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Resumen

En software critico, es comun la necesidad de demostrar que las aplicaciones se
atienen a unas especificaciones sobre el consumo de recursos. Para ello, el analisis
estatico se postula como una solucion claramente superior al testing, ya que este
ultimo se limita a probar la no conformancia mediante la busqueda de un caso que
no cumpla con las condiciones, mientras que solo el primero puede asegurar que las
especificaciones se respetan para un conjunto infinito de posibles entradas. En este
trabajo, nos centramos en el analisis de un tipo de software critico cuya popularidad
ha crecido considerablemente en los ultimos anos: los contratos inteligentes.

La propia naturaleza de los contratos inteligentes y de las blockchain hace que el
analisis del consumo de recursos en estos sea de gran importancia. El alto factor
de replicacion de estos programas en los nodos de las plataformas distribuidas hace
que hasta la operacion mas sencilla vea su coste computacional multiplicado y que el
espacio de almacenamiento requerido por estos crezca vertiginosamente. Esta situa-
cion, unida a la mutabilidad y variabilidad de las plataformas en cuanto a lenguajes
utilizados y modelos de coste empleados, empuja a pensar que una aproximacion ge-
nérica y configurable a este problema sea una opcion interesante. Esto contrasta con
las soluciones propuestas anteriormente que son mas especificas para un lenguaje
de contratos o una plataforma dados.

Siguiendo esta linea, en este trabajo presentamos un enfoque flexible y viable al
analisis estatico de contratos inteligentes, particularizado a la plataforma Tezos. Para
ello implementamos un traductor de Michelson a Clausulas de Horn, las cuales se
analizan con la herramienta CiaoPP. El analisis realizado se enfoca principalmente en
estimar el consumo de gas, un recurso virtual que refleja el tiempo de ejecucion de
un programa. Dicho analisis se apoya en un modelo de coste que hemos expresado
en un lenguaje de aserciones, y que recoge la informaciéon en términos de consumo
de recursos de las distintas instrucciones presentes en el lenguaje Michelson. De
este modo, se presenta la posibilidad de realizar un analisis de recursos altamente
configurable que se adapte a las modificaciones que pueda sufrir la plataforma a
estudiar a lo largo del tiempo.

Presentamos resultados experimentales del analisis estatico de contratos inteligentes
obtenidos con la técnica propuesta que muestran que la solucion es factible, y puede
ser precisa y eficiente. Estos resultados son alentadores, y sugieren que esta técnica
es una via prometedora para continuar explorando en el futuro.






Abstract

In critical software, it is usually needed to ensure the conformance of applications
with respect to specifications that constrain resource usage. In order to achieve this,
static analysis stands as a clearly superior solution compared to testing, as the latter
is only capable of proving that a program does not meet the necessary conditions
by searching for a non-compliant case, whereas only the former can assure that
specifications are complied with for an infinite set of possible inputs. In this work, we
will focus on the analysis of a kind of critical software which is becoming increasingly
popular in the last few years: smart contracts.

The very nature of smart contracts and blockchain makes resource analysis on these
of great importance. The high replication factor presented by these programs in
distributed platform nodes leads to the multiplication of the computational cost of
running even the simplest operation and the rapid growing of the consumed storage
space. This situation, combined with the mutability and variability that these plat-
forms present in terms of languages and cost models, compels one to think that a
generic and configurable approximation to this problem is an interesting option. This
is in contrast with previous approaches that are more specific for a contract language
or platform.

Following this line, in this work we present a flexible approach to the static analysis of
smart contracts, using the Tezos platform as the concrete case of application. To this
end, we have implemented a Michelson to Horn Clause translator and run CiaoPP’s
static resource analysis on Tezos smart contracts represented this way. The analysis
focuses on analyzing gas consumption, a virtual resource which reflects a program’s
execution time. Such analysis relies on a cost model that we have expressed using
an assertion language, which represents the resource consumption for each Michel-
son instruction. This way, it is possible to perform a highly configurable resource
analysis, capable of adapting to possible changes that the platform might suffer over
time.

We present experimental results on the static analysis of smart contracts obtained
using the proposed approach which show that the approach is feasible, and can be
accurate and efficient. These results are encouraging, and suggest that the approach
is indeed a promising avenue for future research.
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Chapter 1

Introduction

Since its inception in 2008, blockchain technology [1] has attracted companies from a
huge array of sectors, such as banking, retail, or even gaming. These companies use
smart contract platforms, such as Ethereum [2] or Tezos [3], which allow performing
secure transactions without the need of third parties.

The basic idea behind smart contracts [4] is that it is possible to implement a system
which formalizes and secures digital relationships on current software and hardware.
This system must be designed in a way that discourages breachers from trying to
perform an attack, by making it prohibitively expensive for them.

Being such critical components, languages used to write smart contracts should not
only be robust against any class of attack, but also provide a user interface to com-
municate transaction semantics. As a result, these languages need to be secure,
avoiding unwanted behaviour and allowing the programmer to write a program which
performs exactly as desired, while allowing other parties to read and understand its
behaviour.

In the case of the Ethereum platform, its main focus is to provide programmers
with a Turing-complete programming language to write decentralized applications,
which can range from pure financial applications to complex cloud computing en-
vironments. In order to do so, Ethereum provides developers with two high level
programming languages which compile to Ethereum Virtual Machine (EVM) byte-
code. The most popular choice in this regard is Solidity, a C-like language, which has
established itself as the dominant language to write smart contracts.

On the other hand, the focus of the Tezos platform is safety, and an important en-
abler in this regard is the VM language used, Michelson. Unlike the aforementioned
languages used in Ethereum, Michelson was explicitly designed to facilitate formal
verification. In other words, the developers of Tezos smart contracts should be able
to prove that their contracts will behave exactly as desired before running them. Be-
cause of this design approach, Michelson does not include features such as polymor-
phism or named functions, as, unlike the languages used in the Ethereum platform,
Michelson does not intend to be a general purpose language, as its only raison d’étre
is to implement pieces of business logic.



1.1. The Tezos Michelson contract language

1.1. The Tezos Michelson contract language

As we have stated above, smart contract languages should provide a user interface to
communicate the semantics of transactions. Whereas Ethereum’s approach to this
goal is to provide readable languages which compile to assembly-like EVM bytecode,
Tezos’ Michelson was designed to be a readable compilation target. This way, de-
velopers can opt for writing contracts in a higher-level language, such as Python or
Haskell, and compile the result to Michelson, as an alternative or in addition to using
Michelson directly. Following on from the intention to provide a language designed
with formal verification in mind, this simplicity allows developers to easily implement
their own tools to verify properties of their code or even do it by hand.

As we can see in Listing 1.1, these programs are divided into three distinct parts. The
first two sections comprise the contract’s parameter and storage types declaration. A
parameter is the value used when calling a contract and the storage is the memory
of the contract. A call to a contract may or may not update its storage, as we will see
when we dive into a contract’s main section: its code.

The code section carries a contract’s semantics, its purpose, so it should be clear
and precise. Michelson is run by an interpreter which we can conceive as a pure
function: it receives an input stack and returns a result stack, without altering its
environment. This input stack will only contain a pair consisting of the calling pa-
rameter and the contract’s storage at that moment. Regarding the result stack, it
will only contain a pair consisting of a list of internal operations to be executed when
the contract returns and the resulting contract storage, which may be the result of
an alteration to the initial storage, the same unaltered value or a completely different
one. These internal operations which the contract may return can be of three kinds:
transactions, to transfer tokens to an account or make a call to another contract,
providing the parameter to use (two operations that, as we will see in a following
paragraph, are almost equivalent); originations, to create a new smart contract; or
delegations, to assign tokens to another account without transferring them, as the
recipient will not be able to spend them and the sender may take them back at any
moment.

Just as the Michelson interpreter, Michelson instructions are also pure functions,
as they simply extract values from the top of the input stack and push values into
the resulting stack. Thus, the Michelson language replaces variables with stack ele-
ments. This simplifies the language but in return makes writing Michelson contracts
somewhat harder. We will take the following instructions from the smart contract
above to illustrate this property of Michelson contracts: CAR, PUSH int 1 and ADD. The
first instruction extracts a pair from the top of the stack and inserts its first element.
Then, the second instruction pushes a constant integer of value 1. Finally, the last
instruction extracts two integers from the top of the stack and pushes the result of
summing both of them. The mathematical definition of these instructions as pure
functions can be seen in Equation 1.1, Equation 1.2 and Equation 1.3 respectively:

CAR / (Paira_) : S => a : S (1.1)
PUSHintl/a : S =>1:a: 8 (1.2)
ADD /1 :a : S => (14a) : S (1.3)
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Introduction

parameter (option string) ;
storage (pair (pair nat nat) (map nat string)) ;
code { DUP ;
CAR ;
IF_NONE
{ CDR ;
DUP ;
CAR ;
DIP { CDR ; DUP } ;
DUP ;
CAR ;
SWAP ;
DIP { GET } ; # Check if an element is available.
SWAP ;
# Put NONE on stack and finish.
IF_NONE
{ NIL operation ; PAPAIR }
# remove the entry from the map.
{ DROP ;
DUP ;
DIP { CAR ; DIP { NONE string } ; UPDATE } ;
DUP ;
CAR ;
PUSH nat 1 ;
ADD ;
DIP { CDR } ;
PAIR ;
PAIR ;
NIL operation ;
PAIR } }
# Arrange the stack.
{ DIP { DUP ; CDAR ; DIP { CDDR } ; DUP } ;
SWAP ;
CAR ;
# Add the element to the map and increment the second number.
DIP { SOME ; SWAP ; CDR ; DUP ; DIP { UPDATE } ; PUSH
nat 1 ; ADD } ;
# Cleanup and finish.
PAIR ;
PAIR ;
NIL operation ;
PAIR } }

Listing 1.1: A Michelson contract example.

In addition to this fact, the type of a stack, i.e., its length and the type of the elements
it contains, can be known beforehand at any program point by performing a trivial
static analysis, due to the aforementioned limitations imposed on the Michelson lan-
guage and the deterministic semantics of its instructions. This way, Michelson as-
sures that the execution of a contract will only fail if intended to do so (the FAILWITH

3



1.2. Resource consumption in Michelson

instruction is called), not enough tokens are provided, or due to gas exhaustion, a
core topic of this writing which we will cover more in detail.

Despite its similarities to assembly, Michelson includes some high-level data struc-
tures, such as lists or maps, which can be accessed and modified at execution time,
stored by contracts and, in short, will be treated exactly as primitive types.

These Tezos smart contracts reside inside blocks in the Tezos blockchain together
with their private data storage. This way, in order to execute a Tezos smart contract,
the user has to perform a transaction carrying data, the parameter, to its associated
account. This process can be seen as a remote procedure call (RPC) which updates
the smart contract storage, which provides read-only access to users otherwise.

1.2. Resource consumption in Michelson

Due to the nature of blockchain platforms, smart contracts will be stored in every
single node running the chain, so its storage will be replicated in all of them and
any call to a smart contract will be executed on every node. This fact lead Tezos to
include an upper bound in execution time and storage, as well as a fee associated
with running a contract or increasing its storage size, establishing a cost per allocated
byte to restrain storage use.

In order to limit execution time, the Tezos platform makes use of a concept called
“gas”. Being an interpreted language, every Michelson instruction has an associated
cost in gas, which is accumulated by the Michelson interpreter. This way, if a trans-
action exceeds its allowed gas consumption, its execution is stopped and its effects,
reverted. However, even if a transaction does not succeed because of gas exhaustion,
it is included in the blockchain and the fees are taken.

The aforementioned properties, gas and storage size, can be seen as resources con-
sumed by the execution of a smart contract. On the one hand storage size is a
physical resource, as it can be measured just by inspecting a smart contract. On
the other hand, gas is a virtual resource that reflects the cost in execution time (a
physical resource). By regarding these properties as resources, we can associate a
cost to running a contract. A cost which will be expressed in terms of gas consumed
or “burned” and allocated bytes.

