
Testing Your (Static Analysis) Truths ?

Ignacio Casso1[0000−0001−9196−7951], José F. Morales1[0000−0001−6098−3895],
P. López-García1,3[0000−0002−1092−2071], and Manuel V.

Hermenegildo1,2[0000−0002−7583−323X]

1 IMDEA Software Institute, Madrid, Spain
2 ETSI Informática, Universidad Politécnica de Madrid (UPM), Madrid, Spain

3 Spanish Council for Scientific Research (CSIC), Spain
{ignacio.casso,josef.morales,pedro.lopez,manuel.hermenegildo}@imdea.org

Abstract. Static analysis is nowadays an essential component of many soft-
ware development toolsets, attracting significant research interest and practical
application. Unfortunately, the ever-increasing complexity of static analyzers
makes their coding error-prone. At the same time, the correctness and reliability
of software analyzers is critical if they are to be inserted in production compilers
and development environments. While there have been some notorious successes
in the validation of compilers, comparatively little work exists on the systematic
validation of static analyzers. Contributing factors here may be the intrinsic dif-
ficulty of formally verifying code that is quite complex and of finding suitable
oracles for testing it. In this paper, we propose a simple, automatic method
for testing abstract interpretation-based static analyzers. Broadly, it consists
in checking, over a suite of benchmarks, that the properties inferred statically
are satisfied dynamically. The main advantage of our approach is its simplicity,
which stems directly from framing it within the Ciao assertion-based valida-
tion framework, and its blended static/dynamic assertion checking approach.
We show that in this setting, the analysis can be tested with little effort by
combining the following components already present in the framework: 1) the
static analyzer, which outputs its results as the original program source with
assertions interspersed; 2) the assertion run-time checking mechanism, which
instruments a program to ensure that no assertion is violated at run time; 3)
the random test case generator, which generates random test cases satisfying the
properties present in assertion preconditions; and 4) the unit-test framework,
which executes those test cases. We show how a combination of these elements
and a trivial program transformation work together to compose a tool that can
effectively discover and locate errors in the different components of the static
analyzer. We apply our approach to test some of CiaoPP’s analysis domains over
a wide range of programs, successfully finding non-trivial, previously undetected
bugs, with a low degree of effort.

Keywords: Static Analysis, Run-time Checks, Random Testing, Assertions, Abstract
Interpretation, Program Analysis, (Constraint) Logic Programming.

1 Introduction and Motivation
Static analysis tools are nowadays a crucial component of the development environ-
ments for many programming languages. They are widely used in different steps of
? Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, and the
Madrid P2018/TCS-4339 BLOQUES-CM program.

the software development cycle, such as code optimization and verification, and they
are the subject of significant research interest and practical application. Unfortunately,
modern analyzers are often very large and complex software artifacts, and this makes
them prone to bugs. This is a limitation to their applicability in real-life production
compilers and development environments, where they are typically used in critical tasks
like verification or code optimization, that need to rely strongly on the soundness of
the analysis results.

However, the validation of static analyzers is a challenging problem, which is not
well covered in the literature or by existing tools. Well-established methodologies or
even guidelines to this end do not really exist. This is due to the fact that direct
application of formal methods is not always straightforward with code that is so com-
plex and large, even without considering the problem of having precise specifications
to check against —a clear instance of the classic problem of who checks the checker.
In current practice, extensive testing is the most extended and realistic option, but
it poses some significant challenges too. Testing separate components of the analyzer
misses integration testing, and designing proper oracles for testing the complete tool
is really challenging.

Our objective in this paper is to develop a simple, automatic method for testing
abstract interpretation-based static analyzers. Although the approach is general, we
develop it for concreteness in the context of the Ciao [20] logic programming-based,
multiparadigm language. The Ciao programming environment includes an abstract
interpretation-based static analyzer, CiaoPP, which faces this very problem. As other
“classic” analyzers, this analyzer has evolved for a long time, incorporating a large
number of abstract domains, features, and techniques, adding up to over 1/2 million
lines of Ciao code. These components have in turn reached over the years different
levels of maturity. While the essential parts, such as the fixpoint algorithms and the
classic abstract domains, have been used routinely for a long time now and it is unusual
to find bugs, other parts are less developed and yet others are prototypes or even proofs
of concept. A recent, shallow effort of applying a new testing tool to some parts of the
Ciao analyzers as a case study [10] revealed subtle bugs, not only in the less-developed
parts of the system, but also in corner cases of the parts that are considered more
mature, such as, e.g., in the handling of rarely-used built-ins.

Another feature of Ciao that will be instrumental to our approach is the use of
a unified assertion language and framework across its different components [21, 22],
which together implement its unique blend of static and dynamic assertion checking.
These components include: 1) the PLAI static analyzer [38, 24, 18], which expresses
the inferred information as Ciao assertions interspersed within the original program;
2) the assertion runtime-checking framework [43, 44], which instruments the code to
ensure that any assertions remaining after static verification are not violated at run
time; 3) the (random) test case generation framework [10], which generates random test
cases satisfying the properties present in an assertion preconditions; 4) the unit-test
framework [35], which executes those test cases.

