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Abstract. Irregular computations pose some of the most interesting and

challenging problems in automatic parallelization. Irregularity appears in

certain kinds of numerical problems and is pervasive in symbolic applica-

tions. Such computations often use dynamic data structures which make

heavy use of pointers. This complicates all the steps of a parallelizing com-

piler, from independence detection to task partitioning and placement.

In the past decade there has been signi�cant progress in the develop-

ment of parallelizing compilers for logic programming and, more recently,

constraint programming. The typical applications of these paradigms fre-

quently involve irregular computations, which arguably makes the tech-

niques used in these compilers potentially interesting. In this paper we

introduce in a tutorial way some of the problems faced by parallelizing

compilers for logic and constraint programs. These include the need for

inter-procedural pointer aliasing analysis for independence detection and

having to manage speculative and irregular computations through task

granularity control and dynamic task allocation. We also provide pointers

to some of the progress made in these areas. In the associated talk we

demonstrate representatives of several generations of these parallelizing

compilers.
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1 Introduction

Some very signi�cant progress has been made in parallelizing compilers for reg-

ular, numerical computations, generally based on the FORTRAN language (see,

e.g., [3]). This research has resulted in well known concepts and techniques includ-

ing a well understood notion of independence (based on the Bernstein conditions

or, for example, more recent notions of \semantic independence" [4]), sophisti-

cated syntactic loop transformations, transformations based on polytope models,

extensive work on partitioning and placement, etc. On the other hand, the appli-

cability of these techniques has remained comparatively limited for irregular or

symbolic computations, and still few practical systems deal with parallelization

across procedure calls. Also, the techniques used often rely on the relative clean-

liness of FORTRAN as a programming language and additional work is needed

in order to extend them to other mainstream languages like C or C++. These



languages include features such as dynamic, recursive data structures and pointer

manipulation which complicate the detection of independence among statements

or procedure calls and much current work is aimed at developing the related

independence analyses. An important example is pointer aliasing analysis (see,

e.g., [40] and its references).

We argue that, despite the apparent di�erences among imperative, functional,

logic, constraint, and object oriented languages, the fundamental issues being

tackled are quite similar. Thus, we believe that progress towards more e�ective

parallelizing compilers for all programming paradigms can be sped up by cross

fertilization of the results obtained in di�erent paradigms. It is with this thought

in mind that we present in the following a brief overview of some of the problems

which appear in the area of automatic parallelization of logic and constraint

programs. We also provide pointers to the some of the solutions and achievements

of the area.

2 Logic and Constraint Programming

Due to space limitations, we will present only a brief overview of logic and con-

straint programming, speci�cally tailored to the objective of our presentation

(the reader is referred for example to [42,30] for details). We warn the reader

that this cannot in any way be considered a fair introduction to the topic, since

we completely overlook aspects of logic and constraint programming which are

widely perceived as important. These include the declarative nature and the log-

ical semantics: programs in these languages are often not only the coding of an

algorithm, but also a logical statement of a problem, which is very close to a

speci�cation. In the following we take a fully operational view { the same one

that the parallelizing compiler takes.

The basic \statements" of a constraint logic program are constraints. Con-

straints relate (logical) variables. Such variables can be free, or they can be con-

strained to a certain value or set of values. For example, the statement X=Y+Z

establishes that the given constraint must hold among those variables (we as-

sume for example that the variables range over oating point numbers). Such

constraints are kept in the store. Assume Y and Z have a \known" value at the

time of executing this constraint (for example, the store contains Y=2 and Z=3).

Then, the operational semantics of such a constraint is very similar to that in any

other language: the statement implies an addition (2+3) and an \assignment" of

the result (5) to X. This can also be seen as telling (posting) the constraint X=5.

Assume instead that such values are not known. Then executing the statement

involves placing the constraint in the store for later solution if/when another con-

straint is executed. Sequences of constraints are separated by commas. Assume

again an empty initial store and the sequence of constraints \Y=2, X=Y+Z". After

executing this sequence the store would contain \Y=2, X=2+T1, Z=T1". Here, we

are making the assumption that sequences of constraints execute sequentially in

the order in which they appear and that the store is always kept as \fully solved"

as possible and in a normalized form {see [30] for details.

