
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Integrated Abstract Interpretation and
Online Specialization

Deliverable number: D4

Workpackage: Basic Specialization Techniques (WP3)

Preparation date: 1 November 2003

Due date: 1 May 2003

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Univ. of Southampton, Tech. Univ. of Madrid (UPM), Roskilde

Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

In the first part of the deliverable, we present a theoretical framework that can be used to

extend existing logic program specialization methods, such as partial deduction and conjunctive

partial deduction, to make use of more refined abstract domains. It is also shown how this

framework opens up the way for new optimizations and enables a simpler correctness-proving

of specialization techniques. This part will appear in May 2004 in the ACM Transactions on

Programming Languages and Systems.

The second part describesabstract specializationwhich is at the heart of the specialization

system inCiaoPP . We discuss its potential applications, which include program paralleliza-

tion, optimization of dynamic scheduling (concurrency), and integration of partial evaluation

techniques. This part is based on an invited talk at PEPM’03.

In the third part we present an abstract domain based on regular types for its usage in top-

down abstract interpretation and present a new widening which is more precise than those pre-

viously proposed while being efficient. This part is based on a paper presented at SAS. Also in

this part an abstract specialization algorithm using an abstract domain based on convex hulls is

described. The core algorithm is based on the framework described in the first part, propagating

both abstract calls and answers. This is based on a paper in LOPSTR’02.

In the fourth part we present some insights into using program specialization (with abstract

interpretation) as applied to inductive theorem proving and model checking, which will be of

importance when applying our technique to the tasks in workpackage 5 later in the project. This

part is based on an invited paper at LOPSTR’03.

The fifth part describes a new class of abstract domains which appears to be promising for

both online and offline specialization (and has already been applied in the BTA algorithm, see

part V of Db5). These domains are constructed from regular types, by converting the given types

into disjoint types. The resulting finite domain is condensing, which suggests more efficient

propagation of answers and calls.

Finally, the sixth part describes an algorithm which extends abstract interpretation by includ-

ing partial deduction capabilities. This allows improving both existing analysis and specialization

techniques.

Contents

I A Framework for the Integration of Partial Evaluation and Abstract
Interpretation of Logic Programs 7

1 Background 7

2 Basics of Partial Deduction 9

3 Partial Deduction and Program Analysis 14

3.1 Partial Deduction as Program Analysis .14

3.2 Abstract Interpretation .15

3.3 Partial Deduction as Abstract Interpretation .16

3.4 Discussion .21

4 Abstract Domains for Specialization 22

5 Abstract Unfolding and Resolution 24

6 Atomic Abstract Partial Deduction 31

6.1 Correctness of Atomic Abstract Partial Deduction31

6.2 A Generic Procedure for Abstract Partial Deduction33

7 Conjunctive Abstract Partial Deduction 34

7.1 Generating Residual Code for Conjunctive Partial Deduction35

8 Generic Correctness Results 38

8.1 Correctness for Computed Answers .38

8.2 Preservation of Finite Failure .45

9 Some Instances of Abstract Partial Deduction 47

9.1 Classical and Conjunctive Partial Deduction .47

9.2 Ecological and Constrained Partial Deduction48

9.3 Partial Deduction using Regular Types .48

10 Propagating Success Information 51

11 More Related Work 54

1

12 Future Work and Conclusion 56

II Abstract Specialization and its Applications 58

13 Background 58

13.1 An Overview of Specialization Techniques .59

13.2 Abstract Specialization through A Motivating Example60

14 Abstract Interpretation 62

14.1 Goal-Dependent analysis .63

15 Abstract Executability 65

16 Abstract Multiple Specialization 66

16.1 Analysis And–Or Graphs .67

16.2 Code Generation from an And–Or Graph .69

17 Program Parallelization 71

17.1 The Annotation Process and Run-time Tests .71

17.2 An Example: Matrix Multiplication .72

18 Optimisation of Dynamic Scheduling 74

18.1 Programs with Delaying Conditions .74

18.2 Simplifying Dynamic Scheduling .75

18.3 Reordering Delaying Literals .76

18.4 Automating the Optimisation .78

19 Integration with Partial Evaluation 78

19.1 And–Or Graphs Vs. SLD Trees .79

19.2 Partial Evaluation using And–Or Graphs .82

19.2.1 Global Control in Abstract Interpretation83

19.2.2 Local Control in Abstract Interpretation83

19.2.3 Abstract Domains and Widenings for Partial Evaluation84

19.3 Code Generation using Success Substitutions85

20 Related Work 86

21 Conclusions 87

2

III More Precise Yet Efficient Type Inference for Logic Programs 89

22 Background 89

23 Regular Types 90

24 Abstract Domain for Type Inference 92

25 Widenings 93

26 Structural Type Widening 96

27 Type Inference Analysis Results 101

28 Convex Hull Abstractions in Specialization of CLP Programs 103

28.1 A Constraint Domain .105

29 An Algorithm for Specialization with Constraints 108

29.1 Generation of Calls and Answers .109

29.2 Approximation Using Convex Hulls and Widening112

29.3 Generation of the Specialized Program .113

29.4 Correctness of the Specialization .114

30 Examples 116

31 Related Work 120

32 Final Remarks 121

IV Inductive Theorem Proving by Program Specialisation: Generating
proofs for ISABELLE using ECCE 123

33 Background 123

34 Infinite Model Checking by Program Specialisation 126

35 Specification of Petri nets inISABELLE 127

3

36 GeneratingISABELLE theories usingECCE 131

36.1 Generating Petri net specifications from logic programs131

36.2 Generating specifications of the coverability graph from logic programs132

37 Proof Scripts 135

37.1 Rewriting .136

37.2 Introduction and Elimination .136

37.3 Automatic Reasoners .137

37.4 Scripts .137

38 Verifying ECCE 138

39 Automatic Generation of Hypotheses 139

40 Conclusion and Further Work 141

V Abstract Domains Based on Regular Types 143

41 Background 143

42 Preliminaries 143

42.1 Tree Automata and Types .144

42.2 Deterministic and Non-deterministic Tree Automata145

42.3 Operations on Finite Tree Automata .146

43 Analysis Based on Pre-Interpretations 147

43.1 Interpretations of the Core Semantics .148

43.2 Abstract Interpretations .149

43.3 Abstract Compilation of a Pre-Interpretation .149

43.4 Computation of the Least Domain Model .150

44 Deriving a Pre-Interpretation from Regular Types 150

45 Examples 153

45.1 Simple Lists .153

45.2 Simple Groundness .154

45.3 Simple Lists with Groundness .154

45.4 Static, Dynamic and Non-variable Types for Binding Time Analysis155

4

45.5 BTA types Combined with Program-specific Types155

45.6 Detecting Failures .155

45.7 Infinite-State Model Checking .156

46 Implementation and Complexity Issues 158

47 Related Work and Conclusions 159

VI Abstract Interpretation with Specialized Definitions 160

48 Introduction 160

48.1 Approximation vs. Execution .162

49 Preliminaries 163

50 Specialized definitions 164

50.1 Equivalence of Definitions .164

50.2 Transformation Rules .166

50.3 The Specialization Strategy .168

51 Abstract Interpretation with Specialized Definitions 169

51.1 Correctness .172

52 Termination 172

52.1 Termination in Abstract Interpretation .172

52.2 Termination in Program Specialization .174

52.3 Termination in the Integrated Framework .175

53 The Framework as a Specializer 177

54 System Description 178

54.1 Local Control .178

54.2 Global Control .179

54.3 Instantiation w.r.t. Abstract Information .180

54.4 Code Generation .180

55 A Running Example 180

5

56 Conclusions 183

6

Part I

A Framework for the Integration of Partial

Evaluation and Abstract Interpretation of

Logic Programs
Recently the relationship between abstract interpretation and program specialization has received

a lot of scrutiny, and the need has been identified to extend program specialization techniques

so to make use of more refined abstract domains and operators. This part of the document clari-

fies this relationship in the context of logic programming, by expressing program specialization

in terms of abstract interpretation. Based on this, a novel specialization framework, along with

generic correctness results for computed answers and finite failure under SLD-resolution, is de-

veloped.

This framework can be used to extend existing logic program specialization methods, such

as partial deduction and conjunctive partial deduction, to make use of more refined abstract

domains. It is also shown how this opens up the way for new optimizations, as well as proving

correctness of new or existing specialization techniques in a simpler manner.

The framework has already been applied in the literature to develop and prove correct spe-

cialization algorithms using regular types, which in turn have been applied to the verification of

infinite state process algebras.

1 Background

Program specializationaims at improving the overall performance of programs by perform-

ing source to source transformations. The central idea is to specialize a given source program

for a particular application domain, with the goal of obtaining a less general but more efficient

program. This is (mostly) done by awell-automatedapplication of parts of the Burstall and

Darlington unfold/fold [19] transformation framework. Program specialization encompasses tra-

ditional compiler optimization techniques [163], such asconstant folding(i.e., the evaluation of

expressions whose arguments are constants) andin-lining (i.e., the substitution of a procedure

call by the procedure’s body), but uses more aggressive transformations, yielding both (much)

greater speedups and more difficulty in controlling the transformation process. It is thus similar

in concept to, but in several ways stronger than highly optimizing compilers. A common ap-

7

proach, known aspartial evaluationis to guide the transformation by partial knowledge about

the input. In the context of pure logic programs, partial evaluation is sometimes referred to as

partial deduction.

Program analysis is about statically inferring information about dynamic program properties.

Abstract interpretation[35] was developed as a very general, formal framework for specifying

and validating program analyses. The main idea of using abstract interpretation for program

analysis is to interpret the programs to be analyzed over someabstract domain. This is done in

such a way as to ensure termination of the abstract interpretation and to ensure that the so derived

results are asafe approximationof the programs’ concrete runtime behavior(s).

Abstract Interpretation vs. Program Specialization At first sightabstract interpretationand

program specializationmight appear to be unrelated techniques: abstract interpretation focusses

on correct and preciseanalysis, while the main goal of program specialization is to produce

moreefficient specialized code(for a given task at hand). Nonetheless, it is often felt that there

is a close relationship between abstract interpretation and program specialization and, recently,

there has been a lot of interest in the integration and interplay of these two techniques (see, e.g.,

[33, 184, 143, 102, 182, 192, 188, 74]).

From Partial Deduction to Abstract Partial Deduction In this paper we would like to make

the relationship between partial deduction and abstract interpretation more concrete, and pro-

vide a formal framework for integrating these two techniques. This will also pave the way for

new, much more powerful specialization (and analysis) techniques, e.g., by using more refined

abstract domains. Indeed, “classical” partial deduction turns out to be often too limited (see,

e.g., [66, 44, 143, 135] to name just a few) and a lot of extensions have been developed to rem-

edy its shortcomings (such as partial deduction with characteristic trees [60, 140], constrained

partial deduction [128], conjunctive partial deduction [129, 79, 42]). However, every time such

an extension is developed, correctness has to be re-established from scratch: a very tedious and

time-consuming process. By providing a very general framework, we want to reduce this work

to minimum (at the same time allowing more powerful extensions): when developing a new

instance of the framework one just has to prove some basic properties of the underlying ope-

rations and one can then re-apply the correctness results presented in this paper with minimal

effort. Finally, the framework also allows the tupling [24] and deforestation [215] capabilities of

conjunctive partial deduction to be added to abstract interpretation.

Overview After introducing the essence of partial deduction in Section 2, we investigate the

relationship between partial deduction and program analysis in Section 3. Then, we define the

8

notion of abstract domains in Section 4, we present in Section 5 the important concepts of abstract

unfolding and abstract resolution which will be at the heart of our framework. In Section 6 we

then show how these concepts can be used to develop atomic abstract partial deduction. In

Section 7 we then show how this can be extended to cover abstract conjunctions. In Section 8

we then formally prove our generic correctness results. In Section 9 we cast some existing

techniques into our framework. We show how success information propagation can be added

to our framework in Section 10. We conclude with a discussion of related and further work in

Sections 11 and 12.

This paper is based on the earlier conference paper [123].

2 Basics of Partial Deduction

In this section we present the technique of partial deduction, which originates from [111]. Other

introductions to partial deduction can be found in [112, 57, 125]. Note that, for clarity’s sake, we

deviate slightly from the original formulation of [152] and use the formulation from [127]. We

also restrict our attention to definite logic programs and the SLD procedural semantics.

In contrast to ordinary evaluation, partial evaluation is processing a given programP along

with only part of its input, called thestatic input. The remaining part of the input, called the

dynamic input, will only be known at some later point in time (which we callruntime). Given

the static inputS, the partial evaluator then produces aspecializedversionPS of P which, when

given the dynamic inputD, produces the same output as the original programP . The program

PS is also called theresidual program.

Partial evaluation [31, 106, 101, 161] has been applied to many programming languages: e.g.,

functional programming languages, logic programming languages, functional logic program-

ming languages, term rewriting systems, or imperative programming languages. In the context

of logic programming [4, 150], full input to a programP consists of a goalG and evaluation

can be seen as constructing a complete SLD-tree forP ∪ {G}. For partial evaluation, the static

input takes the form of a goalG′ which is more general (i.e., less instantiated) than a typical goal

G at runtime. In contrast to other programming languages, one can still executeP for G′ and

(try to) construct an SLD-tree forP ∪ {G′}. So, at first sight, it seems that partial evaluation for

logic programs is almost trivial and just corresponds to ordinary evaluation. However, sinceG′

is not yet fully instantiated, the SLD-tree forP ∪{G′} is usually infinite and ordinary evaluation

will not terminate. A technique which solves this problem is known under the name ofpartial

deduction. Its general idea is to construct a finite number of finite, but possiblyincompleteSLD

trees and to extract from these trees a new program that allows any instance of the goalG′ to be

9

executed.

Before formalizing the notion of partial deduction, we briefly recall some basics of logic

programming [4, 150]. Syntactically, programs are built from an alphabet of variables (as usual

in logic programming, variable names start with a capital), function symbols (including con-

stants) and predicate symbols. Terms are inductively defined over the variables and the function

symbols. Formulas of the formp(t1, . . . , tn) with p/n a predicate symbol of arityn ≥ 0 and

t1, . . . , tn terms are atoms. Adefinite clauseis of the forma ← B where the heada is an atom

and the bodyB is a conjunction of atoms. A formula of the form← B with B a conjunction

of atoms is adefinite goal. Definiteprogramsare sets composed of definite clauses. In analogy

with terminology from other programming languages, an atom in a clause body or in a goal is

sometimes referred to as acall. As we restrict our attention to definite clauses, programs, and

goals we will often drop the “definite” prefix and just refer to clauses, programs, and goals.

As detailed in [4, 150] aderivation stepselects an atom in a definite goal according to some

selection rule. Using a program clause, it first renames apart the program clause to avoid variable

clashes and then computes a most general unifier (mgu) between the selected atom and the clause

head and, if anmgu exists, derives theresolvent, a new definite goal. (We also say that the

selected atom isresolvedwith the program clause.) Now, we are ready to introduce our notion of

SLD-derivation. As common in works on partial deduction, it differs from the standard notion in

logic programming theory by allowing a derivation that ends in a nonempty goal where no atom

is selected.

Definition 2.1Let P be a definite program andG a definite goal. AnSLD-derivationfor P ∪{G}
consists of a possibly infinite sequenceG0 = G, G1, . . . of goals, a sequenceC1, C2, . . . of

properly renamed clauses ofP , a sequenceL0, L1 . . . of selected atoms and a sequenceθ1, θ2,

. . . of mgus such that eachGi+1 is derived fromGi andCi+1 using selected literalLi andmgu

θi+1.

The initial goal of an SLD-derivation is also called thequery. An SLD-derivation is a suc-

cessful derivation or refutation if it ends in the empty goal, a failing derivation if it ends in a goal

with a selected atom that does not unify with any properly renamed clause head, an incomplete

derivation if it ends in a nonempty goal without selected atom; if none of these, it is an infinite

derivation. In examples, to distinguish an incomplete derivation from a failing one, we will ex-

tend the sequence of a failing derivation with the atomfail . The totality of SLD-derivations form

a search space. One way to organize this search space is to structure it in an SLD-tree. The root

is the initial goal; the children of a (non-failing) node are the resolvents obtained by selecting

an atom and performing all possible derivation steps (a process that we call theunfoldingof the

10

selected atom). Each branch of the tree represents an SLD-derivation. Atrivial tree is a tree

consisting of a single node —the root— without selected atom.

We now examine how specialized clauses can be extracted from SLD-derivations and trees.

Definition 2.2 Let P be a program,G =← Q a goal,D a finite SLD-derivation ofP ∪ {G}
ending in← B, andθ the composition of themgus in the derivation steps. Then the formula

Qθ ← B is called theresultantof D. Also, θ restricted to the variables ofQ is called the

computed answer substitution (c.a.s.)of D. If D is a refutation thenθ restricted to the variables

of Q is also simply called acomputed answer.

Note that the formulaQθ ← B is a clause whenQ is a single atom, which will always be the

case for classical partial deduction.Conjunctive partial deduction(cf. Section 7) also allowsQ

to be a conjunction of several atoms. The relevant information to be extracted from an SLD-tree

is the set of resolvents and the set of atoms occurring in the literals at the non-failing leaves.

Definition 2.3LetP be a program,G a goal, andτ a finite SLD-tree forP∪{G}. LetD1, . . . , Dn

be the non-failing SLD-derivations associated with the branches ofτ . Then theset of resultants,

resultants(τ), is the set whose elements are the resultants ofD1, . . . , Dn and theset of leaves,

leaves(τ), is the set of atoms occurring in the final goals ofD1, . . . , Dn.

With the initial goal atomic, the extracted resultants are program clauses: the partial deduc-

tion of the atom.

Definition 2.4 Let P be a definite program,A an atom, andτ a finite non-trivial SLD-tree for

P ∪ {← A}. Then the set of clausesresultants(τ) is called apartial deduction ofA in P . If A
is a finite set of atoms, then apartial deduction ofA in P is the union of the sets obtained by

taking one partial deduction for each atom inA.

In summary, the specialized program is extracted from SLD trees by constructing one spe-

cialized clause per non-failing branch. This can yield a more efficient program, as asingleresolu-

tion step with a specialized clause now corresponds to performingall the resolutions steps (using

original program clauses) on the associated branch. Also, failing branches have been completely

removed from the specialized program, which can lead to further efficiency improvements.

Example 2.5Let P be the following metainterpreter taken from [119], which counts resolution

steps:

solve([], Depth, Depth)←

11

?

?

?

���
����

HHH
HHj

2

solve([mem(X, T ′], s(D), R)

clause(mem(X, L), B), solve(B, s(D), I), solve([], I, R)

clause(mem(X, L), B), solve(B, s(D), R)

solve([], s(D), R)

solve([mem(X, L)], D,R)

Figure 1: Incomplete SLD-tree for Example 2.5

solve([Head|Tail], DSoFar, Res)← clause(Head, Bdy),

solve(Bdy, s(DSoFar), IntD), solve(Tail, IntD, Res)

clause(mem(X, [X|T]), [])←
clause(mem(X, [Y |T]), [mem(X, T)])←
clause(app([], L, L), [])←
clause(app([H|X], Y, [H|Z]), [app(X,Y, Z)])←

Figure 1 represents an incomplete SLD-treeτ for P ∪ {← solve(mem(X, L), D,R)}. This tree

has two non-failing branches andresultants(τ) thus contains the two clauses:

solve(mem(X, [X|L]), D, s(D))←
solve(mem(X, [Y |L]), D, R)← solve(mem(X, L), s(D), R)

These two clauses are a partial deduction ofA = {solve(mem(X, L), D,R)} in P . Note that

the complete SLD-tree forP ∪ {← solve(mem(X, L), D,R)} is infinite.

Observe how one resolution step in the partial deduction corresponds to three to four reso-

lution steps in the original program. This results in the specialized program being substantially

faster than the original one. E.g., on a typical Prolog system and for typical runtime queries the

specialized program is more than three times faster than the original.1

In analogy with terminology in partial evaluation, the partial deduction ofA in P is also

referred to as theresidual clausesof A and the partial deduction ofA in P as theresidual

program.

1E.g., 3.4 times faster on Sicstus Prolog 3.8.7 running on a Powerbook G4 667 Mhz with 1 Gb RAM and Mac

OS X 10.1.4.

12

The intuition underlying partial deduction is that a programP can be replaced by a partial

deduction ofA in P and that both programs areequivalentwith respect to queries which are

constructed from instances of atoms inA. Almost all works on partial deduction aim at preserv-

ing the procedural equivalence under SLD (and SLDNF). Before defining the extra conditions

required to ensure it, we introduce a few more concepts:

Definition 2.6 Let A1, A2, A3 be three atoms, such thatA3 = A1θ1 andA3 = A2θ2 for some

substitutionsθ1 andθ2. ThenA3 is called acommon instanceof A1 andA2. LetA be a finite set

of atoms andS a set containing atoms, conjunctions, and clauses. ThenS isA-closediff each

atom inS is an instance of an atom inA. Furthermore we say thatA is independentiff no pair

of atoms inA has a common instance.

The main result of [152] about procedural equivalence can be formulated as follows:

Theorem 2.7

Let P be a definite program,A a finite, independent set of atoms, andP ′ a partial deduction

of A in P . For every goalG such thatP ′ ∪ {G} isA-closed the following holds:

1. P ′ ∪ {G} has an SLD-refutation with computed answerθ iff P ∪ {G} does.

2. P ′ ∪ {G} has a finitely failed SLD-tree iffP ∪ {G} does.

The theorem states thatP andP ′ are procedurally equivalent with respect to the existence

of success-nodes and associated answers forA-closed goals. The fact that partial deduction

preserves equivalence only forA-closed goals distinguishes it from e.g. unfold/fold program

transformations which aim at preserving equivalence for all goals. Note that the theorem does

not tell us how to obtainA, an issue which is tackled by thecontrol of partial deduction (see,

e.g., [127]).

In Example 2.5, we have that the partial deduction of the setA = {solve(mem(X, L), D,R)}
in P satisfies the conditions of Theorem 2.7 for the goals← solve(mem(X, [a]), 0, R) and←
solve(mem(a, [X, Y]), s(0), R) but not for the goal← solve(app([], [], L), 0, R). Indeed, the

latter goal succeeds in the original program but fails in the specialised one. Intuitively, ifP ′∪{G}
is notA-closed, then an SLD-derivation ofP ′ ∪ {G} may select a literal for which no clauses

exist inP ′ while clauses did exist inP . Hence, a query may fail while it succeeds in the original

program.

If A is not independent then a selected atom may be resolved with clauses originating from

the partial deduction of two distinct atoms. This may lead to computed answers that, although

correct, are not computed answers of the original program. However, this can be easily remedied

13

by a renamingtransformation, generating new predicate names for atoms which are not inde-

pendent [6]. To improve the efficiency of specialised programs, all partial deduction systems

we know of, perform renaming together with so-calledfiltering [59, 60, 145, 177], which filters

out constants and function symbols. E.g., for our Example 2.5, a filtered partial deduction ofA
in P would be something like the following, which delivers an additional speedup of over 1.5

compared to the partial deduction in Example 2.5:

solve 1 (X, [X|L], D, s(D))←
solve 1 (X, [Y |L], D, R)← solve 1 (X, L, s(D), R)

In practice it is thus theA-closedness condition which is the most important one. It is also this

condition which best illustrates the link between partial deduction and program analysis. Indeed,

as we will show in the next section, theA-closedness condition for the residual programP ′ in

Theorem 2.7 ensures thattogetherthe SLD-trees, from which the clauses inP ′ are derived, form

acomplete descriptionof all possible calls that can occur for all goalsG which areA-closed.

3 Partial Deduction and Program Analysis

Below we denote by2S the power-set of some setS, byC lauses the set of all clauses, byAtoms

the set of all atoms, and byQ the set of all conjunctions.

3.1 Partial Deduction as Program Analysis

In the context of a logic programP there are plenty of program properties that are of interest,

such as, e.g., the logical consequences ofP or the computed answers ofP . The following

property is a key concept in termination analysis [41] and will be of interest in relating partial

deduction and program analysis.

Definition 3.1 For a programP and a conjunctionQ the call setof P ∪ {← Q}, denoted by

calls(P, Q), is the set of selected atoms within all possible complete SLD-trees forP ∪ {← Q}.

We have seen in the previous section that theA-closedness condition ensures correctness

of the specialised program and the condition must thus ensure that all possible calls that can

occur when running the specialised program have been taken into account by partial deduction.

It is thus to be expected that some relationship between partial deduction and call sets can be

established. The following proposition shows that under certain circumstances, the result of a

partial deduction can indeed be viewed as a program analysis inferring information about various

call sets.

14

Proposition 3.2Let P be a definite program andQ a conjunction. LetA be a finite set of atoms,

andP ′ a partial deduction ofA in P such thatP ′ ∪ {← Q} isA-closed. If the SLD-trees whose

resultants make upP ′ are such that every SLD-tree has a depth of 1, i.e., every tree contains just

a single unfolding step, then the following holds:calls(P, Q) ⊆ {Aθ | A ∈ A}.

In the above proposition we have restricted ourselves to very simple SLD-trees, containing

exactly one unfolding step. In fact, if one allows more than one unfolding step, then the rela-

tionship betweenA and the call set becomes more complicated, detracting from the point we are

trying to make.2 Below we will describe a procedure which, givenP andQ, will constructA
andP ′ such thatP ′ ∪ {← Q} isA-closed.

Let us first illustrate Proposition 3.2 using an example.

Example 3.3Let P be the following program:

mem(X, [X|L])←
mem(X, [Y |L])← mem(X, L)

The partial deductionP ′ of A = {mem(a, L)}, which we obtain by performing just a single

unfolding step forP ∪ {← mem(a, L)}, is as follows:

mem(a, [a|L])←
mem(a, [Y |L])← mem(a, L)

Note thatP ′ ∪ {← mem(a, L)θ} is A-closed for any substitutionθ. As stated by Proposi-

tion 3.2, for any substitutionθ, all elements ofcalls(P,mem(a, L)θ) are instances of an element

of A. Partial deduction has thus “deduced” structural information about the call set: all calls to

mem have the constant ’a’ in the first argument position.

Having identified one relationship between partial deduction and program analysis, we will

now formalize this process more precisely in the abstract interpretation framework. This will

clarify their relationship and pave way to an integration of abstract interpretation and partial

deduction.

3.2 Abstract Interpretation

Abstract interpretation [35] provides a general formal framework for performing sound program

analysis and has been successfully applied to the analysis of logic programs [36, 14, 91]. To

2BasicallyA then only contains information about calls at certain “program points” and infers information about

the calls on successful branches only, rather than about any call.

15

make program analysis tractable, abstract interpretation distinguishes between a concrete do-

main C of program properties and anabstract domainAD of properties. The latter contains

finite, approximate representations of (sets of) concrete properties. The concrete properties are

used by a semantic functionsem which assigns to every programP and a set of calls3 S its

(concrete) semanticssem(P, S) ∈ 2C. The abstract domain is linked to the concrete domain via

aconcretization functionγ : AD → 2C, which assigns to each abstract property the (possibly in-

finite) set of concrete properties it represents. Program analysis is then performed by abstractly

executing a programP to be analyzed in the abstract domain rather than in the concrete one.

For this, abstract counterparts of the concrete operations ofP have to be developed. These ab-

stract operations have to be asafe approximation, in the sense that for every concrete operation

op : 2C → 2C, the corresponding abstract operationopα : AD → AD must satisfyγ(opα(A)) ⊇
op(γ(A)).

Under certain conditions (see [35, 36]) the overall resultabs sem(P, A) of the abstract ex-

ecution ofP for some abstract input valueA is then also a safe approximation of the concrete

properties of the program, in the sense that:

γ(abs sem(P, A)) ⊇ sem(P, γ(A))

3.3 Partial Deduction as Abstract Interpretation

Proposition 3.2 shows that we can view the set of (concrete) atomsA of a partial deduction

also as an abstract program property, approximating the call setcalls. If we try to view this in

abstract interpretation terms, we would have to chooseC =Q as concrete domain andAD = 2Q

as abstract domain. The proposition also suggests a concretization functionγinst defined by

γinst(S) = {Aθ | A ∈ S ∧ θ is a substitution}

Thusγinst({p(X,X)}) contains, e.g.,p(a, a), p(b, b), p(X, X), but notp(a, b). An atom in the

abstract domain thus represents all its instances in the concrete domain (and thus also itself).

Observe that ifP ′ ∪ {← Q} isA-closed then so isP ′ ∪ {← Qθ} for any substitutionθ. We

can thus obtain an instance of our equationγ(abs sem(P, A)) ⊇ sem(P, γ(A)) above, by using

A = {Q}, sem(P, Qs) =
⋃

Q′∈Qs calls(P, Q′), and by substitutingabs sem(P, A) =A, yielding

the equation:

γinst(A) ⊇
⋃

Q′∈γinst ({Q})
calls(P, Q′)

3Programs are usually analyzed for a set of calls rather than for an individual call. Also, sometimes the semantics

function is goal-independent and assigns every programP its concrete semanticssem(P).

16

In other words, the setA of atoms of a partial deduction is a safe approximation of the call set,

provided single unfolding steps are used andP
⋃{← Q} isA-closed.

Controlling Partial Deduction

Can we also cast the process of constructingA in an abstract interpretation manner, i.e., as

executing abstract counterparts of concrete operations? To answer this question we first present

more details on how partial deduction is actually controlled.

We first need the following definition.

Definition 3.4 An unfolding ruleis a function which, given a programP and a conjunctionQ,

returns the resultantsresultants(τ) of a finite, non-trivial SLD-treeτ for P ∪ {← Q}.

We also define the operationsplit : 2Q → 2Atoms by

split(S) = {Ai | A1 ∧ . . . ∧ Ai ∧ . . . ∧ An ∈ S}

Next, the operationresolve : C lauses×Q → 2Q resolves a clause with a conjunction and

is defined by

resolve(C, A1 ∧ . . . ∧ An) = {A1 ∧ . . . Ai−1 ∧Bθ ∧ Ai+1 . . . ∧ An |
θ = mgu(H, Ai) andH ← B is a renamed apart version ofC }

The following is a typical way (see, e.g., [55, 57, 127]) of controlling classical partial deduc-

tion [152].

Procedure 1 (Classical Partial Deduction)

Input: A programP and a conjunctionQ

Output: A specialised programP ′ and a set of atomsAi such thatP ′ ∪ {← Q} isAi-closed.

Initialize: i = 0,A0 = split(Q)

repeat

letRi := {R | R ∈ resolve(C, A)∧ A ∈ Ai ∧ C ∈ unfold(P, A)};
let Ni := {N | N ∈ split(Ri)∧ N 6∈ γinst(Ai)};
let Ai+1 := generalize(Ai ∪Ni); let i := i + 1;

until Ai−1 = Ai

Let P ′ =
⋃

A∈Ai
unfold(A)

17

The procedure is parametrized by two operations: an unfolding ruleunfold (Definition 3.4)

and a generalization operationgeneralize. The former is usually referred to as the local control

while the latter embodies the so-called global control, and must satisfyγinst(generalize(S)) ⊇
γinst(S). This guarantees that if the procedure terminates, thenP ′ ∪ {← Q} is Ai-closed.

generalize is usually devised such that Procedure 1 terminates (cf, [127]), and can then be seen

as a widening operator in the abstract interpretation sense. More on that below.

The use of thesplit operation embodies the fact that classical partial deduction specializes

individual atoms and not conjunctions.

Fixpoints

Before formally defining our concrete semantics, we need the following concepts.

Let T be a mapping2D 7→ 2D, for someD. We then defineT ↑0 (S) = S andT ↑i+1 (S) =

T (T ↑i (S)). We also defineT ↑ω (S) =
⋃

i<ω T ↑i (S).

By the well known Knaster-Tarski fixpoint theorem we know that ifT is monotonic (I ⊆ J

⇒ T (I) ⊆ T (J)) thenT has a least fixpoint. Another well known fact is that ifT is continuous

(i.e.,T is monotonic and for every sequenceI0 ⊆ I1 ⊆ . . . we haveT (
⋃

n<ω In) ⊆ ⋃
n<ω T (In))

thenT ↑ω (∅) is its least fixpoint. Furthermore, it is also easy to see (by applying the above to

TS(I) = T (I) ∪ S) thatT ↑ω (S) will be the least fixpoint containingS.

Concrete Semantics

We can now formalize our concrete semantics, the call set from Definition 3.1, in terms of a least

fixpoint of a concrete operatorRP : 2Q → 2Q defined by

RP (S) = S ∪
⋃

Q∈S ∧C∈P

resolve(C, Q)

RP is monotonic and continuous andRP ↑ω thus computes least fixpoints. The least fixpoint

RP ↑ω (Q) of this operator does not yet give us the call setcalls(P, Q); it computes all possible

subgoals forP ∪ {← Q}, not the selected atoms within the subgoals. To extract the selected

atoms we can use thesplit operation introduced above, and we can express the call set in terms

of RP as follows:calls(P, Q) = split(RP ↑ω ({Q})).

18

Abstract semantics

We will now try to reformulate Procedure 1 as computing a fixpoint of an abstract version ofRP .

Let us first define the following abstract operatorRα
P : 2Atoms → 2Atoms defined by

Rα
P (S) = S ∪

⋃
A∈S ∧C∈unfold(P,A)

resolve(C, A)

First, we would like to show thatRα
P is a sound approximation ofRP and that a fixpoint

of Rα
P safely approximates the least fixpoint ofRP . It is straightforward to show (e.g., using

Lemma 4.12 from [152]) that in the above definition and for single step unfolding, we can re-

place the conditionC ∈ unfold(P, A) simply by C ∈ P . ThusRα
P is actually identical to

RP . However, we have to be careful asRα
P works on the abstract domain, where every con-

junction represents all its instances. Thus, it does not immediately follow thatRα
P is a safe

approximation ofRP . To establish this, let us look at a single concrete resolution step per-

formed byresolve(C, A). As usual in abstract interpretation, we lift this concrete operation to

sets of atoms:resolve∗(C, S) = {resolve(C, A) | A ∈ S}. The abstract counterpart inRα
P

is simply resolveα(C, A) = resolve(C, A), which is a sound approximation ofresolve, i.e.,

γinst(resolveα(C, A)) ⊇ resolve∗(C, γinst(A)). This is a corollary of Proposition 5.6 later in the

paper. We have thus that

RP (γinst(A)) ⊆ γinst(R
α
P (A))

In other words,Rα
P is a safe approximation ofRP . Observe that, in general, we do not have equal-

ity betweenγinst(resolveα(C, A)) andresolve∗(C, γinst(A)). Take, for example,C = p← q(X)

andA = p, and we haveq(a) ∈ γinst(resolveα(p ← q(X), p)) while resolve∗(C, γinst(A)) =

{q(X)}.
In addition toRα

P , Procedure 1 also applies the operationsgeneralize andsplit . The former

has the propertyγinst(generalize(S)) ⊇ γinst(S) but unfortunately, it is generally not the case

thatγinst(split(S)) ⊇ γinst(S). E.g.,γinst({p(a), q(a)}) 6⊇ γinst({p(a) ∧ q(a)}). In other words,

we cannot viewsplit as a generalization operator wrtγinst , and the outputAi of Procedure 1 is

not a safe approximation of the least fixpoint ofRP .

To remedy this problem we have to use a different concretization functionγ∧inst which ac-

knowledges the fact that conjunctions can be split up and which is defined by

γ∧inst(S) = {Q1 ∧ . . . ∧Qn | Qi ∈ γinst(S)}

Forγ∧inst , split is a generalization operation:γ∧inst(split(S)) ⊇ γ∧inst(S), and so isgeneralize:

γ∧inst(generalize(S)) ⊇ γ∧inst(S). Also, the conditionN 6∈ γinst(Ai) obviously does not affect

the concretizations ofAi. This means that termination of Procedure 1 implies thatAi is a se-

mantic fixpoint wrtγ∧inst , in the sense that:γ∧inst(Ai) = γ∧inst(R
α
P (Ai)). Even when not using

19

Procedure 1,A-closedness ofP ′ in Theorem 2.7 ensures thatA is a semantic fixpoint ofRα
P :

γ∧inst(A) = γ∧inst(R
α
P (A)).

Also, if an operation is a safe approximation wrtγinst then it is also a safe approximation wrt

γ∧inst . We have thus that

RP (γ∧inst(A)) ⊆ γ∧inst(R
α
P (A))

In other words,Rα
P is a safe approximation ofRP wrt γ∧inst , and one can establish using the

abstract interpretation framework that a fixpoint ofRα
P safely approximates the least fixpoint of

RP wrt γ∧inst .

From this we can thus conclude thatA-closedeness ofP ′∪{← Q} in Proposition 3.2 ensures

thatRP ↑ω (γ∧inst({Q})) ⊆ γ∧inst(A). As split is monotonic wrtγ∧inst , we can formally deduce

Proposition 3.2 as follows:calls(P, Q) ⊆ calls(P, γ∧inst({Q})) = split(RP ↑ω (γ∧inst({Q}))) ⊆
split(γ∧inst(A)) = γinst(A) = {Aθ | A ∈ A}.

In summary, we have re-formulated partial deduction as a particular abstract interpretation,

where

– the abstract domain is simply the powerset of the concrete domain,

– the concretisation function simply instantiates variables,

– the concrete semantics is based on SLD resolution,

– and where we have used this to formally prove Proposition 3.2.

Extension to Conjunctive Partial Deduction

Having recast the program analysis aspect of classical partial deduction as a safe abstract inter-

pretation, it is actually not very difficult to extend this result to conjunctive partial deduction:

the only4 modification to Procedure 1 is that instead of usingsplit we use a partitioning func-

tion (cf., [42]) partition satisfyingγ∧inst(partition(S)) ⊇ γ∧inst(S). Whereassplit always splits

conjunctions into its individual atoms,partition does not have to do so. For example, while

split({q(X) ∧ p(X) ∧ r(Z)}) = {p(X), q(X), r(Z)} we could havepartition({q(X) ∧ p(X) ∧
r(Z)}) = {p(X) ∧ q(X), r(Z)}.

The resultAi of the thus adapted conjunctive partial deduction Procedure 1 still safely ap-

proximates the least fixpoint ofRP wrt γ∧inst , but we no longer havesplit(γ∧inst(Ai)) = γinst(Ai)

asAi now may contain conjunctions.

4One actually also has to extend Definition 2.4 to perform a renaming from conjunctions in heads of resultants

to atoms.

20

3.4 Discussion

Having established a strong relationship between partial deduction and abstract interpretation,

what sets partial deduction apart from abstract interpretation in general? The major difference is

linked to the use of the unfolding ruleunfold within Rα
P (see also [182, 192]):

• First, unless we use a simple one-step unfolding rule, this hides certain program points

from the analysis. These program points are not relevant from the point of view of partial

deduction, as they disappear within the residual program.

• Second, viaunfold partial deduction constructs residual code. While the analysis compo-

nent of partial deduction is a safe approximation of the call set, the requirements for the

residual code are stronger: it must betotally correct. As we have seen in Theorem 2.7

the residual code preservesexactly the computed answers (no over-approximation) and

the finite failures. This is something that the abstract interpretation framework does not

provide.

Thus, not all of partial deduction can be cast in an abstract interpretation framework. Apart

from those fundamental differences, there are further aspects that distinguish partial deduction

from techniques commonly used to perform abstract interpretation of logic programs.

• Partial deduction can make use of conjunctions [42] with relatively little effort. This can be

used to achieve optimizations such as tupling and deforestation, and can increase precision

by analyzing calls together, rather than in isolation. Logic program analysis techniques

typically do not analyze conjunctions, but analyze atoms in isolation (but have mechanisms

of propagating some information from one call to another). However, there are exceptions

such as [10] and to some extent also [155].

• The abstract domain of partial deduction is fixed and does not allow for very precise gen-

eralisation; e.g., the most specific generalisation possible ofp(a) andp(b) is p(X). To

our knowledge, only one other abstract interpretation technique [154, 155] uses the same

abstract domain. The abstract domain has the advantage of being close to the concrete

domain, and we can obtain very precise results as long as we do not need generalisation

(in the absence of existential variables abstract execution will be identical to concrete exe-

cution).

• In abstract interpretation of logic programs one distinguishes between bottom-up methods,

based on approximating goal-independent, declarative semantics (usuallyTP or model

21

based) and top-down methods based on abstracting a goal dependent, top-down semantics

(operational semantics or denotational).

Partial deduction uses the SLD procedural semantics as its basis (embodied withinRP)

and is thus top-down. However, the use of the SLD procedural semantics is rather atypi-

cal. This makes it easier to generate residual code, but makes it difficult or impossible to

analyse certain other properties. Notably, no real information about the answers is derived

(just about the call set). Very few abstract interpretation techniques use the SLD procedu-

ral semantics as its basis (exceptions are, e.g., [107] and [29]). A more popular semantics

for top-down abstract interpretation is based on And-Or trees [14, 91, 97, 167, 115], where

it is easier to capture and propagate success information.

The various limitations of partial deduction have been realized by many researchers (e.g.,

[43, 66, 44, 184, 117, 138, 143, 182, 192]), and various extensions of partial deduction have

been developed over the years (e.g., [60, 128, 143, 140, 74]) which overcome this particular

limitation.

We have made the link of existing partial deduction techniques to abstract interpretation

clearer, and will use this as the basis of extending partial deduction and conjunctive partial de-

duction to new abstract domains. We will then provide generic correctness results for this new

setting of abstract partial deduction, and also illustrate the power of this new approach on practi-

cal examples.

4 Abstract Domains for Specialization

In this short section we introduce the concept of abstract domains as required for our framework.

First, we need the following definitions. Anexpressionis either a term, an atom or a conjunction

of atoms. We useE1 � E2 to denote that the expressionE1 is an instance of the expressionE2.

By vars(E) we denote the set of variables appearing in an expressionE. By mgu we denote a

(deterministic) function which computes an idempotent and relevant5 most general unifierθ of

two expressionsE1 andE2 (and returnsfail if no such unifier exists).

As above, we denote byQ the set of all conjunctions. As we have seen, even when performing

classical partial deductions on atoms only, conjunctions will still appear, e.g., in the leaves of the

SLD-trees produced by the unfolding rules. This justifies why our concrete domain for abstract

partial deduction talks about conjunctions rather than atoms.

5I.e.,θθ = θ andvars(θ) ⊆ vars(E1)∪ vars(E2). There can be several most general unifiers which satisfy that

criterion; the particular choice is, however, not important.

22

ForQ we assume that the connective∧ is associative but not commutative nor idempotent.

In other words, for us a conjunction can also be viewed as a list of atoms, but not as a set or

multi-set of atoms. This assumption is of relevance mainly for Section 7, where we deal with

code generation for conjunctive (abstract) partial deduction.

Definition 4.1 An abstract domain(AQ, γ) is a pair consisting of a setAQ of so-calledabstract

conjunctionsand a totalconcretization functionγ : AQ → 2Q, providing the link between the

abstract and the concrete domain, such that∀A ∈ AQ the following hold:

1. ∀Q ∈ γ(A) we have{Qθ | θ is a substitution} ⊆ γ(A),

2. ∃Q ∈ Q such thatγ(A) ⊆ {Qθ | θ is a substitution}.

Property 1 expresses the requirement that the image ofγ(.) is downwards closed. This means

that certain properties, such as) freeness (e.g., [166] cannot be captured, but downwards closede-

ness is required for our correctness proofs.

Property 2 expresses the fact that all conjunctions inγ(A) have the same number of con-

juncts and with the same predicates at the same position. This property is crucial to enable the

construction of (correct) residual code. A conjunctionQ satisfying property 2 is called acon-

crete dominatorof A. An abstract conjunction such that its concrete dominators are all atoms is

called anabstract atom.

Observe that property 2 still admits the possibility of a bottom element⊥ whose concretisa-

tion is empty.

One particular abstract domain, which arises in the formalization of (classical) partial deduc-

tion [152] and which we have encountered in Section 3.3, is thePD-domain defined as follows.

Definition 4.2 ThePD-domain is the abstract domain(Q, γinst) whereγinst is defined by:

γinst(Q) = {Q′ | Q′ � Q}

In other words, we haveAQ = Q (i.e. the abstract conjunctions are the concrete ones)

and an abstract conjunction denotes the set of all its instances. For example, we can use the

(concrete) conjunctionp(X) ∧ q(X) as an abstract conjunction in thePD-domain withp(a) ∧
q(a) ∈ γinst(p(X) ∧ q(X)) as well asp(X) ∧ q(X) ∈ γinst(p(X) ∧ q(X)), but p(a) ∧ q(b) 6∈
γinst(p(X) ∧ q(X)).

Using the concrete conjunctions as abstract conjunctions is potentially confusing, which has

probably obfuscated the relationship between partial deduction and abstract interpretation in the

past.

23

5 Abstract Unfolding and Resolution

Let us now try to remove one limitation of classical partial deduction in general and Procedure 1

in particular: its limitation to thePD-domain. We will tackle the extension to conjunctive partial

deduction later in Section 7, although in the exposition below we will (whenever there is no harm

to clarity) keep the definitions as general as possible so as to simplify the move to conjunctive

partial deduction.

The result ofresolve(C, A) in Procedure 1 is actually the body of the resultantC generated

by unfold for P ∪ {← A}. Now, a subtle, but important point is that the body of a resultant is

thus used in two different ways: First, it is obviously part of the residual code. Second, it is used

as an abstract conjunctions in thePD-domain, representing all possible resolvents. In summary,

the body of a resultant is not only used as aconcrete conjunctionwithin the residual code, it

is also used as anabstractconjunction for a program analysis of the call set (to ensure that all

possible calls are covered by the residual code).

In the more general setting we endeavor to develop, these two roles of the bodies of resultants

have to be separated out (the residual program still has to be expressed in the concrete domain

but we want to be able to use abstract domains different from thePD-domain). This has already

been prepared within Procedure 1 by using the two functionsunfold andresolve. All we have to

do now, is to generalize these two functions. In other words, if we want to specialize an abstract

atomA within a programP :

1. we have to compute a set of resultants, to be denoted byaunfold(P,A) which have to be

“totally correct” for all possible calls inγ(A), ensuring that no computed answers will be

lost or added within the specialised program (we will make this more precise below).

2. we have to compute, for each resultantCi in aunfold(P,A) anabstractconjunctionAi,

to be denoted byaresolve(Ci,A), safely approximating all the possible resolvent goals

which can occur after resolving an element ofγ(A) with C.

We will call step 1.abstract unfoldingand step 2.abstract resolution, and will formally define

these concepts in Definitions 5.3 and 5.4 below. For this we need a few auxiliary concepts.

First, we want to be able to formally define when the resultants produced byaunfold(P,A)

for a particular abstract conjunctionA are correct, independently of how the rest of the spe-

cialised program looks like. In other words, we want a local correctness criterion, just consid-

ering the resultants generated forA. The problem is that these resultants are incomplete; they

will typically refer to other predicates defined somewhere else in the final specialised program

P ′ and we cannot execute the resultantsaunfold(P,A) in isolation. We can, however, perform

24

single resolution steps on these resultants. Suppose, e.g., that← p(X) resolves with a resultant

p(Z) ← q(Z) ∈ aunfold(P,A) giving us the resolvent← q(Z) and themguθ = {X/Z}. We

cannot viewθ as a computed answer substitution forP ′ ∪ {← p(X)}, but we can view the pair

〈q(Z), θ〉 as aconditional answerfor P ′ ∪ {← p(X)}: if we manage to find a computed answer

substitutionσ for P ′∪{← q(Z)} thenθσ restricted to the variableX will be a computed answer

substitution forP ′ ∪ {← p(X)}.
So, in order to reason about correctness of resultants individually, we need to show that the

conditional answers obtained usingaunfold(P,A) can be put into a one-to-one correspondence

with conditional answers of the original program. To be able to express this formally, we now

define the concept ofconditional answersas obtained from possibly incomplete SLD-trees in the

original program and from resultants.

Definition 5.1 (;τ , ;R) Let P be a program andQ a conjunction. Given an SLD-treeτ for

P ∪{← Q} we denote byQ ;τ 〈L, θ〉 the fact that a leaf goal← L of τ can be reached fromQ

via c.a.s.θ. 〈L, θ〉 is also called aconditional computed answerfor Q in P .

Given a resultantR and a conjunctionQ we denote byQ ;R 〈L, θ〉 the fact thatθ =

θ′ ↓vars(Q), L = Bθ′ whereθ′ = mgu(Q,H), H ← B is some variant ofR which has no

variables in common withQ, andθ′ ↓vars(Q) denotes the restriction ofθ′ to the variables inQ.

If Q and the head ofR are atomsQ ;R 〈L, θ〉 is equivalent to saying that← Q resolves

with the clauseR via c.a.s.θ yielding← L as resolvent. For example,p(X, b) ;p(a,Z)←q(Z)

〈q(b), {X/a}〉. The above definition can also be applied ifQ is a conjunction andR is a resultant

which is not a clause. Take for example,R = p1(a)∧p2(Z)← q(Z) andQ = p1(X)∧p2(b). We

then obtainQ ;R 〈q(b), {X/a}〉. This will be of relevance mainly when we consider conjunc-

tive partial deduction later on. Intuitively this treatment does not introduce a new computation

paradigm; it just corresponds to renaming conjunctions into atoms and general resultants into

Horn clauses and then applying ordinary resolution. In the above example, if we renameQ into

Q′ = p′(X, b) andR into R′ = p′(a, Z) ← q(Z) we obtain the same partial computed answer

Q′ ;R′ 〈q(b), {X/a}〉.
Observe thatQ ;τ 〈L, θ〉 implies that∃R ∈ resultants(τ) such thatQ ;R 〈L, θ〉.
In order to define correctness criteria, we have to reason about equivalence of conditional

computed answers and computed answer substitutions in the original program and in the residual

program. However, substitutions (and renaming substitutions) within SLD-trees are notoriously

difficult to handle (see [109] or [47]), and proving identity of computed answer substitutions is

often very tricky or impossible to achieve. To avoid these technical problems we introduce the

following notion, characterizing when two conditional computed answers are equivalent (in the

context of a particular goalQ).

25

Definition 5.2 (≈Q) Given three conjunctionsQ, L, L′ and two substitutionsθ, θ′ we say that

〈L, θ〉 ≈Q 〈L′, θ′〉 iff Qθ ← L is a variant ofQθ′ ← L′.

For example, we have〈q(Z), {X/Z}〉 ≈p(X) 〈q(V), {X/V, Z/V }〉 asp(Z) ← q(Z) is a

variant ofp(V)← q(V).

We can now formalize the notion of abstract unfolding and resolution.

Definition 5.3 Let (Q, γ) be an abstract domain. Anabstract unfoldingoperationaunfold for a

programP and(Q, γ) maps abstract conjunctions to finite sets of resultants and has the property

that for allA ∈ AQ andQ ∈ γ(A) there exists a non-trivial SLD-treeτ for P ∪ {← Q} such

that:

Q ;τ s1 ⇒ ∃Ci ∈ aunfold(P,A) | Q ;Ci
s2 ∧ s1 ≈Q s2 (1)

Q ;Ci
s2 ∧ Ci ∈ aunfold(P,A) ⇒ ∃s1 | Q ;τ s1 ∧ s1 ≈Q s2 (2)

Point 1 requests that the code generated byaunfold is completein the sense that every condi-

tional computed answers1 can be reproduced by at least one of the resultants inaunfold(P,A).

Point 2 additionally requestssoundness(as we want to have residual code which istotally correct

and not just a safe approximation), in the sense that every conditional computed answers2 can

be achieved within the original program as well. Together, Points 1 and 2, thus express that there

must be aone-to-one correspondencebetween conditional computed answers in the original pro-

gram and the resultantsaunfold(P,A). Some of these points are illustrated in Figure 2 below

(wheres1 = 〈L, θ〉 ands2 = 〈L′, θ′〉).

?

? ?

. . .
θ

AAU
A
AU

.
@

@
@

@R

�
�

�
��	

← L′

〈L, θ〉 ≈Q 〈L′, θ′〉

C1 Cn

Ci

← Q

← L

An SLD-treeτ for P ∪ {← Q} ResolvingQ with aunfold(P,A) = {C1, . . . , Cn}

H
HHj

�
��

�
�=

← Q

θ′

Figure 2: One-to-one correspondence of conditional computed answers for abstract unfolding

Definition 5.4 Let (Q, γ) be an abstract domain. Anabstract resolutionoperationaresolve for

(Q, γ) maps abstract conjunctions and concrete resultants to abstract conjunctions such that for

all A ∈ AQ, Ci ∈ aunfold(P,A), andQ ∈ γ(A):

Q ;Ci
〈L′, θ′〉 ⇒ L′ ∈ γ(aresolve(A, Ci)) (3)

26

Point 3 requires thatAi = aresolve(A, Ci) is a safe approximation of the possible resolvents

of Ci, in the sense that every possible resolvent ofQ ∈ γ(A) with Ci is a concretisation ofAi

(but not necessarily vice-versa).

Unless explicitly stating otherwise, we suppose that the abstract unfoldingaunfold and ab-

stract resolution operatorsaresolve, along with the abstract domain(Q, γ), are fixed.

How to construct abstract unfoldings

aresolve is thus basically a safe approximation of a resolution step, and we can thus develop

aresolve by reusing abstract interpretation techniques. We will thus not discuss this issue in

much detail here, but refer the reader to the abstract interpretation literature.

The development of a correct abstract unfolding operation is another issue, and is not some-

thing that can be found within the abstract interpretation literature.

