
Parallelizing Irregular and Pointer-Based

Computations Automati
ally: Perspe
tives

from Logi
 and Constraint Programming

1

Manuel Hermenegildo

S
hool of Computer S
ien
e

Te
hni
al University of Madrid (UPM), Spain

herme�fi.upm.es

http://www.
lip.dia.fi.upm.es/~herme

Abstra
t

Irregular
omputations pose some of the most interesting and
hallenging prob-

lems in automati
 parallelization. Irregularity appears in
ertain kinds of numeri
al

problems and is pervasive in symboli
 appli
ations. Su
h
omputations often use

dynami
 data stru
tures whi
h make heavy use of pointers. This
ompli
ates all the

steps of a parallelizing
ompiler, from independen
e dete
tion to task partitioning

and pla
ement. Starting in the mid 80's there has been signi�
ant progress in the

development of parallelizing
ompilers for logi
 programming (and, more re
ently,

onstraint programming) resulting in quite
apable parallelizers. The typi
al ap-

pli
ations of these paradigms frequently involve irregular
omputations, and make

heavy use of dynami
 data stru
tures with pointers, sin
e logi
al variables represent

in pra
ti
e a well behaved form of pointers. This arguably makes the te
hniques used

in these
ompilers potentially interesting. In this paper we introdu
e in a tutorial

way some of the problems fa
ed by parallelizing
ompilers for logi
 and
onstraint

programs and provide pointers to some of the signi�
ant progress made in the area.

In parti
ular, this work has resulted in a series of a
hievements in the areas of inter-

pro
edural pointer aliasing analysis for independen
e dete
tion,
ost models and

ost analysis,
a
tus-sta
k memory management, te
hniques for managing spe
ula-

tive and irregular
omputations through task granularity
ontrol and dynami
 task

allo
ation (su
h as work-stealing s
hedulers), et
.

Key words: Automati
 Parallelization, Irregular Computations, Spe
ulation,

Ca
tus Sta
k, Work Stealing, Pointer Aliasing Analysis, Task Granularity Control,

Global Analysis, Abstra
t Interpretation.

1

This paper is an extended version of the abstra
t for an invited talk given at

Europar'97 [39℄.

Preprint submitted to Elsevier Preprint

1 Introdu
tion

Multipro
essing hardware is already available whi
h o�ers signi�
ant advan-

tages in either performan
e or
ost/performan
e over unipro
essors. For ex-

ample, departmental servers using fast, inexpensive o�-the-shelf pro
essors are

urrently o�ered at a fra
tion of the
ost of the mainframes they repla
e, and

even multipro
essor workstations are now not un
ommon. Faster and more

ubiquitous high-speed networks in
rease the potential of exploiting distributed

exe
ution.

One of the re
urring fa
ts that hamper the progress of widespread use of par-

allelism is that in pra
ti
e, beyond some manually parallelized high volume

appli
ations and s
ienti�

odes, still
omparatively few programs are written

or transformed to exploit parallelism. The traditional argument that paral-

lelization is a diÆ
ult and error-prone task (see, e.g., [52℄) seems to remain

valid [3℄, and still points to the ne
essity of improving the tools used in the

pro
ess. This in
ludes developing languages that o�er better support for par-

allel programming, improved libraries for supporting parallel programming on

onventional languages, and signi�
ant progress in support tools, from paral-

lelizing
ompilers to performan
e analyzers.

Herein, we
on
entrate on the issue of automati
 parallelization. While man-

ual parallelization may of
ourse always have a pla
e, parallelizing
ompilers

are interesting in that they have the potential to dramati
ally lessen the par-

allelization burden and there is hope that one they they may eliminate it alto-

gether. However, despite mu
h progress, it appears that signi�
ant
hallenges

still remain in the area of automati
 parallelization, in
luding dealing well with

both regular and irregular
omputations, performing eÆ
ient partitioning for

both types of
omputations, dealing with data stru
tures with pointers, han-

dling spe
ulative
omputations, automati
ally
hanging data stru
tures for

more eÆ
ient exploitation of parallelism, and developing parallelization te
h-

niques for new, higher level programming paradigms.

The goal of developing e�e
tive parallelizing
ompilers is being sought after

on
urrently and, unfortunately, somewhat independently in the
ontext of

di�erent programming paradigms or even individual languages. As a result of

the
hara
teristi
s of the typi
al appli
ations of su
h paradigms or languages,

the amount of progress made on the di�erent topi
s involved made di�ers.

For example, some very signi�
ant progress has been made in parallelizing

ompilers for regular, numeri
al
omputations, generally based on the FOR-

TRAN language (see, e.g., [7,79℄). This resear
h has resulted in well known

on
epts and te
hniques in
luding a well understood notion of independen
e

(based on the Bernstein
onditions or, for example, more re
ent notions of

2

\semanti
 independen
e" [9℄), sophisti
ated synta
ti
 loop transformations,

transformations based on polytope models, extensive work on partitioning

and pla
ement, et
. On the other hand, the appli
ability of these te
hniques

has remained
omparatively limited for irregular or symboli

omputations,

and still few pra
ti
al systems deal well with parallelization a
ross pro
edure

alls or with irregular
omputations. Also, the te
hniques used often rely on

the relative
leanliness of FORTRAN as a programming language and addi-

tional work is needed in order to extend them to other mainstream languages

like C or C++. These languages in
lude features su
h as dynami
, re
ursive

data stru
tures and pointer manipulation whi
h
ompli
ate the dete
tion of

independen
e among statements or pro
edure
alls and mu
h
urrent work is

aimed at developing the related independen
e analyses. An important example

is pointer aliasing analysis (see, e.g., [4℄, [68℄, and their referen
es).

We argue that, despite the apparent di�eren
es among imperative, fun
tional,

logi
,
onstraint, and obje
t oriented languages, the fundamental issues being

ta
kled are quite similar. Thus, we believe that progress towards more e�e
-

tive parallelizing
ompilers for all programming paradigms
an be sped up by

ross fertilization of the results obtained in di�erent paradigms. It is with this

thought in mind (and without aspiring to being exhaustive, whi
h is impos-

sible given the spa
e available and unne
essary to make the point) that we

present in the following a brief overview of some of the problems whi
h appear

in the area of automati
 parallelization of logi
 and
onstraint programs and

provide pointers to the some of the solutions and signi�
ant a
hievements of

the area.

2 Logi
 and Constraint Programming

Due to spa
e limitations, we will present only a brief overview of logi
 and

onstraint programming, spe
i�
ally tailored to the obje
tive of our presenta-

tion (the reader is referred for example to [72,56,50,6℄ for details). We warn

the reader that this
annot in any way be
onsidered a fair introdu
tion to the

topi
, sin
e we
ompletely overlook aspe
ts of logi
 and
onstraint program-

ming whi
h are widely per
eived as important. These in
lude the de
larative

nature and the logi
al semanti
s: programs in these languages are often not

only the
oding of an algorithm, but also a logi
al statement of a problem,

whi
h is very
lose to a spe
i�
ation. In the following we take a fully opera-

tional view { the same one that the parallelizing
ompiler takes.

The basi
 \statements" of a
onstraint logi
 program are
onstraints. Con-

straints relate (logi
al) variables (variable identi�ers start with upper
ase

while
onstants and data stru
ture des
riptors {fun
tors, see later{ start with

lower
ase). Su
h variables
an be free, or they
an be
onstrained to a
ertain

3

value or set of values. For example, the statement X=Y+Z establishes that the

given
onstraint must hold among those variables (we assume for example that

the variables range over
oating point numbers). Su
h
onstraints are kept in

the store. Assume Y and Z have a \known" value at the time of exe
uting this

onstraint (for example, the store
ontains Y=2 and Z=3). Then, the operational

semanti
s of su
h a
onstraint is very similar to that in any other language:

the statement implies an addition (2+3) and an \assignment" of the result (5)

to X. This
an also be seen as telling (posting) the
onstraint X=5. Assume in-

stead that su
h values are not known. Then exe
uting the statement involves

pla
ing the
onstraint in the store for later solution if/when another
onstraint

is exe
uted. Sequen
es of
onstraints are separated by
ommas. Assume again

an empty initial store and the sequen
e of
onstraints \Y=2, X=Y+Z". After

exe
uting this sequen
e the store would
ontain \Y=2, X=2+T1, Z=T1". Here,

we are making the assumption that sequen
es of
onstraints exe
ute sequen-

tially in the order in whi
h they appear and that the store is always kept as

\fully solved" as possible and in a normalized form {see [50℄ for details.

