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Resumen

La naturaleza de los contratos inteligentes y las plataformas de blockchain, donde los
programas estan replicados a lo largo de todos los nodos y ejecutar un contrato o
aumentar su espacio de almacenamiento implica hacerlo en todos los clientes, hace
del analisis de recursos un problema relevante. Esto ha conducido al desarrollo de
analisis para plataformas y lenguajes especificos. No obstante, la oferta de lenguajes
y modelos de coste en estas plataformas es muy amplia, al igual que su mutabili-
dad en el tiempo, por lo que las soluciones que faciliten el desarrollo y la adaptacion
de los analisis de coste son atractivas en este contexto. Exploramos la aplicacion de
una técnica y una herramienta de analisis de coste genéricas a la inferencia estatica
de cotas del consumo de gas y almacenameinto en contratos inteligentes. Nuestro
enfoque se basa en el Andlisis de Coste Paramétrico, un método que simplifica la
implementacion de analisis para inferir cotas seguras del consumo de diferentes re-
cursos haciendo uso de distintos modelos de coste. Ademas, para soportar diferentes
lenguajes, realizamos una traduccion previa a una representacion intermedia basada
en clausulas de Horn. Para demostrar la aplicabilidad de este método, desarrollamos
un analisis para la plataforma Tezos y su lenguaje Michelson.






Abstract

The very nature of smart contracts and blockchain platforms, where program exe-
cution and storage are replicated across a large number of nodes, makes resource
consumption analysis highly relevant. This has led to the development of analyzers
for specific platforms and languages. However, blockchain platforms present signifi-
cant variability in languages and cost models, as well as over time. Approaches that
facilitate the quick development and adaptation of cost analyses are thus potentially
attractive in this context. We explore the application of a generic approach and tool
for cost analysis to the problem of static inference of gas consumption and storage
bounds in smart contracts. The approach is based on Parametric Cost Analysis, a
method that simplifies the implementation of analyzers for inferring safe bounds on
different resources and with different resource consumption models. In addition, to
support different input languages, the approach also makes use of translation into a
Horn clause-based intermediate representation. To assess practicality we develop an
analyzer for the Tezos platform and its Michelson language.
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Chapter 1

Introduction

Smart contracts [1] are programs residing in blockchain platforms, whose inher-
ently replicated nature [2, 3] makes cost analysis crucial. Like other elements in the
ledgers, these programs and their state are replicated in every node of the blockchain,
so every call to a smart contract is executed by every client and an increase in its
static state consumes storage space in every node. This fact has led to the implemen-
tation of different techniques to limit execution time and static storage size, such as
including upper bounds for the consumption of these resources or charging fees. In
order to limit execution time, some smart contract platforms introduce the concept
of “gas”, a virtual resource that reflects the execution time of each instruction. If
a transaction exceeds its allowed gas consumption, its execution is aborted and its
effects, reverted. However, even after failing due to gas exhaustion, the transaction
is included in the blockchain and the fees are taken. Similar mechanisms are im-
plemented to limit storage size. Thus, the cost of a smart contract execution can be
expressed in terms of these two resources: gas and storage.

As a high consumption of these resources may cause extra fees to be taken from
smart contract clients—or even that the execution is aborted—, knowing the cost of
running a contract beforehand can be useful. Although some smart contract plat-
forms offer simulation mechanisms to dry run contracts in local nodes before per-
forming a transaction, this is not an ideal solution, as it only gives cost data for
specific input values, providing no hard guarantees on the costs that may arise when
executing the contract with possibly different arguments. Ideally, one would like to be
able to obtain instead guaranteed bounds on this cost statically, or at least through
a combination of static and dynamic methods.

Static inference of resource consumption of smart contracts may be beneficial not
only to clients, but also to smart contract developers themselves. Denial of service
(DoS) attacks via uncontrolled resource consumption is a well-known weakness [4]
consisting in the allocation of limited resources by an attacker, preventing future valid
clients from accessing the software. In the context of smart contracts, this weakness
is expressed in the form of the so called DoS with block gas limit [5], which involves
increasing the storage size of a smart contract whose gas consumption depends on
that value, e.g., a smart contract which iterates over an array allocated in its static
storage. Due to the immutability of these pieces of code, warning developers of a
potentially unbounded gas consumption before the contract is deployed is crucial, as
this weakness can be easily prevented via defensive programming.

1



Input language ost Model
] Parametric
s Assertions i
semantics ( ) R — Analy51s results

(Resource usage

analysis
Input program Prograrn IR . y bOundﬁLnCtiOns)
(source, bytecode, N (CiaoPP)
. transformation (Horn clauses)
machine code, etc.)

Figure 1.1: Overview of the Parametric Cost Analysis approach.

Thus, formal verification of smart contracts, and in particular analysis and verifi-
cation of their resource consumption, is receiving increased attention. At the same
time, there are currently many blockchain platforms using their own languages and
cost models, which often take into account different resources and count them in
platform-specific ways, which can also evolve over time. As a consequence, the few
existing resource analysis tools for smart contracts, such as GASTAP [6], GASOL [7],
or MadMax [8], tend to be quite specific, focusing on just a single platform or lan-
guage, or on small variations thereof.! This makes approaches that would allow
quick development of new cost analyses or easily adapting existing ones potentially
attractive in this context.

Parametric Cost Analysis is a static analysis technique which allows performing
provably correct cost analysis of programs written in different languages and run-
ning in their particular platforms [9, 10, 11]. As shown in Figure 1.1, it has been
implemented within the CiaoPP program development framework [12, 13, 14, 15, 16],
which performs combined static and dynamic program analysis, assertion checking,
and program transformations, based on computing provably safe approximations of
properties, generally using the technique of abstract interpretation [17].

In this approach, language parametricity is achieved via a previous compilation of the
source language to a Horn clause-based intermediate representation (CHC IR) [18].
This way, the same analyzers can be used on programs written in languages of vari-
able nature and levels of compilation, ranging from bytecode to higher-level languages
such as Java. Regarding platform parametricity, it is achieved thanks to the usage of
a rich assertion language in which a vast array of properties of the source program
can be expressed via assertions. These assertions form what is called the cost model,
which transmits the semantics of a language in a given platform to the analyzers by
stating useful properties of its atomic elements, e.g., instructions. These properties
can be used to state the functional semantics of these elements, e.g., to represent
the value of an output w.r.t. the inputs, and they can also provide information about
non-functional properties, e.g., execution time or cost [19, 20, 10, 21, 22, 23, 24].
Thus, a cost model can be generated for each blockchain platform and this model
can be adapted if the cost of executing the code changes or new resources have to
be studied. Given these two elements—the translation to CHC IR and the platform-
dependent cost model—we can use the CiaoPP framework to infer safe resource usage
bound functions depending on the size of input arguments or other parameters for
each block in the source program.

A key component of our approach is the aforementioned translation of the target lan-

'We discuss this and other relevant related work further in Chapter 2.
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parameter (list mutez);

storage (list mutez);

code { CAR ; NIL mutez ; SWAP ; ITER { CONS } ; NIL operation ;
PAIR }

Listing 1.1: A Michelson contract that reverses a list.

guages to the CHC IR. A (Constrained) Horn clause ((C)HC) is a (generalized with
constraints) first-order logic formula of the form V(S; A--- A S, — Sp) where all the
variables in the formula are universally quantified and each S; is an atomic formula
also receiving the name of “literal” or “constraint”. These formulae are usually rewrit-
ten in the following equivalent form: Sy :- Si,...,S,, where S is referred to as the
head of the clause and 51, ...,S, as its body. This translation can be performed by
encoding the small-step semantics of the source language [25] or its big-step seman-
tics [18]. In Section 3.1, we will explain how we used the latter approach to implement
an automatic Michelson to CHC IR translator.

The Michelson Language is the smart contracts language used in the Tezos plat-
form. It is an interpreted, strongly-typed, and stack-based language which, despite
being low-level, provides some high-level abstractions such as data structures, e.g.,
lists, sets, maps and infinite-precision numbers; or higher-order constructs with
instructions like map (MAP) or for-each (ITER) and anonymous function support (an
anonymous function from type ta to type tb in Michelson belongs to the (lambda ta
tb) type).

A Michelson contract consists of three sections in arbitrary order: parameter, storage
and code. The first two sections state the types of the input argument and the storage
respectively, e.g., in Listing 1.1, both are lists of Michelson mutez (64-bits unsigned
integers), and the code section contains the sequence of Michelson instructions to
be executed by the Michelson interpreter. This interpreter can be seen as a pure
function from an initial stack to a final stack. The initial stack will contain just
a tuple (Pair Parameter Storage), whereas the final stack, on success, will consist
on just a pair (Pair Operations Storage’), where Operations is the list of blockchain
operations to be executed after the contract returns—these operations will be dealt
with briefly in a following paragraph—and Storage’, the updated storage:

Interpreter: pair parameter storage : [| — pair (1ist operation) storage : || (1.1)

Pair Parameter Storage : [| — Pair Operations Storage’ : ||

Michelson instructions can also be seen as pure functions receiving an input stack
and returning a result stack. Table 1.1 shows the semantics of instructions in List-
ing 1.1 in a functional way. Our running example receives an input list and stores
the result of reversing it. In order to do so, first, CAR discards the previous storage
value, as only the parameter list is needed. Then, NIL mutez pushes an empty list of
mutez in the stack. SWAP changes the positions of the top two elements of the stack,
obtaining the following stack: parameter : ([]) : [].

Now, we introduce the first higher-order Michelson instruction we discuss in this
thesis: ITER body. As we can see in Table 1.1, this instruction iterates over the

3



Table 1.1: Semantics of Michelson instructions in Listing 1.1.

CAR: pairtatb : A— ta : A NILt: A —1listt : A
Pairxy : S— x : 8 S —1[:s

SWAP: a : b: A —b:a:A PAIR: a : b : A — pairab : A
X:y:S8S —=y:x:8 X :y:8 —Pairxy : S

CONS: ta : listta : A — listta : A
a:1:8 —(a:1) :8

ITERbody: 1listt : A —A
body: t: A —A

S if1 =1
1:S > ITER(L : S) =
ITER(1 : body(x : 8)) ifl=x:1

elements of a list, applying the sequence of instructions? body to each element in
the list. In our case, the argument of this instruction is just { CONS }, a singleton
sequence containing an instruction which prepends the element on top of the stack
to the list right below it. This way, we can define the semantics of this loop as:

Iy : S if 1, = ]
l : 1y : S—ITER(1, : 1p : S) =

ITER(1, : (x : 1p) : 8) ifly,=x: 1]
Many Michelson instructions receive additional arguments. Other higher-order in-
structions are IF and LOOP, which receive one and two blocks of code; some instruc-
tions like NIL or SET receive the type of the data structure to create; PUSH receives the
type and constant representing the value to introduce in the stack.