In this paper, we propose an algorithm that combines these four basic components
in a novel way that allows testing the static analyzer almost for free. Intuitively, it
consists in checking, over a suite of benchmarks, that the properties inferred statically
are satisfied dynamically. The overall testing process, for each benchmark, can be sum-
marized as follows: first the code is analyzed and the analysis results are expressed by
the analyzer as assertions interspersed within the original code. Then these assertions
are switched into run-time checks, that will ensure that violations of those assertions
are reported at run time. Finally, random test cases are generated and executed to

2

exercise those run-time checks. If any assertion violation is reported, since these asser-
tions (the analyzer output) must cover all possible concrete executions, it means that
the assertion was incorrectly inferred by the analyzer and thus that an error in the
analyzer has been found. This process can be easily automated, and if it is repeated
for an extensive and varied enough suite of benchmarks, it can be used to effectively
validate (even if not fully verify) the analyzer or to discover new bugs. Furthermore, the
implementation, when framed within the Ciao assertion-based validation framework,
is very simple, since, as we will show, only a basic code transformation and a simple
driver need to be implemented to obtain a very useful, working system.

The idea of checking at run time the properties or assertions inferred by the analy-
sis for different program points, is not new. For example, [47] successfully applied this
technique for checking a range of different aliasing analyses. However, these approaches
require the development of tailored instrumentation or monitoring, and require signif-
icant effort in their design and implementation. We argue that the testing approach
is made more applicable, general, and scalable by the use of a unified assertion-based
framework for static analysis and dynamic debugging, as the one of Ciao. As men-
tioned before, framing things in such a framework, the approach can be implemented
with the already existing components in the system, in a very simple way, so much
so that our initial prototype was, in fact, barely 50 lines of code long. We argue also
that our approach is particularly useful in a mixed production and research setting like
that of CiaoPP, in which there is a mature and domain-parametric abstract interpre-
tation framework used routinely, but new, experimental abstract domains and overall
improvements are in constant development. Those domains can easily be tested relying
only on the existing abstract-interpretation framework, runtime-checking framework,
and unified assertion language, provided only that the assertion language is extended
to include the properties relevant for the domains.

The rest of the paper is structured as follows. Section 2 gives background knowledge
needed to describe the main ideas and contributions of this paper. In particular, we
recall some relevant aspects of the CiaoPP unified assertion framework. Then, Section 3
gives an overview of our approach illustrating it with an example. Section 4 presents
our concrete algorithm to combine the different elements of the framework for the task
of testing the static analyzer. In Section 5 we show some examples and applications of
our approach. In Section 6 we apply the idea to testing the analysis results for a wide
range of CiaoPP’s abstract domains and properties. Finally, Section 7 discusses related
work and Section 8 summarizes our conclusions and plans for future work.

2 Preliminaries
In this section we review in some more detail those aspects of the Ciao model that are
relevant to our approach, including the assertion language and the blended static and
dynamic assertion checking framework built around it. A more detailed presentation
can be found in [4, 21, 40, 23, 35, 20] and their references.

The Assertion Language. Ciao assertions are linguistic constructs, which allow express-
ing properties of programs. There are two types of assertions in Ciao that are relevant
herein: predicate assertions and program-point assertions. The first ones are declarations
that provide partial specifications of a predicate. They have the following syntax: :-
[Status] pred Head : [Calls] => [Success] + [Comp], indicating that if a call
to the goal Head satisfies precondition Calls, it must satisfy post-condition Success
on success and global computational properties Comp. Program-point assertions are re-
served literals that appear in clause bodies and describe the constraint store at the

3

Code
(user, builtins,
libraries)

Assertions
(user, builtins,
libraries)
:- check
:- test
:- trust
Unit-tests

Static
Analysis
(Fixpoint)

Assertion
Normalizer
& Library
Interface

Analysis Info

Static
Comparator
& Simplifier

RT-Check

Unit-Test

:- texec

:- check

:- false

:- checked

:- true

Possible
run-time error

Compile-time
error

Verification
warning

Verified

Test Case
Generator

Preprocessor
Program

Fig. 1. The Ciao assertion framework (CiaoPP’s verification/testing architecture).

corresponding program point. Their syntax is [Status](State). Examples of both
types of assertions are provided in the code fragment below:�

1 :- check pred append(X,Y,Z) : (list(X),list(Y)) => list(Z) + is_det.
2 :- check pred append(X,Y,Z) : (var(X),var(Y),list(Z)) => (list(X),list(Y)) + non_det.
3
4 append([],X,X).
5 append([X|Xs],Ys,[X|Zs]) :-
6 append(Xs,Ys,Zs),
7 check((list(Xs),list(Ys),list(Zs))).� �

Assertion fields Calls, Success, Comp and State, are conjunctions of properties.
Such properties are predicates, typically written in the source language (user-defined
or in libraries), and thus runnable, so that they can be used as run-time checks, and
which, for our purposes, are typically native to CiaoPP, i.e., abstracted and inferred by
some domain in CiaoPP. This includes a wide range of properties, from types, modes
and variable sharing, to determinism, (non)failure and resource consumption. We refer
the reader to [39, 23, 20] and their references for a full description of the Ciao assertion
language.

Assertions are used everywhere in Ciao, from documentation and foreign interface
definitions to static analysis and dynamic debugging. Depending on their origin and
intended use they have a different status, the Status field in the syntax described
above. Assertion statuses relevant herein include true, which is used for assertions
that are output from the analysis (and thus must be safe approximations), or the
default status check, which indicates that the validity of the assertion is unknown and
it must be checked, statically or dynamically. We will return to this crucial issue below.

