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Abstract

We present new algorithms which perform automatic parallelization via source-to-source
transformations. The objective is to exploit goal-level, unrestricted independent and-
parallelism. The proposed algorithms use as targets new parallel execution primitives
which are simpler and more flexible than the well-known &/2 parallel operator, which
makes it possible to generate better parallel expressions by exposing more potential paral-
lelism among the literals of a clause than is possible with &/2. The main differences between
the algorithms stem from whether the order of the solutions obtained is preserved or not,
and on the use of determinacy information. We briefly describe the environment where
the algorithms have been implemented and the runtime platform in which the parallelized
programs are executed. We also report on an evaluation of an implementation of our ap-
proach. We compare the performance obtained to that of previous annotation algorithms
and show that relevant improvements can be obtained.

KEYWORDS: Logic Programming, Automatic Parallelization, And-Parallelism, Program
Transformation.

1 Introduction

Parallelism capabilities are becoming ubiquitous thanks to the widespread use of
multi-core processors. Indeed, most laptops on the market contain two cores (capa-
ble of running up to four threads simultaneously) and single-chip, 8-core servers are
now in widespread use. Furthermore, the trend is that the number of on-chip cores
will double with each processor generation. In this context, being able to exploit
such parallel execution capabilities in programs as easily as possible becomes more
and more a necessity. However, it is well-known (Karp and Babb 1988) that paral-
lelizing programs is a hard challenge. This has renewed interest in language-related
designs and tools which can simplify the task of producing parallel programs.

The comparatively higher level of abstraction of declarative languages and, among
them, logic programming languages and also the new multiparadigm languages
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based on logic programming kernel languages, allows writing programs which are
closer to the specification of the solution. Besides, there is often more freedom in
the implementation of different operational semantics which respect the declarative
semantics. In particular, the notion of control in declarative languages frequently
is separated from the actual specification, which allows for more flexibility to ar-
range the evaluation order of some operations, including executing them in parallel
if deemed convenient, without affecting the semantics of the original program. Ad-
ditionally, the cleaner semantics that declarative programs pose and the use of
logic variables, which can be assigned only one value and thus there is no need
to look after flow dependencies, makes it possible to automatically detect more
accurately any lack of dependencies among operations and hence to exploit oppor-
tunities for parallelism more easily than in imperative languages, increasing the
performance through parallel execution on multicore architectures (including mul-
ticore embedded systems). At the same time, in most other respects in the case of
logic programs the presence of dynamic data structures with “declarative pointers”
(logical variables), irregular computations, or complex control makes the paralleliza-
tion of logic programs a particularly interesting case that allows tackling the more
complex parallelization-related challenges in a formally simple and well-understood
context (Hermenegildo 2000).

Because of this potential, quite significant progress has been made in automatic
parallelization for logic programming (Gupta et al. 2001), where two main forms
of parallelism have been studied. Or-parallelism is exploited when the alternatives
created by non-deterministic goals are explored simultaneously by different pro-
cessors, in order to reduce the time taken to traverse their (possibly large) search
space. The exploitation of this type of parallelism is interesting in applications that
involve extensive seach, since the choices that are represented by alternative clauses
usually involve a large number of steps before a failure or a success in the search
occurs. Some relevant or-parallelism systems are Aurora (Lusk et al. 1990) and
MUSE (Ali and Karlsson 1990).

An alternative strategy that is used to parallelize logic programs is referred to
as and-parallelism, which aims at executing simultaneously conjunctive goals in
clauses or in the resolvent, in a similar fashion as in traditional parallelism exploited.
While or-parallelism can only obtain speedups when there is search involved, and-
parallelism can be used in more algorithmic schemes, with loop parallelization
and divide-and-conquer and map-style algorithms being classic representatives. Ex-
amples of systems that have exploited and-parallelism are ROPM (Kalé 1987),
AO-WAM (Butler et al. 1986), DDAS (Shen 1996) and &-Prolog (Hermenegildo
and Greene 1991). Additionally, some systems such as ACE (Gupta et al. 1994),
AKL (Janson 1994), and Andorra (Santos-Costa et al. 1991) (Santos-Costa 1993)
exploit certain combinations of both and- and or-parallelism. In this paper, we
concentrate on the issue of automatic and-parallelization.

The main of objective of a parallelizing compiler is to uncover as much paral-
lelism as possible, but always preserving some conditions to guarantee that the
set of solutions obtained is the same one as in the sequential execution and that
there is not a decrease in the performance of the execution, i.e., the parallel ex-
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ecution is never slower than the sequential execution. Thus, a correct paralleliza-
tion has been traditionally defined as one that preserves during and-parallel ex-
ecution some key properties, which are typically correctness and efficiency (i.e.,
no-slowdown) (Hermenegildo and Rossi 1995). The preservation of these properties
is ensured by executing in parallel goals which meet some (non-unique) notion of
independence, meaning that the goals to be executed in parallel do not interfere
with each other in some particular sense. This can include, for instance, absence
of competition for binding variables among goals to be run in parallel plus other
considerations such as, e.g., absence of side effects. For simplicity, in the rest of
the paper we will assume that we are only dealing with side-effect free program
sections. Note however that this does not affect the generality of our presentation,
as we deal with dependencies in a generic way.

One of the best understood sufficient conditions for ensuring that goals meet
the efficiency and correctness criteria for parallelization is called strict indepen-
dence (Hermenegildo and Rossi 1995), which entails the absence of shared variables
at runtime between any two literals being parallelized. It should be noted that some
proposals exploit and-parallelism between goals which do not meet this condition,
but on which other restrictions are imposed which also ensure the no-slowdown
property and absence of conflicts due to the binding of shared variables. An ex-
ample of such restrictions is the non-strict independence (Hermenegildo and Rossi
1995), in which two goals share some variables, although there is no competition
in their bindings. Although non-strict independence between two literals cannot be
determined by inspecting the previous state of execution, and thus global analy-
sis of the original program is required, it is quite interesting because it uncovers
some of the parallelism that is present in applications that manipulate open data
structures, as for instance difference lists. Another example is the Basic Andorra
Model (Santos-Costa et al. 1991), which makes use of determinism information in
order to decide whether two goals are to be executed in parallel or not, since two
computations that have no alternatives to execute, and its execution will never fail,
are independent and can thus be executed in parallel. In addition, an interesting
issue is at what level of granularity the notion of independence is applied: at the
goal level, at the binding level, etc. Our work in this paper will focus on goal-level
(strict and non-strict) independent and-parallelism.

One particularly successful approach to automatically parallelize a logic program
uses three different stages (Hermenegildo and Warren 1987; Bueno et al. 1999;
Gupta et al. 2001). The first one explores the literals in the original clause looking
for candidates for parallel execution by detecting data and control dependencies
between pairs of those literals. A directed dependency graph (see Figure 1(b) as
an example) is then built to capture this extracted information. The nodes in the
graph correspond to literals in the body of the clause and the edges represent
dependence conditions between them. Edges are labeled with the associated depen-
dence conditions (which may be trivially true or false). As a second stage, a global
analysis (Bueno et al. 1999) needs to be run in order to gather information regard-
ing, e.g., variable aliasing, groundness and side effects, in order to prove statically
whether those dependence conditions are statically true or false. Those edges which
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represent a dependence condition which is true are eliminated from the graph, since
the two literals are independent. If an edge represents a condition which is false
then it will be left in the graph as an unconditional edge, since the two literals
are dependent. For the rest of the edges in the graph, when a condition cannot be
completely evaluated at compile-time, it may remain associated to the edge, but
possibly in a simplified form.

Finally, the third stage corresponds to the annotation process, which encodes
the resulting dependency graph in the target parallel language. This annotation
should respect the dependencies found in the original program while, at the same
time, exploiting as much parallelism as possible. Several algorithms based on dif-
ferent heuristics have been proposed to compile the dependency graph into parallel
code (Muthukumar et al. 1999; Muthukumar and Hermenegildo 1990; Bueno et al.
1994; DeGroot 1987) using fork-join structures. In this process, labeled edges re-
sult in run-time checks when conditional parallel expressions are allowed. Since the
tasks to be parallelized may not represent an enough amount of computation with
respect to the overhead that is incurred when the run-time check is evaluated, unre-
solved dependencies are sometimes assumed to always hold, and parallel execution
will be allowed only between literals which have been statically determined to be
independent. This approach saves run-time checks at the expense of losing some
parallelism.

