How to Time-Stamp a Digital Document™

Stuart Haber W. Scott Stornetta
stuart@bellcore.com stornetta@bellcore.com

Bellcore
445 South Street
Morristown, N.J. 07960-1910

Abstract

The prospect of a world in which all text, audio, picture, and video documents are in
digital form on easily modifiable media raises the issue of how to certify when a document
was created or last changed. The problem is to time-stamp the data, not the medium. We
propose computationally practical procedures for digital time-stamping of such documents so
that it is infeasible for a user either to back-date or to forward-date his document, even with
the collusion of a time-stamping service. Owur procedures maintain complete privacy of the
documents themselves, and require no record-keeping by the time-stamping service.

*Appeared, with minor editorial changes, in Journal of Cryptology, Vol. 3, No. 2, pp. 99-111, 1991.



Time’s glory is to calm contending kings,
To unmask falsehood, and bring truth to light,
To stamp the seal of time in aged things,
To wake the morn, and sentinel the night,
To wrong the wronger till he render right.

The Rape of Lucrece, 1. 941

1 Introduction

In many situations there is a need to certify the date a document was created or last modified. For
example, in intellectual property matters, it is sometimes crucial to verify the date an inventor first
put in writing a patentable idea, in order to establish its precedence over competing claims.

One accepted procedure for time-stamping a scientific idea involves daily notations of one’s work
in a lab notebook. The dated entries are entered one after another in the notebook, with no pages
left blank. The sequentially numbered, sewn-in pages of the notebook make it difficult to tamper
with the record without leaving telltale signs. If the notebook is then stamped on a regular basis by
a notary public or reviewed and signed by a company manager, the validity of the claim is further
enhanced. If the precedence of the inventor’s ideas is later challenged, both the physical evidence
of the notebook and the established procedure serve to substantiate the inventor’s claims of having
had the ideas on or before a given date.

There are other methods of time-stamping. For example, one can mail a letter to oneself and
leave it unopened. This ensures that the enclosed letter was created before the time postmarked on
the envelope. Businesses incorporate more elaborate procedures into their regular order of business
to enhance the credibility of their internal documents, should they be challenged at a later date. For
example, these methods may ensure that the records are handled by more than one person, so that
any tampering with a document by one person will be detected by another. But all these methods
rest on two assumptions. First, the records can be examined for telltale signs of tampering. Second,
there is another party that views the document whose integrity or impartiality is seen as vouchsafing
the claim.

We believe these assumptions are called into serious question for the case of documents created
and preserved exclusively in digital form. This is because electronic digital documents are so easy
to tamper with, and the change needn’t leave any telltale sign on the physical medium. What is
needed is a method of time-stamping digital documents with the following two properties. First,
one must find a way to time-stamp the data itself, without any reliance on the characteristics of the
medium on which the data appears, so that it is impossible to change even one bit of the document
without the change being apparent. Second, it should be impossible to stamp a document with a
time and date different from the actual one.

The purpose of this paper is to introduce a mathematically sound and computationally practical
solution to the time-stamping problem. In the sections that follow, we first consider a naive solution
to the problem, the digital safety deposit box. This serves the pedagogical purpose of highlighting
additional difficulties associated with digital time-stamping beyond those found in conventional
methods of time-stamping. Successive improvements to this naive solution finally lead to practical



ways to implement digital time-stamping.

2 The Setting

The setting for our problem is a distributed network of users, perhaps representing individuals,
different companies, or divisions within a company; we will refer to the users as clients. Each client
has a unique identification number.

A solution to the time-stamping problem may have several parts. There is a procedure that is
performed immediately when a client desires to have a document time-stamped. There should be a
method for the client to verify that this procedure has been correctly performed. There should also
be a procedure for meeting a third party’s challenge to the validity of a document’s time-stamp.

As with any cryptographic problem, it is a delicate matter to characterize precisely the security
achieved by a time-stamping scheme. A good solution to the time-stamping problem is one for which,
under reasonable assumptions about the computational abilities of the users of the scheme and about
the complexity of a computational problem, and possibly about the trustworthiness of the users, it is
difficult or impossible to produce false time-stamps. Naturally, the weaker the assumptions needed,
the better.