Constraint logi
 programming also provides a method for pro
edure abstra
-

tion. For example,
ode segment (a) below:

foo(Z,X) :- Y=2, (a)

X=Y+Z.

main :- foo(K,W),

K = 3, (b)

write(W).

de�nes a two-argument pro
edure foo. A pro
edure de�nes a lo
al dynami

invo
ation
ontext in the usual way, i.e., upon entering the pro
edure Y is a

new lo
al variable while X and Z are formal parameters. The
alling regime is

not unlike \
all by referen
e" (see the dis
ussion later about logi
al variables

being essentially pointers). For example, the e�e
t of
alling foo(3,W) is that

upon return W=5 is added to the
alling
ontext. Note that the pro
edure is

synta
ti
ally not very di�erent from what one would write in a fun
tional or

imperative language, and its behavior is essentially the same for
alls su
h

as foo(3,W). However, the
omplete operational behavior of the
onstraint

programming pro
edure is ri
her be
ause it allows other \
alling modes." For

example, a
all to foo(K,5) su

eeds and upon return K=3 is added to the

alling
ontext. Furthermore, a
all to foo(K,W) also su

eeds and upon re-

turn the
onstraint W=2+K is added to the
alling
ontext. In some ways, the

statements and pro
edures in
onstraint programs
an be seen as \reversible"

versions of their synta
ti

ounterparts in
onventional languages. Note that

also the de
larative meaning of su
h programs is ri
her be
ause it de�nes a

omplete logi
al relation (rather than a fun
tion) among its arguments. Pro
e-

dure
alls
an appear in the bodies of pro
edures interspersed with
onstraints.

For example,
ode segment (b) above would produ
e \5" on the standard out-

put.

Pro
edures
an have multiple de�nitions, whi
h represent di�erent alterna-

4

tives. Establishing a somewhat ina

urate parallel with
onventional languages,

a set of pro
edure de�nitions
an be seen as an \undoable" form of
ase state-

ment or
onditional. When su
h a pro
edure is entered it is said to
reate a

hoi
e. Su
h alternatives are tried in the textual order in whi
h they appear

in the program, i.e., the �rst de�nition of a pro
edure is tried �rst and, if that

results in a failure, then the next one is tried (again, we follow the default exe-

ution strategy used in most pra
ti
al
onstraint programming languages). A

failure o

urs when a
onstraint is exe
uted whi
h makes the store unsolvable

(i.e., it is in
ompatible with the
urrent state of the store). This is not unlike

the
ase of a test evaluating to false in a
onditional. When a failure o

urs, the

system ba
ktra
ks to the last
hoi
e left behind and tries the next alternative

in that
hoi
e. Sin
e pro
edure
alls
an be nested, a sta
k of
hoi
es is kept

by the system. A
hoi
e is pushed on the sta
k every time a pro
edure with

several alternatives is invoked. When a failure o

urs, exe
ution
ontinues at

the next alternative of the
hoi
e on top of the
hoi
e sta
k. When the last

alternative of a
hoi
e is entered, the
hoi
e itself is popped from the sta
k.

For example, the following program:

main :- bar(K,W),

K > 2,

write(W).

bar(X,Y) :- X < 0, Y = -10.

bar(X,Y) :- X >= 0, Y = 10.

prints \10". The �rst alternative of bar is tried �rst, resulting in W=-10 and K

< 0, but exe
uting K > 2 produ
es a failure sin
e the store now has no solu-

tion. After trying the se
ond alternative of bar, K > 2 su

eeds (the store is

then K > 2, W = 10) and the program terminates after printing the value of

W.

2

The following, slightly more interesting example de�ning the Fibona

i rela-

tion illustrates the use of re
ursion:

fib(0, 0).

fib(1, 1).

fib(N, F1+F2) :- N>1, F1>=0, F2>=0,

fib(N-1, F1),

fib(N-2, F2).

(in this example we have used a more
onvenient syntax where input param-

eter normalization is done automati
ally by the system { i.e., \fib(0,0)." is

a shorthand for \fib(X,Y) :- X=0, Y=0." and \fib(N, F1+F2) :- ..." a

shorthand for \fib(N, X) :- X=F1+F2, ..."). Calling fib(8,Y) establishes

Y=21, and
alling fib(X,21) establishes X=8. Calling fib(X,Y) produ
es as

alternatives the
onstraints (X=0, Y=0), (X=1, Y=1), (X=2, Y=1), et
.

In the previous examples we have been using a
ertain
onstraint system:

essentially, equalities and inequalities involving linear arithmeti
 expressions

over the (pseudo-)real numbers. In many
ases the operations of
onstraint

2

Of
ourse, an optimizing
ompiler would
ompile away mu
h of the behavior

des
ribed in this very simple
ase.

5

programs
an be
ompiled dire
tly into standard ma
hine operations. How-

ever, in others (when a
tual
onstraint solving is involved) a
onstraint solving

algorithm needs to be applied. Thus, the de�nition of ea
h
onstraint system

must in
lude a de
idable and (hopefully) eÆ
ient \solver." Pra
ti
al languages

typi
ally in
lude several
onstraint systems.

A parti
ularly interesting
onstraint system present in almost all
onstraint

languages is that of \equality relations over data stru
tures" (i.e., �nite trees).

This is generally referred to as the Herbrand domain (and is the \working

domain" of the Prolog language). This domain is
ru
ial be
ause it allows

building and pro
essing data stru
tures with (single assignment) pointers in

a very simple and de
larative way. For example, the following program:

main :- X = f(Y,Z),

Y = a,

W = Z,

W = g(K),

X = f(a,g(b)).

�rst builds (dynami
ally) a new two-argument stru
ture whose
onstru
tor

symbol is f (in other words, a tree whose root node is f and whi
h has two

open bran
hes):

X = f(Y,Z),

X Yf Z

The variables Y and Z are pointers to the two arguments of the stru
ture. The

statement:

Y = a,

X f Za

\binds" the �rst argument of the stru
ture to the
onstant a (i.e., at this time

X points to f(a,Z)). The following statement:

W = Z,

X f Za W

aliases the pointers W and Z (e.g., W points to Z). Therefore, the result of the

statement:

W = g(K),

X f Za W g K

is to \bind" the se
ond argument of the stru
ture to g(K) (and as a result X

now points to f(a,g(K))). The last statement:

X = f(a,g(b)).

X f Za W g b

�nally binds K to the
onstant b. This last statement illustrates how open

arguments inside a stru
ture
an also be a

essed by traversing the stru
-

6

ture using a pro
ess not unlike the \pattern mat
hing" available in modern

fun
tional programming languages (ex
ept that it is again a \reversible" ver-

sion of it). The algorithm
apable of solving all su
h equality
onstraints over

data stru
tures is uni�
ation [66,61,57℄. One of the ni
e
hara
teristi
s of this

onstraint system is that there exist very eÆ
ient algorithms for performing

uni�
ation.

3

As mentioned before, Prolog, one of the most popular logi
 pro-

gramming languages, is essentially a
onstraint logi
 programming language

whi
h uses ex
lusively the Herbrand domain. It is no surprise that Prolog is

onsidered very well suited for the easy manipulation of data stru
tures with

pointers.

4

3 Parallelization of Constraint Logi
 Programs

One of the main theses of this paper is that logi
 programming and
onstraint

programming languages o�er a parti
ularly interesting
ase study for the area

of automati
 parallelization. On one hand, these programming paradigms pose

signi�
ant
hallenges to the parallelization task, whi
h relate
losely to the

more diÆ
ult
hallenges fa
ed in imperative language parallelization. Su
h

hallenges in
lude highly irregular
omputations and dynami

ontrol
ow

(due to the symboli
 nature of many of their appli
ations), non-trivial notions

of (semanti
) independen
e, the presen
e of dynami
ally allo
ated,
omplex

data stru
tures
ontaining pointers, and having to deal with spe
ulation.

On the other hand, due to their high-level nature these languages also fa-

ilitate the study of parallelization issues. As we have seen, logi
al variables

are a
tually a quite \well behaved" version of pointers, in the sense that no

astings or pointer arithmeti
 (other than array indexing through the arg/3

builtin) is allowed. Thus, pointers in these languages are not unlike those al-

lowed, for example, in \
lean" versions of C (or, to a lesser extent, in Java).

In addition, similarly to fun
tional languages, logi
 and
onstraint languages

allow
oding in a way whi
h expresses the desired algorithm in a way that

re
e
ts more dire
tly the stru
ture of the problem (i.e., staying
loser to the

3

Furthermore, there are also very su

essful
ompilation te
hniques whi
h (spe-

ially if global analysis of the program is performed)
an translate sequen
es of

operations su
h as those in the program above into a number of ma
hine instru
-

tions that is essentially the same as if a lower-level language had been used to

express the same data stru
ture and pointer
reation and binding operations. The

reader is referred to [74℄ for an overview of progress in su
h
ompilation te
hniques.