This annotation process is the focus of this paper. We will present and evaluate
new annotation algorithms which target and-parallelism primitives which can ex-
press richer dependency graphs than those which can be encoded with the nested
fork-join approaches. Our hope is that since the transformed programs will contain
in some cases more parallelism, we will be able to obtain better speedups than the
fork-join variants for such cases, using the proposed approach. Limitations of the
fork-join annotations have been previously studied for imperative languages (Sarkar
1990), in which the reordering of the instructions was studied to expose the max-
imum amount of parallelism, but the non-deterministic nature of logic programs
was not covered. Two different algorithms will be provided: the first one preserves
the order of the solutions with respect to the sequential program, and the second
may change this order if more parallelism can be exploited. This second algorithm
has clearly fewer restrictions to satisfy, and thus we expect to obtain a better per-
formance with it. Additionally, these algorithms will benefit from the use of deter-
minism information, both by using specialized versions of the parallelism primitives
when the literals are detected to be deterministic and by reording literals, when
that is allowed.

The rest of this paper is organized as follows. Section 2 motivates the use of
the more flexible operators by presenting the limitations of the traditional fork-join
operator. The annotation algorithms are presented in Section 3, in addition to a dis-
cussion of the improvements that can be performed when determinism information
is available. Section 4 then briefly describes our experimental framework and shows
the performance results that we obtained, comparing them with the result of some
of the previous annotation algorithms. Finally, Section 5 presents our conclusions
and discusses future work.
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p(X,Y,Z) :-

a(X,Z),

b(X),

c(Y),

d(Y,Z).

(a) Predicate p/3.

b(X)

c(Y) d(Y,Z)

a(X,Z)

(b) Dependency graph.

Fig. 1. Predicate p/3 and its associated dependency graph.

2 Motivation for Unrestricted Independent And-Parallelism

We will first introduce the well-known &/2 operator for parallelism and its limi-
tations. Regardless of the annotation algorithm used, annotations using &/2 have
to give up parallelizing some goals due to the somewhat rigid structure that this
operator imposes on the final program. We will show how better annotations for
parallelism are possible when other, simpler primitives, are used.

2.1 Fork-Join-Style Parallelization

The &-Prolog language has been the vehicle for expressing goal-level restricted
independent and-parallelism in logic programs. A simplified grammar (i.e., with-
out cuts, built-ins and side-effects) that defines the syntax of restricted &-Prolog
programs follows.

Definition 1 (Restricted &-Prolog grammar)
Let
−→
t be a tuple of terms and p a predicte symbol. Then the following grammar

defines the set of valid sentences in the restricted &-Prolog language:
Program ::= Clause . Program | ε
Clause ::= Literal | Literal :- Body
Body ::= Literal | Literal , Body | Body -> Body ; Body | ParExp
ParExp ::= Body & Body
Literal ::= p(

−→
t )

The restricted &-Prolog language (Hermenegildo and CLIP Group 1994) is basi-
cally an extension of Prolog, in which parallel expressions (i.e., ParExp in the gram-
mar above) that make use of a nested parallel fork-join operator &/2 are added.
Essentially, the sequential comma is replaced by the &/2 operator, in order to mark
which goals can be executed in parallel.

The other addition to the restricted &-Prolog language corresponds to the syntac-
tic sugar expression for if-then-else constructions (conds -> body1 ; body2), useful
to perform different computations depending on the result of evaluating some run-
time checks.

In order to show the limitations of the fork-join operator &/2, we will use as
running example the predicate p/3 in Figure 1(a). We will assume that the depen-
dencies detected between the literals in the predicate p/3 are dep(a,b), dep(a,d),
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p(X, Y, Z):-

(a(X, Z), b(X)) & c(Y),

d(Y, Z).

(a) fj1 : Order-preserving

p(X, Y, Z):-

a(X, Z) & c(Y),

b(X) & d(Y, Z).

(b) fj2 : Non-order-preserving

Fig. 2. Fork-Join annotations for p/3.

dep(c,d), where we denote by dep(X,Y) that Y depends on (and therefore must
be executed before) X. The conditional dependency graph for the predicate p/3 is
shown in Figure 1(b). The vertices V correspond to the literals of the clause and
there exists an edge between two literals Li and Lj in E if ind(Li, Lj) 6= true (i.e.,
the literals Li and Lj are dependent and thus the literal Li has to be completed
before the literal Lj), where ind is the notion of independence. As mentioned be-
fore, this information is obtained in our case from global data-flow analysis (Bueno
et al. 1999).

For the sake of simplicity, we will assume in the rest of the paper that all the
dependencies are unconditional —i.e., conditional dependencies are assumed to be
always false, reducing the use of if-then-else constructions. This brings simplicity
and avoids potentially costly run-time checks in the parallelized code at the expense
of having fewer opportunities for parallelism. However, it has been experimentally
found to be a good compromise (Muthukumar et al. 1999; Bueno et al. 1999)
between the degree of parallelism uncovered and the execution time of independence
tests.

Conjunctive parallel execution has traditionally been denoted using the &/2 op-
erator instead of the sequential comma (‘,’). The former binds more tightly than the
latter. Thus, the expression “a(X,Z), b(X) & c(Y), d(Y,Z)” means that literals
b/1 and c/1 can be safely executed in parallel after the execution of literal a/2
finishes. When both b/1 and c/1 have successfully finished, execution continues
with d/2.

While this single operator is enough to convert the dependency graph back to
a parallel expression in source, the class of dependencies it can express directly
(i.e., dependency graphs with a nested fork-join structure) is a subset of that which
can possibly appear in a program (Muthukumar et al. 1999). This makes paral-
lelism opportunities to be inevitably lost in cases with a complex enough structure
(e.g., that in Figure 1(b)). Likewise, inter-procedural parallelism (i.e., parallel con-
junctions which span literals in different predicates) cannot be exploited without
program transformation.

In general, several annotations are possible for a given clause, and several annota-
tion algorithms have been proposed so far (Muthukumar et al. 1999; Cabeza 2004)
which use the &/2 operator as the most basic construction to express parallelism
between goals. These annotators produce clauses that are parallelized differently. It
is in principle possible to statically decide (or, at least, approximate) whether some
annotation is better than some other, for example by using the number of goals
annotated for parallelism in a clause or, more interestingly, by using information
regarding the expected runtime of goals (see, e.g., (Mera et al. 2007; López-Garćıa
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et al. 1996) and its references). However, finding an optimal solution is a com-
putationally expensive combinatorial problem (Muthukumar et al. 1999) and, in
practice, since there are many decisions to take which make the number of possible
annotations explode, annotators use heuristics which may be more or less appro-
priate in concrete cases. These heuristics are part of the difference between these
annotators.

As an example, Figure 2 shows two of the possible annotations for our running
example. Some other possible parallelizations, as for instance p :- a(X, Z), b(X)

& c(Y), d(Y, Z), have been left out of Figure 2, since it would not add anything
to the discussion as it would not change the comparison we make in Section 2.2.
Some goals appear switched with respect to their order in the sequential clause. This
respects the dependencies in Figure 1(b), which reflects a valid notion of parallelism
(i.e., if solution order is not important). If additional ordering requirements are
needed (due to, e.g., side effects or impurity), these could appear as additional
edges in the graph. Note that none of the annotations in Figure 2 fully exploits
all parallelism available in Figure 1(b): Figure 2(a) misses the possible parallelism
between literals b/1 and d/2, and Figure 2(b) misses the parallelism between literals
b/1 and c/1.

One relevant question is which of these two parallelizations is better. Arguably, a
meaningful measure of their quality is how long each of them takes to execute (in-
timately related to term-size computation (López-Garćıa and Hermenegildo 1995),
which was traditionally used for granularity control). We will term those times
Tfj1 and Tfj2 for Figures 2(a) and 2(b), respectively. This length depends on the
execution times of the goals involved (i.e., Ta, Tb, Tc, Td), which we assume to be
non-zero. Tfj1 and Tfj2 are:

Tfj1 = max(Ta + Tb, Tc) + Td (1)

Tfj2 = max(Ta, Tc) + max(Tb, Td) (2)

Comparing the quality of the annotations in Figure 2(a) and Figure 2(b) boils
down to finding out whether it is possible to show that Tfj1 < Tfj2 or the other
way around. It turns out that both execution time expressions are non-comparable,
since there are solutions for both orderings, so none of them is definitely better
than the other one:

• Tfj1 < Tfj2 holds if, for example, Ta + Tb < Tc, Td < Tb, and then Tfj2 =
Tb + Tc, Tfj1 = Td + Tc, and

• Tfj2 < Tfj1 holds if, for example, Tc ≤ Ta, Td ≤ Tb, and then Tfj1 =
Ta + Tb + Td, Tfj2 = Ta + Tb.

