
Parallelizing Irregular and Pointer-Based

Computations Automatially: Perspetives

from Logi and Constraint Programming

1

Manuel Hermenegildo

Shool of Computer Siene

Tehnial University of Madrid (UPM), Spain

herme�fi.upm.es

http://www.lip.dia.fi.upm.es/~herme

Abstrat

Irregular omputations pose some of the most interesting and hallenging prob-

lems in automati parallelization. Irregularity appears in ertain kinds of numerial

problems and is pervasive in symboli appliations. Suh omputations often use

dynami data strutures whih make heavy use of pointers. This ompliates all the

steps of a parallelizing ompiler, from independene detetion to task partitioning

and plaement. Starting in the mid 80's there has been signi�ant progress in the

development of parallelizing ompilers for logi programming (and, more reently,

onstraint programming) resulting in quite apable parallelizers. The typial ap-

pliations of these paradigms frequently involve irregular omputations, and make

heavy use of dynami data strutures with pointers, sine logial variables represent

in pratie a well behaved form of pointers. This arguably makes the tehniques used

in these ompilers potentially interesting. In this paper we introdue in a tutorial

way some of the problems faed by parallelizing ompilers for logi and onstraint

programs and provide pointers to some of the signi�ant progress made in the area.

In partiular, this work has resulted in a series of ahievements in the areas of inter-

proedural pointer aliasing analysis for independene detetion, ost models and

ost analysis, atus-stak memory management, tehniques for managing speula-

tive and irregular omputations through task granularity ontrol and dynami task

alloation (suh as work-stealing shedulers), et.

Key words: Automati Parallelization, Irregular Computations, Speulation,

Catus Stak, Work Stealing, Pointer Aliasing Analysis, Task Granularity Control,

Global Analysis, Abstrat Interpretation.

1

This paper is an extended version of the abstrat for an invited talk given at

Europar'97 [39℄.

Preprint submitted to Elsevier Preprint

1 Introdution

Multiproessing hardware is already available whih o�ers signi�ant advan-

tages in either performane or ost/performane over uniproessors. For ex-

ample, departmental servers using fast, inexpensive o�-the-shelf proessors are

urrently o�ered at a fration of the ost of the mainframes they replae, and

even multiproessor workstations are now not unommon. Faster and more

ubiquitous high-speed networks inrease the potential of exploiting distributed

exeution.

One of the reurring fats that hamper the progress of widespread use of par-

allelism is that in pratie, beyond some manually parallelized high volume

appliations and sienti� odes, still omparatively few programs are written

or transformed to exploit parallelism. The traditional argument that paral-

lelization is a diÆult and error-prone task (see, e.g., [52℄) seems to remain

valid [3℄, and still points to the neessity of improving the tools used in the

proess. This inludes developing languages that o�er better support for par-

allel programming, improved libraries for supporting parallel programming on

onventional languages, and signi�ant progress in support tools, from paral-

lelizing ompilers to performane analyzers.

Herein, we onentrate on the issue of automati parallelization. While man-

ual parallelization may of ourse always have a plae, parallelizing ompilers

are interesting in that they have the potential to dramatially lessen the par-

allelization burden and there is hope that one they they may eliminate it alto-

gether. However, despite muh progress, it appears that signi�ant hallenges

still remain in the area of automati parallelization, inluding dealing well with

both regular and irregular omputations, performing eÆient partitioning for

both types of omputations, dealing with data strutures with pointers, han-

dling speulative omputations, automatially hanging data strutures for

more eÆient exploitation of parallelism, and developing parallelization teh-

niques for new, higher level programming paradigms.

The goal of developing e�etive parallelizing ompilers is being sought after

onurrently and, unfortunately, somewhat independently in the ontext of

di�erent programming paradigms or even individual languages. As a result of

the harateristis of the typial appliations of suh paradigms or languages,

the amount of progress made on the di�erent topis involved made di�ers.

For example, some very signi�ant progress has been made in parallelizing

ompilers for regular, numerial omputations, generally based on the FOR-

TRAN language (see, e.g., [7,79℄). This researh has resulted in well known

onepts and tehniques inluding a well understood notion of independene

(based on the Bernstein onditions or, for example, more reent notions of

2

\semanti independene" [9℄), sophistiated syntati loop transformations,

transformations based on polytope models, extensive work on partitioning

and plaement, et. On the other hand, the appliability of these tehniques

has remained omparatively limited for irregular or symboli omputations,

and still few pratial systems deal well with parallelization aross proedure

alls or with irregular omputations. Also, the tehniques used often rely on

the relative leanliness of FORTRAN as a programming language and addi-

tional work is needed in order to extend them to other mainstream languages

like C or C++. These languages inlude features suh as dynami, reursive

data strutures and pointer manipulation whih ompliate the detetion of

independene among statements or proedure alls and muh urrent work is

aimed at developing the related independene analyses. An important example

is pointer aliasing analysis (see, e.g., [4℄, [68℄, and their referenes).

We argue that, despite the apparent di�erenes among imperative, funtional,

logi, onstraint, and objet oriented languages, the fundamental issues being

takled are quite similar. Thus, we believe that progress towards more e�e-

tive parallelizing ompilers for all programming paradigms an be sped up by

ross fertilization of the results obtained in di�erent paradigms. It is with this

thought in mind (and without aspiring to being exhaustive, whih is impos-

sible given the spae available and unneessary to make the point) that we

present in the following a brief overview of some of the problems whih appear

in the area of automati parallelization of logi and onstraint programs and

provide pointers to the some of the solutions and signi�ant ahievements of

the area.

2 Logi and Constraint Programming

Due to spae limitations, we will present only a brief overview of logi and

onstraint programming, spei�ally tailored to the objetive of our presenta-

tion (the reader is referred for example to [72,56,50,6℄ for details). We warn

the reader that this annot in any way be onsidered a fair introdution to the

topi, sine we ompletely overlook aspets of logi and onstraint program-

ming whih are widely pereived as important. These inlude the delarative

nature and the logial semantis: programs in these languages are often not

only the oding of an algorithm, but also a logial statement of a problem,

whih is very lose to a spei�ation. In the following we take a fully opera-

tional view { the same one that the parallelizing ompiler takes.

The basi \statements" of a onstraint logi program are onstraints. Con-

straints relate (logial) variables (variable identi�ers start with upper ase

while onstants and data struture desriptors {funtors, see later{ start with

lower ase). Suh variables an be free, or they an be onstrained to a ertain

3

value or set of values. For example, the statement X=Y+Z establishes that the

given onstraint must hold among those variables (we assume for example that

the variables range over oating point numbers). Suh onstraints are kept in

the store. Assume Y and Z have a \known" value at the time of exeuting this

onstraint (for example, the store ontains Y=2 and Z=3). Then, the operational

semantis of suh a onstraint is very similar to that in any other language:

the statement implies an addition (2+3) and an \assignment" of the result (5)

to X. This an also be seen as telling (posting) the onstraint X=5. Assume in-

stead that suh values are not known. Then exeuting the statement involves

plaing the onstraint in the store for later solution if/when another onstraint

is exeuted. Sequenes of onstraints are separated by ommas. Assume again

an empty initial store and the sequene of onstraints \Y=2, X=Y+Z". After

exeuting this sequene the store would ontain \Y=2, X=2+T1, Z=T1". Here,

we are making the assumption that sequenes of onstraints exeute sequen-

tially in the order in whih they appear and that the store is always kept as

\fully solved" as possible and in a normalized form {see [50℄ for details.