4

Modern logi
 and
onstraint programming languages have many other features,

su
h as support for higher order and meta programming, module and obje
t systems,

aggregation pro
edures, di�erent sets of libraries, et
. with interesting impli
ations

on the automati
 parallelization pro
ess. However, spa
e limitations prevent us from

onsidering these additional issues.

7

spe
i�
ations). This makes the parallelism available in the problem more a
-

essible to the
ompiler. The relatively
lean semanti
s of these languages

also makes it
omparatively easy to use formal methods and prove the trans-

formations performed by the parallelizing
ompiler both
orre
t (in terms of

omputed outputs) and eÆ
ient (in terms of
omputational
ost).

5

Quite sig-

ni�
ant progress has been made in the past de
ade in the area of automati

program parallelization for logi
 programs and some of the
hallenges have

been ta
kled quite e�e
tively. In the following we tou
h upon a few of them

(see, for example, [19℄ for an overview of the area).

3.1 Where the Parallelism
an be Found

There are several types of parallelism whi
h are traditionally exploited in

logi
 and
onstraint programs. For example, in appli
ations involving exten-

sive sear
h (whi
h is a frequent
ase in general sear
h problems or in the enu-

meration part of
onstraint problems). the
hoi
es represented by alternative

pro
edure de�nitions are often \deep." I.e., a number of steps are typi
ally

exe
uted before a failure implies exploring an alternative de�nition. In this

ase di�erent pro
essors
an exe
ute simultaneously the di�erent pro
edure

de�nitions (i.e., the di�erent bran
hes of this sear
h spa
e). The resulting par-

allelism is
alled or-parallelism. This type of parallelism is present for example

in the following program:

money(S,E,N,D,M,O,R,Y) :-

digit(S),

digit(E),

...,

arry(I),

...,

N is E+O-10*I,

...,

digit(0).

digit(1).

...

digit(9).

arry(0).

arry(1).

The
alls to digit and
arry in the body of money are
hoi
es. Ea
h alterna-

tive of these
hoi
es
reates a bran
h that in
ludes all the
ontinuation (the

rest of the body of money as well as the rest of the environment in whi
h money

was
alled). These bran
hes
an be exe
uted in parallel.

An alternative strategy is to parallelize the statements and/or pro
edure
alls

5

Fun
tional programming is another paradigm whi
h also fa
ilitates exploitation

of parallelism. However, it
an be argued that the la
k of
ertain features, su
h

as pointers and ba
ktra
king, while making the parallelization problem easier, also

pre
ludes studying some interesting problems.

8

in pro
edure bodies, in the same way as in more traditional languages.

6

This

kind of parallelism is referred to as and-parallelism. A typi
al example of and-

parallelism is the parallel exe
ution of the two re
ursive
alls in the de�nition

of the Fibona

i relation given before. Another example is the following de�ni-

tion of the qui
k-sort program (where the fun
tor \:" is used as list
onstru
-

tor) for example the two re
ursive
alls to qsort
an be exe
uted in parallel:

qsort(nil,nil).

qsort(X:L,R) :- partition(L,X,L1,L2),

qsort(L2,R2),

qsort(L1,R1),

append(R1,X:R2,R).

Be
ause and-parallelism
orresponds to the traditional parallelism exploited

in loop parallelization, divide and
onquer algorithms, et
., we will
on
en-

trate our dis
ussion on it. Also, and-parallelism is the only kind of parallelism

that
an be exploited in appli
ations where
hoi
es are \shallow" (i.e., they

orrespond more
losely to standard
onditionals). It turns out that there are

strong relationships between these forms of parallelism and the traditional

notion of \data-parallelism" (see [11,10,41℄).

3.2 Corre
tness and EÆ
ien
y of the Parallelization

As in any other programming paradigm, the obje
tive of the parallelizing

ompiler is to un
over as mu
h as possible of the available parallelism, while

guaranteeing that the
orre
t results are
omputed (
orre
tness) and that

other observable
hara
teristi
s of the program, su
h as exe
ution time, are

improved (speedup) or, at the minimum, preserved (no-slowdown) { eÆ
ien
y.

A
entral issue is, then, under whi
h
onditions statements in a
onstraint

logi
 program
an be
orre
tly and eÆ
iently parallelized.

For
omparison,
onsider the following segments of programs in (a) a tra-

ditional imperative language, (b) a (stri
t) fun
tional language, and (
) a

onstraint logi
 programming language (we assume that the values of W and Z

are initialized to some value before exe
ution of these statements):

6

In fa
t, at a �ner level of granularity, also parts of body statements
an be exe-

uted in parallel. However, for simpli
ity, and without loss of generality, we assume

parallelization at the goal level, meaning that the units s
heduled will be body state-

ments and pro
edure
alls. Note also that the
on
urren
y expressed by
on
urrent

logi
 programming languages is between \and-parallel tasks". See [42℄ for an ex-

tended dis
ussion on this topi
. Interesting models for exploiting and-parallelism at

a �ner level of granularity are, for example, [77,16,69,51,40℄.

9

s

1

Y := W+2; (+ (+ W 2) Y = W+2,

s

2

X := Y+Z; Z) X = Y+Z,

(a) (b) (
)

For simpli
ity, we will reason about the
orre
tness and eÆ
ien
y of paral-

lelism using the instrumental te
hnique of
onsidering reorderings (interleav-

ings). Statements s

1

and s

2

in (a) are generally
onsidered to be dependent

be
ause reversing their order would yield an in
orre
t result, i.e., it violates

the
orre
tness
ondition above (this is an example of a
ow-dependen
y).

7

A

slightly di�erent, but
losely related situation o

urs in (b): reversing the order

of fun
tion appli
ation would result in a run-time error (one of the arguments

to a fun
tion would be missing). Interestingly, reversing the order of state-

ments s

1

and s

2

in (
) does yield the
orre
t result. In fa
t, this is an instan
e

of a more general rule: if no side e�e
ts are involved, reordering statements

does not a�e
t
orre
tness in a
onstraint logi
 program. As another example,

onsider the following program (whi
h uses only the Herbrand domain, i.e., it

is a Prolog program, and whi
h we will
all program (d)):

main:-

s

1

p(X),

s

2

q(X),

write(X).

p(X) :- X=a.

q(X) :- X=b, large
omputation.

q(X) :- X=a.

Note that, again, reversing statements s

1

and s

2

produ
es the same result

(X=a).

The fa
t that (at least in pure segments of programs) the order of statements

in
onstraint logi
 programming does not a�e
t the result

8

led in early models

to the proposal of exe
ution strategies where parallelism was exploited \fully"

(i.e., all statements were eligible for parallelization). However, the problem

is that su
h parallelization often violates the prin
iple of eÆ
ien
y: for a �-

nite number of pro
essors, the parallelized program
an be arbitrarily slower

than the sequential program, even under ideal assumptions regarding run-time

overheads. For instan
e, in the last example, reversing the order of the
alls

to p and q in the body of main implies that the
all q(X) (X at this point

is free, i.e., a pointer to an empty
ell) will �rst enter its �rst alternative,

performing the large
omputation. Upon return of q (with X pointing to the

onstant b) the
all to p will fail and the system will ba
ktra
k to the se
-

7

To
omplete the dis
ussion above, note that output-dependen
ies do not appear

in fun
tional or logi
 and
onstraint programs be
ause single assignment is gener-

ally used { we
onsider this a minor point of di�eren
e sin
e one of the standard

te
hniques for parallelizing imperative programs is to perform a transformation to

a single assignment program before performing the parallelization.

8

Note that in pra
ti
al languages, however, termination
hara
teristi
s may

hange, but termination
an a
tually also be seen as an extreme e�e
t of the other

problem to be dis
ussed: eÆ
ien
y.

10

ond alternative of q, after whi
h p will su

eed with X=a. On the other hand

the sequential exe
ution would terminate in two or three steps, without per-

forming the large
omputation. The fundamental observation is that, in the

sequential exe
ution, p a�e
ts q, in the sense that it prunes (limits) its
hoi
es.

Exe
uting q before exe
uting p results in performing spe
ulative
hoi
es with

respe
t to the sequential exe
ution. Note that this is in fa
t very related to

exe
uting
onditionals in parallel (or ahead of time) in traditional languages

(note that q above
ould also be (loosely) written as \q(X) :- if X=b then

large
omputation else if X=a then true else fail.").

Something very similar o

urs in
ase (
) above: while exe
ution of the two

onstraints in the original order involves two additions and two assignments

(the same of operations as those of the imperative or fun
tional programs), ex-

e
uting them in reversed order involves �rst adding an equation to the system,

orresponding to statement s

2

, and then solving it against s

1

, whi
h is more

expensive. The obvious
on
lusion is that, in general, arbitrary parallelization

does not guarantee that the two
onditions above are met.