2.2 Parallelization with Finer Goal-Level Operators

As previously explained, some and-parallel systems rely on the use of the fork-
join operator (&/2) as the most basic construction to exploit parallelism between
goals which are independent at run-time, because of the simplicity in which parallel
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p(X, Y, Z) :-

c(Y) &> Hc,

a(X, Z),

b(X) &> Hb,

Hc <&,

d(Y, Z),

Hb <&.

Fig. 3. dep-operator-annotated clause

computations can then be described. In this section, we present an extension of the
restricted &-Prolog language introduced in Section 2.1:

Definition 2 (Unrestricted &-Prolog grammar)
Let
−→
t be a tuple of terms and p a predicte symbol. Then the following grammar

defines the set of valid sentences in the unrestricted &-Prolog language:
Program ::= Clause . Program | ε
Clause ::= Literal | Literal :- Body
Body ::= Literal | Literal , Body | Body -> Body ; Body | ParExp
ParExp ::= Body & Body | Body &> Handler | Handler <&
Handler ::= Literal
Literal ::= p(

−→
t )

This new language will be referred to as the unrestricted &-Prolog language. It
extends the parallel expressions used in the restricted &-Prolog language by adding
two more basic constructions (Cabeza 2004; Cabeza and Hermenegildo 1996) to
schedule goals for parallel executions, &>/2 and <&/1, defined as follows:

Definition 3 (Publish operator &>/2 )
Goal &> H schedules goal Goal for parallel execution and continues executing the
code after Goal &> H. H is a handler which contains (or points to) the state of goal
Goal.

Definition 4 (Wait operator < &/1 )
H <& waits for the goal associated with H to finish, or executes it if it has not been
taken by another thread yet. After that point any bindings made for the output
variables of Goal are available to the executing thread.

With the previous definitions, the &/2 operator can be written as:

A & B :- A &> H, call(B), H <&.

This indicates that any parallelization performed using &/2 can be made using
&>/2 and <&/1 without loss of parallelism, i.e., no parallelism is necessarily lost
when using &>/2 and <&/1. We will term these operators dep-operators henceforth.

Two motivations justify the use of these operators instead of &/2. Firstly, their
implementation is, in our experience, actually easier to devise and maintain than
the monolithic &/2 (Casas et al. 2008), and, secondly, the dep-operators allow more
freedom to the annotator (and to the programmer, if parallel code is written by
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p(X, Y, Z):-

T1 = 0
c(Y) &> Hc,

T2 = T1

a(X, Z),

T3 = T2 + Ta

b(X) &> Hb,

T4 = T3

Hc <&,

T5 = max(T4, T1 + Tc)
d(Y, Z),

T6 = T5 + Td

Hb <&.

T7 = max(T6, T3 + Tb)

Fig. 4. Deduction of execution time for unrestricted parallelization of p/3.

hand) to express data dependencies and, therefore, to extract more potential par-
allelism. We will now illustrate this last point, since the former is out of the scope
of this paper.

Figure 3 shows an annotation of our running example using dep-operators. Note
that this code allows executing in parallel a/2 with c/1, b/1 with c/1, and b/1

with d/2. As we did in Equations (1) and (2), the execution time of p/3, based on
that of the individual goals, can be deduced as shown in Figure 4. The clause is
at the left and the points in time (with an expression determining their value) are
at the right. Tn (with n ∈ {a, b, c, d}) denotes the execution time of the respective
goals. The primitives &>/2 and <&/1 themselves are, for simplicity, assumed to take
zero time. Then, we can solve T7, the total time taken by the clause, as a function
of the length of the goals:

T7 = max(T6, T3 + Tb)

= max(T5 + Td, T2 + Ta + Tb)

= max(max(T4, T1 + Tc) + Td, Ta + Tb)

= max(max(Ta, Tc) + Td, Ta + Tb)

Thus, the execution time of p/3 is:

Tdep = max(Ta + Tb, Td + max(Ta, Tc)) (3)

Although, as presented in Section 2.1, values which make the parallelizations in
Figure 2 (Equations (1) and (2)) incomparable are shown, there is no justification
that Equation (3) cannot perform worse than any of the previous two. We can
see that there is not combination of execution times for the sequential goals that
can make the non-jork-join annotation be worse than either of the fork-join ones.
Therefore, Equation (3) will never perform worse than Equation (1) or Equation (2),
and the non-fork-join annotation is, therefore, a better option than any of the other
fork-join annotations:
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• Tdep < Tfj1 holds if, for example, Tc ≤ Ta, and then Tdep = max(Ta +Tb, Ta +
Td), Tfj1 = Ta + Tb + Td.
• Tdep < Tfj2 holds if, for example, Ta < Tc, Tc + Td ≤ Ta + Tb, and then

Tdep = Ta + Tb, Tdep > Ta + Tb.
• Tdep = Tfj1 holds if, for example, Tb < Tc, Ta + Tb = Tc, and then Tdep =

Tc + Td = Tdep.
• Tdep = Tfj2 holds if, for example, Td ≤ Tb, Tc ≤ Ta, and then Tdep = Ta+Tb =

Tdep.

In addition to these basic operators, other specialized versions can be defined
and implemented in order to increase performance by adapting better to some par-
ticular cases. In particular, it appears interesting to introduce variants for the very
relevant and frequent case of deterministic goals, in which backtracking will not be
performed. For this purpose we propose two new operators: &!>/2 and <&!/1. These
specialized versions do not perform backtracking and do not prepare the execution
data structures to cope with that possibility, which has previously been shown to
result in a significant efficiency increase in the underlying machinery (Pontelli et al.
1996).

3 The UOUDG and UUDG Algorithms

In this section we will present two concrete algorithms which generate code anno-
tated for unrestricted independent and-parallelism (as in Figure 3) starting from
sequential code. The proposed algorithms process one clause at a time and work on
a directed acyclic dependency graph where nodes are associated with a set of one
or more body goals in the clause, since it is possible to perform grouping of goals
in the outputted parallelized clause. We require that literals which are lexically
identical give rise to different nodes, by, e.g., attaching a unique identifier to them.
This is necessary in order not to lose information when building sets of nodes.

The idea behind these algorithms is to publish (i.e., to make available) goals for
parallel execution as soon as possible and to delay “importing” their bindings (i.e.,
issuing joins) as much as possible —but always respecting the dependencies in the
graph (as in Figure 1(b)). Intuitively, this should maximize the number of goals
available for parallel execution and preserve the order of the solutions, if required.

The algorithm that is shown in Figure 5 presents the external interface of the
annotation process. The first argument is the dependency graph associated to the
clause to be parallelized. The second argument corresponds to a boolean value to
check whether an order-preserving annotation has been required or not, in order to
decide which more specialized procedures should be called (i.e., both algorithms in
Figures 6 and 9). The last argument is some determinacy information of the literals
of the clause.

Note that, as mentioned in Section 2.1, we will consider in this paper only un-
conditional parallelism for simplicity and also because it has shown to be effective
as a default strategy in practice. However, the algorithms that we describe can be
adapted to deal with conditional parallelism without too much effort.
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Algorithm: UnrestrictedAnnotation(G, order, ID)
Input: (1) A directed acyclic dependency graph G = (V, E).

(2) The boolean value order.
(3) Determinacy information ID for the literals of the clause.

Output: A clause annotated for unrestricted independent and-parallel execution.
begin

if order then
Exp← UOUDG(G, ID);

else
Exp← UUDG(G, ID);

end
return Exp

end

Fig. 5. Entry point to the annotation algorithms.

In the following, both algorithms in Figures 9 and 6 will denote the dependency
graph as a pair G = (V,E), in which G is the name of the graph, V is the set
of vertices or nodes and E is the set of edges which represent a binary relation
on V . G|U will denote the subgraph (U, E|U ) of G in which there will be only
edges connecting those nodes in U . The concept of set difference is defined as
A \ B = {x | x ∈ A, x /∈ B}. The expression (x ; y)E informs that there exists a
path from x to y created with edges in E. The auxiliary definition incoming(v, E) =
{u | (u, v) ∈ E} denotes the set of nodes which are connected to some particular
node v.