Constraint logi programming also provides a method for proedure abstra-

tion. For example, ode segment (a) below:

foo(Z,X) :- Y=2, (a)

X=Y+Z.

main :- foo(K,W),

K = 3, (b)

write(W).

de�nes a two-argument proedure foo. A proedure de�nes a loal dynami

invoation ontext in the usual way, i.e., upon entering the proedure Y is a

new loal variable while X and Z are formal parameters. The alling regime is

not unlike \all by referene" (see the disussion later about logial variables

being essentially pointers). For example, the e�et of alling foo(3,W) is that

upon return W=5 is added to the alling ontext. Note that the proedure is

syntatially not very di�erent from what one would write in a funtional or

imperative language, and its behavior is essentially the same for alls suh

as foo(3,W). However, the omplete operational behavior of the onstraint

programming proedure is riher beause it allows other \alling modes." For

example, a all to foo(K,5) sueeds and upon return K=3 is added to the

alling ontext. Furthermore, a all to foo(K,W) also sueeds and upon re-

turn the onstraint W=2+K is added to the alling ontext. In some ways, the

statements and proedures in onstraint programs an be seen as \reversible"

versions of their syntati ounterparts in onventional languages. Note that

also the delarative meaning of suh programs is riher beause it de�nes a

omplete logial relation (rather than a funtion) among its arguments. Proe-

dure alls an appear in the bodies of proedures interspersed with onstraints.

For example, ode segment (b) above would produe \5" on the standard out-

put.

Proedures an have multiple de�nitions, whih represent di�erent alterna-

4

tives. Establishing a somewhat inaurate parallel with onventional languages,

a set of proedure de�nitions an be seen as an \undoable" form of ase state-

ment or onditional. When suh a proedure is entered it is said to reate a

hoie. Suh alternatives are tried in the textual order in whih they appear

in the program, i.e., the �rst de�nition of a proedure is tried �rst and, if that

results in a failure, then the next one is tried (again, we follow the default exe-

ution strategy used in most pratial onstraint programming languages). A

failure ours when a onstraint is exeuted whih makes the store unsolvable

(i.e., it is inompatible with the urrent state of the store). This is not unlike

the ase of a test evaluating to false in a onditional. When a failure ours, the

system baktraks to the last hoie left behind and tries the next alternative

in that hoie. Sine proedure alls an be nested, a stak of hoies is kept

by the system. A hoie is pushed on the stak every time a proedure with

several alternatives is invoked. When a failure ours, exeution ontinues at

the next alternative of the hoie on top of the hoie stak. When the last

alternative of a hoie is entered, the hoie itself is popped from the stak.

For example, the following program:

main :- bar(K,W),

K > 2,

write(W).

bar(X,Y) :- X < 0, Y = -10.

bar(X,Y) :- X >= 0, Y = 10.

prints \10". The �rst alternative of bar is tried �rst, resulting in W=-10 and K

< 0, but exeuting K > 2 produes a failure sine the store now has no solu-

tion. After trying the seond alternative of bar, K > 2 sueeds (the store is

then K > 2, W = 10) and the program terminates after printing the value of

W.

2

The following, slightly more interesting example de�ning the Fibonai rela-

tion illustrates the use of reursion:

fib(0, 0).

fib(1, 1).

fib(N, F1+F2) :- N>1, F1>=0, F2>=0,

fib(N-1, F1),

fib(N-2, F2).

(in this example we have used a more onvenient syntax where input param-

eter normalization is done automatially by the system { i.e., \fib(0,0)." is

a shorthand for \fib(X,Y) :- X=0, Y=0." and \fib(N, F1+F2) :- ..." a

shorthand for \fib(N, X) :- X=F1+F2, ..."). Calling fib(8,Y) establishes

Y=21, and alling fib(X,21) establishes X=8. Calling fib(X,Y) produes as

alternatives the onstraints (X=0, Y=0), (X=1, Y=1), (X=2, Y=1), et.

In the previous examples we have been using a ertain onstraint system:

essentially, equalities and inequalities involving linear arithmeti expressions

over the (pseudo-)real numbers. In many ases the operations of onstraint

2

Of ourse, an optimizing ompiler would ompile away muh of the behavior

desribed in this very simple ase.

5

programs an be ompiled diretly into standard mahine operations. How-

ever, in others (when atual onstraint solving is involved) a onstraint solving

algorithm needs to be applied. Thus, the de�nition of eah onstraint system

must inlude a deidable and (hopefully) eÆient \solver." Pratial languages

typially inlude several onstraint systems.

A partiularly interesting onstraint system present in almost all onstraint

languages is that of \equality relations over data strutures" (i.e., �nite trees).

This is generally referred to as the Herbrand domain (and is the \working

domain" of the Prolog language). This domain is ruial beause it allows

building and proessing data strutures with (single assignment) pointers in

a very simple and delarative way. For example, the following program:

main :- X = f(Y,Z),

Y = a,

W = Z,

W = g(K),

X = f(a,g(b)).

�rst builds (dynamially) a new two-argument struture whose onstrutor

symbol is f (in other words, a tree whose root node is f and whih has two

open branhes):

X = f(Y,Z),

X Yf Z

The variables Y and Z are pointers to the two arguments of the struture. The

statement:

Y = a,

X f Za

\binds" the �rst argument of the struture to the onstant a (i.e., at this time

X points to f(a,Z)). The following statement:

W = Z,

X f Za W

aliases the pointers W and Z (e.g., W points to Z). Therefore, the result of the

statement:

W = g(K),

X f Za W g K

is to \bind" the seond argument of the struture to g(K) (and as a result X

now points to f(a,g(K))). The last statement:

X = f(a,g(b)).

X f Za W g b

�nally binds K to the onstant b. This last statement illustrates how open

arguments inside a struture an also be aessed by traversing the stru-

6

ture using a proess not unlike the \pattern mathing" available in modern

funtional programming languages (exept that it is again a \reversible" ver-

sion of it). The algorithm apable of solving all suh equality onstraints over

data strutures is uni�ation [66,61,57℄. One of the nie harateristis of this

onstraint system is that there exist very eÆient algorithms for performing

uni�ation.

3

As mentioned before, Prolog, one of the most popular logi pro-

gramming languages, is essentially a onstraint logi programming language

whih uses exlusively the Herbrand domain. It is no surprise that Prolog is

onsidered very well suited for the easy manipulation of data strutures with

pointers.

4

3 Parallelization of Constraint Logi Programs

One of the main theses of this paper is that logi programming and onstraint

programming languages o�er a partiularly interesting ase study for the area

of automati parallelization. On one hand, these programming paradigms pose

signi�ant hallenges to the parallelization task, whih relate losely to the

more diÆult hallenges faed in imperative language parallelization. Suh

hallenges inlude highly irregular omputations and dynami ontrol ow

(due to the symboli nature of many of their appliations), non-trivial notions

of (semanti) independene, the presene of dynamially alloated, omplex

data strutures ontaining pointers, and having to deal with speulation.

On the other hand, due to their high-level nature these languages also fa-

ilitate the study of parallelization issues. As we have seen, logial variables

are atually a quite \well behaved" version of pointers, in the sense that no

astings or pointer arithmeti (other than array indexing through the arg/3

builtin) is allowed. Thus, pointers in these languages are not unlike those al-

lowed, for example, in \lean" versions of C (or, to a lesser extent, in Java).

In addition, similarly to funtional languages, logi and onstraint languages

allow oding in a way whih expresses the desired algorithm in a way that

reets more diretly the struture of the problem (i.e., staying loser to the

3

Furthermore, there are also very suessful ompilation tehniques whih (spe-

ially if global analysis of the program is performed) an translate sequenes of

operations suh as those in the program above into a number of mahine instru-

tions that is essentially the same as if a lower-level language had been used to

express the same data struture and pointer reation and binding operations. The

reader is referred to [74℄ for an overview of progress in suh ompilation tehniques.

4

Modern logi and onstraint programming languages have many other features,

suh as support for higher order and meta programming, module and objet systems,

aggregation proedures, di�erent sets of libraries, et. with interesting impliations

on the automati parallelization proess. However, spae limitations prevent us from

onsidering these additional issues.

