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Abstra
t

Irregular 
omputations pose some of the most interesting and 
hallenging prob-

lems in automati
 parallelization. Irregularity appears in 
ertain kinds of numeri
al

problems and is pervasive in symboli
 appli
ations. Su
h 
omputations often use

dynami
 data stru
tures whi
h make heavy use of pointers. This 
ompli
ates all the

steps of a parallelizing 
ompiler, from independen
e dete
tion to task partitioning

and pla
ement. Starting in the mid 80's there has been signi�
ant progress in the

development of parallelizing 
ompilers for logi
 programming (and, more re
ently,


onstraint programming) resulting in quite 
apable parallelizers. The typi
al ap-

pli
ations of these paradigms frequently involve irregular 
omputations, and make

heavy use of dynami
 data stru
tures with pointers, sin
e logi
al variables represent

in pra
ti
e a well behaved form of pointers. This arguably makes the te
hniques used

in these 
ompilers potentially interesting. In this paper we introdu
e in a tutorial

way some of the problems fa
ed by parallelizing 
ompilers for logi
 and 
onstraint

programs and provide pointers to some of the signi�
ant progress made in the area.

In parti
ular, this work has resulted in a series of a
hievements in the areas of inter-

pro
edural pointer aliasing analysis for independen
e dete
tion, 
ost models and


ost analysis, 
a
tus-sta
k memory management, te
hniques for managing spe
ula-

tive and irregular 
omputations through task granularity 
ontrol and dynami
 task

allo
ation (su
h as work-stealing s
hedulers), et
.
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1 Introdu
tion

Multipro
essing hardware is already available whi
h o�ers signi�
ant advan-

tages in either performan
e or 
ost/performan
e over unipro
essors. For ex-

ample, departmental servers using fast, inexpensive o�-the-shelf pro
essors are


urrently o�ered at a fra
tion of the 
ost of the mainframes they repla
e, and

even multipro
essor workstations are now not un
ommon. Faster and more

ubiquitous high-speed networks in
rease the potential of exploiting distributed

exe
ution.

One of the re
urring fa
ts that hamper the progress of widespread use of par-

allelism is that in pra
ti
e, beyond some manually parallelized high volume

appli
ations and s
ienti�
 
odes, still 
omparatively few programs are written

or transformed to exploit parallelism. The traditional argument that paral-

lelization is a diÆ
ult and error-prone task (see, e.g., [52℄) seems to remain

valid [3℄, and still points to the ne
essity of improving the tools used in the

pro
ess. This in
ludes developing languages that o�er better support for par-

allel programming, improved libraries for supporting parallel programming on


onventional languages, and signi�
ant progress in support tools, from paral-

lelizing 
ompilers to performan
e analyzers.

Herein, we 
on
entrate on the issue of automati
 parallelization. While man-

ual parallelization may of 
ourse always have a pla
e, parallelizing 
ompilers

are interesting in that they have the potential to dramati
ally lessen the par-

allelization burden and there is hope that one they they may eliminate it alto-

gether. However, despite mu
h progress, it appears that signi�
ant 
hallenges

still remain in the area of automati
 parallelization, in
luding dealing well with

both regular and irregular 
omputations, performing eÆ
ient partitioning for

both types of 
omputations, dealing with data stru
tures with pointers, han-

dling spe
ulative 
omputations, automati
ally 
hanging data stru
tures for

more eÆ
ient exploitation of parallelism, and developing parallelization te
h-

niques for new, higher level programming paradigms.

The goal of developing e�e
tive parallelizing 
ompilers is being sought after


on
urrently and, unfortunately, somewhat independently in the 
ontext of

di�erent programming paradigms or even individual languages. As a result of

the 
hara
teristi
s of the typi
al appli
ations of su
h paradigms or languages,

the amount of progress made on the di�erent topi
s involved made di�ers.

For example, some very signi�
ant progress has been made in parallelizing


ompilers for regular, numeri
al 
omputations, generally based on the FOR-

TRAN language (see, e.g., [7,79℄). This resear
h has resulted in well known


on
epts and te
hniques in
luding a well understood notion of independen
e

(based on the Bernstein 
onditions or, for example, more re
ent notions of
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\semanti
 independen
e" [9℄), sophisti
ated synta
ti
 loop transformations,

transformations based on polytope models, extensive work on partitioning

and pla
ement, et
. On the other hand, the appli
ability of these te
hniques

has remained 
omparatively limited for irregular or symboli
 
omputations,

and still few pra
ti
al systems deal well with parallelization a
ross pro
edure


alls or with irregular 
omputations. Also, the te
hniques used often rely on

the relative 
leanliness of FORTRAN as a programming language and addi-

tional work is needed in order to extend them to other mainstream languages

like C or C++. These languages in
lude features su
h as dynami
, re
ursive

data stru
tures and pointer manipulation whi
h 
ompli
ate the dete
tion of

independen
e among statements or pro
edure 
alls and mu
h 
urrent work is

aimed at developing the related independen
e analyses. An important example

is pointer aliasing analysis (see, e.g., [4℄, [68℄, and their referen
es).

We argue that, despite the apparent di�eren
es among imperative, fun
tional,

logi
, 
onstraint, and obje
t oriented languages, the fundamental issues being

ta
kled are quite similar. Thus, we believe that progress towards more e�e
-

tive parallelizing 
ompilers for all programming paradigms 
an be sped up by


ross fertilization of the results obtained in di�erent paradigms. It is with this

thought in mind (and without aspiring to being exhaustive, whi
h is impos-

sible given the spa
e available and unne
essary to make the point) that we

present in the following a brief overview of some of the problems whi
h appear

in the area of automati
 parallelization of logi
 and 
onstraint programs and

provide pointers to the some of the solutions and signi�
ant a
hievements of

the area.

2 Logi
 and Constraint Programming

Due to spa
e limitations, we will present only a brief overview of logi
 and


onstraint programming, spe
i�
ally tailored to the obje
tive of our presenta-

tion (the reader is referred for example to [72,56,50,6℄ for details). We warn

the reader that this 
annot in any way be 
onsidered a fair introdu
tion to the

topi
, sin
e we 
ompletely overlook aspe
ts of logi
 and 
onstraint program-

ming whi
h are widely per
eived as important. These in
lude the de
larative

nature and the logi
al semanti
s: programs in these languages are often not

only the 
oding of an algorithm, but also a logi
al statement of a problem,

whi
h is very 
lose to a spe
i�
ation. In the following we take a fully opera-

tional view { the same one that the parallelizing 
ompiler takes.