Constraint logic programming also provides a method for procedure abstrac-

tion. For example, code segment (a) below:



foo(Z,X) :- Y=2, (a)

X=Y+Z.

main :- foo(K,W),

K = 3, (b)

write(W).

de�nes a two-argument procedure foo. A procedure de�nes a local dynamic invo-

cation context in the usual way, i.e., upon entering the procedure Y is a new local

variable while X and Z are formal parameters. The calling regime is not unlike

\call by reference" (see the discussion later about logical variables being essen-

tially pointers). For example, the e�ect of calling foo(3,W) is that upon return

W=5 is added to the calling context. Note that the procedure is syntactically not

very di�erent from what one would write in a functional or imperative language,

and its behavior is essentially the same for calls such as foo(3,W). However,

the complete operational behavior of the constraint programming procedure is

richer because it allows other \calling modes." For example, a call to foo(K,5)

succeeds and upon return K=3 is added to the calling context. Furthermore, a

call to foo(K,W) also succeeds and upon return the constraint W=2+K is added to

the calling context. In some ways, the statements and procedures in constraint

programs can be seen as \reversible" versions of their syntactic counterparts in

conventional languages. Note that also the declarative meaning of such programs

is richer because it de�nes a complete logical relation (rather than a function)

among its arguments. Procedure calls can appear in the bodies of procedures in-

terspersed with constraints. For example, code segment (b) above would produce

\5" on the standard output.

Procedures can have multiple de�nitions, which represent di�erent alterna-

tives. Establishing a somewhat inaccurate parallel with conventional languages, a

set of procedure de�nitions can be seen as an \undoable" form of case statement

or conditional. When such a procedure is entered it is said to create a choice. Such

alternatives are tried in the textual order in which they appear in the program,

i.e., the �rst de�nition of a procedure is tried �rst and, if that results in a failure,

then the next one is tried (again, we follow the default execution strategy used

in most practical constraint programming languages). A failure occurs when a

constraint is executed which makes the store unsolvable (i.e., it is incompatible

with the current state of the store). This is not unlike the case of a test evaluating

to false in a conditional. When a failure occurs, the system backtracks to the last

choice left behind and tries the next alternative in that choice. For example, the

following program:

main :- bar(K,W),

K > 2,

write(W).

bar(X,Y) :- X < 0, Y = -10.

bar(X,Y) :- X >= 0, Y = 10.

prints \10". The �rst alternative of bar is tried �rst, resulting in W=-10 and K

< 0, but executing K > 2 produces a failure since the store now has no solution.

After trying the second alternative of bar, K > 2 succeeds (the store is then K >

2, W = 10) and the program terminates after printing the value of W.

The following, slightly more interesting example de�ning the Fibonacci rela-

tion illustrates the use of recursion:

fib(0, 0).

fib(1, 1).

fib(N, F1+F2) :- N>1, F1>=0, F2>=0,

fib(N-1, F1),

fib(N-2, F2).



(where some syntactic sugar is used). Calling fib(8,Y) establishes Y=21, and

calling fib(X,21) establishes X=8. Calling fib(X,Y) produces as alternatives

the constraints (X=0, Y=0), (X=1, Y=1), (X=2, Y=1), etc.

In the previous examples we have been using a certain constraint system:

essentially, equalities and inequalities involving linear arithmetic expressions over

the (pseudo-)real numbers. In many cases the operations of constraint programs

can be compiled directly into standard machine operations. However, in others

(when actual constraint solving is involved) a constraint solving algorithm needs

to be applied. Thus, the de�nition of each constraint system must include a

decidable and (hopefully) e�cient \solver." Practical languages typically include

several constraint systems.

A particularly interesting constraint system present in almost all constraint

languages is that of \equality relations over data structures" (i.e., �nite trees).