Note that the definition ofaunfold does not stipulate how the resultants are to be obtained;

it just describes how a “correct” set of resultants should look like. In particular, in contrast to

classical partial deduction, the resultants donotnecessarily have to be extracted from SLD-trees.

In classical partial deduction, we haveaunfold(P, A) = resultants(τ ′) whereτ ′ is an SLD-tree

for P ∪ {← A}, and the conditions of Definition 5.3 are thus trivially met (we have to choose as

τ for P ∪ {← Q} and “adapted” version ofτ ′ where some branches may be removed asQ is an

instance ofA).

Many unfolding techniques have been developed in the context of classical partial deduction.

Issues for concern are [127]: termination (i.e., building finite SLD-trees), achieving good spe-

cialization and avoiding slowdowns. To ensure termination, well-founded measures [16, 156]

and well-quasi-orders can be used [198, 8]. The well-quasi orders based on the homeomorphic

embedding relation [203, 122] have recently been very popular. To avoid slowdowns, determi-

nacy [60, 55], only selecting atoms that unify with a single clause head, has been successful. The

strategy can be refined with a so-called “look-ahead” to detect failure at a deeper level. We refer

the interested reader to [127] for a recent survey of these techniques.

For abstract partial deduction, we can always do a similar thing: givenA chose a concrete

dominatorA of A (cf., Point 2 of Definition 4.1), construct an SLD-treeτ for P ∪ {← A} and

simply setaunfold(P,A) = resultants(τ). This always satisfies Definition 5.3. The following

example illustrates this on thePD-domain.

Example 5.5Let P be the following program checking equality of lists:

eq([], [])←
eq([H|X], [H|Y])← eq(X, Y)

27

Let A = eq([a|T], Z) in thePD-domain and letτ be the SLD-tree depicted in Figure 3 for

P ∪ {← eq([a|T], Z)} (i.e., we useA as a concrete dominator of itself). Let us perform abstract

unfolding in a classical manner, by taking the resultants ofτ :

– aunfold(P,A) = resultants(τ) = {C1}, whereC1 = eq([a|X], [a|Y])← eq(X, Y),

– aresolve(A, C1) = eq(X, Y)

These two definitions satisfy all points of Definitions 5.3 and 5.4 forA. For example, let us

examine the 2 concretisationsA1 = eq([a], [b]) ∈ γinst(A)andA2 = eq([a, b], Y) ∈ γinst(A) of

A. Figure 3 shows that for each of those we can construct SLD-trees which satisfy Definition 5.3.

For example,A1 has a failed SLD-tree andA1 does not unify with the headeq([a|X], [a|Y]) of

C1 either. We thus trivially have the required one-to-one correspondence of conditional answers

(and satisfy Definition 5.4 as well). ForA3 we haveA3 ;C1 〈eq([b], Y ′), {Y/[a|Y ′]}〉 and

A3 ;τ3 〈eq([b], Y ′′), {Y/[a|Y ′′]}〉
We have〈eq([b], Y ′), {Y/[a|Y ′]}〉 ≈A3 〈eq([b], Y ′′), {Y/[a|Y ′′]}〉 and thus again the required

one-to-one correspondence.

τ :τ2:τ1:

?fail

{Z/[a|Y], T/X, H/a}

← eq(X, Y)

{Y/[a|Y ′′]}

← eq([b], Y ′′)
?

← eq([a|T], Z)← eq([a], [b]) ← eq([a, b], Y)

Figure 3: SLD-trees for Example 5.5

While computingaunfold by taking the resultants from SLD-trees of concrete dominators

is correct, it does not yet make much use of the information withinA. One can use the in-

formation within A to further instantiate those resultants; inspired by the more specific res-

olution steps [55] or the most specific versions of [154, 155]. For example, replacingC1 in

Example 5.5 byeq([H|X], [H|Y]) ← eq(X, Y) is also correct. Also, even replacingC1 by

eq([Z|X], [a|Y]) ← eq(X, Y) is still correct. But note that this resultant is no longer sound for

calls which are not concretisations ofA (e.g., the call← eq([b], [a]) yields a conditional com-

puted answer〈eq([], []), {}〉 which cannot be matched by the original program). We will return

to this issue in Section 10.

One further possible improvement, is to remove fromresultants(τ) all those resultantsAθ ←
B which, although they resolve withA, cannot resolve with any concretisation ofA. This again,

always satisfies Definition 5.3, as the following proposition shows.

28

Proposition 5.6Let Q be an abstract conjunction and letQ be a concrete dominator forQ. Let

τ be a SLD-tree forP ∪ {← Q} and letR ⊆ resultants(τ) be a set of resultants such that for

all resultantsQθ ← B ∈ (resultants(τ) \ R) we have that no instance ofQθ is in γ(Q). Then

aunfold(P,Q) = R satisfies Definition 5.3.

Proof (Sketch) Let us first assume thatR = resultants(τ), i.e.,aunfold(P,Q) = {Qθ1 ← B1, . . . ,

Qθk ← Bk} are the resultants of a finite SLD-treeτQ for P ∪ {← Q}. Now takeQσ ∈ γ(Q) and build

the SLD-treeτ for P ∪{← Qσ} according toτQ (i.e., selecting the same literals, to the same depth; some

branches might be missing inτ because of failed unifications). All the requirements of Definitions 5.3

and 7.1 are met:

– Point 1: This is a direct corollary of Lemma 4.12 in [152].

– Point 2: This is a direct corollary of Lemma 4.9 in [152] (cf., proof of Lemma 8.3 for more details).

– Point 4: TakeQ′ = Q. This will unify with all Qθi via mgu σ and we thus haveQ ;Ci 〈Biσ, σ〉.
body trivially satisfies Definition 5.4: if someQγ resolves withH via mguθ we get the resolventBθ

which is a concretisation ofB.

Now, if R ⊂ resultants(τ) we only have to re-check Point 1. We can deduce that the headH of

every resultantC ∈ (resultants(τ) \ R) does not unify withQσ, because any instance ofH is not in

γ(Q) while any instance ofQσ is. Hence, again by Lemma 4.12 in [152] we can deduce that the branch

corresponding toC in τ is finitely failed. 2

The following simple example illustrates this possibility. (Note that we denote by2 the

empty goal as well as the empty conjunction.)

Example 5.7Let P be the following program:

(C1) p(a)←
(C2) p(f(X))← p(X)

(C3) p(g(X))← p(X)

Let A be an abstract atom within some abstract domain(Q, γ) such thatγ(A) = {p(a), p(g(a)),

p(g(g(a))), . . .}. Thenaunfold(P,A) = {C1, C3} , aresolve(A, C1) = 2 andaresolve(A, C3) =

A is correct wrt Definitions 5.3 and 5.4. We were thus able to safely remove the redundant

clauseC2, in they style of [43, 66, 44] (which detects and removes redundant clauses as a post-

processing).

[73, 74] and [131] show how such abstract unfoldings can be developed for a particular

abstract domain based upon regular types. [131] also shows how resultants can be instantiated

using the regular type information.

But even more exotic abstract unfoldings are possible. Suppose for example that the com-

puted instances of some concrete dominatorA of A are a superset ofγ(A). One can then just

29

create a single fact foraunfold(P,A); e.g., ifA = p(f(X), Z) simply produceaunfold(P,A) =

{p(X, Y)←}.
Observe, that in Definition 5.3 above, nothing forces one to use thesamestructure (i.e.

same selected literal positions, same clauses) forall the concretisations ofA. Indeed, this en-

ables some very powerful optimizations not achievable within existing “classical” specialization

frameworks. For instance, in the example below we are able to completely eliminate a type-like

check from the residual program.

Example 5.8LetP be the program from Example 5.5 andA be the set of all callseq(t, t) wheret

is a bounded list, i.e, a list whose skeleton is fixed but whose individual elements can be variables

or contain variables. For example,eq([], []) andeq([X], [X]) are inγ(A) but noteq([], [a]) nor

eq([X|T], [X|T]). This can obviously not be represented in thePD-domain.

Thenaunfold(P,A) = C1 = {eq(X, Y) ←} andaresolve(A, C1) = 2 are correct according to

the above definition! Take the concretisationsA1 = eq([], []) andA2 = eq([a], [a]). We have

A1 ;C1 〈2, {}〉 andA2 ;C1 〈2, {}〉 As can be seen in Figure 4 we can produce for each of

them an SLD-tree (with a different structure) which satisfies Definitions 5.3 and 5.4.

One can thus generate the residual program:

eq(X, Y)←
Observe that this residual code is only sound for concretisations ofA but not, e.g., for the call

eq(a, []).

{}

{}

{}

2

�
��/

�
��/

2

← eq([], [])

?

← eq([a], [a])

← eq([], [])

τ1 : τ2 :

Figure 4: SLD-trees for Example 5.8

To our knowledge, these powerful optimizations are not possible within existing partial de-

duction or partial evaluation techniques. It is related to the notion of abstract executability used

in [184, 186, 188]. In practice, such optimizations can be very useful and have already been

implemented, e.g., in the static assertion checker of the Ciao Prolog preprocessor [180, 178].

One can extend this approach to cover built-ins as well. E.g., if we know that a given variable

X represents an integer we can, e.g., specialize bothatomic(X) or number(X) into true. One

30

can imagine various other optimizations not possible in conventional techniques based upon the

PD-domain, like specializingarg or functor calls based upon type information of the arguments.

A similar idea has been used in [186, 188] to remove redundant tests and calls to builtins from the

residual program which analysis information allows abstractly executing to true, false, or error.

This technique has been applied to optimizing automatically parallelized programs.

In summary, we believe that our framework is very general, and has the potential to cover

many new, specialization techniques. While it is still far from trivial to develop those, proving

the correctness of such new specialization methods should now be much easier.

6 Atomic Abstract Partial Deduction

The definition of an abstract partial deduction is now very straightforward:

Definition 6.1 (abstract atomic partial deduction) Let P be a program,A a set of abstract

atoms andaunfold is an abstract unfolding rule. We then definethe abstract atomic partial

deduction ofP wrt A andaunfold to be the programP ′ = {C | C ∈ aunfold(P,A)∧A ∈ A}.
We also callP ′ an abstract atomic partial deduction ofP wrt A.

6.1 Correctness of Atomic Abstract Partial Deduction

If we have an abstract unfoldingaunfold at our disposal, all we have to figure out is which setA
of abstract atoms should we use in the above definition, so as to obtain a correct partial deduction.

What we need is the abstract counterpart of theA-closedness condition in Theorem 2.7. In other

words, we have to find a condition which ensures that every possible callR that can occur

when running the residual program is covered by an appropriate abstract atomA ∈ A such that

R ∈ γ(A). In Section 3.3 we have seen that theA-closedness of classical partial deduction could

be reformulated asA being a fixpoint of the operatorRα
P , which is a safe approximation of the

concrete operatorRP computing subgoals and calls. We will use that approach here.

We build uponaunfold andaresolve to extend theRα
P operator from Section 3.3 into an op-

eratorRA
P mapping sets of abstract conjunctions to sets of abstract conjunctions in the following

way:

RA
P (S) = S ∪ {aresolve(A, C) | A ∈ S ∧ C ∈ aunfold(P,A)}

Intuitively, RA
P (A) is a safe approximation of all resolvents that can arise after a single res-

olution step of a concretisation ofA with a clause in the atomic partial deduction ofP wrt A
usingaunfold .

31

We could now say that we haveA-closedness for abstract partial deductions iffγ(RA
P (A)) ⊆

γ∧(A), where, as in Section 3.3 we extend the concretisation functionγ into γ∧(S) = {Q1∧ . . .∧
Qn | Qi ∈ γ(S)} so as to take into account that conjunctions can be split up by partial deduction.

From an abstract interpretation perspective this is sufficient, as it would ensure thatA covers

all possible subgoals that can occur when executing any concretisation ofA using the partial

deduction ofP wrt A andaunfold . However, it is a bit too liberal in a partial deduction setting

as it would allow the concretisations of a single abstract atom or conjunction withinRA
P (A)

to be covered by several abstract atoms withinA. This would cause problems when applying

a renaming transformation which, as we have seen at the end of Section 2, helps overcome

the “independence” condition, improves performance, and is unavoidable for conjunctive partial

deduction. Suppose, for example, thatA = {A1,A2}, RA
P (A) = {A1}, with aunfold(P,A1) =

{p(f(X)) ← p(X)} andaunfold(P,A2) = {p(g(X)) ←} and thatγ(A1) ⊆ γ(A2) ∪ γ(A3)

while γ(A1) 6⊆ γ(A2) andγ(A1) 6⊆ γ(A3). We do haveγ(A) = γ(RA
P (A)) but it would

be impossible to perform a renaming transformation in the classical sense, as we cannot decide

whether the callp(X) within aunfold(P,A1) should be mapped to the renamed version ofA1

or A2.

In order to circumvent these problems, we introduce the following concepts.

Definition 6.2 Let (AQ, γ) be an abstract domain. First, we extendγ to sequences of abstract

conjunctions by defining

γ(〈Q1, . . . ,Qn〉) = {Q1 ∧ . . . ∧Qn | 1 ≤ i ≤ n⇒ Qi ∈ γ(Qi)}

LetA be a set of abstract conjunctions. We say that an abstract conjunctionQ is covered by

A iff there exists a sequence〈Q1, . . . ,Qn〉 of abstract conjunctions such that∀1 ≤ i ≤ n we

haveQi ∈ A andγ(Q) ⊆ γ(〈Q1, . . . ,Qn〉). A setA′ of abstract conjunctions iscovered byA
iff every element ofA′ is covered byA.

For example, in thePD-domain, bothp(a)∧ q(a)∧ p(b) andp(b)∧ p(a)∧ q(a)∧ p(c)∧ q(c)

are covered by{p(X) ∧ q(X), p(b)} but notp(a) norp(a) ∧ p(b) ∧ q(a). Here it is of relevance

that we treat∧ as associative, but not as commutative nor idempotent.

We can now define the abstract version of theA-closedness condition, which ensures that

renaming can always be performed. We also define the abstract version of the independence

condition from Definition 2.6 and Theorem 2.7.

Definition 6.3 We say that a setA of abstract conjunctions iscoveredwrt P andaunfold iff

RA
P (A) is covered byA.

We say thatA is independentiff ∀A1,A2 ∈ A with A1 6= A2 we haveγ(A1) ∩ γ(A2) = ∅.

32

We need one more definition before formulating our first correctness theorem.

Definition 6.4 Given two expressionsL andL′, we writeL ≈ L′ to denote thatL is a variant of

L.

Theorem 6.5Let P ′ be an abstract atomic partial deduction ofP wrt an independent set of

abstract atomsA. LetA be covered wrtP andaunfold and letQ ∈ γ(A). Then

1. If P ∪ {← Q} has an SLD-refutation with computed answerθ thenP ′ ∪ {← Q} has an

SLD-refutation with computed answerθ′ such thatQθ ≈ Qθ′.

2. If P ′ ∪ {← Q} has an SLD-refutation with computed answerθ′ thenP ∪ {← Q} has an

SLD-refutation with computed answerθ such thatQθ ≈ Qθ′.

3. If P ′ ∪ {← Q} has a finitely-failed SLD-tree then so doesP ∪ {← Q}.

4. If P ∪ {← Q} has a finitely-failed SLD-tree then so doesP ′ ∪ {← Q}.

This theorem is a special case of the Theorems 8.2 and 8.7 which we present and prove later.

6.2 A Generic Procedure for Abstract Partial Deduction

We now define a generalisation operator for abstract conjunctions, suitable for our framework:

Definition 6.6 A generalisation operatoris a function6 ageneralize : 2AQ 7→ 2AQ such thatA is

covered byageneralize(A)) for all A ∈ 2AQ.

A generalisation operator is calledatomic if for every S ∈ 2AQ, ageneralize(S) is a set of

abstract atoms.

An atomic generalisation operator thus embodies the functions of bothsplit andgeneralize

from Section 3.3. IfA is a fixpoint ofU(S) = ageneralize(RA
P (S)) then this ensures thatA is

covered.

Based upon the notions introduced above, we can now present a generic procedure for top-

down program specialization, which tries to find such fixpoints, in a very concise manner:

Procedure 2 (Abstract Partial Deduction)

Input: A programP and an abstract conjunctionA

Output: A specialised programP ′

Initialize: i = 0,A0 = {A}
repeat

6It is of course possible to give extra parameters toageneralize, e.g., so that it can take the specialization history

into account.

33

let Ai+1 := ageneralize(RA
P (Ai)); let i := i + 1;

until Ai−1 = Ai

Let P ′ be an abstract partial deduction wrtAi

It is obvious that if the above algorithm terminates,Ai is covered and hence, e.g., Theo-

rem 8.2 can be applied. By combining widening operators from the abstract interpretation lit-

erature with generalisation operators from the partial deduction literature, it is now possible to

ensure termination of this procedure.

One of the earliest [157] widenings for partial deduction for thePD-domain was based on

the most specific generalisationor least general generalisationof a finite set of expressions

E, denoted bymsg(E), is the most specific expressionM such that all expressions inE are

instances ofM . Themsgcan be effectively computed [114] and given an expressionA, there are

no infinite chains of strictly more general expressions [93]. More refined widenings, are based

upon well-founded orders, well-quasi orders and characteristic trees (see, e.g, [60, 140, 122], see

also [127]).

[73, 74] and [131] present non-trivial generalisation operators for abstract domains based

upon regular types.

7 Conjunctive Abstract Partial Deduction

Classical partial deduction, as defined in Definition 2.4 specializes aset of atomsA. Even though

conjunctions of atoms may appear within the SLD-trees constructed for these atoms, only atoms

are allowed to appear withinA. A similar picture holds for atomic abstract partial deduction,

introduced in the previous Section 6, where only abstract atoms are allowed to appear within

A of Definition 6.1. In other words, when we stop unfolding, every conjunction at the leaf is

automatically split into its atomic constituents which are then specialised (and possibly further

abstracted) separately. This restriction often considerably restricts the potential power of partial

deduction, e.g., preventing the elimination of unnecessary variables [176] (also called deforesta-

tion and tupling).

To overcome this limitation in the setting of classical partial deduction, [42] presents a rela-

tively small extension of partial deduction, calledconjunctive partial deduction. This technique

extends the standard partial deduction approach by considering setsS = {C1, . . . , Cn} where

the elementsCi are nowconjunctionsof atoms instead of just single atoms. Conjunctive partial

deduction also solves a dilemma of classical partial deduction related to efficiency and precision

and makes the local control much easier (see, e.g., [127]).

34

All the definitions related to the abstract unfolding and abstract resolution operations (5.1,

5.2, 5.3, 5.4) already cater for abstract conjunctions. Definitions 6.6 and 6.3 also already cater

for sets of abstract conjunctions. Thus, to perform conjunctive partial deduction using Proce-

dure 2 we just have to remove the restriction thatageneralize is atomic. Of course, this raises

a new termination problem: in addition to having to worry about infinitely many atomic atoms

ageneralize now also has to worry about an infinite number of growing abstract conjunctions.

In other words, the generalisation operationageneralize has to be more refined. It has been

well studied how to devise such generalisation operators for thePD-domain [79, 42]. For ab-

stract conjunctive partial deduction, this has to be combined with widenings from the abstract

interpretation literature. [131] shows how to do this for an abstract domain based upon regular

types.

There is also the issue of code generation which becomes more involved. Indeed, the re-

sultantsC = Hi ← Bi in Definition 6.1 are not necessarily Horn clauses (becauseHi can be

a conjunction). To transform such resultants back into standard clauses, conjunctive partial de-

duction [42] employs arenamingtransformation, from conjunctions to atoms, which practical

partial deduction systems already perform anyway. We will do the same here, and present the

full details in Section 7.1.

7.1 Generating Residual Code for Conjunctive Partial Deduction

All that is missing to present a generic abstract specialization algorithm is a way of generating

executable residual code from the resultantsHi ← Bi produced by the abstract unfolding. For

this we have to transform the resultants into Horn clauses. This can be achieved by mapping

the abstract conjunctions produced by the flow analysis to concrete atoms and then appropriately

renaming the headsHi and the bodiesBi.

Definition 7.1 An abstract unfoldingoperationaunfold is said to have theno-garbage property

iff the following equation holds:

∀A ∈ AQ ∀R ∈ aunfold(P,A) : ∃s∃Q′ ∈ γ(A) | Q′ ;R s (4)

This property preventsaunfold from producing garbage resultants which unify with no con-

cretisation. From now on we suppose that all abstract unfolding operations satisfy this property.

This obvious requirement will simplify the code generation but it is not strictly necessary.

Before formalizing the whole renaming process, let us first examine on a simple example

how it can be achieved.

35

Example 7.2Suppose we have the setA = {A1, A2} of abstract conjunctions in thePD-domain

with A1 = p(a, X) andA2 = p(b, Z) ∧ p(Z, d). Suppose that a resultant forA2 is

p(b, c) ∧ p(c, d)← p(a, b) ∧ p(b, e) ∧ p(e, d)

In order to translate this resultant into a Horn clause we have to rename all concretisations of

A2 to atoms. For this we can chose an atom, saypp(Z), which contains all the variables inA2

(viewed as a concrete conjunction). Now we can rename the head of the resultant intopp(c) by

instantiatingZ to the proper value. We now have a Horn clause, but we still have to rename

the body so that its conjunctions are renamed to call the proper residual predicates. For this we

split up the body into subconjunctionsp(a, b), p(b, e) ∧ p(e, d) so that each subconjunction is a

concretisation of an element inA. We can now rename each subconjunction to obtain:

pp(c)← p(a, b) ∧ pp(e)

In the above example we had to chose an atom (pp(Z)) with the same variables as the abstract

conjunctionA2 viewed as a concrete conjunction. Now, in general, an abstract conjunction can-

not be viewed as a concrete conjunction. Hence we introduce the following concept which allows

us to derive for every abstract conjunction a concrete one which covers all its concretisations.

Definition 7.3 Recall that aconcrete dominatorof an abstract conjunctionA is a concrete con-

junctionQ such that allQ′ ∈ γ(A) are instances ofQ. A skeletonfor an abstract conjunctionA

is a maximally general concrete dominator ofA.

A skeleton forA2 in Example 7.2 isp(X1, X2)∧p(X3, X4). By Definition 4.1 of abstract do-

mains we know that a concrete dominator (and thus skeleton) exists for all abstract conjunctions.7

By dAe we denote some skeleton forA.

Definition 7.4An atomic renamingρ for a set of abstract conjunctionsA returns for everyA ∈ A
an atomA, denoted byρA, such thatvars(dAe) = vars(A). Also, for anyQ � dAe we define

ρA(Q) = Aθ whereθ is such thatQ = dAeθ.

ForA2 = p(b, Z) ∧ p(Z, d), of Example 7.2 we might havedA2e = p(X1, X2) ∧ p(X3, X4),

ρA2 = pp(X1, X2, X3, X4). ForQ = p(b, c) ∧ p(c, d) we then haveρA2(Q) = pp(b, c, c, d).

Observe that for allQ � dAe we haveρA(Qθ) = ρA(Q)θ, vars(Q) = vars(ρA(Q)), and

for all Q′ � dAe we can also assume thatmgu(Q,Q′) = mgu(ρA(Q), ρA(Q′)) (see Lemma 8.5).

7There actually also exists a most specific concrete dominator (by existence of a most specific generalisation

msg of two terms [114] and the fact that the strictly more general relation is a well-founded order [93], i.e., themsg
of all elements inγ(A) exists). In thePD-domain this is the conjunction itself (viewed as a concrete conjunction).

36

Also, to avoid name clashes, we will always suppose that for anyA 6= A′ the predicate symbols

used byρA andρA′ are different.

Given a resultantHi ← Bi ∈ aunfold(P,A) we can now produce an actual Horn clause by

renamingHi andBi. RenamingHi is easy: we just calculateρA(Hi) (which is always defined

asHi � dAe by the Point 4 of Definition 7.1 ofaunfold). If our flow analysis also containsAi

= aresolve(A, Hi ← Bi) (and thus code forAi will be generated) then renamingBi is just as

easy: we just calculateρAi
(Bi). However, suppose that we have used generalisation and that we

actually did not specialiseAi itself but rather the abstract conjunctionsG1, . . . ,Gn such thatAi

is covered by〈G1, . . . ,Gn〉 (just like in Example 7.2). In that caseBi has to be split up and then

renamed using the renaming functions of the abstraction. We thus extend our atomic renaming

function so that it accomplishes this:

Definition 7.5Given a concrete conjunctionB, an abstract conjunctionA, and a setA of abstract

conjunctions we define:

ρA,A(B) = ρG1(B1) ∧ . . . ∧ ρGn(Bn)

whereA is covered by〈G1, . . . ,Gn〉 andB = B1 ∧ . . . ∧ Bn is one possible way to split upB

such thatGi ∈ A andBi � dGie If no such partitioning exists then we leaveρA,A(B) undefined.

Note, by Point 4 of Definition 7.1, we know that if we can find a sequence〈G1, . . . ,Gn〉
which coversA, then we can also find a partitioning ofB such thatBi � dGie. Also observe

that Definition 6.2 of the “covers concept” and the fact that we do not consider∧ commutative,

imply that we not allow re-ordering of conjunctions withinB.8 It would be, however, relatively

straightforward to do so. One just has to be careful to use thesamereordering forall concretisa-

tions ofA (otherwise it will be impossible to synchronize the code generation with the abstract

resolution).

We can now define how to map resultants to Horn clauses so as to construct abstract partial

deductions:

Definition 7.6 (abstract partial deduction)LetA be a covered set of abstract conjunctions. We

then define anabstract partial deduction ofP wrt A to be the set of clauses:

{ρA(H)←ρA,A′(B) | H←B ∈ aunfold(P,A)∧A′ = aresolve(A, H←B) ∧A ∈ A}.

It is easy to see that, becauseA is covered, the renamings of the bodiesB will always be

defined.
8Nor removal of duplicate calls. In general this does not preserve computed answers (but will produce more

general answers) but is, e.g., required for tupling the Fibonacci function. It is quite straightforward to add this

possibility to the framework.

37

Observe that, a skeleton always has distinct variables as its only terms. In other words, con-

trary to Example 7.2, we perform no filtering (i.e.p(f(a)) might get renamed intop′(f(a)) but

never intop′(a) or p′; cf., Section 2). Filtering could be achieved by using a concrete dominator,

ideally msg(γ(A)), instead of the skeletondAe for the definition ofρA. This, however, makes

the exposition more tricky9 and would detract from the main points of the paper. Anyway, one

can always apply the technique of [59] (as well as the one from [145]) as a post-processing.

8 Generic Correctness Results

In this section we will present and prove two general correctness results (Theorems 8.2 and 8.7).

8.1 Correctness for Computed Answers

For technical reasons we have to introduce the concept of admissible renamings (as in [128]).

Definition 8.1 Let Q, Q′ be two conjunctions,A a set of abstract conjunctions, andρ an atomic

renaming forA. ThenQ′ is called anadmissible renaming ofQ wrtA iff there exist conjunctions

Q1, . . . , Qn and abstract conjunctionsA1, . . . ,An such that:

1. Q =← Q1, . . . , Qn

2. Ai ∈ A
3. Qi ∈ γ(Ai)

4. Q′ =← ρA1(Q1), . . . , ρAn(Qn)

Any variant ofQ′ is called anadmissible renamed variant ofQ wrt A. A conjunctionQ for

which an admissible renaming exists is said to becovered byA.

Theorem 8.2Let P ′ be an abstract partial deduction ofP wrt a covered set of abstract conjunc-

tionsA and letQ′ be an admissible renamed variant ofQ wrt A. Then

1. If P ∪ {← Q} has an SLD-refutation with computed answerθ thenP ′ ∪ {← Q′} has an

SLD-refutation with computed answerθ′ such thatQθ ≈ Q′θ′.

2. If P ′ ∪ {← Q′} has an SLD-refutation with computed answerθ′ thenP ∪ {← Q} has an

SLD-refutation with computed answerθ such thatQθ ≈ Q′θ′.

3. If P ′ ∪ {← Q′} has a finitely-failed SLD-tree then so doesP ∪ {← Q}.
9Indeed, although all concretisations ofA will be an instance ofmsg(γ(A)), this does not necessarily hold for

the headsH and bodiesB generated by the abstract unfolding.

38

To prove the theorem, we first have to establish a series of lemmas and some useful notations.

We define, for a substitutionθ = {X1/t1, . . . , Xn/tn}, the domaindom(θ) = {X1, . . . , Xn}
and the rangeran(θ) = vars(t1) ∪ . . . vars(tn). We also definevars(θ) = ran(θ) ∪ dom(θ).

We start out with a useful lemma from

Lemma 8.3Let Q ≈ Q′ and letτ be an SLD-tree forP ∪ {← Q}. Also, letX be an arbitrary

finite set of variables. Then there exists an SLD-treeτ ′ for P ∪ {← Q′} such that

– Q ;τ 〈L, θ〉 ⇒ Q′ ;τ ′ 〈L′, θ′〉 with Qθ ← L ≈ Q′θ′ ← L′

– Q′ ;τ ′ 〈L′, θ′〉 ⇒ Q ;τ 〈L, θ〉 with Qθ ← L ≈ Q′θ′ ← L′

– and all the variants of clauses ofP used inτ ′ have no variables in common withX .

Proof This is an obvious consequence from Lemma 4.9 in [152] which states that

Let R be the resultant of an SLDNF-derivationD from a normal goal← Q, andα a

substitution. If there is a corresponding derivationD′ from← Qα then its resultant

R′ is an instance ofR.

We apply this Lemma 4.9 twice, once forQ andQα = Q′ and then forQ′ andQα′ = Q. We

know that a “corresponding derivation” exists by (correct versions of) the lifting lemma (e.g.,

Lemma 4.1 in [152]). 2

Corollary 8.4 Let Q ;τ 〈L, θ〉. Also, letX be an arbitrary finite set of variables. Then there

exists aτ ′ such thatQ ;τ ′ 〈L′, θ′〉 with 〈L, θ〉 ≈Q 〈L′, θ′〉 and all the variants of clauses ofP

used inτ ′ have no variables in common withX . This also impliesvars(θ′) ∩ X ⊆ vars(Q).

Lemma 8.5Let ρ be an atomic renaming forA and letA ∈ A, H � dAe, Q � dAe. Then

mgu(H, Q) ≈H∧Q mgu(ρA(H), ρA(Q)). We also have thatvars(H) = vars(ρA(H)) and

ρA(H)σ = ρA(Hσ) for any substitutionσ.

Proof vars(H) = vars(ρA(H)) is obvious from Definition 7.4, asρA(H) = Aθ, H = dAeθ,

andvars(A) = vars(dAe).
ρA(H)σ = ρA(Hσ) is again obvious from Definition 7.4. Indeed, we haveρA(Hσ) = Aθ′, with

Hσ = dAeθ′. From this followsdAeθ′ = (dAeθ)σ, and thus, asvars(A) = vars(dAe), we

have thatAθ′ = Aθσ, i.e.,ρA(H)σ = ρA(Hσ).

By the point above we have that every unifierσ of H andQ must also be a unifier ofρA(H) and

ρA(Q) (indeed,ρA(H)σ = ρA(Hσ) = ρA(Qσ) = ρA(Q)σ) and vice versa. By uniqueness of

themgu up to variable renaming we must thus havemgu(H, Q) ≈H∧Q mgu(ρA(H), ρA(Q)). 2

39

To simplify the presentation of the proofs below, we will from now on assume that themgu

is devised so that (this can always be achieved):

mgu(H, Q) = mgu(ρA(H), ρA(Q)) (5)

We are now in a position to prove our theorem.

Proof of Theorem 8.2Both the proof of soundness and completeness are by induction on the

length of the refutations.

First letQ1, . . . , Qn andA1, . . . ,An be the concrete and abstract conjunctions which satisfy

Definition 8.1 forQ and a variantQ′′ of Q′. In particular we haveQ = Q1 ∧ . . . Qn with

Qi ∈ γ(Ai). We know that for some renaming substitutionσ we have:Q′ = Q′′σ = ρA1(Q1)σ∧
. . . ρAn(Qn)σ = ρA1(Q1σ) ∧ . . . ρAn(Qnσ) (by Lemma 8.5).

Point 2. (soundness ofP ′):

We proceed by induction on the length of the refutationδ for P ′∪{← ρA1(Q1)∧. . . ρAn(Qn)}.
Base Case:

The base case (len = 0 and thusn = 0 and← Q =← Q′ = 2) is trivial.

Induction Step:

For the induction step let us examine the first resolution step ofδ resolving a selected atom

ρAi
(Qiσ) in Q′ with a clauseρAi

(H) ← ρA,B(B) via mgu θ1 and whereC ∈ aunfold(P,Ai)

with C ≈ H ← B andB = aresolve(Ai, C) (and whereH ← B is renamed apart wrtQ′). The

resolventR′ of Q′ in P ′ is thus (c.f., Figure 5):

R′ =← ρA1(Q1σ)θ1 ∧ . . . ρA,B(B)θ1 ∧ . . . ρAn(Qnσ)θ1

=← ρA1(Q1σθ1) ∧ . . . ρA,B(B)θ1 ∧ . . . ρAn(Qnσθ1)

P ′ :P :

admissible renaming�
�	�
��variant @

@@I@
@@R

R̃ =← Q1σθ1 ∧ . . . Bθ1 Qnσθ1

R′ =← ρA1(Q1σθ1) ∧ . . . ρA,B(B)θ1 . . . ρAn(Qnσθ1)R =← Q1θ
′′ ∧ . . . B′′ ∧ . . . Qnθ′′

?τ
′

?C

← Q′ = ρA1(Q1σ) ∧ . . . ρAi
(Qiσ) . . . ρAn(Qnσ)← Q =← Q1 ∧ . . . Qi . . . Qn

Figure 5: Illustrating the proof of Theorem 8.2

Step 1.We will now show thatR′ is an admissible renaming of

R̃ =← Q1σθ1 ∧ . . . Bθ1∧ . . . Qnσθ1

40

Below, in step 2., we will show that we can produce a resolventR in P which is a variant ofR̃.

Together, this will allow us to apply the induction hypothesis.

Let us first examine the structure ofρA,B(B)θ1. We have by Definition 7.5:

ρA,B(B)θ1 = (ρG1(B1) ∧ . . . ρGk
(Bk))θ1 = ρG1(B1θ1) ∧ . . . ρGk

(Bkθ1))

whereB = B1 ∧ . . . Bk, B is covered by〈G1, . . . ,Gk〉 with Gi ∈ A andBi � dGie. Let us

now verify that the 4 points of Definition 8.1 are satisfied forR andR̃:

1. R̃ =← Q1σθ1 ∧ . . . B1θ1∧ . . . Bkθ1 ∧ . . . Qnσθ1 is a valid partitioning ofR̃ into subcon-

junctions

2. We haveAi ∈ A from the fact thatQ′′ is an admissible renaming ofQ.

We haveGi ∈ A from Definition 7.5.

3. We haveQiσθ1 ∈ γ(Ai) by downwards-closure ofγ(.) and asQiσ ∈ γ(Ai) from the fact

thatQ′′ is an admissible renaming ofQ.

We haveBiθ1 ∈ γ(Gi) by downwards-closure ofγ(.) and asBi ∈ γ(Gi) because by cor-

rectness ofaresolve we haveB ∈ γ(B) (by Definition 7.6 we haveB = aresolve(Ai, C)

and we knowQi ∈ γ(Ai) from the fact thatQ′′ is an admissible renaming ofQ).

4. R′ =← ρA1(Q1σθ1) ∧ . . . ρG1(B1θ1) ∧ . . . ρGk
(Bkθ1)) . . . ρAn(Qnσθ1)

Step 2.We will now show that a variantR of R̃ is a resolvent ofQ in P .

We know, by Lemma 8.5, thatθ1 is also anmgu of Qiσ andH. Hence, by our assumption (5)

we know thatQiσ ;C 〈Bθ1, θ̄1〉, whereθ̄1 = θ1‖vars(Qiσ.

As we haveQiσ ;C 〈Bθ1, θ̄1〉, Point 2 of Definition 5.3 (definingaunfold) therefore ensures

that we can find an SLD-treeτ for P ∪ {← Qiσ} such that

Qiσ ;τ 〈B′, θ′〉 with Qiσθ1 ← Bθ1 ≈ Qiσθ′ ← B′ (6)

Now, asQi ≈ Qiσ, by Lemma 8.3, we can deduce that we can find another SLD-treeτ ′ for

P ∪ {← Qi} such that

Qi ;τ ′ 〈B′′, θ′′〉 with Qiθ
′′ ← B′′ ≈ Qiσθ′ ← B′ (7)

By, Lemma 8.3, we can also always constructτ ′ such that the clauses ofP have not only been

renamed apart wrtQi but wrt the entireQ. Hence, we can generate a resolventR in P which has

the following form (because we renamed apart wrt the entireQ and by the subderivation lemma

[152]):

R =← Q1θ
′′ ∧ . . . B′′ ∧ . . . Qnθ

′′

Let us now prove thatR is a variant ofR̃:

41

– By transitivity of≈ we know thatQiθ
′′ ← B′′ ≈ Qiσθ1 ← Bθ1. Hence, we can find

substitutionsγ andγ−1 such that(Qiθ
′′)γ = Qiσθ1, (B′′)γ = Bθ1, Qiθ

′′ = (Qiσθ1)γ
−1

andB′′ = (Bθ1)γ
−1. We can also chooseγ, γ−1 so that there are no superfluous bind-

ings, i.e.,dom(γ) ⊆ vars(Qiθ
′′ ← B′′), ran(γ) ⊆ vars(Qiσθ1 ← Bθ1), dom(γ−1) ⊆

vars(Qiσθ1 ← Bθ1), ran(γ−1) ⊆ vars(Qiθ
′′ ← B′′).

– We know thatQ = Q1 ∧ . . . Qn is a variant ofQσ = Q1σ ∧ . . . Qnσ. Hence we can find a

substitutionσ−1 such that(Qσ)σ−1 = Q.

– We will now define two substitutionsγ′ ⊇ γ andγ′−1 ⊇ γ−1 such thatRγ′ = R̃ and

R̃γ′−1 = R.

i. By construction ofγ andγ−1 we already have(B′′)γ = Bθ1 B′′ = (Bθ1)γ
−1

ii. We now have to examine the conjunctionsQjσ andQj, for j 6= i ∧ 1 ≥ j ≥ n, in R̃

andR respectively. AsQjσ andQj are variants we only have to examine the variable

positions inQjσ andQj. Let X be a variable at some position inQjσ andY the

corresponding variable at the same position inQj. We have to show that we can map

Xθ1 to Y θ′′ and vice-versa. There are two possibilities:

a) X ∈ vars(Qiσ) As we know that(Qiθ
′′)γ = Qiσθ1 Qiθ

′′ = (Qiσθ1)γ
−1 we can

deduce that(Y θ′′)γ = Xθ1 Y θ′′ = (Xθ1)γ
−1.

b) X 6∈ vars(Qiσ) In that case we know thatY 6∈ vars(Qi) (otherwiseQ is not a

variant ofQσ). Hence we can setγ′ = γ ∪ {Y/X} andγ′−1 = γ−1 ∪ {X/Y }. γ′ is a

properly defined substitution asX cannot appear inBθ1 and thusran(γ) because

– H ← B is renamed apart wrtvars(Q′) = vars(Qσ) and

– θ1 is arelevantmgu of Qiσ andH.

γ′−1 in turn is also a properly defined substitution asY cannot appear inB′′ by a

similar reasoning on themgu and renaming apart inτ ′ (by our earlier assumption on

τ ′, stating that the clauses ofP have not only been renamed apart wrtQi but wrt the

entireQ). We thus trivially have(Y θ′′)γ = Xθ1 Y θ′′ = (Xθ1)γ
−1. Also, note that

γ′, γ′−1 will still satisfy the requirements of casea) above.

We now simply define the finalγ′ andγ′−1 to be the union of all theγ′, γ′−1 defined for

the casesb) above. This is a properly defined substitution (asXσ = Y andXσ = Z

implies Y = Z, i.e., there can be no conflicts between the bindings) and we thus have

found substitutions such thatRγ′ = R̃ andR̃γ′−1 = R.

Step 3.We can now apply the induction hypothesis, as we have proven that the resolventR′ in P ′

is an admissible renamed variant of the corresponding resolventR in P . Notably, we know that

for any computed answerθ2 of R′ there exists a computed answerθ of R such thatRθ ≈ R′θ2.

In summary, we haveQ leads toR via θ′′, R has a c.a.s.θ, Q′ leads toR′ via θ1, R′ has a c.a.s.

42

θ2. So, we just have to prove thatQθ′′θ ≈ Q′θ1θ2 to complete the soundness proof. We can use

Corollary 8.4 to ensure both

vars(θ2) ∩ vars(Q′) ⊆ vars(R′) and vars(θ) ∩ vars(Q) ⊆ vars(R) (8)

In fact, we can easily establish thatQθ′′ ≈ Q′θ1 because

– indeed the reasoning in pointii. above is also valid fori = j [but only subcasea) will

apply] and

– we can thus use the same substitutionsγ′, γ′−1 to showQθ′′γ′ = Q′θ1 andQθ′′ = Q′θ1γ
′−1.

We thus simply examine every variable position inQθ′′ and the corresponding variable position

in Q′θ1. Let X be a variable at some position inQ′θ1 andY the corresponding variable at the

same position inQθ′′. We have to show that we can mapXθ2 to Y θ and vice-versa. There are

again two cases:

– If X 6∈ vars(R′) thenXθ′ = X (asθ is a c.a.s. forR′, i.e., ran(θ) ⊆ vars(R′)) and we

must also haveX ∈ Qiσθ1 andX 6∈ Qjσθ1 for j 6= i (ρAj
(Qjσθ1) for j 6= i all appear in

R′) and henceY ∈ Qjθ
′′ andY 6∈ Qjθ

′′ for j 6= i as well (asXγ−1 = Y). This implies

Y 6∈ vars(R) (becauseQiθ
′′ ← B′′ ≈ Qiσθ1 ← Bθ1, i.e.,Y cannot appear inB′′) and we

thus have(Y θ)γ = Xθ2 Y θ = (Xθ2)γ
−1.

– On the other hand, ifX ∈ vars(R′) thenY ∈ vars(R) (if X ∈ Qiσθ1 then this follows

from Qiθ
′′ ← B′′ ≈ Qiσθ1 ← Bθ1; otherwise ifX ∈ Qjσθ1 with j 6= i then this follows

from Xγ−1 = Y and the factQjσθ1 features inR′) and we know we can mapXθ2 to

Y θ and back using the simplest substitutionsγ′′, γ′′−1 which map back and forth between

R andR′ (i.e., Rθγ′′ = R′θ2, R′θ2γ
′′−1 = Rθ, where alsodom(γ′′) ⊆ vars(Rθ), and

dom(γ′′−1) ⊆ vars(R′θ2)).

Now, γ′ ∪ γ′′ is a well defined substitution because, by our assumption (8) above on renaming

apart of clauses, the variables in the termsXθ2 cannot be variables that appear inQiσθ1 but not

in vars(R), i.e., there is no clash between the bindings inγ′ andγ′′. By a similar reasoning,

γ′−1 ∪ γ′′−1 is a well defined substitution. We have thus established the induction hypothesis for

Q andQ′ and thus completed the soundness proof.

Point 1. (completeness ofP ′):

We now proceed by induction on the length of the refutationδ for P ∪ {← Q1 ∧ . . . Qn}
which yields the computed answerθ. The base case (len = 0 and thusn = 0) is again trivial.

For the induction step, letQi be the selected literal. AsQi ∈ γ(Ai) we can apply Definition 5.3

of aunfold to deduce that there is an SLD-treeτ for P ∪ {← Qi} such that point 1 of Defini-

tion 5.3 holds. By independence of the selection rule ([4, 150]) we know that we do not lose any

computed answers by enforcing a particular selection rule. Without loss of generality, we can

43

thus assume that a prefix ofδ is a branch inτ ′, i.e.,δ unfolds← Qi in the manner prescribed by

τ ′ of the soundness part of the proof.10

We can now use point 1 of Definition 5.3 definingaunfold to show that when selecting the

atomρAi
(Qiσ) in Q′ and resolving it with the clauseρAi

(H) ← ρA,B(B) via mgu θ1 we get

a resolventR′ which has exactly the same structure as in the soundness part of the proof (c.f.,

Figure 5). The proof thatR′ is an admissible renamed variant ofR is then exactly as in the

soundness part (Steps 1 and 2). The same holds for applying the induction hypothesis to prove

Qθ′′θ ≈ Q′θ1θ2 (Step 3). The completeness proof is thus complete.

Point 3. (soundness for finite failure):

We again do a proof by induction, but this time on the depth of the failed SLD-tree for

P ′ ∪ {← Q′}.

Base Case:

The SLD-tree has just a single node in which a literal has been selected which fails immediately,

i.e., does not unify with any clause inP ’. This implies that the goalQ finitely fails in P ,

because by point 1 of Definition 5.3 we know we can find an SLD-treeτ for which nos1 satisfies

Q ;τ s1, i.e., a finitely failed SLD-tree forP ∪ {← Q}.

Induction Step:

We will do the exact same resolution step as in the proof for the soundness part: we suppose

that we select an atomρAi
(Qiσ) in Q′. We we now resolve the selected atom with a clause

ρAi
(H)← ρA,B(B) of P ′ we get exactly the same picture as in the soundness part (the proof in

the soundness part works for any resolvent!). So, we can re-use Steps 1 and 2 of the proof of the

soundness part for every resultantR′ to establish thatR′ it is an admissible renamed variant of

the corresponding resolventR in P . We can thus apply the induction hypothesis to conclude that

for each resolventR we can construct a finitely failed SLD-tree.

The only thing we have to establish, to be able to combine all the results into a big finitely

failed tree forQ, is that the initial SLD-treeτ ′ used in the soundness proof can be made to

be thesame for allresolventsR′. This can be easily ensured using Lemma 8.3 and because

Definition 5.3 provides us with a single SLD-treeτ valid for all resolvents!

We can thus combine, using the subderivation lemma [152], all failed SLD-trees for the resol-

vents into one big finitely failed SLD-tree forP ∪ {← Q}. 2

10If we want to establish the preservation of finite failure it is vital that the unfoldings performed byτ are fair.

For computed answers, however, this does not matter.

44

8.2 Preservation of Finite Failure

In order to derive results about the preservation of finite failure inP ′ we have to impose that

the unfolding operationaunfold is in some sensefair, i.e. when computingaunfold(P,A) it

eventually selects every conjunct ofQ ∈ γ(A) in every non-failing branch. Otherwise, the

unfoldingaunfold might impose an unfair selection rule onto the specialised program, and finite

failure might no longer be preserved. For example, one should not be able to transform the

programP = {t← p ∧ fail , p← p} into P ′ = {t← pf, pf ← pf }, where, e.g.,A = p ∧ fail in

thePD-domain andρA = pf . (This condition is quite similar to the local improvement condition

in [199] for functional programs.)

Definition 8.6Let the goalG′ =← (A1∧. . . Ai−1∧B1∧. . . Bk∧Ai+1∧. . . An)θ be derived via an

SLD-resolution step from the goalG =← A1∧ . . . Ai∧ . . . An, and the clauseH ← B1∧ . . . Bk,

with selected atomAi. We say that the atomsA1θ, . . . , Ai−1θ, Ai+1θ, . . . , Anθ areinherited from

G in G′. We extend this notion to derivations by taking the transitive and reflexive closure.

An complete SLD-treeτ for P ∪{G} is said to befair iff every branch is either finitely failed,

or for every goalGi in a non-failing branch there exists a descendantGj such that no atoms are

inherited fromGi in Gj. A finite, incomplete SLD-treeτ for P ∪ {G} is said to befair iff no

atom in a leaf goalL of a non-failing branch ofτ is inherited fromG in L.

We call an abstract unfolding rulefair if we can always find a finite, fair SLD-treeτ which

satisfies the points 1, 2 of Definition 5.3.

Note that a finite, complete SLD-tree is always fair. We can now present the following

theorem about the preservation of finite failure.

Theorem 8.7Let P ′ be an abstract partial deduction ofP wrt a covered set of abstract conjunc-

tionsA using a fair abstract unfoldingaunfold , and letQ′ be an admissible renamed variant of

Q wrt A.

– If P ∪ {← Q} has a finitely-failed SLD-tree then so doesP ′ ∪ {← Q′}.

Note that for atomic abstract conjunctions, every finite, non-trivial SLD-tree is fair. So, if we

just have atomic abstract conjunctions, finite failure will always be preserved (non-trivial trees

are disallowed in Definition 5.3). Hence Theorem 6.5 is a direct consequence of Theorems 8.2

and 8.7.

One can actually extend the result to allowaunfold to be justweakly fair[129, 120]. Intu-

itively, this means thataunfold(P,Q) can be unfair for a certain number of atoms, as long as we

can be sure that these atoms will eventually be selected (for non-failing derivations) within other

abstract conjunctions.

45

The proof of the theorem is as follows:

Proof of Theorem 8.7We use the same assumptions about the structure ofQ andQ′ as at

the beginning of the proof for Theorem 8.2. Notably, again, letQ1, . . . , Qn andA1, . . . ,An

be the concrete and abstract conjunctions which satisfy Definition 8.1 forQ and a variantQ′′

of Q′. Again, we haveQ = Q1 ∧ . . . Qn with Qi ∈ γ(Ai) and we chose the same renaming

substitutionσ such that:Q′ = Q′′σ = ρA1(Q1)σ ∧ . . . ρAn(Qn)σ = ρA1(Q1σ) ∧ . . . ρAn(Qnσ)

(by Lemma 8.5).

We know by Theorem 13.6 in [150][page 77] that if there exists a finitely failed SLD-tree for

P ∪ {← Q} theneveryfair SLD-tree forP ∪ {← Q} is finitely failed.

We proceed by induction on the depth of the finitely failed SLD-tree forP∪{← Q1∧. . . Qn}.

Let Qi be the selected literal at the root. AsQi ∈ γ(Ai) we can apply Definition 5.3 of

aunfold to deduce that there is afair SLD-treeτ ′ for P ∪ {← Qi} such that point 1 of Defini-

tion 5.3 holds.

Base Case:If this SLD-treeτ ′ is finitely failed we are in the base case of our induction, and we

know by thatP ∪ {← Q′} fails immediately when selectingρAi
(Qiσ).

Induction Step: As τ ′ is fair, we know that, without loss of generality, we can assume thatτ ′ is

the initial subtree of afinitely failed SLD-tree forP ∪ {← Q} (and always choosing suchτ ′’s

will lead to a finitely failed SLD-tree).

We now do the exact same resolution step forP ′ ∪ {← Q′} as in the proof for the soundness

proof of Theorem 8.2: i.e., we select the atomρAi
(Qiσ) in Q′. We we now resolve the selected

atom with all matching clausesρAi
(H)← ρA,B(B) of P ′ and for every resolvent we get exactly

the same picture as in the soundness proof of Theorem 8.2 for some leaf goalR in τ ′ (the proof

in the soundness part works for any resolvent!). So, we can re-use Steps 1 and 2 of the proof of

the soundness part for every resultantR′ to establish thatR′ it is an admissible renamed variant

of the corresponding resolventR in P . We can thus apply the induction hypothesis to conclude

that for each resolventR′ we can construct a finitely failed SLD-tree forP ′ ∪ {← R′}.

The only thing we have to establish, to be able to combine all the results into a big finitely

failed tree forQ′, is that the initial SLD-treeτ used in the soundness proof forQσ can be made

to be thesame for allresolventsR andR′. This can be easily ensured using Lemma 8.3 and

because Definition 5.3 provides us with a single SLD-treeτ ′ valid for all resolvents!

We can thus again combine, using the subderivation lemma from [152], all the failed SLD-

trees for the resolvents into one big finitely failed SLD-tree forP ′ ∪ {← Q′}. 2

46

9 Some Instances of Abstract Partial Deduction

In this section we show how some of the existing logic program specialization techniques can be

cast into our framework, and how easily the correctness results can be re-used. In fact, to re-use

our correctness results one has to prove that the particularaunfold under consideration satisfies

Definition 5.3, thataresolve satisfies Definition 5.4 and finally that the wideningageneralize

satisfiesageneralize(A) wsplit A.

9.1 Classical and Conjunctive Partial Deduction

Classicalpartial deduction [152, 57] can be seen as an instance of our framework simply by

taking

– thePD-domain (i.e. the concrete domain is the abstract domain and an abstract element

represents all its instances) as our abstract domain,

– abstract unfolding is done by an unfolding rule as defined in Definition 3.4. I.e.,aunfold

builds an SLD-tree and returns the resultants of the tree.

– abstract resolution simply returns the bodies of the above resultants:

aresolve(A, H ← B) = B.

– ageneralize is such that it only produce sets of atoms and the initial abstract conjunction

A is an atom.

To representconjunctivepartial deduction [129, 79, 120] we just have to drop the last re-

quirement.

As a corollary of Proposition 5.6, we know that we satisfy Definition 5.3 of an abstract

unfolding. The fact that abstract resolutionaresolve(A, H ← B) = B satisfies Definition 5.4

follows from our discussions in Section 3.3. We can thus apply Theorem 8.2. For classical partial

deduction of atoms, fairness ofaunfold trivially follows from the fact thatτ is non-trivial. We

can hence also apply Theorem 8.7.

It can also be easily verified that the generalization operations used in existing classical or

conjunctive partial deduction techniques satisfy our requirements in Definition 6.6.