The basi
 \statements" of a 
onstraint logi
 program are 
onstraints. Con-

straints relate (logi
al) variables (variable identi�ers start with upper 
ase

while 
onstants and data stru
ture des
riptors {fun
tors, see later{ start with

lower 
ase). Su
h variables 
an be free, or they 
an be 
onstrained to a 
ertain
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value or set of values. For example, the statement X=Y+Z establishes that the

given 
onstraint must hold among those variables (we assume for example that

the variables range over 
oating point numbers). Su
h 
onstraints are kept in

the store. Assume Y and Z have a \known" value at the time of exe
uting this


onstraint (for example, the store 
ontains Y=2 and Z=3). Then, the operational

semanti
s of su
h a 
onstraint is very similar to that in any other language:

the statement implies an addition (2+3) and an \assignment" of the result (5)

to X. This 
an also be seen as telling (posting) the 
onstraint X=5. Assume in-

stead that su
h values are not known. Then exe
uting the statement involves

pla
ing the 
onstraint in the store for later solution if/when another 
onstraint

is exe
uted. Sequen
es of 
onstraints are separated by 
ommas. Assume again

an empty initial store and the sequen
e of 
onstraints \Y=2, X=Y+Z". After

exe
uting this sequen
e the store would 
ontain \Y=2, X=2+T1, Z=T1". Here,

we are making the assumption that sequen
es of 
onstraints exe
ute sequen-

tially in the order in whi
h they appear and that the store is always kept as

\fully solved" as possible and in a normalized form {see [50℄ for details.

Constraint logi
 programming also provides a method for pro
edure abstra
-

tion. For example, 
ode segment (a) below:

foo(Z,X) :- Y=2, (a)

X=Y+Z.

main :- foo(K,W),

K = 3, (b)

write(W).

de�nes a two-argument pro
edure foo. A pro
edure de�nes a lo
al dynami


invo
ation 
ontext in the usual way, i.e., upon entering the pro
edure Y is a

new lo
al variable while X and Z are formal parameters. The 
alling regime is

not unlike \
all by referen
e" (see the dis
ussion later about logi
al variables

being essentially pointers). For example, the e�e
t of 
alling foo(3,W) is that

upon return W=5 is added to the 
alling 
ontext. Note that the pro
edure is

synta
ti
ally not very di�erent from what one would write in a fun
tional or

imperative language, and its behavior is essentially the same for 
alls su
h

as foo(3,W). However, the 
omplete operational behavior of the 
onstraint

programming pro
edure is ri
her be
ause it allows other \
alling modes." For

example, a 
all to foo(K,5) su

eeds and upon return K=3 is added to the


alling 
ontext. Furthermore, a 
all to foo(K,W) also su

eeds and upon re-

turn the 
onstraint W=2+K is added to the 
alling 
ontext. In some ways, the

statements and pro
edures in 
onstraint programs 
an be seen as \reversible"

versions of their synta
ti
 
ounterparts in 
onventional languages. Note that

also the de
larative meaning of su
h programs is ri
her be
ause it de�nes a


omplete logi
al relation (rather than a fun
tion) among its arguments. Pro
e-

dure 
alls 
an appear in the bodies of pro
edures interspersed with 
onstraints.

For example, 
ode segment (b) above would produ
e \5" on the standard out-

put.

Pro
edures 
an have multiple de�nitions, whi
h represent di�erent alterna-
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tives. Establishing a somewhat ina

urate parallel with 
onventional languages,

a set of pro
edure de�nitions 
an be seen as an \undoable" form of 
ase state-

ment or 
onditional. When su
h a pro
edure is entered it is said to 
reate a


hoi
e. Su
h alternatives are tried in the textual order in whi
h they appear

in the program, i.e., the �rst de�nition of a pro
edure is tried �rst and, if that

results in a failure, then the next one is tried (again, we follow the default exe-


ution strategy used in most pra
ti
al 
onstraint programming languages). A

failure o

urs when a 
onstraint is exe
uted whi
h makes the store unsolvable

(i.e., it is in
ompatible with the 
urrent state of the store). This is not unlike

the 
ase of a test evaluating to false in a 
onditional. When a failure o

urs, the

system ba
ktra
ks to the last 
hoi
e left behind and tries the next alternative

in that 
hoi
e. Sin
e pro
edure 
alls 
an be nested, a sta
k of 
hoi
es is kept

by the system. A 
hoi
e is pushed on the sta
k every time a pro
edure with

several alternatives is invoked. When a failure o

urs, exe
ution 
ontinues at

the next alternative of the 
hoi
e on top of the 
hoi
e sta
k. When the last

alternative of a 
hoi
e is entered, the 
hoi
e itself is popped from the sta
k.

For example, the following program:

main :- bar(K,W),

K > 2,

write(W).

bar(X,Y) :- X < 0, Y = -10.

bar(X,Y) :- X >= 0, Y = 10.

prints \10". The �rst alternative of bar is tried �rst, resulting in W=-10 and K

< 0, but exe
uting K > 2 produ
es a failure sin
e the store now has no solu-

tion. After trying the se
ond alternative of bar, K > 2 su

eeds (the store is

then K > 2, W = 10) and the program terminates after printing the value of

W.

2

The following, slightly more interesting example de�ning the Fibona

i rela-

tion illustrates the use of re
ursion:

fib(0, 0).

fib(1, 1).

fib(N, F1+F2) :- N>1, F1>=0, F2>=0,

fib(N-1, F1),

fib(N-2, F2).

(in this example we have used a more 
onvenient syntax where input param-

eter normalization is done automati
ally by the system { i.e., \fib(0,0)." is

a shorthand for \fib(X,Y) :- X=0, Y=0." and \fib(N, F1+F2) :- ..." a

shorthand for \fib(N, X) :- X=F1+F2, ..."). Calling fib(8,Y) establishes

Y=21, and 
alling fib(X,21) establishes X=8. Calling fib(X,Y) produ
es as

alternatives the 
onstraints (X=0, Y=0), (X=1, Y=1), (X=2, Y=1), et
.

In the previous examples we have been using a 
ertain 
onstraint system:

essentially, equalities and inequalities involving linear arithmeti
 expressions

over the (pseudo-)real numbers. In many 
ases the operations of 
onstraint

2

Of 
ourse, an optimizing 
ompiler would 
ompile away mu
h of the behavior

des
ribed in this very simple 
ase.
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programs 
an be 
ompiled dire
tly into standard ma
hine operations. How-

ever, in others (when a
tual 
onstraint solving is involved) a 
onstraint solving

algorithm needs to be applied. Thus, the de�nition of ea
h 
onstraint system

must in
lude a de
idable and (hopefully) eÆ
ient \solver." Pra
ti
al languages

typi
ally in
lude several 
onstraint systems.