Fig. 1 depicts the overall architecture of the Ciao unified assertion framework.
Hexagons represent tools, and arrows indicate the communication paths among them.
The input to the process is the user program, optionally including a set of assertions;
this set always includes any assertion present for predicates exported by any libraries
used (left part of Fig. 1).

Static Analysis. One use of Ciao assertions is as an interface to the static analyzer.
As mentioned above, assertions can be used to indicate what we want the analyzer to

4

check (the default check status), or to guide the analysis by feeding it information that
it might be unable to infer by itself (trust status). The latter includes as a special case
providing information on the entry points to the module being analyzed (i.e., on the
calls to the predicates exported by the module –entry status). But more importantly
for this paper, assertions are one of the possible output formats in which the analysis
results are produced by the static analyzer (assertions with true status). If this type
of output is chosen, a new source file for the analyzed program will be created, exactly
as the original but with true program-point assertions interspersed between every two
consecutive literals of each clause, and with one or more true predicate assertions for
each predicate.

The technical and theoretical details of how this is achieved are omitted for space
constraints. For our purposes it is sufficient to say that the CiaoPP analyzer is ab-
stract interpretation-based, and its design consists of a common abstract-interpretation
framework (the fixpoint algorithm(s)) parameterized by different, “pluggable” abstract
domains. Depending on the domain or combination of domains selected for the analysis,
different properties will be inferred and will appear in the emitted true assertions.

Run-time Checking. Static analysis can be used for compile-time checking of asser-
tions (the Static Comparator & Simplifier, in Fig. 1) but the inherent imprecision of
the analysis can lead to some assertions, specially those with user-defined properties
that are not native to abstract domains, to not be proved or disproved statically (al-
though perhaps they are simplified). In those cases, the remaining unproved (parts
of) assertions are written into the output program with check status and then this
output program can optionally be instrumented with run-time checks. These dynamic
checks will encode the meaning of the check assertions, ensuring that an error is re-
ported at run-time if any of these remaining assertions is violated (the dynamic part of
the model). Note that the fact that properties are written in the source language and
runnable is essential in this process, and allows checking new user-defined and native
properties without having to extend the run-time checking framework. This results in
a very rich set of properties being checkable in Ciao, including types, modes, variable
sharing, failure, exceptions, determinism, choice-points, resources, and more, blending
smoothly static and dynamic techniques.

Unit Tests, Test Case Generation, and Assertion-based Testing. Test inputs can be
provided by the user, by means of test assertions (unit tests), and used to test the
test assertion itself as well as, through the runtime-checking mechanism, also any other
assertion in any predicate called by the test case, that was not eliminated in the static
checking. The unit-testing framework in principle requires the user to manually write
individual test cases for each assertion to be tested. However, the Ciao model also
includes mechanisms for generating test cases automatically from the assertion pre-
conditions, using the corresponding property predicates as generators. This has been
extended recently [10] to a full random test case generation framework, which auto-
matically generates, using the same technique, random test cases that satisfy assertion
preconditions. We refer to the combination of this test generation mechanism with
the run-time checking of the intervening assertions as assertion-based testing, that is,
generating and running relevant test cases which exercise the run-time checks of the
assertions in a program, thus testing if those assertions are correct. This yields similar
results to property-based testing [11] but in a more integrated way within the overall
model. Such automatic generation is supported for native properties, regular types, and
user-defined properties as long as they are restricted to pure Prolog with arithmetic

5

�
1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2
3 :- true pred prepend(X,Xs,Ys)
4 : (unknown(X), nonvar(Xs), var(Ys))
5 => (unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys)).
6
7 prepend(X,Xs,Ys) :-
8 true((unknown(X), nonvar(Xs), var(Ys), var(Rest))),
9 Ys=[X|Rest],

10 true((unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys), var(Rest))),
11 Rest=Xs,
12 true((unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys), nonvar(Rest))).� �

Fig. 2. An incorrect simple mode analysis.

or mode and sharing constraints. In particular, it is always supported for the native
properties used by the different analyses in the assertions that they output.

3 Overview of the Approach
After introducing the relevant elements of the Ciao assertion model, we can now sketch
the main idea of our approach with a motivating example. Assume we have this simple
Prolog program, where the entry assertion indicates that the predicate is always called
with its second argument instantiated to a list and the third a free variable:�

1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2
3 prepend(X,Xs,Ys) :-
4 Ys=[X|Rest],
5 Rest=Xs.� �

Assume that we analyze it with a simple modes abstract domain that assigns to
each variable in an abstract substitution one the following abstract values: g (variable
is ground), v (variable is free), ng (variable is not ground), nv (variables is not free),
ngv (variable is not ground nor free), or any (nothing can be said about the variable).
Assume also that the analysis is incorrect because it does not consider sharing (aliasing)
between variables, so when updating the abstract substitution after the Rest=Xs literal,
the abstract value for Ys is not modified at all. The result of the analysis will be
represented, as explained in the previous section, as a new source file with interspersed
assertions, as shown in Fig. 2. Note that the correct result, if the analysis considered
aliasing, would be that there is no groundness information for Ys at the end of the
clause, since there is none for X and Xs at the beginning either. Ys could only be
inferred to be nonvar, but instead is incorrectly inferred to be nonground too. Note
also that unknown/1 properties would not actually appear in the analysis output, but
are included for clarity.