7

spei�ations). This makes the parallelism available in the problem more a-

essible to the ompiler. The relatively lean semantis of these languages

also makes it omparatively easy to use formal methods and prove the trans-

formations performed by the parallelizing ompiler both orret (in terms of

omputed outputs) and eÆient (in terms of omputational ost).

5

Quite sig-

ni�ant progress has been made in the past deade in the area of automati

program parallelization for logi programs and some of the hallenges have

been takled quite e�etively. In the following we touh upon a few of them

(see, for example, [19℄ for an overview of the area).

3.1 Where the Parallelism an be Found

There are several types of parallelism whih are traditionally exploited in

logi and onstraint programs. For example, in appliations involving exten-

sive searh (whih is a frequent ase in general searh problems or in the enu-

meration part of onstraint problems). the hoies represented by alternative

proedure de�nitions are often \deep." I.e., a number of steps are typially

exeuted before a failure implies exploring an alternative de�nition. In this

ase di�erent proessors an exeute simultaneously the di�erent proedure

de�nitions (i.e., the di�erent branhes of this searh spae). The resulting par-

allelism is alled or-parallelism. This type of parallelism is present for example

in the following program:

money(S,E,N,D,M,O,R,Y) :-

digit(S),

digit(E),

...,

arry(I),

...,

N is E+O-10*I,

...,

digit(0).

digit(1).

...

digit(9).

arry(0).

arry(1).

The alls to digit and arry in the body of money are hoies. Eah alterna-

tive of these hoies reates a branh that inludes all the ontinuation (the

rest of the body of money as well as the rest of the environment in whih money

was alled). These branhes an be exeuted in parallel.

An alternative strategy is to parallelize the statements and/or proedure alls

5

Funtional programming is another paradigm whih also failitates exploitation

of parallelism. However, it an be argued that the lak of ertain features, suh

as pointers and baktraking, while making the parallelization problem easier, also

preludes studying some interesting problems.

8

in proedure bodies, in the same way as in more traditional languages.

6

This

kind of parallelism is referred to as and-parallelism. A typial example of and-

parallelism is the parallel exeution of the two reursive alls in the de�nition

of the Fibonai relation given before. Another example is the following de�ni-

tion of the quik-sort program (where the funtor \:" is used as list onstru-

tor) for example the two reursive alls to qsort an be exeuted in parallel:

qsort(nil,nil).

qsort(X:L,R) :- partition(L,X,L1,L2),

qsort(L2,R2),

qsort(L1,R1),

append(R1,X:R2,R).

Beause and-parallelism orresponds to the traditional parallelism exploited

in loop parallelization, divide and onquer algorithms, et., we will onen-

trate our disussion on it. Also, and-parallelism is the only kind of parallelism

that an be exploited in appliations where hoies are \shallow" (i.e., they

orrespond more losely to standard onditionals). It turns out that there are

strong relationships between these forms of parallelism and the traditional

notion of \data-parallelism" (see [11,10,41℄).

3.2 Corretness and EÆieny of the Parallelization

As in any other programming paradigm, the objetive of the parallelizing

ompiler is to unover as muh as possible of the available parallelism, while

guaranteeing that the orret results are omputed (orretness) and that

other observable harateristis of the program, suh as exeution time, are

improved (speedup) or, at the minimum, preserved (no-slowdown) { eÆieny.

A entral issue is, then, under whih onditions statements in a onstraint

logi program an be orretly and eÆiently parallelized.

For omparison, onsider the following segments of programs in (a) a tra-

ditional imperative language, (b) a (strit) funtional language, and () a

onstraint logi programming language (we assume that the values of W and Z

are initialized to some value before exeution of these statements):

6

In fat, at a �ner level of granularity, also parts of body statements an be exe-

uted in parallel. However, for simpliity, and without loss of generality, we assume

parallelization at the goal level, meaning that the units sheduled will be body state-

ments and proedure alls. Note also that the onurreny expressed by onurrent

logi programming languages is between \and-parallel tasks". See [42℄ for an ex-

tended disussion on this topi. Interesting models for exploiting and-parallelism at

a �ner level of granularity are, for example, [77,16,69,51,40℄.

9

s

1

Y := W+2; (+ (+ W 2) Y = W+2,

s

2

X := Y+Z; Z) X = Y+Z,

(a) (b) ()

For simpliity, we will reason about the orretness and eÆieny of paral-

lelism using the instrumental tehnique of onsidering reorderings (interleav-

ings). Statements s

1

and s

2

in (a) are generally onsidered to be dependent

beause reversing their order would yield an inorret result, i.e., it violates

the orretness ondition above (this is an example of a ow-dependeny).

7

A

slightly di�erent, but losely related situation ours in (b): reversing the order

of funtion appliation would result in a run-time error (one of the arguments

to a funtion would be missing). Interestingly, reversing the order of state-

ments s

1

and s

2

in () does yield the orret result. In fat, this is an instane

of a more general rule: if no side e�ets are involved, reordering statements

does not a�et orretness in a onstraint logi program. As another example,

onsider the following program (whih uses only the Herbrand domain, i.e., it

is a Prolog program, and whih we will all program (d)):

main:-

s

1

p(X),

s

2

q(X),

write(X).

p(X) :- X=a.

q(X) :- X=b, large omputation.

q(X) :- X=a.

Note that, again, reversing statements s

1

and s

2

produes the same result

(X=a).

The fat that (at least in pure segments of programs) the order of statements

in onstraint logi programming does not a�et the result

8

led in early models

to the proposal of exeution strategies where parallelism was exploited \fully"

(i.e., all statements were eligible for parallelization). However, the problem

is that suh parallelization often violates the priniple of eÆieny: for a �-

nite number of proessors, the parallelized program an be arbitrarily slower

than the sequential program, even under ideal assumptions regarding run-time

overheads. For instane, in the last example, reversing the order of the alls

to p and q in the body of main implies that the all q(X) (X at this point

is free, i.e., a pointer to an empty ell) will �rst enter its �rst alternative,

performing the large omputation. Upon return of q (with X pointing to the

onstant b) the all to p will fail and the system will baktrak to the se-

7

To omplete the disussion above, note that output-dependenies do not appear

in funtional or logi and onstraint programs beause single assignment is gener-

ally used { we onsider this a minor point of di�erene sine one of the standard

tehniques for parallelizing imperative programs is to perform a transformation to

a single assignment program before performing the parallelization.

8

Note that in pratial languages, however, termination harateristis may

hange, but termination an atually also be seen as an extreme e�et of the other

problem to be disussed: eÆieny.

10

ond alternative of q, after whih p will sueed with X=a. On the other hand

the sequential exeution would terminate in two or three steps, without per-

forming the large omputation. The fundamental observation is that, in the

sequential exeution, p a�ets q, in the sense that it prunes (limits) its hoies.

Exeuting q before exeuting p results in performing speulative hoies with

respet to the sequential exeution. Note that this is in fat very related to

exeuting onditionals in parallel (or ahead of time) in traditional languages

(note that q above ould also be (loosely) written as \q(X) :- if X=b then

large omputation else if X=a then true else fail.").

Something very similar ours in ase () above: while exeution of the two

onstraints in the original order involves two additions and two assignments

(the same of operations as those of the imperative or funtional programs), ex-

euting them in reversed order involves �rst adding an equation to the system,

orresponding to statement s

2

, and then solving it against s

1

, whih is more

expensive. The obvious onlusion is that, in general, arbitrary parallelization

does not guarantee that the two onditions above are met.