A parti
ularly interesting 
onstraint system present in almost all 
onstraint

languages is that of \equality relations over data stru
tures" (i.e., �nite trees).

This is generally referred to as the Herbrand domain (and is the \working

domain" of the Prolog language). This domain is 
ru
ial be
ause it allows

building and pro
essing data stru
tures with (single assignment) pointers in

a very simple and de
larative way. For example, the following program:

main :- X = f(Y,Z),

Y = a,

W = Z,

W = g(K),

X = f(a,g(b)).

�rst builds (dynami
ally) a new two-argument stru
ture whose 
onstru
tor

symbol is f (in other words, a tree whose root node is f and whi
h has two

open bran
hes):

X = f(Y,Z),

X Yf Z

The variables Y and Z are pointers to the two arguments of the stru
ture. The

statement:

Y = a,

X f Za

\binds" the �rst argument of the stru
ture to the 
onstant a (i.e., at this time

X points to f(a,Z)). The following statement:

W = Z,

X f Za W

aliases the pointers W and Z (e.g., W points to Z). Therefore, the result of the

statement:

W = g(K),

X f Za W g K

is to \bind" the se
ond argument of the stru
ture to g(K) (and as a result X

now points to f(a,g(K))). The last statement:

X = f(a,g(b)).

X f Za W g b

�nally binds K to the 
onstant b. This last statement illustrates how open

arguments inside a stru
ture 
an also be a

essed by traversing the stru
-
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ture using a pro
ess not unlike the \pattern mat
hing" available in modern

fun
tional programming languages (ex
ept that it is again a \reversible" ver-

sion of it). The algorithm 
apable of solving all su
h equality 
onstraints over

data stru
tures is uni�
ation [66,61,57℄. One of the ni
e 
hara
teristi
s of this


onstraint system is that there exist very eÆ
ient algorithms for performing

uni�
ation.

3

As mentioned before, Prolog, one of the most popular logi
 pro-

gramming languages, is essentially a 
onstraint logi
 programming language

whi
h uses ex
lusively the Herbrand domain. It is no surprise that Prolog is


onsidered very well suited for the easy manipulation of data stru
tures with

pointers.

4

3 Parallelization of Constraint Logi
 Programs

One of the main theses of this paper is that logi
 programming and 
onstraint

programming languages o�er a parti
ularly interesting 
ase study for the area

of automati
 parallelization. On one hand, these programming paradigms pose

signi�
ant 
hallenges to the parallelization task, whi
h relate 
losely to the

more diÆ
ult 
hallenges fa
ed in imperative language parallelization. Su
h


hallenges in
lude highly irregular 
omputations and dynami
 
ontrol 
ow

(due to the symboli
 nature of many of their appli
ations), non-trivial notions

of (semanti
) independen
e, the presen
e of dynami
ally allo
ated, 
omplex

data stru
tures 
ontaining pointers, and having to deal with spe
ulation.

On the other hand, due to their high-level nature these languages also fa-


ilitate the study of parallelization issues. As we have seen, logi
al variables

are a
tually a quite \well behaved" version of pointers, in the sense that no


astings or pointer arithmeti
 (other than array indexing through the arg/3

builtin) is allowed. Thus, pointers in these languages are not unlike those al-

lowed, for example, in \
lean" versions of C (or, to a lesser extent, in Java).

In addition, similarly to fun
tional languages, logi
 and 
onstraint languages

allow 
oding in a way whi
h expresses the desired algorithm in a way that

re
e
ts more dire
tly the stru
ture of the problem (i.e., staying 
loser to the

3

Furthermore, there are also very su

essful 
ompilation te
hniques whi
h (spe-


ially if global analysis of the program is performed) 
an translate sequen
es of

operations su
h as those in the program above into a number of ma
hine instru
-

tions that is essentially the same as if a lower-level language had been used to

express the same data stru
ture and pointer 
reation and binding operations. The

reader is referred to [74℄ for an overview of progress in su
h 
ompilation te
hniques.

4

Modern logi
 and 
onstraint programming languages have many other features,

su
h as support for higher order and meta programming, module and obje
t systems,

aggregation pro
edures, di�erent sets of libraries, et
. with interesting impli
ations

on the automati
 parallelization pro
ess. However, spa
e limitations prevent us from


onsidering these additional issues.
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spe
i�
ations). This makes the parallelism available in the problem more a
-


essible to the 
ompiler. The relatively 
lean semanti
s of these languages

also makes it 
omparatively easy to use formal methods and prove the trans-

formations performed by the parallelizing 
ompiler both 
orre
t (in terms of


omputed outputs) and eÆ
ient (in terms of 
omputational 
ost).

5

Quite sig-

ni�
ant progress has been made in the past de
ade in the area of automati


program parallelization for logi
 programs and some of the 
hallenges have

been ta
kled quite e�e
tively. In the following we tou
h upon a few of them

(see, for example, [19℄ for an overview of the area).

3.1 Where the Parallelism 
an be Found

There are several types of parallelism whi
h are traditionally exploited in

logi
 and 
onstraint programs. For example, in appli
ations involving exten-

sive sear
h (whi
h is a frequent 
ase in general sear
h problems or in the enu-

meration part of 
onstraint problems). the 
hoi
es represented by alternative

pro
edure de�nitions are often \deep." I.e., a number of steps are typi
ally

exe
uted before a failure implies exploring an alternative de�nition. In this


ase di�erent pro
essors 
an exe
ute simultaneously the di�erent pro
edure

de�nitions (i.e., the di�erent bran
hes of this sear
h spa
e). The resulting par-

allelism is 
alled or-parallelism. This type of parallelism is present for example

in the following program:

money(S,E,N,D,M,O,R,Y) :-

digit(S),

digit(E),

...,


arry(I),

...,

N is E+O-10*I,

...,

digit(0).

digit(1).

...

digit(9).


arry(0).


arry(1).

The 
alls to digit and 
arry in the body of money are 
hoi
es. Ea
h alterna-

tive of these 
hoi
es 
reates a bran
h that in
ludes all the 
ontinuation (the

rest of the body of money as well as the rest of the environment in whi
h money

was 
alled). These bran
hes 
an be exe
uted in parallel.

An alternative strategy is to parallelize the statements and/or pro
edure 
alls

5

Fun
tional programming is another paradigm whi
h also fa
ilitates exploitation

of parallelism. However, it 
an be argued that the la
k of 
ertain features, su
h

as pointers and ba
ktra
king, while making the parallelization problem easier, also

pre
ludes studying some interesting problems.
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in pro
edure bodies, in the same way as in more traditional languages.