3 A Naive Solution

A naive solution, a “digital safety-deposit box,” could work as follows. Whenever a client has a
document to be time-stamped, he or she transmits the document to a time-stamping service (TSS).
The service records the date and time the document was received and retains a copy of the document
for safe-keeping. If the integrity of the client’s document is ever challenged, it can be compared to
the copy stored by the TSS. If they are identical, this is evidence that the document has not been
tampered with after the date contained in the TSS records. This procedure does in fact meet the
central requirement for the time-stamping of a digital document.! However, this approach raises
several concerns:

Privacy This method compromises the privacy of the document in two ways: a third party could
eavesdrop while the document is being transmitted, and after transmission it is available
indefinitely to the TSS itself. Thus the client has to worry not only about the security of
documents it keeps under its direct control, but also about the security of its documents at

the TSS.

Bandwidth and storage Both the amount of time required to send a document for time-stamping
and the amount of storage required at the T'SS depend on the length of the document to be
time-stamped. Thus the time and expense required to time-stamp a large document might be
prohibitive.

Incompetence The TSS copy of the document could be corrupted in transmission to the TSS, it
could be incorrectly time-stamped when it arrives at the TSS, or it could become corrupted

1The authors recently learned of a similar proposal sketched by Kanare [14].



or lost altogether at any time while it is stored at the TSS. Any of these occurences would
invalidate the client’s time-stamping claim.

Trust The fundamental problem remains: nothing in this scheme prevents the TSS from colluding
with a client in order to claim to have time-stamped a document for a date and time different
from the actual one.

In the next section we describe a solution that addresses the first three concerns listed above.
The final issue, trust, will be handled separately and at greater length in the following section.

4 A Trusted Time-Stamping Service

In this section we assume that the TSS is trusted, and describe two improvements on the naive
solution above.

4.1 Hash

Our first simplification is to make use of a family of cryptographically secure collision-free hash
functions. This is a family of functions h : {0,1}* — {0,1}' compressing bit-strings of arbitrary
length to bit-strings of a fixed length [, with the following properties:

1. The functions h are easy to compute, and it is easy to pick a member of the family at random.

2. It is computationally infeasible, given one of these functions h, to find a pair of distinct strings
z, z' satisfying h(z) = h(2’). (Such a pair is called a collision for h.)

The practical importance of such functions has been known for some time, and researchers have used
them in a number of schemes; see, for example, [7, 15, 16]. Damgard gave the first formal definition,
and a constructive proof of their existence, on the assumption that there exist one-way “claw-free”
permutations [4]. For this, any “one-way group action” is sufficient [3].

Naor and Yung defined the similar notion of “universal one-way hash functions,” which satisfy,
in place of the second condition above, the slightly weaker requirement that it be computationally
infeasible, given a string #, to compute another string @’ # « satisfying h(z) = h(z’) for a randomly
chosen h. They were able to construct such functions on the assumption that there exist one-to-one
one-way functions [17]. Rompel has recently shown that such functions exist if there exist one-way
functions at all [20]. See §6.3 below for a discussion of the differences between these two sorts of
cryptographic hash functions.

There are practical implementations of hash functions, for example that of Rivest [19], which
seem to be reasonably secure.

We will use the hash functions as follows. Instead of transmitting his document z to the TSS, a
client will send its hash value h(z) = y instead. For the purposes of authentication, time-stamping
y 1s equivalent to time-stamping z. This greatly reduces the bandwidth problem and the storage
requirements, and solves the privacy issue as well. Depending on the design goals for an implemen-
tation of time-stamping, there may be a single hash function used by everybody, or different hash
functions for different users.



For the rest of this paper, we will speak of time-stamping hash values y—random-appearing
bit-strings of a fixed length. Part of the procedure for validating a time-stamp will be to produce
the pre-image document z that satisfies h(z) = y; inability to produce such an z invalidates the
putative time-stamp.

4.2 Signature

The second improvement makes use of digital signatures. Informally, a signature scheme is an
algorithm for a party, the signer, to tag messages in a way that uniquely identifies the signer.
Digital signatures were proposed by Rabin and by Diffie and Hellman [18, 7]. After a long sequence
of papers by many authors, Rompel [20] showed that the existence of one-way functions can be used
in order to design a signature scheme satisfying the very strong notion of security that was first
defined by Goldwasser, Micali, and Rivest [10].

With a secure signature scheme available, when the TSS receives the hash value, it appends the
date and time, then signs this compound document and sends it to the client. By checking the
signature, the client is assured that the TSS actually did process the request, that the hash was
correctly received, and that the correct time is included. This takes care of the problem of present
and future incompetence on the part of the TSS, and completely eliminates the need for the TSS to
store records.