9

3.3 Notions of Independene

Contrary to early beliefs held in the �eld, most work in the last deade has

onsidered that violating the eÆieny ondition is as muh a \sign of depen-

dene" among statements as violating the orretness ondition. As a result,

novel notions of independene have been developed whih apture these two

issues of orretness and eÆieny at the same time: independent statements

as those whose run-time behavior, if parallelized, produes the same results

as their sequential exeution and an inrease (or, at least, no derease) in

performane. As seen before, dealing with orretness is a matter of orretly

sequening side-e�ets (plus low-level issues, of ourse, suh as loking). The

tehniques developed to this end are interesting, but, due to spae limitations,

we will onentrate on the arguably more interesting issue of guaranteeing

eÆieny. To separate issues better, we will disuss the issue under the as-

sumption of ideal run-time onditions, i.e., no task reation and sheduling

overheads (we will deal with overheads later). Note that, even under these

ideal onditions, the statements in () and (d) are learly dependent.

9

In fat, a similar phenomenon ours in or-parallelism where arbitrarily paralleliz-

ing branhes of the searh does not produe inorret results, but, if looking for only

one solution to a problem (or, more generally, in the presene of pruning operators {

operators whih ontrol de searh, whih are pervasive in pratial programs) results

in speulative omputations whih an have a negative e�et of eÆieny. However,

due to spae limitations we onentrate our disussion on and-parallelism, beause

of its more diret relation to the parallelism that is usually exploited in onventional

programs.

11

A fundamental question then is how to guarantee independene (without hav-

ing to atually run the statements, as suggested by the de�nition given above).

A fundamental result in this ontext is the fat that, if only the Herbrand on-

straint system is used (as in the Prolog language), a statement or proedure

all, q, annot be a�eted by another, p, unless there are free pointers (pointers

to empty struture �elds) from the run-time data strutures passed to q from

the data strutures passed to p. This ondition is alled strit independene

[30,45,47℄.

10

For example, in the following program:

main :- X=f(K,g(K)),

Y=a,

Z=g(L),

W=h(b,L),

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

p and q are stritly independent, beause, at the point in exeution just before

alling p (the situation depited in the right part of the �gure), X and Z point

to data strutures whih do not point to eah other, and, even though Y is a

pointer whih is shared between p and q, Y points to a �xed value, whih p an-

not hange (note again that we are dealing with single assignment languages).

As a result, the exeution of p annot a�et q in any way and q an be safely

run ahead of time in parallel with p (and, again assuming no run-time over-

heads, no-slowdown is guaranteed). Furthermore, no loking or opying of the

intervening data strutures is required (whih helps bring the implementation

loser to the ideal situation). Similarly, q and r are not stritly independent,

beause there is a pointer in ommon (L) among the data strutures they have

aess to and thus the exeution of q ould a�et that of r.

Unfortunately, the ompiler annot always determine independene by simply

looking at one proedure, as above. For example, in the program (a) below:

main :- t(X,Y),

p(X), (a)

q(Y).

main :- t(X,Y),

(indep(X,Y) (b)

-> p(X) & q(Y)

; p(X), q(Y)).

it an determine that p and q are not (stritly) independent of t, sine, upon

entering the body of the proedure, X, Y, and Z are free pointers whih are

shared with t. On the other hand, after exeution of t the situation is unknown

sine perhaps the strutures reated by t (and pointed to by X and Y) have no

10

To be ompletely preise, in order to avoid reating speulative parallelism, some

non-failure onditions are also required of the goals exeuted in parallel, but we

knowingly overlook this issue at this point to simplify the disussion.

12

free pointers to eah other. Unfortunately, in order to determine this for sure

a global (inter-proedural) analysis of the program must be performed. An

alternative is to ompile in a run-time test just after the exeution of t. This

has the undesirable side-e�et that then the no-slowdown property does not

automatially hold, beause of the overhead involved in the test, but it is still

potentially useful. The ompilation of suh a test an be seen as a soure to

soure transformation of the program as shown in program (b) above (where,

following the &-Prolog [43℄ notation, \&" represents parallel exeution, and (a

-> b ;) is Prolog's syntax for \(if a then b else)").

Furthermore, it is also sometimes possible to determine diretly that in fat

the operations that t performs on X and Y do not a�et the exeution of p

and q. This kind of independene is alled non-strit independene [46℄. It

annot be determined in general a priori (i.e., by inspeting the state of the

omputation prior to exeuting t, p, and q) and thus neessarily requires a

global analysis of the program. However, it very interesting beause it appears

often in programs whih manipulate \open" data strutures (di�erene lists,

ditionaries, et.). An example of this is the following flatten example, whih

eliminates nestings in lists ([X|Xs℄ represents the list whose head is X and

whose tail is Xs and [℄ represents the empty list):

flatten(Xs,Ys) :-

flatten(Xs,Ys,[℄).

flatten([℄, Xs, Xs).

flatten([X|Xs℄,Ys,Zs) :-

flatten(X,Ys,Ys1),

flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs℄, Xs) :-

atomi(X), X = [℄.

[]b c

[]d
a b c []d

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

a

This program unnests a list without opying by reating open-ended lists and

passing a pointer to the end of the list (Ys1) to the reursive all. Sine this

pointer is not bound by the �rst all to flatten/3 in the body of the reursive

lause, the alls to flatten(X,Ys,Ys1) and flatten(Xs,Ys1,Zs) are (non-

stritly) independent and all the reursions an be run in parallel.

An even more interesting ase ours if other onstraint systems are used in

addition to or in plae of the Herbrand domain. Consider for example the par-

allelization of two proedure alls p(X),q(Z) in the following two situations:

(a) main :- X > Y, Z > Y, p(X) & q(Z), ...

(b) main :- X > Y, Y > Z, p(X) & q(Z), ...

13

In ase (a) the store ontains (X>Y,Z>Y) before alling q and q, whereas in

ase (b) the store ontains (X>Y,Y>Z). The simple pointer aliasing reasoning

implied by the de�nition of strit independene does not apply diretly. How-

ever, p annot in any way a�et q in ase (a), while this ould be possible in

ase (b), i.e., the two alls are learly independent in ase (a) while they are

(potentially) dependent in ase (b).

Notions of independene whih apply to general onstraint programming (and

an thus deal with the situation above) have been proposed reently [22,35℄.

For example, two goals p and q are independent if all onstraints posed during

the exeution of q are onsistent with the output onstraints of p.

11

The

following is a suÆient ondition for the previous de�nition but whih only

needs to look at the state of the store prior to the exeution of the alls to

be parallelized (for example, using run-time tests whih explore the store),

in the same spirit as the strit-independene ondition for the Herbrand ase.

Assuming the alls are p(�x) and q(�y) then the ondition is:

(�x \ �y � def()) and (9

��x

 ^ 9

��y

! 9

��y[�x

)

where �x is the set of arguments of p, def() is the set of variables onstrained

to a unique value in , and 9

��x

represents the projetion of the store on the

variables �x (the notion of projetion is prede�ned for eah onstraint system).

The �rst ondition states that the variables whih are shared between the goals

in the program text must be bound at run-time to unique values. The seond

ondition is perhaps best illustrated through an example. In the two ases

above, for (a) = fX > Y; Z > Yg we have 9

�fXg

 = 9

�fZg

 = 9

�fX;Zg

 = true

and therefore p and q are independent. For (b) = fX > Y; Y > Zg we have

9

�fXg

 = 9

�fZg

 = true while 9

fX;Zg

 = X > Z and therefore p and q are not

independent. While heking these onditions aurately and diretly an be

ineÆient in pratie, the proess an be approximated at ompile-time via

analysis or at run-time via simpli�ed heks on the store.

Other interesting notions of independene whih have been proposed are based

on \determinay" (i.e., lak of hoies) [67℄: two omputations that have no

hoies (i.e., \do not baktrak") are independent (provided, as before, that

they an be guaranteed not to fail). Note that this is in general also aptured

by the notion of onstraint independene given above.

11

This atually implies a better result even for Prolog programs sine its projetion

on the Herbrand domain is a strit generalization of previous notions of non-strit

independene. E.g., the sequene p(X), q(X) an be parallelized if p is de�ned for

example as p(a) and q is de�ned as q(a).