What we would like at this point, is to be able to check dynamically the validity
of the true assertions from the analyzer. Thanks to the different aspects of the Ciao
model presented previously, the only thing needed in order to achieve this is to (1)
turn the status of the true assertions produced by the analyzer into check, as shown
in Fig. 3. This would normally not make any sense since these true assertions have
been proved by the analyzer. But that is exactly what we want to check, i.e., whether
the information inferred is incorrect. To do this, (2) we run the transformed program
(Fig. 3) again through CiaoPP (Fig. 1) but without performing any analysis. In that
case the check literals (stemming from the true literals of the previous run) will not
be simplified in the comparator (since there is no abstract information to compare

6

�
1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2
3 :- check pred prepend(X,Xs,Ys)
4 : (unknown(X), nonvar(Xs), var(Ys))
5 => (unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys)).
6
7 prepend(X,Xs,Ys) :-
8 check((nonvar(Xs), var(Ys), var(Rest))),
9 Ys=[X|Rest],

10 check((nonvar(Xs), nonground(Ys), nonvar(Ys), var(Rest))),
11 Rest=Xs,
12 check((nonvar(Xs), nonground(Ys), nonvar(Ys), nonvar(Rest))).� �

Fig. 3. The instrumented program.

against) and instead will be converted directly to run-time tests. I.e., the check(Goal)
literals will be expanded and compiled to code that, every time that this program point
is reached, in every execution, will check dynamically if the property (or properties)
within the check literal (i.e., those in Goal) succeed, and an error message will be
emitted if they do not. The only missing step to complete the automation of the
approach is to (3) use the random test case generator to generate a set of test cases
for prepend/3, and run those test cases. The framework will ensure that instances of
the goal prepend(X,Xs,Ys) are generated where Xs is a list and Ys is a free variable,
but otherwise X and the elements of Xs will be instantiated to random terms. In this
example, as soon as a test case is generated where both X and all elements in Xs are
ground, the program will report a runtime-checking error in the check in line 12, letting
us know that the third program-point assertion, and thus the analysis, is incorrect. 4

The same procedure can be followed to debug different analyses with different
benchmarks. If the execution of any test case reports a runtime-checking error for one
assertion, it will mean that the assertion was not correct and the analyzer computed
an incorrect over-approximation of the semantics of the program. Alternatively, if this
experiment, which can be automated easily, is run for an extensive suite of benchmarks
without errors, we can gain more confident that our analysis implementation is correct,
even if perhaps imprecise (although of course we cannot have actual correctness in
general by testing).

4 The Algorithm
In this section we present in more detail the actual algorithm for combining the com-
ponents of the framework used in order to test the static analyzer.

4.1 Basic Reasoning Behind the Approach

We start by establishing more concretely the basic reasoning behind the approach in
terms of abstract interpretation and safe upper and lower approximations. The math-
ematical notation in this subsection is purely for readability, as a proper formalization
4 In the discussion above we have assumed for simplicity that the original program did not
already contain check assertions. In that case these need to be treated separately and there
are several options, including simply ignoring them for the process or actually turning them
into trusts, so that we switch roles and trust the user-provided properties while checking
the analyzer-inferred ones. This very interesting issue of when and whether to use the user-
provided assertions to be checked during analysis, and its relation to run-time checking is
discussed in depth in [17].

7

is outside the scope of the paper, and in any case arguably not really necessary, thanks
to the simplicity of the approach.

An abstract interpretation-based static analysis computes an over-approximation
S+
P of the collecting semantics SP of a program P . Such collecting semantics can be

broadly defined as a control flow graph for the program decorated at each node with the
set of all possible states that could occur at run-time at that program point. Different
approximations of this semantics will have smaller or larger sets of possible states at
each program point. Let us denote by S′P ⊂P S′′P the relation that establishes that an
approximation of SP , S′′P , is an over-approximation of another, S′P . The analysis will
be correct if indeed SP ⊂P S+

P .
Since SP is undecidable, this relation cannot be checked in general. However, if we

had a good enough under-approximation S−P of SP , it can be tested as S−P ⊂P S+
P . If

it does not hold and S−P 6⊂P S+
P , then it would imply that SP 6⊂P S+

P , and thus, the
results of the analysis would be incorrect, i.e., the computed S+

P would not actually be
an over-approximation of SP .

An under-approximation of the collecting semantics of P is easy to compute: it
suffices with running the program with a subset I− of the set I of all possible initial
states. We denote the resulting under-approximation SI−

P , and note that SP = SI
P ,

which would be computable if I is finite and P always terminates. That is the method
that we propose for testing the analysis: selecting a large and varied enough I−, com-
puting SI−

P and checking that SI−

P ⊂P S+
P .

A direct implementation of this idea is challenging. It would require tailored in-
strumentation and monitoring to build and deal with a partially constructed collecting
semantic under-approximation as a programming structure, which then would need to
be compared to the one the analysis handles. However, as we have seen the process
can be greatly simplified by reusing some of the components already in the system,
following these observations:

– We can work with one initial state i at a time, following this reasoning:
SI−

P ⊂P S+
P ⇐⇒ ∀i ∈ I−, S

{i}
P ⊂P S+

P .
– We can use the random test case generation framework for selecting each initial

state i.
– Instead of checking S

{i}
P ⊂P S+

P , we can instrument the code with run-time checks
to ensure the execution from initial state i does not contradict the analysis at any
point. That is, that the state of the program at any program point is contained in
the over-approximation of the set of possible states that the analysis inferred and
output as Ciao assertions.