Following on with our example, once the input list has been reversed, the NIL instruc-
tions pushes an empty list of operations in the stack and PAIR builds the returning
pair from the two elements in the stack, obtaining the desired stack shape:

pair (1ist operation) storage : [|, with storage = (list mutez)

As an example, a call to this contract with the list of numbers from 1 to 3 as a
parameter would present the following input (Sp) and output (S;):

So =Pair[1,2,3] _ : [|— 8y =Pair[][3,2,1] : ||

Regarding the external operations that Michelson contracts return in the first field of
the return tuple, they are the instructions to be performed at the blockchain level.
There are three types of operations: transactions (operations to transfer tokens and
parameters to a smart contract), originations (to create new smart contracts given the
required arguments), or delegations (operations that assign a number of tokens to
the stake of another account, without transferring them).

In the rest of this thesis, we start by providing context on the state of the art in
Chapter 2, and on the state of our tool before the development of the thesis began in

2Michelson also supports macro instructions, which are translated to the sequence of instructions
they represent in an early compilation stage.
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Chapter 3. In Chapter 4, we show the improvements implemented in the translation
tool to better support Michelson features, and, in Chapter 5, we discuss the improve-
ments implemented in the CiaoPP tool to handle singularities of Michelson contracts.
In Chapter 6, we present some results obtained by analyzing several Michelson con-
tracts using our proposed method. Finally, Chapter 7 presents our conclusions and
discusses future work.






Chapter 2

Related Work

As previously stated, tools that have been proposed to date for cost analysis of smart
contracts tend to be platform- and language-specific. GASPER [26] and MadMax [8]
are both aimed at identifying parts of contracts that have high gas consumption in
order to optimize them or to avoid gas-related vulnerabilities—such as the aforemen-
tioned DoS with block size limit. While the former recognizes control-flow patterns
using symbolic computation the latter searches for both control- and data-flow pat-
terns. Marescotti et al. [27] also use a limited-depth path exploration approach to
estimate worst-case gas consumption. These tools are useful programmer aids for
preventing attacks from malicious agents in a context in which dependability is cru-
cial, but cannot provide safe cost bounds. GASPER and MadMax are specific to con-
tracts written for the Ethereum platform [2], in Solidity, and translated to Ethereum
Virtual Machine (EVM) bytecode. The Solidity compiler provides a platform-specific
tool to generate gas constant bounds, i.e., bounds which cannot depend on any input
parameters, in which case, the generated bound is infinite.

On the other hand, there are other tools which are closer to our work, such as
GASTAP [6] and its extension GASOL [7]. These can infer upper bounds for gas
consumption, using similar theoretical concepts as those used by CiaoPP, i.e., recur-
rence relation solving combined with ranking functions, etc. GASOL is a more evolved
version of GASTAP that includes optimizations and allows users to choose between
a number of predefined configuration options, such as counting particular types of
instructions or storage. These are powerful tools that have been proven effective at
inferring accurate gas bounds with reasonable analysis times, in a good percentage
of cases. However, they are also specific to Ethereum Solidity contracts and EVM.

Parametric Cost Analysis (also referred to as user-defined resource analysis) was
proposed in [9] and further developed in [10, 11]. The approach builds on Wegbreit's
seminal work [28] and the first full analyzers for upper bounds, in the context of
task granularity control in automatic program parallelization [29, 30]. This in turn
evolved to cover other types of approximations (e.g., lower bounds [31]), and to the
idea of supporting user-defined resources [9, 10]. This analysis was extended to be
fully based on abstract interpretation [17] and integrated into the PLAI multi-variant
framework, leading to context-sensitive cost analyses [11]. Other extensions include
static profiling [32], static bounding of run-time checking overhead [33], or analysis of
parallel programs [34]. Other applications include the previously mentioned analyses
of platform-dependent properties such as time or energy [19, 20, 10, 21, 22, 23, 24].

7



Cost analysis has received considerable additional attention lately [35, 36, 37, 38,
39, 40, 41, 42, 36, 43, 44, 45, 46, 47, 48, 49, 50, 51]. While these approaches are
not based on the same idea of user-level parametricity that is instrumental in the
approach proposed herein, we believe the parametric approach is also relevant for
these analyses.



Chapter 3

Previous Work

In this chapter, we will present previous work in this line corresponding to the devel-
opment of my bachelor thesis [52]. In Section 3.1, we will explain our first approach
to the Michelson to CHC IR translation; and in Section 3.2 we will go through the
process of obtaining our first Michelson cost model. Together, these elements consti-
tute the basis for a first version of our smart contract analysis tool: the “ciao_tezos”
tool.

3.1. Michelson to CHC IR Translation: A First Approach

In order to obtain a Michelson to CHC IR compiler, we implemented a Michelson
interpreter as a big-step recursive interpreter and obtained instructions semantics
as a direct transliteration to CHC in the Ciao system [53].

In Table 3.1, we show the CHC encoding of instructions in Listing 1.1. As we can
see, there exists a strong correspondence with their semantics, shown in Table 1.1,
using Herbrand terms to represent Michelson data structures and lists to represent
the stack. Our recursive Michelson interpreter could be encoded as follows:

run([]1, S, S).

run([I|Is], SO, S) :-
ins(I, SO, S1),
run(Is, S1, S).

% One clause per I/n instruction:
ins(<<I>>(Al, ..., An), SO, S) :-
<<I>>(Al1, ..., An, SO, S1)

The recursive predicate run/3 receives a list of instructions to execute and the ini-
tial stack and returns the result stack after running such instructions in its third
argument. In order to do so, it makes use of the dispatcher (ins/3), which runs the
definition of the current instruction (as those found in Table 3.1). Based on this,
we derived a simple translator based on a specialization of a CHC partial evaluation
algorithm for this particular recursive interpreter.

As this translator implemented some simple partial evaluation rules to help produce
friendlier code for the analyzer, in some cases the resulting code would omit some

9



3.1. Michelson to CHC IR Translation: A First Approach

Table 3.1: CHC representation of instructions in Listing 1.1.

car([(X,_> 18], [XISD). nil(s, [[11sSD).

swap ([X,Y[|S], [Y,X[SI). pair ([X,Y[S], [(X,Y)ISD).

cons([A,L|S], [[AIL]ISI).

iter(Body, [L|S0], S1) :-
iter(L, Body, SO, S1).

iter([], _, S, S).
iter([X|Xs], Body, SO, S2) :-
run(Body, [X|S0], S1),

iter(Xs, Body, S1, S2).

instructions which simply modified the stack and simple data structures inside it.
In order to prevent this, we included cost markers in their definition, no-ops which
could be used to preserve the cost semantics of the resulting code.

Thanks to Michelson typing rules, we are able to infer the type of the stack, i.e., its
length and the type of its elements, at each program point. With this information,
we can specialize polymorphic instructions, depending on the type of the input. This
is a big step forwards, as instructions semantics and cost semantics may depend on
the type of the arguments of each instruction. This way, e.g., we translate the ADD
instruction to any of:

(add_intint if int(A), int(B)
add_intnat if int(A),nat(B)
add_natint if nat(A), int(B)
ADD[A,B] — ¢ add_natnat if nat(A),nat(B) (3.1)

add_timestamp_to_seconds if timestamp(A), int(B)
add_seconds_to_timestamp  if int(A), timestamp(B)
add_tez if mutez(A), mutez(B)

Regarding higher-order instructions, e.g., MAP body, IF bt bf, etc., our definitions of
these instructions receive three parameters: the control condition, the input stack
and the output stack. Thus, e.g., the ITER body instruction is defined as seen in
Table 3.1.

Using the aforementioned interpreter and instructions annotations, we generated a
predicate «I»__«index»/3 for each instantiation of these instructions found in the
original code, e.g., an instruction ITER { CONS } would translate to—assuming an
index of 1:

iter__1([1, S, S).

iter__1(C[X|L], SO, S) :-
run([cons], [X|S0], S1),
iter__1(CL, S1, S).

10
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Through simple partial interpretation, we obtained:

iter__1(C[1, S, S).

iter__1(C[X|LO®], [L1|S0], S) :-
cons(X, L1, L2),
iter__1(L®, [L2]|S®]1, S).

The main code section of a contract was treated in a similar way, generating a single-
clause predicate code/3, receiving as arguments the parameter, the storage and the
output stack. This way, our running example (Listing 1.1) was translated to some-
thing similar to:

:- entry code(P, S, Res)

( list(mutez, P), list(mutez, S), var(Res) ).
code(P, _, [C[1,R)I) :-
$car’, nil([]1), ’$swap’, ’$iter’,
iter__O0(CP, [[]1], [RD),
nil([]), ’'$cons_pair’.
iter__O0(C[], S, S).

iter__O(C[X|L], [RO|SO], S) :-
cons (X, RO, R1),
iter__O(CL, [R1]|S0], S).

3.2. Owur First Michelson Cost Model

In this section, we will cover the procedure we followed in order to obtain a precise and
correct cost model for Tezos’ Michelson contracts previously translated to CHC IR.

As we have seen, a cost model is a definition of the semantics and cost semantics
of a language. It is necessary to have a cost model in order to perform cost analysis
on a program, as this will contain the rules the analyzer will follow. As a result, the
better a model reflects the cost semantics of the platform used, the more precise the
analysis will be.

The process of obtaining a cost model may involve applying profiling techniques to
measure the amount of each resource, e.g., energy or time, consumed by the built-in
instructions. In this case, we are studying virtual resources, so there was no need to
measure the performance of real machines running the code. Instead, we obtained
our cost model by extracting it from the platform’s source code hosted on GitLab.
This method consisted in inspecting hundreds of lines of code written in Ocaml, so
it also involved learning a new language. Tezos releases a new protocol version twice
a year, and each new version changes the way gas is counted. Our first cost model
targeted Tezos’ Carthage protocol.

By inspecting the source code, we collected valuable information about the Tezos
platform. Regarding gas, we learned that it is not an atomic resource, but a com-
pound one, i.e., it can be expressed in terms of other resources. For the Carthage
cost model:

11
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:- resource michelson_allocations.
:- resource michelson_steps

:- resource michelson_reads.

:- resource michelson_writes.

:- resource michelson_bytes_read.

:- resource michelson_bytes_written.

Listing 3.1: Assertions to declare the resources to study.

:- resource michelson_gas.
:- compound_resource (michelson_gas, 2**(-7) * (
michelson_allocations * 2
+ michelson_steps
+ michelson_reads * 100
+ michelson_writes * 160
+ michelson_bytes_read * 10
+ michelson_bytes_written * 15

D).

Listing 3.2: Assertions to declare gas as a compound resource in Carthage cost
model.

gas(allocations, steps, reads, writes, bytes_read, bytes_written) =

allocations 2
steps 1

9T, reads « 100 (3.2)
writes 160
bytes_read 10
bytes_written 15

In our cost model we first named the resources as in Listing 3.1 and then defined
michelson_gas as a compound resource following Equation 3.2 (Listing 3.2).