9

3.3 Notions of Independen
e

Contrary to early beliefs held in the �eld, most work in the last de
ade has

onsidered that violating the eÆ
ien
y
ondition is as mu
h a \sign of depen-

den
e" among statements as violating the
orre
tness
ondition. As a result,

novel notions of independen
e have been developed whi
h
apture these two

issues of
orre
tness and eÆ
ien
y at the same time: independent statements

as those whose run-time behavior, if parallelized, produ
es the same results

as their sequential exe
ution and an in
rease (or, at least, no de
rease) in

performan
e. As seen before, dealing with
orre
tness is a matter of
orre
tly

sequen
ing side-e�e
ts (plus low-level issues, of
ourse, su
h as lo
king). The

te
hniques developed to this end are interesting, but, due to spa
e limitations,

we will
on
entrate on the arguably more interesting issue of guaranteeing

eÆ
ien
y. To separate issues better, we will dis
uss the issue under the as-

sumption of ideal run-time
onditions, i.e., no task
reation and s
heduling

overheads (we will deal with overheads later). Note that, even under these

ideal
onditions, the statements in (
) and (d) are
learly dependent.

9

In fa
t, a similar phenomenon o

urs in or-parallelism where arbitrarily paralleliz-

ing bran
hes of the sear
h does not produ
e in
orre
t results, but, if looking for only

one solution to a problem (or, more generally, in the presen
e of pruning operators {

operators whi
h
ontrol de sear
h, whi
h are pervasive in pra
ti
al programs) results

in spe
ulative
omputations whi
h
an have a negative e�e
t of eÆ
ien
y. However,

due to spa
e limitations we
on
entrate our dis
ussion on and-parallelism, be
ause

of its more dire
t relation to the parallelism that is usually exploited in
onventional

programs.

11

A fundamental question then is how to guarantee independen
e (without hav-

ing to a
tually run the statements, as suggested by the de�nition given above).

A fundamental result in this
ontext is the fa
t that, if only the Herbrand
on-

straint system is used (as in the Prolog language), a statement or pro
edure

all, q,
annot be a�e
ted by another, p, unless there are free pointers (pointers

to empty stru
ture �elds) from the run-time data stru
tures passed to q from

the data stru
tures passed to p. This
ondition is
alled stri
t independen
e

[30,45,47℄.

10

For example, in the following program:

main :- X=f(K,g(K)),

Y=a,

Z=g(L),

W=h(b,L),

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

p and q are stri
tly independent, be
ause, at the point in exe
ution just before

alling p (the situation depi
ted in the right part of the �gure), X and Z point

to data stru
tures whi
h do not point to ea
h other, and, even though Y is a

pointer whi
h is shared between p and q, Y points to a �xed value, whi
h p
an-

not
hange (note again that we are dealing with single assignment languages).

As a result, the exe
ution of p
annot a�e
t q in any way and q
an be safely

run ahead of time in parallel with p (and, again assuming no run-time over-

heads, no-slowdown is guaranteed). Furthermore, no lo
king or
opying of the

intervening data stru
tures is required (whi
h helps bring the implementation

loser to the ideal situation). Similarly, q and r are not stri
tly independent,

be
ause there is a pointer in
ommon (L) among the data stru
tures they have

a

ess to and thus the exe
ution of q
ould a�e
t that of r.

Unfortunately, the
ompiler
annot always determine independen
e by simply

looking at one pro
edure, as above. For example, in the program (a) below:

main :- t(X,Y),

p(X), (a)

q(Y).

main :- t(X,Y),

(indep(X,Y) (b)

-> p(X) & q(Y)

; p(X), q(Y)).

it
an determine that p and q are not (stri
tly) independent of t, sin
e, upon

entering the body of the pro
edure, X, Y, and Z are free pointers whi
h are

shared with t. On the other hand, after exe
ution of t the situation is unknown

sin
e perhaps the stru
tures
reated by t (and pointed to by X and Y) have no

10

To be
ompletely pre
ise, in order to avoid
reating spe
ulative parallelism, some

non-failure
onditions are also required of the goals exe
uted in parallel, but we

knowingly overlook this issue at this point to simplify the dis
ussion.

12

free pointers to ea
h other. Unfortunately, in order to determine this for sure

a global (inter-pro
edural) analysis of the program must be performed. An

alternative is to
ompile in a run-time test just after the exe
ution of t. This

has the undesirable side-e�e
t that then the no-slowdown property does not

automati
ally hold, be
ause of the overhead involved in the test, but it is still

potentially useful. The
ompilation of su
h a test
an be seen as a sour
e to

sour
e transformation of the program as shown in program (b) above (where,

following the &-Prolog [43℄ notation, \&" represents parallel exe
ution, and (a

-> b ;
) is Prolog's syntax for \(if a then b else
)").

Furthermore, it is also sometimes possible to determine dire
tly that in fa
t

the operations that t performs on X and Y do not a�e
t the exe
ution of p

and q. This kind of independen
e is
alled non-stri
t independen
e [46℄. It

annot be determined in general a priori (i.e., by inspe
ting the state of the

omputation prior to exe
uting t, p, and q) and thus ne
essarily requires a

global analysis of the program. However, it very interesting be
ause it appears

often in programs whi
h manipulate \open" data stru
tures (di�eren
e lists,

di
tionaries, et
.). An example of this is the following flatten example, whi
h

eliminates nestings in lists ([X|Xs℄ represents the list whose head is X and

whose tail is Xs and [℄ represents the empty list):

flatten(Xs,Ys) :-

flatten(Xs,Ys,[℄).

flatten([℄, Xs, Xs).

flatten([X|Xs℄,Ys,Zs) :-

flatten(X,Ys,Ys1),

flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs℄, Xs) :-

atomi
(X), X = [℄.

[]b c

[]d
a b c []d

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

a

This program unnests a list without
opying by
reating open-ended lists and

passing a pointer to the end of the list (Ys1) to the re
ursive
all. Sin
e this

pointer is not bound by the �rst
all to flatten/3 in the body of the re
ursive

lause, the
alls to flatten(X,Ys,Ys1) and flatten(Xs,Ys1,Zs) are (non-

stri
tly) independent and all the re
ursions
an be run in parallel.

An even more interesting
ase o

urs if other
onstraint systems are used in

addition to or in pla
e of the Herbrand domain. Consider for example the par-

allelization of two pro
edure
alls p(X),q(Z) in the following two situations:

(a) main :- X > Y, Z > Y, p(X) & q(Z), ...

(b) main :- X > Y, Y > Z, p(X) & q(Z), ...

13

In
ase (a) the store
ontains (X>Y,Z>Y) before
alling q and q, whereas in

ase (b) the store
ontains (X>Y,Y>Z). The simple pointer aliasing reasoning

implied by the de�nition of stri
t independen
e does not apply dire
tly. How-

ever, p
annot in any way a�e
t q in
ase (a), while this
ould be possible in

ase (b), i.e., the two
alls are
learly independent in
ase (a) while they are

(potentially) dependent in
ase (b).

Notions of independen
e whi
h apply to general
onstraint programming (and

an thus deal with the situation above) have been proposed re
ently [22,35℄.

For example, two goals p and q are independent if all
onstraints posed during

the exe
ution of q are
onsistent with the output
onstraints of p.

11

The

following is a suÆ
ient
ondition for the previous de�nition but whi
h only

needs to look at the state of the store prior to the exe
ution of the
alls to

be parallelized (for example, using run-time tests whi
h explore the store
),

in the same spirit as the stri
t-independen
e
ondition for the Herbrand
ase.

Assuming the
alls are p(�x) and q(�y) then the
ondition is:

(�x \ �y � def(
)) and (9

��x

 ^ 9

��y

! 9

��y[�x

)

where �x is the set of arguments of p, def(
) is the set of variables
onstrained

to a unique value in
, and 9

��x

represents the proje
tion of the store on the

variables �x (the notion of proje
tion is prede�ned for ea
h
onstraint system).

The �rst
ondition states that the variables whi
h are shared between the goals

in the program text must be bound at run-time to unique values. The se
ond

ondition is perhaps best illustrated through an example. In the two
ases

above, for (a)
 = fX > Y; Z > Yg we have 9

�fXg

 = 9

�fZg

 = 9

�fX;Zg

 = true

and therefore p and q are independent. For (b)
 = fX > Y; Y > Zg we have

9

�fXg

 = 9

�fZg

 = true while 9

fX;Zg

 = X > Z and therefore p and q are not

independent. While
he
king these
onditions a

urately and dire
tly
an be

ineÆ
ient in pra
ti
e, the pro
ess
an be approximated at
ompile-time via

analysis or at run-time via simpli�ed
he
ks on the store.

Other interesting notions of independen
e whi
h have been proposed are based

on \determina
y" (i.e., la
k of
hoi
es) [67℄: two
omputations that have no

hoi
es (i.e., \do not ba
ktra
k") are independent (provided, as before, that

they
an be guaranteed not to fail). Note that this is in general also
aptured

by the notion of
onstraint independen
e given above.