Removal of Redundant Clauses

[43, 66, 44] present a classical partial deduction approach, but where a resultantQθk ← Bk is

removed fromaunfold(P, Q) if it can be proven by a bottom-up abstract interpretation thatBk

fails. Such a resultant is calledredundant. In caseBk fails finitely, it is very easy to prove that

this extension of partial deduction satisfies Definitions 5.3 and 5.4 (simply use, in the proof of

47

Proposition 5.6, a treeτ ′ instead ofτ where all branches ending in a redundantBj are fully

expanded until failure). In caseBk fails infinitely, the situation is more complicated, and we

cannot directly use our top-down framework. We will return to the issue of combining bottom-

up and top-down approaches in Section 10.

9.2 Ecological and Constrained Partial Deduction

Ecologicalpartial deduction [117, 140, 120] (and its ancestor [60]) specializes sets of character-

istic atoms of the form(A, τ), whereA is an ordinary atom andτ a characteristic tree (basically

a representation of the shape of an SLD-tree). Intuitively(A, τ) represents all instances ofA

which haveτ as a characteristic tree. Ecological partial deduction can be seen as an instance of

the above generic framework by using an abstract domain(AQ, γ) with

– AQ = (A, T), whereA is the set of atoms andT is the set of characteristic trees [60, 55].

– γ((A, τ)) = {A′′ | A′′ � A′ � A∧ A′ has characteristic treeτ },
and where abstract unfolding and resolution are defined by

– aunfold(P, (A, τ)) is based on using the SLD-tree forP ∪ {← A} according to the shape

indicated byτ (and removing the resultants which are not present inτ ; see [117, 140, 120]).

– aresolve((A, τ), Aθ ← B) = (B, τ ′) whereτ ′ is the characteristic tree for an SLD-tree for

P ∪ {← B}.
It is again very easy to prove that the above operations satisfy our requirements in Defini-

tions 5.3 and 5.4, thus making our correctness results immediately applicable.

Constrainedpartial deduction [128] specialises sets of constrained atoms of the formc2A

whereA is an ordinary atom anc a constraint on the variables inA. For e.g., the concretisation

function we haveγ(c2A) = {Aθ | D |= ∀(cθ)}, whereD is the underlying constraint structure

and we can cast constrained partial deduction into the our framework and the correctness results

from [128] are again a special case of our generic results.

The present framework can now be used to easily extend both methods to handle conjunctions

or even to integrate all of these methods into one powerful top-down specialization method.

9.3 Partial Deduction using Regular Types

Regular types encoded as regular unary logic programs [217, 67] have proven to be successful

both for program analysis and specialization. Indeed, using regular types as an abstract domain

for specialization was already proposed in [182, 192].

Instances of our abstract partial deduction framework using regular types have recently been

developed. First, [73, 74] presents several atomic abstract partial deduction methods, one of

48

which is formally cast into our framework. An implementation has been produced, which has

been validated on practical examples.

Second, [131] presents an extension of [73, 74] which can specialize abstract conjunctions.

It is formally shown how to perform abstract unfolding and resolution in such a setting, and

the practical usefulness of combining regular types with conjunctions has been demonstrated on

several examples. An implementation, using theECCE system [119] has been developed and

applied to several examples; one of which we elaborate below. One possible application of the

method is the model checking [26] of process algebras.

We present some aspects of these instances of our framework below.

Definition 9.1 A canonical regular unary clauseis a clause of the form:

t0(f(X1, . . . , Xn))← t1(X1) ∧ . . . ∧ tn(Xn)

wheren ≥ 0 andX1, . . . , Xn are distinct variables. Aregular unary logic (RUL) programis

a finite set of regular unary clauses, in which no two different clause heads have a common

instance, together with the single factany(X) ←. Given a (possibly non-ground) conjunction

T and a RUL programR, we writeR |= ∀(T) iff R ∪ {← T} has an SLD-refutation with the

empty computed answer. Finally, the success set of a predicatet in a RUL programR is defined

by successR(t) = {s | s is ground∧ R |= ∀(t(s))}.

Example 9.2For example, given the following RUL-programR, we haveR |= ∀(t1([a])) and

R |= ∀(t1([X, Y])).

t1([]). any(X).

t1([H|T]) :- any(H),t1(T).

Definition 9.3 We define theRUL-domain(AQ, γ) to consist of abstract conjunctions of the

form 〈Q, T,R〉 ∈ AQ whereQ, T are concrete conjunctions andR is a RUL program such that:

T = t1(X1) ∧ . . . ∧ tn(Xn), wherevars(Q) = {X1, . . . , Xn} andti are predicates defined inR.

The concretisation functionγ is defined as follows:γ(〈Q, T,R〉) = {Qθ | R |= ∀(Tθ)}. T is

called atype conjunction.

UsingR from Ex. 9.2 we have thatγ(〈p(X), t1(X), R〉) = {p([]), p([X]), p([a]), . . ., p([X,Y]),

p([X, X]), p([a, X]), . . .}. Note that abstract conjunctions from our RUL-domain are called R-

conjunctions in [74].

Full details on how to implement abstract unfolding, abstract resolution and concrete abstract

partial deduction procedures can be found in [73, 74] and [131].

The following example, which was worked out using the implementation presented in [131],

shows a particular verification example where conjunctions and regular types both play an im-

portant role.

49

Example 9.4Take the following simple program, which simulates several problems that can

happen during model checking of infinite state process algebras. Here, the predicatetrace/2

describes the possible traces of a particular (infinite state) system. Insync trace/2 we de-

scribe the possible traces of two synchronized copies of this system, with different start states.

trace(s(X),[dec|T]) :- trace(X,T).

trace(0,[stop]).

trace(s(X),[inc|T]) :- trace(s(s(X)),T).

trace(f(X),[dec|T]) :- trace(X,T).

trace(f(X),[inc|T]) :- trace(f(f(X)),T).

trace(a,[inc,stop]).

sync_trace(T) :- trace(s(0),T), trace(f(a),T).

As one can see, the synchronization ofs(0) with f(a) will never produce a complete trace,

and hencesync trace will always fail. Classical partial deduction is unable to infer failure of

sync trace , even when using conjunctions, due to the inherent limitation of thePD-domain

to capture the possible states of our system, i.e., the possible first arguments totrace/2 . In the

RUL domain we can retain much more precise information about the calls totrace/2 . E.g.,

our implementation was able to infer that the first argument to calls totrace/2 descending

from trace(f(a),T) will always have the typet940 defined by:

t940(a):-true.

t940(f(_460)) :- t940(_460).

This is the residual program generated byECCE.

sync_trace([inc,A|B]) :- p_conj__2(0,A,B,a).

sync_trace__1([inc,A|B]) :- p_conj__2(0,A,B,a).

p_conj__2(A,dec,[B|C],D) :- p_conj__3(A,B,C,D).

p_conj__2(A,inc,[B|C],D) :- p_conj__2(s(A),B,C,f(D)).

p_conj__3(A,dec,[B|C],D) :- p_conj__4(A,B,C,D).

p_conj__3(A,inc,[B|C],D) :- p_conj__2(A,B,C,D).

p_conj__4(s(A),dec,[B|C],f(D)) :- p_conj__4(A,B,C,D).

p_conj__4(s(A),inc,[B|C],f(D)) :- p_conj__2(A,B,C,D).

This program contains no facts and a simple bottom-up post-processing (e.g., the one imple-

mented inECCEbased upon [155]) can infer thatsync trace fails.

Observe that a deterministic regular type analysis on its own (i.e., without conjunctions)

cannot infer failure ofsync trace . The reason is that, while the regular types are precise

50

enough to characterize the possible states of our infinite state system, they are not precise enough

to characterize the possible traces of the system! For example, the top-down regular type analysis

of theSPsystem produces the following result for the possible answers ofsync trace :

sync_trace__ans(X1) :- t230(X1).

t230([X1|X2]) :- t231(X1),t232(X2).

t231(inc) :- true. t233(inc) :- true.

t231(dec) :- true. t233(dec) :- true.

t231(stop) :- true. t233(stop) :- true.

t232([X1|X2]) :- t233(X1),t232(X2).

t232([]) :- true.

In other words, the regular type analysis on its own was incapable of detecting the failure.

Using our approach, the conjunctive partial deduction component achieves “perfect” precision

(by keeping the variable link between the two copies of our system), and it is hence not a problem

that the traces cannot be accurately described by regular types.11 This underlines our hope that

adding conjunctions to regular types will be useful for a more precise treatment of synchroniza-

tion in infinite state systems. We also believe that it will be particularly useful for refinement

checking [195], where a model checker tries to find a traceT that can be performed by one

system but not by the other. Such refinement checking can be encoded by the following clause:

not_refinement_of(S1,S2,T) :- trace(S1,T), \+(trace(S2,T)).

This clause is similar to the clause definingsync trace and a non-conjunctive regular type

analysis will face the same problems as above.

10 Propagating Success Information

In this section we address one remaining limitation of our framework compared to existing top-

down abstract interpretation approaches. Indeed, compared to the top-down abstract interpreta-

tion framework of [14],

1. our framework can use abstractconjunctionsinstead of abstract atoms, and can make use of

sophisticatedabstract unfoldingsrather than just a single abstract resolution steps. Apart

from producing more efficient specialised programs, these features sometimes allow for a

more precise analysis [143].

11The non-deterministic regular type analysis of [76] actually is precise enough to capture these traces. However,

we believe that there will be more complicated system traces which it cannot precisely describe.

51

2. on the other hand, there is no propagation or inference ofsuccessinformation in our frame-

work. The following examples explains and illustrates this limitation.

Example 10.1Consider the following tiny program:

p(X)← q(X) ∧ r(X)

q(a)←
r(a)←
r(b)←

Let us suppose we apply the instance of Algorithm 2 described in Section 9.1, i.e., classical

partial deduction within thePD-domain. For a given query← p(X), one possible (although

very suboptimal) outcome of the algorithm is the final setAi = {p(X), q(X), r(X)} of abstract

conjunctions and the SLD-treesτ1, τ2 andτ3 presented in Figure 6 (generated byaunfold).

With this result of the analysis, the transformed program is identical to the original one. Note

that inτ2 we have derived that the only answer for← q(X) is X/a. An abstract interpretation

algorithm such as the one in [14] would propagate this success-information to the leaf ofτ1,

yielding that (under the left-to-right selection rule) the call← r(X) becomes more specific,

namely← r(a). This information would then be used in the analysis of ther/1 predicate,

allowing to remove the right branch ofτ3 and thus the clause generated from it. This clause

is redundant, because for no concretisation of← p(X) will this clause appear in a successful

refutation.

�
��	

@
@@R? ?

2

← r(X)

2

← p(X)

← q(X) ∧ r(X)

← q(X)

2

τ2: τ3:τ1:

X/a X/bX/a
�

��	
@

@@R
2

X/a

← q(X)

← q(X)

τ ′2:

Figure 6: SLD-trees for Example 10.1

The same picture holds even if we add the clause

q(X)← q(X)

to the above program, thus obtaining the treeτ ′2 in Figure 6 instead ofτ2. Indeed, an abstract

interpretation [14] ofq(X) will return that the only possible computed answer substitution for

q(X) is {X/a}. Hence, assuming a left-to-right selection rule, the predicater/1 will again only

ever be called with its argument instantiated toa.

52

The possibility to do such sideways and bottom-up information passing can actually be rel-

atively easily added to our framework.12 In fact, all we have to do is replace Definition 6.2,

defining the concretisation functionγ for sequences of abstract conjunction, by the following

definition:

Definition 10.2Let 〈AQ, γ〉 be an abstract domain. We defineγ for sequences of abstract con-

junctions in the context of a programP inductively as follows:

– γ(〈A1〉) = γ(A1)

– γ(〈A1, . . . ,An〉) = {Qs ∧Qn | Qs ∈ γ(〈A1, . . . ,An−1〉), Qn � dAne and

(P |= ∀(Qs))⇒ Qn ∈ γ(An) }

Intuitively, for a conjunctionq(t) ∧ r(t) to be a concretisation of a sequence〈A1,A2〉 of

abstract conjunctions, the atomr(t) must only be a concretisation ofA2 in caseP |= ∀(q(t)),
i.e., if q(t) is a computed instance.

For example, in thePD-domain and in the context of Example 10.1 we haveq(a) ∧ r(a) ∈
γ(〈q(X), r(a)〉) but alsoq(b)∧ r(b) ∈ γ(〈q(X), r(a)〉), asP 6|= q(b). Similarly, we haveq(X)∧
r(X) ∈ γ(〈q(X), r(a)〉), asP 6|= ∀X.q(X). Observe that neitherq(b) ∧ r(b) nor q(X) ∧ q(X)

are an element ofγ(q(X) ∧ r(a)).

Using the revised Definition 10.2 we have that〈q(X), r(a)〉 is an abstraction ofq(X) ∧
r(X) and Algorithm 2 can thus produce the outcomeAi = {p(X), q(X), r(a)} and sideways and

bottom-up information passing has been achieved.

The change made in Definition 10.2 means that Theorems 8.2 and 8.7 will no longer hold for

any SLD-refutation and finitely failed SLD-tree, but only for LD-refutations and finitely failed

LD-trees (SLD-derivations and SLD-trees which follow a left-to-right selection rule are called

LD-derivations and LD-trees respectively). Furthermore, the abstract unfolding operation will

now have to satisfy the requirements of Definition 5.3 not for some SLD-treeτ but for some

LD-treeτ .

Finally, it is possible to go even further and implement a stronger, selection rule independent,

bottom-up success propagation, that would not only instantiater(X) to r(a) in Example 10.1 but

also instantiatep(X) to p(a). Abstract partial deduction could then produce the outcomeAi =

{p(a), q(a), r(a)} and the specialised program:

p(a)←
q(a)←
r(a)←

12Another possible solution is to analyse the callsq(X) andr(X) in conjunction, thus achieving “perfect” success

information passing. However, due to termination considerations this is not always possible or desirable.

53

Details of this approach are sketched in [123]. A variation of this approach has been used in

[131] to obtain a concrete specialization procedure and a practical implementation. We basically

can instantiate the resultants using bottom-up success information. However, this specialization

approach can change the termination characteristic of the program and no longer preserves the

finite failure semantics, because infinite failure can be replaced by finite one.

11 More Related Work

Abstract Interpretation of Logic Programs Table 1 presents a brief comparison of how the

specialization and abstract interpretation techniques discussed in the paper relate to each other.

The abbreviations in the table for the column headings are as follows:

– PD: stands for classical partial deduction [152]

– CPD: denotes conjunctive partial deduction [42]

– MSV: this is the most specific version abstract interpretation of [154, 155]

– TD-AI: is the top-down abstract interpretation framework of [14]

– Plai: is the already mentioned technique of [182, 192] which extends an existing abstract

interpreter for Prolog so that it produces specialised code. This can be seen as abstract

partial deduction on atoms, using arbitrary abstract domains (provided by the abstract in-

terpreter), and (contrary to [184, 188]) it can use an abstract unfolding which performs

more than one unfolding step.

– BU-AI: this classical bottom-up abstract interpretation based on approximatingTP and

computing a fixpoint of this abstraction.

– APD: this is abstract partial deduction as developed in this paper up until Section 8.

– APD+: this is the abstract partial deduction with success information propagation, as ex-

tended in Section 10.

The first row of Table 1 indicates which abstract domain can be used by the respective meth-

ods. The second row indicates whether the method can analyse conjunctions of atoms, while the

third row indicates whether the method can make use of an unfolding rule. The fourth row indi-

cates whether success information can be inferred and propagated, while the last row indicates

the semantics on which the abstractions are based.

Specialization and Transformation of Logic Programs We have already discussed in Sec-

tion 9 the relationship of our abstract partial deduction framework (namely “more general than”)

13Only in the journal version [155].

54

PD CPD MSV TD-AI Plai BU-AI APD APD+

Abs. Domain PD PD PD any any any any any

Conjunctions no yes yes13 no no no yes yes

Unfolding yes yes no no yes no yes yes

Success Info no no yes yes yes yes no yes

Semantics SLD SLD TP And-Or And-Or TP SLD SLD+TP

Table 1: A comparison of program specialization and abstract interpretation techniques

with classical partial deduction [152, 57], conjunctive partial deduction [129, 79, 120], ecologi-

cal partial deduction [117, 140, 120] (and its ancestor [60]), constrained partial deduction [128],

and partial deduction with removal of useless clauses [43, 66, 44].

The following techniques in the functional/logic setting, are also closely related. [69] presents

a variation of ecological partial deduction for functional and logic languages, using trace terms

instead of characteristic trees. [113] is a technique in the style of constrained partial deduction

for functional-logic programs. [3, 2] can be viewed as a conjunctive partial deduction technique

(i.e., abstract partial deduction in the classicalPD-domain) for functional-logic languages.

Another, strongly related work is [172], which uses an unfold/fold program transformation

approach to specialise logic programs in a givencontext. This context is another predicate of

the logic program under consideration. In contrast to our general technique, [172] performs

syntactic transformations only, and has a more limited abstract unfolding possibility. Also, the

side-condition has to be expressed as a logic program predicate, i.e., it may not be obvious

how to easily handle characteristic trees from ecological partial deduction or more general con-

straints. Finally, the results of [172] are for the least Herbrand model semantics and not (yet)

for computed answer or finite failure semantics. Nonetheless, it should be possible to cast [172]

(or a suitably adapted version thereof) in our framework and thus gain correctness results for

computed answers and finite failure.

Functional Programming Supercompilation [205, 81], is very related to conjunctive partial

deduction (in fact, conjunctive partial deduction was in part inspired by supercompilation). In-

deed, the abstract domain for supercompilation can be seen as the concrete domain of functional

programming expressions augmented with variables (which already exist in the concrete domain

of logic programming). Tupling [24], deforestation [215], and generalized partial computation

[54] are also closely related to conjunctive partial deduction (see [42, 125], [204]) and thus ab-

stract partial deduction in the “classical”PD-domain. We believe that it is possible to adapt the

present paper to a functional programming setting, thus making it possible to extend the above

55

techniques to use richer, more expressive abstract domains.

One of the earliest combinations of abstract interpretation and partial evaluation has been

developed by Consel and Khoo [33]. They give a framework for a first-order functional language

parametrised on algebras. Another related functional programming technique is type special-

ization [94]. It already uses a domain based upon types, richer than thePD-domain. It is

still unclear whether a logic programming version of type specialization can be developed, and

whether it can then be cast into our framework.

Imperative Programming [105] presents a very generic framework which can model various

(non-conjunctive) partial evaluation and driving techniques in the context of imperative pro-

grams. It has a concept of abstract stores, which represent sets of possible concrete stores of the

imperative program. The paper also contains soundness and completeness criteria, and clarifies

the relationship between partial evaluation and driving (i.e., supercompilation). However, in con-

trast to our paper, it has more limited abstract unfolding: in essence every abstract unfolding step

must correspond to exactly one concrete step (there is, however, a post-processing compression

phase of transient transitions).

12 Future Work and Conclusion

Future Work A lot of avenues can be pinpointed for further work. First, on the practical side,

one should of course implement further, useful instances of the generic algorithms presented

in this paper. [73, 74] and [131] have already developed instances of our framework based

upon regular types, and some promising applications for infinite state model checking of process

algebras have been hinted at. These techniques can probably be further improved, by using the

possibilities opened up by our very general definition of abstract unfolding (cf., Section 5). It

should also be possible to move to more precise abstract domains, such as non-deterministic

regular types [76] without too much difficulty.

New abstract partial deduction techniques, based upon other abstract domains from the ab-

stract interpretation literature also look very promising for specialization purposes.

On the theoretical side, one could try to extend the language treated by our framework. We

can already handle definite logic programs with declarative built-ins such asis, call , functor ,

arg , \==. This allows to express a large number of interesting, practical programs; one can even

implement and use certain higher-order features such asmap/3. However, we cannot yet handle

normal logic programs with negation or constraint logic programs, and one should strive to ex-

tend our framework to handle such programs. Ideally, one should aim at making our framework

56

programming language independent and thus not only covering normal and constraint logic pro-

grams, but functional and imperative programs as well. This would provide a unified correctness

framework in which most specialization techniques could be cast.

One can also endeavor to cover ever more powerful, but ever more difficult to automate,

specialization methods such as goal replacement, specialization of disjunctions of conjunctions

[175] or specialization of conjunctions of unlimited length [171].

Conclusion In this paper we have presented a very generic framework for top-down logic

program specialization. We have established severalgeneric correctness resultsand have cast

several existing techniques in our framework, thereby re-using the correctness results in a sim-

ple manner. We have also shown how the additional generality of our framework can be ex-

ploited in practice, for improved generalisation, unfolding and code-generation. Instances of our

framework, based upon regular types, have already been developed in the literature and their

usefulness has been demonstrated. In the course of this paper, we have also clarified the rela-

tionship of top-down partial deduction with abstract interpretation, establishing acommon basis

and terminology. We believe we have made an important step towards a full reconciliation of ab-

stract interpretation and program specialization. In summary, the new framework with its generic

algorithm and correctness results, provides the foundation for new, powerful specialization tech-

niques.

57

Part II

Abstract Specialization and its

Applications
The aim of program specialization is to optimize programs by exploiting certain knowledge

about the context in which the program will execute. There exist many program manipulation

techniques which allow specializing the program in different ways. Among them, one of the

best known techniques ispartial evaluation, often referred to simply as program specialization,

which optimizes programs by specializing them for (partially) known input data. In this work

we describeabstract specialization, a technique whose main features are: (1) specialization is

performed with respect to “abstract” values rather than “concrete” ones, and (2)abstract interpre-

tationrather than standard interpretation of the program is used in order to propagate information

about execution states. The concept of abstract specialization is at the heart of the specialization

system inCiaoPP , theCiao system preprocessor. In this work we present a unifying view of

the different specialization techniques used inCiaoPP and discuss their potential applications

by means of examples. The applications discussed include program parallelization, optimization

of dynamic scheduling (concurrency), and integration of partial evaluation techniques.

13 Background

The aim of program optimisation is, given a programP to obtain another programP ′ which

is semantically equivalent toP but behaves better for some criteria of interest. One typical

way of optimizing programs is byspecializingthem for some particular context. This allows

automatically overcoming losses in performance which are due to general purpose algorithms.

This situation is becoming more and more frequent due to the use of techniques such as reuse of

general-purpose programs and libraries, and software components, which facilitate development

but can result in large programs and even waste of computing resources. More precisely, the aim

of program specialization is, given a programP and certain knowledgeφ about the context in

whichP will be executed, to obtain a programPφ which is equivalent toP for all contexts which

satisfyφ and which behaves better from some given point of view.

In the case ofpartial evaluation[32, 99], the knowledgeφ which is exploited is the so-called

staticdata, which corresponds to (partial) knowledge at specialization (compile) time about the

input data. Data which is not known at specialization time is calleddynamic. The program is

58

optimised by performing at specialization time those parts of the program execution which only

depend on static data.

Another very general setting for specialization specially relevant in the context of logic pro-

grams, which has been proposed in [173], is to define the knowledge about the context as a

so-calledstatic propertyφ(X1, . . . , Xn), whereX1, . . . , Xn are the formal arguments of the top-

level procedureP andφ is defined as a logic program. However, this approach suffers from an

important difficulty in using the context information in an automated and effective way.

The approach we follow inabstract specializationis that the informationφ available on the

context is captured by anabstract substitution. One advantage of this approach is that there are

well known techniques which allow handling information represented as abstract substitutions

by usingabstract interpretationtechniques [35].

13.1 An Overview of Specialization Techniques

For the purpose of comparing different existing techniques, let us classify the existing special-

ization techniques according to how the final, optimised, program is obtained. Of course, this

classification is rather crude and many of the existing techniques can be seen as a combination

of the three approaches which we will discuss. The first approach which we describe, and which

we will call program with annotations, consists of two phases. During the first phase, some

static program analysistechnique is used in order to annotate the program with analysis infor-

mation. In the second phase, the program is optimised using the information obtained. This

approach is conceptually simple, though either or both of the phases mentioned can indeed be

rather complex. A well known example of this kind of techniques is the “off-line” approach to

partial evaluation, in which abinding-time analysisphase is followed by another one in which

the residual program is generated.

The second class of techniques we consider, which we will call thetransformationalap-

proach, is based on program transformation techniques, such as fold/unfold transformations

(such as the ones developed in [20, 206]). In this scheme, a series ofn semantic-preserving

program-transformation steps are performed such that initiallyP = P0. Then, eachPi+1 is ob-

tained fromPi by applying some transformationTi, i.e., Pi+1 = Ti(Pi), which preserves the

semantics of the program. FinallyP ′ = Pn. Transformational techniques are very powerful, the

main difficulty being in automatically deciding a proper sequence of programs transformations

to perform in order to obtain (an optimal) programP ′.

The third and last possibility which we consider, and which we will denote thesemanticap-

proach, is based on the existence of an algorithmS which, given a programP and some know-

ledgeφ, builds a semantic representation of the programS(P, φ) which captures the behaviour

59

of P in some precise way for all contexts which satisfyφ. Then, there is a code generation algo-

rithm which builds the programPφ from S(P, φ) in a straightforward way. Often this semantic

representation can be seen as a graph. The kind of graph obtained depends on the particular

semantics used by the algorithm. The “on-line” approach to partial evaluation is, in our termi-

nology, a semantic approach since the behaviour of the program is precisely captured by the

partial evaluation algorithm.

A particular algorithm for the on-line partial evaluation of logic programs ispartial deduc-

tion [148, 110]. Though on-line partial evaluation can be considered an instance of fold/unfold

transformations, the comparatively significant success of partial deduction techniques is proba-

bly due to the fact that they are often formalized as a semantic approach. I.e., an algorithm exists

which can be used to build the semantic representation of the program. The existing algorithms

for partial deduction [148, 57, 120] are parameterized by different control strategies. Usually,

control is divided into components: “local control,” which controls the unfolding for a given

atom, and “global control,” which ensures that the set of atoms for which a partial evaluation

is to be computed remains finite. Several strategies for global and local control have been pro-

posed which produce good-quality partial evaluations of programs [158, 139]. Regarding the

correctness of partial deduction, two conditions, defined on the set of atoms to be partially eval-

uated, have been identified which ensure correctness of the transformation: “closedness” and

“independence” [148].

13.2 Abstract Specialization through A Motivating Example

One of the distinguishing features of logic programming (LP) is that arguments to procedures

can be uninstantiated variables. This, together with the search execution mechanism available

(generally backtracking) makes it possible to havemulti-directionalprocedures. I.e., rather than

having fixed input and output arguments, execution can be “reversed”. Thus, we may compute

the “input” arguments from known “output” arguments.

Example 13.1 Consider the logic program below. As usual in LP,predicates(procedures) are
referred to in the text asname/arity , where arity is the number of arguments of the predicate.
The predicateground/1 is a boolean test which succeeds if and only if its argument is bound
at run-time to a term without variables, and the predicateis/2 (used as an infix binary opera-
tor) computes the arithmetic value of its second (right) argument and unifies it with its first (left)
argument.

plus(X,Y,Z):- ground(X),ground(Y),!,Z is X + Y.

plus(X,Y,Z):- ground(Y),ground(Z),!,X is Z - Y.

plus(X,Y,Z):- ground(X),ground(Z),!,Y is Z - X.

60

The procedureplus/3 defines the relation such that the third argument is the addition of
the first and second arguments. The procedureplus/3 is multi-directional. For example,
the call plus(1, 2, Sum) can be used to compute the addition of 1 and 2. Also, the call
plus(Num, 2, 3) can be used to determine which is the numberNumsuch that when added
to 2 returns 3.

Thus, the definition ofplus/2 behavesdeclarativelyas long as at least two of the input

arguments are ground. However, this good behavior ofplus/3 when compared to a mono-

directional operation such asis/2 is at the expense of some overhead which is incurred at run-

time in order to select the appropriate clause to execute out of the three existing ones. Imagine

now that at compile-time it is known that the call toplus/3 will be of the formplus(1, 2,

Sum). In such case it is clear that the first clause will be selected and the execution will return

the value 3 for the argumentSum. This is a typical example of an execution which can benefit

from (traditional, “concrete”) partial evaluation whereφ is the knowledge that the initial call is

plus(X,Y,Z) with X=1 andY=2.

In spite of the relative maturity of partial evaluation of logic programs, it is well known that

the technique has certain shortcomings. Imagine we are interested in optimizing the code:

p(X,Y,Res):- plus(X,Y,Tmp), plus(1,Tmp,Res).

whereplus/3 is defined as above. By observing the program we can conclude that after the

execution of the callplus(X,Y,Tmp) all three arguments are ground. As a result, the call

plus(1,Tmp,Res) can be optimised toRes is 1 + Tmp .

Unfortunately, in traditional partial evaluation no information on the value of the argument

Tmpis propagated to the callplus(1,Tmp,Res) . The intrinsic problem underlying this short-

coming of partial evaluation is that the only information which can be captured about values of

arguments areconcretevalues. In the case of logic programming, values are captured bysub-

stitutions. This shortcoming of partial evaluation has been identified and several proposals exist

which try to overcome it. Our proposal,abstract specialization, addresses this problem directly.

Abstract specialization allows specializing calls with respect toabstract substitutionsinstead of

concrete substitutionsas in traditional partial evaluation. As will be discussed in Section 14, ab-

stract substitutions are in this context finite representations of possibly infinite sets of data. Each

such representation method is called anabstract domain. The kind of information which can be

captured by abstract substitutions varies from one abstract domain to another. For example, we

can have an abstract domain which allows capturing type information.14 Such domain can be

14Alternatively we could use an abstract domain which captures groundness information natively and obtain the
same optimised program.

61

used to determine that in the callplus(1,Tmp,Res) the argumentTmpis bound to a number.

We can use this information in order toabstractly executethe two ground terms in the first clause

of plus/3 to the valuetrue. We can even execute the!/0 procedure call and eliminate the rest

of clauses forplus/3 15. We can thus optimise the original program to:

p(X,Y,Res):- plus(X,Y,Tmp), Res is 1 + Tmp.

Also, the callplus(X,Y,Tmp) can be optimised. SinceTmpis a variable which is local to

the clause, it can be determined to be a free variable (and thus definitely not ground). Thus, the

program can be optimised to:

p(X,Y,Res):- plus1(X,Y,Tmp), Res is 1 + Tmp.

plus1(X,Y,Z):- ground(X),ground(Y),!,Z is X + Y.

whereplus1/3 is a specialized version ofplus/3 . Generalizing from the examples above we

can develop a specialization system which is able to perform the optimisations shown above. The

specialization system will be able to: (1) capture more general information than traditional sub-

stitutions, i.e., it will capture abstract substitutions, (2) propagate such information in a correct

way using a suitable semantics, and (3) carry out the optimisations enabled by the information

available.

14 Abstract Interpretation

Static Program analysisaims at deriving at compile-time certain properties of the run-time be-

havior of a program. We provide some background and notation on abstract interpretation [35],

which is arguably one of the most successful techniques for static program analysis.

In abstract interpretation, the execution of the program is “simulated” on anabstract domain

(Dα) which is simpler than the actual,concrete domain(D). An abstract value is a finite repre-

sentation of a, possibly infinite, set of actual values in the concrete domain (D). The set of all

possible abstract semantic values represents an abstract domainDα which is usually a complete

lattice or cpo which is ascending chain finite. However, for this study, abstract interpretation

is restricted to complete lattices over sets both for the concrete〈2D,⊆〉 and abstract〈Dα,v〉
domains.

Abstract values and sets of concrete values are related via a pair of monotonic mappings

15The procedure call!/0 is used to eliminate other alternatives.

62

〈α, γ〉: abstractionα : 2D → Dα, andconcretizationγ : Dα → 2D, such that

∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y.

Note that in generalv is induced by⊆ andα (in such a way that∀λ, λ′ ∈ Dα : λ v λ′ ⇔
γ(λ) ⊆ γ(λ′)). Similarly, the operations ofleast upper bound(t) andgreatest lower bound(u)

mimic those of2D in some precise sense.

Example 14.1 (A domain for mode analysis)Consider the following toy abstract domainDα

which capturesmodeinformation (i.e., the state of instantiation of program variables upon pro-
cedure call). An abstract substitutionλ over a set of variablesX = {X1, . . . , Xn} assigns to
each variableXi a valuev in the set{ground, var, any} where eachv represents an infinite set
of terms. The fact that a variableXi is assigned an abstract valuev indicates thatXi will be
bound at run-time to some term belonging tov. ground is the set of all terms without variables;
var is the set of unbound variables (possibly aliased to other unbound variables); andany is
the set of all terms. The abstract domain is complemented by the abstract substitutions⊥ and>.
As usual in abstract interpretation,⊥ denotes the abstract substitution such thatγ(⊥) = ∅. The
substitution> is such thatγ(>) = D. In our domain,> corresponds to assigningany to each
variable inX. 2

Since our discussion will concentrate on logic programs, we also recall some classical defini-

tions in logic programming. Anatomhas the formp(t1, ..., tn) wherep is a predicate symbol and

theti are terms. We often uset to denote a tuple of terms. Aclauseis of the formH:- B1, . . . , Bn

whereH, thehead, is an atom andB1, . . . , Bn, thebody, is a possibly empty finite conjunction

of atoms. Atoms in the body of a clause are often calledliterals. A definite logic program, or

program, is a finite sequence of clauses.

14.1 Goal-Dependent analysis

Goal-dependentanalyses are characterized by generating information which is valid only for a

restricted set of calls to a predicate, as opposed to goal-independent analyses whose results are

valid for any call to the predicate. Goal-dependent analyses allow obtaining results which are

specialized(restricted) to a given context. As a result, they provide in general better (stronger)

results than goal-independent analyses. In addition, goal-dependent analyses provide informa-

tion on both the call and success states for each predicate, whereas goal-independent analyses

in principle only provide information on success states of predicates. For these reasons, and

since program specialization greatly relies on information about call states to predicates, we will

restrict the discussion to goal-dependent analyses.

In order to improve the accuracy of goal-dependent analyses, some kind of description of the

initial calls to the program should be given.16 With this aim, we will useentry declarations in
16Predicate calls which are not initial will be calledinternal.

63

Property Definition Sufficient condition

L is abstractly RT (L, P) ⊆ TS(L, P) ∃λ′ ∈ ATS(B, Dα) :
executable totrue in P λL v λ′

L is abstractly RT (L, P) ⊆ FF (L, P) ∃λ′ ∈ AFF (B, Dα) :
executable tofalsein P λL v λ′

Table 2: Abstract Executability

the spirit of [17]. Their role is to restrict the starting points of analysis to only those calls which

satisfy a declaration of the form ‘:- entry Pred : Call. ’ whereCall is an abstract call sub-

stitution forPred. For example, the following declaration informs the analyzer that at run-time

all initial calls to the predicateqsort/2 will have a term without variables in the first argument

position:

:- entry qsort(A,B) : ground(A).

Though our framework allows having several entry declarations (for the same or different

exported predicates), for the sake of clarity of the presentation we restrict ourselves to having

one entry declaration only. Also,CiaoPP [87] supports a more general language, which in-

cludes properties defined in the source language [179]. In this setting, goal dependent abstract

interpretation takes as input (1) a programP (2) an atomp, (3) an abstract substitutionλ in (4)

an abstract domainDα which describes restrictions on the initial values, and computes a set of

triples Analysis(P, p, λ, Dα) = {〈p1, λ
c
1, λ

s
1〉, . . . , 〈pn, λ

c
n, λ

s
n〉}. In each triple〈pi, λ

c
i , λ

s
i 〉, pi

is an atom andλc
i andλs

i are, respectively, the abstract call and success substitutions.17 Due to

space limitations, and given that it is now well understood, we do not describe here how we com-

puteAnalysis(P, p, λ, Dα). More details can be found in [89, 187] and their references. Given

Analysis(P, p, λ, Dα) = {〈p1, λ
c
1, λ

s
1〉, . . . , 〈pn, λ

c
n, λ

s
n〉}, correctness of abstract interpretation

guarantees that the following propositions hold:

Proposition 14.2 (Correctness w.r.t. successes)The abstract success substitutions cover all the
concrete success substitutions which appear during execution, i.e.,∀i = 1..n ∀θc ∈ γ(λc

i) if piθc

succeeds inP with computed answer substitutionθs thenθs ∈ γ(λs
i).

Proposition 14.3 (Correctness w.r.t. calls)The abstract call substitutions cover all the con-
crete calls which appear during executions described by〈p, λ〉. I.e., for any concrete callc

17Actually, the analyzers used in practice generate information not only at thepredicate level, as stated here for
simplicity, but also at theclause literallevel.

64

originated from an initial goalpθ s.t. θ ∈ γ(λ) : ∃〈pj, λ
c
j, λ

s
j〉 ∈ Analysis(P, p, λ, Dα) s.t.

c = pjθ
′ andθ′ ∈ γ(λc

j).

Proposition 14.3 is related to the closedness condition [148] required in partial deduction. A

tuple 〈pj, λ
c
j,⊥〉 indicates that all calls to predicatepj with substitutionθ ∈ γ(λc

j) either fail or

loop, i.e., they do not produce any success substitutions. An analysis is said to bemultivariant

if more than one triple〈p, λc
1, λ

s
1〉, . . . , 〈p, λc

n, λ
s
n〉 n > 1 with λc

i 6= λc
j for somei, j may be

computed for the same predicatep.

15 Abstract Executability

The concept ofabstract executability[77, 189] allows reducing at compile-time certain program

fragments to the valuestrue, false, or error, or to a simpler program fragment, by application of

the information obtained via abstract interpretation. This allows optimizing and transforming the

program (and also detecting errors at compile-time in the case oferror).

For simplicity, we will limit herein the discussion to reducing a procedure call or program

fragmentL (for example, a “literal” in the case of logic programming) to eithertrue or false.

Each run-time invocation of the procedure callL will have alocal environmentwhich stores the

particular values of each variable inL for that invocation. We will useθ to denote this envi-

ronment (composed of assignments of values to variables, i.e., substitutions) and the restriction

(projection) of the environmentθ to the variables of a procedure callL is denotedθ|L.

We now introduce some definitions. Given a procedure callL to a predicate which performs

no side-effects in a programP we define thetrivial success setof L in P as:

TS(L, P) = {θ|L : Lθ succeeds exactly once inP with empty answer substitution(ε)}

Similarly, given a procedure callL from a programP we define thefinite failure setof L in P

as:

FF (L, P) = {θ|L : Lθ fails finitely in P}

Finally, given a procedure callL from a programP we define therun-time substitution setof

L in P , denotedRT (L, P), as the set of all possible substitutions (run-time environments) in the

execution state just prior to executingL in any possible execution of programP .

Table 2 shows the conditions under which a procedure callL is abstractly executable to

either true or false. In spite of the simplicity of the concepts, these definitions are in general

not directly applicable in practice sinceRT (L, P), TS(L, P), andFF (L, P) are generally not

known at compile time. However, acollecting semanticsis generally used as concrete semantics

for abstract interpretation so that analysis computes for each procedure callL in the program an

65

abstract substitutionλL which is a safe approximation ofRT (L, P), i.e. ∀L ∈ P . RT (L, P) ⊆
γ(λL).

Also, under certain conditions we can compute either automatically or by hand sets of abstract

valuesATS(L, Dα) andAFF (L, Dα) whereL stands for thebase formof L, i.e., all the arguments

of L contain distinct free variables. Intuitively, they contain abstract values in domainDα which

guarantee that the execution ofL trivially succeeds (resp. finitely fails). Soundness requires that

∀λ ∈ ATS(L, Dα) γ(λ) ⊆ TS(L, P) and∀λ ∈ AFF (L, Dα) γ(λ) ⊆ FF (L, P).

Even though the simple optimisations illustrated above may seem of narrow applicability,

in fact for many builtin procedures such as those that check basic types or which inspect the

structure of data, even these simple optimisations are indeed very relevant. Two non-trivial

examples are their application to simplifying independence tests in program parallelization [189],

discussed in Section 17, and the optimisation of delay conditions in logic programs with dynamic

procedure call scheduling order [181], discussed in Section 18.

Also, the class of optimisations which can be performed can be made to cover traditional

lower-level optimisations as well, provided the lower-level code to be optimised is “reflected”

(i.e., is made explicit) at the source level or if the abstract interpretation is performed directly at

the object level.

16 Abstract Multiple Specialization

The traditional approach used in analysis-based optimizing compilers is to first analyze the

program and then use the information inAnalysis(P, p, λ, Dα) to annotate the program with

information which is then used for optimisation. Often, the underlying analysis algorithm is

multi-variant. However, analysis information for the different versions of a procedure call is

“flattened”, i.e., “lubbed” together before being used for optimisation. Though this approach

allows important optimisations, it produces optimisations which may be suboptimal when com-

pared with the optimisations which could be achieved if separate specializations were imple-

mented for the different versions considered by multi-variant analysis. More precisely, suppose

{〈pj, λ
c
1, λ

s
1〉, . . . , 〈pj, λ

c
n, λ

s
n〉} n > 1 are the tuples inAnalysis(P, p, λ, Dα) for predicatepj.

Generally, only one version forpj is implemented, which is equivalent to specializingpj w.r.t.

λc
1 t λc

2, . . . t λc
n.

The main idea that we will exploit is to generate a different version ofpj for each tuple

〈pj, λ
c
i , λ

s
i 〉. Then, each version can be specialized w.r.t.λc

i regardless of the rest of the call

substitutionsλc
j ∀j 6= i. Hopefully, this will lead to further opportunities for optimisation in each

particular version. Note that if analysis terminates the number of tuples inAnalysis(P, p, λ, Dα)

66

for each predicate must be finite, and thus the resulting program will be finite. We will refer to this

kind of specialization asabstract multiple specialization[185, 189]. An important observation

here is that abstract multiple specialization is not aprogram with annotationsapproach but rather

asemanticapproach in the terminology of Section 13.1.

16.1 Analysis And–Or Graphs

Traditional, goal dependent abstract interpreters for logic programs based on Bruynooghe’s ana-

lysis framework [13] construct, in order to computeAnalysis(P, p, λ, Dα), an and–or graph

which corresponds to (or approximates) the abstract semantics of the program. We will denote

by AO(P, p, λ, Dα) the and–or graph computed by the analyzer for a programP with calling

pattern〈p, λ〉 using the domainDα. Such a graph can be viewed as a finite representation of the

(possibly infinite) set of and–or trees explored by the (possibly infinite) concrete execution. Con-

crete and–or trees which are infinite can be represented finitely through a widening into a rational

tree. Also, the use of abstract values instead of concrete ones allows representing infinitely many

concrete execution trees with a single abstract analysis graph. Finiteness ofAO(P, p, λ, Dα)

(and thus termination of analysis) is achieved by considering an abstract domainDα with certain

characteristics (such as being finite, or of finite height, or without infinite ascending chains) or

by the use of awideningoperator [35].

The graph has two type of nodes: those which correspond to atoms (calledor–nodes) and

those which correspond to clauses (calledand–nodes). Or–nodes are triples〈pi, λ
c
i , λ

s
i 〉. As be-

fore, λc
i andλs

i are, respectively, a pair of abstract call and success substitutions for the atom

pi. For clarity, in the figures the atompi is superscripted withλc to the left andλs to the

right of pi respectively. For example, the or–node〈p(A), {}, {A/a}〉 is depicted in the figure as
{}p(A){A/a}. And–nodes are pairs〈Id, H〉 whereId : inv02− puebla.tex, v1.92004/01/1911 :

50 : 17asap − sotExp is a unique identifier for the node andH is the head of the clause to

which the node corresponds. In the figures, they are represented as triangles andH is depicted

to the right of the triangles. Note that the substitutions (atoms) labeling and–nodes are concrete

whereas the substitutions labeling or–nodes are abstract. Finally, squares are used to represent

the empty (true) atom. Or–nodes have arcs to and–nodes which represent the clauses with which

the atom (possibly) unifies. And–nodes have arcs to or–nodes which represent the atoms in the

body of the clause. Note that several instances of the same clause may exist in the analysis graph

of a program. In order to avoid conflicts with variable names, clauses are standardized apart

before adding to the analysis graph the nodes which correspond to such clause.

Intuitively, analysis algorithms are just graph traversal algorithms which, givenP, p, λ, and

Dα, build AO(P, p, λ, Dα) by processing program clauses from left to right, adding the required

67

r(X)

r(a)

q(X)

p(A)
{} {A/a}

{} {X/a}

{} {}{} {}

{X/a}

q(a)

{X/a}

p(X)

q(X)

q(Y)
{Y/a}{}

q(Y)

Figure 7: And–or analysis graph for a recursive program

nodes, and computing success substitutions until a global fixpoint is reached. For a givenP, p, λ,

andDα there may be many different analysis graphs. However, there is a uniqueleast analysis

graph which gives the most precise information possible. This analysis graph corresponds to

the least fixpoint of the abstract semantic equations. Each time the analysis algorithm creates a

new or–node for somepi andλc
i and before computing the correspondingλs

i , it checks whether

Analysis(P, p, λ, Dα) already contains a tuple for (a variant of)pi andλc
i . If that is the case, the

or–node is not expanded and the already computedλs
i stored inAnalysis(P, p, λ, Dα) is used

for that or–node. This is done both for efficiency and for avoiding infinite loops when analyzing

recursive predicates. As a result, several instances of the same or–node may appear inAO, but

only one of them is expanded. We denote byexpansion(N) the instance of the or–nodeN which

is expanded. If there is no tuple forpi andλc
i in Analysis(P, p, λ, Dα), the or–node is expanded,

λs
i computed, and〈pi, λ

c
i , λ

s
i 〉 added toAnalysis(P, p, λ, Dα). Note that the success substitutions

λs
i stored inAnalysis(P, p, λ, Dα) are tentative and may be updated during analysis. Only when

a global fixpoint is reached the success substitutions are safe approximations of the concrete

success substitutions.

For clarity of the presentation, in the examples below we use the concrete domain as abstract

domain. However, this cannot be done in general since analysis may not terminate. We will

present other examples with more realistic domains later in the paper.

Example 16.2 Consider the simple example program below taken from [120]. Figure 7 depicts
a possible result of analysis for the initial callp(A) with A unrestricted. The dotted arc indicates
that the corresponding or–nodes have renamings of the same abstract call substitution.
p(X):- q(X), r(X).

q(a).

q(X):- q(X).

r(a).

68

Algorithm 16.1 (Code Generation) Given Analysis(P, p, λ, Dα) and
AO(P, p, λ, Dα) generated by analysis for a programP an atom p with
abstract substitutionλ ∈ Dα do:

• For each tupleN = 〈a(t), λc, λs〉 ∈ Analysis(P, p, λ, Dα) generate a dis-
tinct predicate with namepredN = name(〈a(t), λc, λs〉).

• Each predicatepredN is defined by the sequence of clauses

– (predN(t1) :- b′1) :: . . . :: (predN(tn) :- b′n)
whereexpansion(N, AO) = ON and
children(ON , AO) = 〈Id1, p1(t1)〉 :: . . . :: 〈Idi, pi(ti)〉 :: . . . ::
〈Idn, pn(tn)〉

• Each bodyb′i is defined as

– b′i = (predi1(ti1), . . . , prediki
(tiki

))
wherepredij = name(〈aij(tij), λ

c
ij, λ

s
ij〉), and

children(〈Idi, pi(ti)〉, AO) = 〈ai1(ti1), λ
c
i1, λ

s
i1〉 :: . . . ::

〈aiki
(tiki

), λc
iki

, λs
iki
〉.

Figure 8: Algorithm for Code Generation

r(b).

Clearly, in the example program above the clauser(b) is useless and could be eliminated.

Note that analysis has determined that in all successes ofq(X) , and thus in calls tor(X) , the

argumentX will be bound to the valuea. This is achieved by performing a fixpoint computation

on the success values ofq(X) . This is why in Figure 7 the or–node〈r(X), {X/a}, {X/a}〉 only

has one child (and–node).

16.2 Code Generation from an And–Or Graph

After introducing some notation, Algorithm 16.1 which generates a logic program from an analy-

sis and–or graph is presented in Figure 8. Given a non-root nodeN , we denote byparent(N, AO)

the nodeM ∈ AO such that there is an arc fromM to N in AO, andchildren(N, AO) is the

sequence of nodesN1 :: . . . :: Nn n ≥ 0 such that there is an arc fromN to N ′ in AO iff

N ′ = Ni for somei and∀i, j = 0, . . . , n. Ni is to the left ofNj in AO iff i < j. Note

that children(N, AO) may be applied both to or– and and–nodes. We assume the existence of

an injective functionname which (1) givenAnalysis(P, p, λ, Dα) returns a unique predicate

name for each tuple and (2)name(〈q(t), λc, λs〉) = q iff q(t) = p (the exported predicate) and

69

λc = λ (the restriction on initial calls), to ensure that top-level – exported – predicate names are

preserved.

Let AO(P, p, λ, Dα) be an and–or graph. We denote byP ′ = code gen(AO(P, p, λ, Dα))

thatP ′ is the program obtained by applying Algorithm 16.1 toAO(P, p, λ, Dα).

Basically, the algorithm for code generation shown in Figure 8 creates a different version

(predicate) name for each different (abstract) call substitutionλc to each predicatepi in the orig-

inal program. This is easily done by associating a version to each or–node. Note that in principle

such versions are identical except that atoms in clause bodies are renamed to always call the

appropriate version. Correctness of this multiply specialized program is given by the correctness

of the abstract interpretation procedure, as the extended program is obtained by simply materi-

alizing the (implicit) program with multiple versions from which the analysis has obtained its

information.

Example 16.3 The program generated by the code generation algorithm for the and–or graph
in Figure 7 is shown below. The useless clauser(b) has been eliminated.
p(X):- q(X), r(X).

q(a).

q(X):- q(X).

r(a).

The example above shows how the use of and–or graphs allows removing useless clauses. The

example below shows how generating multiple specialized versions of a predicate can lead to

optimisations which are not possible if only one version were implemented.

Example 16.4 Consider the programP in Example 13.1. The and–or graphAO(P, p,>, Dα)
whereDα is a domain which captures mode information will have two or-nodes for predicate
plus/3 with different abstract call substitutions (we abbreviateground byg):

〈plus(X ′, Y ′, Z ′), {Z ′/var}, {X ′/g, Y ′/g, Z ′/g}〉

and

〈plus(X ′′, Y ′′, Z ′′), {X ′′/g, Y ′′/g}, {X ′′/g, Y ′′/g, Z ′′/g}〉

Now each of these call patterns can be optimised separately by abstractly executing the ground-
ness tests. The final specialized program obtained is shown below:

p(X,Y,Res) :- plus1(X,Y,Tmp), plus2(1,Tmp,Res).

plus1(X,Y,Z) :- ground(X), ground(Y), !, Z is X+Y.

plus2(X,Y,Z) :- Z is X+Y.

70

mmultiply([],_,[]).
mmultiply([V0|Rest],V1,[Result|Others]) :-

(ground(V1),
indep([[V0,Rest],[V0,Others],[Rest,Result],[Result,Others]])

-> multiply(V1,V0,Result) & mmultiply(Rest,V1,Others)
; multiply(V1,V0,Result), mmultiply(Rest,V1,Others)).

multiply([],_,[]).
multiply([V0|Rest],V1,[Result|Others]) :-

(ground(V1),
indep([[V0,Rest],[V0,Others],[Rest,Result],[Result,Others]])

-> vmul(V0,V1,Result) & multiply(Rest,V1,Others)
; vmul(V0,V1,Result), multiply(Rest,V1,Others)).

Figure 9: Parallel mmatrix

Note that this program could be further improved by unfolding the callplus2(1,Tmp,Res) .

This will be further discussed in Section 19. Also, two versions have been generated for predi-

cateplus/3 , namelyplus1/3 andplus2/3 . In order to avoid code explosion our system

performs a minimizing step a posteriori on the and–or graph in order to produce the minimal

number of versions while maintaining all optimisations [189].

17 Program Parallelization

The final aim of parallelism is to achieve the maximum speed (effectiveness) while computing

the same solution (correctness) as the sequential execution. The two main types of parallelism

which can be exploited in logic programs are well known: or-parallelism and and–parallelism.

In this work we concentrate on the case of and–parallelism. And-parallelism refers to the parallel

execution of the literals in the body of a clause. See, for example, [82] and its references. If only

independent goalsare executed in parallel, both correctness and efficiency can be ensured [90].

17.1 The Annotation Process and Run-time Tests

The annotation (parallelization) process can be viewed as a source–to–source transformation

from standard Prolog to a parallel dialect. Herein, we will use the& operator [86]. Execution of

literals separated by& is performed in parallel if sufficient processors are available. Otherwise

they will be executed sequentially.

The automatic parallelization process is performed as follows [164]: firstly, if requested by

71

the user, the Prolog program is analyzed using one or more global analyzers. Secondly, since

side–effects cannot be allowed to execute freely in parallel, the original program is analyzed

using the global analyzer described in [165] which propagates the side–effect characteristics of

builtins determining the scope of side–effects. Finally, theannotatorsperform a source–to–

source transformation of the program in which each clause is annotated with parallel expressions

and conditions which encode the notion of independence used. In doing this they use the infor-

mation provided by the global analyzers mentioned before.

17.2 An Example: Matrix Multiplication

A Prolog program for matrix multiplication is shown below. The declaration:

:-module(mmatrix,[mmultiply/3]).

is used by the (goal dependent) analyzer to determine that only calls tommultiply/3 may ap-
pear in top-level queries. In this case no information is given about the arguments in calls to the
predicatemmultiply/3 (however, this could be done using one or moreentry declarations
[17]).