Each Michelson instruction will consume one or more of these basic resources, which
will later be used to calculate gas consumption. Once the resources to be inferred
by the analysis have been included in the cost model, we can proceed to also declare
this consumption. Since in most cases not all resources will be consumed by every
instruction, we include in the model some default cost assertions establishing, for
example, that the consumption of these basic resources is O by default (Listing 3.3).

:- default_cost(ub,michelson_steps,0).

:- default_cost(lb,michelson_steps,0).

:- head_cost(lb,michelson_steps,0).

:- head_cost(ub,michelson_steps,0).

:- literal_cost(lb,michelson_steps,0).

:- literal_cost(ub,michelson_steps,0).

:- trust_default + cost(lb,michelson_steps,0).
:- trust_default + cost(ub,michelson_steps,®).

Listing 3.3: Assertions to declare the default cost of a resource.

12
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:- trust pred add_intint(A,B,C)
=> ( int(A), int(B), int(Q),
size(ub,C,int(A)+int(B)),
size(lb,C,int (A)+int(B)) )
+ ( not_fails, is_det, cardinality(1,1),
cost(lb,michelson_steps,
102+ (1+log2 (max (int (A),int(B)))/8)/31),
cost(ub,michelson_steps,
102+ (1+log2 (max (int (A),int(B)))/8)/31))

Listing 3.4: Cost assertion for add_intint in the Carthage cost model.

In Listing 3.4, we can see an example of an assertion included in our first cost model.
In this case, we state that the cost for the ADD instruction when both operands are
integers (which is internally represented as add_intint after specializing the instruc-
tion) is logarithmic with respect to the maximum of both operands. This assertion not
only includes cost-related information, but also typing and size information, which
is crucial for cost analysis.

As seen in Listing 3.4, cost and size related properties must state what bound they
refer to. In this case, both upper and lower bounds are given. As they are the
same, we know the cost is exact—these two properties can be expressed with a single
property using the keyword exact instead.

13






Chapter 4

ciao_tezos Improvements

In this chapter, we will focus on the improvements the ciao_tezos tool has gone
through during the development of this Masters thesis. Firstly, in Section 4.1, we will
go through the process of supporting a new Tezos protocol. Then, in Section 4.3, we
will discuss the improvements we introduced to Tezos cost models. Section 4.2 shows
improvements to the translation process in order to obtain a friendlier CHC IR, also
explaining its motivation by giving an insight to CiaoPP’s size analysis. Section 4.4
covers slight improvements to Michelson partial evaluation. And, last but not least,
Sections 4.5 and 4.6 introduce the reader to a new Michelson concept, entrypoints,
and show how defining a native Michelson assertion language to write Ciao assertions
in smart contracts can be useful to Michelson developers.

4.1. Supporting New Tezos Protocols

Since the presentation of my Bachelor thesis, Tezos has released two new protocol
versions: Delphi and Edo. In this section, we will go through the changes that we
introduced in order to support these updates to Tezos protocol.

In the case of Delphi, the Michelson language remained unchanged, so we simply had
to define a new cost model to reflect the modifications in Tezos cost semantics. We
could achieve this in under a day, writing around 500 lines of code. We would like to
point out that this fact clearly proves the feasibility and usefulness of Parametric Cost
Analysis in a dynamic context such as smart contract programming languages. The
main change introduced in this update was the inclusion of a new atomic resource
influencing gas consumption, atomic_steps. In order to support this, we simply had
to modify our gas definition, as can be seen in Listing 4.1. In Listing 4.2, we show the
cost assertion defining the cost for the ADD operation when both operands are integers
(as in Listing 3.2).

With respect to the Edo protocol, this update did not bring as many adjustments to
the cost model as Delphi, but it did introduce some new features to the Michelson
language, e.g., a new never type, new instructions, tuples (implemented as recursive
pairs) and new cryptographic capabilities. In order to support these new constructs,
we had to modify our Michelson to CHC IR translator and include their semantics in
the updated cost model.
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:- compound_resource(michelson_gas, atomic_steps + 1000 * (

michelson_allocations * 2

+ michelson_steps

+ michelson_reads * 100

+ michelson_writes * 160

+ michelson_bytes_read * 10

+ michelson_bytes_written * 15
D).

Listing 4.1: Assertions to declare gas as a compound resource in Delphi cost model.

:- trust pred add_intint(A,B,C)
=> ( int(A), int(B), int(QC),
size(ub,C,int (A)+int(B)),
size(1lb,C,int(A)+int(B)) )
+ ( not_fails, covered, is_det, cardinality(1l,1),
cost(lb,michelson_atomic_steps,80 +
(1 + log2(max(int(A),int(B)))/8) * 2 ** -4 +
(1 + log2(max(int(A),int(B)))/8) * 2 ** -6),
cost(lb,michelson_atomic_steps,80 +
(1 + log2(max(int(A),int(B)))/8) * 2 ** -4 +
(1 + log2(max(int(A),int(B)))/8) * 2 ** -6) ).

Listing 4.2: Cost assertion for add_intint in the Delphi cost model.

We provide a simple mechanism based on configuration flags to configure the Michel-
son to CHC IR translation. Through these flags, the user can also select the target
Tezos protocol. In most cases—except when the contract contains new or no longer
supported instructions—the translation result will be identical for every protocol. The
main difference will reside in the Ciao module definition. Tezos cost models are im-
plemented as Ciao packages and, by loading different packages, we can easily select
what cost model we want to use. As we can see in Listing 4.3, by simply changing the
module definition in the translated module, we can analyze the same contract using
different cost models.!

4.2. An Analysis-Friendlier Translation

Throughout this section, we will cover the updates that the translation tool has suf-
fered in order to make its output easier to analyze. In Section 4.2.1, we will introduce
the size analysis used, whose limitations motivate the changes made to the tool.
Then, in Sections 4.2.2 and 4.2.3, we will cover two important modifications made to

'"We will show results for different cost models in Chapter 6.
:- module(_, [], [ciao_tezos(cost_models/carthage)]).
;:-module(_, [1, [ciao_tezos(cost_models/delphi)]).
;:-module(_, [1, [ciao_tezos(cost_models/edo)]).

Listing 4.3: Different module definitions for each cost model.
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:- entry default(A, B) : ( list(gnd, A), var(B) ).

default ([ (Parameter,Storage®0)], [(Operations,Storagel)]) :-

Listing 4.4: A primitive CHC IR representation of the contract in Listing 1.1.

our translation tool: tuple destructuring and stack deforestation.

4.2.1. An Introduction to Size Analysis

In this section, we will introduce the size analysis used by CiaoPP’s cost analysis [54].
This is a relatively old size analysis, whose limitations are addressed in newer do-
mains such as, e.g., the sized types domain [55].

Our size analysis infers a set of argument size relations for each clause in order
to represent the upper and lower bound of the input size to each body literal as a
function in terms of the input size to the head. This size information is used by the
cost analysis to infer the cost of each literal in the body of a clause.

Each literal can be expressed in terms of four measures: term size, term depth, list
length or integer value. In order to decide which of these measures to apply, type
information from an instrumental type analysis is used. Thus, we can define a set of
functions | - |,, : H — N, H being the Herbrand universe and N, the set of natural
numbers with an additional symbol: 1, representing an undefined size:

n if ¢ is an integer n
sizeint(t) =  O(sizeme(t1),. .., sizemt(ty)) ift = O(t1,...,t,), ® is an arithmetic functor
1 otherwise
0 ift =]
sizelist(t) =<1+ sizelist(tl) ift = [_|t1]
1 otherwise
0 if t is a constant
sizedeptn(t) = § 1+ max {sizegepn(ti) | 1 <i<n} ift= f(ts,...,tn)
1 otherwise
1 if ¢ is a constant
sizesize(t) = ¢ 14+ Y 1 Sizesize(t;) it = f(t1,...,tn)
1 otherwise

As we can see, these measures are quite limited for analyzing term sizes in a language
as expressive as our CHC IR. E.g., if we directly translate our running example
(Listing 1.1), we would get a predicate like that in Listing 4.4.

This program, however, would be almost impossible to analyze using the previously
defined measures. Although the input terms are Parameter and Storage, we cannot
use their sizes to express the size of the body literals in the clause, as we can only use
the size of the only input argument: the input stack ([ (Parameter,Storage)]), whose
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:- entry default(A, B, O
( list(mutez, A), list(mutez, B), var(C) ).

default (Parameter, Storage®, [(Operations,Storagel)]) :-

Listing 4.5: Second iteration on the translation output (see Listing 4.4).

parameter (pair (pair int int) int) ;
storage (pair int int) ;
code { ... }

Listing 4.6: Michelson contract with tuples.

size is always 1 using the measure list_length—measures term_size and term_depth
are applicable to any term, but we will only use list_length for lists. Following this
reasoning, during the development of my Bachelor thesis, we modified our translator
to be able to use the size of these terms in the analysis, such as in Listing 4.5.

However, this change, although useful, is not enough. Looking at the contract in
Listing 4.6, we can see that, even after applying this transformation to the output of
the translator, the size of the input arguments is not accessible for our analysis.

By the output in Listing 4.7, we can infer that our size analysis can only use the
measures term_size and term_depth (for constant sizes of 5 and 3, respectively). Our
first intuition is that using the sizes of the terms in the input tuples with the measure
integer_value would be much more useful. To this end, in Section 4.2.2, we introduce
a fix to this problem: tuples destructuring.

Another issue with the current representation of Michelson smart contracts is that
we cannot express the sizes of the outputs, i.e., the list of operations and the updated
storage, in terms of the inputs, as there is a single output argument in our CHC IR
representation using the list_length measure. In Listing 3.1, we can also see how
our representation of the stack as a list also limits the precision of our analysis, as
the auxiliary predicate iter__1/3, which simulates the loop in our running example,
receives the input and output stacks as a parameter, losing any size information of
the terms in the body literals occurring after the call to this predicate. In order to
tackle this problem, in Section 4.2.3, we introduce a new concept: stack deforestation.