11

This a
tually implies a better result even for Prolog programs sin
e its proje
tion

on the Herbrand domain is a stri
t generalization of previous notions of non-stri
t

independen
e. E.g., the sequen
e p(X), q(X)
an be parallelized if p is de�ned for

example as p(a) and q is de�ned as q(a).

14

foo(...) :-

g

1

(...),

g

2

(...),

g

3

(...).

g1 g3

g2

g1 g3

g2

icond(1-3)

icond(1-2) icond(2-3)

g1 g3

g2

test(1-3)

(test(1-3) -> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
"Annotation"

Local/Global analysis
and simplification

Fig. 1. Parallelizing \g

1

(...), g

2

(...), g

3

(...)"

3.4 The Parallelization Pro
ess

Experiments have shown that parallelization using only lo
al analysis and

generating run-time tests results in an ex
essive amount of overhead that

severely limits speedups (see [15℄ for a re
ent
omparison of a
tual speedups

obtained by several parallelization methods). On the other hand it has also

been observed that there exist programs that obtain better speedups if a

limited amount of run-time
he
king of independen
e is used than if only

stati
 de
isions are made. Thus, a parallelization methodology is generally

used whi
h
an a

ommodate both stati
 analysis and run-time
he
king.

One of the more widely used approa
hes is illustrated in Figure 1, repre-

senting the parallelization of \g

1

(...), g

2

(...), g

3

(...)". The bodies of

pro
edures are explored looking for statements and pro
edure
alls whi
h are

andidates for parallelization. As in many other parallelizers, a dependen
y

graph is �rst built whi
h in prin
iple re
e
ts the total ordering of statements

and
alls given by the sequential semanti
s. To
ontrol the
omplexity of the

pro
ess these graphs are limited to one body of one pro
edure (if the body is

too long, the body
an be partitioned in segments, but this does not happen

often in
onstraint logi
 programs). Ea
h edge in the graph is then labeled

with the independen
e
ondition (the run-time
he
k) that would guarantee

independen
e of the statements or
alls joined by the edge. A global analysis

of the program then tries to prove these
onditions stati
ally true or false. If

a
ondition is proved to be true the
orresponding edge in the dependen
y

graph is eliminated. If proved false, then an un
onditional edge (i.e., a stati

dependen
y) is left. Still, in other edges
onditions may remain (possibly sim-

pli�ed). The annotation pro
ess then en
odes the resulting graph in the target

parallel language (a variant of the sour
e language). The te
hniques proposed

for performing this pro
ess depend on many fa
tors in
luding whether the

target language allows arbitrary parallelism or just fork-join stru
tures and

15

whether run-time independen
e tests are allowed or not. As an example, Fig-

ure 1 presents two possible en
odings in &-Prolog of the (s
hemati
) depen-

den
y graph obtained after analysis. The parallel expressions generated in this

ase use only fork-join stru
tures, one with run-time
he
ks and the other one

without them. Interesting te
hniques have been developed for
ompilation of

onditional non-planar dependen
y graphs into fork-join stru
tures, in addi-

tion to other, non graph-based te
hniques [31,59,14℄.

The global analysis required to simplify the
onditional graphs has to perform,

among other tasks, inter-pro
edural pointer analyses, not unlike those re
ently

proposed for
lean versions of C or C++. Early proposals based on traditional

data
ow analysis te
hniques pointed in the right dire
tion but proved impre-

ise [18℄. The presen
e of re
ursion and dynami
 data stru
tures has fueled

the development of quite sophisti
ated, in
remental inter-pro
edural analyzers

based on abstra
t interpretation [21℄. This has required the development of

eÆ
ient analysis algorithms as well as abstra
t domains for a

urately and eÆ-

iently keeping tra
k of sharing patterns and pointer aliasing in re
ursive data

stru
tures [15,49,58,60℄. These analyses have been applied to the dete
tion

of both stri
t and non-stri
t independen
e [15,17℄ (for example, the flatten

program of Se
tion 3.3 is parallelized automati
ally by the system des
ribed

in [17℄). Analyses have been developed also to derive other important proper-

ties beyond variable instantiation states su
h as determinism [29℄, non-failure

[26℄, and number of answers [13℄. These parallelization te
hniques have also

re
ently been extended to support \dependent" and-parallelism [63℄ (whi
h,

as mentioned before, really refers to exploiting independen
e at a �ner level

of granularity than goals [42℄).

3.5 Dealing with Overheads and Irregularity { S
heduling and Memory Man-

agement

The pre
eding dis
ussion has on purpose avoided the issue of run-time over-

heads. The obvious pra
ti
al impli
ation of the existen
e of overheads (task

reation, s
heduling, data movement, et
.) is that even if a task is known

to be independent, its parallel exe
ution may still render a slow-down. This

an happen if the task does not represent a suÆ
ient amount of
omputation

with respe
t to the overheads in
urred in its parallelization. In the
ase of

onstraint logi
 programming the problem is
ompounded by the fa
t that,

be
ause of the symboli
 nature of the appli
ations typi
ally
oded, the number

of tasks generated at run-time (as well as the
omputational
ost and dynami

memory demands of ea
h su
h task) depends on run-time parameters, i.e., the

omputations are typi
ally highly irregular.

Two main approa
hes have been explored in order to over
ome these problems.

16

The �rst one is to
ombine dynami
 task allo
ation poli
ies with
ompilation

te
hniques (abstra
t ma
hines) whi
h redu
e as mu
h as possible the overhead

involved in the parallel exe
ution of tasks. The best results have been obtained

by performing low level \mi
ro-task" s
heduling, independently of the oper-

ating system threads [38,55,43℄, and generally based on non-
entralized, \task

stealing" approa
hes. Mi
ro tasks are often represented simply by two point-

ers, one pointing to the pro
edure
all or statement and another to the relevant

invo
ation re
ord. The tasks are exe
uted by a number of instan
es of (a par-

allel version of) the
on
eptual abstra
t ma
hines whi
h have been shown to

provide the best performan
e for sequential implementation [75,1,37,55℄. Inter-

esting te
hniques have also been proposed for parallel dynami
 memory man-

agement (using \
a
tus sta
ks" [37,44,12,55,2℄). These te
hniques support,

for example, eÆ
ient memory re
overy during parallel ba
ktra
king sear
h.

Some interesting examples of these dynami
 s
heduling and memory man-

agement te
hniques are presented in [37,43,62,71,64℄ for and-parallelism and

in [76,55,2,20,32℄ for or-parallelism.

3.6 Dealing with Overheads and Irregularity { Granularity Control

The te
hniques mentioned above have proven suÆ
ient for keeping the over-

heads of
ommuni
ation, s
heduling, and memory management low and ob-

taining signi�
ant speedups in a wide variety of appli
ations on shared memory

multipro
essors (starting from the early paradigmati
 examples: the Sequent

Balan
e and Symmetry series). However,
urrent trends point towards larger

multipro
essors but with less uniform shared memory a

ess times. Control-

ling in some way the granularity (exe
ution time and spa
e) of the tasks to be

exe
uted in parallel
an be a useful optimization in su
h ma
hines, and is in

any
ase a ne
essity when parallelizing for ma
hines with slower inter
onne
-

tions. The latter in
lude, for example, networks of workstations or distribution

of work over the Internet.

This area of granularity
ontrol (task partitioning) has also re
eived a sig-

ni�
ant amount of attention in the
ontext of logi
 program parallelization.

The idea of granularity
ontrol is to repla
e parallel exe
ution with sequential

exe
ution or vi
e-versa based on knowledge (a
tual data, bounds, or estima-

tions) of task size and overheads. The problem is
hallenging be
ause, while

the basi

ommuni
ation overhead parameters of a system
an be determined

experimentally, the
omputational
ost of the tasks (e.g., pro
edure
alls) be-

ing parallelized, as well as the amount of data that needs to be transferred

before and after a parallel
all, usually depend on dynami

hara
teristi
s of

the input data. In the following example, we
onsider for parallel exe
ution q

(whi
h, assuming it is
alled with X bound to a list of numbers, adds one to

ea
h element of the list):

17

..., r(X) & q(X,Y), ...

q([℄,[℄).

q([I|Is℄,[I+1|Os℄):- q(Is,Os).

The
omputational
ost of a
all to q (and also the
ommuni
ation overheads)

are obviously proportional to the number of elements in the list. The
hara
-

terization of input data required has made the problem diÆ
ult to solve (well)

ompletely at
ompile-time.