:-module(mmatrix,[mmultiply/3]).

mmultiply([], ,[]).
mmultiply([V0|Rest], V1, [Result|Others]):-

multiply(V1,V0,Result), mmultiply(Rest, V1, Others).
multiply([], ,[]).
multiply([V0|Rest], V1, [Result|Others]):-

vmul(V0,V1,Result), multiply(Rest, V1, Others).
vmul([],[],0).
vmul([H1|T1], [H2|T2], Result):-

Product is H1*H2, vmul(T1,T2, Newresult),
Result is Product+Newresult.

If, for example, we want to specialize the program for the case in which the first two argu-

ments ofmmultiply/3 are ground values and we inform the analyzer about this, the program

would be parallelized without the need for any run-time tests. In our case the analyzer must in

principle assume no knowledge regarding the instantiation state of the arguments at the module

entry points.

Figure 9 contains the result of automatic parallelization under these assumptions. Conditions

are written as(cond -> then ; else) , i.e., using standard Prolog syntax. The predicate

vmul/3 is not shown in Figure 9 because automatic parallelization has not detected any prof-

itable parallelism in it (due to granularity control) and its code remains the same as in the original

program.

72

g

g

3i

3i

mm

m1

m4

m2
3i

m3

mm1

g+3i

Figure 10: Call Graph of Specialized mmatrix

It is clear from Figure 9 that a good number of run-time tests has been introduced during the

parallelization process. If the tests succeed the parallel code is executed. Otherwise the original

sequential code is executed. The boolean testindep(X,Y) succeeds if and only ifX andY have

no variables in common. For conciseness and efficiency, a series of testsindep(X1,X2),

..., indep(Xn-1,Xn) is written asindep([[X1,X2], ..., [Xn-1,Xn]]) .

Clearly, these tests may cause considerable overhead in run-time performance, to the point

of not even knowing at first sight if the parallelized program will offer speedup, i.e., if it will run

faster than the sequential one. We will use abstract multiple specialization in order to reduce the

run-time overhead and increase the speedup of parallel execution.

It is important to mention that abstract multiple specialization is able to automatically detect

and extract some invariants in recursive loops: once a certain run-time test has succeeded it does

not need to be checked in the following recursive calls [77]. Figure 10 shows the call graph of

the specialized parallel program. The program itself is not shown for space limitations but can

be found in [189]. In the figure,mmstands formmultiply/3 andmfor multiply/3 . In the

and–or graph computed by analyis there are two or–nodes for predicatemmultiply/3 , four

for multiply/3 , and eight forvmul/3 . The minimization algorithm collapses all or–nodes

for vmul/3 into one since the different call patterns do not lead to interesting optimisations.

However, two versions are generated formm: mmandmm1and four form. In Figure 10 edges are

labeled with the number of tests which are avoided in each call to the corresponding version with

respect to the non specialized program. For example,g+3i means that each execution of this

73

specialized version avoids a groundness and three independence tests. It can be seen in the figure

that once the groundness test in any ofmm, m1, or m2 succeeds, it is detected as an invariant,

and the more optimised versionsmm1, m3, andm4 respectively will be used in all remaining

iterations.

18 Optimisation of Dynamic Scheduling

Most “second-generation” logic programming languages provide a flexible scheduling in which

computation generally proceeds left-to-right, but some calls are dynamically “delayed” until

their arguments are sufficiently instantiated. This general form of scheduling, often referred to

asdynamic scheduling, which can be seen as a (restricted) class of concurrency, increases the

expressive power of (constraint) logic programs. Unfortunately, it also has a significant time and

space overhead.

In this section we present by means of examples two different classes of transformations. The

first class simplifies the delay conditions associated with a particular literal. The second class

of transformations reorders a delayed literal and moves it closer to the point where it wakes up.

Both classes of transformations essentially preserve the search space and hence the operational

behavior of the original program. However, reordering may change the execution order of de-

layed literals that are woken at exactly the same time. Note that this order is system dependent

and it is rare for programmers to rely on a particular ordering.

Using theCiaoPP system we have built a tool which automatically optimises logic programs

with delay using the above transformations. Initial experiments suggest that simplification of

delay conditions is widely applicable and can significantly speed up execution, while reordering

is less applicable but can also lead to substantial performance improvements.

18.1 Programs with Delaying Conditions

In dynamically scheduled languages the execution of some literal can be delayed until a particular

delay condition holds. Adelay condition, Cond, takes the current run-time environment and

returnstrue or false indicating if evaluation can proceed or should be delayed. Typical primitive

delay conditions areground(X) andnonvar(X) . The latter holds iffX is bound to a non-

variable term. Delay conditions can be combined to allow more complex delay behaviour. They

can be conjoined, written (Cond1, Cond2), or disjoined, written (Cond1; Cond2).

A delaying literalis of the formwhen(Cond, L), whereCond is a delay condition andL is

a literal. Evaluation ofL will be delayed untilCond holds for the current constraint store. Delay

information can bepredicate-basedandliteral-based. In the former, the delaying literal appears

74

as a declaration before the definition of the predicate, each instance of the predicate inheriting

the delay condition. In the latter, the delaying literal appears in the body of some clause only

affecting the literalL. It is straightforward to use predicate-based declarations to imitate literal-

based delay, and vice versa. For simplicity, we will restrict ourselves to literal-based delay.

In logic programs with dynamic scheduling, aliteral is either an atom or a delaying literal.

We are assuming that all rule heads are normalized, since this simplifies the examples and cor-

responds to what is done in the analyzer.18 This is not restrictive since programs can always be

normalized. However, so as to preserve the behaviour of the original program under dynamic

scheduling, the normalization process must ensure that head unifications are performed simulta-

neously, that is, grouped together in one primitive constraint.

18.2 Simplifying Dynamic Scheduling

Delay conditions may be evaluated each time a variable is touched. Simplifying such conditions

can then lead to significant performance improvement. Essentially the behaviour of a delay

condition is only relevant during the lifetime of the delaying literal. Hence, we can replace one

delay condition by another (more efficient) condition if they are equivalent for all constraint

stores that occur during the lifetime of the delaying literal.

Example 18.1 Dynamic scheduling can be used in order to obtain much more general code.
Consider for example the following program for naive reverse:
:- module(nrev,[nrev/2]).
nrev([],[]).
nrev([X|Xs], Rs) :- nrev(Xs, R), app(R, [X], Rs).

app([],L,L).

app([X|Xs], Ys, [X|Zs]) :- app(Xs, Ys, Zs).

The nrev/2 predicate can be used to reverse a list. For example,nrev([1,2,3],Y)
will return Y=[3,2,1] . Since this program does not contain any impurities, we may in prin-
ciple use it backwards, i.e., a call such asnrev(X,[1,2,3]) should returnY=[3,2,1] .
In fact, any Prolog system would compute that. However, if we ask for a second solution, the
execution loops! One possible solution to avoid this behaviour is to reorder the two literals in the
recursive clause ofnrev/2 , i.e., nrev([X|Xs], Rs) :- app(R, [X], Rs), nrev(Xs,
R). However, now this program cannot be used forwards. This problem can be solved by
means of dynamic scheduling which allows having a definition ofnrev/2 which works in both
directions. Such a program is shown below:

nrev([],[]).

18CiaoPP does not need to normalize programs in order to analyze them, except for programs with dynamic
scheduling.

75

nrev([X|Xs], Rs) :-
when((nonvar(Xs);ground(R)),nrev(Xs, R)),
when((nonvar(R);nonvar(Rs)),app(R, [X], Rs)).

app([],L,L).
app([X|Xs], Ys, [X|Zs]) :-

when((nonvar(Xs);nonvar(Zs)),app(Xs, Ys, Zs)).

This has the disadvantage that dynamic scheduling may introduce important run-time over-

head. However, we can use abstract specialization in order to optimise the above code for the

required usage. In fact, our prototype specializer for dynamic scheduling [181] is able to opti-

mise the program back to the original code without delays shown in Example 18.1 if it can infer

that at the call the first argument is definitely ground. Also, it will reorder the two literals in

the recursive clause of append if analysis guarantees that calls have a free variable in the first

argument and the second argument is ground.

18.3 Reordering Delaying Literals

In spite of the apparent simplicity of the specialization of dynamic scheduling, it is indeed rather

involved. First, the analysis has to be able to handle logic programs with dynamic scheduling.

Doing so accurately is a complex task. Second, the purpose of specialization is not that the final

program can be executed without delays but rather that the operational semantics, i.e., the search

space, of the program is maintained.

Example 18.2 In order to illustrate this we show the following example in which a naive algo-
rithm for sorting lists is presented. It is based on the specification of the sorting algorithm: the
resulting list must be a permutation of the input list and be sorted.

naive_sort(List, Sorted) :-
when(nonvar(Sorted),sorted_list(Sorted)),
permute(List, Sorted).

sorted_list([]).
sorted_list([Fst|Oths]) :-

when(nonvar(Oths),sorted_list1(Fst, Oths)).

sorted_list1(_, []).
sorted_list1(Fst, [Snd|Rest]) :-

when((ground(Fst),ground(Snd)),Fst =< Snd),
when(nonvar(Rest),sorted_list1(Snd, Rest)).

permute([],[]).
permute(List,Result):-

when((nonvar(List);nonvar(Oths)),

76

delete(Elem, List, Oths)),
Result = [Elem|Perm1],
permute(Oths, Perm1).

delete(Elem, [Elem|Oths], Oths).
delete(Elem, List, Oths):-

head(List,Oths) = head([Fst|TM],[Fst|R]),
when((nonvar(TM);nonvar(R)),delete(Elem, TM, R)).

Thanks to the use of dynamic scheduling the code above has the following desirable features:

(1) it can be used in order to sort a list; (2) if the second argument is ground, it can be used in

order to generate all the possible lists (permutations) of a given sorted list; (3) though it is not

a fast sorting algorithm, it behaves relatively well for small lists due to co-routining: generation

of the permutation is interleaved with tests of its sortedness as new items are added to the partial

solution, i.e., it is atest while generatealgorithm rather than agenerate and testone.

Of course, another alternative would have been to write by hand a program which checks

sortedness of partial solutions explicitly. This has the disadvantage that it separates the code

apart from its specification and that the obvious resulting code is once again not reversible.

Example 18.3 In a call such asnaive sort([1,2,3],L) , the literal:

when(nonvar(Sorted),sorted_list(Sorted))

will delay at the execution of predicatenaive_sort/2 whereas it will definitely not delay after
the execution of the literalpermute(List, Sorted) . We may thus be tempted to reorder it
across the following literal in the clause, obtaining:
naive sort(List, Sorted) :-

permute(List, Sorted), sorted list(Sorted).

which no longer needs dynamic scheduling. However, this resulting program would definitely be
much less efficient than the original one since this changes the co-routining behaviour and thus
the search space, and we end up in the generate and test algorithm.2

Though our specializer reordered the literals in the naive reverse example, it does not in this
one. This is because the specializer only reorders a delaying literalLi until after literalLi+1 if
either (1)Li is guaranteed not to wake up during the execution ofLi+i or (2) if it does, it can
only wake up in program points ofLi+1 which arefinal. More details can be found in [181]. The
program obtained by our specializer when the first argument is ground is shown below:

naive_sort(List,Sorted) :-
when(nonvar(Sorted),sorted_list(Sorted)),
permute(List,Sorted).

sorted_list([]).
sorted_list([Fst|Oths]) :-

77

when(nonvar(Oths),sorted_list1(Fst, Oths)).

sorted_list1(_, []).
sorted_list1(Fst, [Snd|Rest]) :-

when((ground(Fst),ground(Snd)),Fst =< Snd),
when(nonvar(Rest),sorted_list1(Snd, Rest)).

permute([],[]).
permute(List,Result) :-

delete(Elem,List,Oths),
Result=[Elem|Perm1],
permute(Oths,Perm1).

delete(Elem, [Elem|Oths], Oths).
delete(Elem, List, Oths):-

head(List,Oths) = head([Fst|TM],[Fst|R]),
delete(Elem,TM,R).

18.4 Automating the Optimisation

In order to perform the optimisations discussed, the abstract interpretation framework used has to

handle dynamic scheduling. Different analysis frameworks have been proposed for this. In our

prototype we use the approach of [40]. For reordering, the analyzer needs to provide, in addition

to a description of calling contexts, a description of the set of waking up literals at each program

point.

The experimental results in [181] demonstrate that both simplification and reordering can

lead to an order of magnitude performance improvement, and that they give reasonable speedups

in most benchmarks. This is important because dynamic scheduling looks set to become in-

creasingly prevalent in (constraint) logic programming languages because of its importance in

implementing constraint solvers and controlling search as well as for implementing concurrency.

In all these contexts, delay declarations are automatically introduced by the compiler. This has

the advantage that it avoids the tedious and error prone task of having to do it by hand. Also,

they are a clear target for abstract specialization.

19 Integration with Partial Evaluation

Most of the practical algorithms for program specialization use, to a greater or lesser degree,

information generated by static program analysis. As already mentioned, one of the most widely

used techniques for static analysis is abstract interpretation [35]. In fact, some of the relations

78

between abstract interpretation and partial evaluation have been identified before [62, 77, 56, 34,

185, 143, 103, 183, 124, 192, 37].

However, the role of analysis is so fundamental that it is natural to consider whether partial

evaluation could be achieved directly by a generic, top-down abstract interpretation system.

19.1 And–Or Graphs Vs. SLD Trees

Almost all existing approaches to the (on-line) partial evaluation of logic programs use the same

operational semantics, i.eSLD resolution, for both program execution and partial evaluation.

Different alternative derivations of SLD resolution which may occur during execution constitute

different branches in theSLD tree. See for example [147]. In partial deduction a slight modifi-

cation to this semantics is required in order to allow incomplete derivations and thus incomplete

SLD trees.

However, it is known [143] that the propagation of success information during partial evalua-

tion is not optimal compared to that potentially achievable by abstract interpretation. The higher

accuracy of abstract interpretation has already been hinted in Example 16.2.

We now show a further example of the power of abstract interpretation. This time, rather

than the concrete domain we will use the abstract domaineterms[213] currently implemented in

theCiaoPP system, and which is based on the concept of regular types [65]. Note that in this

example the concrete domain cannot be used straight away, since the set of values which need to

be represented is infinite.

Example 19.1 Consider the following program and the initial callr(X)
r(X) :- q(X),p(X).

q(a).

q(f(X)) :- q(X).

p(a).

p(f(X)) :- p(X).

p(g(X)) :- p(X).

It can be observed that the third clause forp can be eliminated in the specialized program,
since the call substitution forp(X) (i.e., the success substitution forq(X)) is of the formX=a
or X=f(a) or X=f(...f(a)...) . Thus, the clausep(g(X)) :- p(X). is useless. Our
implementation of the abstract domainetermsis able to determine that the value ofX in any call
to p(X) is described by the regular typert whose definition as a regular unary Prolog program
follows:
rt(a).
rt(f(A)) :- rt(A).

Our specializer is in fact able to use this information in order to remove the useless clause men-

tioned above. Note that standard partial evaluation algorithms based on unfolding will not be

79

able to eliminate the third clause forp, since an atom of the formp(X) will be produced, no

matter what local and global control is used.19

In addition to allowing the elimination of useless clauses, our specialization system is able to

perform more aggressive optimisations, as shown in the example below.

Example 19.2 Consider the following definition of theflatten and sort/2 predicate.

flatten_and_sort(Struct,Sorted_List):-
sorted_int_list(Struct),
Sorted_List=Struct.

flatten_and_sort(Struct,Sorted_List):-
int_list(Struct),
sort(Struct,Sorted_List).

flatten_and_sort(Struct,Sorted_List):-
list_of_int_lists(Struct),
flatten_list(Struct,Unsorted_List),
sort(Unsorted_List,Sorted_List).

flatten_and_sort(Struct,Sorted_List):-
tree(Struct),
flatten_tree(Struct,Unsorted_List),
sort(Unsorted_List,Sorted_List).

The argumentStruct is a data structure which can be: a sorted list of integers, a list of integers,

a list of lists of integers, or a tree which stores an integer in each non-leaf node. The predicate

first determines which of the four possibilities mentioned above is the case and then, if needed,

it uses the appropriate procedure for flattening before sorting the list of arguments, which is the

output of the procedure. Clearly, if the input data structure is a list of integers there is no need for

flattening the list. Furthermore, if it is already sorted, there is no need to sort it either. Though we

could define a flatten predicate which is able to flatten both lists and binary trees, it is often the

case that distinct predicates for flattening lists and for flattening trees already exist (in different

libraries).
We show below the Prolog definition of the propertiessorted int list/1 , int list/1 ,

andlist of int lists/1 . It can be observed that the last two predicates are indeed unary
logic programs which correspond to deterministic regular types. This is indicated toCiaoPP with
the declarationregtype .

sorted_int_list([]).
sorted_int_list([N]):- int(N).
sorted_int_list([A,B|R]):- int(A), int(B),

A =< B, sorted_int_list([B|R]).

:- regtype int_list/1.

19Conjunctive partial deduction [144] can solve this problem in a completely different way.

80

int_list([]).
int_list([H|L]):- int(H), int_list(L).

:- regtype list_of_int_lists/1.
list_of_int_lists([]).
list_of_int_lists([H|L]):-

int_list(H), list_of_int_lists(L).

:- regtype tree/1.
tree(void).
tree(t(L,N,R)):- int(N), tree(L), tree(R).

Theregtype declaration is checked byCiaoPP against the code defining the property. If

the code does not correspond to a deterministic regular type, an error message is issued. If it

is, this information can be used by the specializer in order to be able to abstractly execute to

the value true the whole execution of the predicate. The sufficient conditions for this are (1)

the predicate does not perform any side-effects, and (2) the calling abstract substitution must

be equal or more particular than the success substitution for the predicate. Note that abstractly

executing a predicate call to false using regular types does not need theregtype declaration.

Any call to a predicatep can be abstractly executed to false if (1) execution ofp is guaranteed

not to perform any side-effects (2) the call substitution is incompatible with the success substi-

tution of p or equivalently, the success substitution using goal-dependent analysis forp andλc
p

is the empty substitution⊥. This is further discussed in Section 19.3. For example, if we call

sorted int list(Struct) with Struct bound to a binary tree, the system can determine

that this call is incompatible with the success type ofsorted int list , which for the regular

type analysis is approximated byint list .

For example, the above program when specialized using theetermsdomain for the call

main/0 , defined as:

main:-int list(L),append(L,[3],L1),flatten and sort(L1,).

optimises the definitions offlatten and sort/2 andint list/2 as shown below.

flatten and sort(Struct,Sorted List) :-

sorted int list(Struct), Sorted List = Struct.

flatten and sort(Struct,Sorted List) :-

sort(Struct,Sorted List).

sorted int list([]).

sorted int list([N]).

sorted int list([A,B|R]) :- A=<B, sorted int list([B|R]).

81

p(X)

p(A)

{} {} {}{} {} {} {} {}

r(a) r(b)

r(X)q(X)
{} {} {} {}

r(a) r(b)

r(a) r(b)

{}

p(b)p(a)

{} {} {}

{} {}

p(a)

{}

p(A)

{}

p(b)

q(a) q(b)

{}{}

{}

{} {}

{}

{} {}

{}{}

AO

p(A)

AO

AO’ AO’’

Figure 11: Example Node Unfoldings

Since analysis usingetermsinfers that the call toflatten and sort/2 has got a non-

empty list of integers as first argument, the specializer is able to abstractly execute the tests for

list of int lists/1 and tree/1 to false, since they are incompatible with their call-

ing types. In addition, thelist/1 test in the second clause forflatten and sort/2 has

been abstractly executed to true, the same as theinteger/1 tests insorted int list/1 .

This is an example in which abstract execution allows “executing” at compile-time a test whose

execution would require traversing the data structure at run-time.

The examples above show that and–or graphs allow a level of success information propaga-

tion not possible in traditional partial evaluation. This observation already provides motivation

for studying the integration of full partial evaluation in an analysis/specialization framework

based on abstract interpretation.

19.2 Partial Evaluation using And–Or Graphs

We now discuss how the global and local control aspects of on-line partial evaluation appear in

the setting of abstract interpretation algorithms.

82

19.2.1 Global Control in Abstract Interpretation

Effectiveness of traditional partial deduction greatly depends on the set of atomsA = {A1, . . . , An}
for which (specialized) code is to be generated. This set is mainly determined by the global con-

trol used. However, in abstract specialization the role of the atoms inA is played by the set

of or–nodesAnalysis(P, p, λ, Dα). The choice of abstract domain and widening operators (if

any) will determine the number of or–nodes (equivalently,A). The finer-grained the abstract

domain is, the larger the setA will be. In conclusion, the role of so-called global control in

partial evaluation is played in abstract interpretation by our particular choice of abstract domain

and widening operators (which are strictly required for ensuring termination when the abstract

domain contains ascending chains which are infinite – as is the case for the concrete domain and

for domains based on regular types).

Note that the specialization framework we propose is very general. Depending on the kind

of optimisations we are interested in performing, different domains (and widening operators)

should be used and thus differentA sets would be obtained.

19.2.2 Local Control in Abstract Interpretation

Local control in partial evaluation determines how each atom inA should be unfolded. However,

in traditional abstract interpretation frameworks each or–node is related by just one (abstract)

unfolding step to its children. This corresponds to a trivial local control (unfolding rule) in

partial evaluation.

Note that if we use abstract domains for analysis which allow propagating enough informa-

tion about the success of an or–node, it is possible to perform useful specialization on other

or-nodes. This requires that thelub operator not lose “much” information, for example by al-

lowing sets of abstract substitutions. The advantage of this method is that no modification of

the abstract interpretation framework is required. An example of this has been shown in Ex-

ample 19.1. Such specialization is not possible by methods based on unfolding (unfolding is a

standard program transformation technique in which an atom in the body of a clause, i.e., a call

to a procedure, is conceptually replaced by the code of such procedure).

Another approach to overcoming this limitation of abstract interpretation is the use ofnode-

unfolding [192]. Node-unfolding is agraph transformation technique which given an and–or

graphAO and an or–nodeN in AO builds a new and–or graphAO′. Such graph transformation

mimics the effect of traditional unfolding.

Example 19.3 Consider the program below. The analysis graph generated without performing
any node-unfolding is shown in Figure 11 asAO, using the concrete domain as abstract domain

83

and themost specific generalization(msg) as lub operator for summarizing different success sub-
stitutions into one. As discussed in Section 19.2.3 below, the msg is a rather crude lub operator.
However, we use it for the sake of clarity of the example.
p(X):- q(X), r(X).
q(a).
q(b).
r(a).
r(b).

AO′ is an analysis graph for the same program but this time the or–node〈q(X), {}, {}〉 has
been unfolded. Finally, graphAO′′ in the figure is the result of applying node-unfolding twice
to AO′, once w.r.t.〈p(a), {}, {}〉 and another one w.r.t〈p(b), {}, {}〉. The code generated by
code gen(AO′′) is the program:
p(a).
p(b).

An important question is the moment at which node-unfolding is performed, i.e., during or

after buildingAO. The simplest possibility is to perform node-unfolding of an or–node prior

to computing its success substitution. This corresponds to what is done in partial deduction:

local control is performed first and then atoms are passed to global control. It allows performing

node-unfolding after computing the success-substitution of an or-node, even after computing the

final and–or graph. This allows having more information prior to deciding whether to unfold a

node or not. Thus, we consider it a more challenging approach. The main difficulty lies in being

able to efficiently rebuild the analysis and–or graph so as to reach a fixpoint after the graph is

modified by node-unfolding. We believe that this cost can be kept quite reasonable by the use of

incremental analysis techniques such as those presented in [89, 187].

19.2.3 Abstract Domains and Widenings for Partial Evaluation

We now address the features which an abstract domain (and associated widening operators)

should have in order to be appropriate for performing partial evaluation within the abstract spe-

cialization framework. They should (1) simulate the effect of unfolding, which is how bindings

are propagated in partial evaluation. The abstract domain has to be capable of tracking such bind-

ings. This suggests that domains based on term structure are required. In addition, the domain

(2) needs to capturedisjunctive information. This makes it possible to distinguish, in a single

abstract substitution, several bindings resulting from different branches of computation. A term

domain whose least upper bound is based on themsg(most specific generalization), for instance,

will rapidly lose information about multiple answers since all substitutions are combined into

one binding.

We now discuss two classes of domains which have the above mentioned features. One

84

class is based on sets of depth-k substitutions with set union as the least upper bound operator.

However, uniform depth bounds are usually either too imprecise (ifk is too small) or generate

much redundancy if larger values ofk are chosen. One way to eliminate the depth-boundk

in the abstract domain is to depend on a suitable widening operator which will guarantee that

the set of or–nodes remains finite. Many techniques have been developed for global control of

partial evaluation. Such techniques make use of advanced data structures such ascharacteristic

trees[61], [118] (related toneighborhoods[208]), trace-terms[68], andglobal trees[158], and

combinations of them [139]. Thus, it seems possible to adapt these techniques to the case of

abstract interpretation and formalize them as widening operators.

The second class of domains are those based on regular-types [65, 83, 213] and seem very

good candidates, their main drawback being that inter-argument dependencies are lost. Inde-

pendently of our work inCiaoPP , recently there has been a lot of interest in the application of

regular types for improving partial evaluation [70, 130]. The use of non-deterministic regular

types [71] presents an interesting trade-off since on one hand they allow improved accuracy but

on the other they require a higher computational cost and their applicability to program special-

ization should be further explored.

19.3 Code Generation using Success Substitutions

One important feature of abstract specialization not available in partial evaluation is that for each

or-node, in addition to a call substitution, there is also an abstract substitution which describes the

success of the call. If the properties captured by the abstract domain are downwards closed (as is

the case with variable bindings), it is natural to consider specialization w.r.t. success substitutions

rather than call substitutions (only). We first recall some notation from [192].

Definition 19.4 (partial concretization) A functionpart conc : Dα → D is a partial con-
cretizationiff ∀λ ∈ Dα ∀θ′ ∈ γ(λ) ∃θ′′ s.t. θ′ = part conc(λ)θ′′.

part conc(λ) can be regarded as containing (part of) the definite information about concrete

bindings that the abstract substitutionλ captures. Note that different partial concretizations of

an abstract substitutionλ with different accuracy may be considered. For example if the abstract

domain is a depth-k abstraction andλ = {X/f(f(Y))orX/f(a)}, a most accuratepart conc(λ)

is {X/f(Z)}. Note also thatpart conc(λ) = ε whereε is the empty substitution, is a trivially

correct partial concretization of anyλ.

It is straightforward to modify Algorithm 16.1 in order to exploit answer substitutions as

well. Such algorithm can be found in [192]. Specialization w.r.t. answers will in general pro-

vide further specialized (and optimised) programs as in general the success substitution (which

85

describes answers) computed by abstract interpretation is more informative (restricted) than the

call substitution. However, this cannot be done for example if the program contains calls to

extra-logical predicates such asvar/1 .

Specializing w.r.t answer substitutions enables optimisations which are not possible to achieve

by finite unfolding. For example, abstract interpretation can detect both finite and infinite failure

of a predicatep. In both cases, the abstract success substitution forp will be ⊥. If p does not

perform side effects, the definition ofp generated by our specializer isp(t):- fail. , as it

is known to produce no answers. Even if the success substitutionλs for 〈p, λc, λs〉 is not⊥,

individual clauses forp whose success substitution is⊥ (useless clauses) for the consideredλc

are removed from the final program.

Note that the specialized program may fail finitely while the original one loops. We believe

this kind of optimisations are desirable in most cases. However, optimisation w.r.t. answers is

optional in our system.

20 Related Work

Abstract specialization is a framework which can be used successfully in different contexts. We

have discussed its application to program parallelization and optimisation of dynamic schedul-

ing. The framework is generic in that it can be instantiated with different abstract domains which

provide different kinds of information according to the optimisations which we aim at perform-

ing. If the abstract domain captures term structure then it is possible to obtain information which

can then be used to perform optimisations which are very related to those which take place during

partial evaluation.

The integration of partial evaluation and abstract interpretation has been attempted before,

both from the partial evaluation and the abstract interpretation perspectives. Some preliminary

studies are [62, 56] in which an integration is attempted from the point of view of partial eval-

uation. Another integration in the context of functional programs is presented in [34]. On the

other hand, the drawbacks of traditional partial evaluation techniques for propagating success

information are identified in [143] and some of the possible advantages of a full integration of

partial evaluation and abstract interpretation are presented in [103].

From an abstract interpretation perspective, the integration has also received considerable

attention. The first complete framework for multiple specialization based on abstract interpre-

tation is presented in [216]. The first implementation and experimental evaluation appears in

[185]. However, these systems do not perform unfolding.

To the best of our knowledge, the first relatively satisfactory framework for the integration of

86

abstract interpretation and partial evaluation is [183, 192].

A completely different framework for the integration of partial deduction and abstract in-

terpretation is presented in [124]. In this formulation a top-down specialization algorithm is

presented which assumes the existence of anabstract unfoldingand anabstract resolutionope-

ration and which generalizes existing algorithms for partial evaluation. Such framework provides

interesting insights on the problems involved together with correctness conditions which can be

used to prove that a given specialization framework, which possibly uses abstract interpreta-

tion, is correct. One important difference is that in our approach a single (and already existing)

top-down abstract interpretation algorithm augmented with an unfolding rule performs propaga-

tion of both the call and success patterns in an integrated fashion, whereas in [124] the success

propagation used is added in an ad hoc way and is not multivariant, and thus less precise.

Another difference between the two approaches is that [124] is capable of dealing with con-

junctions and not only atoms.

The need for more general information than the concrete substitutions handled by partial

evaluation has been identified repeatedly in previous work, such as [34, 173]. Though the aims

of abstract specialization and those of [173] are quite similar, the means proposed to achieve

them are completely different. Also, abstract interpretation is not used and it sticks to the more

traditional SLD semantics.

More recently, [37] presents a very general view which integrates program transformation

and abstract interpretation. This result allows formalizing partial evaluation as an abstract inter-

pretation (as done by abstract specialization). This new formalization of program transformation

may enable other novel program optimisation techniques.

21 Conclusions

Abstract specialization can be seen as a semantic approach much in the same way as existing

frameworks for partial deduction [148, 110, 57, 120] and also as other attempts at the integration

of partial evaluation and abstract interpretation of logic programs [124, 70, 130]. One of the main

differences between abstract specialization and the aforementioned techniques is the underlying

semantics. Abstract specialization is based on and–or trees whereas the rest are based on SLD

trees. Though SLD-trees have the conceptual advantage that the semantics used for program

specialization is almost identical to that used during program execution, our approach has other

practical and conceptual advantages. For example, optimisations based on and–or trees can be

done to preserve number and order of solutions, an issue often overlooked by traditional partial

deduction systems. Furthermore, they allow performing optimisations not achievable by means

87

of unfolding, including the detection of infinite failure.

A pragmatic motivation for this work is the availability of off-the-shelf generic abstract in-

terpretation engines such as the one inCiaoPP [87]20 which greatly facilitate the efficient im-

plementation of analyses. Such analysis can deal with all features of real programs [17] in an

accurate way, including builtins, libraries and modules [190]. But, more generally, we argue that

the existence of such an abstract interpreter in advanced optimizing compilers is likely, and thus

using the analyzer itself to perform partial evaluation can result in a great simplification of the

architecture of the compiler.

20More information onCiao andCiaoPP is available atwww.clip.dia.fi.upm.es

88

Part III

More Precise Yet Efficient Type Inference
for Logic Programs
Type analyses of logic programs which aim at inferring the types of the program being analyzed

are presented in a unified abstract interpretation-based framework. This covers most classical ab-

stract interpretation-based type analyzers for logic programs, built on either top-down or bottom-

up interpretation of the program. In this setting, we discuss the widening operator, arguably a

crucial one. We present a new widening which is more precise than those previously proposed.

Practical results with our analysis domain are also presented, showing that it also allows for

efficient analysis.

Furthermore, we introduce an abstract domain consisting of atomic formulas constrained by

linear arithmetic constraints (or convex hulls). This domain is used in an algorithm for special-

ization of constraint logic programs. The algorithm incorporates in a single phase both top-down

goal directed propagation and bottom-up answer propagation, and uses a widening on the con-

vex hull domain to ensure termination. We give examples to show the precision gained by this

approach over other methods in the literature for specializing constraint logic programs. The

specialization method can also be used for ordinary logic programs containing arithmetic, as

well as constraint logic programs. Assignments, inequalities and equalities with arithmetic ex-

pressions can be interpreted as constraints during specialization, thus increasing the amount of

specialization that can be achieved.

22 Background

In type analyses, the widening operation has much influence in the results. If the widening is

too aggressive in making approximations then the analysis results may be too imprecise. On the

other hand, if it is not sufficiently aggressive then the analysis may become too inefficient.

Widening operators are aimed at identifying the recursive structure of the types being in-

ferred. All widening operators already proposed in the literature are based on locating type

nodes with the same functors, which are possible sources of recursion. However, they disregard

whether such nodes come in fact from a recursive structure in the program or not. This may orig-

inate an unnecessary loss of precision, since the widening result may then impose a recursive

structure on the resulting type in argument positions where the concrete program is in fact not

recursive. We propose a widening operator to try to remedy this problem.

89

This part of the deliverable is organised as follows: We first revisit regular types (Section 23)

and, in particular, deterministic ones. Then, we focus on deterministic types for ease of pre-

sentation; however, there is nothing in our widening which prevents it to be applicable also to

non-deterministic types. The abstract interpretation framework is set up in Section 24. Sec-

tion 25 reviews previous widenings in the literature, and Section 26 presents ours. In Section 27

experimental results based on our widening operator are presented. A constraint domain based

on linear arithmetic equalities and inequalities is reviewed in Section 28.1. The structure of

the specialization algorithm is presented (Section 29), along with examples illustrating its key

aspects. In Section 30 more examples of specialization using the domain of linear arithmetic

constraints are given. Comparisons with related work are provided in Section 31 while, finally,

some remarks and pointers for future work are considered in Section 32.

23 Regular Types

A regular type[39] is a type representing a class of terms that can be described by a regular

term grammar. Aregular term grammar, or grammar for short, describes a set of finite terms

constructed from a finite alphabetF of ranked function symbolsor functors. A grammarG =

(S, T ,F ,R) consists of a set of non-terminal symbolsT , one distinguished symbolS ∈ T , and

a finite setR of productionsT −→ rhs, whereT ∈ T is a non-terminal and the right hand side

rhs is either a non-terminal or a termf(T1, . . . , Tn) constructed from ann-ary function symbol

f ∈ F andn non-terminals.

The non-terminalsT aretypesdescribing (ground) terms built from the functors inF . The

concretizationγ(T) of a non-terminalT is the set of terms derivable from its productions, that

is,

γ(T) =
⋃

(T−→rhs)∈R
γ(rhs)

γ(f(T1, . . . , Tn)) = {f(t1, . . . , tn) | ti ∈ γ(Ti)}

The types of interest are each defined by one grammar: eachTi is defined by a grammar

(Ti, Ti,F ,Ri), so that for any two types of interestT1 andT2 onF , T1 ∩ T2 = ∅. Sometimes,

we will be interested in types defined by non-terminals of a grammar(T, T ,F ,R) other than the

distinguished non-terminalT . This is formalized by defining a typeTi ∈ T as the grammar

(Ti, {T ∈ T | Ti
reach−→

∗
R T},F , {(T −→ rhs) ∈ R | Ti

reach−→
∗
R T}) (9)

where all the non-terminals are renamed apart,reach−→
∗
R is the reflexive and transitive closure of

reach−→R and

Ti
reach−→R Tj iff Ti −→R Tj or Ti −→R f(. . . , Tj, . . .).

90

A grammar is innormal formif none of the right hand sides are non-terminals. A particular

class of grammars are deterministic ones. A grammar isdeterministicif it is in normal form

and for each non-terminalT the function symbols are all distinct in the right hand sides of the

productions forT .

Deterministic grammars are less expressive than non-deterministic ones. Deterministic gram-

mars can only express sets of terms which aretuple-distributive; informally speaking, which are

“closed under exchange of arguments”. I.e., if the set contains two terms of the same functor,

then it also contains terms with the same principal functor obtained by exchanging subterms of

the previous two terms in the same argument positions. Basically, no dependencies between

arguments of a term can be expressed with deterministic grammars.

Example 23.1Consider the typeT denoting the set{f(a, b), f(c, d)}, which is non-deterministic,

T −→ f(A, B) A −→ a C −→ c

T −→ f(C, D) B −→ b D −→ d

A deterministic typeT ′ with a concretization which includedγ(T) would also have to include

{f(c, b), f(a, d)}, that is,

T ′ −→ f(AC, BD) AC −→ a BD −→ b

AC −→ c BD −→ d

To facilitate the presentation non-terminals with a single production will often be “inlined” and

multiple right hand sides combined so thatT above will be writtenT −→ f(a, b) | f(c, d) and

T ′ as

T ′ −→ f(AC, BD) AC −→ a | c BD −→ b | d

To be able to describe terms containing numbers and variables we introduce two distinguished

symbolsnum andany, plus an additional⊥. The concretization ofnum is the set of all numbers,

the concretization ofany is the set of all terms (including variables), and the concretization of⊥
is the empty set of terms. These symbols are non-terminals but they are considered terminals to

the effect of regarding a grammar as deterministic.

Let G be the set of all grammars, ifT1, T2 belong toG, the relationT1 ≡ T2 ⇔ γ(T1) =

γ(T2) is an equivalence relation. The quotient setG/ ≡ is a complete lattice with top element

any and bottom element⊥ based on the relation ofcontainment, or type inclusion: for every

T1, T2 ∈ G/ ≡, T1 v T2 ⇔ γ(T1) ⊆ γ(T2). We will denoteTi simply byTi.

The least upper bound is given by typeunion, (T1tT2), and the greatest lower bound by type

intersection, (T1 u T2) [39]. It can be shown that intersection describes term unification:

t∗1 ⊆ γ(T1) ∧ t∗2 ⊆ γ(T2) ∧ t1θ = t2θ ⇒ (t1θ)
∗ ⊆ γ(T1 u T2)

wheret∗ denotes the set of ground terms which are instances of the termt.

91

24 Abstract Domain for Type Inference

In an abstract interpretation-based type analysis, a type is used as an abstract description of a set

of terms. Given variables of interest{x1, . . . , xn}, any substitutionθ = {x1 ← t1, . . . , xn ← tn}
can be approximated by anabstract substitution{x1 ← Tx1 , . . . , xn ← Txn} whereti ∈ γ(Txi

)

and each typeTxi
∈ G/ ≡. We will write abstract substitutions as tuples〈T1, . . . , Tn〉, and

sometimes also abbreviate a tuple simply asT n.

Concretization is lifted up to abstract substitutions straightforwardly,

γ(〈T1, . . . , Tn〉) = { {x1 ← t1, . . . , xn ← tn} | ti ∈ γ(Ti) }

as well as the equivalence relation≡. Additionally, we consider a distinguished abstract substi-

tution⊥ as a representative of any〈T1, . . . , Tn〉 such that there isTi = ⊥. Of course,γ(⊥) = ∅.
An ordering on the domain is obtained as the natural element-wise extension of the ordering

on types:

⊥ v T n

〈T1, . . . , Tn〉 6v ⊥
〈T1, . . . , Tn〉 v 〈T ′1, . . . , T ′n〉 ⇐⇒ ∀1≤i≤nTi v T ′i

The domain is a lattice with bottom element⊥ and top element〈T1, . . . , Tn〉 such thatT1 =

. . . = Tn = any. The greatest lower bound and least upper bound domain operations are lifted

also element-wise, as follows,

⊥ t T n = T n t⊥ = T n

〈T1, . . . , Tn〉 t 〈T ′1, . . . , T ′n〉 = 〈T1 t T ′1, . . . , Tn t T ′n〉
⊥ u T n = T n u ⊥ = ⊥

〈T1, . . . , Tn〉 u 〈T ′1, . . . , T ′n〉 = 〈T1 u T ′1, . . . , Tn u T ′n〉

Using the adjointα of γ as abstraction function, it can be shown that(2Θ, α, Ω, γ) is a Galois

insertion, whereΘ is the domain of concrete substitutions andΩ that of abstract substitutions.

The following abstract unification operator can be shown to approximate the concrete one.

Let x = t be a concrete unification equation, withx a variable,t any term, andT n the current

abstract substitution, and letyj, j = 1, . . . ,m be the variables oft, the new abstract substitution

is:

amgu(T n, x = t) = T n[Tx/T
′
x, Ty1/T

′
y1

, . . . , Tym/T ′ym
] (10)

with eachT replaced byT ′ in the tuple,T ′x = Tx u tµ, µ = {y1 ← Ty1 , . . . , ym ← Tym},
andsolve(t, T ′x) = {y1 = T ′y1

, . . . , ym = T ′ym
}, a set of equations that define the types of the

92

variables of a termt ∈ γ(T ′x), obtained as:

solve(t, T) =

{t = T} if t is a variable⋃
T−→f(T1,...,Tn)

⋃
i=1,...,n

solve(ti, Ti) if t is f(t1, . . . , tn)

In this abstract interpretation-based setting, analysis with a monotonic semantic function can

be easily shown correct. However, it is not guaranteed to terminate, sinceΩ has infinite ascending

chains. To guarantee termination, a widening operator is required.

Example 24.1Consider the following program which defines the regular type lists of lists of
numbers:

list_of_lists([]). num_list([]).
list_of_lists([L|Ls]):- num_list([N|Xs]):-

num_list(L), number(N),
list_of_lists(Ls). num_list(Xs).

For the argument ofnum list , without a widening operator, an analysis would obtain the

following first three approximations:

T0 −→ [] T1 −→ [] | .(num, T0) T2 −→ [] | .(num, T1)

where eachTi represents a list ofi numbers. Analysis will never terminate, since it would keep

on obtaining a new type representing a list with one more number. A widening operator would

be required that over-approximates some typeTl to something like

Tl −→ [] | .(num, Tl)

which is the expected type, and allows termination of the analysis.

25 Widenings

The widening operation is required to guarantee that an analysis terminates when the abstract

domain has infinite ascending chains as is the case of regular types.

Functor Widening This is probably the simplest widening operator which still keeps informa-

tion from the recursive structure of the program that “produces” the corresponding terms. The

idea behind it is to create a type and a production for each functor symbol in the original type.

All arguments of the function symbols are replaced with the new types [159].

93

Example 25.1Consider predicatelist of lists of Example 24.24.1, its argument should

ideally have the following type:

Tll −→ [] | .(Tl, Tll) Tl −→ [] | .(num, Tl)

but the functor widening will yield

T −→ [] | num | .(T, T)

Type Jungle Widening A type jungle is a grammar where each functor always has the same

arguments. It was originally proposed as a finite type domain [146] , since in a domain where all

grammars are of the type jungle class all ascending chains are finite. However, it can be used as

a subdomain to provide a widening operator.

Example 25.2Applying this widening to the previous typeTll, the following will be obtained:

T −→ [] | .(T1, T) T1 −→ [] | num | .(T1, T)

Note that this widening is strictly more precise than the functor widening. In the example,

the new type captures the upper level of lists, but it loses precision when describing the type

of the list elements. This is due to the restriction of forcing functors to always have the same

arguments.

Shortening A grammar can be seen as a graph where the nodes correspond to the non-terminals

(or-nodes) and to the right hand sides of productions (and-nodes), and the edges correspond to

the production relation or the relation between a functor and its arguments in a right hand side of

a production. Given an or-node, itsprincipal functorsare the functors appearing in its children

nodes.

Example 25.3The typeTll of the previous examples can be seen as the graph:

94

Gallagher and de Waal [65] defined a widening which avoids having two or-nodes, which

have the same principal functors, connected by a path. If two such nodes exist, they are replaced

by their least upper bound.

Example 25.4In the above example graph, nodesTll andTl have the same principal functors ([]

and .) so that they are replaced, yielding:

T −→ [] | .(T1, T) T1 −→ [] | num | .(num, T)

Note the precision improvement with respect to the result in the previous example. Note also

that still the result is imprecise.

Restricted Shortening Saglam and Gallagher [196] propose a more precise variant of the pre-

vious widening. Shortening is restricted so that two or-nodesT andT ′ which are connected by a

path fromT to T ′ and have the same principal functors are replaced only ifT ′ v T . If this is the

case, onlyT ′ needs be replaced, since the least upper bound isT .

Example 25.5Continuing previous examples, since nodesTll andTl have the same principal

functors butTl 6v Tll, the widening operation will make no change. In this case, the most precise

type is achieved.

Note, however, that restricted shortening does not guarantee termination in general (and thus,

it is not, strictly speaking, a widening). There are cases in which analysis may not terminate

using only this widening operator [159].

Depth Widening Janssens and Bruynooghe [98] proposed a type analysis in which the widen-

ing effect is achieved by a “pruning” of the type depth up to a certain bound. A parameter k

establishes the maximum number of occurrences of a functor in-depth in a type. The idea is sim-

ilar to the well-known depth-k abstraction for term structure analysis. The resulting type analysis

uses normal restricted type graphs, which are basically deterministic types satisfying the depth

limit. Obviously, precision of this analysis depends on the value of the parameter k.

Example 25.6The widening of our previous typeTll with k=1 will yield the same result than the

functor widening (Example 25.25.1), whereas with k=2 will yield the same result as restricted

shortening (Example 25.25.5).

95

Topological Clash Widening Van Hentenryck et al. [212] proposed the first widening operator

that takes into account two consecutive approximations to the type being inferred. After merging

the two —i.e., calculating their least upper bound, the result is compared with the previous

approximation to try to “guess” where the type is growing. This is done by locatingtopological

clashes: functors that differ or appear at different depth in each type graph. The clashes are

resolved by replacing them with the recently calculated least upper bound.

Example 25.7Consider the program:

sorted([]).
sorted([_X]).
sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

and the moment during analysis when the final widening is performed. The resulting type for

the argument ofsorted/1 is the one on the left below for the first two clauses, and the one on

the right for the last one:

T0 −→ [] | .(any, []) T1 −→ .(num, .(num, Tl))

Tl −→ [] | .(num, Tl)

Their least upper bound isTu on the left below, which exhibits a clash withT0 in the second

argument of functor./2. Thus, the result of widening isTs:

Tu −→ [] | .(any, Tl) Ts −→ [] | .(any, Ts)

All widening operators are based on locating recursive structures in the type definitions where

there are nodes with the same functors. This may originate an unnecessary loss of precision, since

the widening may impose a recursive structure on the resulting type in argument positions where

the concrete program is in fact not recursive. In the following section we present a new widening

operator that tries to remedy this problem.

26 Structural Type Widening

In this section we define an extended domain for type analysis which incorporates a widening

operator aimed at improving the precision of the analysis. The domain is defined so as to keep

track of information on the program structure, so that recursion on the types produced by the

analysis is imposed by the widening operator only in the cases where it corresponds to a recursive

structure in the program being analyzed. To this end, type names will be used.

A type nameis roughly a (distinguished) non-terminal that represents a type produced during

the analysis. Type names are created for each variable in each argument of each variant of

96

each program atom for each predicate (note how this is different from, for example, set-based

analyses [22], where variants are not taken into account).

Type names provide information on how types are being formed from other types during

analysis. This makes it possible to precisely identify places where to impose recursion on the

types: in a subterm of the type which happens to refer to the name of that type. To this end,

type names contain references to the position of its constituent types. To determine positions,

selectors are used, as defined below.

Definition 26.1[selector] Definet/s, the subterm of a concrete termt referenced by aselectors,

inductively as follows. The empty selectorε refers to the termt, that is,t/ε = t. If t/s = t′, t′ is

a compound termf(t1, . . . , ti, . . . , tn) (wheref is ann-ary function symbol) thent/s ·(f.i) = ti,

1 ≤ i ≤ n.

For every two selectorss, p, if t/s = t′ and if t′/p exists thent/s · p = t′/p. The initial ε of

a non-empty selector will often be omitted, soε · p will be written simply asp.

We define a set of type namesN such thatN ∩G = ∅ and a set2N×G of relationsX ∈ 2N×G

between type names and types, of the formX ⊆ N × G.

Definition 26.2[label] LetX a relation between type names and types. Given a type nameN , a

selectors, and a type nameN ′, a tuple〈s, N ′〉 is a labelof N iff (N, T) ∈ X , (N ′, T ′) ∈ X , and

T ′ v T/s.

Labels of a type nameN indicate subterms of the typeT definingN where other type names

occur.

Example 26.3Let a relationX such that{(A, T1), (B, T2)} ⊆ X , and let grammars(T1, T1,F ,R1)

and(T2, T2,F ,R2), such that the only rule forT1 is (T1 −→ f(b)) ∈ R1 and(T2 −→ g(c, T3)) ∈
R2, (T3 −→ b | f(b)) ∈ R2. Consider a label〈(g.2), A〉 of B. We have thatT1 v T2/(g.2) = T3.

Definition 26.4[type descriptor] LetG a set of types (regular term grammars),N a set of type

names, andX ⊆ N × G. A type descriptoris a tuple(N, E, T) whereN ∈ N , T ∈ G,

(N, T) ∈ X , andE is a set of labels ofN .

In the new domain, type descriptors will be used instead of types. LetD be the set of all

type descriptors from given sets of typesG and of type namesN . Concretization is defined as

γ((N, E, T)) = γ(T). The domain ordering and operations onD are the same as onG except for

type names. In this case, they have to take into account the possible labels of the type name.21

21Note that these operations do not manipulate the type names: they are assigned independently during analysis.
In particular, the nameN of the type resulting from union and intersection is always a new name.

97

Inclusion (N1, E1, T1) v (N2, E2, T2)⇔ T1 v T2 ∧ E1 ⊆ E2.

Union (N, E, T) = (N1, E1, T1) t (N2, E2, T2)⇔ T = T1 t T2 ∧ E = E1 ∪ E2.

Intersection (N, E, T) = (N1, E1, T1) u (N2, E2, T2)⇔ T = T1 u T2 ∧ E = E1 ∪ E2.

Again, we may be interested in types defined by non-terminals other than the distinguished

non-terminalT of a grammar(T, T ,F ,R). A type descriptor(Ni, Ei, Ti), whereTi ∈ T , is

formally defined from(N, E, T) as follows:Ti is the grammar of Equation 9,Ni is a new type

name, and

Ei = {〈p, N ′〉 | 〈s · p, N ′〉 ∈ E ∧ T/s = Ti}.

Abstract substitutions for variables of interest{x1, . . . , xn} are now defined as tuples of the

form 〈(N1, E1, Tx1), . . . , (Nn, En, Txn)〉. Concretization and the domain ordering and operations

are lifted to abstract substitutions element-wise, in the same way as in Section 24, including the

widening operator defined below. If nowΩ is the domain of type descriptors, it can be shown that

(2Θ, α, Ω, γ) is a Galois insertion, whereα is the adjoin ofγ. Abstract unification is defined as

in Equation 10, but using type descriptors instead of types. During unification, all type names in

the “input” abstract substitutionT n to amgu are preserved; in the labels, the selectors for those

names are changed so as to refer to the resulting type graph instead of to that ofT n.

Definition 26.5[structural widening] The widening between an approximationT2 to type name

N and a previous approximationT1 to N is (N, E1, T1)5 (N, E2, T2) = (N, E1 ∪ E2, T), such

that T is defined by(T, T ,F ,R) whereT = {Ti | T −→∗R Ti}, andR is obtained by the

following algorithm:

T ′ := T1 t T2 defined by(T ′, T ′,F ,R′)
S := {s | (s, N) ∈ E1 ∪ E2}
Seen := ∅
for each (T ′ −→ f(A1, . . . , An)) ∈ R′ add to R production

T −→ f(widen (A1,R′, (f.1)), . . . , widen (An,R′, (f.n)))

widen (N,R′, Sel) :

if N = any return any

if ∃M〈N, M〉 ∈ Seen return M

let M a new non-terminal

Seen := Seen ∪ {〈N, M〉}

98

for each (N −→ f(A1, . . . , An)) ∈ R′ add to R production

M −→ f(widen (A1,R′, Sel · (f.1)), . . . , widen (An,R′, Sel · (f.n)))

if Sel∈ S then

add to R production M −→ T

return M

Structural widening basically identifies subterms of the new typeT1 t T2 where a reference

to the typeN being widened appears, and makes this “self-reference” explicit in the definition of

the new type. Note that the widening operation starts with the least upper bound and, basically,

adds new grammar rules to that type. Therefore, the result is always a correct approximation

of such an upper bound. This justifies its correctness. Moreover, this approach based on type

names is potentially more precise than any of the previous widening operators discussed, as the

following examples show:

Example 26.6Consider programsorted in Example 25.25.7. A top-down analysis with topo-

logical clash was roughly described there. Let us now look at analysis using restricted shortening.

The resulting type happens to be the same one.

Analysis of program atomsorted([Y|L]) approximates variableY always asnum, both

in the calls and in the successes. The first two success approximations for variableL are[] and

.(num, []). Their lub (and widening) is:

T1 −→ [] | .(num, [])

The next approximation to the type ofL is .(num, T1). Its lub withT1 is T2 −→ [] | .(num, T1),

and sinceT2 andT1 have the same functors, andT1 is included inT2, the widening ofT2 is:

T3 −→ [] | .(num, T3)

i.e., list of numbers. The next approximation to the type ofL is .(num, T3) (i.e., a list with at

least one number). It is included inT3, so fixpoint is reached.

The success of principal goalsorted(X) is approximated after analyzing the two non-

recursive clauses byT4 −→ [] | .(any, []). Analysis of the third clause yields.(num, .(num, T3)).