With that in mind, knowing the cost of running a contract beforehand can be ben-
eficial for users, as it would allow them to know how much they would be charged
for the transaction and if gas limits would be exceeded. Tezos provides users with
an ad-hoc solution in order to perform such an a-priori estimation of the resource
consumption of a contract: it allows users to dry run a smart contract in their own
node before making a transaction. This way, a user can know the cost of running a
contract for a specific input value.

This way of testing the cost of running a transaction allows the user to make sure
that a transaction will succeed for a specific pair of (parameter, storage) values, but it
cannot assure that a change in one of these two values will not result in undesired
behaviour, which could lead to excessive execution costs. If the possible pairs of input
values (or some parts of them) are not known a priori, and an infinite of very large set

4



Introduction

of values is possible, testing for all those instances can quickly become inefficient or
simply infeasible.

In such cases a formal verification-based approach is preferable. At the same time,
as mentioned at the beginning, being able to verify properties is one of the strong
motivations and fundamental tenets of the Tezos approach. It does make sense thus
to focus on formal analysis and verification, not only of classic correctness properties,
but also of the resource-oriented aspects of the platform.

1.3. Towards formal verification of contract resources

As mentioned above, the importance of formal verification for critical software such
as smart contracts resides in the fact that it can be used to prove a certain property
of a piece of code, such as the absence of bugs or the cost of running a transaction.

As a result, formal verification of smart contracts, and in particular analysis and
verification of their resource consumption is an increasingly popular topic. It is how-
ever also a challenging one. At the same time, there are now many different plat-
forms, using different smart contract languages and cost models. These models often
take into account different resources and count them in a different, platform-specific
way. Furthermore, within each platform, the models can also evolve over time. As
a consequence, the few existing resource analysis tools for smart contracts, such as
GASTAP [5], GASOL [6], and MadMax [7] (see Sec. 1.5), tend to be quite specific,
focusing on just a single platform or language, or on small variations within a set.!

In order to address the challenge posed by the rapid development of smart contracts
platforms, we propose a different approach based on developing instead analysis
tools that are generic and can be flexibly configured to adapt to changes, both within
platforms and from platform to platform. Our objective in this work is to develop an
example of such a tool.

To this end, we will use as a fundamental tool the CiaoPP framework [8]. This frame-
work allows the analysis, transformation, and verification of programs written in dif-
ferent languages and for different platforms by transforming such source programs
and the associated cost models into an intermediate representation, based on Horn
clauses [9]. This approach has been proven to allow the analysis and verification of
many properties, including resource consumption: different resources and cost mod-
els are user-definable [10], by using the Ciao assertion language [11]. From these
models, CiaoPP can perform a class of analyses on the input code, and in particular,
it includes a parametric, interval-based resource analysis of the input program based
on these user-defined cost models (see [12] and its references). This approach builds
on initial work for the inference of upper bounds on task granularity in automatic
program parallelization [13, 14], which evolved to deal with other types of approxima-
tions (e.g., lower bounds [15]), user-defined resources [10], integrated multi-variant
resource analyses (i.e., path and context sensitive resource analyses [16]), and anal-
ysis of properties such as time or energy [17, 18, 12]).

One of our objectives in this work is to show that the generic approach of CiaoPP
can be used to analyze smart contracts from different platforms written in different

'We will return to discuss this and other relevant related work in Section 1.5.
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1.4. Plan and outline

Michelson to Horn Clauses Translator

Michelson
Translator

Michelson
Contract

parameter int ;
storage int ;
code {

Michelson
Impl.

Type
Checking

Clauses

Cost Model =@—» e
assertions

Figure 1.1: Michelson contract analysis process.

languages, i.e., that it is not necessary to develop specific analyses for smart contracts
and a generic tool such as CiaoPP can be used for this purpose. However, specific
transformations need to be developed to capture the semantics of smart contracts, as
well as cost models in order to capture the gas model. Figure 1.1 summarizes this
generic approach applied to Michelson smart contracts.

1.4. Plan and outline

As mentioned before, our objective is to prove by construction that it is possible to
perform cost analysis on smart contracts from different platforms written in different
languages with a common set of tools, through the two-pronged approach of defining
resources via assertions and translating to an intermediate language. In order to do
so, we will perform and report on the following tasks:

= Qur first step will be to compile the source code to obtain its Horn clause
representation. This can be easily achieved by coding a simple parser and a
translator. It is worth mentioning that the resulting Horn clause program does
not need to run, i.e., it will just be used to perform the analysis. Furthermore,
this technique can be made even simpler, since, if there are any operations
with no impact on the cost analysis, they can be omitted. A characteristic of
Michelson is that it is a stack-based language. This means that every instruc-
tion receives a stack, pops its input variables from the stack and pushes its

6
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output variables to it, passing the resulting stack to the next instruction. The
stack-based nature of Michelson makes a direct translation of its instructions
and contracts directly as functions or predicates in the intermediate form less
natural. Thus, in order to obtain a translation that can make use of the built-in
support for variables, control, and parameter passing in the analyzers the stack
will be compiled away in the translation process. This translation process is
discussed in Chapter 2.

= After obtaining a compiler from Michelson contracts to Horn clauses, the next
big task to tackle is developing a cost model and using it with CiaoPP to per-
form the resource analysis. We will annotate the cost of each instruction as
found in our cost model using CiaoPP assertions. By doing so, the framework
will make use of our previously-developed cost model to perform a parametric
analysis taking into account input data sizes and returning upper- and lower-
bound cost functions for the queried resources. We will consider four paths to
accomplish this goal:

* Go through the source code, if available, and look up what operations are
performed when executing an operation that consume resources.

¢ Perform program slicing on such source code in order to obtain the parts of
the code that will be useful for our cost analysis.

¢ Run the CiaoPP tool on the source code to get a similar result to the previous
case.

¢ Use an existing cost model provided by the smart contracts platform where
we will run the analysis on.

We will discuss pros and cons of each one of these options.

Another characteristic of the Michelson language is that is statically typed. This
means that we can know the input and output stack types for every instruction
at compile time. This will come in hand when developing a cost model, since the
translator can discriminate what version of a polymorphic instruction to use in
translation time depending on the state of the stack. We will see how in some
cases this can be useful, as the cost of an instruction can depend on its input
type, but in other cases it will not be necessary to do so.

In Chapter 3 we will go through the different possible ways to develop a cost
model, weighing their pros and cons. This configurable cost model will be used
in Chapter 4, which will include some working examples of the analysis of
Michelson contracts, evaluating its usefulness and correctness.

= Finally, Chapter 5 summarizes our conclusions and comments on ongoing and
future work.

1.5. Other related work

In this section we introduce or discuss further some of the related work on static or
mixed smart contracts resource analysis and resource analysis in general, that was

7



1.5. Other related work

not included or mentioned briefly in the previous discussions in the context of the
CiaoPP approach.

Regarding GASTAP [5] and its extension GASOL [6], mentioned before, these tools
analyze Solidity source code and EVM bytecode to perform different analyses on
Ethereum smart contracts, such as upper bounds for gas consumption or even po-
tential sources of optimization. In the case of GASOL it also allows users to define
their own cost models, so it can conceptually be used to analyze other platforms that
execute Solidity smart contracts.

As also mentioned before, another interesting tool used to analyze Ethereum smart
contracts is MadMax [7]. A main feature of MadMax is that it analyzes EVM bytecode
by using the approach pioneered by CiaoPP of previously translating to an intermedi-
ate representation (this is work based on collaborations in previous projects with the
CiaoPP team within the ENTRA project [18]). Once translated, it can perform differ-
ent analyses on the result using an Ethereum-based cost model, such as detecting
vulnerabilities that can be easily exploited to block contracts.

As we have seen, these tools have one thing in common: their focus on a single
smart contract platform or on a small set of them. In the case of MadMax, it is an
interesting tool, but it can only be used to analyze smart contracts on the Ethereum
platform. Also, GASOL/GASTAP can be used on Solidity smart contracts, but, again,
this leaves out a great number of smart contract platforms not using this language.

In a more general context, using abstract interpretation in verification, debugging,
and related tasks has now become well-established. To cite some early work, ab-
stractions were used in the context of algorithmic debugging in [19]. Abstract inter-
pretation has been applied by Bourdoncle [20] to debugging of imperative programs
and by Comini et al. to the algorithmic debugging of logic programs [21] (making use
of partial specifications in [22]), and by P. Cousot [23] to verification, among oth-
ers. The CiaoPP framework [24, 25, 8] was the first to offer an approach combining
abstraction-based verification, debugging, and run-time checking, using a common
assertion language; this approach can be seen as the first one to bridge the advan-
tages of static and dynamic languages and approaches. This approach has recently
been applied in a number of systems [26, 27, 28, 29] implementing hybrid typing,
gradual typing, etc.

Horn clauses are used in many different applications nowadays as compilation tar-
gets or intermediate representations in analysis and verification tools [30, 9, 31, 32,
33, 34, 35].



Chapter 2

Michelson to Horn Clauses
Translation

In this chapter, we will cover the implementation process of a Michelson to Horn
Clauses translator. Firstly, we will discuss the design choices behind a Michelson
lexer in Section 2.1. Then, we will approach Michelson’s simple syntax to implement
a Michelson parser in Section 2.2 and a type checking module in Section 2.3. In
Section 2.4, we will discuss the implementation of a Michelson interpreter in Prolog
to better understand this language’s semantics. And, finally, we will address the core
part of the translator, which transforms the output from the former modules into a
working Ciao module, in Section 2.5; as well as an overview of the translation process
by means of an example in Section 2.6.

It is worth noting that the cost of running the translator is negligible compared to that

of analyzing its output. Due to this fact, more effort had to be put into adapting this
translator’s output to CiaoPP’s needs instead of optimizing the translation process.

2.1. Lexer

As whitespace and comments are not relevant Michelson tokens, this lexer will omit
them, as portrayed in Figure 2.1. As seen in Figure 2.2, a Michelson token can be of
five types: a type definition, a keyword, a constant, an instruction or a symbol, which
is to say, a block opener or closer; or a semicolon.

Element :

>{ Token }
—>
WhitespaceOrComment

Figure 2.1: Michelson’s lexer core behaviour.

9



2.1. Lexer

Token :

G A
L )
S
—— () ——

(o
=
=D

Figure 2.2: Michelson token types.

It is worth mentioning the existence of a sixth token class: annotations. Annotations
were left out of the implementation of this tokenizer, as they complicate Michelson
syntax, which would result in a more complex parser; while not adding any relevant
information in terms of cost analysis nor semantics. Because of this, annotations are
treated as comments by our lexer, as shown in Figure 2.3.

WhitespaceOrComment :

>

Annotation

1 —l
whitespace

Figure 2.3: Elements omitted by the lexer.

>

Michelson includes both line and block comments, so both should be contemplated
and omitted by the lexer (Figure 2.4).

Comment :

/*

*/

Figure 2.4: Michelson comments treatment.

There exist three types of annotations (Figure 2.5) in Michelson and the three of them

6“6,

are omitted: type annotations, beginning with “:”, variable annotations, beginning

10



Michelson to Horn Clauses Translation

with “@” and constructor annotations, beginning with “%".

Annotation :

Figure 2.5: Different Michelson annotations.

In Michelson there are eight keywords (Figure 2.6) in addition to type definitions.
Keywords “code”, “parameter” and “storage” point out the beginning of each of the
sections of a contract; while “Pair”, “Left”, “Right” and “None” and “Some” are used to
insert constants. They are used in pairs, union constants, to indicate which of both
types is to be used and optional constants, to show if the constant contains a value
or not.

Keyword :
(—l> code "\
(-l> parameter [==\
| storage [~
_<,—l> Pair —-\>_>
N—{ 1ot —
N rigne —
N——b] tone —
] sone |—

Figure 2.6: Michelson recognized keywords.