One of the solutions whi
h has been explored is to derive at
ompile time

omplexity
ost fun
tions whi
h give upper and lower bounds on task exe
u-

tion time as a fun
tion of
ertain measures of input data [24,25,54,27,28,53℄

(alternative solutions are given in, e.g., [73,70℄; see also [48℄ in the
ontext of

fun
tional languages). Interestingly, some of the analyses used in the deriva-

tion of su
h fun
tions (e.g., [28℄) make use of some te
hniques developed in

the
ontext of imperative program parallelization, su
h as the Omega test [65℄.

Programs are then transformed at
ompile-time into semanti
ally equivalent

ounterparts but whi
h automati
ally
ontrol granularity at run-time based

on su
h fun
tions. In the example above, these tools derive
ost fun
tions su
h

as, for example, 2 � length(X) + 1 for q (i.e., the unit of
ost is in this
ase a

pro
edure
all, where the addition is
ounted for simpli
ity as one pro
edure

all). If we assume that we should parallelize when the total
omputation
ost

is larger than \100", then we
an transform the parallel
all to p and q above

into:

..., Cost=2*~length(X)+1, (Cost>100 -> r(X) & q(X,Y)

; r(X) , q(X,Y)), ...

(again, using an if-then-else). Clearly, many issues arise. For example, the
ost

of performing granularity
ontrol
an be fa
tored into the de
isions. The
ost

fun
tions
an be simpli�ed and related ba
k to data stru
ture sizes {list length

in the
ase above, i.e., the
all will only be parallelized if the length of the list

is larger than a stati
ally pre-
omputed value:

..., (length greater than(X,50) -> r(X) & q(X,Y)

; r(X) , q(X,Y)), ...

This in turn has inspired the development of algorithms for keeping tra
k

of data sizes at run-time. Also, the same te
hniques used for
ost bounding

allow deriving upper and lower bounds on the sizes of the stru
tures being

passed as arguments. This information
an be fa
tored into parallelization

de
isions (it a�e
ts the threshold). For example, in the example above, the

argument size analysis (assuming that C is the
ost of sending one element

of a list, and a distributed setting where data is sent and returned eagerly)

will infer that the
ommuni
ation
ost is 2 � length(X) �C. Interestingly, the

Computation > Overhead
ondition (2 � length(X) + 1 > 2 � length(X) �C)

an be determined stati
ally to be always true (and parallelize un
ondition-

18

ally) or false (and never parallelize) depending only on the value of C, whi
h

in turn
an perhaps be determined experimentally in a simple way. Perfor-

man
e improvements have been shown to result from the in
orporation of this

type of grain size
ontrol, spe
ially for systems with medium to large parallel

exe
ution overheads [54℄. Clearly, there are many interesting issues involved:

te
hniques for derivation of data measures, data size fun
tions, and task
ost

fun
tions, program transformations, program optimizations, et
. Typi
ally,

the te
hniques are proved
orre
t, again typi
ally using the notions of approx-

imation and bounding, formalized as abstra
t interpretations.

3.7 Dealing with spe
ulation

Finally, also quite interesting te
hniques have been developed for
ontrolling

spe
ulation, for both and- and or-parallelism. Explaining these issues in detail

is beyond the s
ope of this paper, but we will illustrate brie
y with an example

how spe
ulation appears in and-parallelism:

foo(X) :- X=b, : : :, p(X) & q(X), : : :

foo(X) :- X=a, : : :

p(X) :- ..., X=a, ...

q(X) :- large
omputation.

x=b

x=a

q(X)p(X)

In the situation above, the �rst
lause of foo, after binding X to b, exe
utes

p and q in parallel. However, the exe
ution of p eventually fails when it poses

the
onstraint X=a and exe
ution must
ontinue with the se
ond
lause of foo.

Sin
e p and q are in
onjun
tion, the exe
ution of q must now be dis
arded

(i.e., starting q ahead of time was spe
ulative). A
ombination of \left-biased

s
heduling" (ensuring that a pro
essor has taken p before another
an take

q) and \instantaneous killing of siblings" (e.g., of q above) at least ensures

no-slowdown [37,47,45℄. No-slowdown (and even theoreti
al speedup)
an also

be guaranteed by determining stati
ally that the tasks involved in a parallel

onjun
tion (ex
ept the leftmost one) will not fail (te
hniques for this have

been proposed in [26℄). Many other interesting te
hniques for dealing with

spe
ulation have been developed (spe
ially in the
ontext or or-parallelism),

in
luding sophisti
ated s
hedulers, dynami
 throttling of spe
ulative tasks,

et
. [38,36,8,26℄.

19

4 Con
lusions: Towards Cross-Fertilization

As a result of the work outlined in previous se
tions, quite robust, publi
ly

available
ompilers and run-time systems have been available for some time

now, generally for Prolog, whi
h automati
ally exploit parallelism in
omplex

appli
ations. Su
h systems have been shown to provide speedups over the state

of the art sequential implementations available at the time of their develop-

ment. The speed and robustness of these
ompilers has also been instrumental

in demonstrating that abstra
t interpretation provides a very adequate frame-

work for developing provably
orre
t, powerful, and eÆ
ient global analyzers

and,
onsequently, parallelizers [78,15,63℄. More re
ently, te
hniques and pra
-

ti
al tools have also been developed for the analysis of general
onstraint logi

programs [34℄ as well as for their parallelization [33℄. Prototypes in
orporat-

ing the granularity
ontrol te
hniques mentioned above are also starting to be

available. However, mu
h work still remains to be done in these areas, and we

believe there may be good opportunity at this time for in
reased transferen
e

of te
hniques a
ross programming paradigms.

It
an be argued that parti
ularly strong progress has been made in the
ontext

of (
onstraint) logi
 programming in inter-pro
edural analysis of programs

with dynami
 data stru
tures and pointers, in parallelization using
onditional

dependen
y graphs (and possibly generating run-time independen
e tests), in

the de�nition of the advan
ed notions of independen
e that are needed in the

presen
e of spe
ulative
omputations or languages whi
h in
lude
onstraints,

in the development of eÆ
ient task representation te
hniques and dynami

s
heduling algorithms to deal with irregularity and spe
ulation, and in the

stati
 inferen
e of task
ost fun
tions for
ontrolling granularity.

On the other hand, the te
hniques developed in the area of
onstraint logi
 pro-

gram parallelization are
ertainly weaker than those developed in the
ontext

of numeri
al
omputing for regular problems. For example, logi
 program-

ming parallelizers
an dis
over the parallelism in
omplex re
ursive traversals

of data stru
tures, but do not handle well traversals that are based on integer

(i.e., array subs
ript) arithmeti
, for whi
h mu
h work exists in the area of im-

perative languages. Also, while
urrent parallel
onstraint logi
 programming

systems are reasonably good at dealing with tasks with dynami

osts, the

te
hniques
urrently used are again
omparatively weaker for the stati

ase

than the partitioning and pla
ement algorithms used in imperative program

parallelization [11,10,41,23℄. Ideally, a parallelizing
ompiler should perform

good partitioning and pla
ement for any kind of ar
hite
ture, using stati

te
hniques when possible and dynami
 te
hniques when unavoidable. It thus

appears that it would be quite interesting to merge the
omplementary work

done in these areas by the di�erent
ommunities. Some progress has been

made in one dire
tion in the
ontext of \data parallelism" [10,41,23℄, but it

20

still seems like a very promising avenue for future resear
h.

Constraint logi
 programming extends the high-level programming paradigm

that logi
 programming o�ers in symboli
 appli
ations to numeri
al domains.

We believe it o�ers a natural platform in whi
h to study the
ombination of

the parallelization te
hniques used in the numeri
al and symboli
 program-

ming �elds. Independently of the
onvenien
e of using
onstraint programming

languages dire
tly (as is being done with signi�
ant
ommer
ial su

ess in dif-

�
ult problem areas su
h as s
heduling or resour
e allo
ation), we also believe

that many features of these languages, su
h as the use of
onstraints (\re-

versible statements") or the embedded sear
h
apabilities, will slowly make

their way into the designs of mainstream languages. In the same way, other

features of symboli
 languages (su
h as dynami
 data stru
ture
reation and

garbage
olle
tion, or byte
ode
ompilation) have already made it into widely

used languages su
h as Java. Current proposals in this dire
tion in
lude ILOG

(a
ommer
ially su

essful library whi
h whi
h extends C++ and Java with

onstraint handling
apabilities) and [5℄, an imperative language with sear
h

apabilities.

12

A
knowledgements

The author wishes to thank J. Chassin, D. Padua, Vitor Santos-Costa, E.

Pontelli, G. Gupta, A. King, K. Shen, J. Mari~no, F. Bueno, D. Cabeza, M.

Carro, M. Gar
��a de la Banda, P. L�opez, and G. Puebla for their
omments

on previous drafts of this paper. This work was supported in part by the

\EDIPIA" (CICYT TIC99-1151) and \ECCOSIC" (Fulbright 98059) proje
ts.