Its lub with T4 is T5 −→ [] | .(any, T3). The widening ofT5 finds thatT5 andT3 have the same

functors andT3 v T5, sincenum v any. Thus, the result of widening is:

T6 −→ [] | .(any, T6)

i.e., list of terms. This is the final result after one more iteration. Note that the information about

successes where the tail of lists of length greater than one is a list of numbers is lost.

99

Let us now consider structural widening. Analysis of atomsorted([Y|L]) always ap-

proximates the type ofY by (N13, ∅,num). For variableL the two first approximations are

(N14, ∅, []) and(N14, E14, .(num, [])), where the set of labels is:

E14 = { (’.’ .1, N13), (’.’ .2, N14) }

The result of widening is(N14, E14, T1), whereT1 is defined as:

T1 −→ [] | .(num, T1)

i.e., list of numbers. This is the final result after one more iteration.

The success of principal goalsorted(X) is approximated after analyzing the two non-

recursive clauses by(N3, ∅, T2) whereT2 −→ [] | .(any, []). Analysis of the third clause yields

(N3, E3, .(num, .(num, T1))), where

E3 = { (’.’ .2 · ’.’ .1, N13), (’.’ .2 · ’.’ .2, N14) }

Its widening with the previous approximationT2 is (N3, E3, T3), where

T3 −→ [] | .(any, T1)

which amounts to their lub, since the widening operator does not produce any change, because

N3 is not among its own labels. Therefore, the final result, after one more iteration, isT3, where

indeed lists of length greater than one have a tail which is a list of numbers.

However, structural widening does not guarantee termination. It is effective as long as the

new approximation is built from the previous approximation of the type being inferred. This case

is identified, in essence, by locating a reference to the type name of the previous approximation

within the definition of the new one. However, there are contrived cases in which a type is

constructed during analysis which loses the reference to the previous approximation. In these

cases, a more restrictive widening has to be applied to guarantee termination.

Example 26.7Consider the program:

main:- p(a). p(a). q(a,f(a)).
p(X):- q(X,Y), p(Y). q(f(Z),f(L)):- q(Z,L).

The calling substitution for atomp(Y) is the sequence

T1 −→ f(a) T2 −→ f(f(a)) T3 −→ f(f(f(a))) . . .

whereas the typeT −→ f(a) | f(T) correctly describes such calls. However, the analysis is not

able to infer such a type.

100

The problem in the above example is that none of the approximationsTi contains a reference

to the previous approximation. This is originated in the program fact for predicateq/2 which

causes the loss of the reference to the previous approximation because of the double occurrence

of constanta.

In our analysis, termination is guaranteed by a bound on the number of times the widening

operation can be applied to a type name. A counter is associated to each type name, so that when

the bound is reached a more restrictive widening that guarantees termination is applied.

27 Type Inference Analysis Results

We have implemented analyses based on most of the widenings discussed in this paper, including

structural widening. The implementation is in Prolog and has been incorporated to the CiaoPP

system [85, 84], which uses the top-down analysis algorithm of PLAI. The analysis of [65],

based on regular approximations, which uses a bottom-up algorithm, is also incorporated into

the system. This analysis uses shortening. We want to compare the top-down and bottom-up

approaches with the same widening and similar implementation technology,22 as well as the pre-

cision and efficiency, within the same analysis framework, of the widening operators previously

discussed.

We have used two sets of benchmark programs: the one used in the PLAI framework and that

used in the GAIA [23] framework. A summary of the benchmarking follows. The analysis times

in miliseconds are shown in Table 3. The first column (rul) is for the regular approximation

analysis and the other three for the PLAI-based analyses: columnshort for shortening, column

clash for topological clash, and columnstruct for structural widening.

Table 4 shows results in terms of precision. The precision ofstruct is never improved

by any of the others. The improved precision ofstruct has been measured as follows. The

left subcolumns underrul , short , andclash show the number of types with a more precise

definition inferred bystruct . The right subcolumns show the number of types where the

previous ones appear (and are thus, also, more precise). The former are types directly inferred

from program predicates; the latter are types which are defined from the former, due to the data

flow in the program.

The following conclusions can be drawn from the tables. First, the regular approximation

approach seems to behave better in terms of efficiency than the program interpretation approach,

at least for the bigger programs. This conclusion, however, has to be taken with some care, since

22Similar in the programming technique. Of course, the regular approximation method is rather different from
the method of program interpretation on an abstract domain: Evaluating this difference is part of the aim of the
comparison.

101

Program rul short clash struct

aiakl 568 469 529 900
bid 1480 2209 2529 4730
boyer 3450 3890 4989 9629
browse 758 380 389 539
cs o 3840 1889 2689 2580
cs r 18549 10720 24479 19560
disj r 4468 1819 6399 2440
gabriel 1549 1430 1870 1760
grammar 330 160 160 190
hanoiapp 620 719 1889 1150
kalah r 1520 79 79 89
mmatrix 310 190 209 119
occur 380 219 330 289
palin 590 840 980 850
pg 839 2020 2980 3990
plan 1138 819 960 1009
progeom 979 1840 2530 3640
qsort 310 590 659 680
qsortapp 369 1000 2898 1210
queens 329 179 190 180
query 720 360 370 410
serialize 478 810 969 899
witt 2929 4890 1399 1169
zebra 560 3490 14958 12830

Table 3: Timing results

the current implementation ofrul performs some caching of the type grammars that the PLAI-

based analysis does not. This should be subject of a more thorough evaluation, which is out of

the scope of this paper. The fact that it improves in bigger programs seems to suggest that the

effect of this caching is most surely not negligible.

Regarding the analyses based on program interpretation, it can be concluded that the better

the precision the worse the efficiency:short takes less thanclash , and this one takes less

thanstruct ; this one is more precise thanclash , which is more precise thanshort . This

conclusion seems evident at first sight, but it is not: in analysis, an improvement in precision

can very well trigger an improvement in efficiency. This can also be seen in the tables in some

cases, the most significant probably beingzebra . Overall, one can arguably conclude that the

efficiency loss found is not a high price in exchange for the gain in precision.

102

Program rul short clash

aiakl 1 1 1 1
bid 9 12 9 12
cs o 4 18 4 18 2 9
cs r 4 28 4 28 2 19
disj r 6 13 6 13
mmatrix 2 2 2 2
occur 1 1 1 1
palin 2 4 2 4
pg 1 1 1 1
qsort 1 1 1 1
serialize 2 4 2 4
zebra 3 3 3 3 1 1

Table 4: Precision results

We have also carried out another test. For practical purposes, the CiaoPP system includes

a back-end to the analysis that simplifies the types inferred, in the sense that equivalent types

are identified, so that they are then reduced to a single type. This facilitates the interpretation

of the output. It is the case that the structural widening includes certain amount of type sim-

plification, so that the analysis creates less different types which are in fact equivalent. For this

reason, we have included the same tests as above, but adding now the times taken in the back-end

simplification phase.

The times including the simplification are shown in table 5. The columns read as before. It

can be seen that in this case structural widening outperforms all of the other analyses, except,

in some cases,rul . It can also be observed thatrul behaves usually better thanshort also

when simplification is included. This seems to suggest that incorporating our widening into the

regular approximation approach would probably give the best results in practice.23

28 Convex Hull Abstractions in Specialization of CLP Pro-
grams

Program specialization is sometimes regarded as being achieved in three phases:pre-processing

of the program, analysisand program generation. During pre-processing the input program

may be subject to some minor syntactic analyses or changes, ready for the analysis phase. The

analysis computes some data-flow and control-flow information from the program and the spe-

23This, however, may not be trivial. It is subject for future work.

103

Program rul short clash struct

aiakl 697 3009 3738 1409
bid 2899 31278 35949 15259
boyer 19620 201169 206917 92117
browse 987 2848 2987 1698
cs o 11958 17389 32959 4878
cs r 50760 303430 238788 30169
disj r 6508 18598 26077 6408
gabriel 2098 13388 22379 5208
grammar 759 3169 3169 1279
hanoiapp 840 3988 13738 3378
kalah r 2069 1187 1188 888
mmatrix 757 1769 2078 488
occur 530 1647 2628 767
palin 997 8520 11878 2180
pg 1349 15380 22870 7370
plan 1587 6167 6559 2288
progeom 1358 12800 17598 6679
qsort 520 3439 4168 1409
qsortapp 569 7789 9669 2900
queens 457 1128 1138 429
query 1627 22458 22788 11818
serialize 937 8429 11957 2217
witt 3438 188419 42699 25709
zebra 717 55100 189949 44540

Table 5: Timing results (including simplification)

cialization query. Finally, at program generation time the result of the analysis is used to produce

a residual program reflecting the result of the analysis. In off-line specialization the three phases

are consecutive, whereas in on-line specialization and driving the analysis and program genera-

tion phases are merged or interleaved.

The use of abstract interpretation techniques to assist program specialization is well-established

[63, 57, 104, 123, 193] and goes back to the invention of binding time analysis to compute static-

dynamic annotations [100]. More complex and expressive abstract domains have been used such

as regular tree structures [162, 64, 75, 132].

In this paper we focus on an abstract domain based on arithmetic constraints. Abstract inter-

pretations based on arithmetic constraints have already been developed [38, 7, 197]. We show

how the analysis phase of a specialization algorithm can benefit from advances made in that field.

104

We introduce an abstract domain consisting of atomic formulas constrained by linear arithmetic

constraints (or convex hulls [38]). The operations on this domain are developed from a standard

constraint solver.

We then employ this domain within a generic algorithm for specialization of (constraint) logic

programs [75]. The algorithm combines analysis over an abstract domain with partial evaluation.

Its distinguishing feature is the analysis of the success constraints (or answer constraints) as well

as the call constraints in a computation. This allows us to go beyond the capability of another

recent approach to use a linear constraint domain in constraint logic program specialization [51].

The specialization method can also be used for ordinary logic programs containing arith-

metic, as well as constraint logic programs. We can reason in constraint terms about the arith-

metic expressions that occur in logic programs, treating them as constraints (for instanceX is

Expr is treated as{X = Expr }). In addition, the algorithm provides a contribution to the

growing field of using specialization for model checking infinite state systems [141].

28.1 A Constraint Domain

Approximation in program analysis is ubiquitous, and so is the concept of a domain of properties.

The analysis phase of program specialization is no exception.

Linear Arithmetic Constraints Our constraint domain will be based on linear arithmetic con-

straints, that is, conjunctions of equalities and inequalities between linear arithmetic expressions.

The special constraintstrue andfalse are also included. This domain has been used in the design

of analysers and for model checking infinite state systems. Here we use it for specialization of

(constraint) logic programs.

Let Lin be the theory of linear constraints over the real numbers. LetC andD be two linear

constraints. We writeC v D iff Lin |= ∀(C → D). C andD areequivalent, writtenC ≡ D,

iff C v D andD v C. Let C be a constraint andV be a set of variables. ThenprojectV (C)

is the projection of constraintC onto the variablesV ; the defining property of projection is that

Lin |= ∀V (∃V ′.C ↔ projectV (C)), whereV ′ = vars(C)\V . Given an expressione let us denote

vars(e) as the set of variables occurring ine. If vars(e) = V , we sometimes refer toprojecte(C)

rather thanprojectV (C) when speaking of the projection ofC onto the variables ofe.

Arithmetic constraints can be presented in their simplified form, removing redundant con-

straints. Constraint simplification serves as a satisfiability check: the result of simplifying a

constraint isfalse if and only if the constraint is unsatisfiable. If a constraintC is satisfiable,

we write sat(C). Because we used the CLP facilities of SICStus Prolog all these operations

(projection, simplification and checking for equivalence) are provided for the domain of linear

105

constraints over rationals and reals. We refer the interested reader to a survey on CLP [96] for a

thorough discussion on the subject.

Intuitively, a constraint represents a convex polyhedron in cartesian space, namely the set of

points that satisfy the constraint. LetS be a set of linear arithmetic constraints. Theconvex hull

of S, written convhull(S), is the least constraint (with respect to thev ordering on constraints)

such that∀Si ∈ S.Si v convhull(S). Soconvhull(S) is the smallest polyhedron that encloses all

members ofS. Further details and algorithms for computing the convex hull can be found in the

literature [38].

Constrained Atoms and Conjunctions Now we must define our abstract domain. It consists

of equivalence classes ofc-atoms, which are constrained atoms. Each c-atom is composed of

two parts, an atom and a linear arithmetic constraint.

Definition 28.1 [c-atoms and c-conjunctions]A c-conjunction is a pair〈B, C〉; B denotes a

conjunction of atomic formulas (atoms) andC a conjunction of arithmetic constraints, where

vars(C) ⊆ vars(B). If B consists of a single atom the pair is called a c-atom.

(Note that c-conjunctions are defined as well as c-atoms, since they occur in our algorithm.

However, the domain is constructed only of c-atoms).

Given any arithmetic constraintC and atomA, we can form a c-atom〈A, C ′〉, whereC ′ =

projectA(C). Any atomA can be converted to a c-atom〈A′, C〉 by replacing each non-variable

arithmetic expression occurring inA by a fresh variable24, obtainingA′. Those expressions which

were replaced together with the variables that replace them are added as equality constraints to

the constraint partC of the c-atom. For example, the c-atom obtained fromp(f(3), Y + 1) is

〈p(f(X1), X2), (X1 = 3, X2 = Y + 1)〉.
A c-atom represents a set of concrete atoms. We define theconcretizationfunction γ as

follows.

Definition 28.2 [γ]

LetA = 〈A, C〉 be a c-atom. Define the concretization functionγ as follows.

γ(A) =

 Aθ

∣∣∣∣∣∣ θ is a substitution ∧
∀ϕ.sat(Cθϕ)

γ is extended to sets of c-atoms:γ(S) =

⋃{γ(A) | A ∈ S}.

24By parsing the arguments the desired terms can be selected.

106

There is a partial order on c-atoms defined byA1 v A2 if and only if γ(A1) ⊆ γ(A2). Two

c-atomsA1 andA2 are equivalent, writtenA1 ≡ A2 if and only if A1 v A2 andA2 v A1.

Equivalence can also be checked using syntactic comparison of the atoms combined with con-

straint solving, using the following lemma.

Lemma 28.3LetA1 = 〈A1, C1〉 andA2 = 〈A2, C2〉 be two c-atoms. Let〈Ā1, C̄1〉 and〈Ā2, C̄2〉
be the c-atoms obtained by removing repeated variables fromA1 andA2 and adding constraints

to C1 andC2 in the following manner. If a variableX occurs more than once in the atom, then

one occurrence is replaced by a fresh variableW and the constraintX = W is added to the

corresponding constraint part.

ThenA1 ≡ A2 if and only if there is a renaming substitutionθ such thatĀ1θ = Ā2 and

C̄1θ ≡ C̄2.

Now we are in a position to define the domain and the operations on the elements of our

domain. The relation≡ on c-atoms is an equivalence relation. The abstract domain consists

of equivalence classes of c-atoms. For practical purposes we consider the domain as consist-

ing of canonicalconstrained atoms, which are standard representative c-atoms, one for each

equivalence class. These are obtained by renaming variables using a fixed set of variables, and

representing the constraint part in a standard form. Hence we speak of the domain operations as

being on c-atoms, whereas technically they are operations on equivalence classes of c-atoms.

Next we define the upper bound of c-atoms which combines themost specific generalization

operator (msg)[194] on terms and theconvex hull[38] on arithmetic constraints. The idea is

to compute themsgof the atoms, and then to rename the constraint parts suitably, relating the

variables in the original constraints to those in themsg, before applying the convex hull operation.

The following notation is used in the definition. Letθ be a substitution whose range only

contains variables; the domain and range ofθ aredom(θ) andran(θ) respectively.alias(θ) is the

conjunction of equalitiesX = Y such that there exist bindingsX/Z andY/Z in θ, for some

variablesX, Y andZ. Let θ̄ be any substitution such thatdom(θ̄) = ran(θ) andXθ̄θ = X for

all X ∈ ran(θ). (That is,θ̄ = ϕ−1 whereϕ is some bijective subset ofθ with the same range as

θ).

The following definition is a reformulation of the corresponding definition given previously

[197].

Definition 28.4 [Upper bound of c-atoms,t] Let A1 = 〈A1, C1〉 andA2 = 〈A2, C2〉 be c-

atoms. Their upper boundA1 t A2 is c-atomA3 = 〈A3, C3〉 defined as follows.

1. A3 = msg(A1, A2), wherevars(A3) is disjoint fromvars(A1) ∪ vars(A2).

107

2. Let θi = {X/U | X/U ∈ mgu(Ai, A3), U is a variable}, for i = 1, 2. Then C3 =

projectA3
(convhull({alias(θi) ∪ Ciθ̄i | i = 1, 2})).

t is commutative and associative, and we can thus denote byt(S) the upper bound of the

elements of a set of c-atomsS.

Example 28.5LetA1 = 〈p(X, X), X > 0〉 andA2 = 〈p(U, V),−U = V 〉. ThenA1 t A2 =

〈p(Z1, Z2), Z2 ≥ −Z1〉. Here,mgu(p(X,X), p(U, V)) = p(Z1, Z2), θ1 = {Z1/X, Z2/X},
θ2 = {Z1/U, Z2/V }, alias(θ1) = {Z1 = Z2}, alias(θ2) = ∅, θ̄1 = {X/Z1} (or {X/Z2}) and

θ̄2 = {U/Z1, V/Z2}. Hence we compute the convex hull of the set{(Z1 = Z2, Z1 > 0), (−Z1 =

Z2)}, which isZ2 ≥ −Z1.

Like most analysis algorithms, our approach computes a monotonically increasing sequence

of abstract descriptions, terminating when the sequence stabilizes at a fixed point. Because

infinite ascending chains may arise during specialization it is not enough to have an upper bound

operator, in order to reach a fixpoint. An operator calledwideningmay be interleaved with the

upper bound to accelerate the convergence to a fixpoint and ensure termination of an analysis

based on this domain. When widening we assume that the c-atoms can be renamed so that their

atomic parts are identical, and the widening is defined solely in terms of widening of arithmetic

constraints,∇c [38]. This is justified since there are no infinite ascending chains of atoms with

strictly increasing generality. Hence the atom part of the c-atoms does not require widening.

Definition 28.6 [Widening of c-atoms,∇] Given two c-atomsA1 = 〈A1, C1〉 andA2 =

〈A2, C2〉, whereA1 andA2 are variants, sayA2 = A1ρ. The widening ofA1 andA2, denoted as

A1∇A2 is c-atomA3 = 〈A2, C3〉 whereC3 = C1ρ ∇c C2.

For instance, the widening of〈p(X), X ≥ 0, X ≤ 1〉 and〈p(Y), Y ≥ 0, Y ≤ 2〉 is 〈p(Y), Y ≥
0〉.

29 An Algorithm for Specialization with Constraints

In this section we describe an algorithm for specialization, incorporating operations on the do-

main of convex hulls. The algorithm is based on one presented previously [75], where we used a

domain of regular trees in place of convex hulls, and the operations namedω, calls andanswers

are taken from there. The operationsω andaunf∗ (which is used in the definition ofcalls) were

taken from Leuschel’s top-down abstract specialization framework [123]. The answer propaga-

tion aspects of our algorithm are different from Leuschel’s answer propagation method, though.

108

There is no counterpart of theanswers operation in Leuschel’s framework. The differences be-

tween the approaches were discussed in our previous work [75].

The structure of the algorithm given in Figure 12 is independent of any particular domain

of descriptions such as regular types or convex hulls. The operations concerning convex hulls

appear only within the domain-specific operationscalls, ω,∇ andanswers.

INPUT: a programP and a c-atomA
OUTPUT: two sets of c-atoms (calls and answers)

begin
S0 := {A}
T0 := {}
i := 0
repeat

Si+1 := ω(calls(Si, Ti), Si)
Ti+1 := Ti∇answers(Si, Ti)
i := i + 1

until Si = Si−1 andTi = Ti−1

end

Figure 12: Partial Evaluation Algorithm with Answer Propagation

29.1 Generation of Calls and Answers

The idea of the algorithm is to accumulate two sets of c-atoms. One set represents the set ofcalls

that arise during the computation of the given initial c-atomA. The other set represents the set

of answersfor calls.

At the start, the set of callsS0 contains only the initial goal c-atom, and the set of answers

T0 is empty. Each iteration of the algorithm extends the current setsSi and Ti of calls and

answers. The diagram in Figure 13 illustrates the process of extending the sets. All existing

callsA = 〈A, C〉 ∈ Si are unfolded according to some unfolding rule. This yields a number

of resultantsof the form (A, C)θ ← B1, . . . , Bl, C
′, whereAθ ← B1, . . . , Bl is a result of

unfoldingA andC ′ is the accumulated constraint; that is,C ′ is the conjunction ofCθ and the

other constraints introduced during unfolding. Ifsat(C ′) is false then the resultant is discarded.

The unfolding process is performed in the algorithm by the operationaunf∗, defined as follows.

Definition 29.1 [aunf, aunf∗] Let P be a definite constraint program andA = 〈A, C〉 a c-atom.

Let {Aθ1 ← L1, C1, . . . , Aθn ← Ln, Cn} be some partial evaluation [149] ofA in P , where

109

〈A, C〉

�
�

�
�

�
�

�
�

J
J

J
J

J
J

J
J

J
JJ

θ1 θ2

〈B1, . . . , Bk, Bk+1, . . . , Bn, C′〉

Generate abstract call
〈Bk+1φ, projectBk+1φ((C1, . . . , Ck)φ ∧ Cθ1φ)〉

where〈B1, . . . , Bk〉 has answer c-atoms
〈A1, C1〉, . . . , 〈Ak, Ck〉 and

mgu(〈B1, . . . , Bk〉, 〈A1, . . . , Ak〉 = φ)

〈B1, . . . , Bn, C′〉

Generate abstract answer
〈Aθ2φ, projectBθ2φ((C1, . . . , Cn)φ ∧ Cθ2φ)〉

where〈B1, . . . , Bn〉 has answer c-atoms
〈A1, C1〉, . . . , 〈An, Cn〉 and

mgu(〈B1, . . . , Bn〉, 〈A1, . . . , An〉 = φ)

!
!

!
!

!
!

EE

EE

EE

EE

Figure 13: The generation of calls and answers

Ci, Li(1 ≤ i ≤ n) are the constraint and non-constraint parts respectively of each resultant body.

Then define

aunf(A) =
{

Aθi ← Li, (Ci ∧ Cθi)
∣∣∣ 1 ≤ i ≤ n, sat(Ci ∧ Cθi)

}
.

Let S be a set of c-atoms. We defineaunf∗(S) as:

aunf∗(S) =

 (L, projectL(C ′))

∣∣∣∣∣∣ 〈A, C〉 ∈ S

Aθ ← L, C ′ ∈ aunf(A)

In the following examples, assume that the unfolding rule selects the leftmost atom provided that

it matches at most one clause (after discarding matches that result in an unsatisfiable constraint),

otherwise selects no atom.

Example 29.2Consider the following simple programP .

s(X,Y,Z) <-
p(X,Y,Z), q(X,Y,Z)

p(0,0,0) <-
p(X,Y,Z) <-
{X=X1+1, Y=Y1+1, Z=Z1+1 },
p(X1,Y1,Z1)

q(0,Z,Z) <-
{Z > 0}

q(X,Y,Z) <-
{X = X1+1, Z=Z1+1 },
q(X1,Y,Z1)

Let S be{〈s(X, Y, Z), X > 2〉}. Thenaunf∗(S) = {(p(X1, Y, Z1), q(X, Y, Z), (X > 2, X = X1 +

3, Z = Z1 + 3)}. The unfolding rule results in four steps: the unfolding of the atoms(X,Y,Z)

followed by three unfoldings ofp, since the initial constraintX > 2 implies that the base case

p(0,0,0) cannot be matched so long as the first argument ofp is greater than zero.

110

Note that the range of the functionaunf∗ is the set of c-conjunctions. The current answers from

Ti are then applied, from left to right, to the c-conjunctions generated byaunf∗. If there is some

prefix B1 . . . , Bk (k < l) in a c-conjunction, having a solution inTi, then a call to an instance

of Bk+1 is generated. More precisely, we define a functioncalls as follows. We first define the

notion of a “solution” of a conjunction with respect to a set of c-atoms.

Definition 29.3 [solution of a conjunction]Let (B1, . . . , Bl) be a conjunction of atoms andT be

a set of c-atoms. Then〈ϕ, C̄〉 is a solution for(B1, . . . , Bl) in T if there is a sequence of c-atoms

〈A1, . . . ,Al〉whereAj = 〈Aj, Cj〉 ∈ T , 1 ≤ j ≤ l, such thatmgu((B1, . . . , Bl), (A1, . . . , Al)) =

ϕ, andsat(C̄) (whereC̄ = (C1 ∧ · · · ∧ Cl)ϕ).

Definition 29.4 [calls] Let Si be a set of call c-atoms andTi be a set of answer c-atoms. Define

calls(Si, Ti) to be the set of c-atoms〈Bk+1ϕ, projectBk+1ϕ(C̄ ∧ C ′ϕ)〉 where

1. 〈B1, . . . , Bl, C
′〉 ∈ aunf∗(Si), and

2. there is a conjunction(B1, . . . , Bk) (k < l) which has a solution〈ϕ, C̄〉 in Ti, andsat(C̄ ∧
C ′ϕ).

Example 29.5Let P be the program from Example 29.2 and letS be{〈s(X, Y, Z), X > 2〉}. Let

T = {〈p(X1, Y1, Z1), X1 = 0, Y1 = 0, Z1 = 0〉}. Then:

calls(S, T) = {〈p(X1, Y, Z1), true〉, 〈q(X, Y, Z), X = 3, Y = 3, Z = 3〉}

Note that the call toq arises from applying the solution forp and simplifying the accumulated

constraints.

An answer is derived by finding a resultantAθ ← B1, . . . , Bk, C
′ whose body has a solution

in the current set of answers. The functionanswers is defined as follows.

Definition 29.6 [answers] Let Si be a set of call c-atoms andTi be a set of c-atoms. Define

answers(Si, Ti) to be the set of answer c-atoms〈Aθϕ, projectAθϕ(C̄ ∧ C ′ϕ)〉 where

1. A = 〈A, C〉 ∈ Si, and

2. Aθ ← B1, . . . , Bl, C
′ ∈ aunf(A), and

3. (B1, . . . , Bl) has a solution〈ϕ, C̄〉 in Ti, andsat(C̄ ∧ C ′ϕ).

Example 29.7Let P be the program from Example 29.2 and letS be{〈p(X, Y, Z), true〉}. Let

T = {〈p(X1, Y1, Z1), X1 = 0, Y1 = 0, Z1 = 0〉}. Thenanswers(S, T) = {〈p(X, Y, Z), X = 1, Y =

1, Z = 1〉}.

111

An important feature of the algorithm is that no call to a body atom is generated until the

conjunction of atoms to its left has an answer. One effect of this is to increase specialization

because the propagation of answers for some atom restricts the calls to its right. Secondly,

answers can only be generated for called atoms, and no answer to an atom is generated until

there is an answer to the whole body of some resultant for that atom. There can exist abstract

calls that have no corresponding answers; these represent concrete calls that either fail or loop. In

fact, infinitely failed computations are not distinguished from finitely failed computations, with

the result that programs that produce infinitely failing computations can be specialized to ones

that fail finitely. The examples later in this section illustrate this point.

29.2 Approximation Using Convex Hulls and Widening

Call and answer c-atoms derived using thecalls andanswers functions are added to the setsSi and

Ti respectively. There is usually an infinite number of c-atoms that can be generated in this way.

The purpose of theω and∇ functions in the algorithm is to force termination. Theω function

computes a safe approximation of the calls and answers, using theconvex hullandwidening

operations, both of which are standard in analyses based on linear arithmetic constraints.

On each iteration, the sets of call c-atoms are partitioned into sets of “similar” c-atoms. The

notion of “similar” is heuristic: the only requirements are that the definition of similarity should

yield a finite partition, and that all c-atoms in one subset should have the same predicate name.

In our implementation we partitioned based on thetrace termsor “unfolding patterns” of the c-

atoms [72]. We assume a function that partitions a setS of c-atoms into a finite set{S1, . . . , Sm}
of disjoint subsets ofS, and computes the upper bound of each subset. The functionpartition(S)

is defined aspartition(S) = {t(S1), . . . ,t(Sm)}. It is desirable though not essential thatt(S)

belongs to the same set asS.

Even if the partition is finite, a widening is required to enforce termination. The widening

step is defined between the sets of c-atoms on two successive iterations of the algorithm. Let

S, S ′ be two sets of c-atoms, where we assume that bothS andS ′ are the result of apartition

operation. DefineS ′∇S to be A′∇A
∣∣∣∣∣∣ A

′ ∈ S ′,A ∈ S,

A′,A are in the same set

 ⋃ A
∣∣∣∣∣∣ A ∈ S,

6 ∃A′ ∈ S ′ in the same set as A

Finally the operationω can be defined asω(S, S ′) = S ′∇partition(S). This ensures termination

if the number of sets returned bypartition is bounded. The definition states that each elementA
of S is replaced by the result of wideningA with the element fromS ′ from the same set, if such

an element exists.

112

29.3 Generation of the Specialized Program

After termination of the algorithm, the specialized program is produced from the final sets of

calls and answersS andT respectively. It consists of the following set of clauses.

rename(Aθϕ← Lϕ,C ′ϕ)

∣∣∣∣∣∣∣∣∣∣∣

A = 〈A, C〉 ∈ S,

Aθ ← L, C ′ ∈ aunf(A),

L has solution 〈ϕ, C̄〉 in T,

sat(C̄ ∧ C ′ϕ)

That is, each of the calls is unfolded, and the answers are applied to the bodies of the resultants.

Note that we do not add the solution constraintsC̄ to the generated clause, so as not to introduce

redundant constraints. Therename function is a standard renaming to ensure independence of

different specialized versions of the same predicate, as used in most logic program specialization

systems (see for example [57] for a description of the technique).

Example 29.8Consider again the example from Example 29.2. We specialize this program

with respect to the c-atom〈s(X, Y, Z), true〉 assuming the usual left-to-right computation rule.

Note that the concrete goals(X,Y,Z) does not have any solutions, although with the standard

computation rule the computation is infinite.

After the first few iterations of the algorithm the answer forp(X,Y,Z) is computed, after

widening the successive answersp(0,0,0), p(1,1,1), p(2,2,2), . . .

This in turn generates a call toq(X,Y,Z) . The c-atom describing the answers forp(X,Y,Z)

is 〈p(X, X, X), X ≥ 0〉 and thus the call〈q(X, X, X), X ≥ 0〉 generated. Further iterations of the

algorithm show that this call toq has no answers. Concretely, the call would generate an infinite

failed computation. When the algorithm terminates, the complete set of calls obtained is:

{〈s(X, Y, Z), true〉, 〈p(X, Y, Z), true〉, 〈q(X, X, X), X ≥ 0〉}

The set of answers is{〈p(X, X, X), X ≥ 0〉}. Thus we can see that there are some calls (namely, to

q ands) that have no answers.

To generate the specialized program from this set of calls and answers, we generate resultants

for the calls, and apply the answers to the bodies. Since there is no answer forq(X,Y,Z)

in the resultant fors(X,Y,Z) , s(X,Y,Z) fails and the specialized program is empty. The

specialized program thus consists only of the resultantsp(0,0,0) andp(X,X,X) <- {X =

Y+1}, p(Y,Y,Y) . The failure of the original goal is immediately apparent since there are no

clauses for predicates .

113

Example 29.9More insight into the nature of the approximation can be gained by considering

the same program as in the previous example, except that the body goals are reversed in the clause

for s . In this caseq(X,Y,Z) is called first, and the answers forq constrain the calls top. The

call 〈q(X, Y, Z), true〉 results in the abstract answer c-atom〈q(X, Y, Z), X ≥ 0, Y ≥ 0, Z = X + Y〉.
Again, widening is essential to derive this answer. Note that the solutionq(0,0,0) is included

as a result of the convex hull approximation, even though this is not a concrete solution.

This answer is then propagated to the call top, hence there is a call c-atom〈p(X, Y, Z), X ≥
0, Y ≥ 0, Z = X+Y〉. Specialization of this call top gives the abstract answer〈p(X, X, X), X ≥ 0〉.

The specialized program corresponding to this set of calls and answers is the following.

s(0,0,0) <-
q(0,0,0), p(0,0,0).

p(0,0,0) <-
p(X,Y,Z) <-
{X=X1+1, Y=Y1+1, Z=Z1+1 },
p(X1,X1,X1)

q(0,Z,Z) <-
{Z > 0}

q(X,Y,Z) <-
{X = X1+1, Z=Z1+1 },
q(X1,Y,Z1)

The instance of the clause fors is obtained by conjoining the answers for the body goals

q(X,Y,Z), p(X,Y,Z) , that is,X ≥ 0, X = Y, X = Z, Y ≥ 0, Z = X + Y, which simplifies to

the constraintX = 0, Y = 0, Z = 0. The above program does not make the failure ofs(X,Y,Z)

explicit; a non-trivial post-processing such as another run of the specialization algorithm would

be needed to discover the failure of the callq(0,0,0) . The general point here is that the convex

hull approximation loses the information thatq(0,0,0) is not a solution forq(X,Y,Z) .

The two examples taken together show that the direction of propagation of answers affects preci-

sion. It would be possible to design an algorithm incorporating more sophisticated propagation,

but post-processing or re-specialization is a practical alternative for experimental studies.

Note that the above presentation of the algorithm is naive in the sense that the sets of calls

and answers need not be totally recomputed on each iteration. We use standard techniques to

optimize the algorithm, focusing on the “new” calls and answers on each iteration. We can

also use the recursive structure of the target program to optimize the iterative structure of the

algorithm. Instead of one global fixpoint computation, we compute a series of fixpoints, one for

each group of mutually recursive predicates.

29.4 Correctness of the Specialization

A program that has been specialized with respect to a c-atomA = 〈A, C〉 produces the same

answers as the original program for any terminating computation for any query inγ(A). Note

that the proposition below states nothing about the preservation of looping computations in the

114

original program. A goal that loops in the original program can finitely fail in the specialized

program.

Proposition 29.10Let P be a definite CLP program andA a c-atom. LetP ′ be the specialized

program derived by the algorithm described above, with initial c-atomA. Let S andT be the

sets of call and answer c-atoms returned by the algorithm. Then for any goalG =← B1, . . . , Bk

such thati = 1 · · · k andBi ∈ γ(A′) for someA′ ∈ S, P ∪ {G} has an answerρ if and only if

P ′ ∪ {G} has an answerρ. Also, if P ∪ {G} fails finitely thenP ′ ∪ {G} fails finitely.

Proof Suppose there is a terminating (possibly failed) derivation ofP ′ ∪ {G}. We argue by

induction on the length of the derivation. If the derivation has length 0, thenG fails immediately.

We know that there is someA′ = 〈A′, C ′〉 in S such thatB1 ∈ γ(A′), since the first call c-atom

is 〈B1, true〉, and soS should contain an elementA′ such that〈B1, true〉 v A′. So a failure

means that (i) there are no resultants forA′, or (ii) that no resultant body has an answer, or (iii)

that there is a resultantA′θ ← L with an answerϕ for L given by the set of answer c-atoms,

but B1 does not unify withA′θϕ. In the case of (i) there is a finitely failed computation tree of

P ∪ {G}. In the case of (ii) or (iii) there is either a finitely failed computation tree ofP ∪ {G},
or the computation tree forP ∪ {G} is infinitely failed.

If the derivation has length 1, with answer substitutionρ, thenG =← B1 and there is some

unit clause inP ′ whose head unifies withB1 with substitutionρ. Now, unit clauses inP ′ may

come from two sources: either they are already inP or they are the result of successfully un-

folding the body of a non-unit clause, also inP . Hence by definition of the residual program

construction the mgus are equivalent modulo variable renaming.

If all derivations of length at mostm in P ′ have a corresponding derivation inP , then we

show that all derivations of lengthm + 1 in P ′ do as well. Suppose the first clause used in the

derivation isA′θ ← L, mgu(B1, A
′θ) = ϕ and(L, B2, . . . , Bk)ϕ has a derivation inP ′ of length

at mostm. By the induction hypothesis there is a corresponding derivation for(L, B2, . . . , Bk)ϕ

in P . Then clearly there is a derivation inP corresponding to them + 1 step derivation inP ′,

obtained by concatenating the steps corresponding to the clauseA′θ ← L.

The above argument establishes soundness. For completeness, a sketch of a proof is provided.

For each terminating derivation ofP∪{G}we can construct a terminating derivation inP ′∪{G}.
The clauses inP ′ that are needed to construct such a derivation exist by virtue of the closedness

of the sets of calls and answers. That isS = ω(calls(S, T), S) andT = T∇answers(S, T). Fur-

thermore, the answers produced by successful derivations inP can be reproduced by derivations

in P ′ by virtue of the correctness of the unfolding functionaunf, and the procedure for computing

the solution of a conjunction with respect to a set of answer c-atoms. 2

115

sat(_,true) <-
sat(_,false) <- fail
sat(E,P) <- prop(E,P)
sat(E,and(F,G)) <-

sat(E,F),
sat(E,G)

sat(E,or(_F,G)) <-
sat(E,G)

sat(E,or(F,_G)) <-
sat(E,F)

sat(E,not(F)) <-
not(sat(E,F))

sat(E,en(F)) <-
trans(_Act,E,Ei),
sat(Ei,F)

sat(E,an(F)) <-
not(sat(E,en(not(F))))

sat(E,eu(F,G)) <-
sat_eu(E,F,G)

sat(E,au(F,G)) <-
sat(E,not(eu(not(G),

and(not(F),not(G))))),
sat_noteg(E,not(G))

sat(E,ef(F)) <-
sat(E,eu(true,F))

sat(E,af(F)) <-
sat_noteg(E,not(F))

sat(E,eg(F)) <-
not(sat_noteg(E,F))

sat(E,ag(F)) <-
sat(E,not(ef(not(F))))

sat_eu(E,_F,G) <-
sat(E,G)

sat_eu(E,F,G) <-
sat(E,F),
trans(_Act,E,Ei),
sat_eu(Ei,F,G)

sat_noteg(E,F) <-
sat(E,not(F))

sat_noteg(E,F) <-
not((trans(_Act,E,Ei),

not(sat_noteg(Ei,F))))

Figure 14: CTL metainterpreter

30 Examples

We implemented the algorithm described in the previous section, using the SICStus Prolog linear

arithmetic constraint solver. Next we present some examples where on-line specialization as

presented here is used for verifying some formulas in CTL [27].

Specialization can be seen as an approach to model-checking infinite systems [141, 52] and

in this context our more powerful specialization techniques are highly relevant. We used the CTL

metainterpreter shown in Fig. 14 (also used by M. Leuschel et al. [141]).

The set of transitions25(predicatetrans/3 in the figure) of the system to be verified in the form

of a (C)LP program is appended to this metainterpreter. Also, the property (predicateprop/2

in the CTL metainterpreter) with respect to which verification is to be carried out should be

specified. Finally, the specialization query provides the initial state and the CTL formula which

is to be verified for the given system and initial state.

25A transition system may be that of a Kripke structure or a Petri Net, for instance.

116

Specialization Strategy Before applying the convex hull specialization, we performed a trivial

top-down specialization with respect to the given goal. The main effect of this stage was to unfold

the calls to the transition relationtrans/3 . In principle, this unfolding could be performed

during the execution of the main specialization algorithm. However, the overall process is faster

and easier to control when doing the specialization in two stages.

Example 30.1 Consider for instance the following transition system, where

trans(t,[X,Y],[Z,W]) holds iff state[Z,W] may be obtained from state[X,Y] using

transitiont .

trans(t1,[P1,P2],[X,P3]) <- trans(t2,[P1,P3],[P4,P2]) <-
X is 0, P1>=0,
P1>=1, P2>=0,
P2>=0, P4 is P1+2,
P3>=0, P3 is P2+1
P3 is P2+1

The encoding of an unsafe state property[X,Y] with X>=3 is added as another clause in

the CTL metainterpreter.

prop([X,Y],p(unsafe)) <- X>=3

The specialization query, taking into consideration the initial state[X,Y] with X=1,Y=0 ,

for CTL formula ef(p(unsafe)) 26 is <- sat([1,0],ef(p(unsafe))) . As a result

of specializing the CTL metainterpreter with a description (transition system) of the system and a

state property with respect to the query above, we obtained the empty program. This is equivalent

to saying that there is no residual program in which state[1,0] may reach state[X,Y] with

X>=3. Had we obtained a residual program we would have interpreted the residual program as

the set of traces which lead from the initial state to the unsafe state, as above.

This behaviour may be regarded as that of a model checker, hence we argue that our special-

izer may be used as a model checker for some infinite state systems. The only requirement is that

those systems may be expressed as definite (constraint) logic programs and the CTL formulas

does not use negation.

Example 30.2Figure 15 depicts a Petri net modeling one process with its critical section (cs)

and a semaphore (sema) controlling access to it. The definition of predicatetrans/3 corre-

sponding to the transition relation of the Petri net above, follows.

26Meaning that there exists a state in the future such that state propertyunsafe holds.

117

x

����t -

enter cs
-

cs����
-

sema

����t
@

@I�
�	

exit cs
-

y

����
-

restart
-

c

����
6

Figure 15: Petri Net with one semaphore

trans(enter_cs,[X,Sema,Cs,Y,C],[X1,Sema1,Cs1,Y,C]) <-
X>=1, X1 is X-1,
Sema>=1, Sema1 is Sema-1,
Cs>=0, Cs1 is Cs+1

trans(exit_cs,[X,Sema,Cs,Y,C],[X,Sema1,Cs1,Y1,C]) <-
Sema>=0, Sema1 is Sema+1,
Cs>=1, Cs1 is Cs-1, Y>=0, Y1 is Y+1

trans(restart,[X,Sema,Cs,Y,C],[X1,Sema,Cs,Y1,C1]) <-
X>=0, X1 is X+1,
Y>=1, Y1 is Y-1,
C>=0, C1 is C+1

Next, we may specify with the following clause the unsafe property of more than two pro-

cesses being in their critical section (cs) at the same time:

prop([_X,_Sema,Cs,_Y,_C],p(unsafe)) <- Cs>=2.

Now, for the specialization query, with constraint27 X>=1:

<- sat([X,1,0,0,0],ef(p(unsafe)))

we obtained the empty program, thus denoting that there is no path from the initial state

([X,1,0,0,0]), with X>=1 leading to a state where propertyp(unsafe) holds.

Example 30.3Another way of specifying concurrent systems was proposed by U. A. Shankar [200].

Delzanno and Podelski [46], in turn, propose a systematic method to translate such specifications

into CLP programs. Our translation is similar to theirs, differing only in the form of the clauses

produced, mainly due to the meaning of the predicate employed.

Figure 16 below contains a specification of the bakery algorithm for two processes using the

technique above cited.

Such a specification may be readily translated into the following definition of thetrans

predicate:

27For every token in the place with nameX we associate a process, thus the constraintX>=1.

118

Control variables p1, p2 : {think, wait, use}

Data variablesturn1, turn2 : int

Initial condition p1 = think∧ p2 = think∧ turn1 = turn2 = 0

Events condp1 = think

cond p1 = wait ∧ turn1 <
turn2

condp1 = wait∧ turn2 = 0

condp1 = use

. . . symmetrically for Pro-
cess 2

action p′1 = wait∧ turn′1 = turn2 +1

action p′1 = use

action p′1 = use

action p′1 = think∧ turn′1 = 0

Figure 16: The bakery algorithm

trans(f,[think,A,P2,B],[wait,A1,P2,B]) <- A>=0, A1 is B+1
trans(f,[P1,A,think,B],[P1,A,wait,B1]) <- B>=0, B1 is A+1
trans(s,[wait,A,P2,B],[use,A,P2,B]) <- A>=0, A<B
trans(s,[P1,A,wait,B],[P1,A,use,B]) <- B>=0, B<A
trans(s,[wait,A,P2,B],[use,A,P2,B]) <- B=0
trans(s,[P1,A,wait,B],[P1,A,use,B]) <- A=0
trans(t,[use,A,P2,B],[think,A1,P2,B]) <- A>=0, A1=0
trans(t,[P1,A,use,B],[P1,A,think,B1]) <- B>=0, B1=0

Consequently, an unsafe property for the previous system would be a state where the two pro-

cesses are in their critical section (denoted asuse) at the same time. This property is denoted as

the clause:

prop([use,A,use,B],p(unsafe)) <-

Furthermore, verifying that there is no state of the above mentioned system where such an unsafe

state holds amounts to obtaining an empty program for the following query:

<-sat([think,0,think,0],ef(p(unsafe)))

where the variables denoting the turn of each process, namelyA,B , are initially constrained by

A=B=0. As a result of the specialization we obtained the empty program thus verifying that there

is no unsafe state in any path beginning from the initial state described in figure 16.

119

In a similar way we verified some correctness property [141] of the producers and consumers

algorithm [5] for one producer, one consumer and a buffer of size one. The authors [141] could

not successfully specialize this last example.

Assessment Here we have shown some applications of our specialization strategy to infinite

state model checking. Compared to other approaches using specialization for the same pur-

pose, we believe our approach sheds some insight into the field. The example of the bakery

protocol was also verified by Fioravanti et al. [52]. As opposed to their approach we show the

actual specialization strategy and its use in other related examples. We depart from a general

CTL metainterpreter whereas Fioravanti et al. present a somehow specialized version of a CTL

metainterpreter.

For the other examples of this section M. Leuschel et al. [141] have a four stage model

checker, as opposed to ours which is just one specialization step. That is, M. Leuschel et al.

first pass through an off-line specializer, then one or more specialization passes of their on-line

specializer and finally one pass through a most-specific-version analyser.

Admittedly examples 30.2 and 30.3 in this section do not propagate answers, and require

a simple unfolding prior to specialization with answers. By contrast, example 30.1 and the

producer-consumer of [141] do not need any prior unfolding and have some limited answer

propagation. That is, specialization with answers could be applied directly to the metainterpreter

(together with the transition definition and the property), to yield the expected verification results.

The running example of Section 29 does indeed need and use answer propagation.

31 Related Work

Despite the fact that unfold-fold approaches to program transformation and program special-

ization based on a fixpoint calculation are not directly comparable, there are some unfold-fold

methods related to our techniques.

In [153] the authors propose the use of convex-hull analysis to enable optimization/special-

ization of CLP programs. Their removal, refinement and reordering may be rendered as trans-

formation rules. The fairness of comparing our technique with theirs is dubious because theirs

is used for compilation and ours for specialization, and potentially the former is a special case

of the latter one. A weak form of their method was later dubbed by Fioravanti et al. [51] as

contextual specialization.

Peralta and Gallagher [170] use arithmetic constraints (convex hulls) to specialize CLP pro-

grams, especially an interpreter for imperative programs.

120

Their specialization abstract domain is the same as that one used here, but the specializer

only propagates information top-down and cannot achieve the effects of answer propagation.

Fioravanti et al. [51] (without reference to [92, 170]) argue an automatic specialization method

based on folding and unfolding among other transformation techniques. They use a domain of

atomic formulas constrained by arithmetic expressions with upper bound based on widening

alone, rather than the combination of convex hull and widening which is known to give better

approximations. The aspects of their method concerned with specialization resemble a top-down

on-line specializer with a subsequent “contextual specialization”, and thus does not in general

achieve the effects of answer propagation.

Another application of specialization using abstract interpretation over polyhedral descrip-

tions followed by a contextual specialization was given by Howeet al. [92]. This approach

is similar in being based on abstract interpretation over a domain of polyhedra. Its bottom-up

analysis of answers is not as powerful as ours, which combines top-down and bottom-up propa-

gation.

Conjunctive Partial Deduction (CPD) [201] aims to solve the answer propagation problem in

a different way. The approach is to preserve shared information between subgoals by specializ-

ing conjunctions rather than atoms. It is not yet clear whether CPD or answer propagation via

atoms, or some combination of both, will be most effective. In the extreme case of CPD, no

resolvent is ever split, and no answer propagation is needed. However in general resolvents can

be of unbounded size, some splitting is therefore needed, and answer propagation is required to

preserve shared information between conjunctions.

32 Final Remarks

We have presented a new widening operator on regular types within an abstract interpretation-

based characterization of type inference. The idea behind it is similar to set-based analyses [53,

22] in that we assign and fix type names, but it is applied here with more generality. The most

comparable aproach among the set-based analyses would be [71]. It can be seen as a general-

ization of the idea of “guessing” the growth of the types during analysis which is behind [212].

Instead of guessing, our technique determines exactly where the type is growing. The resulting

widening operator has been presented on deterministic regular types. However, its extension to

non-deterministic regular types should be straightforward.

Our operator is more precise than previous approaches, but it is still efficient. This has been

shown with (preliminary) practical results. However, it does not guarantee termination. We are

currently working on the non-termination problem. A moded type domain will help in this. The

121

idea is to enhance abstract unification so that it is able to identify the “transference” of type

names from the input to the output types, so that the names are not dropped. This will remedy

the problem of Example 26.7 and, hopefully, allow us to prove termination of analyses with the

proposed widening operator.

We have also presented an algorithm for specialization of definite28 (C)LP programs. Its

main novelty is the propagation of calls and answers described by atoms whose arguments are

described by convex hulls. The use of answer propagation with an expressive domain like convex

hulls gives increased specialization. By interpreting Prolog arithmetic as constraints we can also

apply the algorithm to “non-constraint” programs.

Future Work This work has revealed two issues that may be worth investigating for practical

purposes: the impact on the efficiency of analysis of the different implementation techniques for

different analysis methods, and of the simplification of types.

Because negation in CTL is interpreted as negation in (constraint) logic programs, this re-

stricts us to model checking of safety properties, as opposed to liveness properties. Extending

the presented techniques to include negation is the focus of our current research.

Scalability of our specialization method is one avenue into which we plan to extend the

current proposal, thus making our specialization techniques applicable to larger systems.

Also, in order to improve precision of our specialization with answers, more sophisticated

domains are sought.

28At the moment we can only specialize definite (constraint) logic programs.

122

Part IV

Inductive Theorem Proving by Program
Specialisation: Generating proofs for
ISABELLE using ECCE

In this part we discuss the similarities between program specialisation and inductive theorem

proving, and then show how program specialisation can be used to perform inductive theorem

proving. We then study this relationship in more detail for the particular problem of verifying

infinite state systems in order to establish a clear link between program specialisation and in-

ductive theorem proving. Indeed,ECCE is a program specialisation system which can be used to

automatically generate abstractions for the model checking of infinite state systems. We show

that to verify the abstractions generated byECCEwe may employ the proof assistant ISABELLE.

TherebyECCE is used to generate the specification, hypotheses and proof script in ISABELLE’s

theory format. Then, in many cases, ISABELLE can automatically execute these proof scripts and

thereby verify the soundness ofECCE’s abstraction. In this work we focus on the specification

and verification of Petri nets.

33 Background

The relation between program specialisation and theorem proving has already been raised several

times in the literature [209, 78, 210, 174]. In this paper we will examine in closer detail at the

relationship between partial deduction and inductive theorem proving.

Partial Deduction The heart of any technique forpartial deductionis a program analysis phase.

Given a programP and an (atomic) goal← A, one aims to analyse the computation-flow ofP

for all instances← Aθ of← A. Based on the results of this analysis, new program clauses are

synthesised.

In partial deduction, such an analysis is based on the construction of finite and usually in-

complete29, SLD(NF)-trees. More specifically, following the foundations for partial deduction

developed in [152] (see also [127] for an up-to-date overview), one constructs

• a finite set of atomsS = {A1, . . . , An}, and

• a finite (possibly incomplete) SLD(NF)-treeτi for each(P ∪ {← Ai}),
29As usual in partial deduction, we assume that the notion of an SLD-tree is generalised [152] to allow it to be

incomplete: at any point we may decide not to select any atom and terminate a derivation.

123

such that:

1) the atomA in the initial goal← A is an instance of someAi in S, and

2) for each goal← B1, . . . , Bk labelling a leaf of some SLD(NF)-treeτl, eachBi is an in-

stance of someAj in S.

The conditions 1) and 2) ensure thattogetherthe SLD(NF)-treesτ1, . . . , τn form a complete

descriptionof all possible computations that can occur for all concrete instances← Aθ of the

goal of interest. At the same time, the point is to propagate the available input data in← A as

much as possible through these trees, in order to obtain sufficient accuracy. The outcome of the

analysis is precisely the set of SLD(NF)-trees{τ1, . . . , τn}: a complete, and hopefully as precise

as possible, description of the computation-flow. Finally, a code generation phase produces a

resultant clausefor each non-failing branch of each tree, which synthesises the computation in

that branch. The approach has been generalised to specialising a set ofconjunctionsrather than

just atoms in [42]. An overview of control techniques that are used in partial deduction, such as

determinacy, homeomorphic embedding, and characteristic trees, can be found in [127].

Let us illustrate conjunctive partial deduction on the following simple program.

even(0).
even(s(X)) :- odd(X). odd(s(X)) :- even(X).

Conjunctive partial deduction can specialise this program for the query← even(X)∧odd(X)

by constructing the incomplete SLD-tree for it depicted in Fig. 17. The setS mentioned above

would simply beS = {even(X) ∧ odd(X)}. The specialised program we obtain, is:

even_odd(s(X)) :- even_odd(X).

It is immediately obvious thateven odd(X) will never succeed, and hence that no number

is even and odd at the same time. The partial evaluatorECCE [140, 42] will basically produce

the same result (slightly more involved as it does not re-order atoms by default) and can also

automatically infer the failure ofeven odd(X) by applying its bottom up more specific program

construction phase [155] in the post-processing.