Finally, in order to keep track of the order of the solutions, we assume that there is
a relation ≺ on the literals Li of the body of every clause H :- L1, L2, . . . , Lk−1, Lk

such that Li ≺ Lj if and only if i < j. Additionally, we assume that there is a
partial function pred which is defined as pred(Li+1) = Li, i.e., the literal at the
left of some other literal in a clause. We assume ≺ and pred are suitably extended,
in the straightforward way, to the nodes of the dependency graph. Note also that
the graph edges must respect the ≺ relation: (u, v) ∈ E ⇒ u ≺ v, since the graph
would have been incorrectly generated otherwise.

3.1 Non Order-Preserving Annotation: the UUDG Algorithm

Figure 6 presents an algorithm that parallelizes a clause, represented as an (acyclic)
directed dependency graph.

At every iteration step, new nodes in the graph are selected to be published, joined
or executed sequentially. Subsequent iterations proceed with a simplified graph in
which the literals which have been joined or executed sequentially, together with
their outgoing edges, have been removed. The set of goals which have already been
published is kept in a separate argument in order to not schedule goals for parallel
execution more than once.

In order to not lose parallelism, as a preprocessing stage in each iteration, se-
quences of goals are collapsed if there exists a path from every node to a successor
literal in the clause and if not edges are coming from nodes out of the group. This is
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Algorithm: UUDG(Gi, ID)
Input: (1) A directed acyclic graph Gi = (Vi, Ei).

(2) Determinacy information.
Output: A parallelized clause exprGi

in which the order of the solutions in the original

clause needs not be preserved.
begin

exprGi
← (true);

Pub ← ∅;
G = (V, E)← Gi;
while V 6= ∅ do

G← group nonord(G, Pub);
Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {Iv | v ∈ V, Iv = incoming(v, E), Iv 6= ∅, Iv ⊆ Indep};
if Dep = ∅ then

SS ← ∅;
Join ← V ;

else
SS ← {I | I ∈ Dep, |I| = min card(Dep)};
Join ← s s.t. s ∈ SS; /* s any element from SS */

end
if (Join ∩ (Indep \ Pub)) = ∅ then

Seq ← ∅;
else

Seq ← {v} s.t. v ∈ (Join ∩ (Indep \ Pub)); /* v any element */

end
Fork ← Indep \ (Pub ∪ Seq);
Join ← Join \ Seq ;

Pub ← Pub ∪ (
[

v∈Fork

get value(v)) ∪ get value(u) s.t. u ∈ Seq ;

G← G|(V \Join)\Seq;
exprGi

← (exprGi
, gen body nonord(Fork, Seq, Join, ID));

end
return exprGi

;

end

Fig. 6. UUDG annotation algorithm.

performed by running the function group nonord, shown in Figure 7. The auxiliary
definition set value adds the literals in S to the node of the graph x.

Two sets are key in each iteration: Indep, which contains the sources (i.e., all
vertices without incoming edges in the current graph, which can therefore be pub-
lished), and Dep, which contains sets of vertices where, for each non-source v which
can be reached from sources only, Iv is the set of sources (Iv ⊆ Indep) on which v

depends. I.e., Iv is the set of vertices to be joined before v can start.
If there are not sets of vertices in Dep then all the literals that remain in the graph

are independent, and thus they can all be published and joined up. Otherwise, a
set of nodes needs to be chosen from Dep in order to wait for their result to be
ready. The choice of that set is implemented by selecting, among the sets of goals
which can be joined at every moment, the one with the lowest cardinality —i.e.,
we join as few goals as possible, thus postponing the rest of the joins as much as



Theory and Practice of Logic Programming 13

Algorithm: group nonord(G, Pub)
Input: (1) A directed acyclic graph G = (V, E).

(2) A set of goals already forked.
Output: A compacted directed acyclic graph Gf = (Vf , Ef ).
begin

forall v ∈ V s.t. get value(v) 6⊆ Pub and incoming(v, E) = ∅ do
Gr ← {v};
DS ← {u | u ∈ V, u /∈ Gr , w ∈ Gr , (w, u) ∈ E};
while DS 6= ∅ do

Gr’ ← Gr ∪ DS ;
if (∀{vi, vj} ⊆ Gr′, (vi ; vj)E ∨ (vj ; vi)E) and

(∀e = (vk, vl) ∈ E, vk /∈ Gr′ ⇒ vl /∈ Gr′) then
Gr ← Gr’ ;

else
break;

DS ← {u | u ∈ V, u /∈ Gr , w ∈ Gr , (w, u) ∈ E};
end
set value(v, Gr);
G← G|(V \(Gr\{v}));

end
Gf ← G;
return Gf ;

end

Fig. 7. Nonorder-preserving grouping of nodes.

possible, in order to exploit more parallelism. This is taken care of by the definition
min card(S) = min({|s| | s ∈ S}), which returns the size of the smallest set in S.

Note that a random selection from a set is done at two different points. Data
regarding, e.g., the relative run-time of goals would allow us to take a more in-
formed decision and therefore precompute a perhaps better scheduling. Since we
are not using this information here, we just pick any available goal to join / execute
sequentially.

It is possible for a literal to be scheduled to be forked and then immediately
joined. In order to detect these situations, which in practice would cause unneces-
sary overhead, we select (in Seq) the literal (only one) to which this applies, and it
is not taken into account for the set of Forked nodes and removed from the set of
the Joined nodes.

The UUDG algorithm the continues outputting a parallel expression generated by
the function gen body nonord, shown in Figure 8, composed with the parallelization
of a simplified graph, generated by an iterative call. It makes use of the definitions
get value, which returns the literals of the original clause associated to the node
v, and seq, which sequentializes the literals in a set preserving their order in the
original clause. Those literals associated to the node in Seq, if any, are annotated
after all literals in Fork have been published for parallel execution, in order to
exploit all the detected parallelism.

The function gen body nonord makes use of determinism information, by us-
ing the auxiliary definition det, which reports whether the literal associated to a
particular node of the graph is deterministic or not, as follows:
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Algorithm: gen body nonord(Fork, Seq, Join, ID)
Input: (1) A set of vertices to be forked.

(2) A set of vertices to be sequentialized.
(3) A set of vertices to be joined.
(4) Determinacy information.

Output: A parallelized sequence of literals Exp.
begin

Exp ← (true);
ForkDet ← {g | g ∈ Fork , det(g, ID)};
ForkNonDet ← Fork \ ForkDet ;
JoinDet ← {g | g ∈ Join, det(g, ID)};
JoinNonDet ← Join \ JoinDet ;
forall vi ∈ ForkDet do

Exp ← (Exp, seq(get value(vi)) &!> Hvi);
end
forall vi ∈ ForkNonDet do

Exp ← (Exp, seq(get value(vi)) &> Hvi);
end
if Seq = {v} then

Exp ← (Exp, seq(get value(v)));
end
forall vi ∈ JoinDet do

Exp ← (Exp, Hvi <&!);
end
forall vi ∈ JoinNonDet do

Exp ← (Exp, Hvi <&);
end
return Exp;

end

Fig. 8. Nonorder-preserving generation of a parallel body.

• Since we have the possibility of switching goals around, we try to minimize
relaunching goals which are likely to be executed in parallel by forking deter-
ministic goals first.
• Additionally, when a goal is known to have exactly one solution, we can use

the specialized versions of the dep-operators (Casas et al. 2008), &!>/2 and
<&!/1, which do not need to perform bookkeeping for backtracking (always
complex in parallel implementations), and are thus more efficient.

This program information can often be automatically inferred by the abstract
interpretation-based determinism analyzer included in CiaoPP (López-Garćıa et al.
2005), and is provided as input to the proposed annotators. Alternatively, this
information can be stated by the programmer via assertions (Hermenegildo et al.
2005).

We proceed with the total correctness proof of the UUDG algorithm. The total
correctness of the group nonord function will be proved first.

Lemma 1
Suppose a particular set of nodes Gr to be grouped, obtained by the function
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group nonord. Then, no parallelism is lost when nodes in Gr are grouped into the
source v ∈ Gr of the (non-empty) graph G = (V,E).

Proof
Let us prove this by induction in V .

• Base case: if |V | = 1 then E = ∅ and trivially no parallelism can be lost.
• Induction hypothesis: assume that nodes in Gr are mutually dependent.
• Inductive step: let us prove this by contradiction. Assume some new nodes, in DS,

are added to Gr. Then, there are three cases in which parallelism may be lost.