Referen
es

[1℄ Hassan Ait-Ka
i. Warren's Abstra
t Ma
hine, A Tutorial Re
onstru
tion. MIT

Press, 1991.

[2℄ K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its

Performan
e. In 1990 North Ameri
an Conferen
e on Logi
 Programming, pages

12

Of
ourse, there are no s
ienti�
 reasons not to use
onstraint logi
 languages

dire
tly, and this is indeed
urrently being done routinely with great
ommer
ial

su

ess by several
ompanies working in diÆ
ult problem areas su
h as s
heduling

or resour
e allo
ation. However, it is entirely possible that the pure
onstraint logi

programming languages, as so many other produ
ts of
omputer s
ien
e, may re-

main powerful tools used by literate users,
ertainly making their impa
t on the

mainstream, but in an indire
t way.

21

757{776. MIT Press, O
tober 1990.

[3℄ G. Almasi and A. Gottlieb, editors. Highly Parallel Computing. Benjamin

Cummins, 1994.

[4℄ Lars Ole Andersen. Binding-time analysis and the taming of
 pointers.

In Pro
eedings of the Symposium on Partial Evaluation and Semanti
s-Based

Program Manipulation, pages 47{58, Copenhagen, Denmark, 1993. ACM Press.

[5℄ K. Apt and A. Shaerf. Sear
h and Imperative Programming. In POPL'97:

24th ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming

Languages, pages 67{79, Paris, Fran
e, January 1997. ACM.

[6℄ K.R. Apt. Introdu
tion to Logi
 Programming. In J. van Leeuwen,

editor, Handbook of Theoreti
al Computer S
ien
e, volume B: Formal Model

and Semanti
s, pages 495{574. Elsevier, Amsterdam and The MIT Press,

Cambridge, 1990.

[7℄ D. Ba
on, S. Graham, and O. Sharp. Compiler Transformations for High-

Performan
e Computing. Computing Surveys, 26(4):345{420, De
ember 1994.

[8℄ T. Beaumont and D.H.D. Warren. S
heduling Spe
ulative Work in Or-Parallel

Prolog Systems. In Pro
eedings of the 10th International Conferen
e on Logi

Programming, pages 135{149. MIT Press, June 1993.

[9℄ E. Best and C. Lengauer. Semanti
 Independen
e. S
ien
e of Computer

Programming, 13:23{50, 1990.

[10℄ J. Bevemyr, T. Lindgren, and H. Millroth. Exploiting re
ursion-parallelism in

Prolog. In Pro
. PARLE'93, Berlin, 1993. Springer-Verlag.

[11℄ J. Bevemyr, T. Lindgren, and H. Millroth. Reform Prolog: the language and

its implementation. In Pro
. 10th Intl. Conf. Logi
 Programming, Cambridge,

Mass., 1993. MIT Press.

[12℄ P. Borgwardt and D. Rea. Distributed Semi-Intelligent Ba
ktra
king for

a Sta
k-Based AND-Parallel Prolog. In International Symposium on Logi

Programming, pages 211{222. IEEE Computer So
iety, 1986.

[13℄ C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenry
k. Cardinality

analysis of prolog. In Pro
. International Symposium on Logi
 Programming,

pages 457{471, Itha
a, NY, November 1994. MIT Press.

[14℄ F. Bueno, M. Gar
��a de la Banda, and M. Hermenegildo. A Comparative Study

of Methods for Automati
 Compile-time Parallelization of Logi
 Programs. In

First International Symposium on Parallel Symboli
 Computation, pages 63{73.

World S
ienti�
 Publishing Company, September 1994.

[15℄ F. Bueno, M. Gar
��a de la Banda, and M. Hermenegildo. E�e
tiveness of

Abstra
t Interpretation in Automati
 Parallelization: A Case Study in Logi

Programming. ACM Transa
tions on Programming Languages and Systems,

21(2):189{238, Mar
h 1999.

22

[16℄ F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial Order

and Contextual Net Semanti
s for Atomi
 and Lo
ally Atomi
 CC Programs.

S
ien
e of Computer Programming, 30:51{82, January 1998. Spe
ial CCP95

Workshop issue.

[17℄ D. Cabeza and M. Hermenegildo. Extra
ting Non-stri
t Independent And-

parallelism Using Sharing and Freeness Information. In 1994 International

Stati
 Analysis Symposium, number 864 in LNCS, pages 297{313, Namur,

Belgium, September 1994. Springer-Verlag.

[18℄ J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logi

Programs Based on Stati
 Data Dependen
y Analysis. In Comp
on Spring

'85, pages 218{225, February 1985.

[19℄ J. Chassin and P. Codognet. Parallel Logi
 Programming Systems. Computing

Surveys, 26(3):295{336, September 1994.

[20℄ J. Chassin, J. Syre, and H. Westphal. Implementation of a Parallel Prolog

System on a Commer
ial Multipro
essor. In Pro
eedings of E
ai, pages 278{

283, August 1988.

[21℄ P. Cousot and R. Cousot. Abstra
t Interpretation: a Uni�ed Latti
e Model for

Stati
 Analysis of Programs by Constru
tion or Approximation of Fixpoints.

In Fourth ACM Symposium on Prin
iples of Programming Languages, pages

238{252, 1977.

[22℄ M. Gar
��a de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. In Programming Languages: Implementation, Logi
s,

and Programs, number 1140 in LNCS, pages 77{91, Aa
hen, Germany,

September 1996. Springer-Verlag.

[23℄ S. Debray and M. Jain. A Simple Program Transformation for Parallelism.

In 1994 International Symposium on Logi
 Programming, pages 305{319. MIT

Press, November 1994.

[24℄ S.K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in

Logi
 Programs. In Pro
. of the 1990 ACM Conf. on Programming Language

Design and Implementation, pages 174{188. ACM Press, June 1990.

[25℄ S.K. Debray and N.W. Lin. Cost analysis of logi
 programs. ACM Transa
tions

on Programming Languages and Systems, 15(5):826{875, November 1993.

[26℄ S.K. Debray, P. L�opez-Gar
��a, and M. Hermenegildo. Non-Failure Analysis

for Logi
 Programs. In 1997 International Conferen
e on Logi
 Programming,

pages 48{62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

[27℄ S.K. Debray, P. L�opez-Gar
��a, M. Hermenegildo, and N.-W. Lin. Estimating

the Computational Cost of Logi
 Programs. In Stati
 Analysis Symposium,

SAS'94, number 864 in LNCS, pages 255{265, Namur, Belgium, September

1994. Springer-Verlag.

23

[28℄ S.K. Debray, P. L�opez-Gar
��a, M. Hermenegildo, and N.-W. Lin. Lower Bound

Cost Estimation for Logi
 Programs. In 1997 International Logi
 Programming

Symposium, pages 291{305. MIT Press, Cambridge, MA, O
tober 1997.

[29℄ S.K. Debray and D.S. Warren. Fun
tional
omputations in logi
 programs.

ACM Transa
tions on Programming Languages and Systems, 11(3):451{481,

1989.

[30℄ D. DeGroot. Restri
ted AND-Parallelism. In International Conferen
e on Fifth

Generation Computer Systems, pages 471{478. Tokyo, November 1984.

[31℄ D. DeGroot. A Te
hnique for Compiling Exe
ution Graph Expressions for

Restri
ted AND-parallelism in Logi
 Programs. In Int'l Super
omputing

Conferen
e, pages 80{89, Athens, 1987. Springer Verlag.

[32℄ European Computer Resear
h Center. E
lipse User's Guide, 1993.

[33℄ M. Gar
��a de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. In Programming Languages: Implementation, Logi
s,

and Programs, number 1140 in LNCS, pages 77{91, Aa
hen, Germany,

September 1996. Springer-Verlag.

[34℄ M. Gar
��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,

G. Janssens, and W. Simoens. Global Analysis of Constraint Logi
 Programs.

ACM Transa
tions on Programming Languages and Systems, 18(5):564{615,

1996.

[35℄ M. Gar
��a de la Banda, M. Hermenegildo, and K. Marriott. Independen
e in

CLP Languages. ACM Transa
tions on Programming Languages and Systems,

2000. To appear.

[36℄ B. Hausman. Handling spe
ulative work in or-parallel prolog: Evaluation

results. In North Ameri
an Conferen
e on Logi
 Programming, pages 721{736,

Austin, TX, O
tober 1990.

[37℄ M. Hermenegildo. An Abstra
t Ma
hine for Restri
ted AND-parallel Exe
ution

of Logi
 Programs. In Third International Conferen
e on Logi
 Programming,

number 225 in Le
ture Notes in Computer S
ien
e, pages 25{40. Imperial

College, Springer-Verlag, July 1986.