Regarding types, we can distinguish two groups: comparable and incomparable
types. The main difference between these is the fact that only comparable types are
allowed as key types of maps or set elements or can be compared by using COMPARE
instruction.

11



2.1. Lexer

Separator :

Jb@hitespaceOrCommenD-l—D

Figure 2.7: Separation between type names.

Type :

>

SimpleType
ComplexType
>{ SimpleType }

Figure 2.8: Michelson types classification.

‘l Separator '
»

}_D

SimpleType :

SimpIeComparabIeTypg—
}

SimplelncomparableType)—

Figure 2.9: Michelson simple types.

SimplelncomparableType :
AP Y
(—D unit —\
+> signature —+—>
kD operation —J

kD chain_id —J

Figure 2.10: Incomparable simple types.
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Michelson to Horn Clauses Translation

SimpleComparableType :
i i
(—D nat N
D string [—~
(—D bytes ~

+> mutez —+_>
;D bool —J

kD key_hash —J
N>

timestamp —J

address —J

[

Figure 2.11: Comparable simple types.

ComplexType :

ComplexComparableType

—>

ComplexIncomparableType

Figure 2.12: Complex types.

ComplexincomparableType :

s Pl 1ist p( Separator } @ ~
- P>l set >\ ComparableType

|

contract >\ Separator >®

pair >\ Separator @ Separator P
() >
>{(1re)

(o
lambda —D(Separator D> D
map —D(SeparatoD—DG)omparableTyp(D—DGeparator >
big_map —D(SeparatoD—DG)omparabIeTypcg—D(Separator

Figure 2.13: Incomparable complex types.

> >
D> D>

|

¢
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¢
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2.1. Lexer

ComplexComparableType :

—| pair —D(SeparatoD—D(SimpleComparabIeTyp%eparatob—b@omparableType)——D

Figure 2.14: Comparable complex types.

There are other restrictions regarding the usage of certain types, but these will be
treated by the parser.

As for constants, the lexer recognizes six types of them (Figure 2.15): bytes (or byte
sequences), integer numbers, strings, the Unit constant and Boolean constants True
or False.

Constant :

> ByteSequence
— -—>

N\ P> Unit -~
\- P>l True /
LD False J

Figure 2.15: Michelson constant types.

Bytes (Figure 2.16) are not stored as a numeric representation of the input, but as
a sequence of 8-bit integers. These constants consist of pairs of hexadecimal digits
preceded by “0x”, which marks the beginning of a bytes constant.

ByteSequence :

_ML{

Figure 2.16: Michelson byte sequence constants.

Integer (Figure 2.17) and string constants (Figure 2.18) behave similarly to those
found in other languages. Strings also include escape sequences.
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Integer :

Figure 2.17: Michelson integer constants.

String :

Ll J JJ

AR

v

Figure 2.18: Michelson strings.

As far as instructions, there is a vast array of them, which the lexer classifies into nine
different categories in order to facilitate the work of the parser, as seen in Figure 2.19.
These instruction classes and the parser itself will be treated in greater detail in the

next section.

Instruction :

(o)
(o)

s >{ Typed }

.

~

> DoubleTyped

> OptionallyNumbered
(=)

J

k >{ Macro >

Figure 2.19: Michelson instruction types.
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2.2. Parser

A special type of instructions are DU+P and DI+P instructions. The former instruction
extracts the n'" element from the stack and inserts it back in its position and in
the top of the stack, whereas DI+P extracts n elements from the top of the stack,
executes a block of code and pushes these elements back in the stack. Now, the
unusual aspect of these instructions is the fact that their numeric parameter can be
expressed via the repetition of the letters conforming the instruction itself. This way,
by counting the number of “U”s or “I”’s in these instructions, we can know the value
of the parameter n involved in these operations. Figure 2.20 displays the treatment
of these special instructions by the lexer.

Exceptions :

Figure 2.20: Special Michelson instructions.

2.2. Parser

The simplicity of Michelson’s syntax can be perceived by examining this Michelson
parser.

As mentioned in this thesis introduction, a Michelson contract consists of three parts:
parameter and storage type declarations and the code. Each of these sections must
be present exactly once in the contract, in any order (Figure 2.21).

Contract :
II Parameter .
‘I Contract '

Figure 2.21: Michelson contract syntax.

Parameter (Figure 2.22) and storage (Figure 2.23) sections are very simple, as they
just include a keyword and a type, which are the parameter and storage types for the
contract, respectively.

Parameter :

——> keyword (parameter) > type f—=—P>

Figure 2.22: Michelson parameter section syntax.
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Storage :

——> keyword (storage) > type [——

Figure 2.23: Michelson storage section syntax.

It is worth noting that Michelson applies restrictions to the types which can be applied
to these fields. Neither storage nor parameter can be of operation type. And, in the
case of the storage, neither does Michelson allow contracts to be stored.

The remaining contract section, the code, is where instructions reside. As seen in
Figure 2.24, it consists of a sequence of semicolon-separated instructions delimited
by a block opener and a block closer.

Code :

(— semicolon %

>\ Simplelnstruction

>{ NumberedInstruction

>\ Typedinstruction

A

DoubleTypedinstruction

>{ Looplnstruction

>{ Branchlinstruction

\
I

|

J4
T

OptionallyNumberedInstruction

>\ Speciallnstruction

>{ Macro

%#

= block_openner J k> block_closer f—=—P

Figure 2.24: Michelson code section syntax.

Now, we will briefly cover each of these instruction classes.

Firstly, simple instructions (Figure 2.25) are instructions that can not receive any
additional parameters, such as ADD or PAIR.

Simplelnstruction :

——J> simple_instruction [=—=—P>

Figure 2.25: Michelson simple instructions syntax.

The following instruction classes are characterized by the fact that they need addi-
tional parameters, such as a numeric constant (Figure 2.26) a type (Figure 2.27) or

17



2.2. Parser

two of them (Figure 2.28).

NumberedInstruction :

——P| numbered_instruction = constant (integer) p——>

Figure 2.26: Michelson numbered instructions syntax.

Typedinstruction :

=P typed_instruction | type p——P

Figure 2.27: Michelson typed instructions syntax.

DoubleTypedInstruction :

——P| double_typed_instruction [~ type =P type f——P

Figure 2.28: Michelson double typed instructions syntax.

As stated in this writing’s introduction, Michelson code section consists on a se-
quence of semicolon separated instructions. This fact implies that Michelson lacks
control statements, but, in exchange, Michelson does include control flow instruc-
tions. These instructions must include the code to run as parameters, either one or
two parameters are needed, depending on the control statement the instruction is
replacing, be it loop statements (Figure 2.29) or branch statements (Figure 2.30).

It is worth noting that these control flow instructions also include those needed to
iterate over collections, such as the MAP or ITER instructions.

Looplnstruction :

——P>| 1oop_instruction —D

Figure 2.29: Michelson loop instructions syntax.

Branchlinstruction :

=——1>| branch_instruction > @ > @ e

Figure 2.30: Michelson branch instructions syntax.

The last proper instruction class we will cover will be optionally numbered instruc-
tions (Figure 2.31). These instructions can be followed by a numeric parameter, which
defaults to 1 if absent.
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OptionallyNumberedinstruction :
=——> optionally_numbered_instruction TD constant (integer) 7_>

Figure 2.31: Michelson optionally numbered instructions syntax.

Special instructions and macros are two instruction classes which deserve a special
mention, as their behaviour does not match those of the aforementioned instructions.

Firstly, special instructions (Figure 2.32) is a set comprising all the instructions that
do not match any of the previously mentioned schemata.

Speciallnstruction :

(-D create_contract > block_opener —D(ContracD—D block_closer —\

(—D dip TD constant (number)

|~ P>l push Pl type P>l constant fr———
— -

;D lambda Pl type Pl type
v,

P> rename

P>l cast

Figure 2.32: Michelson special instructions syntax.

And, last but not least, macros are those instructions which can be expressed as the
concatenation of other simpler instructions. To better reproduce Michelson inter-
preter’s behaviour, the parser deconstructs macros into its simplest representation,
which may involve several iterations. This decision simplifies not only the analysis,
but also type checking, as it makes the number of instructions to treat finite. Just
like core instructions, macros are divided into similar classes, which behave exactly
as instruction classes.

2.3. Type checking

Being Michelson a stack language, this type checking module has to check that each
instruction’s input stack belongs to the correct type. Which is to say, it has the
proper number of elements and the types of these elements match those expected by
the instruction.

The initial stack will contain only an element of type (parameter, storage), and the
output stack, a single element of type (list(operation), storage). This process is com-
plicated by the treatment of some instructions which need a special treatment.

The most obvious instruction in this list is the LAMBDA instruction, as the parser needs
to check that the type output of the code matches the declared type for the given input
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2.3. Type checking

loop CODE / [bool|S] => S :- CODE / S => [bool|S].

Listing 2.1: LOOP instruction typing.

type. A similar case would be that of the CREATE_CONTRACT instruction, as this involves
the creation of a new contract, passing its code section as a parameter. The main
difference between these two instructions resides in the fact that lambdas implement
functions that receive an input and return an output. This difference is portrayed in
Equation 2.1 and Equation 2.2.

lambda : input — output (2.1)

contract: (parameter, storage) — (list(operation), storage) 2.2)

A similar case to this one would be that of branch and loop instructions. Simple loop
instructions such as LOOP must not change the type of the stack, although they may
alter its content. In order to test if a loop complies with this property, the type of the
output stack on each iteration must be the same as that of the input stack, but with
a new element of a certain type on top. In Listing 2.1, we can see a definition of one
of these typing rules using a syntax similar to that of the implementation, simplified
for the sake of clarity.

It is worth mentioning that, some loop instructions need to check a different condi-
tion, such as LOOP_LEFT, which checks whether the union type on top of the stack
contains a left element. These instructions require its code to return a different type
instead of bool on the top of the stack.

In the case of branch instructions, although the former restriction does not apply to
them, a new one is introduced, as the type of the output stacks of both branches
must match.

As it was pointed out in a previous section, there exist Michelson instructions to
explicitly make a contract execution fail. These insert a special element on top of the
stack, which represents the failure status. The type checking module must also treat
this special case. In order to do so, the general rule states that every instruction may
receive a failure stack as an input. If this is the case, the instruction does not alter
the content of the stack.

In case of failure inside of a loop, the type checking module will accept this as a valid
output type for the instruction. On the other hand, if failure occurs in one of the
branches of a branch instruction, the output stack will be of type failure if and only
if both branches fail. Otherwise, its type will be that of the non-failing branch.

As some Michelson instructions are polymorphic, the type checking module must also
take into account this phenomenon. To achieve this goal, not only does this module
check that the type of the input stack is correct, but it also outputs a specialized
version of the instruction. This way, by making polymorphism transparent to the
translation, analysis of the resulting program will be easier. In addition, it is worth
mentioning that, thanks to this decision, the output of this module matches that of
its counterpart found in Tezos code. This is both beneficial in terms of clarity, as it
will make possible that the output instructions of the translation match the internal
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instructions recognized by Tezos interpreter; and in terms of the precision of the
analysis.

Finally, another service this module provides is constant type checking. This feature
will be useful when parsing the code, as well as inputs used in Michelson interpreter.

2.4. Interpreter

Although not needed for the analysis, implementing an interpreter is useful to un-
derstand the semantics of a language and how resource consumption works.

The way this interpreter works is by dividing the code section into blocks of code.
Each of these blocks is assigned a unique index, which will be used to refer to it by
control flow instructions. This way, branches used in branch instructions, lambda
functions present in the code or code blocks run by loop instructions are assigned an
identifier.

Once a contract has been loaded, the interpreter runs its main block, passing the
initial stack containing the parsed parameter and storage provided as arguments.
Then, the interpreter proceeds to run the contract instruction by instruction.

During this process, each instruction is further divided into simpler operations,
which in most cases simply consist on stack management tasks and a proper Prolog
predicate containing the instruction semantics. The name of these predicates may
differ from that of the internal operation output by the parser, due to the fact that
the semantics and cost semantics of some of these operations are the same. For
instance, the instruction ADD can be translated to one of several distinct operations,
but, as some of them implement the same arithmetic expression and consume the
same amount of gas, these are unified, including the predicate add in its definition.