1. Suppose two sources u, w s.t. {u, w} ⊆ Gr. However, this is not possible
because of the definition of DS.

2. Suppose that ∃u, w ∈ Gr s.t. (u 6; w)E ∧ (w 6; u)E . Then the possible par-
allelism between u and w will be lost. However, because of the first condition
in the if-structure, x ∈ Gr if ∀{x, y} ⊆ Gr, (x ; y)E ∨ (y ; x)E , which
means that @{x, y} ∈ Gr s.t. (x 6; y)E ∧ (y 6; x)E , and that leads to a
contradiction.

3. Suppose that ∃u ∈ Gr, ∃w /∈ Gr s.t. ∃(w, u) ∈ E ∨ ∃(u, w) ∈ E. Then the
possible parallelism between w and the nodes vi ∈ Gr s.t. (w 6; vi)E ∧ (vi 6;
w)E is lost. If @vi ∈ Gr s.t. (w 6; vi)E ∧ (vi 6; w)E then, because of the
first condition in the if-structure, w ∈ Gr and that leads to a contradiction.
Otherwise,
(a) If (w, u) ∈ E then, because of the second condition in the if-structure,

u 6∈ Gr, which leads to a contradiction.
(b) If (u, w) ∈ E then ∃(u, vi) ∈ E s.t. (w 6; vi)E ∧ (vi 6; w)E . Because of

the first condition in the if-structure, since w /∈ Gr then vi /∈ Gr, and that
leads to a contradiction.

Thus no parallelism is lost.

Lemma 2 (Partial Correctness of Algorithm 7)
The function group nonord is partially correct with respect to the precondition
{|V | > ∅; |E| ≥ ∅; |Pub| ≥ ∅} and the postcondition {P1; P2; P3} such that:

1. P1 ≡
⋃

v∈Vf

get value(v) = V .

2. P2 ≡
⋂

v∈Vf

get value(v) = ∅.

3. P3 ≡ no parallelism is lost when constructing Gf .

Proof
Starting with values that make the precondition true, for each source v ∈ G which
has not been published yet, Lemma 1 ensures that no parallelism is lost for any
of the groups of literals created, and thus no parallelism is lost when building Gf .
Moreover, only nodes that have been grouped into a source are removed from the
graph, and thus no nodes are missing in Gf . In addition, G is simplified in each
iteration, so there will not be repeated nodes in Gf . Therefore, the postcondition
is true and thus the function group nonord is partially correct.
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Lemma 3 (Termination of Algorithm 7)
The function group nonord terminates.

Proof
For the inner loop, we choose as set with strict well-founded ordering < the set
of natural numbers IN . Let |V \ Gr| be the termination expression. By definition,
|V \Gr| ∈ IN whenever the control of the algorithm starts a new iteration. |V \Gr|
takes a smaller value in each iteration of the loop with respect to < if Gr 6= ∅,
which implies that Gr′ 6= ∅, and then DS 6= ∅, which is the exit condition of the
loop. Since the outer loop simply consists of a single execution of the inner loop
over each vertex of a finite set, the algorithm terminates.

Theorem 1 (Total Correctness of Algorithm 7)
The function group nonord is totally correct.

Proof
Lemma 2 states that the function group nonord is partially correct, and Lemma 3
states that it terminates, so the function group nonord is totally correct.

Before we proceed with the total correctness proof of the UUDG algorithm, we
will introduce the equivalence class of graphs with respect to transitive edges:

Definition 5 (Equivalence class of graphs w.r.t. ≡t)
Let G1 = (V1, E1) and G2 = (V2, E2) be two different dependency graphs. Then,
G1 ≡t G2 ⇔ (V1 = V2) ∧ (∀e = (a, b) ∈ E1, e /∈ E2 ⇒ ∃(a ; b)E2).

Lemma 4
In any iteration of the UUDG algorithm over a graph G = (V,E), Fork, Seq and
Join are composed only by sources.

Proof
Join = V if E = ∅, or Join ∈ Dep. Since ∀X ∈ Dep, X ⊆ Indep ⇒ Join ⊆ Indep.
Seq = ∅, or Seq = {v} s.t. v ∈ (Join ∩ (Indep \ Pub)) ⊆ Join ⊆ Indep.
Fork = (Indep \ (Pub ∪ Seq)) ⊆ Indep.

Lemma 5
G1 = (V1, E1) ≡t G2 = (V2, E2) ⇒ UUDG(G1) = UUDG(G2).
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Proof
Proof by contradiction. Suppose that UUDG(G1) 6= UUDG(G2) when G1 ≡t G2.
Then exprG1

6= exprG2
, which means that exprG1

= (t1exprG1
, . . . , tmexprG1

), m ≥ 1,

and exprG2
= (t1exprG2

, . . . , tnexprG2
), n ≥ 1, and ∃i s.t. tiexprG1

6= tiexprG2
. Thus,

for a particular iteration in UUDG(G1), either Fork, Seq or Join differs from the
respective one in the same iteration of UUDG(G2). If Dep = ∅ then V1 = V2 and
E1 = E2 = ∅. Thus, UUDG(G1) = UUDG(G2) and that leads to a contradiction.
Otherwise, ∃w ∈ V2 s.t. (w, b) ∈ E2 and (a ; w)E2 , and then (a ; w)E1 and (w ;

b)E1 . Thus, by definition, the content of Dep will be the same for both iterations
in UUDG(G1) and UUDG(G2). Then, Join must be the same and, furthermore, Seq
and Fork must also be the same, and that leads to a contradiction.

This results guarantees that the UUDG algorithm will exploit the same amount
of parallelism with two graphs that are in the same equivalence class ≡t. Now, we
will prove the total correctness of the UUDG algorithm:

Lemma 6 (Partial Correctness of Algorithm 6)
The UUDG algorithm is partially correct with respect to the precondition {|Vi| ≥ ∅;
|Ei| ≥ ∅} and the postcondition {Gexpr = (Vexpr, Eexpr) ≡t (Vi, Ei) = Gi} such
that:

Vexpr =
⋃

t∈expr
get value(v) s.t. t = (v) ∨ t = (Hv <&!) ∨ t = (Hv <&)

Eexpr = (
⋃

f1∈expr

{(a, b) | ∀{a, b} ⊆ get value(v) ∧ a ≺ b}) ∪

(
⋃

f2∈expr

{(w, v) | w = last(get value(x)), ∀v ∈ Vi \ P f2})

s.t. f1 = (v &> Hv) ∨ f1 = (v &!> Hv)
and f2 = (x) ∨ f2 = (Hx <&) ∨ f2 = (Hx <&!)

where last(S) = x s.t. ∀y ∈ S, (y 6= x ∧ y ≺ x)
and P f = {z | ∀y ∈ expr, (y = (z) ∨ y = (z &> Hz) ∨ y = (z &!> Hz)), y ≺ f}

Proof
The first union of edges in Eexpr states that there will be an edge connecting each
node that is in the same group. Because of Theorem 1, all nodes in the same group
are mutually dependent and thus those nodes will just form an equivalent graph
to Gi with respect to ≡t. Because of Lemma 5, the final parallel expression will be
the same. In addition, since Theorem 1 states that the function group nonord is
totally correct, it is only necessary to prove that, assuming that the precondition
is true, the postcondition is also true when no grouping of nodes is required. Then,
the postcondition can be simplified to:
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Vexpr = {v | ∀(v) ∈ expr, ∀(Hv <&) ∈ expr, ∀(Hv <&!) ∈ expr}
Eexpr = (

⋃
f∈expr

{(w, v) | ∀v ∈ Vi \ P f})

s.t. f = (w) ∨ f = (Hw<&) ∨ f = (Hw<&!)
Let us prove this now by induction in V .

• Base case: if |V | = 0 then expr = (true), and thus Vexpr = ∅, Eexpr = ∅. Therefore,
Gexpr ≡t Gi.

• Induction hypothesis: assuming that the UUDG algorithm is started with a partic-
ular dependency graph G that makes the precondition true, the resulting values
make the postcondition true.

• Inductive step: Let the invariant of the loop be I = {Gi ≡t (G ∪Gexpr)}. We need
to prove that the invariant still holds after executing an iteration of the loop.

— Since G is simplified to G|(V \Join)\Seq at the end of the iteration, V will be
(V \ Join) \ Seq. Since expr is increased with some nodes to be Forked,
Sequentialized or Joined, Vexpr will be Vexpr ∪ {v | (v ∈ Seq) ∨ (v ∈ Join)},
because the annotations (v), (Hv <&) and (Hv <&!) correspond to those ones
for Seq and Join. Thus, Vexpr will be Vexpr ∪ (Join ∪ Seq). Therefore, ((V \
Join) \ Seq) ∪ (Vexpr ∪ (Join ∪ Seq)) = V ∪ Vexpr = Vi.