14

foo(...) :-

g

1

(...),

g

2

(...),

g

3

(...).

g1 g3

g2

g1 g3

g2

icond(1-3)

icond(1-2) icond(2-3)

g1 g3

g2

test(1-3)

(test(1-3) -> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
"Annotation"

Local/Global analysis
and simplification

Fig. 1. Parallelizing \g

1

(...), g

2

(...), g

3

(...)"

3.4 The Parallelization Proess

Experiments have shown that parallelization using only loal analysis and

generating run-time tests results in an exessive amount of overhead that

severely limits speedups (see [15℄ for a reent omparison of atual speedups

obtained by several parallelization methods). On the other hand it has also

been observed that there exist programs that obtain better speedups if a

limited amount of run-time heking of independene is used than if only

stati deisions are made. Thus, a parallelization methodology is generally

used whih an aommodate both stati analysis and run-time heking.

One of the more widely used approahes is illustrated in Figure 1, repre-

senting the parallelization of \g

1

(...), g

2

(...), g

3

(...)". The bodies of

proedures are explored looking for statements and proedure alls whih are

andidates for parallelization. As in many other parallelizers, a dependeny

graph is �rst built whih in priniple reets the total ordering of statements

and alls given by the sequential semantis. To ontrol the omplexity of the

proess these graphs are limited to one body of one proedure (if the body is

too long, the body an be partitioned in segments, but this does not happen

often in onstraint logi programs). Eah edge in the graph is then labeled

with the independene ondition (the run-time hek) that would guarantee

independene of the statements or alls joined by the edge. A global analysis

of the program then tries to prove these onditions statially true or false. If

a ondition is proved to be true the orresponding edge in the dependeny

graph is eliminated. If proved false, then an unonditional edge (i.e., a stati

dependeny) is left. Still, in other edges onditions may remain (possibly sim-

pli�ed). The annotation proess then enodes the resulting graph in the target

parallel language (a variant of the soure language). The tehniques proposed

for performing this proess depend on many fators inluding whether the

target language allows arbitrary parallelism or just fork-join strutures and

15

whether run-time independene tests are allowed or not. As an example, Fig-

ure 1 presents two possible enodings in &-Prolog of the (shemati) depen-

deny graph obtained after analysis. The parallel expressions generated in this

ase use only fork-join strutures, one with run-time heks and the other one

without them. Interesting tehniques have been developed for ompilation of

onditional non-planar dependeny graphs into fork-join strutures, in addi-

tion to other, non graph-based tehniques [31,59,14℄.

The global analysis required to simplify the onditional graphs has to perform,

among other tasks, inter-proedural pointer analyses, not unlike those reently

proposed for lean versions of C or C++. Early proposals based on traditional

data ow analysis tehniques pointed in the right diretion but proved impre-

ise [18℄. The presene of reursion and dynami data strutures has fueled

the development of quite sophistiated, inremental inter-proedural analyzers

based on abstrat interpretation [21℄. This has required the development of

eÆient analysis algorithms as well as abstrat domains for aurately and eÆ-

iently keeping trak of sharing patterns and pointer aliasing in reursive data

strutures [15,49,58,60℄. These analyses have been applied to the detetion

of both strit and non-strit independene [15,17℄ (for example, the flatten

program of Setion 3.3 is parallelized automatially by the system desribed

in [17℄). Analyses have been developed also to derive other important proper-

ties beyond variable instantiation states suh as determinism [29℄, non-failure

[26℄, and number of answers [13℄. These parallelization tehniques have also

reently been extended to support \dependent" and-parallelism [63℄ (whih,

as mentioned before, really refers to exploiting independene at a �ner level

of granularity than goals [42℄).

3.5 Dealing with Overheads and Irregularity { Sheduling and Memory Man-

agement

The preeding disussion has on purpose avoided the issue of run-time over-

heads. The obvious pratial impliation of the existene of overheads (task

reation, sheduling, data movement, et.) is that even if a task is known

to be independent, its parallel exeution may still render a slow-down. This

an happen if the task does not represent a suÆient amount of omputation

with respet to the overheads inurred in its parallelization. In the ase of

onstraint logi programming the problem is ompounded by the fat that,

beause of the symboli nature of the appliations typially oded, the number

of tasks generated at run-time (as well as the omputational ost and dynami

memory demands of eah suh task) depends on run-time parameters, i.e., the

omputations are typially highly irregular.

Two main approahes have been explored in order to overome these problems.

16

The �rst one is to ombine dynami task alloation poliies with ompilation

tehniques (abstrat mahines) whih redue as muh as possible the overhead

involved in the parallel exeution of tasks. The best results have been obtained

by performing low level \miro-task" sheduling, independently of the oper-

ating system threads [38,55,43℄, and generally based on non-entralized, \task

stealing" approahes. Miro tasks are often represented simply by two point-

ers, one pointing to the proedure all or statement and another to the relevant

invoation reord. The tasks are exeuted by a number of instanes of (a par-

allel version of) the oneptual abstrat mahines whih have been shown to

provide the best performane for sequential implementation [75,1,37,55℄. Inter-

esting tehniques have also been proposed for parallel dynami memory man-

agement (using \atus staks" [37,44,12,55,2℄). These tehniques support,

for example, eÆient memory reovery during parallel baktraking searh.

Some interesting examples of these dynami sheduling and memory man-

agement tehniques are presented in [37,43,62,71,64℄ for and-parallelism and

in [76,55,2,20,32℄ for or-parallelism.

3.6 Dealing with Overheads and Irregularity { Granularity Control

The tehniques mentioned above have proven suÆient for keeping the over-

heads of ommuniation, sheduling, and memory management low and ob-

taining signi�ant speedups in a wide variety of appliations on shared memory

multiproessors (starting from the early paradigmati examples: the Sequent

Balane and Symmetry series). However, urrent trends point towards larger

multiproessors but with less uniform shared memory aess times. Control-

ling in some way the granularity (exeution time and spae) of the tasks to be

exeuted in parallel an be a useful optimization in suh mahines, and is in

any ase a neessity when parallelizing for mahines with slower interonne-

tions. The latter inlude, for example, networks of workstations or distribution

of work over the Internet.

This area of granularity ontrol (task partitioning) has also reeived a sig-

ni�ant amount of attention in the ontext of logi program parallelization.

The idea of granularity ontrol is to replae parallel exeution with sequential

exeution or vie-versa based on knowledge (atual data, bounds, or estima-

tions) of task size and overheads. The problem is hallenging beause, while

the basi ommuniation overhead parameters of a system an be determined

experimentally, the omputational ost of the tasks (e.g., proedure alls) be-

ing parallelized, as well as the amount of data that needs to be transferred

before and after a parallel all, usually depend on dynami harateristis of

the input data. In the following example, we onsider for parallel exeution q

(whih, assuming it is alled with X bound to a list of numbers, adds one to

eah element of the list):

17

..., r(X) & q(X,Y), ...

q([℄,[℄).

q([I|Is℄,[I+1|Os℄):- q(Is,Os).

The omputational ost of a all to q (and also the ommuniation overheads)

are obviously proportional to the number of elements in the list. The hara-

terization of input data required has made the problem diÆult to solve (well)

ompletely at ompile-time.

One of the solutions whih has been explored is to derive at ompile time

omplexity ost funtions whih give upper and lower bounds on task exeu-

tion time as a funtion of ertain measures of input data [24,25,54,27,28,53℄

(alternative solutions are given in, e.g., [73,70℄; see also [48℄ in the ontext of

funtional languages). Interestingly, some of the analyses used in the deriva-

tion of suh funtions (e.g., [28℄) make use of some tehniques developed in

the ontext of imperative program parallelization, suh as the Omega test [65℄.