This is generally referred to as the Herbrand domain (and is the \working do-

main" of the Prolog language). For example, the following program (note that

variable identi�ers start with upper case while constants and data structure de-

scriptors {functors{ start with lower case):

main :- X = f(Y,Z),

Y = a,

W = Z,

W = g(K),

X = f(a,g(b)).

�rst builds (dynamically) a new two-argument structure whose constructor sym-

bol is f (in other words, a tree whose root node is f and which has two open

branches). The variables Y and Z are pointers to the two arguments of the struc-

ture. The statement Y = a \binds" the �rst argument of the structure to the

constant a (i.e., at this time X points to f(a,Z)). The following statement aliases

the pointers W and Z (e.g., W points to Z). Therefore, the result of the statement W

= g(K) is to \bind" the second argument of the structure to g(K) (and as a result

X now points to f(a,g(K))). The last statement �nally binds K to the constant

b. This last statement illustrates how open arguments inside a structure can also

be accessed by traversing the structure using a process not unlike the \pattern

matching" available in modern functional programming languages (except that

it is again a \reversible" version of it). The algorithm capable of solving all such

equality constraints over data structures is uni�cation. One of the nice charac-

teristics of this constraint system is that there exist very e�cient algorithms for

performing uni�cation.

1

As mentioned before, Prolog, one of the most popular

logic programming languages, is essentially a constraint logic programming lan-

guage which uses exclusively the Herbrand domain. It is no surprise that Prolog

is considered very well suited for the easy manipulation of data structures with

pointers.

2

1

Furthermore, there are also very successful compilation techniques which (specially

if global analysis of the program is performed) can translate sequences of operations

such as those in the program above into a number of machine instructions that is

essentially the same as if a lower-level language had been used to express the same

data structure and pointer creation and binding operations. The reader is referred to

[43] for an overview of progress in such compilation techniques.

2

Modern logic and constraint programming languages have many other features, such

as support for higher order and meta programming, module and object systems,



3 Parallelization of Constraint Logic Programs

One of the main theses of this paper is that logic programming and constraint

programming languages o�er a particularly interesting case study for the area

of automatic parallelization. On one hand, these programming paradigms pose

signi�cant challenges to the parallelization task, which relate closely to the more

di�cult challenges faced in imperative language parallelization. Such challenges

include highly irregular computations and dynamic control ow (due to the sym-

bolic nature of many of their applications), non-trivial notions of (semantic)

independence, the presence of dynamically allocated, complex data structures

containing pointers, and having to deal with speculation.

On the other hand, due to their high-level nature these languages also facil-

itate the study of parallelization issues. As we have seen, logical variables are

actually a quite \well behaved" version of pointers, in the sense that no castings

or pointer arithmetic (other than array indexing) is allowed. Thus, pointers in

these languages are not unlike those allowed, for example, in \clean" versions of

C. In addition, similarly to functional languages, logic and constraint languages

allow coding in a way which expresses the desired algorithm in a way that reects

more directly the structure of the problem. This makes the parallelism available

in the problem more accessible to the compiler. The relatively clean semantics

of these languages also makes it comparatively easy to use formal methods and

prove the transformations performed by the parallelizing compiler both correct

and e�cient.

3

Quite signi�cant progress has been made in the past decade in

the area of automatic program parallelization for logic programs and some of the

challenges have been tackled quite e�ectively. In the following touch upon a few

of them (see, for example, [11] for an overview of the area).

Where the Parallelism can be Found: There are several types of parallelism

which are traditionally exploited in logic and constraint programs. For example,

in applications involving extensive search the choices represented by alternative

procedure de�nitions are often \deep." I.e., a number of steps are typically ex-

ecuted before a failure implies exploring an alternative de�nition. In this case

di�erent processors can execute simultaneously the di�erent procedure de�ni-

tions (i.e., the di�erent branches of this search space). The resulting parallelism

is called or-parallelism. An alternative strategy is to parallelize the statements

and/or procedure calls in procedure bodies, in the same way as in more traditional

languages.

4

This kind of parallelism is referred to as and-parallelism. A typical

aggregation procedures, di�erent sets of libraries, etc. with interesting implications

on the automatic parallelization process. However, space limitations prevent us from

considering these additional issues.