— Since G is simplified to G|(V \Join)\Seq at the end of the iteration, E will be
(E \ {(u, v) | (u ∈ Join) ∨ (u ∈ Seq), ∀v ∈ V } \ {(u, v) | (v ∈ Join) ∨ (v ∈
Seq), ∀u ∈ V }). For Lemma 4, u must be a source and then the new value of
E is simplified to (E \ {(u, v) | (u ∈ Join) ∨ (u ∈ Seq), ∀v ∈ V }). Moreover,
since v is a dependent node, it can be only a node that has not been published
yet, and so E is simplified to:

(E \ {(u, v) | (u ∈ Join) ∨ (u ∈ Seq), ∀v ∈ ((V \ Pub) \ Fork)})
Since expr is increased with some nodes to be Forked, Sequentialized or
Joined, Eexpr will be:

Eexpr ∪ (
⋃

u∈(Seq∪Join)

{(u, v) | ∀v ∈ ((V \ Pub) \ Fork)}) =

= {(u, v) | (u ∈ Join) ∨ (u ∈ Seq), ∀v ∈ ((V \ Pub) \ Fork)}
Therefore, E ∪ Eexpr = Ei.

In addition, I ∧{V = ∅} ⇒ {Gexpr ≡t Gi}, which corresponds to the postcondition
of the UUDG algorithm, so it is partially correct.

Lemma 7 (Termination of Algorithm 6)
The UUDG algorithm terminates.

Proof
We choose as set with strict well-founded ordering < the set of natural numbers
IN . Let |V | be the termination expression. By definition, |V | ∈ IN whenever the
control of the algorithm starts a new iteration. |V | takes a smaller value in each
iteration of the loop with respect to < if either Join or Seq is not empty. Since Join
= V 6= ∅ when Dep = ∅ or else Join = Iv ∈ Dep, which is by definition non-empty,
the algorithm terminates.
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Theorem 2 (Total Correctness of Algorithm 6)

The UUDG algorithm is totally correct.

Proof

Lemma 6 states that the UUDG algorithm is partially correct, and Lemma 7 states
that it terminates, so the UUDG algorithm is totally correct.

In the rest of the subsection, we develop some examples that show how the UUDG

algorithm works.

Example 1 (UUDG Annotation)

In order to illustrate how the UUDG algorithm works, we will study the results
that are obtained at each of the iterations for the parallelization process for the
predicate p/3, introduced in Section 2.1 and whose dependency graph is shown in
Figure 1(b).

• First iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep = {a, c}, Dep = {{a}, {a, c}}, SS = {a}
Seq = {a}, Fork = {c}, Join = ∅
Pub = {a, c}
Annotation: p(X,Y,Z) :- c(Y) &> Hc, a(X,Z),

The first step of the UUDG algorithm consists of grouping literals. However, in
this example, no grouping of literals can be performed in any of the iterations.
The next step in the algorithm marks the nodes that are sources in the graph
(literals a/2 and c/1), in the set Indep, and the dependencies of those non-
sources which only have incoming edges from sources, in the set Dep. In order
to exploit all possible parallelism, the least number of literals required to
free a dependent literal will be joined. This can be done by choosing the
smallest set in Dep, which is {a} in this case. Thus, literals a/2 and c/1

are to be published for parallel execution and only the literal a/2 needs to
be joined. As an optimization, one goal between those scheduled for parallel
execution and joined in the same iteration can be sequentially executed (which
is what happens with literal a/2). After the annotation is done, literals a/2

and c/1 are stored in Pub and the graph is simplified by removing the node
corresponding to a/2.

• Second iteration:
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b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep = {b, c}, Dep = {{c}}, SS = {c}
Seq = ∅, Fork = {b}, Join = {c}
Pub = {a, b, c}
Annotation: b(X) &> Hb, Hc <&,

In this iteration, literals b/1 and c/1 are sources and only literal d/2 is a
dependent node. Since literal c/1 was scheduled fr parallel execution in the
previous iteration, only literal b/1 will be published. Since literal d/2 needs
to be freed, literal c/1 is joined, in the same way as in the previous iteration.
After the annotation is done, literal b/1 is stored in Pub and the graph is
simplified.

• Last iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep = {b, d}, Dep = ∅, SS = ∅
Seq = {d}, Fork = ∅, Join = {b}
Pub = {a, b, c, d}
Annotation: d(Y,Z), Hb <&.

In this last iteration, as all the nodes are sources, all the literals not published
yet (i.e., d/2) will be scheduled for parallel execution and the joins of all the
remaining literals (i.e., both b/1 and d/2) will be performed, finishing with
the unrestricted annotation of the original clause.

Example 2 (UUDG Annotation with Grouping)
We will run the UUDG algorithm in the dependency graph shown below. In the
second step of the algorithm, grouping of literals will be performed.

• First iteration:

b(Y)

c(Y)

d(Y) g(Z)

f(Z)

e(Z)

a(Y,Z)

Indep = {a}, Dep = {{a}, {a}}, SS = {a}
Seq = {a}, Fork = ∅, Join = ∅
Pub = {a}
Annotation: a(Y,Z),

In the first step of the algorithm, literal a/2 is executed sequentially, since
the rest of the literals in the clause depend on it. Thus, literal a/2 is removed
from the graph.
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Algorithm: UOUDG(Gi, ID)
Input: (1) A directed acyclic graph Gi = (Vi, Ei).

(2) Determinacy information.
Output: A clause parallelized exprGi

in unrestricted and fashion in which the order of

the solutions in the original clause is preserved.
begin

exprGi
← (true);

Pub ← ∅;
G = (V, E)← Gi;
while V 6= ∅ do

G← group ord(G, Pub);
Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {(v, Iv) | v ∈ V, Iv = incoming(v, E), Iv 6= ∅, Iv ⊆ Indep};
if Dep = ∅ then

(pvt , Join)← (u, V ) s.t. ∀(w ∈ (V \ {u})) . w ≺ u;
else

(pvt , Join)← (u, S) s.t. (u, S) ∈ Dep ∧ ∀((w, D) ∈ (Dep \ {(u, S)})) . u ≺ w;
end
Seq ← {v | v ∈ (Indep \ Pub), v → pvt ∈ E, v = pred(pvt)};
Fork ← {v | v ∈ (Indep \ Pub), v ≺ pvt} \ Seq ;
Join ← Join \ Seq ;

Pub ← Pub ∪ (
[

v∈Fork

get value(v)) ∪ get value(u) s.t. u ∈ Seq ;

G← G|(V \Join)\Seq;
exprGi

← (exprGi
, gen body ord(Fork, Seq, Join, ID));

end
return exprGi

;

end

Fig. 9. UOUDG annotation algorithm.

• Second (and last) iteration:

b(Y)

c(Y)

d(Y) g(Z)

f(Z)

e(Z)

Indep = {(b, c, d), (e, f, g)}, Dep = ∅, SS = ∅
Seq = (e, f, g), Fork = {(b, c, d)}, Join = {(b, c, d)}
Pub = {a, b, c, d, e, f, g}
Annotation: (b(Y),c(Y),d(Y)) &> H,

(e(Z),f(Z),g(Z)),

H <&.

In this iteration, literals b/1, c/1 and d/1 are grouped, and literals e/1, f/1
and g/1 are also grouped. Thus, the graph is reduced to one that only has
two nodes, which are both sources and then they can be executed in parallel.
Note that, as in Example 1, all the parallelism is exploited due to the fact
that mutually dependent literals are grouped.
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3.2 Order-Preserving Annotation: the UOUDG Algorithm

The UOUDG algorithm, presented in Figure 9, follows the same idea underlying the
UUDG algorithm introduced in Figure 6: publish early and join late. However, the
UOUDG algorithm has less freedom to publish goals, since the order of solutions
needs now to be preserved. This is done by respecting the relative order of literals
in the original clause, through the use of the relation ≺ and the partial function
pred.

As a previous step in each iteration of the algorithm, the function group ord,
which is shown in Figure 10, is called in order to group nodes in a similar fashion
as the function group nonord in Figure 7. However, for this case the grouping of
literals is done in such a way that the order of the literals in the original clause is
always preserved.