5 Two Time-Stamping Schemes

Sed quis custodiet ipsos Custodes?
Juvenal, c¢. 100 A.D.
But who will guard the guards themselves?

What we have described so far is, we believe, a practical method for time-stamping digital
documents of arbitrary length. However, neither the signature nor the use of hash functions in
any way prevents a time-stamping service from issuing a false time-stamp. Ideally, we would like a
mechanism which guarantees that no matter how unscrupulous the TSS is, the times it certifies will
always be the correct ones, and that it will be unable to issue incorrect time-stamps even if it tries
to.

It may seem difficult to specify a time-stamping procedure so as to make it impossible to produce
fake time-stamps. After all, if the output of an algorithm A, given as input a document z and some
timing information 7, is a bit-string ¢ = A(z, 7) that stands as a legitimate time-stamp for z, what is
to prevent a forger some time later from computing the same timing information 7 and then running
A to produce the same certificate ¢? The question is relevant even if A is a probabilistic algorithm.

Our task may be seen as the problem of simulating the action of a trusted TSS, in the absence
of generally trusted parties. There are two rather different approaches we might take, and each one
leads to a solution. The first approach is to constrain a centralized but possibly untrustworthy TSS
to produce genuine time-stamps, in such a way that fake ones are difficult to produce. The second
approach is somehow to distribute the required trust among the users of the service. It is not clear
that either of these can be done at all.



5.1 Linking

Our first solution begins by observing that the sequence of clients requesting time-stamps and the
hashes they submit cannot be known in advance. So if we include bits from the previous sequence
of client requests in the signed certificate, then we know that the time-stamp occurred after these
requests. But the requirement of including bits from previous documents in the certificate also can be
used to solve the problem of constraining the time in the other direction, because the time-stamping
company cannot issue later certificates unless it has the current request in hand.

We describe two variants of this linking scheme; the first one, slightly simpler, highlights our
main idea, while the second one may be preferable in practice. In both variants, the TSS will make
use of a collision-free hash function, to be denoted H. This is in addition to clients’ use of hash
functions in order to produce the hash value of any documents that they wish to have time-stamped.

To be specific, a time-stamping request consists of an [-bit string y (presumably the hash value
of the document) and a client identification number ID. We use o(+) to denote the signing procedure
used by the TSS. The TSS issues signed, sequentially numbered time-stamp certificates. In response
to the request (y,,1D,) from our client, the nth request in sequence, the TSS does two things:

1. The TSS sends our client the signed certificate s = (C),), where the certificate
Cn = (TL, tn,IDn, Yn; Ln)

consists of the sequence number n, the time t,, the client number 1D,, and the hash value
yn from the request, and certain linking information, which comes from the previously issued
certificate: L, = (tp—1,1Dn—1,Yn—1, H(Ln_1)).

2. When the next request has been processed, the TSS sends our client the identification number
1D, 41 for that next request.

Having received s and 1D, 41 from the T'SS, she checks that s is a valid signature of a good certificate,
i.e. one that is of the correct form (n,t,1D,, yn; Ly ), containing the correct time ¢.

If her time-stamped document z is later challenged, the challenger first checks that the time-
stamp ($,1D,41) is of the correct form (with s being a signature of a certificate that indeed contains
a hash of z). In order to make sure that our client has not colluded with the TSS, the challenger
can call client 1D, 41 and ask him to produce his time-stamp (s’,1D,,42). This includes a signature

s’ = 0'(” + L, tn41, 10041, Ynt1; Ln+1)

of a certificate that contains in its linking information L, 41 a copy of her hash value y,. This linking
information is further authenticated by the inclusion of the image H(L,) of her linking information
L,. An especially suspicious challenger now can call up client 1D, 42 and verify the next time-stamp
in the sequence; this can continue for as long as the challenger wishes. Similarly, the challenger can
also follow the chain of time-stamps backward, beginning with client 1D, _;.

Why does this constrain the TSS from producing bad time-stamps? First, observe that the use
of the signature has the effect that the only way to fake a time-stamp is with the collaboration of the
TSS. But the TSS cannot forward-date a document, because the certificate must contain bits from
requests that immediately preceded the desired time, yet the TSS has not received them. The TSS



cannot feasibly back-date a document by preparing a fake time-stamp for an earlier time, because
bits from the document in question must be embedded in certificates immediately following that
earlier time, yet these certificates have already been issued. Furthermore, correctly embedding a
new document into the already-existing stream of time-stamp certificates requires the computation
of a collision for the hash function H.