As it can be seen in Equation 2.3, ADD can output different internal operations de-
pending on the type of its parameters, but, as some of them behave exactly the same,
their definitions will match.

add_intint if int(A mt(B)
add_intnat if int(A), nat(B)
] —add

add_natint if nat(A ,mt(B)
ADD(A, B) — add_natnat if nat(A), nat(B)

add_timestamp_to_seconds if timestamp(A mt(B ) )

) —add_timestamp
add_seconds_to_timestamp  if int(A), timestamp(B)
add_tez if mutez(A), mutez(B) —add_tez

(2.3)

In some cases, the only action carried out by an instruction is inserting or extracting
elements from the stack. The definition of these includes a dummy instruction whose
purpose will be treated in the following section.

For instance, the definition of the LOOP code instruction seen in Listing 2.2 includes a
stack management operation to obtain the Boolean element on top of the stack and a
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2.5. Translator

loop (Body) ==> pop(B), loop_(B,Body).

loop_(true,Body) ==> ’$blt’(’$loop’), ’'$run’(Body), pop(B),
loop_(B,Body).

loop_(false,Body) ==> [].

Listing 2.2: LOOP instruction definition.

call to an auxiliary predicate, which will run the code block and recursively call itself
in case the Boolean element equals true and do nothing otherwise.

2.5. Translator

In order to translate Michelson contracts to Horn Clauses, this module makes use of
some of the features introduced in the previous section.

To begin the translation process, the translator parses the Michelson code in order
to be able to load the different code blocks, assigning an id to each of them. Once
the contract has been loaded, the translator obtains a Horn Clause representation
of each of the blocks. This task poses a challenge to the translation process, as the
translator has to abstract the Michelson stack in order to obtain a correct and easier
to analyze Horn Clause representation.

In order to abstract Michelson’s stack, the translator simply outputs those Horn
Clauses that constitute the contract and its arguments, which proceed from a trans-
lation stack that is built through the translation process. This stack will contain
every term appearing in the translation, be it constants introduced via PUSH instruc-
tions or other terms that would be present in Michelson stack, which are represented
as variables.

The translator obtains each instruction definition by making use of the aforemen-
tioned mechanism implemented in the interpreter and then distinguishes stack man-
agement operations from those implementing the semantics, which will be repre-
sented as Horn Clauses in the final product. On the other hand, the former set of
instructions will be used to manage the content of the translation stack, inserting
and extracting the variables which will appear as input or output arguments in the
predicates.

To better understand this process, it can be seen as if every stack element was as-
signed a term in the output program and stack management operations were the
mechanism used to manage these variables.

As pairs are the most common and trivial to deal with data structure present in
Michelson, this translation process also abstracts them. This decision makes anal-
ysis much easier, as it avoids the necessity to take into account the size of pair’s
elements.

As it was stated before, the translator has to output a Horn Clause representation for
each block of source code. Until now, we have only explained how it deals with the
main block, but, as we know, there are Michelson instructions implementing control

22



2} o > w [ —

Michelson to Horn Clauses Translation

IF { FAIL } { NIL operation ; PAIR }

Listing 2.3: Michelson IF instruction example.

if__0(true,[A],B) :-
"$const’ (") "),
failwith([’ () ’,A]l,B).
if__0(false,[A]l,[(B,A)]) :-
nil(B),
’$cons_pair’.

Listing 2.4: IF instruction’s translation.

flow operations which the translator has to deal with too. In order to do so, each
control flow instruction is accompanied by extra information about the nature of its
arguments, whether they are static or dynamic. Then, the translator only has to unify
the static part and create a unique head for the resulting predicate by appending an
auto increment value to the instruction name. Then, each predicate generated will
receive two extra arguments: an input and an output stack.

As we can see, the Michelson instruction portrayed in Listing 2.3 implements a
branch statement which will fail if the value on top of the stack is true and finish
a contract execution otherwise. The translator’s output for this instruction would be
a call to the predicate defined in Listing 2.4. This predicate’s head is formed by its
name, the name of the instruction and unique identifier; the control flow condition
and both the input and output stack.

A more complex example of this behaviour would be the treatment of loop instruc-
tions. In Listing 2.5, we can see a MAP instruction that runs a block of code for each
element of a structure to produce a new structure containing the result of each exe-
cution. In this case, the instruction takes a list as an input, so the final instruction
name would be list_map. The code block runs a lambda instruction in the stack
using each element as an input and stores the result in the new list. As we can
see in Listing 2.6, the head of the resulting predicate is formed by the name of the
instruction name with a unique identifier, the original list, the resulting list and both
the input and output stack. This predicate will call itself recursively and finish only
when the list is empty.

2.6. Translation Example

In this section we will show the translation in action using an example. The contract
to translate is the one displayed in Listing 2.7. As it can be seen, this contract
contains control flow instructions such as IF_CONS or ITER, as well as macros. Due to
this fact, the resulting translation will be too large to handle in one piece, so we have
divided the original code in three logical sections.

The first section is used to access the parameter and set the stack up for the following
section, which checks whether both vectors have the same length. Last but not least,
the main section of the contract iterates over both lists to calculate the cross product
which will be used by the last section to set the resulting contract storage.
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MAP { DIP { DUP } ; EXEC }

Listing 2.5: Example of LOOP instruction.
list_map__O0C[]1,[1,[AT, [A]).

list_map__OC[A|B],[C|D],[E],F) :-
"$dip’,
"$dup’,
exec(E,A,Q),

list_map__0(B,D, [E],F).

Listing 2.6: LOOP instruction translation.

In order to better follow this process, the reader can refer to Listing A.1 and List-
ing B.1 in Appendices A and B respectively. The former contains type definitions
of the used instructions, while the latter, the definition of the instructions itself.
Throughout this section, unfolded version of the found macros are included to im-
prove readability.

Before diving into the translation of the contract itself, the translation module gener-
ates a semi-static heading for the contract, shown in Listing 2.8. As it can be seen,
this heading imports the needed packages and modules for the analysis and defines
a regular type defining the possible contents of the returning stack. It is also worth
noting the entry assertion that defines the types of the arguments used to call the
contract and is used by CiaoPP’s regular types domain.

Now, the first section of the code is quite straightforward, as it simply accesses the
parameter and prepares the stack to check that both vectors have the same length.
As it is shown in Listing 2.9, the UNPAIR macro is unfolded into the instructions
that comprise it as seen in Equation 2.4. Due to the nature of the instructions
found in this section, the result of its translation is comprised exclusively of dummy
instructions.

UNPAIR / S = DUP ; CAR ; DIP {CDR} / S (2.4)

The second block of translated instructions (Listing 2.10) introduces the reader to
how variables are managed during the translation process. For every new element
introduced in the stack, the translation module declares a variable. In this example,
it creates two variables, G and H, containing the length of the input lists. Then,
these variables are used to check that both input vectors have the same dimensions
with the instruction ASSERT_CMPEQ, which unfolds into several instructions as stated
in Equation 2.5. In case they are not the same length, the call to the generated
predicate if__@ will cause the contract to fail, as this would violate the precondition
of the contract.

ASSERT_CMPEQ / S = COMPARE ; EQ; IF {} { UNIT ; FAILWITH } / S (2.5)

The reader may have noticed how the output instructions that calculate the length of
the lists differ from those found in the original contract. This is due to the fact that
SIZE is a polymorphic instruction and, as seen in Listing A.1 (Appendix A), the type
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1 parameter (pair (list int) (list int)) ;
2 storage int ;
3 code { CAR ;

4 DUP ;

5 UNPAIR ;

6

7 # Check that both vectors have the same length.
8 SIZE ;

9 DIP { SIZE } ;

10 ASSERT_CMPEQ ;

11

12 # Calculate cross product.

13 UNPAIR ;

14 DIP 2 { PUSH int 0 } ;

15 ITER { SWAP ;

16 IF_CONS { SWAP ; DIP { MUL ; ADD } }

17 # Never fails: vectors have same dimensions.
18 { FAILWITH }

19 I e

20 DROP ;

21 NIL operation ;

22 PAIR }

Listing 2.7: A Michelson contract to calculate cross products.

1 :-module(A, [code/3,amount/1],[ciao_tezos(michelson_costs),regtypes]).
2 :-use_module(ciao_tezos(michelson_preds)).
3 :-regtype(return_stack/1).

4+ return_stack([(A,B)]) :-

5 list (operation,A),
6 int(B).

7 return_stack(A) :-

8 is_failed(A).

9 :-redefining (amount/1).
10 amount (A).
11 :-entry(code(A,B,C):(pair(A),int(B),var(C))).

Listing 2.8: Heading of the Ciao module containing the translated contract.

checking module selects different versions of this instruction depending on the type
of the value on top of the stack.

Another important feature of this section to point out is the fact that variables A
and B, containing both input vectors, are extracted from the stack when their length
is calculated. But, as they had been previously duplicated in Listing 2.9, only one
of their copies is lost, while the other one remains in the stack for the rest of the
instructions to use. This is the reason why variables can appear more than once in
a translated contract. Had they not been copied, they could have only been used by
one instruction in the contract.

Another dummy instruction generated by the translation module for the analysis to
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code((A,B),C,[(D,E)|F]) :-
’$car’,
>$dup ’,
>$dup’,
>$car’,
’$dip’,
’$cdr’,

Listing 2.9: Section of the contract that accesses the parameters.

code((A,B),C,[(D,E)|F]) :-

list_size(A,G),

’$dip’,

list_size(B,H),
compare_int(G,H,I),
eq(I,J),

T$if’,
if__0Q,[(CA,B)],[(K,L)|MD),

if__®(true,[(A,B)],[(CA,BY)]).

if__0(false,[(A,B)],C) :-
"$const’ () "),
failwith([’O)’,(A,B)],Q).

Listing 2.10: Section of the contract that checks whether both vectors have the same
length.

calculate resource consumption is ’$if/0’. This instruction is output by this module
to account for the cost of executing the branch instruction. This is necessary, as each
branch predicate generated by the translator will have its own name, so it would not
be possible to include all of these in the cost model.

Lastly, the main section of the code, which calculates the cross product and returns
the resulting stack is seen in Listing 2.11. This section performs three distinct ac-
tions.

To prepare the recursive operation that involves calculating the cross products, the
first five instructions simply uncouple the input parameter and insert an integer value
to accumulate the products of the elements of the vectors. As all of these instructions
only manipulate the stack or access values in pairs, they are translated into dummy
instructions for the analysis to take them into account, as their effects are abstracted
during the translation process.

After this, the predicate implementing the instruction which iterates over the vector
is called. This predicate, list_iter_1/3, receives two input arguments, the input list
and the original stack; and returns the resulting stack as an output parameter. This
predicate will call itself recursively until it has completely traversed the input list.
Again, for the analysis to take into account the cost of each iteration, two dummy
instructions are generated: ’$list_iter’ and ’$list_iter_end’. These instructions
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code((A,B),C,[(D,E)|F]) :-

>$dup ’,

’$car’,

’$dip’,

’$cdr’,

"$dipn’ (2),

>$const’ (0),
list_iter_1(K,[L,0|M],[N,E|F]),
>$drop’,

nil (D),

’$cons_pair’.

list_iter_1([],A,A) :-
"$list_iter_end’.
list_iter_1([A|B],[C|D],E) :-
"$list_iter’,
"$swap’,
"$if_cons’,
if_cons__2(C,[A|D],F),
list_iter_1(B,F,E).

if_cons__2([],A,B) :-
failwith(A,B).
if_cons__2([A|B],[C,D|E],[B,F|E]) :-
>$swap’,
’$dip’,
mul (A,C,G),
add(G,D,F).