4.2 The Algorithm

We now show the concrete algorithm for implementing our proposal, i.e., the driver
that combines and inter-operates the different components of the framework to achieve
the desired results. The essence of the algorithm (Alg. 1) is the following: non-
deterministically choose a program P and a domain D from a collection of benchmarks
and domains, and execute the AnaTest(P,D) procedure until an error is found or a
limit is reached. Unless the testing part is ensured to explore the complete execu-
tion space, it could in principle be useful to revisit the same (P,D) pair more than
once. When the algorithm detects a faulty program-point assertion for some input
(Error(input)), it means that the concrete execution reaches a state not captured by

8

Algorithm 1 Analysis Testing Algorithm (for program P and domain D)
1: procedure AnaTest(P,D)
2: result← None
3: Pan ← analyze and annotate P with domain D (incl. program-point assertions).
4: Pcheck ← Pan where true assertion status is replaced by check
5: Prtcheck ← instrument Pcheck with run-time checks
6: repeat
7: Choose an exported predicate p and generate a test case input
8: if p(input) in Pcheck produces runtime errors then
9: result← Error(input)
10: else if maximum number of test executions is reached then
11: result← Timeout
12: until result 6= None return result

the (over-approximation of the) analysis. In such case it is possible to reconstruct (or
store together with the test output) additional information to diagnose the problem.
E.g., comparing the concrete execution trace (which is logged during testing) with the
analysis graph (recoverable from Pan, the program annotated with analysis results),
domain operations (inspecting the analysis graph), and transfer functions (from pred-
icates that are native to each domain).

4.3 Other Details and Observations

We now discuss some details and observations on the algorithm that may have been
left out or oversimplified in the algorithm sketch:

Analysis Crashes. An implicit assumption throughout our discussion so far is that the
analysis always terminates without errors, but the results computed may be unsound.
Of course, it is also possible that a bug in the analysis produces a crash, or even leads
to non-termination. It is also possible that the analysis output is malformed (e.g., there
are missing assertions in Pan). Those errors are of course also checked and reported by
our tool. Non-termination is handled with timeouts and possible warnings (both for
analyses and concrete executions).

Benchmark Selection. No prior requirement is imposed on the origin or characteristics
of the benchmark suite. It could consist of automatically generated programs, an ex-
isting benchmark suite, or just real-life code. Each may have its own advantages and
disadvantages (e.g., automatically generated code may test more convoluted or corner
cases, but real-life code may find the bugs that actually occur in programs), but in
principle, our approach is agnostic in this regard.

Entry Points. There is no restriction regarding the number of entry points or inputs to a
program to be analyzed for. It is common in tools related to ours to use as benchmarks
programs with a single entry point with no inputs (e.g., just a single void main()
function as entry point for C). Our benchmarks are typically Ciao modules, and their
entry points to analysis and testing are their exported predicates. In Ciao programs
signatures and types (as well as entry assertions) are optional. Admissible inputs (i.e.,
the initial set of possible states for analysis or test case generation) can be specified by
writing assertions for the exported predicates, by means of entry assertions, or skipped

9

altogether. Note also that if our benchmarks had the restriction mentioned above (in
our case, exporting only a main/0 predicate), then test case generation would not be
needed for our algorithm.

Test Case Generation. In the absence of entry assertions, the test case generation
framework has already some mechanisms to generate relevant test cases, instead of
random, nonsensical inputs which would exercise few run-time checks before failing.
However, these generators have limitations, and the assertion-based testing framework
is in fact best used with assertions that have descriptive-enough call patterns, or with
custom user-defined generators in their absence. To tackle this problem, our tool makes
also use of test assertions when available in the benchmarks, using also the test cases
specified in the benchmarks besides those randomly generated. This can help, e.g., when
using a benchmark that works with files and has paths as input, for which relevant
test cases would not likely be found with random generation. Note however that the
tool would still work without any entry or test assertions; it would just become less
effective.

Error Diagnosis and Debugging. It is important to note that although error diagnosis
and debugging is primarily left for the user to manually perform, our tool facilitates
the task in some aspects. Firstly, the assertion-based testing tool supports shrinking of
failed test cases, so we can expect reasonably small variable substitutions in the errors
reported. Note however that benchmark reduction, e.g., by delta debugging [49], is
currently not supported. Secondly, as sketched in Algorithm 1, the error location and
trace reported by the runtime-checks instrumentation provide an approximated idea of
the point where the analysis went wrong, if not of the reason why. For example, if the
runtime-check error points to a program-point assertion right after a call to a builtin,
then we typically know that the analysis erred in the builtin handler.