Thus the only possible spoof is to prepare a fake chain of time-stamps, long enough to exhaust
the most suspicious challenger that one anticipates.

In the scheme just outlined, clients must keep all their certificates. In order to relax this require-
ment, in the second variant of this scheme we link each request not just to the next request but to
the next k& requests. The TSS responds to the nth request as follows:

1. As above, the certificate C, is of the form C,, = (n,t,,1Dp, yn; Ls), where now the linking
iformation L, is of the form

Ln — [(tn—k; IDn—ka yn—k; H(Ln—k))a ] (tn—la IDn—l: yn—la H(Ln—l))]

2. After the next k requests have been processed, the TSS sends our client the list (IDp41, ..., IDptx).

After checking that this client’s time-stamp is of the correct form, a suspicious challenger can ask
any one of the next k clients 1D,4; to produce his time-stamp. As above, his time-stamp includes
a signature of a certificate that contains in its linking information L,4; a copy of the relevant
part of the challenged time-stamp certificate C,,, authenticated by the inclusion of the hash by
H of the challenged client’s linking information L,,. His time-stamp also includes client numbers
(IDp+4i41, - - -y IDntitk ), of which the last i are new ones; the challenger can ask these clients for their
time-stamps, and this can continue for as long as the challenger wishes.

In addition to easing the requirement that clients save all their certificates, this second variant
also has the property that correctly embedding a new document into the already-existing stream of
time-stamp certificates requires the computation of a simultaneously k-wise collision for the hash
function H, instead of just a pairwise collision.

5.2 Distributed trust

For this scheme, we assume that there is a secure signature scheme so that each user can sign
messages, and that a standard secure pseudorandom generator G is available to all users. A pseu-
dorandom generator is an algorithm that stretches short input seeds to output sequences that are
indistinguishable by any feasible algorithm from random sequences; in particular, they are unpre-
dictable. Such generators were first studied by Blum and Micali [2] and by Yao [22]; Impagliazzo,
Levin, and Luby have shown that they exist if there exist one-way functions [12].

Once again, we consider a hash value y that our client would like to time-stamp. She uses y as
a seed for the pseudorandom generator, whose output can be interpreted in a standard way as a
k-tuple of client identification numbers:

G(y) = (1p1,1Dy, ..., IDg).



Our client sends her request (y,ID) to each of these clients. She receives in return from client ID; a
signed message s; = 0;(t, 1D, y) that includes the time ¢. Her time-stamp consists of [(y, D), (s1, . . ., s&)].
The k signatures s; can easily be checked by our client or by a would-be challenger. No further
communication is required in order to meet a later challenge.

Why should such a list of signatures constitute a believable time-stamp? The reason is that
in these circumstances, the only way to produce a time-stamped document with an incorrect time
is to use a hash value y so that G(y) names k clients that are willing to cooperate in faking the
time-stamp. If at any time there is at most a constant fraction ¢ of possibly dishonest clients, the
expected number of seeds y that have to be tried before finding a k-tuple G(y) containing only
collaborators from among this fraction is ¢=*. Furthermore, since we have assumed that G is a
secure pseudorandom generator, there is no faster way of finding such a convenient seed y than by
choosing it at random. This ignores the adversary’s further problem, in most real-world scenarios,
of finding a plausible document that hashes to a convenient value y.

The parameter k should be chosen when designing the system so that this is an infeasible com-
putation. Observe that even a highly pessimistic estimate of the percentage of the client population
that is corruptible—e could be 90%—does not entail a prohibitively large choice of k. In addition,
the list of corruptible clients need not be fixed, as long their fraction of the population never exceeds
€.

This scheme need not use a centralized TSS at all. The only requirements are that it be possible
to call up other clients at will and receive from them the required signatures, and that there be a
public directory of clients so that it is possible to interpret the output of G(y) in a standard way
as a k-tuple of clients. A practical implementation of this method would require provisions in the
protocol for clients that cannot be contacted at the time of the time-stamping request. For example,
for suitable k' < k, the system might accept signed responses from any k' of the k clients named by
G(y) as a valid time-stamp for y (in which case a greater value for the parameter k& would be needed
in order to achieve the same low probability of finding a set of collaborators at random).