6

This

kind of parallelism is referred to as and-parallelism. A typi
al example of and-

parallelism is the parallel exe
ution of the two re
ursive 
alls in the de�nition

of the Fibona

i relation given before. Another example is the following de�ni-

tion of the qui
k-sort program (where the fun
tor \:" is used as list 
onstru
-

tor) for example the two re
ursive 
alls to qsort 
an be exe
uted in parallel:

qsort(nil,nil).

qsort(X:L,R) :- partition(L,X,L1,L2),

qsort(L2,R2),

qsort(L1,R1),

append(R1,X:R2,R).

Be
ause and-parallelism 
orresponds to the traditional parallelism exploited

in loop parallelization, divide and 
onquer algorithms, et
., we will 
on
en-

trate our dis
ussion on it. Also, and-parallelism is the only kind of parallelism

that 
an be exploited in appli
ations where 
hoi
es are \shallow" (i.e., they


orrespond more 
losely to standard 
onditionals). It turns out that there are

strong relationships between these forms of parallelism and the traditional

notion of \data-parallelism" (see [11,10,41℄).

3.2 Corre
tness and EÆ
ien
y of the Parallelization

As in any other programming paradigm, the obje
tive of the parallelizing


ompiler is to un
over as mu
h as possible of the available parallelism, while

guaranteeing that the 
orre
t results are 
omputed (
orre
tness) and that

other observable 
hara
teristi
s of the program, su
h as exe
ution time, are

improved (speedup) or, at the minimum, preserved (no-slowdown) { eÆ
ien
y.

A 
entral issue is, then, under whi
h 
onditions statements in a 
onstraint

logi
 program 
an be 
orre
tly and eÆ
iently parallelized.

For 
omparison, 
onsider the following segments of programs in (a) a tra-

ditional imperative language, (b) a (stri
t) fun
tional language, and (
) a


onstraint logi
 programming language (we assume that the values of W and Z

are initialized to some value before exe
ution of these statements):

6

In fa
t, at a �ner level of granularity, also parts of body statements 
an be exe-


uted in parallel. However, for simpli
ity, and without loss of generality, we assume

parallelization at the goal level, meaning that the units s
heduled will be body state-

ments and pro
edure 
alls. Note also that the 
on
urren
y expressed by 
on
urrent

logi
 programming languages is between \and-parallel tasks". See [42℄ for an ex-

tended dis
ussion on this topi
. Interesting models for exploiting and-parallelism at

a �ner level of granularity are, for example, [77,16,69,51,40℄.
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s

1

Y := W+2; (+ (+ W 2) Y = W+2,

s

2

X := Y+Z; Z) X = Y+Z,

(a) (b) (
)

For simpli
ity, we will reason about the 
orre
tness and eÆ
ien
y of paral-

lelism using the instrumental te
hnique of 
onsidering reorderings (interleav-

ings). Statements s

1

and s

2

in (a) are generally 
onsidered to be dependent

be
ause reversing their order would yield an in
orre
t result, i.e., it violates

the 
orre
tness 
ondition above (this is an example of a 
ow-dependen
y).

7

A

slightly di�erent, but 
losely related situation o

urs in (b): reversing the order

of fun
tion appli
ation would result in a run-time error (one of the arguments

to a fun
tion would be missing). Interestingly, reversing the order of state-

ments s

1

and s

2

in (
) does yield the 
orre
t result. In fa
t, this is an instan
e

of a more general rule: if no side e�e
ts are involved, reordering statements

does not a�e
t 
orre
tness in a 
onstraint logi
 program. As another example,


onsider the following program (whi
h uses only the Herbrand domain, i.e., it

is a Prolog program, and whi
h we will 
all program (d)):

main:-

s

1

p(X),

s

2

q(X),

write(X).

p(X) :- X=a.

q(X) :- X=b, large 
omputation.

q(X) :- X=a.

Note that, again, reversing statements s

1

and s

2

produ
es the same result

(X=a).

The fa
t that (at least in pure segments of programs) the order of statements

in 
onstraint logi
 programming does not a�e
t the result

8

led in early models

to the proposal of exe
ution strategies where parallelism was exploited \fully"

(i.e., all statements were eligible for parallelization). However, the problem

is that su
h parallelization often violates the prin
iple of eÆ
ien
y: for a �-

nite number of pro
essors, the parallelized program 
an be arbitrarily slower

than the sequential program, even under ideal assumptions regarding run-time

overheads. For instan
e, in the last example, reversing the order of the 
alls

to p and q in the body of main implies that the 
all q(X) (X at this point

is free, i.e., a pointer to an empty 
ell) will �rst enter its �rst alternative,

performing the large 
omputation. Upon return of q (with X pointing to the


onstant b) the 
all to p will fail and the system will ba
ktra
k to the se
-

7

To 
omplete the dis
ussion above, note that output-dependen
ies do not appear

in fun
tional or logi
 and 
onstraint programs be
ause single assignment is gener-

ally used { we 
onsider this a minor point of di�eren
e sin
e one of the standard

te
hniques for parallelizing imperative programs is to perform a transformation to

a single assignment program before performing the parallelization.

8

Note that in pra
ti
al languages, however, termination 
hara
teristi
s may


hange, but termination 
an a
tually also be seen as an extreme e�e
t of the other

problem to be dis
ussed: eÆ
ien
y.

10



ond alternative of q, after whi
h p will su

eed with X=a. On the other hand

the sequential exe
ution would terminate in two or three steps, without per-

forming the large 
omputation. The fundamental observation is that, in the

sequential exe
ution, p a�e
ts q, in the sense that it prunes (limits) its 
hoi
es.

Exe
uting q before exe
uting p results in performing spe
ulative 
hoi
es with

respe
t to the sequential exe
ution. Note that this is in fa
t very related to

exe
uting 
onditionals in parallel (or ahead of time) in traditional languages

(note that q above 
ould also be (loosely) written as \q(X) :- if X=b then

large 
omputation else if X=a then true else fail.").

Something very similar o

urs in 
ase (
) above: while exe
ution of the two


onstraints in the original order involves two additions and two assignments

(the same of operations as those of the imperative or fun
tional programs), ex-

e
uting them in reversed order involves �rst adding an equation to the system,


orresponding to statement s

2

, and then solving it against s

1

, whi
h is more

expensive. The obvious 
on
lusion is that, in general, arbitrary parallelization

does not guarantee that the two 
onditions above are met.