Inductive Theorem Proving Now, the above result corresponds to an inductive proof showing

that no number can be both even and odd. The left branch of Fig. 17 corresponds to exam-

ining the base caseX = 0, while the right branch corresponds to the induction step whereby

even(s(Y)), odd(s(Y)) is rewritten into the equivalentodd(Y), even(Y) so that the induction

hypothesis can be applied.

124

even(X),odd(X)

odd(0)

fail

odd(Y),odd(s(Y))

odd(Y),even(Y)

X=0 X=s(Y)

instance
(after re-ordering)

Figure 17: Specialisation of even-odd

In a sense the conjunctive partial deduction has identified a working induction schema and

the bottom-up propagation [155] has performed the induction proper. This highlights a similar-

ity between partial deduction andinductive theorem proving. Indeed, in the induction step of an

inductive proof one tries to transform the induction assumption(s) forn+1 using basic inference

rules so as to be able to apply the induction hypothese(s) and complete the proof. In partial de-

duction, one tries to transform the atoms inA (or conjunctions for conjunctive partial deduction)

by unfolding so as to be able to “fold” back all leaves. The set of atomsA thus plays the role of

the induction hypotheses and resolution the role of classical theorem proving. In summary,

• there is a striking similarity between the control problems of partial deduction and in-

ductive theorem proving. The problem of ensuring A-closedness is basically the same

as finding induction hypotheses where the induction “goes through’.’ Many control tech-

niques have been developed in either camp (e.g., [18] for inductive theorem proving) and

cross-fertilisation might be possible.

• if basic resolution steps correspond to logical inference rules one may be able to perform

inductive theorem proving directly by partial deduction. For example,ECCE can fully

automatically prove associativity of addition [121] (see also[143])..

The only difference is that resolution is not guaranteed to decrease the induction parameter,

so this is only guaranteed to work if the predicates to be specialised are inductively defined.

In the next sections we show howECCE can be used to perform inductive theorem prov-

ing as applied to verification tasks and how the induction schemas produced byECCE can be

automatically translated for the proof assistant Isabelle [168].

125

34 Infinite Model Checking by Program Specialisation

In recent work it has been shown that logic programming based methods in general, and partial

deduction in particular, can be applied to model checking [26] of infinite state systems. As this

problem can also be tackled by inductive theorem proving [168] we choose this as the basis of

a more formal comparison. Indeed, one of the key issues of model checking of infinite systems

is abstraction[28]. Abstraction allows to approximate an infinite system by a finite one, and

if proper care is taken the results obtained for the finite abstraction will be valid for the infinite

system. This is related to finding proper induction schemas for inductive theorem proving, which

in turn is related to the control problem of partial deduction.

In earlier work we have tried to solve the abstraction problem by applying existing techniques

for theautomaticcontrol of (logic) program specialisation, [126] and modelling the system to

be verified as a logic program by means of an interpreter [80, 142]. Thereby, the interpreter

describes how the states of the system change by executing transitions. By applying partial

deduction to the interpreter we expect a finite abstraction of the possibly infinite state space

of the system to be generated. This abstraction may then be used to verify system properties

of interest. This approach proved to be quite powerful as it was possible to obtain decision

procedures for the coverability problem, if “typical” specialisation algorithms, as for example

implemented in theECCEsystem [140, 119], are applied to logic programs that encode Petri nets

[137]. It is even possible to precisely mimic well known Petri net algorithms (by Karp–Miller

[108] and by Finkel [48]) when the program specialisation techniques are slightly weakened.

The results of [137] refer toforward algorithms only, i.e. algorithms which construct, beginning

from some initial state, an abstract representation of the whole reachability tree of a Petri net.

However, for some classes of systems such exhaustive algorithms are not necessary or even not

precise enough to decide coverability [1, 49, 50]. In such cases partial deduction may often be

successfully applied as well [136], thereby mimicking well knownbackward algorithms[49].

Technically, the dynamic system specified in the input for the partial deduction algorithm can

also be viewed as an inductive system describing the set of finite behaviours, i.e. the set of finite

paths. Thereby, the set of initial states form the inductive base and each transition represents

an inductive step. For the output of the partial deduction algorithm to be a sound abstraction

each of the states reachable by a path must be contained in a state representation of the output.

It is desirable to verify this property if we cannot ensure that the partial deduction algorithm

is correctly implemented. The goal of this work is to show that such proofs can be generated

and executed automatically. To this end we employ the partial deduction systemECCE for the

automatic generation of the theory and the proof scripts. The proof assistant ISABELLE [169] is

used to execute the proof scripts.

126

If we can use ISABELLE to verify the soundness of the output of the partial deduction method

we may also ask whether it is possible to generate the hypotheses automatically and thereby use

ISABELLE directly as a model checker of infinite systems. To this end, similar to the partial

deduction system, ISABELLE needs to perform some kind of abstraction while searching for a

proof of some dynamic property such as safety.

In this paper we focus on the specification and verification of Petri nets. This is due to their

simple representation as a logic program as well as in a ISABELLE theory. The following section

describes how we can specify Petri nets in ISABELLE. Then we discuss how such specifications

are generated usingECCE, and howECCEoutput can be translated into ISABELLE. In Section 37

we demonstrate how proof scripts can be used in ISABELLE for automatic theorem proving. In

Section 38 we demonstrate the complete verification process using an example specification. The

above mentioned automatic generation of hypotheses and some efficiency issues are discussed

in Section 39. The last section gives a conclusion and proposes some further work. All relevant

source code of theECCEsystem can be found in the technical report [116].

35 Specification of Petri nets inISABELLE

The proof assistant ISABELLE [168] has been developed as a generic system for implementing

logical formalisms. Instead of developing an all new logic for our purposes we will use the

specification and verification methods realised by the implementation of Higher Order Logic

(HOL) in ISABELLE. HOL allows to express most mathematical concepts and, in contrast to,

for example, First Order Logic, it allows the specification of and the reasoning about inductively

defined sets. This latter feature is crucial for our purposes. Hence, strictly speaking, we will

develop specifications in ISABELLE/HOL. Furthermore, the current ISABELLE system provides

the language ISAR for the specification of theories and the development of proof scripts. In this

work we will use ISAR instead of ISABELLE’s implementation language ML since ISAR is much

easier to use as it hides most implementation details of ISABELLE. However, the possibilities

to develop proof tactics using ISAR only are very limited. Consequently we conjecture that for

efficient automatic theorem proving the use of ISAR allone is insufficient (see also Section 40).

ISABELLE allows specifications as part oftheories. A theory can be thought of as a collec-

tion of declarations, definitions, andproofs. ISABELLE/HOL is a typed logical language where

the base typesresemble those of functional programming languages such as ML. To specify

new types ISABELLE providestype constructors, function types, and type variables. We will

introdce the particular concepts as we will use them and refer for additional information to the

127

Isabelle/Isar Reference Manual30.

Termsare formed by applying functions to arguments, e.g. iff is a function of typeτ1 ⇒ τ2

andt a term of typeτ1 thenft is a term of typeτ2.

Formulasare terms of base typebool . Accordingly, the usual logical operators are defined

as functions whose arguments and domain are of typebool .

We specify the Petri net theoryPN as a successor of the theoryMain which is provided

by ISABELLE/HOL. Main contains a number of basic declarations, definitions, and lemmas

concerning often required basic concepts such as lists and sets. Thereby, every part of the theory

Main becomes automatically visible inPN:

theory PN = Main:

To simplify the specification and to increase readability of the theory we define the type

state which corresponds to a notion in Petri net theory: Astateor marking is a vector of

natural numbers representing the number oftokenson theplacesof a Petri net. The number of

dimensions of the vector corresponds to the number of places of the particular net. In ISABELLE

we use the type constructor× to define the typestate as a product over the base typenat :

types

state = "nat × nat ×... × nat"

Based on the typestate we declare the functionspaths , trans , andstart . The func-

tion start represents theinitial stateof the Petri net. Note that since we allow parameters in

the definition ofstate it actually may represent a set of initial states. The functiontrans

describes how the firing of atransitioncan change the state of a Petri net. The additional param-

eter of typenat is used to refer to a particular transition of the net. The set of finite possible

sequences of transitons starting in the initial state is represented bypaths . Note that the decla-

ration oftrans andpaths is independent of the particular considered Petri net.

consts

start :: "nat ⇒ ... ⇒ nat ⇒ state"
trans :: "(state × state × nat) set"
paths :: "(state list) set"

By assigning a unique number the transition names are defined as a of enumeration type.

Consequently, for each transitiont we include a declaration of the following form:

consts

t :: "nat"

30Lawrence C. Paulson. The Isabelle Reference Manual. http://isabelle. in.tum.de/doc/ref.pdf.

128

The initial statestart is defined by a termterm of type state:

defs

start def [simp]: "start list of variables ≡ term"

The optional[simp] controls the strategy of ISABELLE’s built-in simplifier to apply this

definition whenever possible. For our purposesterm will be always a tuple of terms built using

the unary successor functionSuc, 0, and variables appearing in thelist of variables (the number

of variables in this list must correspond to the number of parameters in the declaration ofstart .

The transition function is defined as a set of transitions of the Petri net. Thereby each tran-

sition is represented as a tuple(x,y,n) , wherex andy are tuples of terms built bySuc and

variables of the correspondinglist of variables. The termn is the name of the transition.

defs

trans def: "trans ≡ {(x,y,n).
(∃ list1 of variables. (x,y,n) = transition1

∨ (∃ list2 of variables. (x,y,n) = transition2

...
∨ (∃ listn of variables. (x,y,n) = transitionn}"

One of the important features of ISABELLE/HOL is the possibility of inductive definitions.

We definepaths inductively using the following two rules:

inductive paths
intros

zero: "[(start list of variables)] ∈ paths"
step: " [[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

The first rule defines all initial states to be paths. The second rule allows the construction of

new paths by extending an arbitrary path by a new state if there exists a transition from the state

at the head of the path to the new state.

Finally, each transitiont is defined as follows, wheren is a unique natural number:

defs

t def [simp]: " t ≡ n"

The following example shows the the specification of a Petri net according to this scheme.

Example 35.1We encode the Petri net depicted below in ISABELLE/HOL. The initial state is

defined by one token on each of the placesp2 and p3, and the parameterA representing an

arbitrary number of tokens on placep1 (p1, p2, p3 correspond to the first, second, and third

dimension, respectively, of the state vector.

129

t1

t2

p1

p3

p4

p2

p5

t4

t3

B

theory PN = Main:

types

state = "nat × nat × nat × nat × nat"

consts

start :: "nat ⇒ state"
trans :: "(state × state × nat) set"
paths :: "(state list) set"

t1 :: "nat"
t2 :: "nat"
t3 :: "nat"
t4 :: "nat"

defs

start def [simp]: "start ≡ (B,(Suc 0),(Suc 0),0,0)"

trans def: "trans ≡ {(x,y,n).
(∃ E D C B A. (x,y,n) =(((Suc A),(Suc B),(Suc C),D,E),

(A,(Suc B),C,(Suc D),E),t1))
∨ (∃ E D C B A. (x,y,n) =(((Suc A),(Suc B),(Suc C),D,E),

(A,B,(Suc C),D,(Suc E)),t2))
∨ (∃ E D C B A. (x,y,n) =((A,B,C,(Suc D),E),

((Suc A),B,(Suc C),D,E),t3))
∨ (∃ E D C B A. (x,y,n) =((A,B,C,D,(Suc E)),

((Suc A),(Suc B),C,D,E),t4)) }"
t1 def [simp]: "t1 ≡ 0"
t2 def [simp]: "t2 ≡ 1"
t3 def [simp]: "t3 ≡ 2"
t4 def [simp]: "t4 ≡ 3"

inductive paths
intros

zero: "[(start B)] ∈ paths"
step: " [[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

2

130

36 GeneratingISABELLE theories usingECCE

Since we aim to verify the partial deduction results ofECCE, we have integrated the generation

of the ISABELLE theory directly intoECCE. The generated ISABELLE theory consists of three

parts:

1. the specification of the Petri net,

2. the specification of the coverability graph as generated byECCE,

3. the lemma to be verified together with a proof script.

In this section we deal with the first two parts while the third part is discussed in Section 37.

36.1 Generating Petri net specifications from logic programs

The ISABELLE theory generator integrated inECCE assumes that the transitions of a Petri net

are specified by a set of clauses of a ternary predicate. The first parameter represents a transi-

tion name, the second represents the set of states where the transition can be applied, and the

third how the state changes if the transition is executed. Technically, the second and the third

parameter of each clause are lists of the length corresponding to the number of places. Rely-

ing on unification, conditions and changes can be easily expressed. For example, the condition

that at least two tokens are on placep3 in a Petri net with five places is expressed by the term

[X0,X1,s(s(X2)),X3,X4] (therebys can be interpreted as the successor function on nat-

ural numbers). Similarly, the state change can be expressed: the removal of one token on place

p3 and generation of two tokens onp1 is represented as[s(s(X0)),X1,s(X2),X3,X4] .

The initial state is simply represented as a single clause where the last parameter must be a list

of the length corresponding to the number of places. Each element of the list can be constructed

using0, the unary functions , and variables.

Example 36.1The following logic program encodes the Petri net of Example 1.

trans(t1,[s(X0),s(X1),s(X2),X3,X4],[X0,s(X1),X2,s(X3),X4]).
trans(t2,[s(X0),s(X1),s(X2),X3,X4],[X0,X1,s(X2),X3,s(X4)]).
trans(t3,[X0,X1,X2,s(X3),X4],[s(X0),X1,s(X2),X3,X4]).
trans(t4,[X0,X1,X2,X3,s(X4)],[s(X0),s(X1),X2,X3,X4]).

start([B,s(0),s(0),0,0]).

2

131

The implementation of the theory generator is part of the file “codegenerator.pro” and can be

found in [116]. The generation is initiated by a call to the clauseprint specialised

program isa . In a user dialog the name of the file containing the Petri net specification,

and the names of the predicates representing transitions and initial state, respectively are deter-

mined. The ISABELLE specification is generated by the subsequent calls ofprint isa header ,

print isa type decl , print isa path decl(Data) , andprint isa path def(Data)

in the body ofprint specialised program isa . For example, the ISABELLE theory of

Example 1 has been generated from the logic program of Example 2.

36.2 Generating specifications of the coverability graph from logic pro-
grams

To use partial deduction techniques for model checking we need to specify also the verifica-

tion task as a logic program. To this end we may implement the satisfiability relation of some

temporal logic as a logic program. However, the generation of a coverability graph (by partial

deduction or other techniques) is not effective for all tasks that can be expressed with a pow-

erful temporal logic. However, one of the tasks where it is effective is the checking ofsafety

properties. To express safety properties we only require the definition of theEU operator of the

temporal logicCTL:

infinite_model_check(basic_safety,Formula) :- start(_,S),
Formula = sat(S,eu(true,p(unsafe))).

sat(E,p(P)) :- prop(E,P).
sat(E,eu(F,G)) :- sat_eu(E,F,G).
sat_eu(E,_F,G) :- sat(E,G).
sat_eu(E,F,G) :- sat(E,F), trans(_Act,E,E2), sat_eu(E2,F,G).

Depending on the safety property we are interested in we define when a state is considered

to be unsafe. For example the clauseprop([X0,X1,X2,s(X3),s(X4)],unsafe) defines a

state of a Petri net to be unsafe when there exist at least one token on each of the placesp4 and

p5.

Note that simply calling the clauseinfinite model check(basic safety,Formula)

in Prolog would force the system to explore an infinite derivation. Due to the potentially infinite

state space of a Petri net also methods like tabeling would be in general insufficient to deal with

this problem.

Before we apply the partial deduction systemECCEwe will first perform a preliminary com-

pilation of the particular Petri net and task. Thereby we will get rid of some of the interpretation

132

overhead and achieve a more straightforward equivalence between markings of the Petri net and

atoms encountered during the partial deduction phase. We will use theLOGEN offline partial de-

duction system [134] to that effect (but any other scheme which has a similar effect can be used).

This system allows one to annotate calls in the original program as either reducible (executed by

LOGEN) or non-reducible (not executed and thus kept in the specialised program).31 In our case

we will annotate all calls totrans andstart as reducible. After that, theLOGEN system will

(efficiently) produce a compiled version: As can be seen in Example 3, the compilation gives us

a predicatesat eu 2 with one argument each for the transition name and the result, plus one

argument per Petri net place. Observe thatLOGEN (andECCEas well) adds two underscores and

a unique identifier to existing predicate names.sat eu 2 contains one clause per transition of

the Petri net plus one fact (for the marking reached). The initial marking is encoded in the one

clause forssat 0 which callssat 1.

Example 36.2Applying LOGEN to the Petri net specification of Example 2 and the above task

implementation generates the following clauses:

sat_eu__2(B,C,D,s(E),s(F)).
sat_eu__2(s(G),s(H),s(I),J,K) :- sat_eu__2(G,s(H),I,s(J),K).
sat_eu__2(s(L),s(M),s(N),O,P) :- sat_eu__2(L,M,s(N),O,s(P)).
sat_eu__2(Q,R,S,s(T),U) :- sat_eu__2(s(Q),R,s(S),T,U).
sat_eu__2(V,W,X,Y,s(Z)) :- sat_eu__2(s(V),s(W),X,Y,Z).
sat__1(B,C,D,E,F) :- sat_eu__2(B,C,D,E,F).
ssat__0 :- sat__1(B,s(0),s(0),0,0).

2

After this precompilation we can applyECCEto the resulting program. To this end we aim to

specialise the predicatessat 0. The result of applyingECCE to the program of Example 3 is

given in Example 4:

Example 36.3

ssat__0 :- ssat__0__1.
/* ssat__0__1 --> [ssat__0] */

ssat__0__1 :- sat__1__2(A).
/* sat__1__2(A) --> [sat__1(A,s(0),s(0),0,0)] */

sat__1__2(A) :- sat_eu__2__3(A).
/* sat_eu__2__3(A) --> [sat_eu__2(A,s(0),s(0),0,0)] */

sat_eu__2__3(s(A)) :- sat_eu__2__4(A).

31LOGEN is offline: the control decisions have been taken beforehand (and are encoded in the annotations).

133

sat_eu__2__3(s(A)) :-sat_eu__2__5(A).
/* sat_eu__2__4(A) --> [sat_eu__2(A,s(0),0,s(0),0)] */

sat_eu__2__4(A) :- sat_eu__2__3(s(A)).
/* sat_eu__2__5(A) --> [sat_eu__2(A,0,s(0),0,s(0))] */

sat_eu__2__5(A) :- sat_eu__2__3(s(A)).

2

From the output ofECCEwe generate an ISABELLE theory representing the generated cover-

ability relation. Independent of the particular domain this relation is declared as a set of pairs of

states:

consts

coverrel:: "(state × state) set"

For each predicate name of a clause in the specialised program, which represents a set of

states we add a declaration of the form:

consts

name :: nat ⇒ ... ⇒ nat ⇒ state"

Thereby the number of parameters of typenat corresponds to the number of variables in the

head of the clause. The definitions have the form:

defs

name def: " name list of variables ≡ term"

For our purposesterm will be always a tuple of terms built using the unary successor function

Suc, 0, and variables appearing in thelist of variables (the number of variables in this list must

correspond to the number of parameters in the declaration ofname).

Finally, the coverability relation is defined as a set of pairs of states. In the specialised

program every clause of the formnamem(argsm) :- namen(argsn) corresponds to such a

pair. Formally, in the ISABELLE theory each pair is represented as a tuple(x,y) , wherex and

y are tuples of terms built bySuc and variables of the correspondinglist of variables:

defs

coverrel def: "coverrel ≡
{(x,y). ∃ list1 of variables. x = state11 ∧ y= state12}

∪ {(x,y). ∃ list2 of variables. x = state21 ∧ y= state22}
...
∪ {(x,y). ∃ listm of variables. x = statem1 ∧ y= statem2}"

134

The theory generator (cf. [116]) produces automatically the specification of the coverabil-

ity relation from the specialised program. To this end the predicate names characterising the

coverability relation in the specialised program are determined by a user dialog (only the unspe-

cialised names have to be provided, e.g. in the above examplesat 1 andsat eu 2). In the

body of print specialised program isa the calls toprint isa cover decl and

print isa cover

def generate the necessary declarations and definitions, respectively.

Example 36.4The following theory was generated by the theory generator [116] from the pro-

gram of Example 4:

consts

coverrel:: "(state × state) set"

sat 1 2 :: "nat ⇒ state"
sat eu 2 3 :: "nat ⇒ state"
sat eu 2 4 :: "nat ⇒ state"
sat eu 2 5 :: "nat ⇒ state"

defs

sat 1 2 def: "sat 1 2 A ≡ (A,(Suc 0),(Suc 0),0,0)"
sat eu 2 3 def: "sat eu 2 3 A ≡ (A,(Suc 0),(Suc 0),0,0)"
sat eu 2 4 def: "sat eu 2 4 A ≡ (A,(Suc 0),0,(Suc 0),0)"
sat eu 2 5 def: "sat eu 2 5 A ≡ (A,0,(Suc 0),0,(Suc 0))"

coverrel def: "coverrel ≡ {(x,y). ∃ A. x =(sat 1 2 A)
∧ y=(sat eu 2 3 A) }

∪ {(x,y). ∃ A. x =(sat eu 2 3 (Suc A))
∧ y=(sat eu 2 4 A) }

∪ {(x,y). ∃ A. x =(sat eu 2 3 (Suc A))
∧ y=(sat eu 2 5 A) }

∪ {(x,y). ∃ A. x =(sat eu 2 4 A)
∧ y=(sat eu 2 3 (Suc A)) }

∪ {(x,y). ∃ A. x =(sat eu 2 5 A)
∧ y=(sat eu 2 3 (Suc A)) }"

2

37 Proof Scripts

In this section we demonstrate how we can prove theorems using ISABELLE/ISARand how we

can write proof scripts for automatic execution. Thereby we focus only on some of the “execution

style” proof commands of ISABELLE/Isar. These commands can be considered to be the classical

way of writing ISABELLE proofs although the actual ISABELLE proof methods are wrapped

135

within the ISAR language. Note however that ISAR allows also a more “mathematical style”

notation of proofs than the one we use here (see theIsabelle/Isar Reference Manualfor details).

Furthermore we discuss only the proof methods we are going to apply in order to solve the

verification task ofECCE. Keep in mind that ISABELLE/ISAR provides a much wider range of

methods.

The proof mode of ISABELLE/ISAR is initiated by executing alemma. When entering the

proof mode ISABELLE/ISAR generates a single pending subgoal consisting of the lemma to be

proven. The list of subgoals can be altered, mainly by executingproof methods. Proof methods

are executed using the proof commandapply . Thereby the list of subgoals defines theproof

state. The proof mode can be left by executingdone in the case that there are no pending

subgoals (the proof state is the empty list of subgoals, in which case ISABELLE/ISAR printsNo

subgoals!).

Note that all proof methods described below only transform the first subgoal of the proof

state. For finding a proof this may be inconvenient. Therefore, ISABELLE/ISAR provides com-

mands to change the order of the subgoals. However, our aim in this paper is the automatic

execution of proof scripts, not their interactive development.

37.1 Rewriting

To rewrite a subgoal using existing definitions and lemmas automatically we may execute IS-

ABELLE’s simplifier: apply(simp) . For the simplifier to automatically attempt to use new

defintions and lemmas they have to be accompanied by the option[simp] . Such defined sim-

plification rules are then applied from left to right. However, we have to take care if we define

simplification rules in such a way as they may slow the simplifier down considerably or even

cause it to loop. Instead of defining a general simplification rule we may also use the simplifier

to only apply certain, explicitely stated definitions. E.g., the executionapply(simp only:

r def) causes to rewrite using the definition ofr only.

37.2 Introduction and Elimination

Based on reasoning usingnatural deductionthere are two types of rules for each logical symbol,

such as∨: introduction ruleswhich allow us to infer formulas containing the symbol (e.g.∨),

andelimination ruleswhich allow us to deduce consequences of a formula containing the symbol

(e.g.∨).

In ISABELLE an introduction rule is usually applied byapply(rule r) . Assumer being

a rule of the form:

136

P1, . . . , Pn

Q

whereQ is a formula containing the introduced logical symbol while the formulasP1,. . . ,Pn

in the premise do not. Then, ifr is applied as introduction rule the current first subgoal is unified

with Q and replaced by the properly instantiatedP1,. . . ,Pn.

An elimination rule is usually applied usingapply(erule r) . Assumer being a rule of

the above form and the current first subgoal of the formA1, . . . , Am =⇒ S. Then, ifr is applied

as elimination ruleS is unified withQ and someAi is unified withP1. The old subgoal is replace

by n− 1 new subgoals of the formA1, . . . , Ai−1, Ai+1, . . . , Am =⇒ Pk with 2 ≤ k ≤ n.

In our verification proofs we will use explicitely only the elimination rulesdisjE for dis-

junction andpaths.induct for induction over the length of paths.

37.3 Automatic Reasoners

Most classical reasoning of even simple lemmas can require the application of a vast amount

of rules. To simplify this task ISABELLE provides a number of automatic reasoners. Here we

will make use ofblast which is the most powerful of ISABELLE’s reasoners. Additionally, we

will employ clarify which performs obvious transformations which do not require to split

the subgoal or render it unprovable. The methodclarify and the explicit application of the

elimination ruledisjE (see above))) was necessary to tune the proof process. This tuning was

necessary to complete the verification proofs of even very small Petri nets using the available

computing resources.

Additionally to the two classical reasoners we also employ the simplifiersimp as an au-

tomatic proof tool as it can also handle some arithmetics. Furthermore, for some cases in our

verification tasksimp succeeded faster thanblast if it was able to eliminate a subgoal at all.

37.4 Scripts

To improve the handling of large proofs and to allow a higher flexibility of a proof proof scripts

can be extended by the following operators:

• method1,..., methodn: a list of methods represents their sequential execution;

• (method) : mainly used to define the scope of another operator;

• method?: executesmethod only if it does not fail,

137

• method1|...| methodn: attempts to executemethodk only if eachmethodi with i < k

failed;

• method+: method is repeatedly executed until it fails.

For our verification task the lemma and proof script are generated automatically by the theory

generator [116] (by calls toprint isa lemma andprint isa proofscript in the body

of print specialised program isa). The execution of the script in the example below

is illustrated in the next section.

Example 37.1The following lemma and script corresponds to the one automatically generated
by ECCE for the Petri net specification of Example 1:

lemma "l ∈ paths =⇒ ∃ y. ((hd l),y) ∈ coverrel"

apply(erule paths.induct)
apply(simp only: start_def

coverrel_def)
apply(simp only: sat__1__2_def

sat_eu__2__3_def
sat_eu__2__4_def
sat_eu__2__5_def)

apply(simp)
apply(blast)

apply(simp only:trans_def)
apply(clarify)
apply(((erule disjE)?,

simp only: coverrel_def,
simp,
((erule disjE)?,

simp only: sat__1__2_def
sat_eu__2__3_def
sat_eu__2__4_def
sat_eu__2__5_def,

simp|blast)+)+)

2

38 Verifying ECCE

In this section we illustrate the automatic verification of theECCE output by the ISABELLE

system. To this end the theory, lemma and proof script as generated byECCE for the Petri
net of Example 1, are executed (the complete input consists of the ISABELLE specifications of
Example 1, Example 5, and lemma and proof script of Example 6). Full details can be found in

138

the technical report [116]. After this, we can also apply the steps required to prove the lemma for
transitiont1 in a similar fashion to the remaining transitions. The following proof script attempts
precisely this. Again, the elimination ruledisjE is not applicable for the last transition. Hence,
we perform a test using? before applying this method in the first line.

apply(((erule disjE)?,
simp only: coverrel_def,
simp,
((erule disjE)?,

simp only: sat__1__2_def
sat_eu__2__3_def
sat_eu__2__4_def
sat_eu__2__5_def,

simp|blast)+)+)

For our example all cases could be verified, hence ISABELLE answers:

No subgoals!

2

Consequently, the coverability relation generated byECCE for the Petri net of Example 1

covers indeed all states reachable by any path (under the condition that the theory generated by

the automatic theory generator as implemented inECCE is correct).

39 Automatic Generation of Hypotheses
Instead of defining the coverability as a relation as illustrated in Subsection 36.2 we may view
the coverability graph as an inductive definition of a set of states which covers the actual state
space of the Petri net. For our example a corresponding ISABELLE/ISAR definition could look
as follows:

consts

coverstates:: "state set"

inductive coverstates
intros

zero : "(sat 1 2 A) ∈ coverstates"
step1 : " [[∃ A. (sat eu 2 3 (Suc A)) ∈ coverstates]] =⇒

(sat eu 2 4 A) ∈ coverstates"
step2 : " [[∃ A. (sat eu 2 3 (Suc A)) ∈ coverstates]] =⇒

(sat eu 2 5 A) ∈ coverstates"
step3 : " [[∃ A. (sat eu 2 4 (Suc A)) ∈ coverstates]] =⇒

(sat eu 2 3 A) ∈ coverstates"
step4 : " [[∃ A. (sat eu 2 5 (Suc A)) ∈ coverstates]] =⇒

(sat eu 2 3 A) ∈ coverstates"

Similarly, instead of using the concept of paths, we may directly specify the set of reachable
states inductively in ISABELLE/ISAR. For our example the following specification would fit the
purpose:

139

consts

reachstates:: "state set"

inductive reachstates
intros

zero : "(start B) ∈ reachstates"
step1 : " [[∃ A B C D E. ((Suc A),(Suc B),(Suc C),D,E) ∈ reachstates]] =⇒

(A,(Suc B),C,(Suc D),E) ∈ reachstates"
step2 : " [[∃ A B C D E. ((Suc A),(Suc B),(Suc C),D,E) ∈ reachstates]] =⇒

(A,B,(Suc C),D,(Suc E)) ∈ reachstates"
step3 : " [[∃ A B C D E. (A,B,C,(Suc D),E) ∈ reachstates]] =⇒

((Suc A),B,(Suc C),D,E) ∈ reachstates"
step4 : " [[∃ A B C D E. (A,B,C,D,(Suc E)) ∈ reachstates]] =⇒

((Suc A),(Suc B),C,D,E) ∈ reachstates"

Then, the lemma to be verified to show the soundness of the coverability relation is

lemma "x ∈ reachstates =⇒ x ∈ coverstates"

However, lets assume that the specification ofcoverstates is unknown and has to be

generated by ISABELLE. To this end we may attempt to prove the following lemma:

lemma " ∃ coverstates. x ∈ reachstates =⇒ x ∈ coverstates"

Thereby it is not important to find a proof, since there are many sets which fulfill this criterion

(e.g. the (minimal) setreachstates and the (maximal) set of all states). Instead it is important

to find a proof, which generates the induction steps of the above specification ofcoverstates

as (or as parts of) subgoals. In other words, the question is whether ISABELLE’s proof methods

can imitate the behaviour ofECCE(or other model checkers for Petri nets).

The most important elements ofECCE’s partial deduction method to generate the coverability

graph are:coverability test, unfolding, whistling, abstraction. The coverability test can easily be

defined in ISABELLE/ISAR, e.g.:

[[x∈ state; y ∈ state; x ≤y]] =⇒ covers(y,x)

where≤ is defined as an order on the set of states. We may also check whether a set of states

is covered by another set of states, e.g.:

∀ B. ∃ A. covers((0,0,0,A,0),(0,0,0,(Suc B),0))

Similarly, we may definewhistling for two states (state sets) or even for the states on a path

(a whistle blows if a newly encontered state is (in some sense) bigger than any of its predecessors

on the path, thereby it indicates a potentially infinite growth).

Theunfoldingcorresponds in ISABELLE simply to the rewriting of a subgoal using a defini-

tion, in case of Petri nets the definition of the transition function.

The most difficult element to imitate seems to be theabstraction. Given a certain subgoal

ISABELLE’s proof method has to replace this subgoal by a more general one. E.g., if unfolding

140

of a transition has led to a subgoal containing the state(0,0,0,(Suc 0),0) and the whistle

has blown due to a preceding state of the form(0,0,0,0,0) , then we have to replace the

subgoal by a new one containing a state of the form(0,0,0,A,0) (whereA is all quantified).

The only proof rule which is capable of introducing an all quantified variable in ISABELLE/ISAR

is spec :
∀x.P

P [t/x]

And indeed, by applyingspec as an introduction rule we may indeed introduce perform a

generalisation. For example, assume the following subgoal:

1. "(0,0,0,0,0) ∈ coverstates"

Executingapply(rule spec) and backtracking (using the proof commandback) gen-

erates as the 30th possibility (out of 38):

1. ∀ x. (0, 0, 0, x, 0) ∈ coverstates

However, we did not succeed yet in implementing a complete proof script using this rule as

the search for the appropriate alternative subgoal has to be controlled by the proof script. Within

the execution oriented proof style we have focused on ISABELLE/ISAR does not seem to provide

enough control without implementing new proof tactics on ISABELLE’s ML-implementation

level.

40 Conclusion and Further Work

We have shown the similarity between controlling partial deduction and inductive theorem prov-

ing. We have formally established a relationship between the program specialiserECCEand the

proof system ISABELLE when applied to verifying infinite state Petri nets. We have shown that

verification of ECCE output using the proof system ISABELLE can be achieved for small nets.

The execution of the proof script of Section 38 on a Pentium II/400 needed about 90s and the

underlying PolyML required 80MB of memory. However, as further experiments with a net con-

taining 14 places and 13 transitions reveiled, more specific proof methods have to be employed

as the use of the methodblast required more than the available 200MB of main memory and

therefore had to be canceled. One way of tuning the proof process further is by restricting the

number of rules potentially applied byblast . However, while rules can easily be removed from

and added to the list of simplification rules in ISABELLE/ISAR, a similar simple manipulation of

the “blast rules” without rewriting underlying ISABELLE proof tactics seems not possible. An

indirect way of restricting the search space ofblast could also be to derive the theoryPNnot

from Main but from (sets of) more basic theories.

141

A way of improving the readability of the proof script could be to employ the mathematical

proof style instead of the execution oriented style. In the mathematical proof style higher-order

pattern matching can be used to control the proof. This may also increase the flexibility of the

proof significantly, in particular if the results have to be generalised for other specifications than

those of Petri nets.

Finally, for ISABELLE to automatically generate the coverability relation from the specifica-

tion of the Petri net we believe that it is necessary to implement a new proof rule/proof method

at ISABELLE’s implementation level which allows to automatically backtrack over potential hy-

potheses which are more general than the subgoal to be shown. Another option worth exploring

might be to attempt to define a proof scheme using the higher-order pattern matching of IS-

ABELLE/ISAR, which performs the abstraction on proof level: E.g., if a state description matches

a certain pattern we attempt to prove a lemma concerning a similar pattern where a constant is

replaced by some variable.

142

Part V

Abstract Domains Based on Regular Types
We show how to transform a set of regular type definitions into a finite pre-interpretation for a

logic program. The core of the transformation is a determinization procedure for non-deterministic

finite tree automata. The derived pre-interpretation forms the basis for an abstract interpretation

for logic programs. This approach provides a flexible way of building program-specific analysis

domains. For a given set of types, precision is strictly improved compared to regular type ana-

lysis and set constraint analysis. The work also shows how various instantiation modes such as

ground, variableandnon-variablecan be expressed as regular types and hence integrated with

type analysis. We highlight applications in binding time analysis for offline partial evaluation

and infinite-state model checking.

41 Background

Regular types are a familiar way of describing sets of terms. They may be either declared (pre-

scriptive typing) or inferred (descriptive typing). Types are widely used in logic program devel-

opment and analysis. Usually, we think of types as specifications of data structures such as lists,

trees and so on.

There is a well-established connection between regular types and finite tree automata (FTAs).

Roughly speaking it may be said that FTAs are specifications of regular types. However, FTAs

can define sets that are not usually thought of as types, and type definition notations do not

usually exploit the full expressiveness of FTAs. The method described in this paper uses general

FTAs, even when the programmer uses restricted types, since the given types are transformed to

disjoint types using standard algorithms from FTA theory.

In Section 42, the essential concepts from types and FTAs are introduced. Section 43 contains

a review of the approach to logic program analysis based on pre-interpretations. In Section 44 it

is shown how to derive a pre-interpretation from a given set of type definitions, and compute a

model based on the pre-interpretation. Section 45 contains some examples. Implementation and

complexity issues are discussed in Section 46.

42 Preliminaries

Tree automata are “machines” that recognise terms. LetΣ be a set of function symbols. Each

function symbol inΣ has a rank (arity) which is a natural number. Whenever we write an

143

expression such asf(t1, . . . , tn), we assume thatf ∈ Σ and has arityn. We writefn to indicate

that function symbolf has arityn. If the arity off is 0 we often write the termf() asf and call

f aconstant.

The set ofground terms(or trees) TermΣ associated withΣ is the least set containing the

constants and all termsf(t1, . . . , tn) such thatt1, . . . , tn are elements ofTermΣ andf ∈ Σ has

arity n.

Finite tree automataprovide a means of finitely specifying possibly infinite sets of ground

terms, just as finite automata specify sets of strings. A finite tree automaton (FTA) is defined

as a quadruple〈Q,Qf , Σ, ∆〉, whereQ is a finite set calledstates, Qf ⊆ Q is called the set of

accepting (or final) states,Σ is a set of ranked function symbols and∆ is a set oftransitions.

Each element of∆ is of the formf(q1, . . . , qn)→ q, wheref ∈ Σ andq, q1, . . . , qn ∈ Q.

FTAs can be “run” on terms inTermΣ, a successful run of a term and an FTA is one in which

the term isacceptedby the FTA. The details are omitted here, except to say that whenever a term

is accepted, it is associated with one of the final states of the FTA. Implicitly, a tree automatonR

defines a set of terms, that is, a tree language, denotedL(R), as the set of all terms that it accepts.

FTAs can be extended to allowε-transitions, without altering their expressive power. Anε-

transition is of the formq → q′ whereq andq′ are states. Such transitions can be eliminaed from

∆, after adding all transitionsf(q1, . . . , qn)→ q′ such that there is a transitionf(q1, . . . , qn)→ q

in ∆ and a chain ofε-transitionsq → · · · → q′.

42.1 Tree Automata and Types

A type is simply regarded as an accepting state of an automaton. Given an automatonR =

〈Q,Qf , Σ, ∆〉, andq ∈ Qf , define the automatonRq to be〈Q, {q}, Σ, ∆〉. The languageL(Rq)

is the set of terms corresponding to typeq. We say that a termis of typeq, written t : q, if and

only if q ∈ L(Rq).

Example 42.1In the following examples, letΣ = {[]0, [|]2, leaf 1, tree2, 00, s1}, and letQ =

{list, listnat, nat, zero, one, bintree, any, list0, list1, list2}. We define the set∆any to be the

following set of transitions.

{f(
n times︷ ︸︸ ︷

any, . . . , any)→ any |fn ∈ Σ}

• Qf = {listnat}, ∆ = {[] → listnat, [nat|listnat] → listnat, 0 → nat, s(nat) → nat}.
The typelistnat is the set of lists of natural numbers in successor notation.

• Qf = {list}, ∆ = ∆any ∪ {[] → list, [any|list] → list}. The typelist is the set of lists

of arbitrary terms inTermΣ.

144

• Qf = {list2}, ∆ = {[] → list0, [one|list0] → list1, [zero|list1] → list2, 0 →
zero, s(zero)→ one}. The typelist2 is the set consisting of the single term[0, s(0)].

• Qf = {bintree}, ∆ = ∆any∪{leaf(any)→ bintree, tree(bintree, bintree)→ bintree}.
The typebintree is the set of binary trees whose leaves are any terms inTermΣ.

• Qf = {list1}, ∆ = {[] → list1, [one|list1] → list1, [zero|list0] → list1, [] →
list0, [zero|list0] → list0, 0 → zero, s(zero) → one}. The typelist1 is the set of lists

consisting of zero or more elementss(0) followed by zero or more elements0 (such as

[s(0), 0], [s(0), s(0), 0, 0, 0], [0, 0], [s(0)], . . .).

42.2 Deterministic and Non-deterministic Tree Automata

There are two notions of non-determinism in tree automata: bottom-up and top-down.

It can be shown that (so far as expressiveness is concerned) we can limit our attention to

FTAs in which the set of transitions∆ contains no two transitions with the same left-hand-side.

These are calledbottom-up deterministicfinite tree automata. For every FTAR there exists a

bottom-up deterministic FTAR′ such thatL(R) = L(R′).

Bottom-up deterministic FTAs define disjoint types, since each term is accepted by at most

one accepting state. The transformation to bottom-up deterministic form can introduce an ex-

ponential number of new states, in the worst case. However, it is often useful and practical in

the context of types. Example 42.2 illustrates the derivation of disjoint types from overlapping

types.

An automatonR = 〈Q,Qf , Σ, ∆〉 is calledcompleteif it contains a transitionf(q1, . . . , qn)→
q for all n-ary functionsf ∈ Σ and statesq1, . . . , qn ∈ Q. We may always extend an FTA

〈Q,Qf , Σ, ∆〉 to make it complete, by adding a new stateq[to Q. Then add transitions of the

form f(q1, . . . , qn)→ q[for every combination off and statesq1, . . . , qn (includingq[) that does

not appear in∆. Note that a complete bottom-up deterministic finite tree automaton in which ev-

ery state is an accepting state is one which partitions the set of terms into disjoint subsets (types),

one for each state. In such an automatonq[can be thought of as the error type, that is, the set of

terms not accepted by any other type.

Example 42.2Let Σ = {[]0, [|]2, 00}, and letQ = {list, listlist, any}. The set∆any is de-

fined as before. letQf = {list, listlist}, ∆ = ∆any ∪ {[] → list, [any|list] → list, [] →
listlist, [list|listlist] → listlist, [listlist|listlist] → listlist}. The typelist is the set of lists

of any terms, while the typelistlist is the set of lists whose elements are of typelist or listlist.

The automaton is not bottom-up deterministic; for example, three transitions have the same

left-hand-side, namely,[] → list, [] → listlist and [] → any. So for example the term[[0]]

145

is accepted bylist, listlist andany. A determinization algorithm can be applied, yielding the

following. Intuitively, we can think ofq1 as the typeany ∩ list ∩ listlist, q2 as the type(list ∩
any)− listlist, andq3 asany−(list∪ listlist). Thusq1, q2 andq3 are disjoint. The automaton is

given byQ = {q1, q2, q3}, Σ as before,Qf = {q1, q2} and∆ = {[]→ q1, [q1|q1]→ q1, [q2|q1]→
q1, [q1|q2] → q2, [q2|q2] → q2, [q3|q2] → q2, [q3|q1] → q2, [q2|q3] → q3, [q1|q3] → q3, [q3|q3] →
q3, 0→ q3}. This automaton is also complete.

This determinization algorithm for this example will be discussed in more detail is Section 44.

A more restrictive kind of deterministic automaton can be defined, which is also highly rele-

vant in the context of types. An FTA istop-down deterministicif it has no two transitions with

both the same right-hand-side and the same function symbol on the left-hand-side (for example

f(q1, q2) → q andf(q2, q1) → q). When constructing a top-down derivation in a top-down de-

terministic automaton, there is thus at most one transition that can be used to construct a move

for each leaf. Thus checking whethert ∈ L(R) for such an automatonR can be done inO(|t|)
steps.

Top-down determinism introduces a loss in expressiveness. It isnot the case that for each

FTA R there is a top-down deterministic FTAR′ such thatL(R) = L(R′). Note that a top-down

deterministic automaton can be transformed to an equivalent bottom-up deterministic automaton,

as usual, but the result might not be top-down deterministic.

Example 42.3Take the final automaton from Example 42.1. This is not top-down determinis-

tic, due to the presence of transitions[one|list1] → list1, [zero|list0] → list1. No top-down

deterministic automaton can be defined that has the same language.

Now consider the automaton with transitions∆any ∪ {[] → list, [any|list] → list}. This

is top-down deterministic, but not bottom-up deterministic (since[] → list and[] → any both

occur). Determinizing this automaton would result in one that is not top-down deterministic,

since we would have disjoint types corresponding tolist andq = any− list. This would lead to

transitions[q|list]→ list and[list|list]→ list which violates top-down non-determinism.

Despite the reduced expressiveness most type systems assume top-down deterministic types

[160, 218].

42.3 Operations on Finite Tree Automata

Tree automata have a number of desirable properties and operations. The relevant ones in the

present context are summarised below. LetR,R1, R2 be FTAs andt a term. Thent ∈ L(R)

is decidable andL(R) = ∅ is decidable. We can construct the product automatonR1 × R2,

146

whereL(R1 × R2) = L(R1) ∩ L(R2), and the union automatonR1 ∪ R2, whereL(R1 ∪ R2) =

L(R1) ∪ L(R2). The complement automaton ofR can also be constructed, which accepts those

terms not accepted byR.

Most importantly for our purposes, given an automatonR a bottom-up deterministic automa-

tonR′ can be constructed, such thatL(R) = L(R′). Also, givenR a complete automatonR′ can

be constructed, such thatL(R) = L(R′). The algorithms for determinization and completion will

be examined in more detail in Section 44.

Further details on FTAs and their properties and associated algorithms can be found else-

where [30].

43 Analysis Based on Pre-Interpretations

We now define the analysis framework for logic programs. Bottom-up declarative semantics

captures the set of logical consequences (or a model) of a program. The theoretical basis of this

approach to static analysis of definite logic programs was set out in [12], [11] and [58]. We

follow standard notation for logic programs [151].

Let P be a definite program andΣ the signature of its underlying languageL. A pre-

interpretationof L consists of

1. a non-empty domain of interpretationD;

2. an assignment of ann-ary functionDn → D to eachn-ary function symbol inΣ (n ≥ 0).

A pre-interpretation with a finite domainD over a signatureΣ defines a complete bottom-up

deterministic FTA over the same signature. The domainD is the set of states of the FTA. Let̂f

be the functionDn → D assigned tof ∈ Σ by the pre-interpretation. In the corresponding FTA

there is a set of transitionsf(d1, . . . , dn)→ d, for eachd1, . . . , dn, d such thatf̂(d1, . . . , dn) = d.

Let J be a pre-interpretation ofL with domainD. Let V be a mapping assigning each

variable inL to an element ofD. A term assignmentT V
J (t) is defined for each termt as follows:

1. T V
J (x) = V (x) for each variablex.

2. T V
J (f(t1, . . . , tn)) = f ′(T V

J (t1), . . . , T
V
J (tn)), (n ≥ 0) for each non-variable term

f(t1, . . . , tn), wheref ′ is the function assigned byJ to f .

Definition 43.1Domain atom

Let J be a pre-interpretation of a languageL, with domainD, and letp be ann-ary function

symbol fromL. Then a domain atom forJ is any atomp(d1, . . . , dn) wheredi ∈ D, 1 ≤ i ≤ n.

147

Let p(t1, . . . , tn) be an atom. Then adomain instanceof A with respect toJ andV is a domain

atomp(T V
J (t1), . . . , T

V
J (tn)). Denote by[A]J the set of all domain instances ofA with respect

to J and someV .

The definition of domain instance extends naturally to formulas. In particular, letC be a

clause. Denote by[C]J the set of all domain instances of the clause with respect toJ .

The core bottom-up declarative semantics is parameterised by a pre-interpretation of the lan-

guage of the program.

Definition 43.2Core bottom-up semantics functionT J
P

Let P be a definite program, andJ a pre-interpretation of the language ofP , with domainD.

Let AtomD be the set of domain atoms with respect toJ .

T J
P : 2AtomD → 2AtomD

T J
P (I) =

 A′

∣∣∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P

A′ ← B′1, . . . , B
′
n ∈ [A← B1, . . . , Bn]J

{B′1, . . . , B′n} ⊆ I

MJ [[P]] = lfp(T J
P)

MJ [[P]] is the minimal model ofP with pre-interpretationJ .

43.1 Interpretations of the Core Semantics

The usual declarative semantics is obtained by takingJ to be the Herbrand pre-interpretation,

which we callH. MH [[P]] is the minimal Herbrand model ofP .

In order to capture information about the occurrence of variables, a modified version ofH

is taken, which will be called theconcrete semantics. Let L be the language of programP ,

with signatureΣ. We extendΣ with an infinite set of extra constantsV = {v0, v1, v2, . . .}. The

Herbrand pre-interpretation over the extended language is calledHV .

MHV [[P]], the minimal model with this pre-interpretation, is a set of terms that represents the

set ofatomic logical consequencesof P . More precisely, letΩ be some fixed bijective mapping

from V to the variables inL. Let A be an atom; denote byΩ(A) the result of replacing any

constantvj in A by Ω(vj). Then the least model with respect toHV is the set of atomic logic

consequence. More precisely,A ∈ MHV [[P]] iff P |= ∀(Ω(A)).

The modelMHV [[P]] is also known as the Clark semantics [25]. In practice (and in the

rest of this paper) we ignore theΩ function and treat the constantsv0, v1, v2, . . . as variables

148

when they occur in elements ofMHV [[P]]. E.g. an atomp(v1, f(a, v2), v1) is interpreted as

p(x1, f(a, x2), x1) wherex1, x2 are variables. In this case we can simply state thatA ∈ MHV [[P]]

iff P |= ∀A.

A slightly simpler but more abstract version of the concrete semantics is defined by adding

only a single special constantv rather than an infinite setv0, v1, v2, This is sufficient for

capturing information about occurrence of variables (see Section 45). Let us call this pre-

interpretationHv.

43.2 Abstract Interpretations

Let J be any pre-interpretation andP a program. It can be shown thatMJ [[P]] is a model based

onJ .

Definition 43.3 [Concretisation of a model]

Let MJ [[P]] be a model ofP based on pre-interpretationJ . The concretisation ofMJ [[P]] is a

set of atoms defined as follows:

γ(MJ [[P]]) =
{

A
∣∣∣ [A]J ⊆ MJ [[P]]

}
MJ [[P]] is an abstraction of the atomic logical consequences ofP , in the following sense.

Proposition 43.4Let J be a pre-interpretation ofΣ ∪ V andMJ [[P]] be the least model ofP

based onJ . ThenMHV [[P]] ⊆ γ(MJ [[P]]).

A similar proposition holds if we replaceΣ ∪ V by Σ ∪ {v} andHV by Hv.

43.3 Abstract Compilation of a Pre-Interpretation

The idea of abstract compilation was introduced first by Debray and Warren [45]. Operations on

the abstract domain are coded as logic programs and added directly to the target program, which

is then executed according to standard concrete semantics. The reason for this technique is to

avoid some of the overhead of interpreting the abstract operations.

A pre-interpretation can be defined by two predicates,domain/1 anddenotes/2. They are

given suitable definitions as follows.

• domain(d) is true iff d is in the domain of interpretation.

• denotes(f(d1, . . . , dn), d) is true if the pre-interpretation of then-ary functionf maps

〈d1, . . . , dn〉 to d

149

These two predicates are incorporated directly in the program to be analysed. Each clause of the

program of the form is transformed by

1. repeatedly replacing non-variable subtermsf(r1, . . . , rm) in the clause by a fresh variable

u and adding the atomdenotes(f(r1, . . . , rm), u) to the clause body, until the only non-

variables in the clause occur in the first argument ofdenotes;

2. addingdomain(z) to the body of each clause in which variablez occurs in the head but

not the body.

If P is the original program, the transformed program is calledP̄ .

When specific definitions ofdomain/1 anddenotes/2 defining a pre-interpretationJ are

added toP̄ , the result is adomain programfor J , calledP̄ J . ClearlyP̄ J has a different language

thanP , since the definitions ofdomain/1 anddenotes/2 contain elements of the domain of

interpretation. It can easily be shown that the minimal Herbrand model ofP̄ J (restricted to the

original program predicates) is isomorphic toMJ [[P]].

43.4 Computation of the Least Domain Model

The least modelMJ [[P]] = lfp(T J
P) is obtained by computinglfp(TP̄ j), and then restricting to the

predicates inP (that is, omitting the predicatesdenotes anddomain which were introduced in

the abstract compilation). Optimised algorithms for computinglfp(TP) for an arbitrary program

P have been developed (see Section 46).

44 Deriving a Pre-Interpretation from Regular Types

An algorithm for transforming a non-deterministic FTA (NFTA) to a deterministic FTA (DFTA)

is presented in [30]. The algorithm is shown here in a modified version that is more suitable for

implementation:

input: NFTA R = 〈Q,Qf , Σ, ∆〉,
begin

SetQd to ∅
Set∆′d to ∅
repeat

Set∆d = ∆′d
for eachfn ∈ Σ

for each choices1, . . . , sn ∈ Qd

150

for eachq1, . . . , qn ∈ s1 × ...× sn

s = {q ∈ Q|f(q1, . . . , qn)→ q ∈ ∆}
if s 6= ∅ then

Set∆′d = ∆′d ∪ {f(s1, . . . , sn)→ s}
SetQd to Qd ∪ {s}

end if

end for each

end for each

end for each

until ∆′d = ∆d

SetQdf
to {s ∈ Qd | s ∩Qdf

6= ∅}
output: DFTA Rd = 〈Qd, Qdf

, Σ, ∆d〉
end

Description: The algorithm transform the NFTA from one that operates on states, to one that

operates on sets containing states from the NFTA. The NFTA allowed multiple occurrences of

the same state on the left hand side of a transition. In the DFTA, which is the output of the

algorithm, all reachable states in the NFTA are contained in sets that makes up the new states -

these are contained in the setQd. A state in the NFTAcanoccur in more than state in the DFTA.

Potentially every non-empty subset of set of states of the NFTA can be a state of the DFTA.