4.2.2. Destructuring Michelson Tuples

Tuple destructuring is a transformation which can be applied to tuples in order to
obtain their inner terms statically. Being 7 the set of Michelson types, 7.5 the set of
Michelson types excluding tuples, and x the associative tuples constructor, we can

:- entry default(A, B, O
( pair(pair(int, int), int, A), pair(int, int, B) var(C) ).

default((CA,B),C), (D,E), [(Operations,Storagel)]) :-

Listing 4.7: Direct translation of the contract in Listing 4.6.
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:- entry default(A, B, C, D, E, F)

( intCA), int(B), int(C), int(D), int(E), var(F) ).
default(A, B, C, D, E, [(Operations,Storagel)]) :-
Listing 4.8: New translation of the contract in Listing 4.6 using

Interpreterdest,pair (pair int int) int,pair int int-

define the dest function recursively as follows:

dest: T — Tgog,m >0

Destructure(tl) x Destructure(tr) if a =pairtltr
a — Destructure(a) = )
a otherwise

This way, from an arbitrary Michelson tuple type pair t1 tr, we can obtain a tuple of
Michelson types t. Note that the same approach can be applied to Michelson terms
in the stack to obtain a tuple of Michelson terms. Being M the universe of Michelson
terms and M. this universe without Michelson tuples, we can overload the dest
function:

dest: M — My, y,n >0

Going back to Equation 1.1, we can see how we defined a Michelson interpreter as a
function from input to output stack. Using this same principle, we can derive a new
interpreter, which receives a destructured tuple as a parameter:

Interpgestps: P1 : --- : Pa @ St ¢ ... : Sy : []— list operation : it .oisn ]
Py :...:Pp: Sy :...:8;: [~ Operations : S} : ... : S} : |
(4.1)

Note that ps,...,Pn,S1,---,80/P1,...,Pn,S1,..., Sy, is the result of applying the dest func-
tion to the input type (pair parameter storage)/input term (Pair Parameter Storage).
In order to be able to reuse instructions definitions, this interpreter must “rebuild”
input Michelson tuples before executing the contract using type information provided
by p and s, as our only goal is to define an equivalent interpreter receiving a destruc-
tured tuple instead of a Michelson tuple.

Using this simple transformation, contracts like that in Listing 4.6 can be represented
in an analysis-friendlier way, as seen in Listing 4.8. Using this new representation,
we can use the size of each input term inside Michelson tuples to infer the cost of
executing a contract, greatly improving the precision of the analysis in the general
case.

4.2.3. Stack Deforestation

As seen in Section 4.2.1, passing the stack as a parameter to auxiliary predicates
which encode higher-order Michelson instructions can be very detrimental to size
analysis precision. In order to avoid that, we can use stack deforestation, abstracting
the underlying stack in the translation process.
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4.2. An Analysis-Friendlier Translation

In Section 3.1, we explain how we can use Michelson typing rules (the type of a stack
in every program point can be known statically) to specialize polymorphic instruc-
tions. This same approach can be applied to abstract the stack, exploiting higher-
order instructions typing rules. In order to prove the correctness of our approach,
we will go through two key properties that both branch and loop instructions must
satisfy.

Rule 1 (Branch merging rule) When a program branches, either in a branch or a loop
instruction—the loop can be entered or not—, both branches must return the same stack
type. In the case of branch instructions, one of them or both of them may fail, if only
one fails, the non-failing return type is taken as the result of executing the higher-order
instruction.

Rule 2 (Loop type-preserving rule) The type of a stack at the exit of a loop must be
the same as in its entry plus a looping term, be it a condition term, e.g., a bool, or a
new element to insert into the new data structure in MAP instructions.?

Using these typing rules, we can assure that the size of a stack is defined in each
program point, regardless of the number of times it is executed or the instructions it
has previously executed. Thus, we can perform stack deforestation to abstract the
Michelson stack in every program point, including higher-order instructions, by the
following rule:

ins(Cond, S0,81) — ins(Cond, A,...,An,B1,...,By),n = size(S0),m = size(S1) (4.2)

Using this transformation, our running example (Listing 3.1) can be modified to ob-
tain an analysis-friendlier version:
:- entry default(P, S, Ops, Res)
( list(mutez, P), list(mutez, S), var(Ops), var(Res),
mshare([[Ops],[Res]]) ).

default(A, B, []1, O :-
>$car’, nil([]), ’$swap’, ’S$iter’,
iter__1(A, [1, O,
nil([]1), ’$cons_pair’.

iter__O0(C[], A, A).

iter__O([A|B], C, D) :-
cons(A, C, [A|CD),
iter__0(B, [A|C], D).

In case one of the branches of an instruction fails, we apply the transformation in
Equation 4.2 taking the size of the stack at the exit of the the non-failing branch
as the stack size. E.g., in Listing 4.9, we have an IF instruction in which one of the
branches fails. As the size of the returning stack is 0 in the non-failing case, no output
stack is encoded in the head of the generated predicate, as seen in Listing 4.10.

In this previous case, the size of the non-failing stack was lesser than that of the
failing branch, but the opposite is also possible. We could run into a program for
which our translator generates the following predicate:

2This rule follows from the previous one.
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parameter bool ;
storage unit ;
code { CAR ; IF { FAIL } {} ; UNIT ; NIL operation ; PAIR }

Listing 4.9: Michelson contract with a failing branch.

default(A,’O’,[1,’0O’) :-
$car’, '$if’,
if__0CA),
"$const’(’()’), nil([]1), ’$cons_pair’.

if__0(true) :-
"$const’ ()7, failwith(C’QO’).
if__0(false).

Listing 4.10: CHC IR representation of Listing 4.9.

if__0(true, _, _, _, _) :-
>$const’ (O ),
failwith(’ Q).

if__0(false, A, B, C, D) :-

This predicate cannot be analyzed as it is, as the size analysis would lose precision
due to the inclusion of the failed(‘()’) term and several free variables as output
arguments in the head of the predicate. In Section 5.2, we dive into this concrete
problem and discuss a possible solution.

4.3. Improvements to Cost Models

In this section we will show how we added support for a new Michelson resource
(storage) by slightly modifying our CHC IR and cost model (Subsection 4.3.1). Also,
in Subsection 4.3.2, we will discuss how we modified our cost models, detaching
semantics from cost semantics.

4.3.1. Storage Resource Support

As we stated in the introduction, most smart contract platforms charge users for
increasing the storage size of a contract, so knowing how this will change in terms of
the inputs can be very useful for smart contract clients.

As we know, our CHC IR translation of Michelson smart contracts encodes the code
section of a contract as a single-clause predicate. In Listing 4.11, we can see how
inputs and outputs are encoded as terms in the head of the predicate and how, for
our running example, the translator generates a predicate default/4 in which the
first two arguments are the input parameter and storage, respectively, and the last
two arguments, the output operations list and storage.

Thanks to the transformation applied to input and output stacks explained in Sec-
tion 4.2, we can think think of the size of a storage term as a vector [sizey, ..., size,_1],
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:- entry default(A, B, C, D)
( list(mutez, A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([[C],[D]1)).

default(A, B, [], C) :-

Listing 4.11: Head and input types definition of the predicate encoding the code
section in Listing 1.1.

:- true pred default(A,B,C,D)
( list(int,A), list(int,B), var(C), var(D) )
=> ( list(,A), list(int,B), list(operations,C),
list (memo_size,D),
size(ub,length,C,0),
size(ub,length,D,length(A)) ).

Listing 4.12: Size analysis output for the storage parameter in Listing 4.11.

where each size; represents the size of the storage element i obtained as explained in
Section 4.2.2 (if storage is not a tuple, n = 1). This way, for any input (input_storage)
and output (output_storage) storage vectors of the same length, we have:

A; = output_storage; — input_storage; (4.3)

By performing size analysis on the terms in the head of the predicate, we can obtain
the expression that relates the output storage with the input arguments (Listing 4.12).
Now, as the output storage can be expressed in terms of the input storage and the
parameter, we can modify Equation 4.3, obtaining an expression depending on the
inputs to the contract:

A;(parameter, input_storage) = output_storage;(parameter,input_storage) — input_storage;
(4.4)

However, this expression only gives us the size difference in the storage in terms of pa-
rameter and input storage measured in one of the metrics explained in Section 4.2.1,
the actual storage difference depends on the encoding of the different types used in
Tezos Michelson interpreter. In order to obtain the actual storage difference, we relate
this expression with the type of the term measured:

michelson_storage;(type, parameter, storage) = michelson_storageiype, (A;(parameter, storage))

(4.5)

This way we obtain an expression from the input of the contracts to the storage differ-
ence due to every term in the storage tuple. Thanks to Michelson encoding of tuples,
we can easily obtain an expression from input arguments to storage difference:

michelson_storage(type, parameter, storage) =

S (4.6)
Z michelson_storage;(type, parameter, storage)

1=0

As michelson_storage is a new resource in our cost model, we must declare it (List-
ing 4.13). In the Tezos platform, storage is a special resource, as Michelson instruc-
tions do not consume it; it has to be measured after executing a contract, once the
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resource michelson_storage.

Listing 4.13: michelson_storage resource definition in our model.

trust pred ’$storage_diff_bool’(A,B)
+ ( cost(lb,michelson_storage,0),
cost(ub,michelson_storage,0) ).

trust pred ’$storage_diff_string’(A,B)
+ ( cost(lb,michelson_storage,length(B)-length(A)),
cost(ub,michelson_storage,length(B)-length(A)) ).

trust pred ’$storage_diff_int’(A,B)
+ ( cost(lb,michelson_storage,log(256,int(B))-1log(256,int(A))),
cost(ub,michelson_storage,log(256,int(B))-1log(256,int(A))) ).

Listing 4.14: Assertions for some michelson_storage cost markers.

output storage has been calculated. As a result, assertions in our model declaring
gas consumption for each Michelson instruction will not be modified.

However, we have to find a mechanism to measure this new resource. In order to do
so, we defined a series of cost markers that are appended as the last instructions of
every Michelson contract. These cost markers are obtained from a polymorphic meta
instruction storage_diff, which the translator adds as the last instruction to every
Michelson contract.

This storage_diff is specialized in the translation phase, as it is included in the inter-
mediate representation of our Michelson compiler right before the translation process
begins. Thus, our Michelson partial evaluator is the one in charge of specializing this
instruction using this simple rule:

storage_diff(t,storage,storage’) =

(storage_diff(ta, car(storage), car(storage’)), . _
) f —
storage_diff(tb, cdr(storage), cdr(storage’))) if t = (pair tatb)

storage_diff[storage, storage’| otherwise

Where ‘" represents the conjunction. This way, Equation 4.6 is preserved, as, if the
storage type is an n-tuple, we generate n specialized storage_diff calls in the output
CHC IR code, whose storage cost is accumulated by adding them together.

In addition to including them in the code, we must also define the cost semantics
for these cost markers in our cost models. In Listing 4.14, we can see assertions for
these new cost markers. Storage difference expressions for bool and string types are
trivial, as bool values are encoded in a single byte and strings as a list of bytes. On
the other hand, the storage difference expression for int (arbitrary precision integers)
is more complex, due to its particular encoding.

Storage expressions for cost markers of most types, e.g., bool, string or int, are
simple enough to not need a previous treatment. On the other hand, Michelson
also provides structural types, e.g., list, set, map, which encode data structures of
a given type. To handle storage markers for this kind of types, we must add an
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:- trust pred ’$storage_diff_list’(A,B,C)
+ ( cost(lb,michelson_storage,(length(B)-length(A))*int(C)),
cost(ub,michelson_storage, (length(B)-length(A))*int(C)) ).

