
Annotation Algorithms for Unrestricted Independent

And-Parallelism in Logic Programs

July 2007

facultad de informática

universidad politécnica de madrid

A. Casas
M. Carro

M. Hermenegildo

TR Number CLIP 5/2007.0

Technical Report Number: CLIP 5/2007.0

June, 2007

Authors

A. Casas
amadeo@cs.unm.edu

Department of Computer Science and Electrical and Computer
Engineering U. of New Mexico (UNM)

M. Carro
mcarro@fi.upm.es

Universidad Politécnica de Madrid
Boadilla del Monte E-28660, Spain.

M. Hermenegildo
herme@fi.upm.es,herme@unm.edu

Technical University of Madrid
Boadilla del Monte E-28660, Spain, and
Departments of Computer Science and Electrical and Computer
Engineering U. of New Mexico (UNM)

Keywords

Logic Programming, Automatic Parallelization, And-Parallelism, Program Transformation.

Acknowledgements

This work was funded in part by IST programme of the European Commission, FET project FP6
IST-15905 MOBIUS, by Ministry of Education and Science (MEC) project TIN2005-09207-C03
MERIT-COMVERS and CAM project S-0505/TIC/0407 PROMESAS. Manuel Hermenegildo
is also funded in part by the Prince of Asturias Chair in Information Science and Technology
at UNM.

ii

Abstract

We present two new algorithms which perform source-to-source transformations aimed at ex-
ploiting goal-level, restricted independent and-parallelism. They rely on annotating the code
with execution primitives which are simpler and more flexible than the well-known &/2 parallel
execution operator. This makes it possible to generate better parallel expressions by exposing
more potential parallelism among the literals of a clause than is possible with &/2. The algo-
rithms we present differ on whether the order of the solutions obtained is preserved or not and
on the use of determinism information. Finally, we compare the performance obtained by our
approach with that of previous annotation algorithms and show that we can obtain relevant
improvements.

Resumen

En este trabajo presentamos dos nuevos algoritmos que realizan transformaciones de programa
fuente a fuente encaminadas a explotar el paralelismo conjuntivo independiente restringido. Se
basan en anotar el código con primitivas de ejecución que son más simples y flexibles que el
conocido operator de ejecución paralela &/2. Ello posibilita la generación de mejores expresiones
paralelas al exponer más posibilidades de paralelismo entre los literales de una cláusula de lo
que es posible con &/2. Los algoritmos que presentamos se diferencian en si preservan o no
el orden de las soluciones con respecto al correspondiente programa secuencial y en el uso de
información de determinismo. Finalmente, comparamos la eficiencia obtenida usando nuestro
enfoque con la de algoritmos de anotación previos y mostramos que podemos obtener mejoras
relevantes.

iii

Contents

1 Introduction 1

2 Background and Motivation 2
2.1 Fork-Join-Style Parallelization . 3
2.2 Parallelization with Finer Goal-Level Operators 4

3 The UOUDG and UUDG Algorithms 5
3.1 Order-Preserving Annotation: the UOUDG Algorithm 7
3.2 Non Order-Preserving Annotation: the UUDG Algorithm 8
3.3 A Comparison of the Annotation Algorithms 9

4 Performance Evaluation 10

5 Conclusions 13

References 14

A Minimum Time to Execute a Parallel Expression 16

B Comparison Between Parallelizations 17

iv

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 1

1 Introduction

Parallelism capabilities are becoming ubiquitous thanks to the widespread use of multi-core
processors. Indeed, most current laptops contain two processors (capable of running four
threads) and single-chip, 8-processor servers are now in wide use. The trend is that the number
of on-chip processors will double with each processor generation. The difficulty in automatically
exploiting these capabilities has renewed research interest in language tools to simplify the task
of producing parallel programs. Declarative languages and, among them, logic programming
languages can potentially facilitate exploitation of parallelism. The higher level of abstraction of
declarative languages allows writing programs that are closer to the problem. Such higher-level
encodings do not need to incorporate lower-level implementation decisions that often obscure
the parallelism intrinsic in the problem. The notion of control in declarative languages pro-
vides more flexibility to arrange the order in which some operations can be evaluated without
affecting the semantics of the original program. Additionally, their relatively simple semantics
makes it possible to detect more accurately the existence of dependencies between operations
and hence automatic extraction of parallelism is potentially easier than in imperative languages.

Because of this potential, automatic parallelization has received significant attention in logic
programming [8]. Two main forms of parallelism have been studied in the execution of logic
programs. Or-parallelism stems when the alternatives created by non-deterministic goals can
be explored simultaneously, in order to reduce the time taken to traverse their (possible large)
search space. Some relevant or-parallelism systems are Aurora [15] and MUSE [1]. And-
parallelism executes in parallel different conjunctive goals in clauses (or in the resolvent). While
or-parallelism exploits only parallelism when there is search involved, and-parallelism is found
in more code schemes, divide-and-conquer and map-style algorithms being classic representa-
tives. Examples of systems that have exploited and-parallelism are ROPM [13], AO-WAM [3],
DDAS [20], AKL [12], Andorra-I [19] and &-Prolog [9]. Additionally, some systems such as
ACE [7] and Andorra [19] exploit certain combinations of both and- and or-parallelism. In this
paper, we will concentrate on and-parallelism.