Programs are then transformed at ompile-time into semantially equivalent

ounterparts but whih automatially ontrol granularity at run-time based

on suh funtions. In the example above, these tools derive ost funtions suh

as, for example, 2 � length(X) + 1 for q (i.e., the unit of ost is in this ase a

proedure all, where the addition is ounted for simpliity as one proedure

all). If we assume that we should parallelize when the total omputation ost

is larger than \100", then we an transform the parallel all to p and q above

into:

..., Cost=2*~length(X)+1, (Cost>100 -> r(X) & q(X,Y)

; r(X) , q(X,Y)), ...

(again, using an if-then-else). Clearly, many issues arise. For example, the ost

of performing granularity ontrol an be fatored into the deisions. The ost

funtions an be simpli�ed and related bak to data struture sizes {list length

in the ase above, i.e., the all will only be parallelized if the length of the list

is larger than a statially pre-omputed value:

..., (length greater than(X,50) -> r(X) & q(X,Y)

; r(X) , q(X,Y)), ...

This in turn has inspired the development of algorithms for keeping trak

of data sizes at run-time. Also, the same tehniques used for ost bounding

allow deriving upper and lower bounds on the sizes of the strutures being

passed as arguments. This information an be fatored into parallelization

deisions (it a�ets the threshold). For example, in the example above, the

argument size analysis (assuming that C is the ost of sending one element

of a list, and a distributed setting where data is sent and returned eagerly)

will infer that the ommuniation ost is 2 � length(X) �C. Interestingly, the

Computation > Overhead ondition (2 � length(X) + 1 > 2 � length(X) �C)

an be determined statially to be always true (and parallelize unondition-

18

ally) or false (and never parallelize) depending only on the value of C, whih

in turn an perhaps be determined experimentally in a simple way. Perfor-

mane improvements have been shown to result from the inorporation of this

type of grain size ontrol, speially for systems with medium to large parallel

exeution overheads [54℄. Clearly, there are many interesting issues involved:

tehniques for derivation of data measures, data size funtions, and task ost

funtions, program transformations, program optimizations, et. Typially,

the tehniques are proved orret, again typially using the notions of approx-

imation and bounding, formalized as abstrat interpretations.

3.7 Dealing with speulation

Finally, also quite interesting tehniques have been developed for ontrolling

speulation, for both and- and or-parallelism. Explaining these issues in detail

is beyond the sope of this paper, but we will illustrate briey with an example

how speulation appears in and-parallelism:

foo(X) :- X=b, : : :, p(X) & q(X), : : :

foo(X) :- X=a, : : :

p(X) :- ..., X=a, ...

q(X) :- large omputation.

x=b

x=a

q(X)p(X)

In the situation above, the �rst lause of foo, after binding X to b, exeutes

p and q in parallel. However, the exeution of p eventually fails when it poses

the onstraint X=a and exeution must ontinue with the seond lause of foo.

Sine p and q are in onjuntion, the exeution of q must now be disarded

(i.e., starting q ahead of time was speulative). A ombination of \left-biased

sheduling" (ensuring that a proessor has taken p before another an take

q) and \instantaneous killing of siblings" (e.g., of q above) at least ensures

no-slowdown [37,47,45℄. No-slowdown (and even theoretial speedup) an also

be guaranteed by determining statially that the tasks involved in a parallel

onjuntion (exept the leftmost one) will not fail (tehniques for this have

been proposed in [26℄). Many other interesting tehniques for dealing with

speulation have been developed (speially in the ontext or or-parallelism),

inluding sophistiated shedulers, dynami throttling of speulative tasks,

et. [38,36,8,26℄.

19

4 Conlusions: Towards Cross-Fertilization

As a result of the work outlined in previous setions, quite robust, publily

available ompilers and run-time systems have been available for some time

now, generally for Prolog, whih automatially exploit parallelism in omplex

appliations. Suh systems have been shown to provide speedups over the state

of the art sequential implementations available at the time of their develop-

ment. The speed and robustness of these ompilers has also been instrumental

in demonstrating that abstrat interpretation provides a very adequate frame-

work for developing provably orret, powerful, and eÆient global analyzers

and, onsequently, parallelizers [78,15,63℄. More reently, tehniques and pra-

tial tools have also been developed for the analysis of general onstraint logi

programs [34℄ as well as for their parallelization [33℄. Prototypes inorporat-

ing the granularity ontrol tehniques mentioned above are also starting to be

available. However, muh work still remains to be done in these areas, and we

believe there may be good opportunity at this time for inreased transferene

of tehniques aross programming paradigms.

It an be argued that partiularly strong progress has been made in the ontext

of (onstraint) logi programming in inter-proedural analysis of programs

with dynami data strutures and pointers, in parallelization using onditional

dependeny graphs (and possibly generating run-time independene tests), in

the de�nition of the advaned notions of independene that are needed in the

presene of speulative omputations or languages whih inlude onstraints,

in the development of eÆient task representation tehniques and dynami

sheduling algorithms to deal with irregularity and speulation, and in the

stati inferene of task ost funtions for ontrolling granularity.

On the other hand, the tehniques developed in the area of onstraint logi pro-

gram parallelization are ertainly weaker than those developed in the ontext

of numerial omputing for regular problems. For example, logi program-

ming parallelizers an disover the parallelism in omplex reursive traversals

of data strutures, but do not handle well traversals that are based on integer

(i.e., array subsript) arithmeti, for whih muh work exists in the area of im-

perative languages. Also, while urrent parallel onstraint logi programming

systems are reasonably good at dealing with tasks with dynami osts, the

tehniques urrently used are again omparatively weaker for the stati ase

than the partitioning and plaement algorithms used in imperative program

parallelization [11,10,41,23℄. Ideally, a parallelizing ompiler should perform

good partitioning and plaement for any kind of arhiteture, using stati

tehniques when possible and dynami tehniques when unavoidable. It thus

appears that it would be quite interesting to merge the omplementary work

done in these areas by the di�erent ommunities. Some progress has been

made in one diretion in the ontext of \data parallelism" [10,41,23℄, but it

20

still seems like a very promising avenue for future researh.

Constraint logi programming extends the high-level programming paradigm

that logi programming o�ers in symboli appliations to numerial domains.

We believe it o�ers a natural platform in whih to study the ombination of

the parallelization tehniques used in the numerial and symboli program-

ming �elds. Independently of the onveniene of using onstraint programming

languages diretly (as is being done with signi�ant ommerial suess in dif-

�ult problem areas suh as sheduling or resoure alloation), we also believe

that many features of these languages, suh as the use of onstraints (\re-

versible statements") or the embedded searh apabilities, will slowly make

their way into the designs of mainstream languages. In the same way, other

features of symboli languages (suh as dynami data struture reation and

garbage olletion, or byteode ompilation) have already made it into widely

used languages suh as Java. Current proposals in this diretion inlude ILOG

(a ommerially suessful library whih whih extends C++ and Java with

onstraint handling apabilities) and [5℄, an imperative language with searh

apabilities.

12

Aknowledgements

The author wishes to thank J. Chassin, D. Padua, Vitor Santos-Costa, E.

Pontelli, G. Gupta, A. King, K. Shen, J. Mari~no, F. Bueno, D. Cabeza, M.

Carro, M. Gar��a de la Banda, P. L�opez, and G. Puebla for their omments

on previous drafts of this paper. This work was supported in part by the

\EDIPIA" (CICYT TIC99-1151) and \ECCOSIC" (Fulbright 98059) projets.

Referenes

[1℄ Hassan Ait-Kai. Warren's Abstrat Mahine, A Tutorial Reonstrution. MIT

Press, 1991.

[2℄ K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its

Performane. In 1990 North Amerian Conferene on Logi Programming, pages

12

Of ourse, there are no sienti� reasons not to use onstraint logi languages

diretly, and this is indeed urrently being done routinely with great ommerial

suess by several ompanies working in diÆult problem areas suh as sheduling

or resoure alloation. However, it is entirely possible that the pure onstraint logi

programming languages, as so many other produts of omputer siene, may re-

main powerful tools used by literate users, ertainly making their impat on the

mainstream, but in an indiret way.