9

3.3 Notions of Independen
e

Contrary to early beliefs held in the �eld, most work in the last de
ade has


onsidered that violating the eÆ
ien
y 
ondition is as mu
h a \sign of depen-

den
e" among statements as violating the 
orre
tness 
ondition. As a result,

novel notions of independen
e have been developed whi
h 
apture these two

issues of 
orre
tness and eÆ
ien
y at the same time: independent statements

as those whose run-time behavior, if parallelized, produ
es the same results

as their sequential exe
ution and an in
rease (or, at least, no de
rease) in

performan
e. As seen before, dealing with 
orre
tness is a matter of 
orre
tly

sequen
ing side-e�e
ts (plus low-level issues, of 
ourse, su
h as lo
king). The

te
hniques developed to this end are interesting, but, due to spa
e limitations,

we will 
on
entrate on the arguably more interesting issue of guaranteeing

eÆ
ien
y. To separate issues better, we will dis
uss the issue under the as-

sumption of ideal run-time 
onditions, i.e., no task 
reation and s
heduling

overheads (we will deal with overheads later). Note that, even under these

ideal 
onditions, the statements in (
) and (d) are 
learly dependent.

9

In fa
t, a similar phenomenon o

urs in or-parallelism where arbitrarily paralleliz-

ing bran
hes of the sear
h does not produ
e in
orre
t results, but, if looking for only

one solution to a problem (or, more generally, in the presen
e of pruning operators {

operators whi
h 
ontrol de sear
h, whi
h are pervasive in pra
ti
al programs) results

in spe
ulative 
omputations whi
h 
an have a negative e�e
t of eÆ
ien
y. However,

due to spa
e limitations we 
on
entrate our dis
ussion on and-parallelism, be
ause

of its more dire
t relation to the parallelism that is usually exploited in 
onventional

programs.

11



A fundamental question then is how to guarantee independen
e (without hav-

ing to a
tually run the statements, as suggested by the de�nition given above).

A fundamental result in this 
ontext is the fa
t that, if only the Herbrand 
on-

straint system is used (as in the Prolog language), a statement or pro
edure


all, q, 
annot be a�e
ted by another, p, unless there are free pointers (pointers

to empty stru
ture �elds) from the run-time data stru
tures passed to q from

the data stru
tures passed to p. This 
ondition is 
alled stri
t independen
e

[30,45,47℄.

10

For example, in the following program:

main :- X=f(K,g(K)),

Y=a,

Z=g(L),

W=h(b,L),

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

p and q are stri
tly independent, be
ause, at the point in exe
ution just before


alling p (the situation depi
ted in the right part of the �gure), X and Z point

to data stru
tures whi
h do not point to ea
h other, and, even though Y is a

pointer whi
h is shared between p and q, Y points to a �xed value, whi
h p 
an-

not 
hange (note again that we are dealing with single assignment languages).

As a result, the exe
ution of p 
annot a�e
t q in any way and q 
an be safely

run ahead of time in parallel with p (and, again assuming no run-time over-

heads, no-slowdown is guaranteed). Furthermore, no lo
king or 
opying of the

intervening data stru
tures is required (whi
h helps bring the implementation


loser to the ideal situation). Similarly, q and r are not stri
tly independent,

be
ause there is a pointer in 
ommon (L) among the data stru
tures they have

a

ess to and thus the exe
ution of q 
ould a�e
t that of r.

Unfortunately, the 
ompiler 
annot always determine independen
e by simply

looking at one pro
edure, as above. For example, in the program (a) below:

main :- t(X,Y),

p(X), (a)

q(Y).

main :- t(X,Y),

( indep(X,Y) (b)

-> p(X) & q(Y)

; p(X), q(Y) ).

it 
an determine that p and q are not (stri
tly) independent of t, sin
e, upon

entering the body of the pro
edure, X, Y, and Z are free pointers whi
h are

shared with t. On the other hand, after exe
ution of t the situation is unknown

sin
e perhaps the stru
tures 
reated by t (and pointed to by X and Y) have no

10

To be 
ompletely pre
ise, in order to avoid 
reating spe
ulative parallelism, some

non-failure 
onditions are also required of the goals exe
uted in parallel, but we

knowingly overlook this issue at this point to simplify the dis
ussion.

12



free pointers to ea
h other. Unfortunately, in order to determine this for sure

a global (inter-pro
edural) analysis of the program must be performed. An

alternative is to 
ompile in a run-time test just after the exe
ution of t. This

has the undesirable side-e�e
t that then the no-slowdown property does not

automati
ally hold, be
ause of the overhead involved in the test, but it is still

potentially useful. The 
ompilation of su
h a test 
an be seen as a sour
e to

sour
e transformation of the program as shown in program (b) above (where,

following the &-Prolog [43℄ notation, \&" represents parallel exe
ution, and (a

-> b ; 
) is Prolog's syntax for \(if a then b else 
)").

Furthermore, it is also sometimes possible to determine dire
tly that in fa
t

the operations that t performs on X and Y do not a�e
t the exe
ution of p

and q. This kind of independen
e is 
alled non-stri
t independen
e [46℄. It


annot be determined in general a priori (i.e., by inspe
ting the state of the


omputation prior to exe
uting t, p, and q) and thus ne
essarily requires a

global analysis of the program. However, it very interesting be
ause it appears

often in programs whi
h manipulate \open" data stru
tures (di�eren
e lists,

di
tionaries, et
.). An example of this is the following flatten example, whi
h

eliminates nestings in lists ([X|Xs℄ represents the list whose head is X and

whose tail is Xs and [℄ represents the empty list):

flatten(Xs,Ys) :-

flatten(Xs,Ys,[℄).

flatten([℄, Xs, Xs).

flatten([X|Xs℄,Ys,Zs) :-

flatten(X,Ys,Ys1),

flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs℄, Xs) :-

atomi
(X), X = [℄.

[]b c

[]d
a b c []d

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

a

This program unnests a list without 
opying by 
reating open-ended lists and

passing a pointer to the end of the list (Ys1) to the re
ursive 
all. Sin
e this

pointer is not bound by the �rst 
all to flatten/3 in the body of the re
ursive


lause, the 
alls to flatten(X,Ys,Ys1) and flatten(Xs,Ys1,Zs) are (non-

stri
tly) independent and all the re
ursions 
an be run in parallel.

An even more interesting 
ase o

urs if other 
onstraint systems are used in

addition to or in pla
e of the Herbrand domain. Consider for example the par-

allelization of two pro
edure 
alls p(X),q(Z) in the following two situations:

(a) main :- X > Y, Z > Y, p(X) & q(Z), ...

(b) main :- X > Y, Y > Z, p(X) & q(Z), ...