Listing 4.15: Assertion for 1ist michelson_storage cost marker.

:- trust pred ’$storage_diff_ _top’(A,B)
+ cost(ub,michelson_storage,inf).

Listing 4.16: T michelson_storage cost marker.

additional input argument to the cost markers: the size of the terms in the structure.
Listing 4.15 shows the storage expression for a generic list, where C is the size of
each element in the list. Given sizeof as a partial function which returns the size (in
bytes) of the elements of a given type iff every element of this type has the same size:

michelson_storage((list t), A;(parameter, storage)) = A;(parameter, storage) x sizeof(t)
(4.7)

E.g., for a list of bool (sizeof(bool) = 1), we would have a storage cost expression:

michelson_storage((list bool), A;(parameter, storage)) = A;(parameter, storage)

Now, with sizeof a partial function, we may find cases in which Equation 4.7 is not
defined. Thus, we need to handle this case:

michelson_storage((1list t), A;(parameter, storage)) =

A;(parameter, storage) * sizeof(t) if sizeof(t) is defined (4.8)
T otherwise

When michelson_storage is input a type whose size difference expression cannot be
known statically, i.e., a structural type containing elements of a type for which sizeof
is not defined, e.g., (1ist int), the output cost marker will be that defined in List-
ing 4.16. This is the “top” (T) cost marker, which has a storage consumption in the
range [0, c0).

Please note that, using a more advanced size analysis, like the sized types analy-
sis of [55], we could improve the precision of michelson storage resource analysis.
Modifying Equation 4.8, we would obtain:

michelson_storage((1ist t), L, 1, M,m,L',l', M’ ,m’) €
[(I' x sizeof(t,m)) — (L * sizeof(t, M)), (L' * sizeof(t, M’)) — (I * sizeof(t,m))]

Where sizeof has been overloaded to represent the size of a concrete term given its
type and value, L/L’, resp. I/l', is the maximum, resp. minimum, possible length
for the input/output list; and M/M’, resp. m/m’/, is the term with the maximum,
resp. minimum, size in the input/output storage. Note that, for the case in which
sizeof(t) is defined, the expression is equivalent to that in Equation 4.8—as we would
have that sizeof(t,m) = sizeof(t,m’) = sizeof(t, M) = sizeof(t, M’) = sizeof(t).

24



ciao_tezos Improvements

4.3.2. Detaching Semantics from Cost Semantics

After writing the Delphi cost model, we found out that information regarding the
instruction semantics was duplicated in both cost models. In order to tackle this
problem, we decided to split the semantics and cost semantics definitions into two
different sets of assertions. Exploiting the Ciao packages system, we created a new
package containing assertions that declare instructions semantics which is loaded by
every cost model package.

By implementing this change to our cost models, we were able to reduce the size of
our cost models by 32 % (1490 LOC). As properties expressing semantics and cost
semantics are disjoint and semantics for Ciao assertions are assumed to be T for
missing properties, we have that the greatest lower bound (M) of two different asser-
tions (one defining the semantics of an instruction and the other, its cost semantics)
for a given instruction is:

semantics : s semantics T semantics :sl1T semantics : s
M = =
cost T cost e cost :Tle cost e

So, the system can handle this separation of semantics and cost semantics, saving a
great amount of time and space, the main motivation of Parametric Cost Analysis.

4.4. Improvements to Michelson Partial Evaluation

As we previously stated in Section 3.1, our interpreter is capable of unfolding control
flow instructions if the value of the condition is known statically. Thus, analysis
precision could be far improved by extending the partial evaluation capabilities of
our analysis.

In Listing 4.10, we can see how the NIL instruction is executed statically, as its output
will always be an empty list. By taking a similar approach, we can evaluate the
outputs of some instructions if their input arguments are sufficiently instantiated.

Control flow instruction unfolding is achieved by providing some metainformation,
describing the nature of the input arguments to a higher-order instruction, i.e., if they
are code, a branching condition or another term. In a similar fashion, we can write
partial evaluation rules, which express the conditions under which an instruction
can be partially evaluated by our interpreter. We have included two types of partial
evaluation conditions: instantiation conditions and relation conditions.

Instantiation conditions are lists of conditions input arguments must fulfill for an
instruction to be partially evaluated. We will show each condition we have considered
by taking a look at the rules for the ADD instruction:

pe_mode(add, [pe_const(0),term,-]).
pe_mode (add, [term,pe_const(®),-1).
pe_mode (add, [+,+,-1).

As the ADD instruction has two input arguments and one output argument, the lists
encoding partial evaluation conditions have three elements, one for each argument.
Output arguments are marked as “-”, meaning that no test has to be performed on
them, as they will always be free variables. An equivalent condition to “-” is “term”,
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4.4. Improvements to Michelson Partial Evaluation

which is used for input arguments which can be any term (ground or free) on input.
Finally, the “+” and “pe_const(X)” conditions are used to state that a value must be
ground on input or that it must be instantiated to a certain value X, respectively. As
the ADD rules encode, this instruction can be partially evaluated if any of the following
conditions hold:

= The first input is 0
= The second input is 0
= Both inputs are ground

Some instructions need additional conditions, such in the case of CONCAT instruc-
tion, which concatenates a list of strings. Rules for this instruction include the
concat_string condition, stating that the input must be a list of ground terms with a
(possibly) free tail, e.g., [“Ciao”,“Michelson”] or [“Ciao”,“PP”|_].

Regarding relation conditions, these are used to express a relation that must hold
between two or more input arguments. In the case of the SUB instruction, it includes
the following rules:

pe_mode (sub, [term,pe_const(0),-1).
pe_mode(sub, eq(1,2)).
pe_mode(sub, [+,+,-1).

The second rule introduces a new condition: eq(1,2), which states that arguments in
positions 1 and 2 must be strictly identical, i.e., ground and with the same value, the
same variable or a compound term with the same functor and identical arguments.
Thus, this instruction can be partially evaluated if any of the following conditions
hold:

= The second input is 0
= Both inputs are strictly identical
= Both inputs are ground

Using these partial evaluation rules, an artificial Michelson contract like:

parameter int ;
storage int ;
code { UNPAIR ;
PUSH int 0 ;
MUL ;
ADD ;
DUP ;
SUB ;
PUSH int 10 ;
ADD ;
NIL operation ;
PAIR }

Can be translated to a CHC IR representation in which the output is known at compile
time:
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default(A,B,[],10) :-
>$unpair’, ’S$const’(0),
mul (0,A,0),
add(®,B,B),
*$dup’,
sub(B,B,0),
’$const’(10),
add(10,0,10),
nil([D),

’$cons_pair’.

In addition to these partial evaluation rules, we include compare rules. These rules
are used to improve the precision and readability of the translation by introducing
metainformation in the translation stack when two terms are compared. Thus, if a
comparison instruction followed by a branching instruction is found in a contract,
such as in this example,® which stores the absolute value of the parameter in the
storage:

parameter int ;
storage int ;
code { CAR ; DUP ; LT ; IF { NEG } {} ; NIL operation ; PAIR }

We can make the branching instruction clearer—also helping the analysis—by in-
cluding a comparison literal A < B in the body of the generated predicate encoding
the branch instruction:

default(A, B, []1, O :-
$car’, ’'$dup’,
1t (A, D),
T$if’,
if__0(D, A, A, O,
nil([D),

’$cons_pair’.

if__0(true, A, B, C) :- A <0,
neg(B, Q).
if__0(false, A, B, B) :- A >= 0.

4.5. Entrypoints Support

Michelson contracts can implement different functionalities thanks to the entrypoints
mechanism. A contract with entrypoints is a Michelson contract which receives a
parameter of type (or ta tb), ta and tb being possibly nested disjunctive types, i.e.,
more (or ta’ tb’) types. This input parameter type must be annotated in the source
code using entrypoints—also called field—annotations, with shape “%Annot”.

Using this contract polymorphism mechanism, we can extend the capabilities of
Michelson smart contracts, e.g., the smart contract in Listing 1.1 can be extended

SLT is an implicit comparison with 0.
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so that it provides entrypoints to different list operations to modify the stored list:
it could reverse the stored list, append an element to it, clear it or even apply an
input function to each of its elements, storing the result in the storage list. These
operations can be implemented as follows:

parameter
(or (or (or (lambda %map mutez mutez) (mutez %cons))
(unit %reverse)) (unit %default)) ;
storage (list mutez) ;
code { UNPAIR ;
IF_LEFT
{ IF_LEFT
{ IF_LEFT
{ SWAP ; MAP { DIP { DUP } ; EXEC } ;
DIP { DROP } }
{ CONS } }
{ DROP ; NIL mutez ; SWAP ; ITER { CONS } 1} }
{ DROP 2 ; NIL mutez } ;
NIL operation ;
PAIR }

As we can see, this smart contract provides four different entrypoints: 1) map, receiv-
ing an input lambda function to apply to the elements of the list; 2) cons, receiving
the element to append to the list; 3) reverse, which receives a unit (empty) value and
reverses the list; and 4) default, which receives a unit (empty) value and clears the
contents in the list.

As Michelson entrypoints are syntactic sugar over disjunctive types restricting that
entrypoint annotations cannot be duplicated in a parameter type definition, we can
use the partial evaluation capabilities of our interpreter to residualize the contract
code for each of the possible parameter types. Thus, in the previous example, we
should take into account all the possible parameter types annotated by entrypoints*
and generate a different predicate for each one of these. In Listing A.1, we can find
the CHC IR representation of the contract in Listing 4.5. As seen in Listing 4.17, our
translation tool not only generates a different predicate for each entrypoint, but also,
a set of assertions describing the types of the input terms to each entrypoint.

4.6. Defining a Michelson Assertion Language

When dealing with verification of a programming language, it is important to define
the way in which the tool and the programmer will communicate with each other.
Ciao’s approach is defining an assertion language so the user can input information
about the predicates to CiaoPP, which will be able to communicate the inferred rele-
vant information back to the user using the same mechanism. In Section 4.6.1, we
will briefly introduce Ciao’s assertion language and in Section 4.6.2, we will show a
first prototype of an assertion language for Michelson.

4All the possible combinations are: left (left (left (lambda mutez mutez))), left (left (right
mutez)), left (right unit) and right unit.
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:- entry cons(A, B, C, D)
( mutez(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI1D]) ).
cons(A, B, []1, [A|B]) :-

:- entry map(A, B, C, D)
( lambda(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI1) ).
map(A, B, []1, O :-

:- entry reverse(A, B, C, D)
( unit(CA), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DID]) ).
reverse('()’, A, []1, B) :-

:- entry default(A, B, C, D)
( unit(CA), list(mutez, B), var(C), var(D),
ground (A), ground(B), mshare([C,D], [[C], [D]]1) ).
default(C’Q’, A, [1, [1) :-

Listing 4.17: Head of the predicates generated for each entrypoints in Listing 4.5.