An important element in the algorithm is pvt, the pivot vertex, which will be
used in order to decide which nodes are to be joined, taking into account that
we do not want to change the order of solutions. If there are not nodes in Dep,
then all the remaining literals are already independent and we can join up to the
rightmost literal in the clause. Otherwise, we select the leftmost node among those
which have dependencies which can be fulfilled in one step. These dependencies are
readily available in Dep. Note that as we select the leftmost node among those which
can be joined, we are delaying as much as possible joining nodes —or, alternatively,
we are performing in every step only the joins which are needed to continue one
more step. This is aimed at maximizing the number of parallel goals being executed
at any moment.

The UOUDG uses the function gen body ord, which is shown in Figure 11, to
output a parallelized clause. The function gen body ord, as well as the function
gen body nonord in Figure 8, makes use of the auxiliary function get value, in
addition to some determinism information, by using the auxiliary definition det, in
order to decide whether the optimized versions of the operators &>/2 (i.e., &!>/2)
and <&/1 (i.e., <&!/1) are to be used when a literal is known to be deterministic.

Furthermore, we proceed with the total correctness proof of the UOUDG algo-
rithm. The total correctness of the group ord function will be proved first.

Lemma 8 (Partial Correctness of Algorithm 10)
The function group nonord is partially correct with respect to the precondition
{|V | > ∅; |E| ≥ ∅; |Pub| ≥ ∅} and the postcondition {P1; P2; P3; P4} such that:

1. P1 ≡
⋃

v∈Vf

get value(v) = V .

2. P2 ≡
⋂

v∈Vf

get value(v) = ∅.

3. P3 ≡ no parallelism is lost when constructing Gf .
4. P4 ≡ ∀v ∈ Vf , ∀u ∈ get value(v), ((u = v) ∨ (pred(u) ∈ get value(v))).

Proof
It can be proved in a similar way as Lemma 2. Note that the only difference in the
postcondition is the new statement P4, which demands that all nodes to be grouped
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Algorithm: group ord(G, Pub)
Input: (1) A directed acyclic graph G = (V, E).

(2) A set of goals already forked.
Output: A compacted directed acyclic graph Gf = (Vf , Ef ) which preserves the order

of literals in the grouping.
begin

forall v ∈ V s.t. get value(v) 6⊆ Pub and incoming(v, E) = ∅ do
Gr ← {v};
DS ← {u | u ∈ V, u /∈ Gr , w ∈ Gr , (w, u) ∈ E};
while DS 6= ∅ do

Gr’ ← Gr ∪ DS ;
if (∀u ∈ Gr’ , (u = v) ∨ (pred(u) ∈ Gr’ )) and

(∀{vi, vj} ⊆ Gr′, (vi ; vj)E ∨ (vj ; vi)E) and
(∀e = (vk, vl) ∈ E, vk /∈ Gr′ ⇒ vl /∈ Gr′) then

Gr ← Gr’ ;
else

break;
DS ← {u | u ∈ V, u /∈ Gr , w ∈ Gr , (w, u) ∈ E};

end
set value(v, Gr);
G← G|(V \(Gr\{v}));

end
Gf ← G;
return Gf ;

end

Fig. 10. Order-preserving grouping of nodes.

must be consecutive, in order to preserve the order of the solutions. That condition
will be always true because of the first condition of the if-structure.

Lemma 9 (Termination of Algorithm 10)
The function group ord terminates.

Proof
Same proof as in Lemma 3.

Theorem 3 (Total Correctness of Algorithm 10)
The function group ord is totally correct.

Proof
Lemma 8 states that the function group ord is partially correct, and Lemma 9
states that it terminates, so the function group ord is totally correct.

The following definition introduces the concept of equivalence class of graphs
with respect to a notion of order of literals:



24 Amadeo Casas, Manuel Carro and Manuel V. Hermenegildo

Algorithm: gen body ord(Fork, Seq, Join, ID)
Input: (1) A set of vertices to be forked.

(2) A set of vertices to be sequentialized.
(3) A set of vertices to be joined.
(4) Determinacy information.

Output: An unrestricted parallelized sequence of literals Exp.
begin

Exp ← (true);
forall vi ∈ Fork do

if det(vi, ID) then
Exp ← (Exp, seq(get value(vi)) &!> Hvi);

else
Exp ← (Exp, seq(get value(vi)) &> Hvi);

end
end
if Seq = {v} then

Exp ← (Exp, seq(get value(v)));
end
forall vi ∈ Join do

if det(vi, ID) then
Exp ← (Exp, Hvi <&!);

else
Exp ← (Exp, Hvi <&);

end
end
return Exp;

end

Fig. 11. Order-preserving generation of a parallel body.

Definition 6 (Equivalence class of graphs w.r.t. ≡o)
Let G1 = (V1, E1) and G2 = (V2, E2) be two different dependency graphs. Then,
G1 ≡o G2 ⇔ V1 = V2 ∧ (∀v ∈ V1, ((v, w) ∈ E1 ⇒ ((v, w) ∈ E2 ∧ (∀x ∈ V2 s.t.
w ≺ x, (v, x) ∈ E2)))).

Lemma 10
G1 = (V1, E1) ≡o G2 = (V2, E2) ⇒ UOUDG(G1) = UOUDG(G2).

Proof
Proof by contradiction. Suppose that UOUDG(G1) 6= UOUDG(G2) when G1 ≡o G2.
Then exprG1

6= exprG2
, which means that exprG1

= (t1exprG1
, . . . , tmexprG1

), m ≥ 1,

and exprG2
= (t1exprG2

, . . . , tnexprG2
), n ≥ 1, and ∃i s.t. tiexprG1

6= tiexprG2
. Thus,

for a particular iteration in UOUDG(G1), either Fork, Seq or Join differs from the
respective one in the same iteration of UOUDG(G2). If Dep = ∅ then V1 = V2 and
E1 = E2 = ∅. Thus, UOUDG(G1) = UOUDG(G2) and that leads to a contradiction.
Otherwise, pvt and Join will be the same in both UOUDG(G1) and UOUDG(G2)
because pvt represents the first dependent node with respect to ≺, and Join its
dependencies which precede it. Fork and Seq will also be the same since they are
dealing only with predecessors to the pvt, and that leads to a contradiction.
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We will proceed now with the total correctness proof of the UOUDG algorithm.

Lemma 11 (Partial Correctness of Algorithm 9)
The UOUDG algorithm is partially correct with respect to the same precondition as
in Lemma 6, and postcondition {Gexpr = (Vexpr, Eexpr) ≡o (Vi, Ei) = Gi}, where
Vexpr and Eexpr have the same value as in Lemma 6.

Proof
This lemma can be proved in a similar way as Lemma 6. Because of the results of
Theorem 3 and Lemma 10, the postcondition can also be simplified. The inductive
part of the proof is similar as that one done in Lemma 6, with the loop invariant
I = {Gi ≡o (G ∪Gexpr)}.

Lemma 12 (Termination of Algorithm 9)
The UOUDG algorithm terminates.

Proof
It can be proved in a similar fashion as Lemma 7.

Theorem 4 (Total Correctness of Algorithm 9)
The UOUDG algorithm is totally correct.

Proof
Lemma 11 states that the UOUDG algorithm is partially correct, and Lemma 12
states that it terminates, so the UOUDG algorithm is totally correct.

In the rest of the subsection, we develop an example that sketches how the
UOUDG algorithm works.

Example 3 (UOUDG Annotation)
In order to illustrate how the UOUDG algorithm works, in a similar fashion as in
Example 1, we will go through the different iterations in the parallelization process
of the predicate p/3 (dependency graph shown in Figure 1(b)).

• First iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep = {a, c}, Dep = {(b, {a}), (d, {a, c})}, pvt = b

Seq = {a}, Fork = ∅, Join = ∅
Pub = {a}
Annotation: p(X,Y,Z) :- a(X,Z),
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In the first algorithm step, both literals a/2 and c/1 are candidates for parallel
execution (they are in Indep). Also, since literals b/1 and d/2 only have
dependencies with nodes in Indep, both literals will be stored in Dep, with
their respective set of dependencies. Since literal b/1 is the one in Dep with
fewer dependencies, it is chosen as pivot, and literal a/2 marked to be joined
in this iteration of the algorithm. Moreover, although literal c/1 is in Indep,
only literal a/2 can be marked to be published for parallel execution, since
the order of the literals in the initial clause must be preserved, and literal
b/1 has not been published yet. However, as literal a/2 is the only one to be
published and must be joined too, then it is simply selected to be sequentially
executed. As a final step, literal a/2 is stored in Pub and the dependency graph
simplified by removing the node corresponding to the literal a/2. Note how
this annotation has less freedom than the UUDG annotation in Example 1,
always respecting the dependencies implicit in the graph.