3

Functional programming is another paradigm which also facilitates exploitation of

parallelism. However, it can be argued that the lack of certain features, such as point-

ers and backtracking, while making the parallelization problem easier, also precludes

studying some interesting problems.

4

In fact, at a �ner level of granularity, also parts of body statements can be executed

in parallel. However, for simplicity, and without loss of generality, we assume paral-

lelization at the goal level, meaning that the units scheduled will be body statements

and procedure calls. Note also that the concurrency expressed by concurrent logic



example of and-parallelism is the parallel execution of the two recursive calls

in the de�nition of the Fibonacci relation given before. Because and-parallelism

corresponds to the traditional parallelism exploited in loop parallelization, di-

vide and conquer algorithms, etc., we will concentrate our discussion on it. Also,

and-parallelism is the only kind of parallelism that can be exploited in applica-

tions where choices are \shallow" (i.e., they correspond more closely to standard

conditionals).

Correctness and E�ciency of the Parallelization: As in any other pro-

gramming paradigm, the objective of the parallelizing compiler is to uncover as

much as possible of the available parallelism, while guaranteeing that the correct

results are computed (correctness) and that other observable characteristics of

the program, such as execution time, are improved (speedup) or, at the minimum,

preserved (no-slowdown) { e�ciency. For comparison, consider the following seg-

ments of programs in (a) a traditional imperative language, (b) a (strict) func-

tional language, and (c) a constraint logic programming language (we assume

that the values of W and Z are initialized to some value before execution of these

statements):

s

1

Y := W+2; (+ (+ W 2) Y = W+2,

s

2

X := Y+Z; Z) X = Y+Z,

(a) (b) (c)

For simplicity, we will reason about the correctness and e�ciency of parallelism

using the instrumental technique of considering reorderings (interleavings). State-

ments s

1

and s

2

in (a) are generally considered to be dependent because reversing

their order would yield an incorrect result, i.e., it violates the correctness condi-

tion above (this is an example of a ow-dependency).

5

A slightly di�erent, but

closely related situation occurs in (b): reversing the order of function application

would result in a run-time error (one of the arguments to a function would be

missing). Interestingly, reversing the order of statements s

1

and s

2

in (c) does

yield the correct result. In fact, this is an instance of a more general rule: if no

side e�ects are involved, reordering statements does not a�ect correctness in a

constraint logic program. As another example, consider the following program

(which uses only the Herbrand domain, i.e., it is a Prolog program, and which

we will call program (d)):

main:-

s

1

p(X),

s

2

q(X),

write(X).

p(X) :- X=a.

q(X) :- X=b, large computation.

q(X) :- X=a.

Note that, again, reversing statements s

1

and s

2

produces the same result (X=a).

programming languages express is between and-tasks. See [28] for an extended discus-

sion on this topic. Interesting models for exploiting and-parallelism at a �ner level of

granularity are, for example, [41,31].

5

To complete the discussion above, note that output-dependencies do not appear in

functional or logic and constraint programs because single assignment is generally

used { we consider this a minor point of di�erence since one of the standard tech-

niques for parallelizing imperative programs is to perform a transformation to a single

assignment program before performing the parallelization.



The fact that (at least in pure segments of programs) the order of statements

in constraint logic programming does not a�ect the result

6

led in early models

to the proposal of execution strategies where parallelism was exploited \fully"

(i.e., all statements were eligible for parallelization). However, the problem is that

such parallelization often violates the principle of e�ciency: for a �nite number

of processors, the parallelized program can be arbitrarily slower than the sequen-

tial program, even under ideal assumptions regarding run-time overheads. For

instance, in the last example, reversing the order of the calls to p and q in the

body of main implies that the call q(X) (X at this point is free, i.e., a pointer to

an empty cell) will �rst enter its �rst alternative, performing the large computa-

tion. Upon return of q (with X pointing to the constant b) the call to p will fail

and the system will backtrack to the second alternative of q, after which p will

succeed with X=a. On the other hand the sequential execution would terminate in

two or three steps, without performing the large computation. The fundamental

observation is that, in the sequential execution, p a�ects q, in the sense that it

prunes (limits) its choices. Executing q before executing p results in performing

speculative choices with respect to the sequential execution. Note that this is in

fact very related to executing conditionals in parallel (or ahead of time) in tradi-

tional languages (note that q above could also be (loosely) written as \q(X) :-

if X=b then large computation else if X=a then true else fail.").