4.6.1. Introduction to Ciao’s Assertion Language

Ciao assertions [56, 13, 57] can be used to express different properties of predi-
cates in the source code, be it functional properties, e.g., types, modes, aliasing; or
non-functional, e.g., non-failure, determinacy, cost. Assertions in Ciao are a bidirec-
tional communication channel between programmer and CiaoPP, so the former can
use them to write specifications, describing unknown code or expressing properties
that a certain part of the code must fulfill; whereas the analysis tool will use them to
report analysis and verification results back to the user.

We will focus on pred assertions, used to describe a set of preconditions and postcon-
ditions on a predicate in the source code. These assertions are of the form:

:- [ Status ] pred Head [: Pre ] [=> Post ] [+ Comp ].

where Head is a descriptor of the predicate to which the assertion applies and Pre and
Post are conjunction of property literals. These properties are predicates which can
also be used as run-time checks and can be abstracted and inferred by some domain
in CiaoPP. Pre, resp. Post, express properties which must hold when Head is called,
resp. when Pre holds and the call succeeds. If Pre or Post are empty (true), they
can be omitted. Regarding the Comp field, it can be used to express properties of the
computation, e.g., cost, termination, determinism, etc., and they apply to calls of the
predicate that meet Pre. Finally, Status is a keyword expressing the meaning of the
assertion, which can be any of:

check (default, can be omitted) the assertion expresses properties which must hold
at run-time, so the static analyzer should be able to prove them or generate
run-time checks for them;

checked the analyzer proved that the property holds;
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false the analyzer proved that the property does not hold in some execution;
trust used to specify properties of the code.

Thus, when we use check assertions in the code, CiaoPP will use check, checked or
false assertions to express that properties must be further checked, hold or do not
hold. E.g., for the following predicate append/3, we could write:

:- pred append(Xs, Ys, Zs) : ( list(Xs), list(Ys) ) => list(Zs).

:- pred append(Xs, Ys, Zs) : list(Zs) => ( list(Xs), list(¥s) ).

append ([], Ys, Ys).
append ([X|Xs], Ys, [X|Zs]) :-
append (Xs, Ys, Zs).

This check assertions express that, if we call append/3 using two lists in positions 1
and 2 of the head, the third argument must be a list on output; and the other way
around. As these assertions hold and can be checked statically by CiaoPP, the output
of the verification tool when receiving this program as an input is:

:- checked append(Xs, Ys, Zs) : ( list(Xs), list(Y¥s) ) => list(Zs).
:- checked append(Xs, Ys, Zs) : list(Zs) => ( list(Xs), list(Ys) ).

append ([], Ys, Ys).
append ([X|Xs], Ys, [X|Zs]) :-
append (Xs, Ys, Zs).

Regarding trust assertions, they can be used to specify properties for an unknown
predicate or, as seen in Section 3.2, to define a cost model.

4.6.2. The CiaoMichelson Assertion Language

Although we have found a powerful tool in Ciao assertions to express predicates
properties, we currently do not have a way to include such assertions in Michelson
contracts. A possible solution to this problem would be to manually add assertions
to the CHC IR generated by our translation tool, but this may be a slow process when
contracts are being updated regularly.

Our first approach to expressing computational properties in Michelson code involved
using special Michelson comments to write inline Ciao assertions in Michelson, but
this method felt alien in a Michelson contract and was thus far from ideal. To fix this
issue, we have defined and implemented an extension of the Michelson language,
CiaoMichelson, which is Micheline® compliant and uses native structures to express
program properties.

As we know, Michelson contracts count with three toplevel fields: parameter, storage
and code. Our approach to defining a Michelson assertion language is including a
new type of field, assert, of the form:

assert [% entrypoint] { [property,]* }

Where entrypoint is the name of an entrypoint in the code (default by default) and
property is a functional or non-functional property expressed in a Michelson-native

SMicheline is the syntax used in Michelson.
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language. These assert assertions correspond to check assertions in the Ciao system,
so they should be verified by CiaoPP.

Currently, we have only defined a Michelson property: output_size, which can be
used to express the sizes of the output storage in terms of the input parameter and
storage. This property has the following shape:

output_size { [instruction,]+ }

Where instruction is an instruction belonging to a set of Michelson instructions
needed to perform basic operations such as dropping elements from the stack, push-
ing new values, performing arithmetic operations, etc., and four additional operations
used to cover some of the arithmetic operations which can be used in Ciao assertions
but not in Michelson code:

DIV Division with no zero checks;

POW Exponentiation;

LN Natural logarithm;

LOG Logarithm receiving the base as an additional argument.

For a given entrypoint ep, output_size code holds when:

VParameter € parameter,Storage € storage, output_size(ep, Parameter, Storage, code)

<= sizeof(ep(Parameter,Storage)) = code(Pair sizeof(Parameter) sizeof(Storage))

where code : sizof(pair parameter storage) — sizeof(storage),

sizeof(t) = {

and ep(Parameter, Storage) is the resulting storage when executing entrypoint ep

(pair sizeof(ta) sizeof(tb)) if t = (pair tatb)
int otherwise

with arguments Parameter and Storage

Even though sizeof(Parameter) and sizeof(Storage) are symbolic representations
of the sizes of the input arguments to a contract, we could use our interpreter to
generate code for the body of an output_size property. However, this is not what we
want, as this code is supposed to be translated to a valid Ciao arithmetic expression
to be used in the body of an assertion. Thus, in order to generate a Ciao property
from an output_size property, we have defined a set of rules which can be used with
our Michelson interpreter to automatically generate the desired properties.

To show this functionality in action, we are going to add correct Michelson assertions
to the contract in Listing 4.5. For the map entrypoint, we have that the size of the
list is not modified, so our output_size property should express that; cons increases
the length of the list in one unit, reverse does not change the length of the list and
default inserts an empty list (of size 0) in the storage:

assert %map { output_size { CDR } };

assert %cons { output_size { CDR ; PUSH nat 1 ; ADD } 1};
assert %reverse { output_size { CDR } };

assert %default { output_size { DROP ; PUSH nat 0 } }

The output Ciao assertions for these Michelson assertions are:
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:- check pred map(A, B, C, D)
( lambda(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [D]1) )
=> ( lambda(A), list(mutez, B), list(operation, C),
list(mutez, D), ground(A), ground(B), ground(C),
ground (D), size(D, length(B)) ).

:- check pred cons(A, B, C, D)
( mutez(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [D]]) )
=> ( mutez(A), list(mutez, B), list(operation, C),
list(mutez, D), ground(A), ground(B), ground(C),
ground (D), size(D, 1 + length(B)) ).

:- check pred reverse(A, B, C, D)
( unit(CA), list(mutez, B), var(C), var(D),
ground (A), ground(B), mshare([C,D], [[C], [D]1) )
=> ( unit(A), list(mutez, B), list(operation, C),
list (mutez, D),
ground (A), ground(B), ground(C), ground(D),
size(D, length(B)) ).

:- check pred default(A, B, C, D)
( unit(CA), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [D]]1) )
=>(C unit(A), list(mutez, B), list(operation, C),
list (mutez, D),
ground(A), ground(B), ground(C), ground(D),
size(D, 0) ).

As we can see, these assertions perfectly reflect the meaning of the assertions written
in Michelson, adding extra types and instantiation information to be used by the
analyses. If we try to verify these assertions using CiaoPP, the tool will output a set of
assertions with checked status, meaning that the assertions hold:
:- checked pred map(A, B, C, D)
( lambda(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI11) )
=> ( lambda(A), list(mutez, B), list(operation, C),
list(mutez, D), ground(A), ground(B), ground(C),
ground(D), size(D, length(B)) ).

:- checked pred cons(A, B, C, D)
( mutez(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI]1) )
=> ( mutez(A), list(mutez, B), list(operation, C),
list(mutez, D), ground(A), ground(B), ground(C),
ground(D), size(D, 1 + length(B)) ).
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:- checked pred reverse(A, B, C, D)
( unit(CA), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [D]]1) )
=> ( unit(A), list(mutez, B), list(operation, C),
list (mutez, D),
ground(A), ground(B), ground(C), ground(D),
size(D, length(B)) ).

:- checked pred default(A, B, C, D)
( unit(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI11) )
=>(C unit(A), list(mutez, B), list(operation, C),
list (mutez, D),
ground(A), ground(B), ground(C), ground(D),
size(D, 0) ).
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Chapter 5

CiaoPP Improvements

In this section, we will go through the improvements that were implemented in the
CiaoPP analysis tool to improve the precision of the analysis. These were motivated
by use cases that were found during the development of the ciao_tezos tool. First,
in Section 5.1, we will introduce a new approach to compound resources that was
included in CiaoPP to deal with Tezos gas. Section 5.2 covers a solution we used to
deal with failing clauses when performing size analysis of smart contracts. Finally,
in Section 5.3, we will discuss some of the improvements to CiaoPP’s built-in linear
equation solver.

5.1. Improvements to Compound Resources

A compound resource is a resource which can be expressed in terms of other atomic (or
compound) resources, as it is the case for Tezos gas (see Section 3.2). Although CiaoPP
has supported compound resources for a long time, this support was somewhat lim-
ited, and had to be extended/improved to handle some of Tezos gas’ particularities.
In Section 5.1.1, we cover our new approach to defining compound resources as a
mathematical expression and in Section 5.1.2, we introduce the new, more efficient,
way in which cost expressions for compound resources are obtained in CiaoPP.

5.1.1. Defining Compound Resources as Mathematical Expressions

Early implementations of compound resources in CiaoPP only allowed defining a com-
pound resource as the dot product of a resources vector (res) and a constants (also
referred to as platform) vector (k):

ky n
compound_resource(res, k) =res -k = [resl e resn] = Z res; * k; (5.1)
kn =1

This was powerful enough in some cases, but would fall short in the general case.
This is why we decided to allow the definition of compound resources as a mathemat-
ical expression in terms of other resources:

compound_resource(res) = f(res) (5.2)
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:- compound_resource(michelson_gas,

[atomic_steps, michelson_allocations,
michelson_reads, michelson_writes,
michelson_bytes_read,
michelson_bytes_written]).

:- platform_constants(delphi, michelson_gas,
[1, 2000, 1000, 100000, 160000, 10000,
15000]).

Listing 5.1: Definition of Tezos gas as a compound resource previous to language
extension.

This way, compound resources can be expressed in a more powerful, convenient,
and readable format. In Listing 5.1, we define Tezos gas in the Delphi protocol as
a compound resource using legacy syntax, whereas in Listing 4.1, we can see how
using the new syntax results in a clearer assertion.