13



In 
ase (a) the store 
ontains (X>Y,Z>Y) before 
alling q and q, whereas in


ase (b) the store 
ontains (X>Y,Y>Z). The simple pointer aliasing reasoning

implied by the de�nition of stri
t independen
e does not apply dire
tly. How-

ever, p 
annot in any way a�e
t q in 
ase (a), while this 
ould be possible in


ase (b), i.e., the two 
alls are 
learly independent in 
ase (a) while they are

(potentially) dependent in 
ase (b).

Notions of independen
e whi
h apply to general 
onstraint programming (and


an thus deal with the situation above) have been proposed re
ently [22,35℄.

For example, two goals p and q are independent if all 
onstraints posed during

the exe
ution of q are 
onsistent with the output 
onstraints of p.

11

The

following is a suÆ
ient 
ondition for the previous de�nition but whi
h only

needs to look at the state of the store prior to the exe
ution of the 
alls to

be parallelized (for example, using run-time tests whi
h explore the store 
),

in the same spirit as the stri
t-independen
e 
ondition for the Herbrand 
ase.

Assuming the 
alls are p(�x) and q(�y) then the 
ondition is:

(�x \ �y � def(
)) and (9

��x


 ^ 9

��y


! 9

��y[�x


)

where �x is the set of arguments of p, def(
) is the set of variables 
onstrained

to a unique value in 
, and 9

��x

represents the proje
tion of the store on the

variables �x (the notion of proje
tion is prede�ned for ea
h 
onstraint system).

The �rst 
ondition states that the variables whi
h are shared between the goals

in the program text must be bound at run-time to unique values. The se
ond


ondition is perhaps best illustrated through an example. In the two 
ases

above, for (a) 
 = fX > Y; Z > Yg we have 9

�fXg


 = 9

�fZg


 = 9

�fX;Zg


 = true

and therefore p and q are independent. For (b) 
 = fX > Y; Y > Zg we have

9

�fXg


 = 9

�fZg


 = true while 9

fX;Zg


 = X > Z and therefore p and q are not

independent. While 
he
king these 
onditions a

urately and dire
tly 
an be

ineÆ
ient in pra
ti
e, the pro
ess 
an be approximated at 
ompile-time via

analysis or at run-time via simpli�ed 
he
ks on the store.

Other interesting notions of independen
e whi
h have been proposed are based

on \determina
y" (i.e., la
k of 
hoi
es) [67℄: two 
omputations that have no


hoi
es (i.e., \do not ba
ktra
k") are independent (provided, as before, that

they 
an be guaranteed not to fail). Note that this is in general also 
aptured

by the notion of 
onstraint independen
e given above.

11

This a
tually implies a better result even for Prolog programs sin
e its proje
tion

on the Herbrand domain is a stri
t generalization of previous notions of non-stri
t

independen
e. E.g., the sequen
e p(X), q(X) 
an be parallelized if p is de�ned for

example as p(a) and q is de�ned as q(a).

14



foo(...) :-

g

1

(...),

g

2

(...),

g

3

(...).

g1 g3

g2

g1 g3

g2

icond(1-3)

icond(1-2) icond(2-3)

g1 g3

g2

test(1-3)

( test(1-3) -> ( g1, g2 ) & g3
                  ;   g1, ( g2 & g3 ) )

g1, ( g2 & g3 )Alternative:
"Annotation"

Local/Global analysis 
and simplification

Fig. 1. Parallelizing \g

1

(...), g

2

(...), g

3

(...)"

3.4 The Parallelization Pro
ess

Experiments have shown that parallelization using only lo
al analysis and

generating run-time tests results in an ex
essive amount of overhead that

severely limits speedups (see [15℄ for a re
ent 
omparison of a
tual speedups

obtained by several parallelization methods). On the other hand it has also

been observed that there exist programs that obtain better speedups if a

limited amount of run-time 
he
king of independen
e is used than if only

stati
 de
isions are made. Thus, a parallelization methodology is generally

used whi
h 
an a

ommodate both stati
 analysis and run-time 
he
king.

One of the more widely used approa
hes is illustrated in Figure 1, repre-

senting the parallelization of \g

1

(...), g

2

(...), g

3

(...)". The bodies of

pro
edures are explored looking for statements and pro
edure 
alls whi
h are


andidates for parallelization. As in many other parallelizers, a dependen
y

graph is �rst built whi
h in prin
iple re
e
ts the total ordering of statements

and 
alls given by the sequential semanti
s. To 
ontrol the 
omplexity of the

pro
ess these graphs are limited to one body of one pro
edure (if the body is

too long, the body 
an be partitioned in segments, but this does not happen

often in 
onstraint logi
 programs). Ea
h edge in the graph is then labeled

with the independen
e 
ondition (the run-time 
he
k) that would guarantee

independen
e of the statements or 
alls joined by the edge. A global analysis

of the program then tries to prove these 
onditions stati
ally true or false. If

a 
ondition is proved to be true the 
orresponding edge in the dependen
y

graph is eliminated. If proved false, then an un
onditional edge (i.e., a stati


dependen
y) is left. Still, in other edges 
onditions may remain (possibly sim-

pli�ed). The annotation pro
ess then en
odes the resulting graph in the target

parallel language (a variant of the sour
e language). The te
hniques proposed

for performing this pro
ess depend on many fa
tors in
luding whether the

target language allows arbitrary parallelism or just fork-join stru
tures and

15



whether run-time independen
e tests are allowed or not. As an example, Fig-

ure 1 presents two possible en
odings in &-Prolog of the (s
hemati
) depen-

den
y graph obtained after analysis. The parallel expressions generated in this


ase use only fork-join stru
tures, one with run-time 
he
ks and the other one

without them. Interesting te
hniques have been developed for 
ompilation of


onditional non-planar dependen
y graphs into fork-join stru
tures, in addi-

tion to other, non graph-based te
hniques [31,59,14℄.

The global analysis required to simplify the 
onditional graphs has to perform,

among other tasks, inter-pro
edural pointer analyses, not unlike those re
ently

proposed for 
lean versions of C or C++. Early proposals based on traditional

data 
ow analysis te
hniques pointed in the right dire
tion but proved impre-


ise [18℄. The presen
e of re
ursion and dynami
 data stru
tures has fueled

the development of quite sophisti
ated, in
remental inter-pro
edural analyzers

based on abstra
t interpretation [21℄. This has required the development of

eÆ
ient analysis algorithms as well as abstra
t domains for a

urately and eÆ-


iently keeping tra
k of sharing patterns and pointer aliasing in re
ursive data

stru
tures [15,49,58,60℄. These analyses have been applied to the dete
tion

of both stri
t and non-stri
t independen
e [15,17℄ (for example, the flatten

program of Se
tion 3.3 is parallelized automati
ally by the system des
ribed

in [17℄). Analyses have been developed also to derive other important proper-

ties beyond variable instantiation states su
h as determinism [29℄, non-failure

[26℄, and number of answers [13℄. These parallelization te
hniques have also

re
ently been extended to support \dependent" and-parallelism [63℄ (whi
h,

as mentioned before, really refers to exploiting independen
e at a �ner level

of granularity than goals [42℄).