The sets inQd and the new set of transitions,∆d, are generated in an iterative process. In

an iteration of the process, a functionf is chosen fromΣ. Then a number of sets,s1, . . . , sn

corresponding to the arity off , is selected fromQd - the same set can be chosen more than

once. The cartesian product is then formed,(s1×· · ·× sn), and for each element in the cartesian

product,q1, . . . , qn, such that a transitionf(q1, . . . , qn) → q exists,q is added to a sets. When

all elements in the cartesian product have been selected, the sets is added toQd if s is non-empty

and not already inQd. A transitionf(s1, . . . , sn)→ s is added to∆d if s is non-empty.

The algorithm terminates whenQd is such that no new transitions are added. InitiallyQd is

the empty set, so no set containing a state can be chosen fromQd and therefore only the constants

(0-ary functions) can be selected.

Example 44.1In example 42.2 a non-deterministic FTA is shown;Σ = {[]0, [|]2, 00}, Q =

{list, listlist, any}, ∆ = ∆any ∪ {[] → list, [any|list] → list, [] → listlist, [list|listlist] →
listlist, [listlist|listlist]→ listlist}.

A step by step application of the algorithm follows:

151

Step 1:Qd = ∅, ∆d = ∅. Choosef as a constant,f = []. Now s = {q ∈ Q | []→ q ∈ ∆} =

{any, list, listlist}. Add s to Qd and the transition[]→ {any, list, listlist} to ∆d.

Step 2: Choosef = 0. Now s = {q ∈ Q | 0 → q ∈ ∆} = {any}. Add s to Qd and the

transition0→ {any} to ∆d.

Step 3: Choosef = [|], s1 = s2 = {any, list, listlist}. Now s = {q ∈ Q | ∃q1 ∈
s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any, list, listlist}. Add s to Qd and the transition

[{any, list, listlist} | {any, list, listlist}]→ {any, list, listlist} to ∆d.

Step 4: Choosef = [|], s1 = s2 = {any}. Now s = {q ∈ Q | ∃q1 ∈ s1,∃q2 ∈ s2, [q1 |
q2]→ q ∈ ∆} = {any}. Add s to Qd and the transition[{any} | {any}]→ {any} to ∆d.

Step 5: Choosef = [|], s1 = {any}, s2 = {any, list, listlist}. Now s = {q ∈
Q | ∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any, list}. Add s to Qd and the transition

[{any} | {any, list, listlist}]→ {any, list} to ∆d.

Step 6: Choosef = [|], s1 = {any, list, listlist}, s2 = {any}. Now s = {q ∈
Q | ∃q1 ∈ s1,∃q2 ∈ s2, [q1 | q2] → q ∈ ∆} = {any}. Add s to Qd and the transition

[{any, list, listlist} | {any}]→ {any} to ∆d.

Step 7 to 11:No new sets added toQd. New transitions added:[{any, list} | {any, list}]→
{any, list}, [{any, list} | {any, list, listlist}] → {any, list, listlist}, [{any, list, listlist} |
{any, list}] → {any, list}, [{any} | {any, list}] → {any, list}, [{any, list} | {any}] →
{any}.

Resulting DFTA: Σ = {[]0, [|]2, 00}, Qd = {{any, list, listlist}, {any}, {any, list}},
Qdf

= {{any, list, listlist}, {any, list}}, ∆d = {[] → {any, list, listlist}, 0 → {any},
[{any, list, listlist} | {any, list, listlist}] → {any, list, listlist}, [{any} | {any}] → {any},
[{any} | {any, list, listlist}]→ {any, list}, [{any, list, listlist} | {any}]→ {any},
[{any, list} | {any, list}]→ {any, list},
[{any, list} | {any, list, listlist}]→ {any, list, listlist}, [{any, list, listlist} | {any, list}]→
{any, list}, [{any} | {any, list}]→ {any, list}, [{any, list} | {any}]→ {any}}.

The states inQd are equivalent to the statesq1, q2, q3 in example 42.2.q1 is equivalent to the

typeany ∩ list∩ listlist represented inQd as the set{any, list, listlist}, q2 is equivalent to the

type(list ∩ any) − listlist represented by the set{any, list} and finallyq3 is equivalent to the

typeany − (list ∪ listlist) represented by the set{any}.

In a naive implementation of the algorithm where every combination of arguments to the

chosenf would have to be tested in each iteration, the complexity lies in forming and testing

each element in the cartesian product, for every combination of states inQd. It is possible to

estimate of the number of operations required in a single iteration of the process, where an

152

rev([], []).
rev([X|Xs], Zs)← rev(Xs, Y s), app(Y s, [X], Zs).

app([], Y s, Y s).
app([X|Xs], Y s, [X|Zs])← app(Xs, Y s, Zs).

Figure 18: Naive Reverse program

operation is the steps necessary to determin whetherf(q1, . . . , qn) → q ∈ ∆. Since∆ is static,

an operation can be considered to be of constant time. The number of operations can be estimated

by the formula#op = (s∗e)a, wheres is the number of states inQd, e is the number of elements

in a single state inQd (possibly an estimate) anda is the arity of the chosenf . Every time a state

is added toQd, an iteration in the algorithm will require additional operations. Worst case is if

the algorithm causes an exponential blow-up in the number of states[30].

45 Examples

In this section we look at typical examples involving types and modes. It will be seen how types

and modes can be mixed. The usefulness of this approach in a binding time analysis (BTA) for

offline partial evaluation will be shown. We also illustrate the applicability of the domains to

model-checking and failure detection.

To align with typical type notations, types will be defined using type rules, which are alter-

native syntax for FTAs. LetΣ be a set of function symbols, each with an arity, andN be a set

of types. A type rule is of the formt → R1 | · · · | Rk, (k > 0), wheret ∈ N is a type and

{R1, . . . , Rk} ⊆ TermΣ∪N . This is sometimes written ask type rulest→ R1, . . . , t→ Rk.

In all the following examples, the typeany is defined by the set of all rules of the form

any → f(
n times︷ ︸︸ ︷

any, . . . , any) for eachn-ary functionf ∈ Σ. We assume thatΣ includes one special

constantv (see Section 43). That is, the type rules forany include the ruleany → v.

45.1 Simple Lists

Consider the usual definition of lists, and assume that the signature contains at least one function

other than[] and[.|.].

list→ [] | [any|list]

153

Together with the rules forany, this is (bottom-up) non-deterministic, since we have bothlist→
[] andany → []. The determinization algorithm of Section 44 yields two states{any, list}
and{any}, representing the set of lists and the set of non-lists (which isany − list). Let us

abbreviate these aslist andnonlist respectively. Analysis of the naive reverse program in Figure

18 with predicatesrev/2 andapp/3 yields the model{rev(list, list), app(list,X, X)} (where

X is list or nonlist), indicating thatrev/2 succeeds only with lists in both arguments, while

app/3 succeeds with a list in the first argument, while the second and third arguments are either

both lists or both nonlists.

45.2 Simple Groundness

Recall that the concrete semantics is defined over an extended language containing an extra

constantv representing variables. Using this information, we can define the set of ground terms

as those that do not include any occurrence of the extra constant. The type rules for a type

ground are all rules of the formground → f(

n times︷ ︸︸ ︷
ground, . . . , ground) for everyn-ary functionf

apart from the special constantv. Thus the typeground represents a subset of the typeany.

The typeground is already bottom-up deterministic, but not complete, since any terms con-

taining the special constantv are not recognised. Completion adds a new type (calledother) and

type rules definingother, includingother → v andother → f(. . . , other, . . .) for each function

symbol.

Analysis of naive reverse with respect to this pre-interpretation is isomorphic to the POS

abstract domain of boolean groundness dependencies. For the naive reverse program the abstract

model is

{rev(ground, ground), rev(other, other),

app(ground, X, X), app(other, other, other), app(other, ground, other)}.

45.3 Simple Lists with Groundness

Consider the set of type rules forground, list and any as given in the previous examples.

Note that the typeslist and ground intersect. After determinization, we obtain four states

{any, ground, list}, {any, list}, {any, ground}, {any}, representing (i) ground lists (gl) (ii)

non-ground lists (ngl) (iii) ground non-lists (gnl) and (iv) non-ground non-lists (other) respec-

tively. Analysis of the naive reverse program yields the following abstract model:

{rev(gl, gl), rev(ngl, ngl),

app(gl, X, X), app(ngl, gl, ngl), app(ngl, ngl, gnl),

app(ngl, gnl, other), app(ngl, other, other)}.

154

45.4 Static, Dynamic and Non-variable Types for Binding Time Analysis

Binding time analysis (BTA) for offline partial evaluation in Logen [133] distinguishes between

various kinds of term instantiations.Static corresponds toground, anddynamic to any. In

addition we add a typevar with the single type rulevar → v, wherev is the special extra

constant.

Determinization of these types yields three states{dynamic, static}, {dynamic, var} and

{dynamic}, representing three disjoint types containing respectively ground terms (ground),

variables (var) and non-variable non-ground terms (nvng). Analysis of naive reverse yields the

following model.

{rev(ground, ground), rev(nvng, nvng),

app(ground, var, nvng), app(ground, var, var), app(ground, ground, ground),

app(ground, nvng, nvng), app(nvng, X, nvng)}.

The presence ofvar in an argument indicates possible freeness, or alternatively, the absence of

var indicates definite non-freeness. For example, the answers forrev are definitely not free, the

first argument ofapp is not free, and if the second argument ofapp is not free then neither is the

third. Such dependencies allow accurate propagation of binding time information.

45.5 BTA types Combined with Program-specific Types

The types described above can be added to user-defined or automatically inferred types defining

data structures. Adding the typelist → [] | [dynamic|list] and determinizing results in the

generation of types representing static lists (ground lists) and non-ground lists, in addition to the

types of the previous example. More refined types such as lists of lists, lists of integers and so on

can be added.

45.6 Detecting Failures

Regular type analysis has been used to detect unsuccessful (failing or looping) computations.

Building a type domain as described in this paper allows extra precision to be obtained, from the

same set of types.

For example, consider the set of lists, and the set of lists of elementa. The respective types

are

list→ [] | [any|list]
lista→ [] | [atype|lista]

atype→ a

155

Determinization of these types, along with the typeany (which includes the rulesany → a and

any → b) yields four states{any, list, lista}, {any, list}, {any, typea} and{any} namely, lists

of a (which we will call lista) other lists (listnona), the constanta (typea) and non-a non-list

terms (other). Consider the followingmemb program.

memb(X, [X|Y]).

memb(X, [Z|Y])← memb(X, Y)

Analysis of the standardmemb program with respect to the determinized types yields the model

{memb(typea, lista), memb(typea, listnona), memb(lista, listnona),

memb(listnona, listnona), memb(other, listnona), memb(A, other))}

Note that the atommemb(other, lista) is not present. From this, it can be concluded that, for

example, the goal← makeLista(X), memb(b, X) fails, wheremakeLista(X) is assumed to

succeed only with a list ofa. This is becauseb is of typeother, and the atommemb(other, alist)

is not in the abstract least model ofmemb.

Note that techniques such as set-based analysis and regular type inference could also detect

such failures. However a top-down analysis of the goal would be required. In the example

above, a bottom-up analysis of thememb predicate is sufficient, independent of the goals for

memb. This is because the abstract domain is condensing [95] and so the same precision is

gained by restricting a bottom-up analysis to a given goal as for performing a goal-dependent

analysis.

45.7 Infinite-State Model Checking

The following example is by Charatonik and Podelski [21]; it is a simple model of a token ring

transition system. A state of the system is a list of processes indicated by0 and1 where a0

indicates a waiting process and a1 indicates an active process. The initial state is defined by

the predicategen and the the predicatereachable defines the reachable states with respect to the

transitiontrans. The required property is that exactly one process is active in any state. The

state space is infinite, since the number of processes (the length of the lists) is unbounded. Hence

finite model checking techniques do not suffice. The example was used in [21] to illustrate set

constraint techniques for infinite-state model checking.

gen([0, 1]).

gen([0|X])← gen(X).

156

trans(X, Y)← trans1(X, Y).

trans([1|X], [0|Y])← trans2(X, Y).

trans1([0, 1|T], [1, 0|T]).

trans1([H|T], [H|T1])← trans1(T, T1).

trans2([0], [1]).

trans2([H|T], [H|T1])← trans2(T, T1).

reachable(X)← gen(X).

reachable(X)← reachable(Y), trans(Y,X).

We define simple regular types defining the states. The set of all lists of ones and zeros is called

list and the set of “good” states in which there is exactly one1 is goodlist. The typezerolist is

the set of list of zeros.

one→ 1

zero→ 0

list→ [] | [zero|list] | [one|list]
goodlist→ [zero|goodlist] | [one|zerolist]
zerolist→ [] | [zero|zerolist]

Determinization of these types along withany results in six states representing disjoint types:

{any, one}, {any, zero}, the good lists{any, list, goodlist}, the zero lists{any, list, zerolist},
the non-goodlist, non-zerolist lists{any, list} and{any} for all other terms. We abbreviate these

asone, zero, goodlist, zerolist, badlist andother respectively. The least model of the above

program over this domain is as follows.

{gen(goodlist),

trans2(badlist, badlist), trans2(other, other),

trans2(goodlist, badlist), trans2(goodlist, goodlist)

trans1(goodlist, goodlist), trans1(badlist, badlist), trans1(other, other),

trans(goodlist, goodlist), trans(badlist, badlist), trans(other, other),

reachable(goodlist)}

The key property of the model is the presence ofreachable(goodlist) (and the absence of other

atoms forreachable), indicating that if a state is reachable then it is agoodlist. Note that the

transitions will handlebadlist andother states, but in the context in which they are invoked,

only goodlist states are encountered.

157

46 Implementation and Complexity Issues

The implementation is based on three components; the FTAdeterminizationalgorithm described

in Section 44, theabstract compilationtransformation and thefixpointalgorithm for computing

the least model.

We have implemented all three components. The determinization algorithm is a prototype

based on a relatively direct implementation of the algorithm as presented in Section 44: it is

clearly amenable to major optimization. Nevertheless the scalability of the determinization algo-

rithm in Section 44 is a critical topic for future study and experiment.

Abstract compilation is a simple transformation with no serious complexity or implementa-

tion problems.

The computation of the least model is an iterative fixpoint algorithm. Various optimisations

have been applied. Thepredicate dependency graphof a program has the predicates of a program

as nodes, and there is a directed arc fromp to q to iff q appears in the body of a clause in which

p is in the head. A directed graph can be split intostrongly connected components(SCCs). The

SCCs are the largest sets of nodes such that there is a path from any element in a set to any other

in the same set.

The iterations of the basic fixpoint algorithm, which terminates when a fixed point is found,

can be decomposed into a sequence of smaller fixpoint computations. Each subcomputation

returns the solution of a group of mutually recursive predicates. Breaking down the computation

in this way has several advantages.

• Relatively few clauses are solved on each iteration.

• Not every atom in a clause body needs to be resolved on each iteration.

• The fixed point for non-recursive groups is found in one iteration.

An algorithm, linear in the size of the graph, for finding the SCCs of a directed graph was

discovered by Tarjan [207]. Furthermore, the algorithm naturally returns the SCCs in a sequence

consistent with the graph. (There is more than one possible sequence). In other words, if there is

a path from nodex to nodey in the graph, then eitherx andy are in the same component, orx’s

component precedesy’s component.

In addition to the SCC optimisation, our implementation incorporates a variant of thesemi-

naiveoptimisation [211], which makes use of the information about new results on each iteration.

A clause body containing predicates whose models have not changed on some iteration need not

be processed on the next iteration.

158

Our fixpoint implementation has been extensively used on programs with up to 4000 clauses.

The key finding is that if the SCCs are relatively small (mutually recursive groups with more

than 2 or 3 predicates are rare) then the analysis is roughly linear in the number of SCCs.

47 Related Work and Conclusions

The approach described in this paper provides an integration of regular type abstractions with

discrete abstract domains expressed as pre-interpretations. We showed how to transform any

given regular type into a pre-interpretation, using standard algorithms on Finite Tree Automata,

namely, determinization and completion.

The domain of the pre-interpretation is a set of disjoint types, partitioning the set of terms.

The least model under this pre-interpretation provides accurate information about the success

types, including type dependencies, with respect to these disjoint types (and hence with respect

to the original types from which they were derived).

The analysis domain induced by the pre-interpretation is condensing, which implies that a

bottom-up analysis (usually much cheaper and more scalable than goal-dependent analysis) can

be used as the basis for goal-directed analysis, with no loss in precision.

Applications in binding time analysis for offline partial evaluation have been investigated,

with promising results. As noted in Section 45 various mode analyses can be reproduced with

this approach, including the well-known POS analysis.

The potential of this method for model-checking, by detecting unreachable states (repre-

sented as predicates which are proved unsolvable) seems to be considerable, since the approach

seems both faster and more precise than set constraint analysis, which is already useful [21].

159

Part VI

Abstract Interpretation with Specialized
Definitions
The relationship between abstract interpretation and partial deduction has received considerable

attention and (partial) integrations have been proposed from both the partial deduction and ab-

stract intepretation perspectives. In this work we present what we argue is the firstfull integration

of abstract interpretation and partial deduction from an abstract interpretation perspective. The

proposed framework can be used both for analysis and specialization of logic programs and pro-

vides results which are strictly more precise than those achievable by the individual techniques.

Interestingly, the central idea in this framework is simple: the abstract interpretation algorithm is

modified in such a way that calls in the program are not analyzed w.r.t. the definition of the proce-

dure in the original program but rather w.r.t. aspecialized definitionof the procedure for the given

call. The process of obtaining a specialized definition from the original definition corresponds to

the transformations performed during on-line program specialization, including unfolding. This

apparently simple modification to the analysis algorithm has important consequences. First, the

analysis process can be improved both in terms of efficiency and accuracy. Second, the set of

specialized definitions computed during analysis provide a powerful partial evaluation of the

program. Third, the new features of the framework introduce non-trivial termination and control

issues which are studied in the paper. The framework has been implemented in the context of the

CiaoPP analysis and specialization system. We briefly describe this implementation.

48 Introduction

Abstract interpretation [35] is a well known technique for static analysis of programs. It allows

obtaining at compile-time safe approximations about the run-time behavior of the program. The

information obtained by means of abstract interpretation has long been used for both program

optimization and verification. A typical approach to abstract interpretation-based program opti-

mization is to analyze the program in order to obtain a safe approximation of the states at which

the correspondingprogram pointcan be reached. This is done by annotating the program points

of interest with abstract substitutions which are guaranteed to be safe approximations. Then,

these annotations are used to optimize the code as much as possible. Such optimizations can

be performed both at the source-level and afterward at the compiled-code level. If the abstract

interpretation framework ismultivarianton calls, the same program procedure can be analyzed

160

for different (abstract) call patterns. This has two effects. On one hand it may allow improving

the accuracy of analysis results since different call patterns do not need to be collapsed on a

single one. On the other hand, amultiply specializedprogram [189] may be achieved by expand-

ing the program in such a way that a different implemented version is generated by each pair

〈procedure, call pattern〉.
Partial evaluation[99]—often referred to simply as program specialization—optimizes pro-

grams by specializing them for (partially) known static data. Essentially, partial evaluators are

non-standard interpreters which evaluate the known data while enough information is available

and produce residual code otherwise. The partial evaluation of logic programs, also known as

partial deduction[152, 57], has received considerable attention. The shortcomings of traditional

partial deduction when compared to abstract interpretation techniques have been identified early

on, and several partial solutions to overcome these limitations have been proposed in the litera-

ture. The shortcomings are related to two sources of precision loss during partial deduction. One

is related to the lack of information propagation among different concrete call patterns (often

refereed to asatoms) once they are transferred to the global control. The second one is related

to the usage of the most specific generalization operator as a means of generalizing call pat-

terns in order to guarantee that the set of atoms which are specialized remains finite. Existing

improved partial deduction systems are available which overcome some of these problems by

different means. However, to the best of our knowledge, no system actually has overcome all the

previously mentioned shortcomings simultaneously.

More recently, a very general framework calledabstractpartial deduction [124] has been pro-

posed which provides very interesting insights into the way an integrated framework should look

like. This formalization departs from traditional partial deduction in several ways. It includes

the use of an abstract domain and replaces the classical unfolding operation by two operations,

abstract unfolding and abstract resolution. These can be defined in different ways and this work

provides the conditions which these operations have to satisfy in order for the whole special-

ization system to be correct. It is proved that several frameworks, including traditional partial

deduction, are instances of this more general one.

There has also been significant progress following the alternative approach of starting from

an abstract specialization perspective. In [192] the relationship between partial deduction and

abstract interpretation is studied from this point of view. This work identifies the need to allow

performing unfolding steps during analysis time and proposes several possibilities for the prac-

tical integration of such unfolding. However, it also identifies that the questions of when and

how to perform unfolding in the integrated framework are not trivial at all. In fact, that is the

central motivation of this work. Summarizing, our answer to the question of “when to perform

unfolding” is to do it right before analyzing the particular call. And our answer to the question of

161

“how to perform unfolding” is to do it by obtaining a specialized definition of a predicate from

the original one and then letting the analyzer process the specialized definition. The resulting ab-

stract interpretation-based specialization framework, which we propose herein, requires almost

no modification to existing analyzers, other than the addition of a way to obtain the specialized

definitions from the original ones. However, the modifications introduced in the new framework

have a big impact in terms of efficiency and accuracy thanks to the combination ofexecutionand

approximationduring specialization.

48.1 Approximation vs. Execution

Traditional partial deduction is characterized byexecuting(concrete) atoms and goals for pro-

ducing resultants—i.e., specialized rules—in which the partial computed answer substitution is

actually applied to the resultant. On the other hand, abstract interpretation is characterized by

simulatingthe execution of the program using abstract substitutions instead of concrete ones.

Both approaches have advantages and disadvantages. An important advantage of partial evalua-

tion is that of efficiency: propagating and applying substitutions is straightforward to implement

on a (constraint) logic programming system and very efficient to execute. The disadvantage is

that no information can be propagated about unbound variables. Another advantage of execu-

tion is that it improves accuracy when compared to abstract interpretation under certain circum-

stances. If concrete information is available, it will in general be more precise than abstract

descriptions, In contrast, abstract interpretation allows obtaining safe approximations of the ac-

tual values in situations in which concrete execution would not capture any information, either

because it corresponds to a variable or because the set of concrete values which would require to

be handled would be infinite or too large to be practical.

Given this situation, it seems difficult to design a system which integrates abstract interpreta-

tion and partial deduction by using concrete substitution or abstract substitution only. For exam-

ple, abstract partial deduction introduces abstract substitutions to the partial deduction algorithm,

since concrete substitutions are not enough. From the point of view of abstract interpretation it

may seem feasible to capture both concrete and abstract values by using a refined abstract do-

main.

In this work we advocate for a hybrid approach which allows propagating both concrete and

abstract substitutions. This has both theoretical and practical advantages: it allows conceptually

separating the information generated as a result of specializing definitions, which uses concrete

bindings, from that approximated by the analysis algorithm, which remains abstract. The prac-

tical advantage is that the analysis algorithm remains basically unmodified and there is no need

to implement new abstract domains which capture both concrete and abstract values separately.

162

On the other hand, the specializer will mostly work with concrete information, though abstract

information can also be used in order to remove useless rules from the specialized definition or

to perform abstract execution of some of the literals in the specialized definitions.

49 Preliminaries

This section recalls preliminary concepts on logic programming and abstract interpretation [35].

Terms are constructed from variables (e.g.,X), functors (e.g.,f) and predicates (e.g.,p). We

denote by{X1 7→ t1, . . . , Xn 7→ tn} thesubstitutionσ with σ(Xi) = ti for all i = 1, . . . , n (with

Xi 6= Xj if i 6= j) andσ(X) = X for any other variableX, whereti are terms. We denote by

vars(O) the set of variables in a syntactic objectO.

An atomA has the formp(t1, ..., tn) wherep is a predicate symbol, and theti are terms.

Functionpred(A) returns the predicate symbolp for the atomA. We useAtomsto denote the set

of atoms. We say that an atomA is more general than another atomA′ and we denote itA′ ⊆ A

if ∃ a substitutionθ s.t. A′ = Aθ. A goal is a finite sequence of atomsA1, . . . , An. A rule is

of the formH ← B whereH, thehead, is an atom andB, thebody, is a possibly empty finite

sequence of literals. Aprogram, is a finite set of rules. Arenamed apartrule for a ruleR in a

programP is another ruleR′ such thatvars(R′) ∩ vars(P) = ∅ and there is a renamingρ such

thatR′ = Rρ. Given an atomA and a programP , we denote byDef (A, P) the set of renamed

apart rules for the rulesH ← B in P with pred(A) = pred(H), such thatH unifies withA.

In this work, we assume a top-down operational semantics for logic programs under the

standard (Prolog) left-to-right computation rule, i.e., LD resolution. At each stage, the current

goal G can be represented by← σi(A1, . . . , An) whereσi = θ1 . . . θn is the composition of

the substitutions applied so far (theaccumulatedsubstitution). For the initial goal, we have

that σ0 = id, the empty substitution. To perform aSLD derivation step, the computation rule

selects the leftmost subgoalσi(A1). The search rule selects a ruleH ← B1, . . . , Bm renames

it apart and unifies the headH with σi(Ai). If the unification is successful withmgu θi+1,

then the goal statement← σi+1(B1, . . . , Bm, A2, . . . , An) is derived withσi+1 = σiθi+1. An

SLD-derivationconsists of a possibly infinite sequenceG0 = G, G1, . . . of goals, a sequence of

C1, C2, . . . of properly renamed rules ofP , a sequenceθ1, θ2, . . . of mgus such that eachGi+1

is derived fromGi andCi+1 with mgu θi+1. Given a finite SLD derivationD of P ∪ {← G}
ending in← B andθ the composition ofmgus in the derivation steps, we say thatθ restricted

to the variables ofG is the computed answer substitution(c.a.s.). A derivationD is a SLD

refutation, orsuccessfulderivation if it ends in the empty goal. In such case,θ restricted to the

variables ofG is also simply called acomputed answer. A derivationD is failed if the current

goal is nonempty and no derivation step can be performed. The operational semantics of an

163

atomA is defined in terms of its computed answers, i.e., for a programP , we write [[A]]P =

{Aθ|θ is a computed answer forA in P} to denote the semantics of the goal for the program.

Static program analysisaims at deriving at compile-time certain properties of the run-time

behavior of a program. Abstract interpretation [35] is arguably one of the most successful tech-

niques for static program analysis. In abstract interpretation, the execution of the program is

“simulated” on anabstract domain(Dα) which is simpler than the actual,concrete domain(D).

An abstract value is a finite representation of a, possibly infinite, set of actual values in the con-

crete domain (D). The set of all possible abstract semantic values represents an abstract domain

Dα which is usually a complete lattice or cpo which is ascending chain finite.

The abstract domain〈Dα,v〉 and the powerset of the concrete domain〈2D,⊆〉 are related via

a pair of monotonic mappings〈α, γ〉: abstractionα : 2D → Dα, andconcretizationγ : Dα →
2D, such that

∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y.

Note that in generalv is induced by⊆ andα (in such a way that∀λ, λ′ ∈ Dα : λ v λ′ ⇔
γ(λ) ⊆ γ(λ′)). Similarly, the operations ofleast upper bound(t) andgreatest lower bound(u)

mimic those of2D in some precise sense.

50 Specialized definitions

A distinguishing feature of our framework is that, as will be presented later, analysis for an atom

A and an abstract substitutionλ is performed w.r.t. aspecialized definitionof theA rather than

the original definitions for it. In order to guarantee the correctness of the analysis framework,

we need to demonstrate the semanticalequivalencebetween the original and specialized defini-

tions. The aim of Sect. 50.1 is to formalize the particular notion of equivalence necessary for this

purpose. The process of creating specialized definitions can be viewed as atransformation se-

quencein which an original definition is transformed into another, equivalent one, by means of a

series of transformations. Sect. 50.2 presents a number of semantics-preserving transformations

used for the construction of specialized definitions. Finally, Sect. 50.3 introduces the notion of

specialized definitionand states its correctness.

50.1 Equivalence of Definitions

This section presents our notion ofequivalencebetween two definitions for the same predicate.

By adefinitionwe mean a set of rules for the same predicatep such thatp is one of the predicates

in programP . First, we give a (non-standard) definition of the operational semantics of a set of

rules in a program.

164

Definition 50.1[semantics of a rule] LetP be a program andH ← B be a rule such thatpred(H)

is defined inP . We define the semantics ofH ← B in P as follows:

[[H ← B]]P = {Hθ | ∃ a computed answerθ for B in P}

The semantics of a definition{H1 ← B1, . . . , Hn ← Bn} with n ≥ 1 is defined as the union

of the semantics of the individual rules.

The notion of specialized definition is the subject of the next subsection. Nevertheless, we antic-

ipate that a specialized definition is generated for a particular context which includes an atomA

and an abstract substitutionλ for A. This is to say that we specialize the definition of a predicate

for its (restricted) use within the context of the pair〈A, λ〉. Therefore, the specialized definition

has to preserve the original semantics only for the context w.r.t. the specialization has been per-

formed. A first step to formalize our notion of equivalence is to restrict the semantics of Def. 50.1

to atoms.

Definition 50.2[semantics of rules restricted to an atom] LetA be an atom such thatpred(A) = p

andP be a program. LetH ← B be a rule such thatpred(H) = p. We define the semantics of

H ← B in P restricted to the atomA as follows:

[[H ← B]]AP = {A′ ∈ [[H ← B]]P |∃θ with A′ = Aθ}

The semantics of a definition{H1 ← B1, . . . , Hn ← Bn} with n ≥ 1 restricted to an atomA is⋃
i=1...n [[Hi ← Bi]]

A
P .

Intuitively, the semantics of a set of rules restricted to an atom is formed by only those computed

answers for the rules which unify with the atom (while the rest are discarded).

In our framework, the specialization context includes an additional parameter—theabstract

substitution—which distinguishes our method from traditional specialization techniques. Infor-

mally, the abstract substitution allows expressing some properties in the selected abstract domain

which can restrict further the specialization context. Thus, we now need to introduce the notion

of semantics of rules restricted to the context of an atomandan abstract substitution.

Definition 50.3[semantics of rules restricted to an atom and abstract substitution] LetA be an

atom andP be a program. Letλ be an abstract substitution forA. Let H ← B be a rule such

thatpred(H) = p.We define the semantics ofH ← B in P restricted toA andλ as follows:

[[H ← B]]〈A,λ〉
P = {A′ ∈ [[H ← B]]AP |∃θ ∈ γ(λ) with A′ = Aθ}

The semantics of a definition{H1 ← B1, . . . , Hn ← Bn} with n ≥ 1 restricted to an atomA

and abstract substitutionλ is
⋃

i=1...n [[Hi ← Bi]]
〈A,λ〉
P .

165

Roughly speaking, we now select from the computed answers for the rules and atom (as stated in

Def. 50.2) those which are compatible with the abstract substitution, i.e., the computed answers

which satisfy the properties inλ.

Finally, the next definition provides a notion ofequivalencebetween definitions. This equiv-

alence can be restricted to an atom or to both an atom and an abstract substitution.

Definition 50.4[equivalent definitions] LetP be a program,A an atom andλ an abstract sub-

stitution. LetD andD′ be two definitions for the same predicatep = pred(A). We have the

following notions ofequivalencebetweenD andD′:

1. D ≡P D′ iff [[D]]P = [[D′]]P .

2. D ≡A
P D′ iff [[D]]AP = [[D′]]AP .

3. D ≡〈A,λ〉
P D′ iff [[D]]〈A,λ〉

P = [[D′]]〈A,λ〉
P .

50.2 Transformation Rules

As already mentioned, our goal is, given a definitionD, to obtain another definitionD′ which

is a specialized w.r.t. an atomA and an abstract descriptionλ such thatD ≡〈A,λ〉
P D′ (andD′

is in some sense preferred toD). In our setting, the initial definition,D0, will be formed by

the set of rulesDef (A, P). Then, we perform a series of transformation steps and construct the

next definitions〈D0, D1, . . . , Dk〉 in the sequence. Each definitionDi is obtained fromDi−1 by

applying one of the rules listed below.

Definition 50.5[instantiation] LetDk be a definition and letA be an atom. The result of applying

instantiationto Dk w.r.t. A is

Dk+1 = instantiation(Dk, A) = {(H ← B)θ | (H ← B) ∈ Dk and∃θ = mgu(A, H)}

Informally, instantiation returns the subset of rules inDk whose head unifies withA and applies

themgu to them. Thus, instantiation filters out those rules which are not directly applicable for

the given atom and further instantiates the remaining rules.

We now present the well-know unfolding transformation. As usual, by unfolding a rule w.r.t.

an atom, we replace the rule by a set of new (unfolded) rules. In particular, as many new rules as

clauses inP are applicable for the atom which is unfolded.

166

Definition 50.6[unfolding] LetDk be a definition and letR : (H ← A, G) be a rule inDk where

A is an atom andG a (possibly empty) conjunction of atoms. LetC be a variant of a rule inP

such thatvars(R) ∩ vars(C) = {} and the atomshd(C) andA are unifiable with mguθ. The

unfolding ofR usingC is the rule(H ← bd(C), G)θ. LetC1, . . . , Cn with n ≥ 1 be the renamed

apart variants of rules inP whose headshd(Ci) are unifiable withA.

The result of applying unfolding toDk w.r.t ruleR ∈ Dk is

Dk+1 = unfold(Dk, R) = Dk − {R} ∪ {U1, . . . , Un}.

where eachUi is the rule resulting from unfoldingR usingCi.

Now we proceed to introduce a transformation which is able to exploit the information available

in an abstract description. For this purpose, we apply thepartial concretizationof the abstract

substitution to the definition. Given an abstract domainDα, we say that a functionpart conc :

Dα → D is apartial concretization[192] iff ∀λ ∈ Dα ∀θ′ ∈ γ(λ) ∃θ′′ s.t. θ′ = part conc(λ)θ′′.

Definition 50.7[instantiation with abstract information] LetDk be a definition, letA be an atom,

and letλ be an abstract substitution forA in Dα. Let θ = part conc(λ). The result of applying

instantiationwith abs info to Dk w.r.t. A andλ is

Dk+1 = instantiation with abs info(Dk, A, λ) = instantiation(Dk, Aθ)

All the transformations proposed are semantic preserving. Some of them preserve the seman-

tics in general, and others are correct for the particular context described by the pair〈A, λ〉. The

next theorem states the correctness of the above transformations.

Theorem 50.8[correctness] LetA be an atom andP be a program. Letλ be an abstract sub-

stitution forA. Let 〈D0, . . . , Dn〉 be a transformation sequence obtained by applying the above

transformations withD0 the set of rules inDef (G, P). Then,D0 ≡〈A,λ〉
P Dn.

Proof [sketch] All the transformation proposed are semantic preserving. In particular, unfolding

preserves the semantics of definitions in general, whereas instantiation (resp. instantiation with

abstract information) are correct for the particular context described by the atomA (resp. the pair

〈A, λ〉). In any case, after any number of transformations, the semantics is always preserved.2

167

50.3 The Specialization Strategy

Though all the transformation presented above preserve the semantics of definitions and generate

definitions which are more specialized, we now propose a given order, or astrategy, in which

such transformations should be performed in order to obtain the best possible specialization

results.

Definition 50.9[specialization strategy] LetP be a program and← A be the initial atomic query.

Let λ be an abstract description forA in a given domainDα. Our specialization strategycom-

putes a transformation sequence〈D0, . . . , Dn〉 obtained as follows:

1. D0 = Def (A, P)

2. D1 = instantiation(D0, A)

3. D2 = instantiationwith absinfo(D1, A, λ)

4. the remainingD3, . . . , Dn are generated byn− 2 unfoldingtransformations.

We useD = specialized definition(A, λ, P) to denote thatD is the result of specialization using

the strategy presented above.

An interesting point to note is that neither the original programP nor the atomA are modified

through the specialization process. The specialization can be seen as the generation of a new,

additional, definition forpred(A). Since the rules for the definition being specialized are kept

separate from the rules in the original program, there is no problem in having additional rules for

an already existing predicate. However, if we would like to have a program which contains both

the original and specialized definitions forA together, the new definition can be safely added

to the original programP by renamingboth the head of the new clauses and the initial query

A with a fresh predicate name. This guarantees that the semantics is preserved, since the new

definition will only be used to resolve the initial query. In the following, we assume that function

ren performs this renaming.

Theorem 50.10[correctness] LetA be an atom andP be a program. Letλ be an abstract sub-

stitution for A. Let D = specialized definition(A, λ, P). Let D′ = ren(D). Then, [[A]]P ≡
[[ren(A)]]P∪D′.

Proof [sketch] This result is a particular instance of Theorem 50.8. 2

168

51 Abstract Interpretation with Specialized Definitions

In this section we present a generic analysis algorithm which is a modified version of that in [89].

In essence this analyzer produces aprogram analysis graphwhich can be viewed as a finite

representation of the (possibly infinite) set of (possibly infinite) AND-OR trees explored by the

concrete execution [13]. The graph has two sorts of nodes: those belonging to rules (also called

“AND-nodes”) and those belonging to atoms (also called “OR-nodes”). The rules are annotated

by descriptions at each program point when the rule is executed from the calling pattern of the

node connected to the rules. The program points are at the entry to the rule, the point between

each two literals, and at the return from the call. Atoms in the rule body have arcs to OR-nodes

with the corresponding calling pattern. If such a node is already in the tree it becomes a recursive

call.

How this program analysis graph is constructed is detailed in Figure 19. This algorithm

differs from the original algorithm mainly in that it analyzesspecialized definitionsrather than

the original ones.

Intuitively, the analysis algorithm is just a graph traversal algorithm which places entries in

ananswer tableanddependency arc tableas new nodes and arcs in the program analysis graph

are encountered.

• Answer table:The answer table contains entries of the formA : CP 7→ AP. A is an

atom,CP is the calling pattern andAP is the answer pattern. Each entry in the answer

table corresponds to an OR-node in the analysis graph of the form〈A : CP 7→ AP〉. It is

interpreted as the answer pattern for calls of the formCP to A is AP.

• Dependency arc table:A dependency arc is of the formHk : CP0 ⇒ [CP1] Bk,i : CP2.

This is interpreted as follows: if the rule withHk as head is called with descriptionCP0

then this causes literalBk,i to be called with descriptionCP2. The remaining partCP1

is the program annotation just beforeBk,i is reached and contains information about all

variables in rulek. CP1 is not really necessary, but is included for efficiency. Dependency

arcs represent the arcs in the program analysis graph from atoms in a rule body to an atom

node.

The program analysis graph is implicitly represented in the algorithm simply by means of the

answer table and the dependency arc table. In the sense that, given the information in these, it is

straightforward to construct the graph and the associated program point annotations.

To capture the different graph traversal strategies used in different fixed-point algorithms, we

use apriority queuewhich is the final structure used in our algorithm. It handles events of three

forms:

169

analyze sp defs (S,P)
foreachA : CP∈ S

add event(newcall(A : CP))
main loop (P)

main loop (P)
while E := next event()

if (E = newcall(A : CP))
new calling pattern (A : CP,P)

elseif(E = updated(A : CP))
add dependent rules (A : CP)

elseif(E = arc(R))
process arc (R)

endwhile
remove useless calls(S)

new calling pattern (A : CP,P)
P ′ := specialized definition(A,CP,P)
foreach ruleAk :- Bk,1, . . . , Bk,nk

in P ′

CP ′ := Acalltoentry(A, CP, Ak)
CP0 :=

Aextend(CP ′, vars(Bk,1, . . . , Bk,nk
))

CP1 := Arestrict(CP0, vars(Bk,1))
add event (arc(

Ak : CP⇒ [CP0] Bk,1 : CP1))
AP := initial guess(A : CP)
if (AP 6= ⊥)

add event(updated(A : CP))
addA : CP 7→ AP to answer table

add dependent rules (A : CP)
foreacharc of the form

Hk : CP0 ⇒ [CP1] Bk,i : CP2

in graph
where there exists renamingσ

s.t.A : CP = (Bk,i : CP2)σ
add event(arc(

Hk : CP0 ⇒ [CP1] Bk,i : CP2))

process arc (Hk : CP0 ⇒ [CP1] Bk,i : CP2)
if (Bk,i is not a unification)

addHk : CP0 ⇒ [CP1] Bk,i : CP2

to dependency arc table
W := vars(Ak :- Bk,1, . . . , Bk,nk

)
CP3 := get answer(Bk,i : CP2, CP1, W)
if (CP3 6= ⊥ andi 6= nk)

CP4 := Arestrict(CP3, vars(Bk,i+1))
add event (arc(

Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4))
elseif(CP3 6= ⊥ andi = nk)

AP1 := Arestrict(CP3, vars(Hk))
insert answer info (H : CP0 7→ AP1)

get answer (L : CP2, CP1, W)
if (L is a unificationt1 = t2)

return Aunif(t1, t2, CP1)
else

AP0 := lookup answer (L : CP2)
AP1 := Aextend(AP0, W)
return Aconj(CP1, AP1)

lookup answer (A : CP)
if (there exists a renamingσ s.t.

σ(A : CP) 7→ AP in answer table)
return σ−1(AP)

else
add event(newcall(σ(A : CP)))
whereσ is a renaming s.t.
σ(A) is in base form
return ⊥

insert answer info (H : CP 7→ AP)
AP0 := lookup answer(H : CP)
AP1 := Alub(AP, AP0)
if (AP0 6= AP1)

add(H : CP 7→ AP1) to answer table
add event(updated(H : CP))

Figure 19: Abstract Interpretation with Specialized Definitions.

• newcall(A : CP) which indicates that a new calling pattern for atomA with description

CPhas been encountered.

• arc(R) which indicates that the rule referred to inR needs to be (re)computed from the

170

position indicated.

• updated(A : CP) which indicates that the answer description to calling patternA with

descriptionCPhas been changed.

The main procedure of the algorithm isanalyze sp defs , which is defined in terms of six

abstract operations on the description domainDα of interest:

• Acalltoentry(A1, CP, A2) performs the abstract unification ofA1 andA2 and returns the

abstract descriptionCP in terms ofA2;

• Arestrict(CP, V) performs the abstract restriction of a descriptionCP to the set of variables

in the setV , denotedvars(V);

• Aextend(CP, V) extends the descriptionCP to the variables in the setV ;

• Aunif(t1, t2, CP) performs the abstract unification of termst1 andt2 in the context of de-

scriptionCP;

• Aconj(CP1, CP2) performs the abstract conjunction of two descriptions;

• Alub(CP1, CP2) performs the abstract disjunction of two descriptions.

Apart from the parametric description domain-dependent functions, the algorithm has several

other undefined functions. The functionsadd event andnext event respectively add an event

to the priority queue and return (and delete) the event of highest priority. When an event being

added to the priority queue is already in the priority queue, a single event with the maximum

of the priorities is kept in the queue. When an arcHk : CP ⇒ [CP′′]Bk,i : CP′ is added to

the dependency arc table, it replaces any other arc of the formHk : CP ⇒ []Bk,i : in the

table and the priority queue. Similarly when an entryHk : CP 7→ AP is added to the answer

table, it replaces any entry of the formHk : CP 7→ . Note that the underscore () matches any

description, and that there is at most one matching entry in the dependency arc table or answer

table at any time.

The functioninitial guess returns an initial guess for the answer to a new calling pattern.

The default value is⊥ but if the calling pattern is more general than an already computed call

then its current value may be returned.

The algorithm centers around the processing of events on the priority queue inmain loop,

which repeatedly removes the highest priority event and calls the appropriate event-handling

function. When all events are processed it callsremove useless calls. This procedure traverses

the dependency graph given by the dependency arcs from the initial calling patternsS and marks

171

those entries in the dependency arc and answer table which are reachable. The remainder are

removed. More details on the algorithm (without specialized definitions) can be found in [89].

As already mentioned, the main difference of our analysis algorithm of Fig. 19 w.r.t. the

original algorithm of [89] is that we analyze the program by using the specialized rules computed

by functionspecialized definition of Def. 50.9 rather than the original rules.

51.1 Correctness

In this section we discuss whether the analysis results obtained by the proposed analysis frame-

work are correct.

Theorem 51.1[correctness] LetP be a program and letA : CP be an initial call pattern inS.

Let A : CP 7→ AP be the answer pattern computed by the analysis algorithm in Fig. 19. Then,

AP is a correct answer pattern forA : CP , i.e.,γ(A, AP) ⊇ [[A]](A,CP)
P .

Proof By Theorem 50.8, we know that specialized definitions always preserve the concrete

semantics of the original one. As a result, since the analysis algorithm is guaranteed to obtain a

safe approximation of the success set, the analysis obtained by analyzing a callA : CP w.r.t. the

specialized definition is guaranteed to be also a safe approximation of[[A]](A,CP)
P .

2

In addition to obtaining results which are correct, we conjecture that the proposed framework

allows obtaining more precise results than those achieved by traditional abstract interpretation

algorithms. Several examples already show a gain in accuracy although the formal proof is a

subject of further research.

52 Termination

In this section we recall the termination problems which appear in both abstract interpretation

and partial deduction and then relate these problems in the context of the integrated framework

we propose.

52.1 Termination in Abstract Interpretation

As it is well known, termination of traditional algorithms for abstract interpretation of logic

programs [13, 89] is achieved by using abstract domains with certain characteristics and possibly

the use ofwideningoperators. More precisely, two termination problems can be considered:

172

A.1 the success computation problem: when computing an answer pattern for a call pattern

A : CP , different tentative answer patternsAP0, AP1, . . . , APω, with AP0 v AP1 v
. . . v APω can be computed until a fixpoint is reached.

A.2 the call computation problem: if analysis is context-sensitive and multivariant, several call

patterns{A1 : CP1, . . . , Aω : CPω} with pred(A1) = . . . = pred(Aω) = p can be

generated during analysis for the same predicatep.

Intuitively, A.1 is related to the complexity of computing the final answer patternAPω for a

given call patternA : CP . Problem A.2 is related to keeping finite the number of call patterns

which are analyzed, i.e., the answer table must be finite. Termination w.r.t. A.1 is guaranteed by

using abstract domains without infinite ascending chains or by the use of widening operators.

Definition 52.1[widening] We say that an operator∇ is a widening iff for any increasing chain

a0 ⊂ a1 ⊂ a2 ⊂ ... then chainb0 = a0∇a1, ..., bi+1 = bi∇ai+1, ... is not strictly increasing for

⊆, that is, it should be a stationary sequence.

In addition to being used for ensuring termination, widening operators can be used in abstract

domains with finite ascending chains to accelerate convergence.

Termination w.r.t. A.2 does not represent a problem if the analysis algorithm is context-

insensitive or monovariant. However, if the domain is infinite, the ascending chain finite con-

dition is not enough for guaranteeing termination w.r.t A.2. In this situation, some way to limit

multivariance is needed in order to guarantee termination.

Let us discuss this problem in more detail. Given a predicatep, in order to guarantee ter-

mination w.r.t. A.2 it is required that the number of call patterns of the formA : CP such that

pred(A)=pwhich are handled by analysis, i.e., for which an entry in the answer table is computed

must be finite. It is important to observe that, each atomA in a program encodes a concrete sub-

stitution θ defined asθ=Inst(A)=mgu(A,baseform(A)). Thus, each call patternA : CP can be

seen as a triple〈base form(A), Inst(A), CP 〉. As a result, the number of combinations of con-

crete and abstract substitutions for which we would like to analyze a program procedure must be

finite. In traditional abstract interpretation this is obtained by first fixing the maximum number

of concrete substitutions for which a procedure can be analyzed and then by using some multi-

variance control strategy which guarantees that the number of abstract substitutions for which a

concrete atom can be analyzed always remains finite.

Many frameworks for abstract interpretation of logic programsnormalizeprograms prior to

analysis. A program is normalized if all atoms only contain distinct variables. This is in general

not restrictive since all logic programs can be normalized. A normalized representation allows

173

simplifying both the formalization and the implementation of the algorithm. In particular it

limits the number of concrete substitutions for which a procedure can be analyzed to just one per

procedure.

Other analysis frameworks, such as the one we propose32, do not require programs to be

normalized. For this, an additional abstract operation,Acalltoentryin our case, has to be added

to the algorithm. This design decision has several consequences: it augments the multi-variance

level of the analysis since calls which correspond to different concrete atoms will be analyzed

separately. This will have an impact both on the accuracy and the efficiency of the analysis.

On the accuracy side, more accurate results will be obtained since it allows eliminating from

Def(A, P) those rules whose head unifies withbaseform(A)but does not unify with the atom

A to be analyzed. On the efficiency side, more call patterns will have to be analyzed, which

means that more analysis time will be required. Note, however, that even in this scenario, the

set of concrete substitutions for which a procedure can be analyzed is also fixed (and finite)

since it is limited to the atoms which explicitly appear in the program to be analyzed. Thus, in

both cases (normalized and unnormalized programs) termination w.r.t. A.2 is guaranteed by the

use of a multi-variance control strategy which guarantees that the set of abstract substitutions

{CP1, . . . , CPω} for a given concrete atomA is finite.

52.2 Termination in Program Specialization

Termination of program specialization is often split in two levels:

S.1 the so-calledlocal termination: this is the problem of ensuring that a finite number of un-

folding steps are performed for a given initial call patternA : CP .

S.2 and theglobal termination:in this case, we have to ensure that the number of atomsA : CP

for which a specialized definition is to be computed remains finite.

The topic of local and global termination has received considerable attention in the partial de-

duction community. It is not the goal of this work to present a thorough study of local and global

control strategies. We present however in Section 54 the different control strategies currently

available in our implementation of the framework.

Definition 52.2[generalize] A functiongeneralize:Atoms × 2Atoms → Atoms is any function

such that for any atomA and set of atomsA generalize(A,A) ⊇ A.

32One important difference between the algorithm herein presented and that in [89] is that the current algorithm
allows analyzing programs which are notnormalized

174

In other words, the functiongeneralizereturns a generalization of atomA. The more in-

formationgeneralizeloses, the faster global termination will be achieved. However, the more

information is lost the less productive specialization will in principle be. On the other extreme,

the identity function is trivially a correctgeneralizefunction which loses no information. How-

ever, termination is not guaranteed and more conservative functions will be used in practice.

52.3 Termination in the Integrated Framework

Since our framework performs both specialization and abstract interpretation, it is natural that

the four termination problems mentioned above appear in this context.

Problem S.1 appears because the algorithm now contains an additional phase which is that

of specializing definitions and it corresponds to guaranteeing that the execution ofspecial-

izeddefinitionterminates. Note that it may often be the case that an infinite number of unfolding

steps may be performed.

Intuitively, problem S.2 appears because the program to be analyzed during abstract inter-

pretation with specialized definitions is not fixed, but rather is dynamically generated during

analysis. Since the process of specializing definitions may introduce new concrete bindings, the

assumption that the number of concrete atoms per predicate is fixed no longer holds.

Note that clearly, problem (S.2) is indeed very related to the problem (A.2). S.2 is solved

in program specializers by keeping the number of concrete substitutions per predicate finite, by

means of the application of ageneralizeoperation during global control. A.2 is solved in abstract

interpretation by first fixing a set of atoms and then keeping the number of abstract substitutions

per atom each atom finite by means of multi-variance control. As a result both a terminating

global control strategy and a terminating multi-variance control strategy are required in order to

guarantee termination of our integrated approach.

Even if local termination is guaranteed, for example by applying zero unfolding transfor-

mations, global termination (S.2) is threatened as soon as we apply ofinstantiation, instantia-

tion with abssubs, andunfolding.

Note that termination of abstract interpretation is guaranteed w.r.t. both S.1 and S.2 since no

unfolding steps are performed and instantiation nor partial concretization are applied, i.e., the

atomA is always analyzed w.r.t.D0 = Def(A, P).

In order to guarantee termination inanalyze sp defs while still allowing performing any

of the transformations presented in Section 50.2, we need to introduce the possibility of using

a global control strategy which will abstract away part of the concrete information in an atom

before applyinginstantiation.

For this we have to augment the algorithmanalyze sp defs in several ways. We will

175

spec def glob control (A,CP,P)
(A′ : CP′) := generalize (A,CP)
add(A : CP) ; (A′ : CP′) to generalization table
if (there exists a renamingσ s.t.

σ(A : CP) 7→ SD in specialization table)
return SD

else
SD:= specialized definition (A′,CP′,P)
add (A′ : CP′) 7→ SDto specialization table
return SD

Figure 20: Adding global control

add two more global data structures:

• Specialization table:it contains entries of the formA : CP 7→ D, whereA : CP is a call

pattern andD is a definition forpred(A). It should be interpreted asD is the specialized

definition which has been obtained by specialization w.r.t.A : CP.

• Generalization table:it contains entries of the formA : CP ; A′ : CP′. It should be

interpreted as: the call patternA : CP is analyzed w.r.t. a definition ofpred(A) which has

been specialized w.r.t.A′ : CP′. Correctness of analysis requires that(A : CP) v (A′ :

CP′).

The specialization table is useful in two ways. The most obvious one is to record the set of

call patterns for which a specialized definition has already been computed. This is exactly the

role usually played by the set of atoms during global control of partial deduction. The second one

is more a practical reason: since several call patterns may share the same specialized definition,

it can be a good idea to store the result of specialization. Also, in contrast to partial deduction,

abstract interpretation often has to iterate and process body clauses several times until a fixpoint

is reached, thus storing the specialized clauses is often a good idea.