A correct parallelization has been defined as one that preserves some key properties, typically
correctness and no-slowdown, during and-parallel execution [11]. The preservation of these
properties is ensured by executing in parallel goals which meet some notion of independence,
meaning that the goals to be executed in parallel do not interfere with each other in some
particular sense. This can include for example absence of competition for binding variables
plus other considerations such as, e.g., absence of side effects. For simplicity, in the rest of the
paper we will assume that we are only dealing with side-effect free program sections.1

One of the better understood conditions which ensure that goals meet the efficiency and
correctness criteria for parallelization is strict independence [11], which entails the absence of
shared variables at runtime. It should be noted that some proposals exploit and-parallelism be-
tween goals which are dependent, but on which other restrictions are imposed which ensure no-
slowdown and correctness. Examples of such restrictions are determinism and non-failure [11]
(determinism is exploited for example in the Basic Andorra Model [19]) and absence of con-
flicts due to the binding of shared variables (as in non-strict independent and-parallelism [11]).
Another interesting issue is at what level of granularity the notion of independence is applied:
at the goal level, at the binding level, etc. Our work in this paper will focus on goal-level (strict
and non-strict) independent and-parallelism.

1Note however that this does not affect our presentation, as we will deal with dependencies in a generic way.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 2

One particularly successful approach to automatically parallelizing a logic program uses three
different stages [2]. The first one detects data (and control) dependencies between pairs of
literals in the original program. A dependency graph (see Figure 1 in Section 2 as an example)
is built to capture this information. Nodes in the graph correspond to literals in the body
of the clause and edges represent dependencies between them. Edges are labeled with the
associated dependency conditions (which may be trivially true or false —we will not represent
those edges labeled with true). The second stage performs (global) analysis [8, 2] to gather
information regarding, e.g., variable aliasing, groundness, side effects, etc. in order to remove
edges from the dependency graph or to simplify the conditions labeling these edges, if they
cannot be evaluated statically to completion. Labeled edges will result in run-time checks
if conditional parallel expressions are allowed. Alternatively, unresolved dependencies can be
assumed to always hold, and parallel execution will be allowed only between literals which
have been statically determined to be independent. This approach saves run-time checks at
the expense of losing some parallelism. Finally, the third stage transforms the original program
into a parallel version by annotating it with parallel execution operators using the information
gathered by the analyzers. This annotation should respect the dependencies found in the
original program while, at the same time, exploiting as much parallelism as possible.

b(X)

c(Y) d(Y,Z)

a(X,Z)

Figure 1: Dependency graph for p/3.

Several annotation algorithms have been
proposed so far [17, 4] that are based on the
use of the &/2 (conjunctive fork-join) opera-
tor as the basic construction to express par-
allelism between goals. The need to adapt
the dependency graph to a (nested) fork-
join structure makes parallelism opportuni-
ties to be inevitably lost in cases with a
complex enough structure (e.g., that in Fig-
ure 1). Likewise, inter-procedural parallelism
(i.e., parallelism which spans literals in differ-
ent predicates) cannot be exploited without
program transformation.

This annotation process is the focus of this paper. We will present and evaluate new annota-
tion algorithms which use as target parallelism primitives which can express richer dependencies
than those which can be expressed using &/2. Our hope is that since the transformed programs
will contain in some cases more parallelism, using the proposed approach we will be able to
obtain better speedups for such cases.

2 Background and Motivation

Regardless of the annotation algorithm used, annotations using &/2 have to give up par-
allelizing some goals due to the somewhat rigid structure this operator imposes on the final
program. We will introduce, with the help of an example, the &/2 style and its limitations, and
we will show how better annotations for parallelism are possible when other, simpler primitives,
are used.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 3

p(X, Y, Z):-

(a(X, Z), b(X)) & c(Y),

d(Y, Z).

(a) fj1 : Order-preserving

p(X, Y, Z):-

a(X, Z) & c(Y),

b(X) & d(Y, Z).

(b) fj2 : Non-order-preserving

Figure 2: Fork-Join annotations for p/3 (Section 2).

2.1 Fork-Join-Style Parallelization

We will use as running example the following clause:

p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

and will assume that the dependencies detected between the literals in the predicate are as shown
in Figure 1: an arrow between two nodes means that the goal in the origin has to be completed
before the goal in the end. We will assume that all the dependencies are unconditional —i.e.,
conditional dependencies are assumed to be always false. This avoids potentially costly run-time
checks in the parallelized code, at the expense of having fewer opportunities for parallelism.

Conjunctive parallel execution is usually denoted using the parallel operator &/2 instead of
the sequential comma (‘,’). The former binds more tightly than the latter. An expression of
the form a, b & c, d means that the literals b and c can be safely executed in parallel after
the execution of the literal a finishes. When both b and c have successfully finished, execution
continues with d.

This single operator is enough to parallelize many programs, but the class of dependencies it
can express directly (called µ-graphs in [17]) is a subset of the dependencies that can possibly
appear in a program. It, therefore, falls short in some cases —for example, for the clause above.
In general, several annotations are possible for a given program. As an example, Figure 2 shows
two annotations for the sample clause.2 Note that some goals appear switched w.r.t. their order
in the sequential clause, but changing the order of pure goals in a clause does not change its
logical meaning, and if goals are strictly independent no slowdown need happen. If additional
ordering requirements are needed (due to, e.g., side effects or impurity), these can appear as
additional dependencies in the graph.