Something very similar occurs in case (c) above: while execution of the two

constraints in the original order involves two additions and two assignments (the

same of operations as those of the imperative or functional programs), executing

them in reversed order involves �rst adding an equation to the system, corre-

sponding to statement s

2

, and then solving it against s

1

, which is more expen-

sive. The obvious conclusion is that, in general, arbitrary parallelization does not

guarantee that the two conditions above are met.

Notions of Independence: Contrary to early beliefs held in the �eld, most

work in the last decade has considered that violating the e�ciency condition is

as much a \sign of dependence" among statements as violating the correctness

condition. As a result, novel notions of independence have been developed which

capture these two issues of correctness and e�ciency at the same time: inde-

pendent statements as those whose run-time behavior, if parallelized, produces

the same results as their sequential execution and an increase (or, at least, no

decrease) in performance. As seen before, dealing with correctness is a matter of

correctly sequencing side-e�ects (plus low-level issues, of course, such as locking).

The techniques developed to this end are interesting, but, due to space limita-

tions, we will concentrate on the arguably more interesting issue of guaranteeing

e�ciency. To separate issues better, we will discuss the issue under the assump-

tion of ideal run-time conditions, i.e., no task creation and scheduling overheads

(we will deal with overheads later). Note that, even under these ideal conditions,

the statements in (c) and (d) are clearly dependent.

6

Note that in practical languages, however, termination characteristics may change,

but termination can actually also be seen as an extreme e�ect of the other problem

to be discussed: e�ciency.



A fundamental question then is how to guarantee independence (without hav-

ing to actually run the statements, as suggested by the de�nition). A fundamental

result in this context is the fact that, if only the Herbrand constraint system is

used (as in the Prolog language), a statement or procedure call, q, cannot be

a�ected by another, p, unless there are free pointers (pointers to empty structure

�elds) from the run-time data structures passed to q from the data structures

passed to p. This condition is called strict independence [16,25].

7

For example, in

the following program:

main :- X=f(K,g(K)),

Y=a,

Z=g(L),

W=h(b,L),

p(X,Y),

q(Y,Z),

r(W).

p and q are strictly independent, because X and Z point to data structures which

do not point to each other, and, even though Y is a shared pointer, it points

to a �xed value, which p cannot change (note again that we are dealing with

single assignment languages). As a result, the execution of p cannot a�ect q in

any way and they can be safely run in parallel (and, again assuming no run-time

overheads, no-slowdown is guaranteed). Furthermore, no locking or copying of

the intervening data structures is required (which helps bring the implementa-

tion closer to the ideal situation). Similarly, q and r are not strictly independent,

because there is a pointer in common (L) among the data structures they have

access to.

Unfortunately, the compiler cannot always determine independence by simply

looking at one procedure, as above. For example, in the program (a) below:

main :- t(X,Y),

p(X), (a)

q(Y).

main :- t(X,Y),

( indep(X,Y) (b)

-> p(X) & q(Y)

; p(X), q(Y) ).

it can determine that p and q are not (strictly) independent of t, since, upon

entering the body of the procedure, X, Y, and Z are free pointers which are shared

with t. On the other hand, after execution of t the situation is unknown since

perhaps the structures created by t (and pointed to by X and Y) have no free

pointers to each other. Unfortunately, in order to determine this for sure a global

(inter-procedural) analysis of the program must be performed. An alternative is

to compile in a run-time test just after the execution of t. This has the undesir-

able side-e�ect that then the no-slowdown property does not automatically hold,

because of the overhead involved in the test, but it is still potentially useful. The

compilation of such a test can be seen as a source to source transformation of the

program as shown in program (b) above (where, following the &-Prolog notation,

\&" represents parallel execution, and (a -> b ; c) is Prolog's syntax for \(if a

then b else c)"). Furthermore, perhaps the global analysis can determine that in

fact the operations that t performs on X and Y do not a�ect the execution of p

and q. This kind of independence is called non-strict independence [26]. It cannot