21

757{776. MIT Press, Otober 1990.

[3℄ G. Almasi and A. Gottlieb, editors. Highly Parallel Computing. Benjamin

Cummins, 1994.

[4℄ Lars Ole Andersen. Binding-time analysis and the taming of pointers.

In Proeedings of the Symposium on Partial Evaluation and Semantis-Based

Program Manipulation, pages 47{58, Copenhagen, Denmark, 1993. ACM Press.

[5℄ K. Apt and A. Shaerf. Searh and Imperative Programming. In POPL'97:

24th ACM SIGPLAN-SIGACT Symposium on Priniples of Programming

Languages, pages 67{79, Paris, Frane, January 1997. ACM.

[6℄ K.R. Apt. Introdution to Logi Programming. In J. van Leeuwen,

editor, Handbook of Theoretial Computer Siene, volume B: Formal Model

and Semantis, pages 495{574. Elsevier, Amsterdam and The MIT Press,

Cambridge, 1990.

[7℄ D. Baon, S. Graham, and O. Sharp. Compiler Transformations for High-

Performane Computing. Computing Surveys, 26(4):345{420, Deember 1994.

[8℄ T. Beaumont and D.H.D. Warren. Sheduling Speulative Work in Or-Parallel

Prolog Systems. In Proeedings of the 10th International Conferene on Logi

Programming, pages 135{149. MIT Press, June 1993.

[9℄ E. Best and C. Lengauer. Semanti Independene. Siene of Computer

Programming, 13:23{50, 1990.

[10℄ J. Bevemyr, T. Lindgren, and H. Millroth. Exploiting reursion-parallelism in

Prolog. In Pro. PARLE'93, Berlin, 1993. Springer-Verlag.

[11℄ J. Bevemyr, T. Lindgren, and H. Millroth. Reform Prolog: the language and

its implementation. In Pro. 10th Intl. Conf. Logi Programming, Cambridge,

Mass., 1993. MIT Press.

[12℄ P. Borgwardt and D. Rea. Distributed Semi-Intelligent Baktraking for

a Stak-Based AND-Parallel Prolog. In International Symposium on Logi

Programming, pages 211{222. IEEE Computer Soiety, 1986.

[13℄ C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryk. Cardinality

analysis of prolog. In Pro. International Symposium on Logi Programming,

pages 457{471, Ithaa, NY, November 1994. MIT Press.

[14℄ F. Bueno, M. Gar��a de la Banda, and M. Hermenegildo. A Comparative Study

of Methods for Automati Compile-time Parallelization of Logi Programs. In

First International Symposium on Parallel Symboli Computation, pages 63{73.

World Sienti� Publishing Company, September 1994.

[15℄ F. Bueno, M. Gar��a de la Banda, and M. Hermenegildo. E�etiveness of

Abstrat Interpretation in Automati Parallelization: A Case Study in Logi

Programming. ACM Transations on Programming Languages and Systems,

21(2):189{238, Marh 1999.

22

[16℄ F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial Order

and Contextual Net Semantis for Atomi and Loally Atomi CC Programs.

Siene of Computer Programming, 30:51{82, January 1998. Speial CCP95

Workshop issue.

[17℄ D. Cabeza and M. Hermenegildo. Extrating Non-strit Independent And-

parallelism Using Sharing and Freeness Information. In 1994 International

Stati Analysis Symposium, number 864 in LNCS, pages 297{313, Namur,

Belgium, September 1994. Springer-Verlag.

[18℄ J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logi

Programs Based on Stati Data Dependeny Analysis. In Compon Spring

'85, pages 218{225, February 1985.

[19℄ J. Chassin and P. Codognet. Parallel Logi Programming Systems. Computing

Surveys, 26(3):295{336, September 1994.

[20℄ J. Chassin, J. Syre, and H. Westphal. Implementation of a Parallel Prolog

System on a Commerial Multiproessor. In Proeedings of Eai, pages 278{

283, August 1988.

[21℄ P. Cousot and R. Cousot. Abstrat Interpretation: a Uni�ed Lattie Model for

Stati Analysis of Programs by Constrution or Approximation of Fixpoints.

In Fourth ACM Symposium on Priniples of Programming Languages, pages

238{252, 1977.

[22℄ M. Gar��a de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. In Programming Languages: Implementation, Logis,

and Programs, number 1140 in LNCS, pages 77{91, Aahen, Germany,

September 1996. Springer-Verlag.

[23℄ S. Debray and M. Jain. A Simple Program Transformation for Parallelism.

In 1994 International Symposium on Logi Programming, pages 305{319. MIT

Press, November 1994.

[24℄ S.K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in

Logi Programs. In Pro. of the 1990 ACM Conf. on Programming Language

Design and Implementation, pages 174{188. ACM Press, June 1990.

[25℄ S.K. Debray and N.W. Lin. Cost analysis of logi programs. ACM Transations

on Programming Languages and Systems, 15(5):826{875, November 1993.

[26℄ S.K. Debray, P. L�opez-Gar��a, and M. Hermenegildo. Non-Failure Analysis

for Logi Programs. In 1997 International Conferene on Logi Programming,

pages 48{62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

[27℄ S.K. Debray, P. L�opez-Gar��a, M. Hermenegildo, and N.-W. Lin. Estimating

the Computational Cost of Logi Programs. In Stati Analysis Symposium,

SAS'94, number 864 in LNCS, pages 255{265, Namur, Belgium, September

1994. Springer-Verlag.

23

[28℄ S.K. Debray, P. L�opez-Gar��a, M. Hermenegildo, and N.-W. Lin. Lower Bound

Cost Estimation for Logi Programs. In 1997 International Logi Programming

Symposium, pages 291{305. MIT Press, Cambridge, MA, Otober 1997.

[29℄ S.K. Debray and D.S. Warren. Funtional omputations in logi programs.

ACM Transations on Programming Languages and Systems, 11(3):451{481,

1989.

[30℄ D. DeGroot. Restrited AND-Parallelism. In International Conferene on Fifth

Generation Computer Systems, pages 471{478. Tokyo, November 1984.

[31℄ D. DeGroot. A Tehnique for Compiling Exeution Graph Expressions for

Restrited AND-parallelism in Logi Programs. In Int'l Superomputing

Conferene, pages 80{89, Athens, 1987. Springer Verlag.

[32℄ European Computer Researh Center. Elipse User's Guide, 1993.

[33℄ M. Gar��a de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. In Programming Languages: Implementation, Logis,

and Programs, number 1140 in LNCS, pages 77{91, Aahen, Germany,

September 1996. Springer-Verlag.

[34℄ M. Gar��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,

G. Janssens, and W. Simoens. Global Analysis of Constraint Logi Programs.

ACM Transations on Programming Languages and Systems, 18(5):564{615,

1996.

[35℄ M. Gar��a de la Banda, M. Hermenegildo, and K. Marriott. Independene in

CLP Languages. ACM Transations on Programming Languages and Systems,

2000. To appear.

[36℄ B. Hausman. Handling speulative work in or-parallel prolog: Evaluation

results. In North Amerian Conferene on Logi Programming, pages 721{736,

Austin, TX, Otober 1990.

[37℄ M. Hermenegildo. An Abstrat Mahine for Restrited AND-parallel Exeution

of Logi Programs. In Third International Conferene on Logi Programming,

number 225 in Leture Notes in Computer Siene, pages 25{40. Imperial

College, Springer-Verlag, July 1986.

[38℄ M. Hermenegildo. Relating Goal Sheduling, Preedene, and Memory

Management in AND-Parallel Exeution of Logi Programs. In Fourth

International Conferene on Logi Programming, pages 556{575. University of

Melbourne, MIT Press, May 1987.

[39℄ M. Hermenegildo. Automati Parallelization of Irregular and Pointer-Based

Computations: Perspetives from Logi and Constraint Programming. In

Proeedings of EUROPAR'97, volume 1300 of LNCS, pages 31{46. Springer-

Verlag, August 1997. (invited).