Note that none of the annotations in Figure 2 fully exploits all parallelism available in Fig-
ure 1: Figure 2(a) misses the parallelism between b(X) and d(Y, Z), and Figure 2(b) misses
the parallelism between b(X) and c(Y).

One relevant question is which of these two parallelizations is better. Arguably, a meaningful
measure of their quality is how long each of them takes to execute; we will term those times
Tfj1 and Tfj2 for Figures 2(a) and 2(b), respectively. This length ultimately depends on the
execution times of their goals (i.e., Ta, Tb, Tc, Td), which we assume to be non-zero. Expressions
for Tfj1 and Tfj2 follow:

Tfj1 = max(Ta + Tb, Tc) + Td (1)

Tfj2 = max(Ta, Tc) + max(Tb, Td) (2)

The question whether the annotation in Figure 2(a) is or not better than that of Figure 2(b)
boils down to finding out whether it is possible that Tfj1 < Tfj2 or the other way around. It

2The parallelization p :- a(X, Z), b(X) & c(Y), d(Y, Z) has been left out of Figure 2. However, this does
not add anything to the discussion as it does not change the comparison we make in Section 2.2.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 4

turns out that they are non-comparable. In fact:

• Tfj1 < Tfj2 if, for example, Ta+Tb < Tc, Td < Tb, and then Tfj2 = Tb+Tc, Tfj1 = Td+Tc,
and

• Tfj2 < Tfj1 if, for example, Tc ≤ Ta, Td ≤ Tb, and then Tfj1 = Ta+Tb+Td, Tfj2 = Ta+Tb.

Deciding at compile time which annotation is to be preferred needs further information
regarding the expected runtime of goals (see, e.g., [16] and its references). While it is possible
to use rankings to decide whether some annotation is better than some other, for example
using the number of goals annotated for parallelism in a clause, finding this optimality is
computationally expensive [17] —there are many decisions to make which make the number
of annotations explode. In practice, annotators use heuristics which may be more or less
appropriate in concrete cases.

Additional differences between annotators come from whether run-time tests for independence
are allowed and from whether they preserve (or not) the goal order with respect to the original,
sequential program: some annotators include independence conditions in the output, in order
to decide dynamically whether to execute or not in parallel, and some annotators switch around
the order of goals in a clause.

2.2 Parallelization with Finer Goal-Level Operators

It has been observed [5, 4] that more basic constructions can be used to represent and-
parallelism by using two operators, &>/2 and <&/1, defined as follows:

Definition 1 G &> H schedules the goal G for parallel execution and continues executing the
code after G &>H. H is a handler which contains (or points to) the state of goal G.

Definition 2 H <& waits for the goal associated to H to finish. After that point the bindings
made for the output variables of G are available to the executing thread.

With the previous definitions, the operator &/2 can be written as
A & B :- A &> H, call(B), H <&. This indicates that any parallelization performed using
&/2 can be made using &>/2 and <&/1 —or, that no parallelism is necessarily lost when using
&>/2 and <&/1. We will term these operators dep-operators henceforth.

p(X, Y, Z) :-

c(Y) &> Hc,

a(X, Z),

b(X) &> Hb,

Hc <&,

d(Y, Z),

Hb <&.

Figure 3: dep-operator-annotated clause

Two motivations justify the use of these
operators instead of &/2. Firstly, their im-
plementation is (in our experience) actually
easier to devise and maintain than the mono-
lithic &/2, and, secondly, the dep-operators
allow more freedom to the annotator (and
to the programmer, if parallel code is writ-
ten by hand) to express data dependencies
and, therefore, to extract more potential par-
allelism. We will now illustrate the latter re-
mark (the former is out of the scope of this
paper).

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 5

Algorithm: unrestricted annotation(G, order, ID)

Input : (1) An acyclic dependency graph G = (V,E). (2) The boolean value order. (3)
Determinacy information ID for the literals of the clause.

Output: A clause annotated for parallel execution.
begin

if order then
Exp← UOUDG(G, ∅);

else
Exp← UUDG(G, ∅, ID);

end
return Exp;

end

Algorithm 1: Entry point to the annotation algorithms.

Figure 3 shows an annotation of the running example using dep-operators. Note that this
code allows executing in parallel a/2 with c/1, b/2 with c/1, and b/1 with d/2. The execution
time of p/3, based on that of the individual goals, is: See Appendix A

for a deduction.
Tdep = max(Ta + Tb, Td + max(Ta, Tc)) (3)

If we compare expression (3) with expressions (1) and (2), it turns out that:

• It is possible that Tdep < Tfj1, Tdep < Tfj2, Tdep = Tfj1, and Tdep = Tfj2 (possibly with
different lengths for every goal in each case). See Appendix B

for a proof.

• It is not possible that Tdep > Tfj1 or that Tdep > Tfj2.

This means that the annotation in Figure 3 cannot be worse than those of Figure 2, and can
perform better in some cases. It is, therefore, a better option than any of the others.

In addition to these basic operators, other specialized versions can be defined and imple-
mented in order to increase performance by adapting better to some particular cases. In par-
ticular, it appears interesting to introduce variants for the very relevant and frequent case of
deterministic goals. For this purpose we propose two new operators: &>!/2 and <&!/1. These
specialized versions do not perform backtracking and do not prepare the execution data struc-
tures to cope with that possibility, which has previously been shown to result in a significant
efficiency increase in the underlying machinery [18]. However, while in our benchmarks these
operators are used, for the sake of clarity only the general versions will appear throughout the
discussion.