6 Remarks
6.1 Tradeoffs

There are a number of tradeoffs between the two schemes. The distributed-trust scheme has the
advantage that all processing takes place when the request is made. In the linking scheme, on the
other hand, the client has a short delay while she waits for the second part of her certificate; and
meeting a later challenge may require further communication.

A related disadvantage of the linking scheme is that it depends on at least some clients storing
their certificates.

The distributed-trust scheme makes a greater technological demand on the system: the ability
to call up and demand a quick signed response at will.

The linking scheme only locates the time of a document between the times of the previous and
the next requests, so it is best suited to a setting in which relatively many documents are submitted
for time-stamping, compared to the scale at which the timing matters.

It is worth remarking that the time-constraining properties of the linking scheme do not depend



on the use of digital signatures.

6.2 Time constraints

We would like to point out that our schemes constrain the event of time-stamping both forward and
backward in time. However, if any amount of time may pass between the creation of a document and
when it is time-stamped, then no method can do more than forward-constrain the time at which the
document itself was created. Thus, in general, time-stamping should only be considered as evidence
that a document has not been back-dated.

On the other hand, if the time-stamping event can be made part of the document creation
event, then the constraint holds in both directions. For example, consider the sequence of phone
conversations that pass through a given switch. In order to process the next call on this switch, one
could require that linking information be provided from the previous call. Similarly, at the end of
the call, linking information would be passed onto the next call. In this way, the document creation
event (the phone call) includes a time-stamping event, and so the time of the phone call can be fixed
in both directions. The same idea could apply to sequential financial transactions, such as stock
trades or currency exchanges, or any sequence of electronic interactions that take place over a given
physical connection.

6.3 Theoretical considerations

Although we will not do it here, we suggest that a precise complexity-theoretic definition of the
strongest possible level of time-stamping security could be given along the lines of the definitions
given by Goldwasser and Micali [9], Goldwasser, Micali, and Rivest [10], and Galil, Haber, and Yung
[8] for various cryptographic tasks. The time-stamping and the verification procedures would all
depend on a security parameter p. A time-stamp scheme would be polynomially secure if the success
probability of a polynomially bounded adversary who tries to manufacture a bogus time-stamp is
smaller than any given polynomial in 1/p for sufficiently large p.

Under the assumption that there exist one-way claw-free permutations, we can prove our linking
scheme to be polynomially secure. If we assume that there is always at most a constant frac-
tion of corruptible clients, and assuming as well the existence of one-way functions (and therefore
the existence of pseudorandom generators and of a secure signature scheme), we can prove our
distributed-trust scheme to be polynomially secure.

In §4.1 above, we mentioned the difference between “collision-free” and “universal one-way”
hash functions. The existence of one-way functions is sufficient to give us universal one-way hash
functions. However, in order to prove the security of our time-stamping schemes, we apparently
need the stronger guarantee of the difficulty of producing hash collisions that is provided by the
definition of collision-free hash functions. As far as is currently known, a stronger complexity
assumption—namely, the existence of claw-free pairs of permutations—is needed in order to prove
the existence of these functions. (See also [5] and [6] for further discussion of the theoretical properties
of cryptographic hash functions.)

Universal one-way hash functions were the tool used in order to construct a secure signature
scheme. Our apparent need for a stronger assumption suggests a difference, perhaps an essential



one, between signatures and time-stamps. It is in the signer’s own interest to act correctly in
following the instructions of a secure signature scheme (for example, in choosing a hash function at
random from a certain set). For time-stamping, on the other hand, a dishonest user or a colluding
TSS may find it convenient not to follow the standard instructions (for example, by choosing a hash
function so that collisions are easy to find); the time-stamping scheme must be devised so that there
is nothing to be gained from such misbehavior.

If it is possible, we would like to reduce the assumptions we require for secure time-stamping to
the simple assumption that one-way functions exist. This is the minimum reasonable assumption for
us, since all of complexity-based cryptography requires the existence of one-way functions [12, 13]

6.4 Practical considerations

As we move from the realm of complexity theory to that of practical cryptosystems, new questions
arise. In one sense, time-stamping places a heavier demand on presumably one-way functions than
would some other applications. For example, if an electronic funds transfer system relies on a one-
way function for authentication, and that function is broken, then all of the transfers carried out
before it was broken are still valid. For time-stamps, however, if the hash function is broken, then
all of the time-stamps issued prior to that time are called into question.