3.5 Dealing with Overheads and Irregularity { S
heduling and Memory Man-

agement

The pre
eding dis
ussion has on purpose avoided the issue of run-time over-

heads. The obvious pra
ti
al impli
ation of the existen
e of overheads (task


reation, s
heduling, data movement, et
.) is that even if a task is known

to be independent, its parallel exe
ution may still render a slow-down. This


an happen if the task does not represent a suÆ
ient amount of 
omputation

with respe
t to the overheads in
urred in its parallelization. In the 
ase of


onstraint logi
 programming the problem is 
ompounded by the fa
t that,

be
ause of the symboli
 nature of the appli
ations typi
ally 
oded, the number

of tasks generated at run-time (as well as the 
omputational 
ost and dynami


memory demands of ea
h su
h task) depends on run-time parameters, i.e., the


omputations are typi
ally highly irregular.

Two main approa
hes have been explored in order to over
ome these problems.
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The �rst one is to 
ombine dynami
 task allo
ation poli
ies with 
ompilation

te
hniques (abstra
t ma
hines) whi
h redu
e as mu
h as possible the overhead

involved in the parallel exe
ution of tasks. The best results have been obtained

by performing low level \mi
ro-task" s
heduling, independently of the oper-

ating system threads [38,55,43℄, and generally based on non-
entralized, \task

stealing" approa
hes. Mi
ro tasks are often represented simply by two point-

ers, one pointing to the pro
edure 
all or statement and another to the relevant

invo
ation re
ord. The tasks are exe
uted by a number of instan
es of (a par-

allel version of) the 
on
eptual abstra
t ma
hines whi
h have been shown to

provide the best performan
e for sequential implementation [75,1,37,55℄. Inter-

esting te
hniques have also been proposed for parallel dynami
 memory man-

agement (using \
a
tus sta
ks" [37,44,12,55,2℄). These te
hniques support,

for example, eÆ
ient memory re
overy during parallel ba
ktra
king sear
h.

Some interesting examples of these dynami
 s
heduling and memory man-

agement te
hniques are presented in [37,43,62,71,64℄ for and-parallelism and

in [76,55,2,20,32℄ for or-parallelism.

3.6 Dealing with Overheads and Irregularity { Granularity Control

The te
hniques mentioned above have proven suÆ
ient for keeping the over-

heads of 
ommuni
ation, s
heduling, and memory management low and ob-

taining signi�
ant speedups in a wide variety of appli
ations on shared memory

multipro
essors (starting from the early paradigmati
 examples: the Sequent

Balan
e and Symmetry series). However, 
urrent trends point towards larger

multipro
essors but with less uniform shared memory a

ess times. Control-

ling in some way the granularity (exe
ution time and spa
e) of the tasks to be

exe
uted in parallel 
an be a useful optimization in su
h ma
hines, and is in

any 
ase a ne
essity when parallelizing for ma
hines with slower inter
onne
-

tions. The latter in
lude, for example, networks of workstations or distribution

of work over the Internet.

This area of granularity 
ontrol (task partitioning) has also re
eived a sig-

ni�
ant amount of attention in the 
ontext of logi
 program parallelization.

The idea of granularity 
ontrol is to repla
e parallel exe
ution with sequential

exe
ution or vi
e-versa based on knowledge (a
tual data, bounds, or estima-

tions) of task size and overheads. The problem is 
hallenging be
ause, while

the basi
 
ommuni
ation overhead parameters of a system 
an be determined

experimentally, the 
omputational 
ost of the tasks (e.g., pro
edure 
alls) be-

ing parallelized, as well as the amount of data that needs to be transferred

before and after a parallel 
all, usually depend on dynami
 
hara
teristi
s of

the input data. In the following example, we 
onsider for parallel exe
ution q

(whi
h, assuming it is 
alled with X bound to a list of numbers, adds one to

ea
h element of the list):

17



..., r(X) & q(X,Y), ...

q([℄,[℄).

q([I|Is℄,[I+1|Os℄):- q(Is,Os).

The 
omputational 
ost of a 
all to q (and also the 
ommuni
ation overheads)

are obviously proportional to the number of elements in the list. The 
hara
-

terization of input data required has made the problem diÆ
ult to solve (well)


ompletely at 
ompile-time.

One of the solutions whi
h has been explored is to derive at 
ompile time


omplexity 
ost fun
tions whi
h give upper and lower bounds on task exe
u-

tion time as a fun
tion of 
ertain measures of input data [24,25,54,27,28,53℄

(alternative solutions are given in, e.g., [73,70℄; see also [48℄ in the 
ontext of

fun
tional languages). Interestingly, some of the analyses used in the deriva-

tion of su
h fun
tions (e.g., [28℄) make use of some te
hniques developed in

the 
ontext of imperative program parallelization, su
h as the Omega test [65℄.

Programs are then transformed at 
ompile-time into semanti
ally equivalent


ounterparts but whi
h automati
ally 
ontrol granularity at run-time based

on su
h fun
tions. In the example above, these tools derive 
ost fun
tions su
h

as, for example, 2 � length(X) + 1 for q (i.e., the unit of 
ost is in this 
ase a

pro
edure 
all, where the addition is 
ounted for simpli
ity as one pro
edure


all). If we assume that we should parallelize when the total 
omputation 
ost

is larger than \100", then we 
an transform the parallel 
all to p and q above

into:

..., Cost=2*~length(X)+1, ( Cost>100 -> r(X) & q(X,Y)

; r(X) , q(X,Y) ), ...

(again, using an if-then-else). Clearly, many issues arise. For example, the 
ost

of performing granularity 
ontrol 
an be fa
tored into the de
isions. The 
ost

fun
tions 
an be simpli�ed and related ba
k to data stru
ture sizes {list length

in the 
ase above, i.e., the 
all will only be parallelized if the length of the list

is larger than a stati
ally pre-
omputed value:

..., ( length greater than(X,50) -> r(X) & q(X,Y)

; r(X) , q(X,Y) ), ...