3 The UOUDG and UUDG Algorithms

In this section we will present two concrete algorithms to generate code annotated for par-
allelism (as in Figure 3) starting with sequential code while respecting dependencies between
literals (as in Figure 1). Algorithm 1 shows the external interface of these algorithms: it checks
whether an order-preserving annotation has been required (or not), and then more specialized
procedures are called.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 6

Algorithm: UOUDG(G, Pub)

Input : (1) A directed acyclic graph G = (V,E). (2) A set of goals already forked. (3)
Determinacy information.

Output: An unrestricted parallelized clause in which the order of the solutions in the
original clause is preserved.

begin
if |V | = 0 then return (true);
else

Indep ← V \ {v | e ∈ E, e = u→ v};
Dep ← {(v, I) | v ∈ V, Iv = incoming(v), Iv 6= ∅, Iv ⊆ Indep};
if |Dep| = 0 then

Joinable ← V ;
else

Joinable ← S s.t. (u, S) ∈ Dep ∧ ∀((w,D) ∈ (Dep \ S)) . Lu ≺ Lw;
end
Indep ← Indep \ Pub;
Fork’ ← consecutive vertices(Indep, u);
And ← last common vertices(Fork’, Joinable);
Fork ← Fork’ \ And ; ToJoin ← Joinable \ And ;
Pub ← Pub ∪ Fork ∪ And ; G← G − And − ToJoin;
return (gen body(Fork, And, ToJoin), UOUDG(G, Pub));

end
end

Algorithm 2: UOUDG Annotation Algorithm.

As mentioned in Section 2.1 we will consider in this paper only unconditional parallelism,
both for simplicity and because it has been experimentally found to be a good compromise
between the degree of parallelism uncovered and the execution time of independence tests.
However, the algorithms that we describe can be adapted to deal with conditional parallelism
without too much effort.

The idea behind these algorithms is to publish (i.e., to make available) goals for parallel
execution as soon as possible and to delay “importing” their bindings (i.e., issuing a join) as
much as possible —but always respecting the dependencies in the graph. Intuitively, this should
maximize the number of goals available for parallel execution.

The algorithm processes a clause at a time, and its input consists of three arguments. The first
one is an (acyclic) directed dependency graph G = (V,E), in which the vertices V correspond
to the literals Li of the clause H:- L1, . . . , Ln. Each clause induces an order ≺ between
the literals such that for Li ≺ Lj iff i < j. There exists an edge between Li and Lj in E

if ind(Li, Lj , λ(i), λ(j)) = false (i.e., the literals Li and Lj are dependent), where ind is the
notion of independence and λ(n + 1) is the vector of (abstract) data dependency states. This
information is obtained, in our case, from global data-flow analysis [2]. The second argument
is a boolean value that indicates whether the order of the solutions must be preserved or not.
Finally, determinacy information pertaining to the literals Li of the clause is given as third
argument, to be used when necessary.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 7

Algorithm: gen body(Fork, And, Join)

Input : (1) A set of vertices to be forked. (2) A set of vertices to be and-parallelized.
(3) A set of vertices to be joined.

Output: An expression Exp.
begin

Exp ← (true);
forall vi ∈ Fork do

Exp ← (Exp, vi &> Hvi
);

end
Let And be {v1, . . . , vn};
Exp ← (Exp, (v1 & (. . . & vn)));
forall vi ∈ Join do

Exp ← (Exp, Hvi
<&);

end
return Exp;

end

Algorithm 3: gen body function without determinacy information.

3.1 Order-Preserving Annotation: the UOUDG Algorithm

Algorithm 2 parallelizes a clause represented as an (acyclic) directed dependency graph pre-
serving the order of the solutions by respecting the relative order of literals in the original clause.
At every recursion step, new nodes (i.e., literals) in the graph are annotated to be published
(i.e., forked off) and joined, proceeding in the following iterations with a simplified graph in
which the joined vertices and their outgoing edges have been removed. The set of goals which
have already been published is kept in the second argument.

Two sets are key in each iteration: Indep contains the sources (i.e., all vertices in the graph
without incoming edges, and which can therefore be published), and Dep, which for each non-
source vertex v which can only be reached from vertices in Indep contains the set of vertices in
Indep which reach v. It is, therefore, a set of tuples, where the dependent vertex v and the set
of vertices which corresponds to the literals that must be joined to fulfill its dependencies are
stored.

Algorithm 2 then proceeds by partitioning the vertices of the graph in order to decide which
ones are to be published and which ones are to be joined. The sources (in Indep) that have
not been already published can be parallelized. To select which nodes have to be published
while preserving the solution order, only vertices consecutive to the leftmost vertex u of the
graph are to be published. Similarly, the vertices of any of the sets in Dep could in principle
be joined. However, as the order of the solutions in the original clause must be preserved, only
those vertices on which the leftmost vertex u depends are to be joined. Note that, in order to
maximize the degree of parallelism, joining the rest of the vertices that are dependencies of the
other tuples in Dep will be delayed. As a further simplification, nodes that are to be published
and joined in the same step of the algorithm can be annotated directly with &/2. These are
stored in the And variable.