[40℄ M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in

the Implementation of Conurrent and Parallel Logi Programming Systems.

24

In Pro. of the Twelfth International Conferene on Logi Programming, pages

631{645. MIT Press, June 1995.

[41℄ M. Hermenegildo and M. Carro. Relating Data{Parallelism and (And{)

Parallelism in Logi Programs. The Computer Languages Journal, 22(2/3):143{

163, July 1996.

[42℄ M. Hermenegildo and The CLIP Group. Some Methodologial Issues in the

Design of CIAO - A Generi, Parallel, Conurrent Constraint System. In

Priniples and Pratie of Constraint Programming, number 874 in LNCS,

pages 123{133. Springer-Verlag, May 1994.

[43℄ M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent

And-Parallelism. New Generation Computing, 9(3,4):233{257, 1991.

[44℄ M. Hermenegildo and R. I. Nasr. EÆient Management of Baktraking in

AND-parallelism. In Third International Conferene on Logi Programming,

number 225 in LNCS, pages 40{55. Imperial College, Springer-Verlag, July 1986.

[45℄ M. Hermenegildo and F. Rossi. On the Corretness and EÆieny of

Independent And-Parallelism in Logi Programs. In 1989 North Amerian

Conferene on Logi Programming, pages 369{390. MIT Press, Otober 1989.

[46℄ M. Hermenegildo and F. Rossi. Non-Strit Independent And-Parallelism. In

1990 International Conferene on Logi Programming, pages 237{252. MIT

Press, June 1990.

[47℄ M. Hermenegildo and F. Rossi. Strit and Non-Strit Independent And-

Parallelism in Logi Programs: Corretness, EÆieny, and Compile-Time

Conditions. Journal of Logi Programming, 22(1):1{45, 1995.

[48℄ L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to

Guide Parallel Thread Creation. In Pro. ACM Conf. on Lisp and Funtional

Programming, June 1994.

[49℄ D. Jaobs and A. Langen. Aurate and EÆient Approximation of Variable

Aliasing in Logi Programs. In 1989 North Amerian Conferene on Logi

Programming. MIT Press, Otober 1989.

[50℄ J. Ja�ar and M.J. Maher. Constraint Logi Programming: A Survey. Journal

of Logi Programming, 19/20:503{581, 1994.

[51℄ S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel

Language. In 1991 International Logi Programming Symposium, pages 167{

183. MIT Press, 1991.

[52℄ A.H. Karp and R.C. Babb. A Comparison of 12 Parallel Fortran Dialets. IEEE

Software, September 1988.

[53℄ A. King, K. Shen, and F. Benoy. Lower-bound Time-omplexity Analysis of

Logi Programs. In 1997 International Logi Programming Symposium, pages

261{275. MIT Press, Cambridge, MA, Otober 1997.

25

[54℄ P. L�opez-Gar��a, M. Hermenegildo, and S.K. Debray. A Methodology

for Granularity Based Control of Parallelism in Logi Programs. Journal

of Symboli Computation, Speial Issue on Parallel Symboli Computation,

22:715{734, 1996.

[55℄ E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation

Computing, 7(2,3), 1990.

[56℄ Kim Marriot and Peter Stukey. Programming with Constraints: An

Introdution. The MIT Press, 1998.

[57℄ A. Martelli and U. Montanari. An EÆient Uni�ation Algorithm. ACM

Transations on Programming Languages and Systems, 4(3):258{282, 1982.

[58℄ K. Muthukumar and M. Hermenegildo. Determination of Variable Dependene

Information at Compile-Time Through Abstrat Interpretation. In 1989

North Amerian Conferene on Logi Programming, pages 166{189. MIT Press,

Otober 1989.

[59℄ K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods

for Automati Compile-time Parallelization of Logi Programs for Independent

And-parallelism. In Int'l. Conferene on Logi Programming, pages 221{237.

MIT Press, June 1990.

[60℄ K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing

and Freeness of Program Variables Through Abstrat Interpretation. In 1991

International Conferene on Logi Programming, pages 49{63. MIT Press, June

1991.

[61℄ M. S. Paterson and M. Wegman. Linear Uni�ation. J. of Computer and System

Sienes, 16(2):158{167, 1978.

[62℄ E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performane

Parallel Prolog System. In International Parallel Proessing Symposium, pages

564{572. IEEE Computer Soiety Tehnial Committee on Parallel Proessing,

IEEE Computer Soiety, April 1995.

[63℄ E. Pontelli, G. Gupta, F. Pulvirenti, and A. Ferro. Automati Compile-time

Parallelization of Prolog Programs for Dependent And-Parallelism. In Pro. of

the Fourteenth International Conferene on Logi Programming, pages 108{122.

MIT Press, July 1997.

[64℄ E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. Hermenegildo. Improving the

EÆieny of Nondeterministi And{parallel Systems. The Computer Languages

Journal, 22(2/3):115{142, July 1996.

[65℄ W. Pugh. A Pratial Algorithm for Exat Array Dependene Analysis.

Communiations of the ACM, 35(8):102{114, August 1992.

[66℄ J. A. Robinson. A Mahine Oriented Logi Based on the Resolution Priniple.

Journal of the ACM, 12(23):23{41, January 1965.

26

[67℄ V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel

Prolog System that Transparently Exploits both And- and Or-parallelism. In

Proeedings of the 3rd. ACM SIGPLAN Symposium on Priniples and Pratie

of Parallel Programming, pages 83{93. ACM, April 1991. SIGPLAN Noties

vol 26(7), July 1991.

[68℄ M. Shapiro and S. Horwitz. Fast and Aurate Flow-Insensitive Points-

To Analysis. In POPL'97: 24th ACM SIGPLAN-SIGACT Symposium on

Priniples of Programming Languages, pages 1{14, Paris, Frane, January 1997.

ACM.

[69℄ K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.

Journal of Logi Programming, 29(1{3):245{293, November 1996.

[70℄ K. Shen, V.S. Costa, and A. King. Distane: a New Metri for Controlling

Granularity for Parallel Exeution. In Joxan Ja�ar, editor, Joint International

Conferene and Symposium on Logi Programming, pages 85{99, Cambridge,

MA, June 1998. MIT Press, Cambridge, MA.

[71℄ K. Shen and M. Hermenegildo. Flexible Sheduling for Non-Deterministi, And-

parallel Exeution of Logi Programs. In Proeedings of EuroPar'96, number

1124 in LNCS, pages 635{640. Springer-Verlag, August 1996.

[72℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[73℄ E. Tik. Compile-Time Granularity Analysis of Parallel Logi Programming

Languages. In International Conferene on Fifth Generation Computer

Systems. Tokyo, November 1988.

[74℄ P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog

Implementation. Journal of Logi Programming, 19/20:385{441, 1994.

[75℄ D.H.D. Warren. An Abstrat Prolog Instrution Set. Tehnial Report 309,

Arti�ial Intelligene Center, SRI International, 333 Ravenswood Ave, Menlo

Park CA 94025, 1983.

[76℄ D.H.D. Warren. OR-Parallel Exeution Models of Prolog. In Proeedings of

TAPSOFT '87, Leture Notes in Computer Siene. Springer-Verlag, Marh

1987.

[77℄ D.H.D. Warren. The Extended Andorra Model with Impliit Control.

Presented at ICLP'90 Workshop on Parallel Logi Programming, Eilat, Israel.

Unpublished., June 1990.

[78℄ R. Warren, M. Hermenegildo, and S. K. Debray. On the Pratiality of Global

Flow Analysis of Logi Programs. In Fifth International Conferene and

Symposium on Logi Programming, pages 684{699. MIT Press, August 1988.

[79℄ M. Wolfe. High Performane Compilers for Parallel Computing. Addison

Wesley, 1996.

27