In addition to clarity, this new syntax makes use of a rich arithmetic language which
was also extended to better express the cost semantics of the Tezos platform. Some
of the arithmetic expressions included in this language are the summation (sum),
product of a sequence (prod), exponentiation (**), trigonometric expressions (sin, cos,
tan) and some fundamental mathematical constants (e).

An important aspect to take into account is that, although we allow the definition
of compound resources in terms of other compound resources, we do not allow the
recursive definition of these elements, as this would require solving an additional
recurrence relation. To enforce this constraint, an ad hoc circularity analysis is
performed on the definition of the compound resources in order to detect recursive
compound resources definitions.

5.1.2. A “Global” Approach to Compound Resources Calculation

By compound resources definitions in Equations 5.1 and 5.2, we can infer that the
cost inferred for a compound resource must be equal to the application of the defini-
tion of the compound resource to the inferred costs for its component resources:

compound_resource(res) = f(res) <= cost(compound_resource) = f(cost(res))

where cost is a function that maps (vectors of) resources to (vectors containing) their
costs. This opens two possibilities when calculating compound resources: 1) a local
approach, already previously supported in CiaoPP, which accumulates the cost of
each literal in terms of the compound resource; or 2) a global approach, new for
CiaoPP, which calculates only the cost of atomic resources from which the cost of
compound resources can be obtained.

The local approach is more costly, not only due to the additional operations that must
be performed in order to accumulate the cost of each literal in the code and set up
the recurrence relations which give the cost for each compound resource, but also
due to the increment in the number of recurrence relations to be solved in the solving
stage.
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On the other hand, the global approach is cheaper, as the number of operations and
recurrence relations to solve is lower, but there might be some cases in which this
method is less precise. E.g., if we run into a situation in which two atomic resources
(res;, res;) happen to have exactly the same cost and both cancel out:

compound_resource(res) = f(res) = g(res\ {res;,res;}) + res; — res;
cost(res;) = cost(resj) p =
resi,resj € res

compound_resource(res) = g(res \ {res;,res;})

There could be a program in which the recurrence relation solver is unable to find an
expression for res; and res;. In this case, trying to obtain the cost of the compound
resource using the global approach would be infeasible; only the local approach, in
which the inferred cost of both resources may cancel out as the cost is accumulated,
would be useful in this particular scenario.

5.2. Dealing with Failing Clauses during Size Analysis

The CiaoPP size analysis accumulates size information for the different clauses of a
predicate by obtaining the least upper bound (| |) of the size intervals inferred for each
clause, i.e., being X a variable, P a predicate in the code, Pi,..., P, the n clauses of
predicate P (n > 0), size(X, P) the inferred size of variable X for predicate/clause P
and ub(Int)/lb(Int) the upper/lower bound of an interval Int:

' no n if 3,1 € P,
size(X, P) = |_| size(X, P;) = . . j
= fmin {1b(size (X, Py))}, max; {ub(size(X, P))}] otherwise
(5.3)

However, this definition leads to a big loss of precision when we run into failure. For
a clause P;, of predicate P, if P; surely fails,! we get that:

Ji s.t. P, fails = VX, size(X,P) =1 — VX, size(X,P)= 1 byb5.3
If we go back to the definition of Post properties in Ciao, in Section 4.6.1, we can
see that these properties must only hold when the predicate succeeds. Thus, from

the definition of Post properties themselves, we can infer that the definition given by
Equation 5.3 is incorrect.

In order to fix this, we must redefine the | | operation:
size(X,P) = |_| size(X, P;) =
i=1
[min {lb(size(X, P;)) | P, may not fail}, max {ub(size(X, P;)) | P, may not fail}
(5.4)

Using this new definition, if a clause P; of predicate P surely fails, we get:

Ji s.t. P; fails = size(X, P) = |min {lb(size(X, P})) | i # j}, max {ub(size(X, P;)) | i # j}] by 5.4
J

J

In ciao_tezos, this is a common pattern, as we are encoding Michelson failure as a logic failure.
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:- true pred p(X, Y)
( int(X), var(Yy) )
=> ( int(X), int(Yy),
size(lb, int, Y, int(X)) )
+ cost(lb, steps, 0).

:- true pred p(X, Y)
( int(X), var(Yy) )
=> ( int(X), int(Y),
size(ub, int, Y, intX)) )
+ cost(ub, steps, 1).

p(X, X).
gX, ) :- X <0, !, fail.
q(Xl Y) i

Y is X + 1.

Listing 5.2: Analysis of a predicate with a failing clause.

Using this new definition of the | | operation, we can analyze simple programs like
that in Listing 5.2.

5.3. Extending the Built-in Recurrence Relations Solver Ca-
pabilities

In order to obtain cost expressions showing resource consumption of programs, the
analyzer has to solve the recurrence relations obtained in previous steps, using an
external solver or the built-in recurrence relations solver. When trying to analyze
some programs, the analysis may set up the equations correctly, but fail to solve
them. In this case, the recurrence relations solver must be extended to support the
new kind of equations. In our case, we found out that recurrence relations of the
following shape could not be solved by our built-in solver:

9(Y, 2) if o =0

,(Vk e K.kE#1)
uf(e —1,Y+Ay, Ko Z+Ayz)+ h(x,Y, Z) ifz>0

f(%KZ):{

(5.5)
where o is the element-wise vector multiplication.

In order to support this kind of equations in our solver, we must first find a general
solution for it and encode it. We assume that the following expression is a solution
to the recurrence relation—being Z* = Ay @ (J — K), X°", the element-wise vector
exponentiation; @, the element-wise vector division; and J, the vector of ones:

f(@,Y,Z) =u"g (Y + (zAy),K* o (Z - Z*)+ Z") +
=l . ‘ , (5.6)
Zuzh (x—4,Y 4+ (iAy), K" o (Z - Z*)+ Z*)
=0

We are going to prove that this is a correct solution by induction on z. First, we will
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test the solution for x =0 and z = 1:
£(0,Y,Z) =u’g (Y + (0Ay), KV o (Z = Z*) + Z*) +

0—-1
Y wh(0—4,Y + (iAy), K% o (Z - Z*) + Z¥) (5.7)
=0

=9(Y, Z)

FLY, Z) =ulg (Y + (1Ay), K o (Z = Z*) + Z*) +
1-1
S u'h (1—4,Y + (iAy), K o (Z — Z*) + Z) (5.8)
=0
:ug(Y+AY1KOZ+AZ) +h(1a}/aZ)

Now, we assume that the solution is satisfied for x = n — 1:

fn—1,Y,2) ="y (Y 4 ((n—DAy), K° Do (7 — 2%) + Z*) +

e | (5.9)
Sowh(n =1 i)Y + (iby) K% o (2~ 2°) + Z°)
=0

We can test that, if the solution holds for z = n — 1, the solution must hold for z = n:
fn,Y,Z)=uf(n—1,Y+Ay,KoZ+Ayz)+ h(n,Y, Z)
= uu" g ((Y +Ay) + ((n—1DAy), K" Vo (Ko Z+Ay)—Z%) + Z*)

n—2

+ud wh(n—1—i, (Y +Ay) + (iAy), Ko (Ko Z+Ay) — Z%) + Z7)
=0

+h(n,Y,Z)

=g (Y + (nAy), K" 0 Z + K"V o (Ay = 2%) + 77)
n—2

+ Zui—f—lh <’I’L —1-4,Y + ((Z + 1)Ay),Ko(i+1) o/ + Koi o (AZ - Z*) + Z*)
=0

+h(n,Y, Z)
— ug (Y + (nAy), K" 0 Z + K°™ Do (Ay — Ayo (] — K))+ Z*)

n—2
+Zuz’+1h <’I’L*1fi,YqL((iJrl)Ay),Ko(H_l)OZjLKOiO(AZ*AZO(‘]iK))JFZ*)
=0

+ h(n,Y,Z)
— ug (Y +(nAy), Km0 Z+ K™ Do (~KoAy o (J— K))+ Z*)

n—2
+Zui+1h (n_ 1 —i,Y+ ((i—l—l)Ay),Ko(i-H) OZ—}—KoiO(_KoAZO(J—K))'f‘Z*)
=0

+ h(n,Y, Z)

=u"g (Y + (nAy), K" 0 Z = K" oAz 0 (J — K) + Z*)
n—2

E U R (n LY (DAY, K 0 2 - K6 0 Ay o (]~ K) + 2°)
=0
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+h(n,Y,Z)
=u"g(Y + (nAy),K"oZ — K" o Z*+ Z%)
n—2
+3 utth (n 1Y 4+ ((+ DAY), K20+ 0 7 - gD o 7 Z*)
=0
+h(n,Y, Z)
=u"g(Y + (nAy), K" o (Z - Z%)+ Z%)
n—2
+3 wtth (n 1Y 4 (4 DAY, Ko o (7 — 2% + Z*)
=0
+h(n,Y,Z)
= u"g (Y + (nAy), K" o (Z — Z*) + Z*)
n—1 A )
+ ) wh(n—i,Y + (iAy), K% o (Z — Z*) + Z%)
i=1
+u’h (n—0,Y + (0Ay), K00 (Z — Z*) + Z*)
= u"g (Y + (nAy), K" o (Z — Z*) + Z*)
n—1
+ Y u'h (n—14,Y + (iAy), K% o (Z — Z*) + Z7) (5.10)
=0

By Equations (5.7) and (5.8), we can see that this solution is satisfied when n = 0
or n = 1 and by Equations (5.9) and (5.10), we can prove that, when n satisfies the
solution, n + 1 also does. Thus, we can state that Equation 5.6 is a solution for the
recurrence relation in Equation 5.5.

In Listing 5.3, we include an example of a program which can be analyzed using the
recurrence relation in Equation 5.6. It receives two sets of numbers, Xs and Y's; and
a number, R, as inputs; and outputs the following set:?

Zs=YsU{2"xRxxz; | 0<i<|X|}

We assume that the cost in computational steps of inserting an element in a set is lin-
ear with respect to the length of the set and that the cost of multiplying two numbers
is logarithmic with respect to the value of the second number. With this information,
we can set up a system of equations with the shape of that in Equation 5.5:

2We assume that sets are encoded as sorted lists.

40



CiaoPP Improvements

:- entry union_prod(Xs, Ys, R, Zs)
( list(num, Xs), list(num, Ys), var(Zs), num(R) ).

union_prod([], Ys, _, Ys).
union_prod([X|Xs], Ys®, R, Zs) :-
prod(X, R, X1),
prod(R, 2, R1),
insert_(Ys®, X1, Ysl),
union_prod(Xs, Ysl, R1l, Zs).

:- impl_defined(insert_/3).

:- trust pred insert_(A,B,C)
( list(num,A), num(B), var(C) )
=> ( list(num,A), num(B), list(num,C),
size(lb,C,length(A)), size(ub,C,length(A)+1) )
+ ( not_fails, is_det, mut_exclusive, covered,
cost(lb,steps,1),
cost(ub,steps,length(A)+1) ).