The fact that the vertex corresponding to the first literal in the original clause is always a
source and that the dependency graph is directed and acyclic implies that at least one literal
will be joined in each iteration, simplifying the graph for the following iteration and thus freeing

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 8

Algorithm: UUDG(G, Pub, ID)

Input : (1) A directed acyclic graph G = (V,E). (2) A set of goals already forked. (3)
Determinacy information.

Output: An unrestricted parallelized clause in which the order of the solutions in the
original clause need not be preserved.

begin
if |V | = 0 then return (true);
else

Indep ← V \ {v | e ∈ E, e = u→ v};
Dep ← {Iv | v ∈ V, Iv = incoming(v), Iv 6= ∅, Iv ⊆ Indep};
if |Dep| = 0 then

Joinable ← V ;
else

SS ← {Iv | Iv ∈ Dep, |Iv| = min card(Dep)};
Joinable ← Pick randomly any element from SS;

end
Indep ← Indep \ Pub; Fork ← Indep \ Joinable;
And ← Indep \ Fork ; ToJoin ← Joinable \ And ;
Pub ← Pub ∪ Fork ∪ And ; G← G − And − ToJoin;
return (gen body det(Fork, And, ToJoin, ID), UUDG(G, Pub, ID));

end
end

Algorithm 4: UUDG Annotation Algorithm.

some of the dependent vertices, and implying that the algorithm terminates.

Algorithm 2 (as well as Algorithm 4) uses some auxiliary definitions which we include below:

consecutive vertices(S, v) = set of vertices belonging to S that correspond to origi-
nal clause literals consecutive to the one associated to
v.

incoming(v) = {u | u→ v ∈ E}.
last common vertices(S1, S2) = set of latest vertices common to those S1 and S2, ac-

cording to the order ≺.
min card(S) = min({|s| | s ∈ S}).

Finally, Algorithm 2 uses Algorithm 3 in order to return an expression in which the literals
passed as arguments are annotated for parallel execution.

3.2 Non Order-Preserving Annotation: the UUDG Algorithm

Algorithm 4 follows the same idea underlying Algorithm 2: publish early and join late.
However, it has more freedom to publish goals, since the order of solutions does not need to
be preserved. This is implemented by selecting among the sets of goals which can be joined at
every moment the one with lower cardinality —i.e., we join the least number of goals in the
current iteration, thus postponing the rest of the joins as much as possible, in order to exploit
as much parallelism as possible. This selection does not take into account the order in the
original, sequential clause of the goals that can be started after this join.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 9

Algorithm: gen body det(Fork, And, Join, ID)

Input : (1) A set of vertices to be forked. (2) A set of vertices to be and-parallelized.
(3) A set of vertices to be joined. (4) Determinacy information.

Output: An expression Exp.
begin

Exp ← (true);
Sort Fork and And from non-deterministic goals to deterministic ones;
forall vi ∈ Fork do

if det(vi) then Exp ← (Exp, vi &>! Hvi
);

else Exp ← (Exp, vi &> Hvi
);

end
Let And be {v1, . . . , vn};
if det(v1) ∧ . . .∧ det(vn) then Exp ← (Exp, (v1 &! (. . . &! vn)));
else Exp ← (Exp, (v1 & (. . . & vn)));
forall vi ∈ Join do

if det(vi) then Exp ← (Exp, Hvi
<&!);

else Exp ← (Exp, Hvi
<&);

end
return Exp;

end

Algorithm 5: gen body det function with determinacy information.

Finally, Algorithm 4 uses Algorithm 5 (a version of Algorithm 3) to output a parallelized
clause. The difference lies in the use that Algorithm 5 makes of determinism information:

• Since we already have the possibility of switching goals around, we try to minimize re-
launching goals which are likely to be executed in parallel by forking deterministic goals
first.

• Additionally, when a goal is known to have exactly one solution, we can use specialized
versions of the dep-operators which do not need to keep bookkeeping for backtracking
(always complex in parallel implementations), and are thus more efficient.

This program information can be automatically inferred by the abstract interpretation-based
determinism analyzer in CiaoPP [14], and is provided as input to the proposed annotators.
Alternatively, this information can be stated by the programmer via assertions [10].

3.3 A Comparison of the Annotation Algorithms

As mentioned in Section 2.1, &/2-based annotators transform non-µ-graphs into µ-graphs, in
order to be able to fully parallelize them with the &/2 operator, by adding extra dependencies
between the nodes. These annotators choose to parallelize goals that are sources in the graph.
By definition, those goals that are parallelized via the &/2 operator must all be joined at the
same time. Algorithm 4 is able in each iteration to detect and mark all the sources in the graph
to be published (in case they were not published before). Moreover, it produces the minimal
number of joins necessary to free a dependent node, postponing as many joins as possible to
following iterations. The UUDG annotator proposed exploits at least as much parallelism as

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 10

any fork-join annotator, extracting more parallelism when some of the joins can be postponed,
i.e., when parallelizing a non-µ-graph.

On the other hand, Algorithm 2 preserves the order of the solutions in the initial clause that
is to be parallelized by disallowing annotations in which the goals are switched around w.r.t. the
order ≺ in the sequential clause. Some annotators for parallelism which are based on &/2 (e.g.,
MEL and URLP) share this characteristic, while others (e.g., UDG) do not. In our particular
case, Algorithm 2 can exploit as much parallelism as any &/2 annotator in its class can (e.g.,
MEL, if we disregard the conditional part of the CGEs or URLP), and more if the dependency
graph is not a µ-graph.