7

To be completely precise, in order to avoid any speculation, some non-failing condi-

tions are also required of the goals executed in parallel, but we knowingly overlook

this issue to simplify the discussion.



be determined in general a priori (i.e., by inspecting the state of the computation

prior to executing t, p, and q) and thus necessarily requires a global analysis of

the program. However, it very interesting because it appears often in programs

which manipulate \open" data structures (di�erence lists, dictionaries, etc.).

An even more interesting case occurs if other constraint systems are used in

addition to or in place of the Herbrand domain. Consider for example two pro-

cedure calls p(X),q(Y) and assume (a) that the store contains only (X>Z,Y>Z).

Assume, alternatively, that the store contains (X>Z,Z>Y) (b). The simple pointer

aliasing reasoning implied by the de�nition of strict independence does not apply

directly. However, p cannot in any way a�ect q in case (a), while this could be

possible in case (b), i.e., two calls are clearly independent in case (a) while they

are (potentially) dependent in case (b).

Notions of independence which apply to general constraint programming (and

can thus deal with the situation above) have been proposed recently [21]. For

example, two goals p and q are independent if all constraints posed during the

execution of q are consistent with the output constraints of p.

8

The following is

a su�cient condition for the previous de�nition but which only needs to look at

the state of the store prior to the execution of the calls to be parallelized (for

example, using run-time tests which explore the store c). Assuming the calls are

p(�x) and q(�y): (�x \ �y � def(c)) and (9

��x

c ^ 9

��y

c! 9

��y[�x

c) where �x is the set

of arguments of p, def(c) is the set of variables constrained to a unique value in

c, and 9

��x

represents the projection of the store on those variables (the notion

of projection is prede�ned for each constraint system). In the example above, for

c = fX > Z; Y > Zg we have 9

�fXg

c = 9

�fYg

c = 9

�fX;Yg

c = true and therefore p

and q are independent. For c = fX > Z; Z > Yg we have 9

�fXg

c = 9

�fYg

c = true

while 9

fX;Yg

c = X > Y and therefore p and q are not independent.

Other notions of independence proposed are based on \determinacy" (i.e., lack

of choices) [39]: two computations that have no choices (i.e., \do not backtrack")

are independent (provided, as before, that they can be guaranteed not to fail).

Note that this is in general also captured by the notion of constraint independence

given above.

The Parallelization Process: Experiments have shown that parallelization

using only local analysis and generating run-time tests results in an excessive

amount of overhead that severely limits speedups (see [8] for a recent comparison

of actual speedups obtained by several parallelization methods). On the other

hand it has also been observed that there exist programs that obtain better

speedups if a limited amount of run-time checking of independence is used than

if only static decisions are made. Thus, a parallelization methodology is generally

used which can accommodate both static analysis and run-time checking.

One of the more widely used approaches is illustrated in the following �gure

(representing the parallelization of \g

1

(...), g

2

(...), g

3

(...)") [24,27,7]:

8

This actually implies a better result even for Prolog programs since its projection

on the Herbrand domain is a strict generalization of previous notions of non-strict

independence. E.g., the sequence p(X), q(X) can be parallelized if p is de�ned for

example as p(a) and q is de�ned as q(a).



g1 g3

g2

g1 g3

g2

icond(1-3)

icond(1-2) icond(2-3)

g1 g3

g2

test(1-3)

( test(1-3) -> ( g1, g2 ) & g3
                  ;   g1, ( g2 & g3 ) )

g1, ( g2 & g3 )Alternative:
"Annotation"