A partial answer to this problem is provided by the observation that time-stamps can be renewed.
Suppose we have two time-stamping implementations, and that there is reason to believe that the
first implementation will soon be broken. Then certificates issued using the old implementation can
be renewed using the new implementation. Consider a time-stamp certificate created using the old
implementation that is time-stamped with the new implementation before the old one is broken.
Prior to the old implementation’s breaking, the only way to create a certificate was by legitimate
means. Thus, by time-stamping the certificate itself with the new implementation, one has evidence
not only that the document existed prior to the time of the new time-stamp, but that it existed at
the time stated in the original certificate.

Another issue to consider is that producing hash collisions alone is not sufficient to break the
time-stamping scheme. Rather, meaningful documents must be found which lead to collisions. Thus,
by specifying the format of a document class, one can complicate the task of finding meaningful
collisions. For example, the density of ASCII-only texts among all possible bit-strings of length N
bytes is (27/28)N, or 1/2", simply because the high-order bit of each byte is always 0. Even worse,
the density of acceptable English text can be bounded above by an estimate of the entropy of English
as judged by native speakers [21]. This value is approximately 1 bit per ASCII character, giving a
density of (21/28)N or 1/128".

We leave it to future work to determine whether one can formalize the increased difficulty of
computing collisions if valid documents are sparsely and perhaps randomly distributed in the input
space. Similarly, the fact that a k-way linking scheme requires the would-be adversary to compute
k-way collisions rather than collision pairs may be parlayed into relaxing the requirements for the
hash function. It may also be worthwhile to explore when there exist hash functions for which there
are no k-way collisions among strings in a suitably restricted subset of the input space; the security
of such a system would no longer depend on a complexity assumption.



7 Applications

Using the theoretically best (cryptographically secure) hash functions, signature schemes, and pseu-
dorandom generators, we have designed time-stamping schemes that possess theoretically desirable
properties. However, we would like to emphasize the practical nature of our suggestion: because
there are practical implementations of these cryptographic tools, both of our time-stamp schemes
can be inexpensively implemented as described. Practical hash functions like Rivest’s are quite fast,
even running on low-end PC’s [19].

What kinds of documents would benefit from secure digital time-stamping? For documents that
establish the precedence of an invention or idea, time-stamping has a clear value. A particularly
desirable feature of digital time-stamping is that it makes it possible to establish precedence of
intellectual property without disclosing its contents. This could have a significant effect on copyright
and patent law, and could be applied to everything from software to the secret formula for Coca-Cola.

But what about documents where the date is not as significant as simply whether or not the
document has been tampered with? These documents can benefit from time-stamping, too, under
the following circumstances. Suppose one can establish that either the necessary knowledge or the
motivation to tamper with a document did not exist until long after the document’s creation. For
example, one can imagine a company that deals with large numbers of documents each day, some
few of which are later found to be incriminating. If all the company’s documents were routinely
time-stamped at the time of their creation, then by the time it became apparent which documents
were incriminating and how they needed to be modified, it would be too late to tamper with them.
We will call such documents tamper-unpredictable. It seems clear that many business documents are
tamper-unpredictable. Thus, if time-stamping were to be incorporated into the established order of
business, the credibility of many documents could be enhanced.

A variation that may be particularly useful for business documents is to time-stamp a log of
documents rather than each document individually. For example, each corporate document created
in a day could be hashed, and the hash value added to the company’s daily log of documents. Then,
at the end of the business day, the log alone could be submitted for time-stamping. This would
eliminate the expense of time-stamping each document individually, while still making it possible to
detect tampering with each document; one could also determine whether any documents had been
destroyed altogether.

Of course, digital time-stamping is not limited to text documents. Any string of bits can be
time-stamped, including digital audio recordings, photographs, and full-motion videos. Most of
these documents are tamper-unpredictable. Therefore, time-stamping can help to distinguish an
original photograph from a retouched one, a problem that has received considerable attention of late
in the popular press [1, 11]. It is in fact difficult to think of any other algorithmic “fix” that could
add more credibility to photographs, videos, or audio recordings than time-stamping.

8 Summary

In this paper, we have shown that the growing use of text, audio and video documents in digital
form and the ease with which such documents can be modified creates a new problem: how can one

10



certify when a document was created or last modified? Methods of certification, or time-stamping,
must satisfy two criteria. First, they must time-stamp the actual bits of the document, making no
assumptions about the physical medium on which the document is recorded. Second, the date and
time of the time-stamp must not be forgeable.