The restriction on goal reordering makes it impossible to exploit potential (independent)
parallelism that goal reordering can uncover. Therefore, and in principle, reordering annotators
have an advantage over non-reordering ones, and comparing results belonging to both kinds
must be made with caution, as it can be misleading. However, if we still want to draw a
comparison based on potential execution times, Figure 4 presents a lattice that shows the
relationship between annotators.

FJ−Order

=< =<

=<=<

UUDG

UOUDG FJ−No−Order

Figure 4: Comparing annotators.

FJ-(No-)Order represents the general class
of &/2 annotators which respect (or not) the
order of solutions. The need for the order
relation to be “less or equal than” instead of
“less than” is clear as some clauses (e.g., those
with only two independent goals) will be par-
allelized in an equivalent way (also, at the
limit, clauses with not parallelism whatsoever
must be left untouched by any annotator).

4 Performance Evaluation

Our annotation algorithms have been inte-
grated in the Ciao/CiaoPP system [10]. Information gathered by the analyzers on variable
sharing, groundness, and freeness is used to determine goal independence. Determinism is used
in the annotators as described previously.

As execution platform we have used a high level implementation of the proposed parallelism
primitives, which we have developed as an extension of the Ciao system. This implementation is
an evolution of [9] and is based on raising the implementation of certain components to the level
of the source language and keeping only some selected operations (related to thread handling,
locking, etc.) at a lower level. This approach does not eliminate altogether modifications to the
abstract machine, but it greatly simplifies them. The actual underlying parallel implementation
is beyond the scope of this paper. It should be noted however that the dep-operators do not
assume any particular architecture: while our current implementation and all the performance
results were obtained on a multiprocessor machine, the techniques presented can be also applied
in distributed memory machines —and in fact, the first prototype implementation of the dep-
operators [5, 4] was actually made on a distributed environment.

We have evaluated the impact of the different annotations on the execution time by running
a series of benchmarks in parallel. Table 1 shows the speedups obtained with respect to the
sequential execution when using from 1 to 8 threads. The machine we used is a Sun UltraSparc

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 11

Benchmark Annotator
Number of processors

1 2 3 4 5 6 7 8

AIAKL

MEL 0.90 0.94 0.95 0.95 0.95 0.95 0.95 0.95
UOUDG 0.90 1.40 1.36 1.37 1.37 1.37 1.37 1.37
UDG 0.90 1.65 1.56 1.59 1.59 1.59 1.59 1.60
UUDG 0.90 1.65 1.56 1.59 1.59 1.59 1.59 1.60

FFT

MEL 0.94 1.66 2.00 2.58 2.65 2.78 2.87 3.06
UOUDG 0.94 1.66 2.00 2.58 2.65 2.78 2.87 3.06
UDG 0.94 1.66 2.00 2.58 2.65 2.78 2.87 3.06
UUDG 0.94 1.70 2.03 2.59 2.74 2.92 3.04 3.20

FibFun

MEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.98 1.93 2.87 3.82 4.75 5.68 6.60 7.52

Hamming

MEL 0.79 1.04 1.29 1.29 1.29 1.29 1.29 1.29
UOUDG 0.79 1.06 1.34 1.34 1.34 1.34 1.34 1.34
UDG 0.79 1.04 1.29 1.29 1.29 1.29 1.29 1.29
UUDG 0.79 1.06 1.34 1.34 1.34 1.34 1.34 1.34

Hanoi

MEL 0.80 0.93 0.94 0.93 0.93 0.93 0.94 0.94
UOUDG 0.80 1.48 1.99 2.49 2.94 3.21 3.41 3.72
UDG 0.84 1.56 2.20 2.71 3.16 3.52 3.92 4.10
UUDG 0.84 1.56 2.20 2.71 3.16 3.52 3.92 4.10

Takeuchi

MEL 0.87 1.51 2.13 2.57 2.58 2.58 2.58 2.58
UOUDG 0.87 1.53 2.16 2.59 2.61 2.61 2.61 2.61
UDG 0.87 1.51 2.13 2.57 2.58 2.58 2.58 2.58
UUDG 0.87 1.53 2.28 3.30 3.94 4.36 5.16 5.75

WMS2

MEL 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.81
UOUDG 0.99 1.09 1.09 1.09 1.09 1.09 1.09 1.09
UDG 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
UUDG 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Table 1: Speedups for several benchmarks with MEL, UDG, UOUDG, and UUDG.

T2000 (a Niagara) with 8 4-thread processors.3 The fork-join annotators we chose to compare
with are MEL (which preserves goal order and tries to maximize the length of the parallel expres-
sions) and UDG (which can reorder goals). MEL can add runtime checks to decide dynamically
whether to execute or not in parallel. In order to make the annotation unconditional (as the
rest of the annotators we are dealing with), we simply removed the conditional parallelism in
the places where it was not being exploited. This is why it appears in Table 1 under the name
UMEL.

The test programs we used are the following:

3We did not use more than 8 processors since in that case, and due to data contention and access to
shared processor units, we have observed speedups to be sublinear (and difficult to predict) even for completely
independent tasks.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 12

AIAKL an abstract interpreter for the AKL language.
FFT an implementation of the Fast Fourier transform.
FibFun a version of Fib written in functional notation.
Hamming computes the first N Hamming numbers, i.e., natural numbers which are mul-

tiples of 2, 3, and 5.
Hanoi solves a version of the well-known puzzle.
Takeuchi computes the Takeuchi function.
WMS2 schedules a number of workers in a series of jobs.