Multivariance and Path-Sensitivity. As presented, our approach might miss some anal-
ysis errors even when the right test cases are used, since we have apparently disregarded
multi-variance and path-sensitivity. In fact in CiaoPP the information inferred is fully
multi-variant, and separate path information is kept to each variant. However, in order
to produce an output that is easy for the programmer to inspect, i.e., that is close to the
source program, when outputting the analysis results CiaoPP by default combines the
different versions of each predicate (and the associated information) into a single code
version and a single combined assertion for each program point and predicate. If this
default output is used when implementing our approach, it is indeed entirely possible
that the analysis errs at a program point in one path but the algorithm never detects
it: this can happen if, for example, in another path leading to the same program point
(such that the two paths an their corresponding analysis results are collapsed –lubbed–
together at the same program point) the analysis infers a too general value (higher in
the domain lattice) at that program point and thus, the error is not detected. However,
this potential problem is easily addressed by simply changing the corresponding flag in
CiaoPP so that the different versions are not collapsed and are instead materialized into
different predicate instances. This is done in CiaoPP by selecting the versions transfor-
mation prior to emitting the output. In this case multiple versions may be generated
for a given predicate, if there are separate paths to it with different abstract infor-
mation, and the corresponding analysis information will be annotated separately for
each abstract path through the program in the program text of the different versions,
avoiding the problem mentioned above.

10

5 Applications and Examples
In this section we discuss interesting use cases and applications of our approach. As
observed before, our testing technique can be seen as a sanity or coherence check,
and thus it can be targeted to test different components of the system depending on
which ones are assumed to be trusted. Some examples follow. A few of them have
actually been implemented and we report on them in the following section. We hope
to implement the others for the future versions of the paper.

Debugging Abstract Domains. The first application of our approach, which has been
illustrated in the examples, is to test the abstract domains. In general the Ciao abstract
interpretation engine (the fixpoint algorithms and all the surrounding infrastructure of
the system, into which the domains are “plugged-in”) includes the components of the
analyzer we trust most, since they have been used and refined for more than 30 years.
Thus, it makes sense to take this as the trusted base and try to find errors in the
domains. This situation is realistic and frequent, since CiaoPP is at the same time
a production and a research tool, and new domains are constantly being developed.
In order to test a new domain with the algorithm proposed, two components need
to be present. The first one is a translation interface from the abstract values in the
domain to Ciao properties, which is needed to express the analysis results as assertions.
But note that this is actually already a requirement for any abstract domain that
intends to make full use of the framework, so it is normally implemented anyway in
all domains. The other component is to have builtin checks for those properties to be
used by the run-time checking framework, if those properties are declared native and
not written in the source language and thus already runnable and checkable. This is
also a standard requirement on domains to be able to make full use of the framework,
so they are typically also implemented with the domain. In particular, all current Ciao
abstract domains include the functionalities mentioned, and can be tested as is with the
proposed approach. We show the results for some of them in the case study described
in Sec. 6.

Debugging Trust Assertions and Custom Transfer Functions. One feature of CiaoPP’s
analyses is that they can be guided by the user, which can feed the analyzer with
information that can be assumed to be true at points where otherwise the analysis
would lose precision. We have already introduced in Sec. 2 one of these mechanisms,
trust assertions, but there are others. One is custom abstract transfer functions, similar
to those that need to be implemented for abstracting each builtin within each domain,
but that the user can provide for any predicate. A particular instance of this mechanism
is when the user specifies that one predicate is indistinguishable from or should behave
like another with respect to a domain: the equiv declaration. Our approach can be
used to test these mechanisms too. Both to test that they are applied correctly by the
analyzer, if the user-provided information is trusted to be correct, and to test that
the user-provided information is correct, if what is trusted is that the information is
applied correctly. The latter is in particular very useful, since even a completely sound
analyzer can produce unsound results if it assumes some property to be true when it
is actually not, and thus there will always be the need to test such properties.

Testing the Abstract Interpretation Engine. Another idea that comes to mind is
whether we can test the abstract interpretation engine (the fixpoint algorithms and
all the surrounding infrastructure of the framework) instead of the domains, by using

11

domains that are simple enough to be used as a trusted base. While the classic algo-
rithms are quite stable, new fixpoints are also added to the system (e.g., recently a
modular and incremental fixpoint) which can of course bring new bugs. A first abstract
domain that could be useful for this purpose is the concrete domain itself (which is
actually implemented in CiaoPP as the pd –partial deduction– domain). If we give the
analysis a singleton set of initial states as entry point, the analyzer should behave as
an interpreter for the program starting from that initial state, provided the program
terminates. The assertions resulting from this “analysis” will use the =/2 property and
be essentially a program which is adorned at each program point with the concrete
states(s) that the analyzer infers will be occurring at run time, expressed as conjunc-
tions of substitutions using =/2. Then, when running this program, the run-time checks
would check that the variables are indeed instantiated to the concrete values inferred.
Non-deterministic programs could be equally handled with member/2 (∈) instead of
=/2 (=). A second domain that could be useful in this context is the pdb domain,
which can be used to perform reachability analysis. The properties appearing in the
assertions resulting from this analysis would just be possibly_reachable/0 (>) and
not_reachable/0 (⊥), which indicates if a program point is definitely unreachable at
run-time.5 The run-time checks would just report an error any time a check for the
property not_reachable/0 (⊥) is invoked at run time. This test would then detect if
the analyzer incorrectly marks reachable parts of the program as unreachable.