The generalization table actually stores the results of generalization obtained up to the present

moment. In contrast to the specialization table, it is not actually required for termination of the

algorithm. However, this table together with the dependency arc table allow implementing an

efficient and accurate code generation scheme which is strictly more accurate than that used in

partial deduction.

Figure 20 shows the definition of the functionspec def glob control which special-

izes definitions while performing global control. Note that this function should be called instead

of specialized definitions in algorithmanalyze sp defs . Both the specialization

176

table and the generalization table are global arguments. The specialization table is implicitly

used by thegeneralize function.

53 The Framework as a Specializer

As already mentioned, the integrated framework we propose has applications both in program

analysis and specialization. In fact, it is natural to consider the possibility of using the specialized

definitions which were generated during the execution ofanalyze sp defs (S, P) rather than

the original programP .

Since when abstract interpretation terminates the set of call patterns analyzed is guaranteed

to be covered, it is possible to use the rules which correspond to specialized definitions and throw

away the original program altogether.

As usually done in partial deduction and also in abstract specialization, we will use different

names for each different specialized version of each predicate. This will make it possible to have

a multiply specialized program without introducing run-time tests to select among the different

implementations for the predicate. This will also guarantee the independence condition among

atoms usually required in partial deduction.

Given that we will rename program rules, the main difficulty now is to also rename calls in

body atoms so that the corresponding version is used. In partial deduction, deciding which is the

correct version to use is often based on the abstraction operator used during the specialization

phase. In our case, the dependency arc table together with the generalization table can directly

be used in order to determine precisely which is the version to be used in each literal of each rule

of the specialized program.

There are other interesting question to take into account. One is that the results of analy-

sis, i.e., the answer table may contain entries which correspond tospuriouscall pattern. These

corresponds to tentative call patterns which are not really used in the final analysis graph. In

our algorithm, the spurious call patterns are removed right after reaching a fixpoint by the

remove useless calls operation. Another important thing to mention is that the use of

a generalization operation allows using the same specialized definition for different call patterns.

This will help to reduce the size of the final program.

In spite of this, more powerful techniques for minimizing the size of the final program could

be used. We are in fact investigating the possibility of extending the minimization algorithm

already used in abstract specialization [189] for its appliaction in this context.

177

54 System Description

CiaoPP [88] is the abstract interpretation-based preprocessor of theCiao multi-paradigm con-

straint logic programming system. It uses modular, incremental abstract interpretation as a fun-

damental tool to obtain information about the program. A version of the analysis engine ex-

isting in CiaoPP has been extended in order to cope with specialized definitions, as explained

throughout the paper. The new framework is fully integrated into the latest distribution of the

CiaoPP system. This section shows the different options of a typical session with the new exten-

sion of the analyzer. First,CiaoPP is started by loading the libraryciaopp in aCiao shell33.

use_module(library(ciaopp)).

There are several fixpoint algorithms coexisting in theCiaoPP system. Our contribution has

been integrated with the so-called “di ” fixpoint, which corresponds to thedepth independent

fixpoint algorithm described in [187]. It is selected by setting up the flagfixpoint to the

valuedi as follows.

set_pp_flag(fixpoint,di).

Then, we have a good number of options for controlling the local and global levels in the special-

ization process. We also have the possibility of applying the partial concretization of the abstract

properties to the concrete atoms (see Sect. 50). Finally, we show the instructions to generate the

code of the specialized program. The next sections discuss these options in more detail.

54.1 Local Control

In order to ensure the local termination of the algorithm, we must incorporate some mechanism to

stop the construction of the unfolding process. For this purpose, there exist several well-known

techniques in the literature, e.g., depth-bounds, loop-checks [9], well-founded orderings [15],

well-quasi orderings [202], etc. We have incorporated an unfolding rule inCiaoPP which can

be controlled by three different strategies:

• off : corresponds to not computing specialized definitions.

• inst : instantiation is performed, but no unfolding steps take place.

• det : this strategy allows the expansion of unfolding while derivations are deterministic

and stops them when a non-deterministic branch is required;

33More detailed information onCiaoPP can be found in [88].

178

• emb: the non-embedding unfolding rule, which uses the homeomorphic embedding order-

ing to stop the unfolding process;

The desired strategy can be selected by setting thelocal control flag:

set_pp_flag(local_control,strategy).

wherestrategy corresponds toemb, det , inst , or off as explained above. Notice that the

strategydet is non-terminating but it is included for efficiency purposes.

The selection of local control is necessary in order to perform analysis with specialized defi-

nitions. If local control is turned off, we just have the standard analysis regardless of the options

selected for global control.

54.2 Global Control

As a result of the specialization performed at the local control level, new patterns are produced

and subject to be analysed. The global control is constrained to continue iteratively with the

analysis of those patterns which are notcoveredyet by the previously analyzed patterns. Since

this process can be infinite, we include some strategies to improve (and in some cases ensure)

the termination behavior of analysis:

• off : this is equivalent to not using ageneralizefunction, i.e., we specialize all call patters

which we receive.

• id : this strategy allows specializing a new pattern provided it is not equal (modulo renam-

ing) to a formerly analyzed one.

• inst : this strategy allows us to specialize a new pattern if it is not an instance of a previous

pattern.

• hom_emb: the nonembedding abstraction operator uses the homeomorphic embedding

ordering to detect when a pattern is covered and, thus, stop the iterative process;

The desired strategy can be selected by setting the corresponding flag:

set_pp_flag(global_control,strategy).

wherestrategy can be one of the above options. Out of the four strategies, onlyhom emb

always ensures the termination of the process. Although theid and inst strategies are more

efficient and terminating in many practical cases.

179

54.3 Instantiation w.r.t. Abstract Information

We claim that more specialization can be achieved in some cases by applyinginstantiationwith abs info

instead ofinstantiationin order to specialize a definition. In order to be able to select between

those two possibilities, we can use thepart conc flag as follows.

set_pp_flag(part_conc,on).

The flag can be deactivated with the valueoff at any time.

54.4 Code Generation

Once the different settings have been selected, we can load the program subject to be specialized

(the initial data is written by means of anentry declaration in the same file where the program

resides):

module(app).

Then, the analysis is started with the desired domain (e.g., theeterms domain):

analyze(eterms).

In order to generate a specialized program from the analysis results, we have to perform the

so-calledcodegen transformation:

transform(codegen).

The specialized program can be written in a file (e.g., theoutput file) by calling the predi-

cateoutput as follows.

output(output_file).

55 A Running Example

Example 55.1

Let us consider the program in Fig. 55.1 which generates lists of “valid” numbers, i.e., lists

formed by a certain combination of1’s and2’s. Predicateq generates a non-empty list made

up of 2’s and ending with1. The intermediate predicatep is used to obtain a value indicating

whether this list is empty (returns0) or contains at least one number (returns1). Then, a call

to app concatenates the constant list[1,2,1] with the one generated byq. Finally, the test

validlist checks whether the resulting list is of type “validlist ” which represents a

180

myapp(Res):- L1=[L2],q(L),p(L,L2),app([1,2|L1],L,Res),validlist(Res).

q([1]).
q([2|Xs]):- q(Xs).

p(X,Y):- r(X,Y).

r([],0).
r([|],1).

app([],Y,Y):- validlist(Y).
app([X|Xs],Y,[X|Zs]):-app(Xs,Y,Zs).

:- regtype validlist/1.

validlist([]).
validlist([X|Xs]):- valid(X),
validlist(Xs).

:- regtype valid/1.

valid(1).
valid(2).

Figure 21: Running Example

valid list of 2’s and1’s. The definitions of these two regular types are declared by means of a

regtype declaration, followingCiaoPP syntax.

Now, we proceed to specialize the above program without any input data (neither concrete

nor abstract) inCiaoPP by using theeterms domain. During this process, the specialized def-

initions are generated by using the deterministic local control and applying partial concretization

(see Sect. 54). Let us see as example the generation of the specialized rule for the callp(L,L2)

in the definition of predicatemyapp. After analyzing the first two atoms, we obtain the abstract

descriptionrt0(L1), rt6(L) where the new regular types are defined like34

:- regtype rt6/1.
rt6([A|B]) :- valid(A),validlist(B).

34We refer to [214] for a detailed description of analysis usingeterms . It is outside the scope of this work.

181

:- regtype rt0/1.
rt0([A]) :- term(A).

If we proceed to generate a specialized definition for the next atomp(L,L2) , we first apply

the partial concretization transformation of the previous description w.r.t. the atom, which gives

p([A],L2) . Now, we instantiate the rule definingp with this atom and obtainp([A],Y):- r([A],Y) .

It is unfolded by using the second rule definingr and we get the specialized rulep([A],1) for

the atom.

Similarly, the specialization of the different atoms has been performed. By analyzing their

specialized definitions, the resulting program is:

myapp(A) :-q 1(B),B=[3| 4],A=[1,2,1, 3| 4].

q 1([1]).
q 1([2|A]) :-q 1(A).

Note that in order to obtain this specialized program it is required: (1) to use an abstract

domain which captures regular types, (2) to compute approximations of success substitutions,

(3) to perform aggressive unfolding, (4) to be able to eliminate rules which are incompatible

with a given abstract call pattern, and (5) to be able to abstractly execute calls to predicates

which are regular types.

Traditional partial deduction would not be able to optimize this program very much. It can

perform (3), but none of the four other requirements. Abstract interpretation without special-

ized definitions would not be able to infer accurate enough information so as to detect that the

validlist tests are redundant. Abstract specialization cannot perform (3) and thus would not

be able to fully optimize the program.

Note that having all this features simultaneously in the framework further improves the results

obtained by the individual techniques. Having (1) and (2) allow performing instantiation with

abstract information which improves the results of unfolding orp. This in turn may generate new

bindings which may improve the analysis results, and so on. Thus, the fine-grained integration

we propose allows improving simultaneously the benefits of program analysis and specialization.

Another example of the power of the combination is the optimization of the call toapp . The

system infers that the first list contains three constant elements and an unknown one. After four

unfoldings its definition disappears. Also, the testvalidlist is abstractly executed by our

system the list resulting from the concatenation since it is inferred fromq 1 thatB is a valid list.

Clearly, the first three elements also satisfy the test.

182

56 Conclusions

Several works have witnessed the need of unifying the techniques of abstract interpretation and

partial evaluation in a single framework able to obtain highly specialized programs. There has

been a parallel development of frameworks which integrate notions of abstract interpretation in

a partial evaluation algorithm [124, 70] and others which incorporate a code generation phase

within an abstract interpreter [191, 192]. However, we are not aware of any practical algorithm

able to combine and improve the power of the individual techniques.

The first approach establishes the conditions that the operations of abstract unfolding and

abstract resolution must fulfill in order to have a correct framework, but does not give an actual

algorithm. In the latter approach, it is specified how to generate code from the program and the

analysis results but not specify how to perform unfolding. Indeed, [192] points out the need

of integrating an unfolding rule in the abstract interpreter for the purpose of specialization and

mentions several possibilities for doing it.

Our work studies an efficient and practical way of interleaving unfolding and abstract inter-

pretation so that we unify the advantages of the individual techniques. In particular, we present

an on-line, specialization algorithm for logic programs, whose behavior is parametric w.r.t. the

local control strategyρ, the generalization operatorgeneralize and the abstract domainDα

(together with a widening operator when needed). In particular, the analysis algorithm can be

formulated as:

analyze(Dα,∇α, local control(ρ), generalize)

Useful instances of this generic algorithm can be easily defined by instantiating the above four

parameters. In this work, we have considered the case of partial evaluation which usually depends

only on the unfolding rule and the generalization operator. Then, it happens that:

analyze(D′α, ∅, local control(inst + unfold), generalize)

is a PE procedure if the domainD′α assigns> to all terms and no widening operator is used.

Thus, by using more refined abstract domains, it has been shown that our algorithm is a reason-

able improvement over pure PE. Another instance of the algorithm is obtained by considering

the off local control rule. In such case, there is no need for a global control rule. We can

use theId value, for example. Thus, the algorithmanalyze(Dα,∇α, local control(off), Id)

corresponds to the abstract interpreter of [89]. Some examples demonstrate that by considering

advanced unfolding rules and abstraction operators we can increase the accuracy of [89]. Conse-

quently, we think that our method can give support and induce new research in hybrid approaches

to specialization.

183

Acknowledgements

The authors would like to thank Maurice Bruynooghe for the valuable feedback he provided on

the ACM TOPLAS paper, as well as the anonymous referees of such a paper, whose detailed

comments and constructive criticisms have substantially improved the article.

The authors also greatly benefited from discussions with Danny De Schreye, Stefan Gruner,

Neil Jones, Jesper Jørgensen, Helko Lehmann, Bern Martens, Torben Mogensen, Jens-Peter

Secher, Morten Heine Sørensen, and comments of anonymous referees of JICSLP’98.

Thanks to Francisco Bueno and Pedro López for their help in the implementation of the tools

herein presented, to M. Garcı́a de la Banda, P J. Stuckey, and K. Marriott who have participated

in the development of some of the applications presented, and to Claudio Vaucheret for his

implementation of theetermsdomain.

184

References

[1] P. A. Abdulla, K.Čer̄ans, B. Jonsson, and Y.-K. Tsay. General Decidability Theorems

for Infinite-state Systems. In11th IEEE Symposium on Logic in Computer Science, pages

313–321, 1996.

[2] E. Albert, M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Improving control in func-

tional logic program specialization. In G. Levi, editor, Static Analysis.Proceedings of

SAS’98, LNCS 1503, pages 262–277, Pisa, Italy, September 1998. Springer-Verlag.

[3] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.

ACM Transactions on Programming Languages and Systems, 20(4):768–844, 1998.

[4] K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor,Handbook of

Theoretical Computer Science, chapter 10, pages 495–574. North-Holland Amsterdam,

1990.

[5] K. R. Apt and E.-R. Olderog. Verification of Sequencial and Concurrent Programs.

Springer-Verlag, 1991.

[6] K. Benkerimi and P. M. Hill. Supporting transformations for the partial evaluation of logic

programs.Journal of Logic and Computation, 3(5):469–486, October 1993.

[7] F. Benoy and A. King. Inferring argument size relations in CLP(R). In Proceedings of

the 6th International Workshop on Logic Program Synthesis and Transformation, pages

204–223, Sweden, 1996. Springer-Verlag, LNCS 1207.

[8] R. Bol. Loop checking in partial deduction.The Journal of Logic Programming,

16(1&2):25–46, 1993.

[9] R. Bol. Loop Checking in Partial Deduction.Journal of Logic Programming, 16(1&2):25–

46, 1993.

[10] D. Boulanger and M. Bruynooghe. Deriving fold/unfold transformations of logic pro-

grams using extended OLDT-based abstract interpretation.Journal of Symbolic Compu-

tation, 15(5&6):495–521, 1993.

[11] D. Boulanger and M. Bruynooghe. A systematic construction of abstract domains. In

B. Le Charlier, editor,Proc. First International Static Analysis Symposium, SAS’94, vol-

ume 864 ofSpringer-Verlag Lecture Notes in Computer Science, pages 61–77, 1994.

185

[12] D. Boulanger, M. Bruynooghe, and M. Denecker. Abstractings-semantics using a model-

theoretic approach. In M. Hermenegildo and J. Penjam, editors,Proc. 6th Interna-

tional Symposium on Programming Language Implementation and Logic Programming,

PLILP’94, volume 844 ofSpringer-Verlag Lecture Notes in Computer Science, pages 432–

446, 1994.

[13] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.

Journal of Logic Programming, 10:91–124, 1991.

[14] M. Bruynooghe. A practical framework for the abstract interpretation of logic programs.

The Journal of Logic Programming, 10:91–124, 1991.

[15] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding Infinite

Unfolding. New Generation Computing, 11(1):47–79, 1992.

[16] M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite

unfolding during partial deduction.New Generation Computing, 11(1):47–79, 1992.

[17] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard

Prolog Programs. InEuropean Symposium on Programming, number 1058 in LNCS,

pages 108–124, Sweden, April 1996. Springer-Verlag.

[18] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: a heuristic

for guiding inductive proofs.Artificial Intelligence, 62:185–253, 1993.

[19] R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-

grams.Journal of the ACM, 24(1):44–67, 1977.

[20] R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-

grams.Journal of the ACM, 24(1):44–67, 1977.

[21] W. Charatonik and A. Podelski. Directional type inference for logic programs. In G. Levi,

editor, Proceedings of the International Symposium on Static Analysis (SAS’98), Pisa,

September 14 - 16, 1998, volume 1503 ofSpringer LNCS, pages 278–294. Springer-

Verlag, 1998.

[22] W. Charatonik, A. Podelski, and J.-M. Talbot. Paths vs. Tress in Set-based Program Ana-

lysis. In Principles of Programming Languages, pages 330–338. ACM Press, January

2000.

186

[23] B. L. Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract

Interpretation Algorithm for Prolog.ACM Transactions on Programming Languages and

Systems, 16(1):35–101, 1994.

[24] W.-N. Chin and S.-C. Khoo. Tupling functions with multiple recursion parameters. In

Proceedings of the Third International Workshop on Static Analysis, number 724 in LNCS

724, pages 124–140, Padova, Italy, Sept. 1993. Springer-Verlag.

[25] K. Clark. Predicate logic as a computational formalism. Technical Report DOC 79/59,

Imperial College, London, Department of Computing, 1979.

[26] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[27] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. The MIT Press, 2000.

[28] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions.ACM

Computing Surveys, 28(4):626–643, Dec. 1996.

[29] M. Comini and M. C. Meo. Compositionality properties of sld-derivations.Theoretical

Computer Science, 211(1 & 2):275–309, Jan. 1999.

[30] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree Automata Techniques and Applications. http://www.grappa.univ-lille3.fr/tata, 1999.

[31] C. Consel and O. Danvy. Tutorial notes on partial evaluation. InProceedings of

ACM Symposium on Principles of Programming Languages (POPL’93), pages 493–501,

Charleston, South Carolina, January 1993. ACM Press.

[32] C. Consel and O. Danvy. Tutorial Notes on Partial Evaluation. InACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages POPL’93, pages 493–501,

Charleston, South Carolina, 1993. ACM.

[33] C. Consel and S. C. Khoo. Parameterized partial evaluation.ACM Transactions on Pro-

gramming Languages and Systems, 15(3):463–493, 1993.

[34] C. Consel and S. Koo. Parameterized partial deduction.ACM Transactions on Program-

ming Languages and Systems, 15(3):463–493, July 1993.

[35] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. InFourth ACM

Symposium on Principles of Programming Languages, pages 238–252, 1977.

187

[36] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.The

Journal of Logic Programming, 13(2 & 3):103–179, 1992.

[37] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks

by Abstract Interpretation. InPOPL’02: 29ST ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 178–190, Portland, Oregon, January 2002.

ACM.

[38] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables

of a program. InProceedings of the Conference Record of the 5th ACM Symposium on

Principles of Programming Languages, pages 84–97, Albuquerque, New Mexico, 1978.

[39] P. Dart and J. Zobel. A Regular Type Language for Logic Programs. InTypes in Logic

Programming, pages 157–187. MIT Press, 1992.

[40] M. G. de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Constraint Logic Pro-

grams with Dynamic Scheduling. In1995 International Logic Programming Symposium,

pages 417–431, Portland, Oregon, December 1995. MIT Press, Cambridge, MA.

[41] D. De Schreye and S. Decorte. Termination of logic programs: The never ending story.

The Journal of Logic Programming, 19 & 20:199–260, May 1994.

[42] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen.

Conjunctive partial deduction: Foundations, control, algorithms and experiments.Journal

of Logic Programming, 41(2 & 3):231–277, November 1999.

[43] D. A. de Waal and J. Gallagher. Specialisation of a unification algorithm. In T. Clement

and K.-K. Lau, editors, Logic Program Synthesis and Transformation.Proceedings of

LOPSTR’91, pages 205–220, Manchester, UK, 1991.

[44] D. A. de Waal and J. Gallagher. The applicability of logic program analysis and transfor-

mation to theorem proving. In A. Bundy, editor,Automated Deduction—CADE-12, pages

207–221. Springer-Verlag, 1994.

[45] S. Debray and D. Warren. Automatic mode inference for logic programs.Journal of Logic

Programming, 5(3):207–229, 1988.

[46] G. Delzanno and A. Podelski. Model Checking in CLP. In W. R. Cleaveland, editor,5th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 223–239. Springer-Verlag, LNCS 1579, 1999.

188

[47] K. Doets. Levationis laus.Journal of Logic and Computation, 3(5):487–516, 1993.

[48] A. Finkel. The minimal coverability graph for Petri nets.Lecture Notes in Computer

Science, 674:210–243, 1993.

[49] A. Finkel and P. Schnoebelen. Fundamental Structures in Well-structured Infinite Tran-

sition Systems. InProceedings of LATIN’98, volume 1380 ofLNCS, pages 102–118.

Springer-Verlag, 1998.

[50] A. Finkel and P. Schnoebelen. Well-structured Transition Systems everywhere!Theoreti-

cal Computer Science, 1999. To appear.

[51] F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specialising con-

straint logic programs. In K.-K. Lau, editor,10th International Workshop on Logic-based

Program Synthesis and Transformation, pages 125–146. Springer-Verlag, LNCS 2042,

2000.

[52] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state

systems by specializing constraint logic programs. Technical Report DSSE-TR-2001-

3, Department of Electronics and Computer Science, University of Southampton, 2001.

Proceedings of the Second International Workshop on Verification and Computational

Logic (VCL’01).

[53] T. Früwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for logic

programs. InProc. LICS’91, pages 300–309, 1991.

[54] Y. Futamura, K. Nogi, and A. Takano. Essence of generalized partial computation.Theo-

retical Computer Science, 90(1):61–79, 1991.

[55] J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,

University of Bristol, November 1991.

[56] J. Gallagher. Static Analysis for Logic Program Specialization. InWorkshop on Static

Analysis WSA’92, pages 285–294, 1992.

[57] J. Gallagher. Tutorial on specialisation of logic programs. InProceedings of PEPM’93,

the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program Ma-

nipulation, pages 88–98. ACM Press, 1993.

189

[58] J. Gallagher, D. Boulanger, and H. Sağlam. Practical model-based static analysis for

definite logic programs. In J. W. Lloyd, editor,Proc. of International Logic Programming

Symposium, pages 351–365, 1995.

[59] J. Gallagher and M. Bruynooghe. Some low-level transformations for logic programs.

In M. Bruynooghe, editor,Proceedings of Meta90 Workshop on Meta Programming in

Logic, pages 229–244, Leuven, Belgium, 1990.

[60] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program specialisa-

tion. New Generation Computing, 9(3 & 4):305–333, 1991.

[61] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program specialisa-

tion. New Generation Computing, 9(1991):305–333, 1991.

[62] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP Programs

Using Abstract Interpretation.New Generation Computing, 6(2–3):159–186, 1988.

[63] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP programs using

abstract interpretation.New Generation Computing, 6:159–186, 1988.

[64] J. Gallagher and D. de Waal. Deletion of redundant unary type predicates from logic pro-

grams. In K. Lau and T. Clement, editors,Logic Program Synthesis and Transformation,

Workshops in Computing, pages 151–167. Springer-Verlag, 1993.

[65] J. Gallagher and D. de Waal. Fast and precise regular approximations of logic programs.

In P. Van Hentenryck, editor,Proc. of the 11th International Conference on Logic Pro-

gramming, pages 599–613. MIT Press, 1994.

[66] J. Gallagher and D. A. de Waal. Deletion of redundant unary type predicates from logic

programs. In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and Transfor-

mation.Proceedings of LOPSTR’92, pages 151–167, Manchester, UK, 1992.

[67] J. Gallagher and D. A. de Waal. Fast and precise regular approximations of logic programs.

In P. Van Hentenryck, editor,Proceedings of the Eleventh International Conference on

Logic Programming, pages 599–613. The MIT Press, 1994.

[68] J. Gallagher and L. Lafave. Regular approximation of computation paths in logic and

functional languages. In O. Danvy, R. Glück, and P. Thiemann, editors,Partial Evaluation,

volume 1110, pages 115 – 136. Springer Verlag Lecture Notes in Computer Science, 1996.

190

[69] J. Gallagher and L. Lafave. Regular approximations of computation paths in logic and

functional languages. In O. Danvy, R. Glück, and P. Thiemann, editors,Partial Evaluation,

International Seminar, LNCS 1110, pages 115–136, Schloß Dagstuhl, 1996. Springer-

Verlag.

[70] J. Gallagher and J. Peralta. Using regular approximations for generalisation during partial

evaluation. InProc. of the SIGPLAN Workshop on Partial Evaluation and Semantics-

based Program Manipulation, pages 44–51. ACM Press, 2000.

[71] J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite Tree

Automata for Set-Based Analysis of Logic Programs. InFourth International Symposium

on Practical Aspects of Declarative Languages, number 2257 in LNCS, pages 243–261.

Springer-Verlag, January 2002.

[72] J. P. Gallagher and L. Lafave. Regular approximation of computation paths in logic and

functional languages. In O. Danvy, R. Glück, and P. Thiemman, editors,Partial Evalua-

tion, pages 115–136. Springer-Verlag, LNCS 1110, 1996.

[73] J. P. Gallagher and J. C. Peralta. Using regular approximations for generalisation during

partial evaluation. In J. Lawall, editor,Proceedings of PEPM’00, pages 44–51. ACM

Press, 2000.

[74] J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain in program

specialisation.Higher Order and Symbolic Computation, 14(2–3):143–172, November

2001.

[75] J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain in program

specialisation.Higher-Order and Symbolic Computation, 14(2-3):143–172, 2001.

[76] J. P. Gallagher and G. Puebla. Abstract interpretation over non-deterministic finite tree au-

tomata for set-based analysis of logic programs. In S. Krishnamurthi and C. R. Ramakrish-

nan, editors,Practical Aspects of Declarative Languages, 4th International Symposium,

PADL 2002, Portland, OR, USA, LNCS Vol. 2257, pages 243–261. Springer Lecture Notes

in Computer Science, January 2002.

[77] F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance Detection and

Selective Program Specialization. InProc. 3rd. Int’l Symposium on Programming Lan-

guage Implementation and Logic Programming, number 528 in LNCS, pages 323–335.

Springer-Verlag, August 1991.

191

[78] R. Glück and J. Jørgensen. Generating transformers for deforestation and supercompila-

tion. In B. Le Charlier, editor,Proceedings of SAS’94, LNCS 864, pages 432–448, Namur,

Belgium, September 1994. Springer-Verlag.

[79] R. Glück, J. Jørgensen, B. Martens, and M. H. Sørensen. Controlling conjunctive partial

deduction of definite logic programs. In H. Kuchen and S. Swierstra, editors,Proceedings

of PLILP’96, LNCS 1140, pages 152–166, Aachen, Germany, September 1996. Springer-

Verlag.

[80] R. Glück and M. Leuschel. Abstraction-based partial deduction for solving inverse prob-

lems – a transformational approach to software verification. InProceedings of the Third

International Ershov Conference on Perspectives of System Informatics, volume 1755 of

LNCS, pages 93–100, Novosibirsk, Russia, 1999. Springer-Verlag.

[81] R. Glück and M. H. Sørensen. Partial deduction and driving are equivalent. In

M. Hermenegildo and J. Penjam, editors,Programming Language Implementation and

Logic Programming. Proceedings, Proceedings of PLILP’94, LNCS 844, pages 165–181,

Madrid, Spain, 1994. Springer-Verlag.

[82] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execution of

Prolog Programs: a Survey.ACM Transactions on Programming Languages and Systems,

23(4):472–602, July 2001.

[83] P. V. Hentenryck, A. Cortesi, and B. L. Charlier. Type analysis of prolog using type graphs.

Journal of Logic Programming, 22(3):179 – 210, 1994.

[84] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcı́a de la Banda, P. Ĺopez-

Garćıa, and G. Puebla. The Ciao Logic Programming Environment. InInternational

Conference on Computational Logic, CL2000, July 2000.

[85] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program Analysis, De-

bugging and Optimization Using the Ciao System Preprocessor. In1999 International

Conference on Logic Programming, pages 52–66, Cambridge, MA, November 1999. MIT

Press.

[86] M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-

Parallelism.New Generation Computing, 9(3,4):233–257, 1991.

[87] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Development

Using Abstract Interpretation (and The Ciao System Preprocessor). In10th International

192

Static Analysis Symposium (SAS’03), number 2694 in LNCS, pages 127–152. Springer-

Verlag, June 2003.

[88] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Development

Using Abstract Interpretation (and The Ciao System Preprocessor). InProc. of SAS’03,

pages 127–152. Springer LNCS 2694, 2003.

[89] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Con-

straint Logic Programs.ACM Transactions on Programming Languages and Systems,

22(2):187–223, March 2000.

[90] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in

Logic Programs: Correctness, Efficiency, and Compile-Time Conditions.Journal of Logic

Programming, 22(1):1–45, 1995.

[91] M. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis as a practical com-

pilation tool. The Journal of Logic Programming, 13(4):349–366, 1992.

[92] J. Howe and A. King. Specialising finite domain programs using polyhedra. In A. Bossi,

editor,Logic-Based Program Synthesis and Transformation (LOPSTR’99), volume 1817

of Springer-Verlag Lecture Notes in Computer Science, pages 118–135, April 2000.

[93] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting

systems.Journal of the ACM, 27(4):797–821, 1980.

[94] J. Hughes. A type specialisation tutorial. In J. Hatcliff, T. Æ. Mogensen, and P. Thie-

mann, editors,Partial Evaluation: Practice and Theory, LNCS 1706, pages 293–325,

Copenhagen, Denmark, 1999. Springer-Verlag.

[95] D. Jacobs and A. Langen. Static analysis of logic programs for independent and-

parallelism.Journal of of Logic Programming, 13(2&3):291–314, 1992.

[96] J. Jaffar and M. J. Maher. Constraint logic programming: A survey.The Journal of Logic

Programming, 19(20):503–581, 1994.

[97] G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of program

variables by means of abstract interpretation.The Journal of Logic Programming, 13(2 &

3):205–258, 1992.

193

[98] G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Program

Variables by means of Abstract Interpretation.Journal of Logic Programming, 13(2 and

3):205–258, July 1992.

[99] N. Jones, C. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program Genera-

tion. Prenctice Hall, New York, 1993.

[100] N. Jones, C. Gomard, and P. Sestoft.Partial Evaluation and Automatic Software Genera-

tion. Prentice Hall, 1993.

[101] N. D. Jones. An introduction to partial evaluation.ACM Computing Surveys, 28(3):480–

503, September 1996.

[102] N. D. Jones. Combining abstract interpretation and partial evaluation. In P. Van Henten-

ryck, editor,Static Analysis, Proceedings of SAS’97, LNCS 1302, pages 396–405, Paris,

1997. Springer-Verlag.

[103] N. D. Jones. Combining Abstract Interpretation and Partial Evaluation. InStatic Analysis

Symposium, number 1140 in LNCS, pages 396–405. Springer-Verlag, 1997.

[104] N. D. Jones. Combining abstract interpretation and partial evaluation. In P. Van Hen-

tenryck, editor,Symposium on Static Analysis (SAS’97), volume 1302 ofSpringer-Verlag

Lecture Notes in Computer Science, pages 396–405, 1997.

[105] N. D. Jones. The essence of program transformation by partial evaluation and driving.

In Proceedings of the Third International Ershov Conference on Perspectives of System

Informatics, LNCS 1755, pages 62–79, Novosibirsk, Russia, 1999. Springer-Verlag.

[106] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program

Generation. Prentice Hall, 1993.

[107] N. D. Jones and H. Søndergaard. A semantics-based framework for the abstract inter-

pretation of Prolog. In S. Abramski and C. Hankin, editors,Abstract Interpretation of

Declarative Languages, chapter 6, pages 124–142. Ellis-Horwood, 1987.

[108] R. M. Karp and R. E. Miller. Parallel program schemata.Journal of Computer and System

Sciences, 3:147–195, 1969.

[109] H.-P. Ko and M. E. Nadel. Substitution and refutation revisited. In K. Furukawa, editor,

Logic Programming: Proceedings of the Eighth International Conference, pages 679–692.

MIT Press, 1991.

194

[110] J. Komorovski. An Introduction to Partial Deduction. In A. Pettorossi, editor,Meta

Programming in Logic, Proceedings of META’92, volume 649 ofLNCS, pages 49–69.

Springer-Verlag, 1992.

[111] J. Komorowski. Partial evaluation as a means for inferencing data structures in an applica-

tive language: a theory and implementation in the case of Prolog. InNinth Annual ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages. Albuquerque,

New Mexico, pages 255–267, 1982.

[112] J. Komorowski. An introduction to partial deduction. In A. Pettorossi, editor,Proceedings

Meta’92, LNCS 649, pages 49–69. Springer-Verlag, 1992.

[113] L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-based func-

tional logic programs. In N. Fuchs, editor,Logic Program Synthesis and Transformation.

Proceedings of LOPSTR’97, LNCS 1463, pages 168–188, Leuven, Belgium, July 1997.

[114] J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming, pages 587–625. Morgan-

Kaufmann, 1988.

[115] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic abstract

interpretation algorithm for Prolog.ACM Transaction on Programming Langauges and

Systems, 16(1):35–101, 1994.

[116] H. Lehmann and M. Leuschel. Generating inductive verification proofs for Isabelle using

the partial evaluator Ecce. Technical Report DSSE-TR-2002-02, Department of Electron-

ics and Computer Science, University of Southampton, UK, September 2002.

[117] M. Leuschel. Ecological partial deduction: Preserving characteristic trees without con-

straints. In Logic Program Synthesis and Transformation.Pre-Proceedings of LOP-

STR’95, Utrecht, Netherlands, September 1995. Extended version as Technical Report

CW 216, K.U. Leuven.

[118] M. Leuschel. Ecological partial deduction: Preserving characteristic trees without con-

straints. In M. Proietti, editor,Proceedings of the 5th International Workshop on Logic

Program Synthesis and Transformation. Springer-Verlag, 1995.

[119] M. Leuschel. TheECCE partial deduction system and theDPPD library of benchmarks.

Obtainable viahttp://www.ecs.soton.ac.uk/˜mal , 1996-2002.

195

[120] M. Leuschel.Advanced Techniques for Logic Program Specialisation. PhD thesis, K.U.

Leuven, May 1997.

[121] M. Leuschel. TheECCE partial deduction system. In G. Puebla, editor,Proceedings of

the ILPS’97 Workshop on Tools and Environments for (Constraint) Logic Programming,

Universidad Polit́ecnica de Madrid, Tech. Rep. CLIP7/97.1, Port Jefferson, USA, October

1997.

[122] M. Leuschel. On the power of homeomorphic embedding for online termination. In

G. Levi, editor, Static Analysis.Proceedings of SAS’98, LNCS 1503, pages 230–245,

Pisa, Italy, September 1998. Springer-Verlag.

[123] M. Leuschel. Program specialisation and abstract interpretation reconciled. InProc. of

JICSLP’98, pages 220–234. MIT Press, June 1998.

[124] M. Leuschel. Program Specialisation and Abstract Interpretation Reconciled. InJoint

International Conference and Symposium on Logic Programming, June 1998.

[125] M. Leuschel. Logic program specialisation. In J. Hatcliff, T. Æ. Mogensen, and P. Thie-

mann, editors,Partial Evaluation: Practice and Theory, LNCS 1706, pages 155–188 and

271–292, Copenhagen, Denmark, 1999. Springer-Verlag.

[126] M. Leuschel. Logic Program Specialisation. In J. Hatcliff, T. Æ. Mogensen, and P. Thie-

mann, editors,Partial Evaluation: Practice and Theory, volume 1706 ofLNCS, pages

155–188. Springer-Verlag, Denmark, 1999.

[127] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction:

Control issues.Theory and Practice of Logic Programming, Special issue on program

development, 2(4 & 5), July 2002. To appear.

[128] M. Leuschel and D. De Schreye. Constrained partial deduction and the preservation of

characteristic trees. Technical Report CW 250, Departement Computerwetenschappen,

K.U. Leuven, Belgium, June 1997. Accepted for Publication in New Generation Comput-

ing.

[129] M. Leuschel, D. De Schreye, and A. de Waal. A conceptual embedding of folding into

partial deduction: Towards a maximal integration. In M. Maher, editor,Proceedings of the

Joint International Conference and Symposium on Logic Programming JICSLP’96, pages

319–332, Bonn, Germany, September 1996. MIT Press.

196

[130] M. Leuschel and S. Gruner. Abstract conjunctive partial deduction using regular types

and its application to model checking. InLogic Program Synthesis and Transformation

(LOPSTR), number 2372 in LNCS. Springer, 2001.

[131] M. Leuschel and S. Gruner. Abstract partial deduction using regular types and its ap-

plication to model checking. In A. Pettorossi, editor,Proc. of 11th Int’l Workshop on

Logic-based Program Synthesis and Transformation, LOPSTR’2001, LNCS 2372, pages

91–110, Paphos, Cyprus, 2001. Springer-Verlag.

[132] M. Leuschel and S. Gruner. Abstract partial deduction using regular types and its ap-

plication to model checking. In A. Pettorossi, editor,(Pre)Proceedings of LOPSTR-

2001 11th International Workshop on Logic-based Program Synthesis and Transformation

(LOPSTR-2001), Paphos, Cyprus, December 2001.

[133] M. Leuschel and J. Jørgensen. Efficient specialisation in Prolog using a hand-written

compiler generator. Technical Report DSSE-TR-99-6, Department of Electronics and

Computer Science, University of Southampton, Sept. 1999.

[134] M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in Pro-

log using a hand-written compiler generator.Theory and Practice of Logic Programming,

4(1):139–191, 2004.

[135] M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other well-structured

transition systems by partial deduction. In J. Lloyd, editor,Proceedings of the Inter-

national Conference on Computational Logic (CL’2000), LNAI 1861, pages 101–115,

London, UK, 2000. Springer-Verlag.

[136] M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured

Transition Systems by Partial Deduction. In J. Lloyd, editor,Proceedings of the Interna-

tional Conference on Computational Logic (CL’2000), volume 1861 ofLNCS, London,

UK, 2000. Springer-Verlag.

[137] M. Leuschel and H. Lehmann. Solving Coverability Problems of Petri Nets by Partial

Deduction. In M. Gabbrielli and F. Pfenning, editors,Proceedings of PPDP’2000, pages

268–279, Montreal, Canada, 2000. ACM Press.

[138] M. Leuschel and B. Martens. Partial deduction of the ground representation and its appli-

cation to integrity checking. In J. Lloyd, editor,Proceedings of ILPS’95, the International

Logic Programming Symposium, Portland, USA, December 1995. MIT Press. To appear.

Extended version as Technical Report CW 210, K.U. Leuven.

197

[139] M. Leuschel and B. Martens. Global control for partial deduction through characteristic

atoms and global trees. In O. Danvy, R. Glück, and P. Thiemann, editors,Proceedings of

the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages 263–283, Schloß

Dagstuhl, 1996.

[140] M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvari-

ance in partial deduction of normal logic programs.ACM Transactions on Programming

Languages and Systems, 20(1):208–258, January 1998.

[141] M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and

program specialisation. In A. Bossi, editor,Logic-Based Program Synthesis and Trans-

formation, pages 62–81. Springer Verlag, LNCS 1817, 1999.

[142] M. Leuschel and T. Massart. Infinite State Model Checking by Abstract Interpretation and

Program Specialisation. In A. Bossi, editor,Proceedings of LOPSTR’99, volume 1817 of

LNCS, pages 63–82, Venice, Italy, Sept. 1999.

[143] M. Leuschel and D. Schreye. Logic program specialisation: How to be more specific. In

H. Kuchen and S. Swierstra, editors,Proceedings of the International Symposium on Pro-

gramming Languages, Implementations, Logics and Programs (PLILP’96), LNCS 1140,

pages 137–151, Aachen, Germany, September 1996.

[144] M. Leuschel, D. D. Schreye, and D. A. de Waal. A conceptual embedding of folding into

partial deduction: towards a maximal integration. In M. Maher, editor,Proceedings of the

Joint Int,. Conf. and Symp. on Logic Programming (JICSLP’96). MIT Press, 1996.

[145] M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs. In

J. Gallagher, editor,Logic Program Synthesis and Transformation. Proceedings of LOP-

STR’96, LNCS 1207, pages 83–103, Stockholm, Sweden, August 1996. Springer-Verlag.

[146] T. Lindgren and P. Mildner. The impact of structure analysis on prolog compilation. Tech-

nical Report 140, Computing Science Departament, Uppsala University, April 1997.

[147] J. Lloyd. Foundations of Logic Programming. Springer, second, extended edition, 1987.

[148] J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Programming.Journal of Logic

Programming, 11(3–4):217–242, 1991.

[149] J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Programming.Journal of Logic

Programming, 11(3 & 4):217–242, 1991.

198

[150] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[151] J. W. Lloyd. Logic Programming. Springer-Verlag, 1987.

[152] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.The Journal

of Logic Programming, 11:217–242, 1991.

[153] K. Marriot and P. Stuckey. The 3 R’s of optimizing constraint logic programs: Refinement,

Removal and Reordering. InProceedings of the Twentieth Symposium on Principles of

Programming Languages, pages 334–344, Charleston, South Carolina, 1993. ACM Press.

[154] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. InProceedings of

the Joint International Conference and Symposium on Logic Programming, pages 909–

923, Seattle, 1988. IEEE, MIT Press.

[155] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs.Annals of Mathe-

matics and Artificial Intelligence, 1:303–338, 1990.

[156] B. Martens and D. De Schreye. Automatic finite unfolding using well-founded measures.

The Journal of Logic Programming, 28(2):89–146, August 1996.

[157] B. Martens, D. De Schreye, and T. Horváth. Sound and complete partial deduction with

unfolding based on well-founded measures.Theoretical Computer Science, 122(1–2):97–

117, 1994.

[158] B. Martens and J. Gallagher. Ensuring global termination of partial deduction while al-

lowing flexible polyvariance. In L. Sterling, editor,Proceedings ICLP’95, pages 597–611,

Shonan Village Center, Japan, June 1995. MIT Press.

[159] P. Mildner. Type Domains for Abstract Interpretation: A Critical Study. PhD thesis,

Computing Science Department - Uppsala University, Uppsala, 1999.

[160] P. Mishra. Towards a theory of types in prolog. InProceedings of the IEEE International

Symposium on Logic Programming, 1984.

[161] T. Mogensen and P. Sestoft. Partial evaluation. In A. Kent and J. G. Williams, editors,

Encyclopedia of Computer Science and Technology, pages 247–279. Marcel Decker, 270

Madison Avenue, New York, New YOrk 10016, 1997.

[162] T. Æ.. Mogensen. Partially static structures in a self-applicable partial evaluator. In

D. Bjørner, A. Ershov, and N. Jones, editors,Partial Evaluation and Mixed Computation,

pages 325–347. North-Holland, 1988.

199

[163] S. S. Muchnick.Advanced Compiler Design Implementation. Morgan Kaufmann Pub-

lishers, Inc., San Francisco, California, 1997.

[164] K. Muthukumar, F. Bueno, M. G. de la Banda, and M. Hermenegildo. Automatic

Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Independent

And-parallelism.Journal of Logic Programming, 38(2):165–218, February 1999.

[165] K. Muthukumar and M. Hermenegildo. Complete and Efficient Methods for Supporting

Side Effects in Independent/Restricted And-parallelism. In1989 International Conference

on Logic Programming, pages 80–101. MIT Press, June 1989.

[166] K. Muthukumar and M. Hermenegildo. Combined determination of sharing and freeness

of program variables through abstract interpretation. In K. Furukawa, editor,Proceedings

of the Eighth International Conference on Logic Programming, pages 49–63, Paris, 1991.

MIT Press, Cambridge.

[167] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency

Using Abstract Interpretation.The Journal of Logic Programming, 13(2&3):315–347,

July 1992.

[168] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof Assistant for HIgher-

Order Logic. LNCS 2283. Springer-Verlag, 2002.

[169] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 ofLNCS. Springer-

Verlag, 1994.

[170] J. C. Peralta and J. P. Gallagher. Imperative program specialisation: An approach using

CLP. In A. Bossi, editor,Logic-Based Program Synthesis and Transformation, pages

102–117. Springer Verlag, LNCS 1817, 1999.

[171] A. Pettorossi and M. Proietti. Program derivation via list introduction. In R. Bird and

L. Meertens, editors,Proceedings of the IFIP TC2 Working Conference on Algorithmic

Languages and Calculi, Le Bischenberg, France, February 1996. Chapman & Hall.

[172] A. Pettorossi and M. Proietti. A theory of logic program specialization and generalization

for dealing with input data properties. In O. Danvy, R. Glück, and P. Thiemann, editors,

Partial Evaluation, International Seminar, LNCS 1110, pages 386–408, Schloß Dagstuhl,

1996. Springer-Verlag.

200

[173] A. Pettorossi and M. Proietti. A theory of logic program specialization and generalization

for dealing with input data properties. In Springer-Verlag, editor,Dagstuhl Seminar on

Partial Evaluation, number 1110 in LNCS, 1996.

[174] A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using un-

fold/fold proofs.The Journal of Logic Programming, 41(2&3):197–230, Nov. 1999.

[175] A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while specializing

logic programs. In N. D. Jones, editor,Proceedings of ACM Symposium on Principles of

Programming Languages (POPL’97), pages 414–427, Paris, France, January 1997.

[176] M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for avoiding

unnecessary variables in logic programs. In J. Małuszyński and M. Wirsing, editors,Pro-

ceedings of PLILP’91, LNCS 528, pages 347–358. Springer-Verlag, 1991.

[177] M. Proietti and A. Pettorossi. The loop absorption and the generalization strategies for the

development of logic programs and partial deduction.The Journal of Logic Programming,

16(1 & 2):123–162, May 1993.

[178] G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program Vali-

dation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,

Analysis and Visualization Tools for Constraint Programming, number 1870 in LNCS,

pages 63–107. Springer-Verlag, September 2000.

[179] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic

Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,Analysis and

Visualization Tools for Constraint Programming, number 1870 in LNCS, pages 23–61.

Springer-Verlag, September 2000.

[180] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-

Based Debugging of Constraint Logic Programs. InLogic-based Program Synthesis and

Transformation (LOPSTR’99), number 1817 in LNCS, pages 273–292. Springer-Verlag,

2000.

[181] G. Puebla, M. G. de la Banda, K. Marriott, and P. Stuckey. Optimization of Logic Pro-

grams with Dynamic Scheduling. In1997 International Conference on Logic Program-

ming, pages 93–107, Cambridge, MA, June 1997. MIT Press.

[182] G. Puebla, J. Gallagher, and M. Hermenegildo. Towards integrating partial evaluation

in a specialization framework based on generic abstract interpretation. In M. Leuschel,

201

editor,Proceedings of the ILPS’97 Workshop on Specialisation of Declarative Programs

and its Application, K.U. Leuven, Tech. Rep. CW 255, pages 29–38, Port Jefferson, USA,

October 1997.

[183] G. Puebla, J. Gallagher, and M. Hermenegildo. Towards Integrating Partial Evaluation

in a Specialization Framework based on Generic Abstract Interpretation. In M. Leuschel,

editor,Proceedings of the ILPS’97 Workshop on Specialization of Declarative Programs,

October 1997. Post ILPS’97 Workshop.

[184] G. Puebla and M. Hermenegildo. Implementation of multiple specialization in logic pro-

grams. InProceedings of PEPM’95, the ACM Sigplan Symposium on Partial Evalua-

tion and Semantics-Based Program Manipulation, pages 77–87, La Jolla, California, June

1995. ACM Press.

[185] G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in Logic

Programs. InProc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics

Based Program Manipulation, pages 77–87. ACM Press, June 1995.

[186] G. Puebla and M. Hermenegildo. Abstract specialization and its application to program

parallelization. In J. Gallagher, editor,Logic Program Synthesis and Transformation.

Proceedings of LOPSTR’96, LNCS 1207, pages 169–186, Stockholm, Sweden, August

1996.

[187] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Analysis

of Logic Programs. InInternational Static Analysis Symposium, number 1145 in LNCS,

pages 270–284. Springer-Verlag, September 1996.

[188] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Application to

Program Parallelization.J. of Logic Programming. Special Issue on Synthesis, Transfor-

mation and Analysis of Logic Programs, 41(2&3):279–316, November 1999.

[189] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Application to

Program Parallelization.J. of Logic Programming. Special Issue on Synthesis, Transfor-

mation and Analysis of Logic Programs, 41(2&3):279–316, November 1999.

[190] G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of Modular

Ciao-Prolog Programs. InSpecial Issue on Optimization and Implementation of Declar-

ative Programming Languages, volume 30 ofElectronic Notes in Theoretical Computer

Science. Elsevier - North Holland, March 2000.

202

[191] G. Puebla and M. Hermenegildo. Abstract Specialization and its Applications. InACM

Partial Evaluation and Semantics based Program Manipulation (PEPM’03), pages 29–43.

ACM Press, June 2003. Invited talk.

[192] G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Partial Evaluation in a

Generic Abstract Interpretation Framework. In O. Danvy, editor,ACM SIGPLAN Work-

shop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’99),

number NS-99-1 in BRISC Series, pages 75–85. University of Aarhus, Denmark, Jan-

uary 1999.

[193] G. Puebla, M. Hermenegildo, and J. P. Gallagher. An integration of partial evaluation in

a generic abstract interpretation framework. In O. Danvy, editor,Proceedings of the ACM

SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation

(PEPM’99), Technical report BRICS-NS-99-1, University of Aarhus, pages 75–84, San

Antonio, Texas, Jan. 1999.

[194] J. C. Reynolds. Transformational systems and the algebraic structure of atomic formulas.

Machine Intelligence, pages 135–151, 1970.

[195] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall, 1999.

[196] H. Saglam and J. Gallagher. Approximating logic programs using types and regular de-

scriptions. Technical Report CSTR-94-19, Department of Computer Science, University

of Bristol, Bristol BS8 1TR, 1994.

[197] H. Săglam and J. P. Gallagher. Constrained regular approximations of logic programs. In

N. Fuchs, editor,LOPSTR’97, pages 282–299. Springer-Verlag, LNCS 1463, 1997.

[198] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog.New Generation Com-

puting, 12(1):7–51, 1993.

[199] D. Sands. Total correctness by local improvement in the transformation of functional

programs.ACM Transactions on Programming Languages and Systems, 18(2):175–234,

Mar. 1996.

[200] U. Shankar. An Introduction to Assertional Reasoning for Concurrent systems.ACM

Computing Surveys, 43(3):225–262, 1993.

[201] D. D. Shreye, R. Gl̈uck, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen.

Conjunctive partial deduction: Foundations, control, algorithms, and experiments.The

203

Journal of Logic Programming, 41(2-3):231–277, 1999. Erratum appeared in JLP 43(3):

265(2000).

[202] M. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercompilation.

In Proc. of ILPS’95, pages 465–479. The MIT Press, 1995.

[203] M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercompila-

tion. In J. W. Lloyd, editor,Proceedings of ILPS’95, the International Logic Programming

Symposium, pages 465–479, Portland, USA, December 1995. MIT Press.

[204] M. H. Sørensen, R. Glück, and N. D. Jones. Towards unifying partial evaluation, de-

forestation, supercompilation, and GPC. In D. Sannella, editor,Programming Languages

and Systems — ESOP ’94. Proceedings, LNCS 788, pages 485–500, Edinburgh, Scotland,

1994. Springer-Verlag.

[205] M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler.Journal of Func-

tional Programming, 6(6):811–838, 1996.

[206] H. Tamaki and M. Sato. Unfold/Fold Transformations of Logic Programs. InSecond In-

ternational Conference on Logic Programming, pages 127–138, Uppsala, Sweden, 1984.

[207] R. Tarjan. Depth-first search and linear graph algorithms.SIAM Journal of Computing,

1(2):146–160, 1972.

[208] V. Turchin. The algorithm of generalization in the supercompiler. In D. B. rner, A. Ershov,

and N. Jones, editors,Proc. of the IFIP TC2 Workshop on Partial Evaluation and Mixed

Computation, pages 531–549. North-Holland, 1988.

[209] V. F. Turchin. Program transformation with metasystem transitions.Journal of Functional

Programming, 3(3):283–313, 1993.

[210] V. F. Turchin. Metacomputation: Metasystem transitions plus supercompilation. In

O. Danvy, R. Gl̈uck, and P. Thiemann, editors,Partial Evaluation, International Semi-

nar, LNCS 1110, pages 482–509, Schloß Dagstuhl, 1996. Springer-Verlag.

[211] J. Ullman. Implementation of Logical Query Languages for Databases.ACM Transactions

on Database Systems, 10(3), 1985.

[212] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog using type

graphs.Journal of Logic Programming, 22(3):179–209, 1995.

204

[213] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic pro-

grams. InInternational Static Analysis Symposium, number 2477 in LNCS, pages 102–

116. Springer-Verlag, September 2002.

[214] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic programs.

In Proc. of SAS’02, pages 102–116. Springer LNCS 2477, 2002.

[215] P. Wadler. Deforestation: Transforming programs to eliminate intermediate trees.The-

oretical Computer Science, 73:231–248, 1990. Preliminary version in ESOP’88, LNCS

300.

[216] W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics.

Journal of Logic Programming, 13(2 and 3):259–290, July 1992.

[217] E. Yardeni and E. Shapiro. A type system for logic programs.The Journal of Logic

Programming, 10(2):125–154, 1990.

[218] E. Yardeni and E. Shapiro. A type system for logic programs.Journal of Logic Program-

ming, 10(2):125–154, 1990.

205