Listing 2.11: Section of the code that implements a simple algorithm to calculate the
cross product.

do not have any semantic meaning, but it is necessary that they differ from each
other because the cost of starting a new iteration is greater than the cost of finishing
the iteration process. As a result, these instructions will have a different associated
cost in the cost model.

Lastly, the last section of the code simply modifies the stack for it to fit the expected
format at contract exit.
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Chapter 3

Michelson Contracts Analysis

In this chapter, we will cover the procedure to follow in order to obtain a precise
and correct cost model to analyze Michelson contracts previously translated to Horn
Clauses by using the translator covered in the previous chapter. In order to do so, we
will firstly explain the different ways to obtain a cost model in Section 3.1, discussing
the pros and cons of each of them. Then, in Section 3.2, we will dive into our cost
model and explain the resources included in it.

3.1. Obtaining a cost model

A cost model is a definition of the resource semantics of a language. It is necessary to
have a cost model in order to perform cost analysis on a program, as this will contain
the rules the analyzer will follow. As a result, the better a model reflects the resource
semantics of the platform used, the more precise the analysis will be.

In the present case, we are studying virtual resources, so there is no need to measure
the performance of real machines running the code. Instead, there are other ways to
obtain a cost model, each of which have their pros and cons we will discuss in this
section.

First of all, the most obvious way to obtain a precise cost model is using an already
existent definition, provided by the platform under study. This would be the cheapest
and most precise way to do so, as this model would contain the same set of rules used
by the platform itself and would not need to study the code or make measurements
in order to obtain these rules. On the other hand, not all platforms count with a
definition of their resource semantics, as it is the case with Tezos, so another solution
has to be considered in those cases.

As we are dealing with virtual resources, we know there must exist sections of the
code implementing those resource semantics. In this case, another way to obtain a
model would be to perform program slicing on the code to obtain these rules. Slicing
is a technique used to extract relevant statements of the code following a criterion, in
our case, we would have to extract the statements which specify how the resources
studied are consumed. By using this technique, we would obtain a highly precise
cost model, as we would be studying the very same code that dictates how resources
are consumed, but, at the same time, it would be more expensive than the former
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method, as it would be necessary to develop the tool used to perform the program
slicing.

Following the same principles as in the former method, another way to obtain the
cost model would be to analyze the same code using an analyzer such as CiaoPP. The
result of this method would be similar to the former, but it would be necessary to
count with a powerful enough analyzer supporting the language used in the code. In
our case, Tezos source code is written in Ocaml, a language not supported by CiaoPP,
so this method is not feasible.

The last method we will discuss is manual extraction of the cost model from the
source code. This method can be cumbersome to say the least, as it may involve
inspecting hundreds of lines of code and it may lead to confusion and mistakes. As
previously stated, Tezos source code is written in Ocaml, so, in our case, it would
also involve learning a new language. On the other hand, this method can be faster
when not counting with the aforementioned conveniences, due to the fact that it is
possible to dive in the code and find the relevant statements directly.

This last method is the one used in this work. Being the Tezos platform open source,
we simply had to access their GitLab repository, learn how Ocaml and the libraries
they used worked and find the relevant statements to obtain the cost model. We
learned how Tezos uses a different cost model on each of their protocol versions,
which increases the value of counting with a configurable tool such as CiaoPP. Al-
though it was a complicated process, we also got some information which was not
present or clear enough in Tezos literature, so going through Tezos source code was
valuable in more ways than obtaining a cost model.

3.2. Tezos Cost Model

As previously explained, this Tezos cost model was obtained by inspecting the plat-
form’s source code. Throughout this process, we were able to learn more about how
the platform works and, more specifically, how gas consumption in Tezos platform
works.

In this project, we are analyzing contracts in Tezos’ latest protocol version at the time
of writing, Carthage; so the code visited to obtain the model was the one belonging to
this latest implementation. Despite this fact, it is worth noting that obtaining a cost
model for any of the previous versions of the platform, or even for other platforms
using Michelson as a smart contracts language, such as Dune, would be similar.

In this section, we will explain how we identified each resource and its nature in our
cost model in Subsection 3.2.1 and how we included each instruction to study in the
cost model in Subsection 3.2.2.

3.2.1. Resources

The first thing noted when inspecting the code was that the resource to study, gas,
was not an atomic resource. In other words, it is a compound resource which can

30



Michelson Contracts Analysis

:- resource michelson_allocations.
:- resource michelson_steps

:- resource michelson_reads.

:- resource michelson_writes.

:- resource michelson_bytes_read.

:- resource michelson_bytes_written.

Listing 3.1: Assertions to declare the resources to study.

:- default_cost(ub,michelson_steps,0).

:- default_cost(lb,michelson_steps,0).

:- head_cost(lb,michelson_steps,0).

:- head_cost(ub,michelson_steps,®).

:- literal_cost(lb,michelson_steps,0).

:- literal_cost(ub,michelson_steps,0).

:- trust_default + cost(lb,michelson_steps,0).
:- trust_default + cost(ub,michelson_steps,®).

Listing 3.2: Assertions to declare the default cost of a resource.

be expressed in terms of other resources, as expressed in Equation 3.1. As a conse-
quence, each Michelson instruction will consume one or several of these resources,
which will later be used to calculate gas consumption.

gas(allocations, steps, reads, writes, bytes_read, bytes_written) =

allocations 2
steps 1

9T reads « 100 (3.1)
writes 160
bytes_read 10
bytes_written 15

In order to include these resources in our cost model, we have to use Ciao assertions,
as those included in Listing 3.1. As we can see, these only have to include the name
of the resource to be studied for it to be included in the analysis.

Now, as in most cases not all resources will be consumed by every instruction, our
model has to include default cost assertions to avoid having to express that fact with
cost assertions. Listing 3.2, shows the assertions used in the model to set the default
cost for resource michelson_steps to 0. This very same assertions can be used to
apply the same default cost to the other resources.

As we stated before, gas is a compound resource which can be expressed in terms of
other resources, as a result, gas has to be included in our model too. In Listing 3.3,
we can see how gas is declared not only as a resource in our model, but also as a
compound resource expressed in terms of the other resources found in the model
following the expression in Equation 3.1.
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:— resource gas.

:- compound_resource(gas, exp(2,-7) * (
2 * michelson_allocations +
michelson_steps +
100 * michelson_reads +
160 * michelson_writes +
10 * michelson_bytes_read +
15 * michelson_bytes_written

).

Listing 3.3: Assertions to declare gas as a resource.

3.2.2. Instructions

Once the resources to be inferred by the analysis have been included in the cost
model, we can proceed to also declare the cost of Michelson instructions in terms of
those resources.

To illustrate the steps followed throughout this process, we will explain how the cost
of the PUSH type value instruction was obtained. Firstly, it is worth mentioning that
the internal representation of this instruction is Const v, as neither the instruction
semantics nor its cost depends on the type of the constant pushed into the stack. In
Listing 3.4, we can see the definition of this basic operation in the code of the Michel-
son interpreter. As it can be seen, this code snippet contains not only the semantics
of the instruction, but also its cost semantics, although not explicitly stated.

(Const v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.push)
>>=7 fun ctxt -> logged_return (Item (v, rest), ctxt)

Listing 3.4: PUSH type value resource semantics.

In order to decipher the meaning of the cost expression found in Const v definition,
we have to refer to the code fragment present in Listing 3.5. This very same cost
expression will be used by several other instructions, so it is not necessary to take
this step more than once. In this case, as it can be seen, the cost of a push operation
is expressed in terms of a function, atomic_step_cost, displayed in Listing 3.6. This
function, as well as other similar functions expressing operation costs, returns an
object accounting the amount of each resource this instruction consumes. In this
case, each push operation consumes 20 allocations, which is a base resource in our
cost model; so each PUSH type value instruction accounts for 20 allocations in our
cost model.

let push = atomic_step_cost 10

Listing 3.5: push Michelson cost.

let atomic_step_cost n =

{

allocations = Z.zero;
steps = Z.of_int (2 * n);
reads = Z.zero;
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:- trust pred ’$const’(A)
=> gnd(A)
+ ( not_fails, covered, is_det, cardinality(1l,1),
cost(lb,michelson_steps,20),cost(ub,michelson_steps,20)

Listing 3.7: push Michelson cost.

writes = Z.zero;
bytes_read = Z.zero;
bytes_written = Z.zero;

}

Listing 3.6: atomic_step_cost definition.

Once the cost of an instruction has been obtained, it is time to include it in our
model. As we are using CiaoPP, this operation involves using Ciao assertions. To
be more precise, as PUSH type value translates to a dummy instruction, we have to
express the cost of this dummy instruction. This assertion, shown in Listing 3.7,
includes information about the typing of the arguments of the instruction, => gnd(A)
states that the only input argument will be ground after running the instruction.
Every assertion used in this model also provides information about the cardinality
of Michelson instructions, as this is crucial to perform a correct resource analysis.
In this case, every Michelson instruction is a deterministic function defined in all of
its domain which does not fail. This fact greatly simplifies Michelson analysis. Last
but not least, the cost of the instruction is expressed, giving both an upper and lower
bound for CiaoPP to calculate both approximations. As for this instruction, this cost
is constant, but, as we will see, this cost may be expressed in terms of the input
parameters.

Now, we can apply this same steps to obtain the cost of a more complex instruction:
ADD. As this is a polymorphic instruction, so it may output different predicates in
the translation process. In this case, we will focus on the instance of this instruc-
tion capable of dealing with integers and natural numbers, which was called add in
Equation 2.3.

| (Add_intint, Item (x, Item (y, rest))) ->
consume_gas_binop descr (Script_int.add, x, y)
Interp_costs.add rest ctxt
| (Add_intnat, Item (x, Item (y, rest))) ->
consume_gas_binop descr (Script_int.add, x, y)
Interp_costs.add rest ctxt
| (Add_natint, Item (x, Item (y, rest))) ->
consume_gas_binop descr (Script_int.add, x, y)
Interp_costs.add rest ctxt
| (Add_natnat, Item (x, Item (y, rest))) ->
consume_gas_binop
descr
(Script_int.add_n, x, y)
Interp_costs.add
rest
ctxt
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Listing 3.8: Some of ADD’s definitions.

As it can be seen comparing Equation 2.3 and Listing 3.8, our translation process
complies with Tezos internal representation of Michelson instructions. All of these
internal operations implement the same function and consume the same amount
of gas, expressed in terms of the add function, which takes both arguments of the
addition operation as input parameters.

let add i1 i2 =
atomic_step_cost
(51 + (Compare.Int.max (int_bytes il) (int_bytes i2) / 62))

Listing 3.9: add’s cost definition.

If we refer to this function, shown in Listing 3.9, we can see how the same atomic_step_cost

function is used to express the cost of the operation, but this time the cost is ex-
pressed in terms of the arguments of the instruction. The definition of int_bytes is
not included in Tezos source code, but it can be inferred from some comments present
in the repository and is expressed as a mathematical function in Equation 3.2.

3.2)

1
int_bytes(x) =1+ {Og;mJ

Using this and previous knowledge, we can simplify the cost expression to that of
Equation 3.3. This way, we can optimize our cost model by using simple and correct
arithmetic.

o105 1+ 52
62

costaqi(A, B) =2 | 51 +
(3.3)

1+ llogzmaﬂﬁg(lA\,lBl)J

=102 +

31

As in the previous example, in order to include this instruction in our cost model,
we have to write a cost assertion. In Listing 3.10, we can see the aspect of this
assertion, which expresses the exact cost of this instruction in terms of its inputs. As
we can see, again, we state the type of the arguments of the predicate at its exit and
other relevant information about its cardinality. The notation used in the arithmetic
expression that defines the cost of the instruction closely resembles that used in
Equation 3.3, which contributes to the readability of this model.
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:- trust pred add(A,B,C)

=> ( int(A), int(B), int(C) )
+ ( not_fails, covered, i_det, cardinality(1l,1),
cost(lb,michelson_steps,102 + (1 +
log2 (max(int(A),int(B)))/8)),
cost(ub,michelson_steps,102 + (1 +
log2 (max (int (A),int(B)))/8))

Listing 3.10: add’s cost assertion.
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Chapter 4

Analysis Examples

This chapter includes some analysis examples using the cost model obtained in the
previous chapter. Firstly, Section 4.1 includes the results of analyzing a contract
whose cost depends on the value of the input integer parameters. Then, Section 4.2
analyzes a contract whose cost is a linear function with respect to the length of the
input list. Finally, in Section 4.3, these results are presented in a table for the sake
of clarity.