Local/Global analysis 
and simplification

The bodies of procedures are explored looking for statements and procedure

calls which are candidates for parallelization. As in many other parallelizers, a

dependency graph is �rst built which in principle reects the total ordering of

statements and calls given by the sequential semantics. To control the complexity

of the process these graphs are limited to one body of one procedure (if the body is

too long, the body can be partitioned in segments, but this does not happen often

in constraint logic programs). Each edge in the graph is then labeled with the

independence condition (the run-time check) that would guarantee independence

of the statements or calls joined by the edge. A global analysis of the program then

tries to prove these conditions statically true or false. If a condition is proved to

be true the corresponding edge in the dependency graph is eliminated. If proved

false, then an unconditional edge (i.e., a static dependency) is left. Still, in other

edges conditions may remain (possibly simpli�ed). The annotation process then

encodes the resulting graph in the target parallel language (a variant of the

source language). The techniques proposed for performing this process depend on

many factors including whether the target language allows arbitrary parallelism

or just fork-join structures and whether run-time independence tests are allowed

or not. As an example, the �gure above presents two possible encodings in &-

Prolog of the (schematic) dependency graph obtained after analysis. The parallel

expressions generated in this case use only fork-join structures, one with run-

time checks and the other one without them. Interesting techniques have been

developed for compilation of conditional non-planar dependency graphs into fork-

join structures, in addition to other, non graph-based techniques [17,35,7].

The global analysis required to simplify the conditional graphs has to perform,

among other tasks, inter-procedural pointer analyses, not unlike those proposed

for clean versions of C or C++. Early proposals based on traditional data ow

analysis techniques pointed in the right direction but proved imprecise [10]. The

presence of recursion and dynamic data structures has fueled the development

of quite sophisticated, incremental inter-procedural analyzers based on abstract

interpretation [12]. This has required the development of e�cient analysis algo-

rithms as well as abstract domains for accurately and e�ciently keeping track

of sharing patterns and pointer aliasing in recursive data structures [8,29,34,36].

These analyses have been applied to the detection of both strict and non-strict

independence [8,9]. Analyses have been developed also to derive other impor-



tant properties beyond variable instantiation states such as determinism [39],

non-failure [13], and number of answers [6].

Dealing with Irregularity and Speculation { Dynamic Solutions: The

preceding discussion has on purpose avoided the issue of run-time overheads.

The obvious practical implication of the existence of overheads (task creation,

scheduling, data movement, etc.) is that even if a task is known to be indepen-

dent, its parallel execution may still render a slow-down. This can happen if the

task does not represent a su�cient amount of computation with respect to the

overheads incurred in its parallelization. In the case of constraint logic program-

ming the problem is compounded by the fact that, because of the symbolic nature

of the applications typically coded, the number of tasks generated at run-time

(as well as the computational cost and dynamic memory demands of each such

task) depend on run-time parameters.

Two main approaches have been explored in order to overcome these prob-

lems. The �rst one is to combine dynamic task allocation policies with com-

pilation techniques (abstract machines) which reduce as much as possible the

overhead involved in the parallel execution of tasks. The best results have been

obtained by performing low level \micro-task" scheduling, independently of the

operating system threads, and generally based on distributed \task stealing" ap-

proaches. Micro tasks are often represented simply by two pointers, one pointing

to the procedure call or statement and another to the relevant invocation record.

Interesting techniques have also been proposed for parallel dynamic memory

management. These techniques e�ciently support, for example, e�cient mem-

ory recovery during parallel backtracking search. Some interesting examples of

these dynamic scheduling and memory management techniques are presented in

[22,24,37] for and-parallelism and in [33,1,18] for or-parallelism, where also quite

interesting techniques for controlling speculation have been developed.

Dealing with Irregularity and Speculation { Static Solutions: While

the dynamic techniques mentioned above have proven su�cient for obtaining

speedups in previous generations of shared memory multiprocessors (paradig-

matic examples are the Sequent Balance and Symmetry series), current trends

point towards larger multiprocessors but with less uniform shared memory access

times. Controlling in some way the granularity (execution time and space) of the

tasks to be executed in parallel can be a useful optimization in such machines,

and is in any case a necessity when parallelizing for machines with slower inter-

connections. This includes, for example, networks of workstations or the Internet.