• Second (and last) iteration:

b(X)

c(Y) d(Y,Z)

a(X,Z)
Indep = {b, (c, d)}, Dep = {}, pvt = (c, d)
Seq = {(c, d)}, Fork = {b}, Join = {b}
Pub = {a, b, c, d}
Annotation: b(X) &> Hb, ( c(Y), d(Y,Z) ), Hb <&.

In this iteration, both literals b/1 and c/1 are sources. In this case, literals
c/1 and d/2 are compacted into a single node in the graph. Thus, all the
nodes in the graph are sources and can be scheduled for parallel execution.
Once this iteration finishes, the initial clause is unrestrictedly parallelized
and the order of the literals in the initial clause, given by the operator &>/2,
preserved.
Finally, note that more parallelism is exploited (in fact, all the possible par-
allelism) with the UUDG annotation in Example 1 than with the UOUDG

annotation, since the order of the literals in the clause does not have to be
preserved.

4 Performance Evaluation

The proposed annotation algorithms have been integrated into the Ciao/CiaoPP
system (Hermenegildo et al. 2005). Information gathered by the analyzers on vari-
able sharing, groundness, and freeness is used to determine goal independence,
using the libraries available in CiaoPP. Determinism is used in the annotators as
described previously.

As execution platform we have used a high level implementation of the proposed
parallelism primitives (Casas et al. 2008), which we have developed as an exten-
sion of the Ciao system (Bueno et al. 2006). This implementation is an evolution
and simplification of (Hermenegildo and Greene 1991) which is based on raising
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AIAKL An abstract interpreter for the AKL language.
FFT An implementation of the Fast Fourier transform.
FibFun A version of the Fibonacci program written in functional notation.
Hamming A program to compute the first N Hamming numbers.
Hanoi A program to compute the movements to solve the well-known puzzle,

as proposed in (Muthukumar et al. 1999).
Takeuchi Computes the Takeuchi function.
WMS2 A scheduler assigning a number of workers to a series of jobs.

Table 1. Benchmark programs

the level of certain components to the level of the source language and keeping
only some selected operations (related to thread handling, locking, etc.) at a lower
level. This approach does not eliminate altogether modifications to the abstract
machine, but it greatly simplifies them. Although the actual underlying parallel
implementation is beyond the scope of this paper, we would like to mention that
the results obtained are quite reasonable given the simplicity of our implementation
approach and encourage us to work further on the optimization of our high-level
implementation.

4.1 Evaluation

It should be noted however that the dep-operators do not assume any particular
architecture: while our current implementation and all the performance results were
obtained on a multicore machine, the techniques presented can be also applied in
distributed memory machines —and in fact, the first prototype implementation
of the dep-operators (Cabeza and Hermenegildo 1996; Cabeza 2004) was actually
made on a distributed environment.

We have evaluated the impact of the different annotations on the execution time
by running a series of benchmarks (briefly described in Table 1) in parallel. Table 2
shows the speedups obtained with respect to the sequential execution (i.e., they are
actual speedups, which is the reason why some speedups start below 1 for, e.g., one
thread), when using from 1 to 8 threads.

The machine we used is a Sun UltraSparc T2000 (a Niagara) with 8 4-thread
cores. In the performance results shown in Table 2, we did not use more than 8
cores since in that case, and due to access to shared units, speedups are sublinear
even for completely independent tasks.

The fork-join annotators we chose to compare with are MEL (Muthukumar et al.
1999) (which preserves goal order and tries to maximize the length of the parallel
expressions) and UDG (Cabeza 2004) (which can reorder goals). The MEL algorithm
tries to find longest parallel expression by proceeds backwards from the last literal in
order to find a hard dependency between two literals and hence the expression can
be split into two different ones. The UDG algorithm assumes that all the dependence
conditions that cannot be completely determined statically are false, in order to
eliminate the overhead of evaluating run-time checks in the parallel expression.
However, the limitation of these fork-join annotation algorithms relies on the use
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Benchmark Annotator
Number of threads

1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

FFT

UMEL 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UOUDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UUDG 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming

UMEL 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UOUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
UDG 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19
UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67
UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2

UMEL 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.81
UOUDG 0.99 1.09 1.09 1.09 1.09 1.09 1.09 1.09
UDG 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
UUDG 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Table 2. Speedups for several benchmarks and annotators.

of the fork-join operator, which is a rigid operator in the sense that it does not
allow to execute some other literals until the execution of both parallel goals has
finished, and furthermore this can produce the lack of some of the parallelism that
is implicitly represented in the dependency graph, as seen in Section 2. MEL can
add runtime checks to decide dynamically whether to execute or not in parallel. In
order to make the annotation unconditional (as the rest of the annotators we are
dealing with), we simply removed the conditional parallelism in the places where it
was not being exploited. This is why it appears in Table 2 under the name UMEL.

All the benchmarks executed were parallelized automatically by CiaoPP, start-
ing from their sequential code. Since UOUDG and UUDG can improve the results
of fork-join annotators only when the code to parallelize has at least a certain
level of complexity, not all benchmarks with (independent) parallelism can bene-
fit from using the dep-operators. Additionally, comparing speedups obtained with
programs parallelized using order-preserving and non-order-preserving annotators
is not completely meaningful.

Note that, in this paper, we are not focusing on the speedups themselves. Al-
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though of utmost practical interest, raw speed is very connected with the imple-
mentation of the underlying parallel abstract machine, and improvements on it
can be expected to uniformly affect all parallelized programs. Rather, our main fo-
cus of attention is in the comparison among the speedups obtained using different
annotators.

A first examination of the experimental results in Table 2, and also in Figure 12
allows inferring that in no case is UUDG worse than any other annotator, and in
no case is UOUDG worse than (U)MEL. They should therefore be the annotators of
choice if available. Besides, there are cases where UOUDG is better than UDG, and
the other way around, which is in accordance with the non-comparable nature of
these two algorithms.

Among the cases in which a better speedup is obtained by some of the U(O)UDG

annotators, improvements range between “no improvement” (because no benefit is
obtained for some particular cases and combinations of annotators) to an increase
of 757% in speedup, with several other stages in between. Also, it is worth pointing
out that the speedup does not stabilize in any benchmark (at least in a sizable
amount) as the number of threads increases; moreover, in some cases the difference
in speedup between the restricted and the unrestricted versions grows substantially
with the number of threads. This can (clearly) be seen in, e.g., Figure 12(f).

Finally, we would like to comment specially on three benchmarks. FibFun is
the result of parallelizing a definition of the Fibonacci numbers written using the
functional notation capabilities of Ciao (Casas et al. 2006). Because of the order
in which code is generated in the (automatic) translation into Prolog, the result is
only parallelizable by UOUDG and UUDG, hence the speedup obtained in this case.
The case of Hanoi is also interesting, as it is the first example in (Muthukumar
et al. 1999): in the arena of order-preserving parallelizers, UOUDG can extract more
parallelism than MEL for this benchmark. Lastly, the Takeuchi benchmark has a
relatively small loop which only allows parallelizing with a simple &/2. However, by
unrolling one iteration in the loop the resulting body has dependencies which are
complex enough to take advantage of the increased flexibility of the dep-operator
annotators.

5 Conclusions

We have proposed two annotation algorithms which perform a source-to-source
transformation of a logic program into an unrestricted independent and-parallel
version of itself. Both algorithms rely on the use of more basic high-level primitives
than the fork-join operator, and differ on whether the order of the solutions in the
original program must be preserved or not. We have implemented the proposed
algorithms in the CiaoPP system, which infers automatically groundness, sharing,
and determinacy information, used to simplify the initial dependency graph. The
results of the experiments performed show that, although the parallelization pro-
vided by the new annotation algorithms is the same in quite a few of the traditional
parallel benchmarks, in our experiments it is never worse and in some cases it is
significantly better. This supports the observations made based on the expected
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Fig. 12. Speedups obtained with different annotations for AIAKL, FFT, FibFun,
Hamming, Hanoi and Takeuchi.

performance of the annotations. We have also noticed that the benefits are larger
for programs with high numbers of goals in their clauses, since their more complex
graphs make the ability to exploit unrestricted parallelism more relevant.
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