Testing the Overall Consistency of the Framework. So far we have focused on applica-
tions in testing analysis soundness. But doing so has the implicit assumption that there
are clear semantics and specifications for the analyzer to follow, and that is not always
the case. Sometimes the semantics is underspecified, and then a discrepancy between
what the analysis infers and what the program executes is not so much an error but a
disparity in the interpretation of such and under-specification. In those cases our tool
helps ensure that at least the analysis and run-time semantics are consistent. A relevant
example can be found in the case of the abstraction of built-ins within abstract domain
implementations. For some of them the specification is not complete (sometimes even
the ISO-Prolog standard) and again our tool can at least check for inconsistencies in
the interpretations made by the analyses and the run-time system.

In this same line, the tool has helped us find inconsistencies between the under-
standing of Ciao properties in the analysis and in the runtime-checks framework. With
many properties this cannot happen (e.g., with pure predicates) because both the anal-
ysis and the run-time checking derive the semantics from the actual code defining the
property. But for more complex properties the implementations may be different, per-
haps developed by different people, with different interpretations of the property se-
mantics. An actual example is the property cardinality/3, which provides upper and
lower bounds to the number of solutions that a predicate might produce. It is a prop-
erty that has not seen a lot of use (determinacy and/or non-failure are the ones used
most frequently), and our experimental evaluation exposed that for cardinality/3 the
analysis was considering only different solutions while the runtime-checks framework
counted also repeated ones.

Integration Testing of the Analyzer and Third Parties. Finally, even if every piece
of the analyzer is validated separately, our tool can still help in testing how all its

5 Note that this, combined with non-failure analysis [15, 5], can also infer
definitely_reachable/0, but that is a more complex domain.

12

Abstract Domain Properties Abstracted Maturity Level References
shfr aliasing, modes mature [37]
def aliasing, modes intermediate [19]
gr aliasing, modes intermediate [6]

eterms types mature [46]
etermsvar types experimental [46]

nf failure mature [15, 5]
det determinism mature [32, 33]

Table 1. Domains used for the evaluation of the approach.

parts integrate together to form a functional and sound analyzer, and, even more
interestingly, it can also test the correctness of the different integrations with external
or third party solvers used by the analyzer (e.g., the PPL library).

6 A more detailed case study
As a case study, in order to validate our approach and confirm its effectiveness, we have
studied further the Debugging Abstract Domains application of Section 5, by applying
our prototype more systematically to some of the analyses in CiaoPP.

Setup. The analyses tested all use the standard configuration of the abstract inter-
pretation framework (i.e., the PLAI fixpoint, multi-variance on calls, etc.) but differ
in the abstract domains used for the analysis. The complete list of abstract domains
tested can be seen in the first column of Table. 1. The second column indicates the
different properties which the domains reason about, such as variable aliasing, variable
modes, variable types, (non)failure, or determinism. The domains range in maturity,
from stable domains like shfr and eterms, to mere prototypes like etermsvar. The third
column of the figure indicates this level of maturity with three different values: ma-
ture, intermediate, experimental. For more details about the domains we refer to the
citations in the fourth column.

The experiment has been run over some selected benchmarks with increasing lev-
els of complexity and language features. We have started with simple, existing CiaoPP
benchmarks used for, e.g., demos, statistics and integration testing, for which in princi-
ple the analyses tested should be correct. Then we have continued with a large database
of anonymized solutions for Prolog assignments in undergraduate courses, which on one
hand are not expected to use necessarily the most sophisticated features of the lan-
guage (although there are always exceptions), but on the other hand are known to
exhibit a high degree of creativity in combining language elements in unusual and un-
predictable ways, including many that do not make sense at all. The intuition is that
these combinations may exercise corner cases of the analyses in a similar (but hope-
fully somewhat more focused way) than random program generation. Finally, we have
applied the experiment to some selected modules of the Ciao code base using more
advanced features. Additionally, we have cherry-picked some benchmarks which were
expected to reveal some known bugs, either still unfixed or explicitly reintroduced in
the system for this experiment, and some using deliberately features not supported by
a particular analysis such as, e.g., attributed variables. Some of the benchmarks have
been modified by adding entry assertions to guide test case generation, and existing
test cases from unit tests (i.e., test assertions) have been used in modules where using
random test cases is ineffective or just plain dangerous (e.g., predicates that have files
as input). The experiments were run with Ciao/CiaoPP version 1.19-221.

13

Results. While we are planning on performing a larger set of experiments, 6 the results
so far are promising and have allowed us to draw some interesting conclusions and
observations. A good number of bugs and inconsistencies were indeed found using
the technique, many of them known but also some new ones. First, our experiment
was successful in finding known bugs in previous versions of the analyses, that have
now been fixed, and also in revealing known limitations of different analyses for some
language features. For example, the fact that some of the aliasing domains do not
support rational terms was easily detected, and also that many domains do not support
attributed variables. Some new, but still not unexpected bugs were found in one of the
most experimental domains (etermsvar). Furthermore, also a few new bugs were found
even in mature domains. These are typically related to the handling of rarely-used
built-ins, which explains why they have gone unnoticed, but they are still bugs and
have been (or are being) fixed. In addition, while the testing process was aimed at
the domains, it also uncovered some bugs in related components of the Ciao assertion
framework and their integration, which have been fixed too. We thus conclude that
our approach is indeed effective in revealing and discovering bugs and inconsistencies
in the domains and also in the overall framework.

