables Through Abstract Interpretation. In1991 Interna-

tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable

Dependency Using Abstract Interpretation.Journal of Logic Programming,

13(2/3):315–347, July 1992.

[MN01] F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring

termination conditions of logic programs. InStatic Analysis Symposium, volume

2126 ofLNCS, pages 93–110, 2001.

[MWB90] A. Mulkers, W. Winsborough, and M. Bruynooghe. Analysis of Shared Data

Structures for Compile-Time Garbage Collection in Logic Programs. InPro-

ceedings of the Seventh International Conference on Logic Programming, pages

747–762, Jerusalem, Israel, June 1990. MIT Press.

[Net02] Nicholas Nethercote. The Analysis System of HAL. Master’s thesis, Monash

University, 2002.

127

[PAH05a] G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with An-

cestor Stacks for Full Prolog. Technical Report CLIP2/2005.0, Technical Univer-

sity of Madrid, February 2005.

[PAH05b] G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with An-

cestor Stacks for Full Prolog. In14th International Symposium on Logic-based

Program Synthesis and Transformation, LNCS. Springer-Verlag, 2005. To appear.

[PBH00a] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con-

straint Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski,

editors,Analysis and Visualization Tools for Constraint Programming, number

1870 in LNCS, pages 23–61. Springer-Verlag, September 2000.

[PBH00b] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con-

straint Logic Programs. InAnalysis and Visualization Tools for Constraint Pro-

gramming, pages 23–61. Springer LNCS 1870, 2000.

[PCH+04] G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. Garcı́a de la Banda,

K. Marriott, and P. J. Stuckey. A Generic Framework for Context-Sensitive Analy-

sis of Modular Programs. In M. Bruynooghe and K. Lau, editors,Program Devel-

opment in Computational Logic, A Decade of Research Advances in Logic-Based

Program Development, number 3049 in LNCS, pages 234–261. Springer-Verlag,

Heidelberg, Germany, August 2004.

[PH96] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-

ysis of Logic Programs. InInternational Static Analysis Symposium, number 1145

in LNCS, pages 270–284. Springer-Verlag, September 1996.

[PH99] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Ap-

plication to Program Parallelization.J. of Logic Programming. Special Issue on

Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279–316,

November 1999.

[PH00] G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of

Modular Ciao-Prolog Programs. InSpecial Issue on Optimization and Implemen-

tation of Declarative Programming Languages, volume 30 ofElectronic Notes in

Theoretical Computer Science. Elsevier - North Holland, March 2000.

128

[PH03] G. Puebla and M. Hermenegildo. Abstract Specialization and its Applica-

tions. In ACM Partial Evaluation and Semantics based Program Manipulation

(PEPM’03), pages 29–43. ACM Press, June 2003. Invited talk.

[Pla84] D. A. Plaisted. The occur-check problem in prolog. InInternational Symposium

on Logic Programming, pages 272–281, Silver Spring, MD, February 1984. At-

lantic City, IEEE Computer Society.

[Pro02] Christian W. Probst. Modular Control Flow Analysis for Libraries. InStatic

Analysis Symposium, SAS’02, volume 2477 ofLNCS, pages 165–179. Springer-

Verlag, 2002.

[RRL99] A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysis of program fragments.

In ESEC/FSE’99, volume 1687 ofLNCS, pages 235–252. Springer-Verlag, 1999.

[RS97] G. Rozenberg and A. Salomaa, editors.Handbook of Formal Languages: Word

Language Grammar, volume 1. Springer-Verlag, 1997.

[Sah93] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog.New Generation

Computing, 12(1):7–51, 1993.

[SG95] M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Super-

compilation. InProc. of ILPS’95, pages 465–479. The MIT Press, 1995.

[Son86] H. Sondergaard. An application of abstract interpretation of logic programs: occur

check reduction. InEuropean Symposium on Programming, LNCS 123, pages

327–338. Springer-Verlag, 1986.

[TJ94] Y. M. Tang and P. Jouvelot. Separate abstract interpretation for control-flow anal-

ysis. In Theoretical Aspects of Computer Software (TACS ’94), number 789 in

LNCS. Springer, 1994.

[VB00] W. Vanhoof and M. Bruynooghe. Towards modular binding-time analysis for first-

order mercury. InSpecial Issue on Optimization and Implementation of Declara-

tive Programming Languages, volume 30 ofElectronic Notes in Theoretical Com-

puter Science. Elsevier - North Holland, March 2000.

[VD88] R. Venken and B. Demoen. A partial evaluation system for prolog: some practical

considerations.New Generation Computing, 6:279–290, 1988.

129