:- impl_defined(prod/3).

:- trust pred prod(A,B,C)
( num(CA), num(B), var(C) )
=> ( num(A), num(B), num(C),
size(1lb,C,int(A)*int(B)),
size(ub,C,int(A)*int(B)) )
+ ( not_fails, is_det, mut_exclusive, covered,
cost(lb,steps,1),
cost(ub,steps,log2(int(B))) ).

Listing 5.3: Program analyzable using the recurrence relation in Equation 5.6.

1 ifx=0
fla,y,r) = . —
fle—=1y+1,2xr)+y+loggr+3 ifz>0

N Y
o
=

I
—
=

<
S W R T

~ N
I
e}

g(Y,Z)z
hz,Y,Z) =y +logyr+3

Using the formula in Equation 5.6, we find that the solution for this system is:

flz,y,r) =2+ zy + xlogyr + 2z + 1
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5.4. Other Improvements

:- true pred union_prod(Xs,Ys,R,Zs)
( list(num,Xs), list(num,Ys), num(R), var(Zs) )
=> ( list(num,Xs), list(num,Ys), num(R), list(num,Zs),
size(ub,length,Zs,length(Ys)+length(Xs)) )

+ cost(ub, steps,
length(Xs)**2+
length(Xs)*log(2,int(R))+
length(Xs)*length(Ys)+
2.0*length(Xs)+
1.

Listing 5.4: Analysis Result for program in Listing 5.3.

In Listing 5.4, we show the results of analyzing this program. As we can see, the
expression obtained by the analysis and the one obtained mathematically are equiv-
alent.

5.4. Other Improvements

Since the CiaoPP cost analysis depends on a number of other analyses present in the
system (e.g., modes, types/shapes, non-failure, or determinacy/mutual exclusion),
which are also in continuous development, some maintenance work is required in
order to keep all these analyses interact and exchange information properly, e.g.,
adapting to changes in the representation of information. We have performed such
work during the development of this thesis, additionally improving the way such
information can be extracted and used. This includes some maintenance and im-
provement work on the reading and treatment of cost-related “trust” assertions, the
correct use of non-failure information at the program point level, or performing addi-
tional simplifications to the cost functions used.
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Chapter 6

Experimental Results

Since its inception during the development of my Bachelor thesis, ciao_tezos has
extended its capabilities, including new functionalities to make the analysis of Tezos
smart contracts more precise. Currently, our Edo cost model includes 164 assertions,
covering most Michelson instructions, a great improvement over the 97 assertions
present in the cost model that we had in November and a proof of the extensibility
and flexibility capabilities of our system.

Regarding the Michelson to CHC IR translator, it is 1500 lines long, of which 480
lines correspond to instructions definitions, transliterated from the specification, and
230 to instruction metadata.

Our framework can currently infer storage consumption and the gas cost associated
to the execution of a program, but it could be extended to measure other costs, such
as those derived from the type checking of Michelson contracts. Also, the precision
of the storage measurement could be greatly improved using the sized types-based
analysis previously mentioned in Section 4.2.1.

We have tested this prototype on a wide range of contracts, a few self-made and
most of them published, both in Michelson’s “A contract a day” examples and the
Tezos blockchain itself. Experimental results for a selection of them are listed in
Table 6.1. In this selection, we have tried to cover a reasonable range of Michelson
data structures and control-flow instructions, as well as different cost functions using
different metrics.

Column Contract lists the names of the contracts analyzed, and Metrics shows the
metrics used to measure the parameter and the storage. The metrics used are: value
for the numeric value of an integer, length for the length of a list, and size which
maps every ground term to the number of constants and functions appearing in it.
Column Resource A(nalysis) shows the complexity order of the resource usage func-
tion inferred by the analysis in terms of the sizes of the parameter (o) and the storage
(B), including the values 1 if the inferred function is constant, co if it is infinite and
T it no safe bounds could be inferred. However, the actual cost functions inferred
by our analysis also include the constants. For complex metrics derived from tuples,
subindices starting from 1 are used to refer to the size of each argument; e.g., as
refers to the size of the second argument of the parameter. An additional token is in-
cluded in the Parameter column, stating to which entrypoint it corresponds in case
the contract has more than one entrypoint. Finally, Time shows the time (in millisec-
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Table 6.1: Results of analysis for selected Michelson contracts.

Metrics Resource A. Time
Contract
Parameter () Storage (3) gas storage (ms)
reverse length length « a—pf 372
addition value value log log % 255
michelson_arith value value log (a® 4+ B) log(a?+p3) 248
bytes value length B T 302
list_inc value length 15} 0 431
lambda value value log log 253
lambda_apply size value 00 00 222
inline size value log 3 log B 906
cross_product (length,length) value a1+ ag T 397
lineal value value @ T 534
assertion_map (value, size) length log B * log ay T 412
quadratic length length ax* T 508
queue size (value, size,length) log 31 * log /33 T 1108
king_of_tez size (value, value, size) 1 T 846
set_management length length axlog 8 @ 386
max_list length size @ T 684
zipper length (length,length,length) 1 T 1032
auction size (value, value, size) 1 T 854
union (length, length) length ayxlogas ay+as+ S 336
append (length, length) length o a1 +as+ 8 723
subset (length,length) size a1 * log ag 0 513
(cons) value 1 1
list_api (rg‘i‘:ﬁie‘;’ﬁze length 0; 8 1116
(default) size 1 I5)
(add) value log (a + B) log a
arithmetic_api (sub) value value log (a + B) log & 389
(default) size 1 log 8
dispatcher (do) size size o© 0 684
(default) size 1 0
ops_dispatcher value (value, size) log 51 T 928

onds) taken to perform all the analyses using the different abstract domains provided
by CiaoPP, version 1.20 on a medium-loaded 2.3 GHz Dual-Core Intel Core i5, 16 GB
of memory, running macOS Big Sur 11.4. Many optimizations and improvements
are possible, as well as more comprehensive benchmarking, but we believe that the
results shown suggest that relevant bounds can be obtained in reasonable times,
which, given the relative simplicity of development of the tool, seem to support our
expectations regarding the advantages of our approach.
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Chapter 7

Conclusions and Future Work

During the development of this Master’s thesis, we have extended the capabilities of
the ciao_tezos tool, which is now able to analyze more complex contracts and infer
safe bounds for another important Tezos resource (besides gas): storage. Thanks to
the Parametric Cost Analysis approach, we were able to support each new Tezos pro-
tocol iteration in a matter of hours, by simply modifying our cost model and—when
needed—the translation tool. Also, the improvements made to the CiaoPP framework
to deal with the problems posed by Michelson smart contracts might be useful in
the future to analyze programs written in other languages. The application of partial
evaluation techniques in the development of this tool has made the inclusion of new
features, such as entrypoints, quite simple. The obtained results were quite promis-
ing, as they were obtained in a reasonable time by running the CiaoPP analyses on
the unaltered output of the translator, and have drawn the attention of Tezos, with
whom we are collaborating in the development of our Michelson assertion language.

In general, our new experience and promising results show the feasibility of the ap-
proach that we propose, allowing rapid, flexible, and effective development of cost
analyses for smart contracts, which can be specially useful in the rapidly changing
environment in blockchain technologies, where new languages arise frequently and
cost models are modified with each platform iteration.

Despite the positive results of our (experimental) assessment, there are particular
Michelson constructs which our tool cannot deal with as expected. In order to over-
come these problems, we may have to apply more modern analyses, such as sized
types or develop further improvements to our built-in recurrence relations solver.

As a final, general conclusion, this thesis gives more support to our hypothesis that
our approach, based on Parametric Cost Analysis, provides a quick development path
for cost analyses for new smart contract platforms and languages, or easily adapting
existing ones to changes.
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Appendix A

CHC IR Representation of a
Contract with Entrypoints

:- module(A, [], [ciao_tezos(cost_models/edo)]).
:- use_module(ciao_tezos(cost_models/michelson_preds)).
:- entry cons(A, B, C, D)
( mutez(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI]]) ).

cons(A, B, [], [A[B]) :-

’$unpair’, ’$if_left’, ’$if_left’, ’'$if_left’,

cons(A, B, [A[B]),

nil([]1),

’$cons_pair’,
’$storage_diff_list’(B, [A|B], 8).

:- entry map(A, B, C, D)
( lambda(A), list(mutez, B), var(C), var(D),
ground(A), ground(B), mshare([C,D], [[C], [DI]]) ).

map(A, B, []1, O :-
>$unpair’, ’$if_left’, ’$if_left’, ’'$if_left’,
"$swap’,
’$1list_map’(B),
map__0(B, C, A, D),
>$dip’,
’$drop’ (D),
nil([]1),
’$cons_pair’,
’$storage_diff_list’(B, C, 8).

:- impl_defined(lambda_0/2).
:- trust pred lambda_0(CA, B)
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( mutez(A),
=> ( mutez(A),
+ ( not_fails,

var(B), ground(A) )

mutez (B),
is_det,

ground (A),

cost(ub, michelson_allocations,

cost(ub, michelson_bytes_read,

ground (B) )

inf),

inf),

cost(ub, michelson_bytes_written, inf),
cost(ub, michelson_gas, inf),

cost(ub, michelson_reads, inf),
cost(ub, michelson_steps, inf),

cost (ub, michelson_writes,

dispatcher_0(CA, B, C) :-
lambda_0(B, C).

map__O0C[], [], A, A).
map__O(C[A[B], [C|D], E, F)
$dip’, ’'$dup’, ’S$exec’

dispatcher_O0(E, A, Q),

map__0(B, D,

:- entry reverse(A, B,

E, F).

( unit(CA), list(mutez,

c, D)

B), var(Q),

inf)).

var (D),

ground (B), mshare([C,D], [[C], [D]]) ).

ground (4),
reverse("()’, A, [], B) :-
>$unpair’, ’$if_left’,
*$drop’ (" Q')
nil([]),
*$swap’,

"$list_iter’(A),

iter__1CA, []
nil([]),

’$cons_pair’,

’ B),

*$if_left’,

’$storage_diff_list’(CA, B, 8).

iter__1([]1, A, A)
iter__1([A|B], C,

D) :-

cons(A, C, [A|C]),
iter__1(B, [A|C], D).

:- entry default(A, B,

( unit(CA), list(mutez,

C, D)

B), var(Q),

var (D),

ground (B), mshare([C,D], [[C], [D]]) ).

ground (A),
default(C’'Q’, A, [1, [1) :-
>$unpair’, *$if_left’,
*$dropn’ (2, [*Q’,A]),
nil([]1),
nil([]),
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83 ’$cons_pair’,
84 ’$storage_diff_list’CA, []1, 8).

Listing A.1: CHC IR representation of the contract in Listing 4.5.
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