4.1. Michelson contract analysis: michelson_arithmetics

In this section we will analyze the contract shown in Listing 4.1, which implements
the following function:

f(Parameter, Storage) = Parameter® + 2 x Storage + 1 (4.1)

This makes its analysis of great interest, as the cost of arithmetic operations on in-
tegers of arbitrary length depends on the value of their operands. This phenomenon
is better explained in Equation 4.2, which expresses the cost of running the contract
in terms of the input arguments using the expressions in Equation 4.3 and Equa-
tion 4.4. The constant value added to the cost of running the arithmetic operations
corresponds to that of the previous instructions, which present a constant cost not
dependent on the input values.

cost(A, B) = k + costpu(A, A) + costmu (2, .
(4.2)
costaqd(A, B) = 102 4 loga(max (A, B))/248 4.3)
coStmui (A, B)! = 102 + (loga(max(A, B)) + 8) * loga(loga(maz(A, B))/8 + 1) 4.4)

As seen in Listing C.1 (Appendix C), the cost model not only provides CiaoPP with
information about the cost of each predicate in terms of the declared resources, but
also with information about the size of the output parameters of each predicate. This
way, the analysis tool will be able to infer the cost of the instructions in lines 7 and
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4.1. Michelson contract analysis: michelson_arithmetics

parameter int ;
storage int ;
code { UNPAIR ;
DUP ;
MUL ;
DIP { PUSH int 2 ; MUL } ;
ADD ;
PUSH int 1 ;
ADD ;
NIL operation ;
PAIR }

Listing 4.1: Michelson contract with O(1) complexity.

:-module (A, [code/3,amount /1], [ciao_tezos(michelson_costs),regtypes]).
:-use_module(ciao_tezos(michelson_preds)).
:-regtype(return_stack/1).
return_stack([(A,B)]) :-

list(operation,A),

int(B).
return_stack(A) :-

is_failed(A).
:-redefining (amount/1).
amount (A) .
:-entry(code(A,B,C): (int(A),int(B),var(C))).
code(A,B,[(C,D)]) :-

>$dup’,

’$car’,

’$dip’,

"$cdr’,

>$dup ’,

mul (A,A,E),

’$dip’,

>$const ' (2),

mul (2,B,F),

add(E,F,G),

>$const’ (1),

add(1,G,D),

nil(Q),

’$cons_pair’.

Listing 4.2: Horn Clauses representation of the contract in Listing 4.1.

9, whose input arguments are the result of running the instructions in lines 5 and 6,
without analyzing the implementation of the Michelson predicates.

The result of the translation of the present contract can be seen in Listing 4.2. Here,
we can see more clearly how the input parameters of the predicates in lines 22 and
24 come from the output of those in lines 18 and 21.

Listing 4.3 displays the result of running CiaoPP on the present contract. This output
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:- true pred

code(A,B,C)

( intCA), int(B), var(C) )

=> ( int(A), int(B), rt2(C), size(ub,A,int(A)),

size(ub,B,int(B)), size(ub,C,1) )

+ ( cost(ub,michelson_allocations,0),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,0),
cost(ub,michelson_gas,

%

0.

%

0.

%
0
%

0.
5.

Cost of running mul(2,B,F)

0003255208333333333*%(log(2,1lo0g(256,int(B)+2)+1)*
log(2,256*int (B)+512))+

Cost of running mul (A,A,E)

0003255208333333333*(log(2,log(256,int(A))+1)*
log(2,256*int (A)))+

Cost of running add(1,G,D)

.0009765625*1og(2,exp(int(A) ,2)+2*int(B)+1)+

Cost of running add(E,F,G)
0009765625*1og(2,exp(int(A),2)+2*int(B))+
078125),

cost(ub,michelson_reads,®),
cost(ub,michelson_steps,

%

0.

%

0.

%

0.

%

0.

Cost of running mul(2,B,F)

041666666666666664* (log(2,log(256,int(B)+2)+1)*
log(2,256*int (B)+512))+

Cost of running mul (A,A,E)

041666666666666664* (log(2,log(256,int(A))+1)*
log(2,256*int (A)))+

Cost of running add(1,G,D)

125*1og(2,exp(int(A) ,2)+2*int (B)+1)+

Cost of running add(E,F,G)

125*1og(2,exp(int(A) ,2)+2*int (B) )+

650),
cost(ub,michelson_writes,0) ).

Listing 4.3: Result of running the analyzer on the contract in Listing 4.2.

assertion, indented and commented for the sake of clarity, shows how the abstract
domain used by the analysis tool infers the cost of each arithmetic instruction cor-
rectly, even that of the instructions whose cost depends on the output of previous
operations. This expression clearly resembles Equation 4.2, which proves the cor-

rectness of the result of the analysis.

4.2. Michelson contract analysis: list_map

In this section, we will show the result of analyzing a previously translated contract

using a user defined Tezos cost model on CiaoPP.

The contract to analyze is shown in Listing 4.4. This contract receives a mutez value,
which is to say, a 64-bit integer, and adds that number to each value in its storage,
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4.2. Michelson contract analysis: 1list_map

which is a list of mutez itself. As a consequence, it presents O(n) complexity.

parameter mutez ;
storage (list mutez) ;
code { UNPAIR ;
SWAP ;
MAP { DUP 2 ; ADD } ;
DIP { DROP } ;
NIL operation ;
PAIR }

Listing 4.4: Contract with O(n) complexity.

As in the previous example, the first step to analyze this contract would be to obtain
its Horn Clauses translation by using the translation tool described in the previous
section. This translation is shown in Listing 4.5, where it can be seen that there is an
almost one-to-one correspondence between Michelson instructions and predicates,
except for expanded macros such as UNPAIR and other variations better explained in
Chapter 2.

This Ciao module exhibits the exact same behaviour as the contract in Listing 4.4, as
it consists mainly on a call to a predicate which explores the storage list recursively,
adding the input parameter to each element in the collection and returning the altered
structure. Each iteration on the list will have a constant cost, as every predicate in
the loop has a constant code. And every predicate in the main block of the contract
has a constant cost, so the cost expression of this contract will be something similar
to that in Equation 4.5.

cost(Parameter, Storage) = a x length(Storage) + b (4.5)

If CiaoPP is run on the translated contract, it will output an upper limit for the cost
of running the contract, which will be exactly the same as the actual cost. As seen in
Listing 4.6, the cost in terms of gas of running this contract is linear to the length of
the storage, which is the second argument used to call the contract; so the shape of
the output of the analysis is similar to that of Equation 4.5.

In addition to that, it is also possible to obtain the cost of running the recursive
predicate. In Listing 4.7 we can see the output of the analysis, which also follows a
linear expression. This is due to the fact that the analyzer does not output the cost
of running a single iteration of the predicate, but the cost of all the iterations. It can
be seen that this predicate also has a base constant cost in case of running it with
an empty list as an input parameter.

By subtracting the expression obtained in Listing 4.7 to that in Listing 4.6, we could
obtain the cost of running those instructions in the main block of the contract. If
we refer to Listing C.1 in Appendix C, where a stripped version of the cost model
showing only those instructions displayed in the example is found, we can check the
correctness of the output of the analysis.
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:-module (A, [code/3,amount/1],[ciao_tezos(michelson_costs),regtypes]).
:-use_module(ciao_tezos(michelson_preds)).

:-regtype(return_stack/1).

return_stack([(A,B)]) :-

~ 2} o > w N —

@

10

11

12

list (operation,A),
list (mutez,B).

return_stack(A) :-

is_failed(A).

:-redefining (amount/1).

amount (A) .

:-entry(code(A,B,C): (mutez(A),list(mutez,B),var(C))).
code(A,B,[(C,D)|E]) :-

>$dup’,

>$car’,

’$dip’,

>$cdr’,

’$swap’,

list_map__0(B,D, [A],[F|E]),
’$dip’,

>$drop’,

nil(Q),

"$cons_pair’.

list_map__O0([]1,[]1,[A],[A]) :-

$list_map_end’.

list_map__O(C[A[B], [C|D], [E],F) :-

"$list_map’,

’$dip’,

>$dup ’,

"$swap’,
add_tez(E,A,Q),
list_map__0(B,D,[E],F).

Listing 4.5: Horn Clauses translation of the contract.
true pred code(A,B,C)

( mutez(A), list(mutez,B), var(C) )
=> ( mutez(A), list(int,B), rt28(QC),

size(ub,A,int(A)), size(ub,B,length(B)), size(ub,C,inf) )

+ ( cost(ub,michelson_allocations,®),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,0),
cost(ub,michelson_gas,2.203125*1ength(B)+2.1875),
cost(ub,michelson_reads,0),
cost(ub,michelson_steps,282*length(B)+280),
cost(ub,michelson_writes,0)

Listing 4.6: Analysis output for the main predicate.
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4.3. Table of results

:- true pred list_map__O0(_A,_B,_C,F)
( list(mutez,_A), var(_B), rt4(_C), list_functor(F) )
=> ( list(int,_A), list(int,_B), rt4(_C), rt4(F),
size(ub,_A,length(_A)), size(ub,_B,length(_A)),
size(ub,_C,1), size(ub,F,1) )

+ ( cost(ub,michelson_allocations,®),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,0),
cost(ub,michelson_gas,2.203125*1ength(_A)+0.46875),
cost (ub,michelson_reads,0),
cost(ub,michelson_steps,282*length(_A)+60),
cost(ub,michelson_writes,0)

Listing 4.7: Analysis output for the recursive predicate.

4.3. Table of results

In this section, we summarize the previously obtained results, adding valuable infor-
mation about the contracts and the analysis process.

Table 4.1 shows the previously discussed results, adding information about the size
in bytes of the original Michelson code and the size of its Horn Clauses representa-
tion obtained after running the translation tool. As it can be seen, the size of the
translated contracts is larger than the original contract. This is due to the fact that
the translation process involves altering the original contract, introducing variables
and declaring a predicate for each block of code in the original Michelson contract.
This drawback is justified, as the resulting product is easier to analyze, which is the
main purpose of this work.

C. Size Translated Resource A. A. Time

Contract e
(B) C. Size (B) gas (ms)
michelson_arithmetics 189 538 log(a® +2% ) 544.96
list_map 159 691 I5; 660.5
addition 258 533 log(a) 644.847
bytes 240 752 log() 831.632
apply 218 546 k 507.38

Table 4.1: Table of results of the analysis.

Table 4.1 also collects the complexity orders of the obtained expressions when run-
ning the analysis in terms of its input parameters. In this case, o denotes the size
of the input parameter and S, the size of the storage. These sizes will depend on the
metrics associated to the input parameters, which is to say, if the input parameter
is a list, the size metric used will be the length of the list. On the other hand, if the
input parameter is an integer number, the size metric used will be its absolute value.
This table also shows the required time to run the analysis, which includes loading
the module to analyze to parse the present assertions and analyzing the contract in
different abstract domains to obtain the desired result.

42



Analysis Examples

Resource A.

Contract
steps allocations writes written_bytes
michelson_arithmetics log(a® + 2% 3) - - -
list_map I3 - - -
addition log(«) - k k
bytes log(3) - k k
apply k k k k

Table 4.2: Inferred cost in terms of Michelson atomic resources.