This in turn has inspired the development of algorithms for keeping tra
k

of data sizes at run-time. Also, the same te
hniques used for 
ost bounding

allow deriving upper and lower bounds on the sizes of the stru
tures being

passed as arguments. This information 
an be fa
tored into parallelization

de
isions (it a�e
ts the threshold). For example, in the example above, the

argument size analysis (assuming that C is the 
ost of sending one element

of a list, and a distributed setting where data is sent and returned eagerly)

will infer that the 
ommuni
ation 
ost is 2 � length(X) �C. Interestingly, the

Computation > Overhead 
ondition (2 � length(X) + 1 > 2 � length(X) �C)


an be determined stati
ally to be always true (and parallelize un
ondition-
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ally) or false (and never parallelize) depending only on the value of C, whi
h

in turn 
an perhaps be determined experimentally in a simple way. Perfor-

man
e improvements have been shown to result from the in
orporation of this

type of grain size 
ontrol, spe
ially for systems with medium to large parallel

exe
ution overheads [54℄. Clearly, there are many interesting issues involved:

te
hniques for derivation of data measures, data size fun
tions, and task 
ost

fun
tions, program transformations, program optimizations, et
. Typi
ally,

the te
hniques are proved 
orre
t, again typi
ally using the notions of approx-

imation and bounding, formalized as abstra
t interpretations.

3.7 Dealing with spe
ulation

Finally, also quite interesting te
hniques have been developed for 
ontrolling

spe
ulation, for both and- and or-parallelism. Explaining these issues in detail

is beyond the s
ope of this paper, but we will illustrate brie
y with an example

how spe
ulation appears in and-parallelism:

foo(X) :- X=b, : : :, p(X) & q(X), : : :

foo(X) :- X=a, : : :

p(X) :- ..., X=a, ...

q(X) :- large 
omputation.

x=b

x=a

q(X)p(X)

In the situation above, the �rst 
lause of foo, after binding X to b, exe
utes

p and q in parallel. However, the exe
ution of p eventually fails when it poses

the 
onstraint X=a and exe
ution must 
ontinue with the se
ond 
lause of foo.

Sin
e p and q are in 
onjun
tion, the exe
ution of q must now be dis
arded

(i.e., starting q ahead of time was spe
ulative). A 
ombination of \left-biased

s
heduling" (ensuring that a pro
essor has taken p before another 
an take

q) and \instantaneous killing of siblings" (e.g., of q above) at least ensures

no-slowdown [37,47,45℄. No-slowdown (and even theoreti
al speedup) 
an also

be guaranteed by determining stati
ally that the tasks involved in a parallel


onjun
tion (ex
ept the leftmost one) will not fail (te
hniques for this have

been proposed in [26℄). Many other interesting te
hniques for dealing with

spe
ulation have been developed (spe
ially in the 
ontext or or-parallelism),

in
luding sophisti
ated s
hedulers, dynami
 throttling of spe
ulative tasks,

et
. [38,36,8,26℄.
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4 Con
lusions: Towards Cross-Fertilization

As a result of the work outlined in previous se
tions, quite robust, publi
ly

available 
ompilers and run-time systems have been available for some time

now, generally for Prolog, whi
h automati
ally exploit parallelism in 
omplex

appli
ations. Su
h systems have been shown to provide speedups over the state

of the art sequential implementations available at the time of their develop-

ment. The speed and robustness of these 
ompilers has also been instrumental

in demonstrating that abstra
t interpretation provides a very adequate frame-

work for developing provably 
orre
t, powerful, and eÆ
ient global analyzers

and, 
onsequently, parallelizers [78,15,63℄. More re
ently, te
hniques and pra
-

ti
al tools have also been developed for the analysis of general 
onstraint logi


programs [34℄ as well as for their parallelization [33℄. Prototypes in
orporat-

ing the granularity 
ontrol te
hniques mentioned above are also starting to be

available. However, mu
h work still remains to be done in these areas, and we

believe there may be good opportunity at this time for in
reased transferen
e

of te
hniques a
ross programming paradigms.

It 
an be argued that parti
ularly strong progress has been made in the 
ontext

of (
onstraint) logi
 programming in inter-pro
edural analysis of programs

with dynami
 data stru
tures and pointers, in parallelization using 
onditional

dependen
y graphs (and possibly generating run-time independen
e tests), in

the de�nition of the advan
ed notions of independen
e that are needed in the

presen
e of spe
ulative 
omputations or languages whi
h in
lude 
onstraints,

in the development of eÆ
ient task representation te
hniques and dynami


s
heduling algorithms to deal with irregularity and spe
ulation, and in the

stati
 inferen
e of task 
ost fun
tions for 
ontrolling granularity.

On the other hand, the te
hniques developed in the area of 
onstraint logi
 pro-

gram parallelization are 
ertainly weaker than those developed in the 
ontext

of numeri
al 
omputing for regular problems. For example, logi
 program-

ming parallelizers 
an dis
over the parallelism in 
omplex re
ursive traversals

of data stru
tures, but do not handle well traversals that are based on integer

(i.e., array subs
ript) arithmeti
, for whi
h mu
h work exists in the area of im-

perative languages. Also, while 
urrent parallel 
onstraint logi
 programming

systems are reasonably good at dealing with tasks with dynami
 
osts, the

te
hniques 
urrently used are again 
omparatively weaker for the stati
 
ase

than the partitioning and pla
ement algorithms used in imperative program

parallelization [11,10,41,23℄. Ideally, a parallelizing 
ompiler should perform

good partitioning and pla
ement for any kind of ar
hite
ture, using stati


te
hniques when possible and dynami
 te
hniques when unavoidable. It thus

appears that it would be quite interesting to merge the 
omplementary work

done in these areas by the di�erent 
ommunities. Some progress has been

made in one dire
tion in the 
ontext of \data parallelism" [10,41,23℄, but it
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still seems like a very promising avenue for future resear
h.

Constraint logi
 programming extends the high-level programming paradigm

that logi
 programming o�ers in symboli
 appli
ations to numeri
al domains.

We believe it o�ers a natural platform in whi
h to study the 
ombination of

the parallelization te
hniques used in the numeri
al and symboli
 program-

ming �elds. Independently of the 
onvenien
e of using 
onstraint programming

languages dire
tly (as is being done with signi�
ant 
ommer
ial su

ess in dif-

�
ult problem areas su
h as s
heduling or resour
e allo
ation), we also believe

that many features of these languages, su
h as the use of 
onstraints (\re-

versible statements") or the embedded sear
h 
apabilities, will slowly make

their way into the designs of mainstream languages. In the same way, other

features of symboli
 languages (su
h as dynami
 data stru
ture 
reation and

garbage 
olle
tion, or byte
ode 
ompilation) have already made it into widely

used languages su
h as Java. Current proposals in this dire
tion in
lude ILOG

(a 
ommer
ially su

essful library whi
h whi
h extends C++ and Java with


onstraint handling 
apabilities) and [5℄, an imperative language with sear
h


apabilities.
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