The problem is challenging because the tasks being parallelized are often proce-

dure calls whose computational cost greatly depends on dynamic characteristics

of the input data. One of the solutions currently used is to derive at compile time

complexity cost functions which give upper and lower bounds on task execution

time as a function of certain measures of input data [14,15,32]. Interestingly, this

analysis makes use of some techniques developed in the context of imperative pro-

gram parallelization, such as the Omega test [38]. Programs are transformed at

compile-time into semantically equivalent counterparts but which automatically

control granularity at run-time based on such functions. Performance improve-

ments have been shown to result from the incorporation of this type of grain size

control, specially for systems with medium to large parallel execution overheads.



4 Conclusions: Towards Cross-Fertilization

As a result of the work outlined in previous sections, quite robust, publicly avail-

able compilers and run-time systems have been available for some time now,

generally for Prolog, which automatically exploit parallelism in complex applica-

tions. Such systems have been shown to provide speedups over the state of the

art sequential implementations. The speed and robustness of these compilers has

also been instrumental in demonstrating that abstract interpretation provides a

very adequate framework for developing provably correct, powerful, and e�cient

global analyzers and, consequently, parallelizers [44]. More recently, techniques

and practical tools have also been developed for the analysis of general constraint

logic programs [20] as well as for their parallelization [19]. Prototypes incorpo-

rating the granularity control techniques mentioned above are also starting to be

available. However, much work still remains to be done in these areas, and we

believe there may be good opportunity at this time for increased transference of

techniques across programming paradigms.

It can be argued that particularly strong progress has been made in the con-

text of (constraint) logic programming in inter-procedural analysis of programs

with dynamic data structures and pointers, in parallelization using conditional

dependency graphs (and possibly generating run-time independence tests), in the

de�nition of the advanced notions of independence that are needed in the pres-

ence of speculative computations or languages which include constraints, in the

development of e�cient task representation techniques and dynamic scheduling

algorithms to deal with irregularity and speculation, and in the static inference

of task cost functions for controlling granularity.

On the other hand, the techniques developed in the area of constraint logic

program parallelization are certainly weaker than those developed in the context

of numerical computing for regular problems. For example, logic programming

parallelizers can discover the parallelism in complex recursive traversals of data

structures, but do not handle well traversals that are based on integer (i.e., ar-

ray subscript) arithmetic, for which much work exists in the area of imperative

languages. Also, while current parallel constraint logic programming systems are

reasonably good at dealing with tasks with dynamic costs, the techniques cur-

rently used are again comparatively weaker for the static case than the partition-

ing and placement algorithms used in imperative program parallelization [5,23].

Ideally, a parallelizing compiler should perform good partitioning and placement

for any kind of architecture, using static techniques when possible and dynamic

techniques when unavoidable. It thus appears that it would be quite interesting to

merge the complementary work done in these areas by the di�erent communities.

Constraint logic programming extends the high-level programming paradigm

that logic programming o�ers in symbolic applications to numerical domains. We

believe it o�ers a natural platform in which to study the combination of the par-

allelization techniques used in the numerical and symbolic programming �elds.

Independently of the convenience of using constraint programming languages di-

rectly (as is being done with signi�cant commercial success in di�cult problem

areas such as scheduling or resource allocation), we also believe that many fea-

tures of these languages, such as the use of constraints (\reversible statements")



or the embedded search capabilities, will slowly make their way into the designs

of mainstream languages. In the same way, other features of symbolic languages

(such as dynamic data structure creation and garbage collection, or bytecode

compilation) have already made it into widely used languages such as Java. Cur-

rent proposals in this direction include ILOG (a commercially successful library

which which extends C++ and Java with constraint handling capabilities) and

[2], an imperative language with search capabilities.
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Demo Information: During the invited talk some of the capabilities of two (publicly

available) parallelizing compilers are demonstrated. These are the &-Prolog system par-

allelizer [44,24,8] (which parallelizes standard Prolog programs) and the CIAO system

parallelizer [19] (a more recent system which parallelizes constraint programs), both

developed by our group, in collaboration with others.