The first two contracts displayed can be found in the previous sections of this chap-
ter, whereas the rest can be found in Appendices D, E and F respectively. In these
appendices, the reader will find the original Michelson contract, its Horn Clauses
representation and a snippet taken from the output of the analysis tool.
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Chapter 5

Conclusion

To put everything in a nutshell, it is possible to tackle smart contracts analysis using
a generic approach, just by implementing a simple tool to obtain the desired repre-
sentation of the programs. In this work, we have managed to implement a Michelson
to Horn Clause translator and to express a cost model in the Ciao assertion language,
which allow CiaoPP to perform a static analysis on Tezos contracts. This approach
can be of great help in a rapidly changing environment in which new languages arise
within months and cost models suffer alterations with each platform iteration. As the
results of our experimental assessment conclude, not only is this analysis working on
the unaltered output of the automatic translation tool for the selected benchmarks,
but also it is performing arithmetic operations on the cost expressions of different
resources to obtain the wanted gas cost function. These results, whose correctness
and accuracy can be easily verified by inspecting our Michelson cost model, were ob-
tained within a reasonable time given the size of the benchmarks, which compels one
to think that this is a very promising approach.

Despite the successful outcome of the assessment, there are some cases in which
the analysis did not work as expected, such as non-trivial control flow instructions
or contracts whose input contains nested data structures. In order to overcome this
challenge, it will be necessary to keep working on the translation tool, exploiting
Michelson limitations to apply techniques such as stack deforestation when dealing
with control flow instructions or further deconstructing data structures in order to fa-
cilitate the analysis. Even so, the accuracy of this analysis together with the fact that
it is completely parametric and configurable by the user notes that we are hopefully
on the right track.

In conclusion, our proposed approach to the static analysis of smart contracts is
feasible, can be accurate and efficient, and is indeed a promising avenue for future
research.
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Appendix A

Typing rules of the instructions

failwith::failwith / [A|_] => [failed(A)].
if(Bt,Bf)::if(IBt,IBf) / [bool|A] => B.
dip(Code)::dip(ICode) / [Top|A]l] => [Top|B].
dipn(N,Code)::dipn(N,ICode) / A => B.

drop::drop / [_Top|S] => S.

dup::dup / [Top|S] => [Top,Top|S].

swap::swap / [A,B|C] => [B,A|C].
push(Ta,V)::const(V) / S => [Ta]lS].
unit::const(’(Q)’) / S => [unit]|S].

eq::eq / [int]|S] => [bool]|S].

compare: :compare(Ty) / [Ty,Ty|S] => [int]|S].
add::add_intint / [int,int|S] => [int|S].
mul::mul_intint / [int,int]|S] => [int|S].
pair::cons_pair / [Ta,Tb|S] => [pair(Ta,Tb)|S].
car::car / [pair(Ta,_)|S] => [Tal|S].

cdr::cdr / [pair(_,Tb)|S] => [Tb]|S].
size::list_size / [list(_)|S] => [mnat]|S].
iter(Body)::1list_iter(IBody) / [list(Ty)|S] => S.
nil(T)::nil / S => [list(T)|S].
if_cons(Bt,Bf)::if_cons(IBt,IBf) / [list(Ta)|A] => B.

Listing A.1: Simplified typing rules of the instructions used in the example.
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Appendix B

Definition of the instructions

failwith ==> ’$blt_st’(failwith).

if(Bt,Bf) ==> ’$blt_st’(pop(B)), ’$blt’(’$if’), if_(B,Bt,Bf).
if_(true,Bt,_Bf) ==> ’'$run’(Bt).
if_(false,_Bt,Bf) ==> ’$run’(Bf).

dip(Code) ==> ’"$blt’(’$dip’), ’'$blt_st’(pop(Top)), ’$run’(Code),
"$blt_st’ (push(Top)).

dipn(N,Code) ==> ’$blt’(’$dipn’(N)), ’$dipn’(N,[’$run’(Code)]).
’$dipn’ (0,Insns) ==> '$run®’(Insns) :- !.
’$dipn’ (N, Insns) ==>

"$blt_st’ (pop(Value)), ’$dipn’(M,Insns), ’$blt_st’(push(Value))

M is N - 1.
drop ==> ’"$blt’(’$drop’), ’$blt_st’(pop( )).

dup ==>
"$blt’ (’$dup’), '$blt_st’(pop(X)), ’$blt_st’(push(X)),
"$blt_st’ (push(X)).

swap ==>
"$blt’ (’$swap’), '$blt_st’(pop(X)), ’$blt_st’(pop(Y)),
$blt_st’(push(X)), ’$blt_st’(push(Y)).

const(Value) ==> ’$blt’(’$const’(Value)), ’$blt_st’(push(Value)).
eq ==> "$blt_st’(pop(A)), ’$blt’(CeqCA,B)), ’'$blt_st’(push(B)).
compare (Ty) ==> ’"$blt_st’(pop(A)), ’'$blt_st’(pop(B)),

"$blt’ (~compare(Ty,A,B,C)),

"$blt_st’(push(C)).
compare (Type,A,B,C) := Type = string ? compare_string(A,B,C)

| Type = pair(Tl,Tr) ? compare_pair(Tl,Tr,A,B,C)
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Type
Type

Type =

Type
Type

Type =

Type

add_intint

"$blt’ (add(X,Y,Z)),

mul_intint

"$blt’ (mul(X,Y,Z)),

= int ? compare_int(A,B,C)
= nat ? compare_int(A,B,C)

timestamp ? compare_timestamp(A,B,C)

= mutez ? compare_tez(A,B,C)
= bool ? compare_bool(A,B,C)

address ? compare_address(A,B,C)

= key_hash ? compare_key_hash(A,B,C).

==>

==

cons_pair ==>

car ==>

cdr ==>

list_size
"$blt_st’ (push(B)).

list_iter(Body) ==>
list_iter([]1,_) ==>
list_iter([X]|Xs],Body) ==>

"$blt_st’ (push(X)),

nil ==>

==>

"$blt’ (nil (L)),

if_cons(Bt,Bf)
if_cons_(Xs,Bt,Bf).

if_cons_([],_,Bf) ==> ’$run’ (Bf).

if_cons_([X|Xs],Bt,_ ) ==>

"$blt_st’ (push(Xs)),

Listing B.1: Definition of the instructions used in the example translation.

==>

"$blt_st’ (pop (X)),

"$blt_st’ (pop(X)),

"$blt_st’ (pop(A)),

"$blt_st’ (pop(List)),
"$blt’(’$list_iter_end’).
"$blt’(’$list_iter’),

"$run’ (Body), list_iter(Xs,Body).

"$blt_st’ (pop(Xs)),

"$blt_st’ (push(X)),

"$blt_st’ (pop(Y)),

"$blt_st’(push(Z)).

"$blt_st’ (pop(Y)),

"$blt_st’ (push(Z)).
"$blt_spec’ (cons_pair,2,1,’ $cons_pair’).
’$blt_spec’(car,1,1,’$car’).
’$blt_spec’(cdr,1,1,’ $cdr’).

"$blt’ (list_size(A,B)),

’$blt_st’ (push(L)).
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Appendix C

Cost model

)).

package(_).

use_package(assertions).
use_package(resdefs).

use_module(ciao_tezos(michelson_preds)).
use_module(ciao_tezos(michelson_types)).

resource michelson_gas.

compound_resource (michelson_gas, exp(2,-7) * (

2 * michelson_allocations
michelson_steps
michelson_reads * 100
michelson_writes * 160
michelson_bytes_read * 10
michelson_bytes_written * 15

+ + + + +

resource michelson_allocations.
resource michelson_steps.
resource michelson_reads.
resource michelson_writes.
resource michelson_bytes_read.
resource michelson_bytes_written.

default_cost(ub,michelson_steps,0).
default_cost(lb,michelson_steps,0).
head_cost (ub, michelson_steps, 0).
head_cost(lb, michelson_steps, 0).
literal_cost(ub, michelson_steps, 0).
literal_cost(lb, michelson_steps, 0).

trust_default + cost(ub, michelson_steps,
trust_default + cost(lb, michelson_steps,
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71 .
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76

77

78 .

79

80

81

82

83 .

84

default_cost(ub,michelson_allocations,®).
default_cost(lb,michelson_allocations,®).

head_cost (ub, michelson_allocations, 0).
head_cost(lb, michelson_allocations, 0).
literal_cost (ub, michelson_allocations, 0).
literal_cost(lb, michelson_allocations, 0).
trust_default + cost(ub, michelson_allocations, 0).
trust_default + cost(lb, michelson_allocations, 0).

head_cost (ub, michelson_reads, 0).
head_cost(lb, michelson_reads, 0).
literal_cost(ub, michelson_reads, 0).
literal_cost(lb, michelson_reads, 0).
trust_default + cost(ub, michelson_reads, 0).
trust_default + cost(lb, michelson_reads, 0).

head_cost (ub, michelson_writes, 0).
head_cost(lb, michelson_writes, 0).
literal_cost(ub, michelson_writes, 0).
literal_cost(lb, michelson_writes, 0).
trust_default + cost(ub, michelson_writes, 0).
trust_default + cost(lb, michelson_writes, 0).

head_cost (ub, michelson_bytes_read, 0).
head_cost(lb, michelson_bytes_read, 0).
literal_cost(ub, michelson_bytes_read, 0).
literal_cost(lb, michelson_bytes_read, 0).
trust_default + cost(ub, michelson_bytes_read, 0).
trust_default + cost(lb, michelson_bytes_read, 0).

head_cost (ub, michelson_bytes_written, 0).
head_cost(lb, michelson_bytes_written, 0).
literal_cost(ub, michelson_bytes_written, 0).
literal_cost(lb, michelson_bytes_written, 0).
trust_default + cost(ub, michelson_bytes_written, 0).
trust_default + cost(lb, michelson_bytes_written, 0).

trust pred ’$cdr’
+ ( not_fails, is_det, cardinality(1,1),
cost(ub, michelson_steps, 20), cost(lb, michelson_steps, 20)

).

trust pred ’$car’
+ ( not_fails, covered, is_det, cardinality(1l,1),
cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)

).

trust pred nil(L)
=> ( list(L), gnd(L), size(ub,L,®), size(lb,L,0) )
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85 + ( not_fails, is_det, cardinality(1,1),

86 cost(ub, michelson_steps, 20), cost(lb, michelson_steps, 20)
87 ).

88

g0 :- trust pred ’$cons_pair’

90 + ( not_fails, is_det, cardinality(1,1),

91 cost(ub, michelson_steps, 20), cost(lb, michelson_steps, 20)
92 ).

93

9a :- trust pred ’S$dup’

95 + ( not_fails, covered, is_det, cardinality(1l,1),

96 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)
97 ).

98

9 :- trust pred ’$dip’

100 + ( not_fails, covered, is_det, cardinality(1l,1),

101 cost(lb,michelson_steps,40), cost(ub,michelson_steps,b40)
102 ).

103

104 - trust pred ’$drop’

105 + ( not_fails, covered, is_det, cardinality(1,1),

106 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)
107 ).

108

109 :- trust pred ’$const’(A)

110 => gnd(A)

111 + ( not_fails, covered, is_det, cardinality(1l,1),

112 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)
113 ).

114

115 - trust pred add(A,B,C)

116 => ( int(a),

117 int(B),

118 int(C), size(ub,C,int(A)+int(B)), size(lb,C,int(A)+int(B))
119 )

120 + ( not_fails, covered, is_det, cardinality(1l,1),

121 cost(lb,michelson_steps,102 + log2(max(int(A),int(B)))/248),
122 cost(ub,michelson_steps,102 + log2(max(int(A),int(B)))/248)
123 ).

124

125 :- trust pred sub(A,B,C)

126 => ( int(A),

127 int(B),

128 int(C), size(ub,C,int(A)-int(B)), size(lb,C,int(A)-int(B))
129 )

130 + ( not_fails, covered, is_det, cardinality(1l,1),

131 cost(lb,michelson_steps,102 + log2(max(int(A),int(B)))/248),
132 cost(ub,michelson_steps,102 + log2(max(int(A),int(B)))/248)
133 ).