All the benchmarks executed were parallelized automatically by CiaoPP, starting from their
sequential code. Since UOUDG and UUDG can improve the results of fork-join annotators
only when the code to parallelize has at least a certain complexity, not all benchmarks with
(independent) parallelism can benefit from using the dep-operators. Additionally, comparing
speedups obtained with programs parallelized using order-preserving and non-order-preserving
annotators is not completely meaningful.

Note that in this paper we are not focusing on the speedups themselves. Although of utmost
practical interest, raw speed is mainly connected with the implementation of the underlying
parallel abstract machine, and improvements on it should uniformly affect all parallelized pro-
grams. Rather, our main focus of attention is in the comparison among the speedups obtained
using different annotators. In any case note that the speedups reported are actual speedups,
i.e., computed w.r.t. the speed of the sequential version on one processor (hence the speedups
are sometimes below 1 for one processor of the parallelized versions).

A first examination of the experimental results in Table 1 supports the discussion in Sec-
tion 3.3: in no case UUDG is worse than any other annotator, and in no case UOUDG is worse
than (U)MEL. They should therefore be the annotators of choice if available. Besides, there
are cases where UOUDG is better than UDG, and the other way around, which is again in
accordance with the non-comparable points in Figure 4.

Among the cases in which a better speedup is obtained by some of the U(O)UDG annotators,
improvements range between “no improvement” (because no benefit is obtained for some partic-
ular cases and combinations of annotators) to an increase of 752% in speedup, with several other
points in between. Also, it is worth pointing out that the gain in speedup does not diminish in
any benchmark (at least in a sizable amount) as the number of processors increases; moreover,
in some cases the difference in speedup grows substantially with the number of processors. This
can (clearly) be seen in, e.g., Figure 5(b).

Finally, we want to comment specially on three benchmarks. FibFun is the result of paral-
lelizing a definition of the Fibonacci numbers written using the functional notation capabilities
of Ciao [6]. The (automatic) translation of the code into Prolog is only parallelizable by UUDG,
hence the speedup obtained in this case. The case of Hanoi is also interesting, as it is the
first example in [17]: in the arena of order-preserving parallelizers, UOUDG can extract more
parallelism than MEL for this benchmark. Last, the Takeuchi benchmark has a relatively small
loop which only allows parallelizing with a simple &/2. However, by unrolling one iteration the
resulting body has dependencies which are complex enough to take advantage of the increased
flexibility of the dep-operator annotators.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 13

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

MEL
UDG

UOUDG
UUDG

(a) Hanoi

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

MEL
UDG

UOUDG
UUDG

(b) Takeuchi

Figure 5: Speedups with different annotations for Hanoi and Takeuchi.

5 Conclusions

We have proposed two annotation algorithms which perform a source-to-source transforma-
tion of a logic program into an unrestricted independent and-parallel version of itself. Both
algorithms rely on the use of more basic high-level primitives than the fork-join operator, and
differ on whether the order of the solutions in the original program must be preserved or not. We
have implemented the proposed algorithms within the CiaoPP system, which infers automati-
cally groundness, sharing, and determinism information, used to simplify the initial dependency
graph. The results of the experiments performed show that, although the parallelization pro-
vided by the new annotation algorithms is the same in quite a few of the traditional parallel
benchmarks, it is never worse and in some cases it is significantly better. This supports the
observations made based on the expected performance of the annotations. We have also noticed
that the benefits are larger for programs with high numbers of goals in their clauses, since their
more complex graphs make the ability to exploit non-restricted parallelism more relevant.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 14

References

1. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Performance.
In 1990 North American Conference on Logic Programming, pages 757–776. MIT Press,
October 1990.

2. F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Abstract In-
terpretation in Automatic Parallelization: A Case Study in Logic Programming. ACM
Transactions on Programming Languages and Systems, 21(2):189–238, March 1999.

3. R. Butler, E. L. Lusk, R. Olson, and R. A. Overbeek. Anlwam: A Parallel Implementation
of the Warren Abstract Machine. Internal report, Argonne National Laboratory, Argonne,
Il 60439, 1986.

4. D. Cabeza. An Extensible, Global Analysis Friendly Logic Programming System. PhD the-
sis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla
del Monte, Madrid-Spain, August 2004.

5. D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent Constraint Ex-
ecution in the CIAO System. In Proc. of the AGP’96 Joint conference on Declarative
Programming, pages 67–78, San Sebastian, Spain, July 1996. U. of the Basque Country.
Available from http://www.cliplab.org/.

6. A. Casas, D. Cabeza, and M. Hermenegildo. A Syntactic Approach to Combining Func-
tional Notation, Lazy Evaluation and Higher-Order in LP Systems. In FLOPS’06, Fuji
Susono (Japan), April 2006.

7. G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In International Conference on Logic Pro-
gramming, pages 93–110. MIT Press, June 1994.

8. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execution of
Prolog Programs: a Survey. ACM Transactions on Programming Languages and Systems,
23(4):472–602, July 2001.

9. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233–257, 1991.

10. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming, 58(1–2):115–140, October 2005.

11. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in
Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic
Programming, 22(1):1–45, 1995.