[38℄ M. Hermenegildo. Relating Goal S
heduling, Pre
eden
e, and Memory

Management in AND-Parallel Exe
ution of Logi
 Programs. In Fourth

International Conferen
e on Logi
 Programming, pages 556{575. University of

Melbourne, MIT Press, May 1987.

[39℄ M. Hermenegildo. Automati
 Parallelization of Irregular and Pointer-Based

Computations: Perspe
tives from Logi
 and Constraint Programming. In

Pro
eedings of EUROPAR'97, volume 1300 of LNCS, pages 31{46. Springer-

Verlag, August 1997. (invited).

[40℄ M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in

the Implementation of Con
urrent and Parallel Logi
 Programming Systems.

24

In Pro
. of the Twelfth International Conferen
e on Logi
 Programming, pages

631{645. MIT Press, June 1995.

[41℄ M. Hermenegildo and M. Carro. Relating Data{Parallelism and (And{)

Parallelism in Logi
 Programs. The Computer Languages Journal, 22(2/3):143{

163, July 1996.

[42℄ M. Hermenegildo and The CLIP Group. Some Methodologi
al Issues in the

Design of CIAO - A Generi
, Parallel, Con
urrent Constraint System. In

Prin
iples and Pra
ti
e of Constraint Programming, number 874 in LNCS,

pages 123{133. Springer-Verlag, May 1994.

[43℄ M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent

And-Parallelism. New Generation Computing, 9(3,4):233{257, 1991.

[44℄ M. Hermenegildo and R. I. Nasr. EÆ
ient Management of Ba
ktra
king in

AND-parallelism. In Third International Conferen
e on Logi
 Programming,

number 225 in LNCS, pages 40{55. Imperial College, Springer-Verlag, July 1986.

[45℄ M. Hermenegildo and F. Rossi. On the Corre
tness and EÆ
ien
y of

Independent And-Parallelism in Logi
 Programs. In 1989 North Ameri
an

Conferen
e on Logi
 Programming, pages 369{390. MIT Press, O
tober 1989.

[46℄ M. Hermenegildo and F. Rossi. Non-Stri
t Independent And-Parallelism. In

1990 International Conferen
e on Logi
 Programming, pages 237{252. MIT

Press, June 1990.

[47℄ M. Hermenegildo and F. Rossi. Stri
t and Non-Stri
t Independent And-

Parallelism in Logi
 Programs: Corre
tness, EÆ
ien
y, and Compile-Time

Conditions. Journal of Logi
 Programming, 22(1):1{45, 1995.

[48℄ L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to

Guide Parallel Thread Creation. In Pro
. ACM Conf. on Lisp and Fun
tional

Programming, June 1994.

[49℄ D. Ja
obs and A. Langen. A

urate and EÆ
ient Approximation of Variable

Aliasing in Logi
 Programs. In 1989 North Ameri
an Conferen
e on Logi

Programming. MIT Press, O
tober 1989.

[50℄ J. Ja�ar and M.J. Maher. Constraint Logi
 Programming: A Survey. Journal

of Logi
 Programming, 19/20:503{581, 1994.

[51℄ S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel

Language. In 1991 International Logi
 Programming Symposium, pages 167{

183. MIT Press, 1991.

[52℄ A.H. Karp and R.C. Babb. A Comparison of 12 Parallel Fortran Diale
ts. IEEE

Software, September 1988.

[53℄ A. King, K. Shen, and F. Benoy. Lower-bound Time-
omplexity Analysis of

Logi
 Programs. In 1997 International Logi
 Programming Symposium, pages

261{275. MIT Press, Cambridge, MA, O
tober 1997.

25

[54℄ P. L�opez-Gar
��a, M. Hermenegildo, and S.K. Debray. A Methodology

for Granularity Based Control of Parallelism in Logi
 Programs. Journal

of Symboli
 Computation, Spe
ial Issue on Parallel Symboli
 Computation,

22:715{734, 1996.

[55℄ E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation

Computing, 7(2,3), 1990.

[56℄ Kim Marriot and Peter Stu
key. Programming with Constraints: An

Introdu
tion. The MIT Press, 1998.

[57℄ A. Martelli and U. Montanari. An EÆ
ient Uni�
ation Algorithm. ACM

Transa
tions on Programming Languages and Systems, 4(3):258{282, 1982.

[58℄ K. Muthukumar and M. Hermenegildo. Determination of Variable Dependen
e

Information at Compile-Time Through Abstra
t Interpretation. In 1989

North Ameri
an Conferen
e on Logi
 Programming, pages 166{189. MIT Press,

O
tober 1989.

[59℄ K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods

for Automati
 Compile-time Parallelization of Logi
 Programs for Independent

And-parallelism. In Int'l. Conferen
e on Logi
 Programming, pages 221{237.

MIT Press, June 1990.

[60℄ K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing

and Freeness of Program Variables Through Abstra
t Interpretation. In 1991

International Conferen
e on Logi
 Programming, pages 49{63. MIT Press, June

1991.

[61℄ M. S. Paterson and M. Wegman. Linear Uni�
ation. J. of Computer and System

S
ien
es, 16(2):158{167, 1978.

[62℄ E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performan
e

Parallel Prolog System. In International Parallel Pro
essing Symposium, pages

564{572. IEEE Computer So
iety Te
hni
al Committee on Parallel Pro
essing,

IEEE Computer So
iety, April 1995.

[63℄ E. Pontelli, G. Gupta, F. Pulvirenti, and A. Ferro. Automati
 Compile-time

Parallelization of Prolog Programs for Dependent And-Parallelism. In Pro
. of

the Fourteenth International Conferen
e on Logi
 Programming, pages 108{122.

MIT Press, July 1997.

[64℄ E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. Hermenegildo. Improving the

EÆ
ien
y of Nondeterministi
 And{parallel Systems. The Computer Languages

Journal, 22(2/3):115{142, July 1996.

[65℄ W. Pugh. A Pra
ti
al Algorithm for Exa
t Array Dependen
e Analysis.

Communi
ations of the ACM, 35(8):102{114, August 1992.

[66℄ J. A. Robinson. A Ma
hine Oriented Logi
 Based on the Resolution Prin
iple.

Journal of the ACM, 12(23):23{41, January 1965.

26

[67℄ V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel

Prolog System that Transparently Exploits both And- and Or-parallelism. In

Pro
eedings of the 3rd. ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e

of Parallel Programming, pages 83{93. ACM, April 1991. SIGPLAN Noti
es

vol 26(7), July 1991.

[68℄ M. Shapiro and S. Horwitz. Fast and A

urate Flow-Insensitive Points-

To Analysis. In POPL'97: 24th ACM SIGPLAN-SIGACT Symposium on

Prin
iples of Programming Languages, pages 1{14, Paris, Fran
e, January 1997.

ACM.

[69℄ K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.

Journal of Logi
 Programming, 29(1{3):245{293, November 1996.

[70℄ K. Shen, V.S. Costa, and A. King. Distan
e: a New Metri
 for Controlling

Granularity for Parallel Exe
ution. In Joxan Ja�ar, editor, Joint International

Conferen
e and Symposium on Logi
 Programming, pages 85{99, Cambridge,

MA, June 1998. MIT Press, Cambridge, MA.

[71℄ K. Shen and M. Hermenegildo. Flexible S
heduling for Non-Deterministi
, And-

parallel Exe
ution of Logi
 Programs. In Pro
eedings of EuroPar'96, number

1124 in LNCS, pages 635{640. Springer-Verlag, August 1996.

[72℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[73℄ E. Ti
k. Compile-Time Granularity Analysis of Parallel Logi
 Programming

Languages. In International Conferen
e on Fifth Generation Computer

Systems. Tokyo, November 1988.

[74℄ P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog

Implementation. Journal of Logi
 Programming, 19/20:385{441, 1994.

[75℄ D.H.D. Warren. An Abstra
t Prolog Instru
tion Set. Te
hni
al Report 309,

Arti�
ial Intelligen
e Center, SRI International, 333 Ravenswood Ave, Menlo

Park CA 94025, 1983.

[76℄ D.H.D. Warren. OR-Parallel Exe
ution Models of Prolog. In Pro
eedings of

TAPSOFT '87, Le
ture Notes in Computer S
ien
e. Springer-Verlag, Mar
h

1987.

[77℄ D.H.D. Warren. The Extended Andorra Model with Impli
it Control.

Presented at ICLP'90 Workshop on Parallel Logi
 Programming, Eilat, Israel.

Unpublished., June 1990.

[78℄ R. Warren, M. Hermenegildo, and S. K. Debray. On the Pra
ti
ality of Global

Flow Analysis of Logi
 Programs. In Fifth International Conferen
e and

Symposium on Logi
 Programming, pages 684{699. MIT Press, August 1988.

[79℄ M. Wolfe. High Performan
e Compilers for Parallel Computing. Addison

Wesley, 1996.

27