57



134

135 :- trust pred add_tez(A,B,C)

136 => ( mutez(A),

137 mutez (B),

138 mutez (C), size(ub,C,int(A)+int(B)), size(lb,C,int(A)+int(B))
139 )

140 + ( not_fails, covered, is_det, cardinality(1l,1),

141 cost(lb,michelson_steps,122),

142 cost(ub,michelson_steps,122)

143 ).

144
s - trust pred mul (A,B,C)

146 => ( int(a),

147 int(B),

148 int(C), size(ub,C,int(A)*int(B)), size(lb,C,int(A)*int(B))
149 )

150 + ( not_fails, covered, is_det, cardinality(1l,1),
151 cost(lb,michelson_steps,102 +

152 (log2 (max(intCA),int(B)))+8)*

153 log2(log2 (max(int(A),int(B)))/8+1)

154 / 24

155 ),

156 cost(ub,michelson_steps,102 +

157 (log2 (max(int(A),int(B)))+8)*

158 log2(log2 (max(int(A),int(B)))/8+1)

159 / 24

160 )

161 ).

162

163 :- trust pred abs(A,B)

164 => ( int(A), int(B), size(ub,B,int(A)), size(lb,B,int(A)) )
165 + ( not_fails, covered, is_det, cardinality(1,1),

166 cost(lb,michelson_steps,122 + (1 + log2(int(A))/8) / 35),
167 cost(ub,michelson_steps,122 + (1 + log2(int(A))/8) / 35)
168 ).

169

170 - trust pred ’'$if_none’

171 + ( not_fails, covered, is_det, cardinality(1l,1),

172 cost(lb,michelson_steps,40), cost(ub,michelson_steps,b40)
173 ).

174

175 = - trust pred cons_none(A)

176 => ( gnd(E) )

177 + ( not_fails, covered, is_det, cardinality(1l,1),

178 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20),
179 ).

180

181 :- trust pred amount (A)

182 => ( mutez(A), size(lb,A,int(A)), size(ub,A,int(A)) )
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183 + ( not_fails, covered, is_det, cardinality(1l,1),
184 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)
185 ).

186

187 = - trust pred failwith(A,B)

188 => ( list(A), is_failed(B) )

189 + ( not_fails, covered, is_det, cardinality(1,1) ).

190

191 :- trust pred ’$swap’

102 + ( not_fails, covered, is_det, cardinality(1,1),

193 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)

194 ).

195

196 - trust pred bytes_size(A,B)

197 => ( bytes(A), int(B), size(ub,B,length(A)),
size(1lb,B,length(A)) )

198 + ( not_fails, covered, is_det, cardinality(1l,1),

199 cost(lb,michelson_steps,20), cost(ub,michelson_steps,20)

200 ).

201

202 :- trust pred slice_bytes(A,B,C,D)

203 => ( nat(A), nat(B), bytes(C), gnd(C), option(bytes,D), gnd(D) )

204 + ( not_fails, covered, is_det, cardinality(1l,1),

205 cost(lb,michelson_steps,80), cost(ub,michelson_steps,80 +

int (B) /35)

206 ).

207

208 :- trust pred ’$list_map’

209 + ( not_fails, covered, is_det, cardinality(1l,1),

210 cost(lb,michelson_steps,80), cost(ub,michelson_steps,80) ).

211

212 :- trust pred ’'$list_map_end’

213 + ( not_fails, covered, is_det, cardinality(1l,1),

214 cost(lb,michelson_steps,60), cost(ub,michelson_steps,60) ).

215

216 :- trust pred set_delegate(A,B)

217 => ( option(A), operation(B) )

218 + ( not_fails, covered, is_det, cardinality(1l,1),

219 cost(ub, michelson_writes, 1), cost(lb,michelson_writes,1l),

220 cost(ub, michelson_bytes_written, exp(2,7)%*32),

221 cost(lb, michelson_bytes_written, exp(2,7)%*32),

222 cost(ub, michelson_steps, exp(2,7) * 10),

223 cost(lb, michelson_steps, exp(2,7)*10)

224 ).

Listing C.1: Cost model including only the instructions used in the examples.
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Appendix D

Michelson contract: addition

parameter int ;
storage int ;
code { DUP ;
DIP { CDR @__slash_1 } ;
DIP { DROP } ;
CAR @parameter_slash_2 ;
PUSH int 1 ;
ADD ;
NIL operation ;
NONE key_hash ;
SET_DELEGATE ;
CONS ;
PAIR }

Listing D.1: Michelson contract with O(1) complexity and arithmetic operations.

:-module (A, [code/3,amount /1], [ciao_tezos(michelson_costs),regtypes]).
:-use_module(ciao_tezos(michelson_preds)).
:-regtype(return_stack/1).
return_stack([(A,B)]) :-

list(operation,A),

int(B).
return_stack(A) :-

is_failed(A).
:-redefining (amount/1).
amount (A) .
:-entry(code(A,B,C): (int(A),int(B),var(C))).
code(A,B,[(C,D)]) :-

>$dup ’,

’$dip’,

>$cdr’,

’$dip’,

>$drop’,

’$car’,

>$const’ (1),

add(1,A,D),
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nil (E),

cons_none (F),
set_delegate(F,G),
cons (G,E,Q),
’$cons_pair’.

Listing D.2: Horn Clauses representation of the contract in Listing D.1

(
(

:- true pred code(A,B,C)

int(A), int(B), var(C) )

int(A), int(B), rt4(Q),

size(ub,A,int(A)), size(ub,B,int(B)), size(ub,C,1) )

+ ( cost(ub,michelson_allocations,®),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,4096.0),
cost(ub,michelson_gas ,0.0009765625*1og(2,int(A)+1)+494.0859375),
cost (ub,michelson_reads,0),
cost(ub,michelson_steps,0.125*1og(2,int(A)+1)+1643.0),
cost(ub,michelson_writes,1) ).

Listing D.3: CiaoPP output when analyzing Listing D.2.
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Appendix E

Michelson contract: bytes

parameter nat ;

storage bytes ;

code { UNPAIR ;
DIP { DUP ; SIZE ; PUSH int 1 ; SWAP ; SUB ; ABS } ;
SLICE ;
ASSERT_SOME ;
NIL operation ;
NONE key_hash ;
SET_DELEGATE ;
CONS ;
PAIR }

Listing E.1: Michelson contract with O(1) complexity and O(log(n)) cost.

:-module (A, [code/3,amount /1], [ciao_tezos(michelson_costs),regtypes]).
:-use_module(ciao_tezos(michelson_preds)).
:-regtype(return_stack/1).
return_stack([(A,B)]) :-

list(operation,A),

bytes(B).
return_stack(A) :-

is_failed(A).
:-redefining (amount/1).
amount (A).
:-entry(code(A,B,C):(nat(A),bytes(B),var(C))).
code(A,B,[(C,D)|E]) :-

>$dup ’,

’$car’,

’$dip’,

’$cdr’,

’$dip’,

>$dup’,

bytes_size(B,F),

$const’ (1),

>$swap’,

sub(F,1,G),
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abs (G,H),
slice_bytes(A,H,B,I),
’$if_none’,
if_none__0(I,[]1,[DIE]),
nil(l1),
cons_none (K),
set_delegate(K,L),
cons(L,],Q),
’$cons_pair’.
if_none__0(none,[],A) :-
"$const’ ("0 "),
failwith([’()’]1,A).
if_none__0(some(A),[],[A]l).

Listing E.2: Horn Clauses representation of the contract in Listing E.1

:- true pred code(A,B,C)
( nat(A), bytes(B), var(C) )
=> ( nat(A), bytes(B), rt9(Q),
size(ub,A,int(A)), size(ub,B,length(B)), size(ub,C,size(C))
)

+ ( cost(ub,michelson_allocations,®),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,4096.0),
cost(ub,michelson_gas ,0.0009765625*1og(2,length(B)+1)+

0.000027901785714285713*1og(2,length(B)-1)+
496.2892857142857),
cost (ub,michelson_reads,0),
cost(ub,michelson_steps,0.125*1og(2,length(B)+1)+
0.0035714285714285713*1og(2,length(B)-1)+
1925.0285714285715),
cost(ub,michelson_writes,1) ).

:- true pred code(A,B,C)
( nat(A), bytes(B), var(C) )
=> ( nat(A), bytes(B), rt9(Q),
size(ub,A,int(A)), size(ub,B,length(B)), size(ub,C,size(C))
)

+ ( cost(ub,michelson_allocations,®),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,4096.0),
cost(ub,michelson_gas,0.0009765625*1og(2,length(B)+1)+

0.000027901785714285713*1og(2,length(B)-1)+
496.4455357142857) ,
cost(ub,michelson_reads,0),
cost(ub,michelson_steps,0.125*1og(2,length(B)+1)+
0.0035714285714285713*1og(2,length(B)-1)+
1945.0285714285715) ,
cost(ub,michelson_writes,1) ).
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Michelson contract: bytes

:- true pred if_none__0(_A,_B,A)
( none(_A), list(unifier_elem,_B), list_functor(A) )
=> ( none(_A), list(unifier_elem,_B), is_failed(A),
size(lb,_A,size(_A)), size(lb,_B,length(_B)),
size(lb,A,size(A)) )

+ ( cost(lb,michelson_allocations,0),
cost(lb,michelson_bytes_read,0),
cost(lb,michelson_bytes_written,0),
cost(lb,michelson_gas,0),
cost(lb,michelson_reads,®),
cost(lb,michelson_steps,0),
cost(lb,michelson_writes,®) ).

:- true pred if_none__0(_A,_B,A)
( none(_A), list(unifier_elem,_B), list_functor(A) )
=> ( none(_A), list(unifier_elem,_B), is_failed(A),
size(ub,_A,size(_A)), size(ub,_B,length(_B)),
size(ub,A,size(A)) )

+ ( cost(ub,michelson_allocations,®),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,0),
cost(ub,michelson_gas,0.15625),
cost(ub,michelson_reads,®),
cost(ub,michelson_steps,20),
cost(ub,michelson_writes,0) ).

Listing E.3: CiaoPP output when analyzing Listing E.2.
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Appendix F

Michelson contract: apply

parameter (pair int (lambda (pair int int) int)) ;
storage (lambda int int) ;
code { CAR ;

UNPAIR ;

APPLY ;

NIL operation ;

NONE key_hash ;

SET_DELEGATE ;

CONS ;

PAIR }

Listing F.1: Michelson contract with O(1) complexity and O(log(n)) cost.

:-module (A, [code/5,amount /1], [ciao_tezos(michelson_costs),regtypes]).
:-use_module(ciao_tezos(michelson_preds)).
:-regtype(return_stack/1).
return_stack([(A,B)]) :-

list (operation,A),

lambda (B) .
return_stack(A) :-

is_failed(A).
:-redefining Camount/1).
amount (A) .
:-entry(code(A,B,C,D,E):(int(A),lambda(B),lambda(C),var(D),var(E))).
code(A,B,C,D,’ ’ $apply’ (int,A,B)) :-

>$car’,

>$dup ’,

"$car’,

>$dip’,

"$cdr’,

’$apply’ (int),

nil (E),

cons_none (F),

set_delegate(F,G),

cons(G,E,D),

’$cons_pair’.
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Listing F.2: Horn Clauses representation of the contract in Listing F.1

:- true pred code(A,B,C,D,E)

( gnd(A), term(B), term(C), var(D), var(E) )
=> ( gnd(A), term(B), term(C), term(D), term(E),
size(ub,A,void(A)), size(ub,B,void(B)), size(ub,C,void(C)),
size(ub,D,void (D)), size(ub,E,void(E)) )

+ ( cost(ub,michelson_allocations,1152.0),
cost(ub,michelson_bytes_read,0),
cost(ub,michelson_bytes_written,4096.0),
cost(ub,michelson_gas,511.8125),
cost (ub,michelson_reads,0),
cost(ub,michelson_steps,1608.0),
cost (ub,michelson_writes,1) ).

Listing F.3: CiaoPP output when analyzing Listing F.2.
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