12. Sverker Janson. AKL. A Multiparadigm Programming Language. PhD thesis, Uppsala
University, 1994.

13. L. V. Kalé. Parallel Execution of Logic Programs: the REDUCE-OR Process Model. In
Fourth International Conference on Logic Programming, pages 616–632. Melbourne, Aus-
tralia, MIT Press, May 1987.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 15

14. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic Pro-
grams Using Mode and Type Information. In Proceedings of the 14th International Sympo-
sium on Logic-based Program Synthesis and Transformation (LOPSTR’04), number 3573
in LNCS, pages 19–35. Springer-Verlag, August 2005.

15. E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing, 7(2,3),
1990.

16. E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Combining Static
Analysis and Profiling for Estimating Execution Times. In Ninth International Sympo-
sium on Practical Aspects of Declarative Languages, number 4354 in LNCS, pages 140–154.
Springer-Verlag, January 2007.

17. K. Muthukumar, F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Automatic
Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Independent
And-parallelism. Journal of Logic Programming, 38(2):165–218, February 1999.

18. E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. Hermenegildo. Improving the Efficiency
of Nondeterministic And–parallel Systems. The Computer Languages Journal, 22(2/3):115–
142, July 1996.

19. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-parallelism. In Proceedings of the 3rd. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 83–93.
ACM, April 1991. SIGPLAN Notices vol 26(7), July 1991.

20. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. Journal of
Logic Programming, 29(1–3):245–293, November 1996.

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 16

This section is not part of the paper. It is only intended to help
the reviewers check some claims stated in the paper.

A Minimum Time to Execute a Parallel Expression

The bound given in Equation (3) can be deduced as follows.

p(X, Y, Z):-

T1 = 0
c(Y) &> Hc,

T2 = T1

a(X, Z),

T3 = T2 + Ta

b(X) &> Hb,

T4 = T3

Hc <&,

T5 = max(T3, T1 + Tc)
d(Y, Z),

T6 = T5 + Td

Hb <&.

T7 = max(T6, T3 + Tb)

The clause is at the left and the points in time (with an expression determining their value)
are at the right. Tn (with n ∈ {a, b, c, d}) denotes execution time of the respective goals. The
primitives &>/2 and <&/1 themselves are, for simplicity, assumed to take zero time. Then, we
can solve T7, the total time taken by the clause, as a function of the length of the goals:

T7 = max(T6, T3 + Tb)

= max(T5 + Td, T2 + Ta + Tb)

= max(max(T3, T1 + Tc) + Td, Ta + Tb)

= max(max(Ta, Tc) + Td, Ta + Tb)

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 17

B Comparison Between Parallelizations

Although values which make the parallelizations in Figure 2 (Equations (1) and (2)) incom-
parable are shown in the text, there is no justification that Equation (3) cannot be smaller than
any of the previous two. We show here how we reached to that conclusion.

Let us consider the predicate p/3 of Section 2.1, whose dependency graph is shown in Figure 1.
The execution time expressions for the two parallelizations of p/3, given in Figure 2(a) and
Figure 2(b), are presented in Equation (1) and Equation (2). These two equations can be
implemented using constraint logic programming as follows:

%% Tfj1 = max(a + b, c) + d

tfj1(A, B, C, D, T):-

positive([A,B,C,D,T]),

AB .=. A + B,

max(AB, C, MaxABC),

T .=. D + MaxABC.

%% Tfj2 = max(a,c) + max(b, d)

tfj2(A, B, C, D, T):-

positive([A,B,C,D,T]),

max(A, C, MAC),

max(B, D, MBD),

T .=. MAC + MBD.

positive([]).

positive([X|Xs]):-

X .>. 0,

positive(Xs).

max(X, Y, X):- X .>=. Y.

max(X, Y, Y):- X .<. Y.

The parallelization resulting from the execution of the UUDG annotator is in Figure 3 and
the expression which gives execution time appears in Equation (3). This equation can again be
implemented as follows:

%% Tdep = max(a+b, d + max(a,c))

tdep(A, B, C, D, T):-

positive([A,B,C,D,T]),

AB .=. A + B,

max(A, C, MaxAC),

DAC .=. D + MaxAC,

max(AB, DAC, T).

Each of the following queries corresponds to the answer for a precise question:

• Is any of the fork-join parallelization really better than the other?

Report No. CLIP 5/2007.0 June, 2007

Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs 18

?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2),

T1 .<. T2.

D.>.0, A.>.0,

T2 .=<. A+2*B,

T2 .>. A+B+D,

T2 .=. B+C,

T1 .=. A+B+D ?

yes

?- tfj1(A,B,C,D,T1),

tfj2(A,B,C,D,T2),

T2 .<. T1.

C.>.0, D.>.0,

C .=<. A,

D .=<. B,

T2 .=. A+B,

T1 .=. A+B+D ?

yes

There are solutions for both orderings, so none of them is definitely better than the other
one.

• Can any of the fork-join annotations be handled better than the annotation with dep-
operators?

?- tfj1(A,B,C,D,T1), tdep(A,B,C,D,T2), T1 .<. T2.

no

?- tfj2(A,B,C,D,T1), tdep(A,B,C,D,T2), T1 .<. T2.

no

The answer is no in both cases – no combination of execution times for the sequential
goals can make UUDG be worse than either fj1 or fj2.

Report No. CLIP 5/2007.0 June, 2007