We have proposed two solutions to this problem. Both involve the use of one-way hash functions,
whose outputs are processed in lieu of the actual documents, and of digital signatures. The solutions
differ only in the way that the date and time are made unforgeable. In the first, the hashes of
documents submitted to a TSS are linked together, and certificates recording the linking of a given
document are distributed to other clients both upstream and downstream from that document. In
the second solution, several members of the client pool must time-stamp the hash. The members
are chosen by means of a pseudorandom generator that uses the hash of the document itself as seed.
This makes it infeasible to deliberately choose which clients should and should not time-stamp a
given hash. The second method could be implemented without the need for a centralized TSS at
all.

Finally, we have considered whether time-stamping could be extended to enhance the authenticity
of documents for which the time of creation itself is not the critical issue. This is the case for a large
class of documents which we call “tamper-unpredictable.” We further conjecture that no purely
algorithmic scheme can add any more credibility to a document than time-stamping provides.

Acknowledgements
We gratefully acknowledge helpful discussions with Donald Beaver, Shimon Even, George Furnas,
Burt Kaliski, Ralph Merkle, Jeff Shrager, Peter Winkler, Yacov Yacobi, and Moti Yung.

References

[1] J. Alter. When photographs lie. Newsweek, pp. 44-45, July 30, 1990.

[2] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random

bits. STAM Journal on Computing, 13(4):850-864, Nov. 1984.

[3] G. Brassard and M. Yung. One-way group actions. In Advances in Cryptology—Crypto 90.
Springer-Verlag, LNCS, to appear.

[4] I. Damgard. Collision-free hash functions and public-key signature schemes. In Advances in
Cryptology— FEurocrypt '87, pp. 203-217. Springer-Verlag, LNCS, vol. 304, 1988.

[5] I. Damgard. A design principle for hash functions. In Advances in Cryptology— Crypto '89 (ed.
G. Brassard), pp. 416-427. Springer-Verlag, LNCS, vol. 435, 1990.

[6] A. DeSantis and M. Yung. On the design of provably secure cryptographic hash functions. In
Advances in Cryptology— Eurocrypt '90. Springer-Verlag, LNCS, to appear.

[7] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Trans. on Inform. Theory,
vol. I'T-22, Nov. 1976, pp. 644-654.

11



[8] Z. Galil, S. Haber, and M. Yung. Interactive public-key cryptosystems. J. of Crypiology, to
appear.

[9] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28:270-299, April 1984.

[10] S. Goldwasser, S. Micali, and R. Rivest. A secure digital signature scheme. SIAM Journal on
Computing, 17(2):281-308, 1988.

[11] Andy Grundberg. Ask it no questions: The camera can lie. The New York Times, section 2,
pp- 1, 29, August 12, 1990.

[12] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-way functions. In

Proc. 21st STOC, pp. 12-24. ACM, 1989.

[13] R. Impagliazzo and M. Luby. One-way functions are essential for complexity-based cryptogra-
phy. In Proc. 30th FOCS, pp. 230-235. IEEE, 1989.

[14] H. M. Kanare. Writing the laboratory notebook, p. 117. American Chemical Society, 1985.

[15] R.C. Merkle. Secrecy, authentication, and public-key systems. Ph.D. thesis, Stanford Univeristy,
1979.

[16] R.C. Merkle. One-way hash functions and DES. In Advances in Cryptology—Crypto 89 (ed.
G. Brassard), pp. 428-446. Springer-Verlag, LNCS, vol. 435, 1990.

[17] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proc. 21st STOC, pp. 33-43. ACM, 1989.

[18] M.O. Rabin. Digitalized signatures. In Foundations of Secure Computation (ed. R.A. DeMillo
et al.), pp. 155-168. Academic Press, 1978.

[19] R. Rivest. The MD4 message digest algorithm. In Advances in Cryptology—Crypto ’90.
Springer-Verlag, LNCS, to appear.

[20] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proc. 22nd

STOC, pp. 387-394. ACM, 1990.

[21] C. Shannon. Prediction and entropy of printed English. Bell System Technical Journal, vol. 30
pp- 50-64, 1951.

[22] A.C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd FOCS, pp. 80-91. IEEE,
1982.

12