Another overall conclusion from the experiment is that benchmark selection is very
important when focusing our approach on testing specific domains. No bugs were found
for the most mature domains using standard benchmarks and the undergraduate Prolog
assignments. The subtle bugs mentioned before in less-used built-ins were found instead
when using benchmarks extracted from Ciao’s code base, i.e., in complex, system code.
On the other hand, a good number of errors were found in the experimental domain
with even the simpler benchmarks. In fact, in this case, the many errors triggered
obfuscated sometimes the real (possibly multiple) origin of the problems, but this
is to be expected in immature code: consider for example that just the ISO-standard
contains a very large set of built-ins and the implementation of an experimental domain
typically does not support all of them.

Finally, it is important to point out that we also found out that there are some bugs
that are unlikely to be found with benchmarks like the ones used in the tests, because
they are bugs that will probably never occur in realistic programs. One example is
the simple bug found in [10] for the handler of the builtin =/2 in the sharing-freeness
domain. The code did not consider that the two arguments could be the same variable,
and thus the analysis failed for any program with the literal X=X. Since that literal
always succeeds and is redundant in every program, it will likely not appear in any
reasonable benchmark and this error would not be detected by our tool. To find bugs
of this kind with our approach, randomly generated benchmarks would be needed.

7 Related Work
The need for validating program analyzers was discussed by [8], and the topic has mo-
tivated interesting research over the past years. On the formal verification side, there
have been some pen-and-paper proofs, such as that of the Astree analyzer [12], some au-
tomatic and interactive proofs, such as [16, 42], and some verification attempts, which
include [2, 30, 25]. Testing efforts for program analyzers include e.g., static analyz-
ers [47, 50, 13, 27], symbolic execution engines [26], refactoring engines [14], compilers
[48, 28, 45, 29, 41, 31], SMT solvers [3], among others. Most of these testing approaches
6 We are working on including the technique as part of the Ciao continuous integration
infrastructure, and plan to report on a larger number of CiaoPP analyses over a wider
range of programs.

14

use programs in the target language as test cases and and apply testing techniques
like fuzzing (e.g., [48, 26, 3]) or differential testing [34], (e.g., [48, 28, 26, 3, 27]). In [7]
and [36] abstract domain properties are tested, the later using QuickCheck [11]. Among
the different approaches mentioned, the closest to ours are those that cross-check dy-
namically observed and statically inferred properties [47, 50, 13, 1].

In [47] the actual pointer aliasing in concrete executions is cross-checked with the
pointer aliasing inferred by an aliasing analyzer. Compared to us, they require sig-
nificant tailored instrumentation which cannot be reused for testing other analyses.
However, their approach is agnostic to the (C) aliasing analyzer.

Another cross-check is done in [50] for C model checkers and the reachability prop-
erty, but they obtain the assertions dynamically, and check them statically, comple-
mentarily to our approach. Unlike us, they again need tailored instrumentation that
cannot be reused to test other analyses, and their benchmarks must be determinis-
tic and with no input, the later limiting the power of the approach as a testing tool.
However, their approach is agnostic to the (C) model checker.

In [13] a wide range of static analysis tests are performed over randomly generated
programs. Among others, they check dynamically, at the end of the program, one
assertion inferred statically, and they perform the sanity check of ensuring that the
analyzer behaves as an interpreter when run from a singleton set of initial states.

8 Conclusions and Future Work
We have proposed a simple, automatic method for testing abstract interpretation-based
static analyzers based on checking that the properties inferred statically are satisfied
dynamically. We have leveraged the Ciao unified assertion language and framework,
and have constructed a prototype implementation of our method with little effort
by combining components already present in the framework: the static analyzer, the
runtime-checker, the random test-case generator, and the unit-tester. We just wrote
a very reduced amount of glue code that pilots the combination and interplay of the
intervening components. We have applied our prototype to a good number of the
abstract interpretation-based analyses in CiaoPP, which represent different levels of
code maturity. The results are encouraging and show that our tool can effectively
discover and locate, not only old errors in previous versions (that are obviously less
interesting since they were fixed in newer versions), but also new, interesting and
unexpected, non-trivial, previously undetected bugs.

We have left as future work other interesting sanity checks enabled by Ciao’s in-
tegrated and unified assertion language and framework, such as testing the assertion
simplifier, which simplifies programs discarding (parts of) check assertions that have
been proven statically. This could be done by analyzing a benchmark without asser-
tions, simplifying the assertions output, and checking that there are no assertions left.
We also plan to use the test case generation framework to do differential testing of
several program optimizations and transformations over a suite of benchmarks, by just
checking that they produce the same outputs for the same randomly generated in-
puts. A recent paper [9] suggested defining and using distances in abstract domains
and between abstract semantics (i.e., between abstract AND-OR trees inferred by the
analyzer). We plan to implement an instrumentation that uses such distances to test
analysis precision and measure coverage within our approach: if the distance between
the dynamic under-approximation and the static over-approximation of the program
semantics is small, it means that the analysis was precise and the random inputs had
good coverage; otherwise, either the analysis was imprecise, or the test case generation
had poor coverage. We plan to investigate heuristics to distinguish both cases.

15

References

1. Andreasen, E.S., Møller, A., Nielsen, B.B.: Systematic approaches for increasing soundness
and precision of static analyzers. In: Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis. p. 31–36. SOAP 2017, Association
for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3088515.
3088521, https://doi.org/10.1145/3088515.3088521 15

2. Blazy, S., Laporte, V., Maroneze, A., Pichardie, D.: Formal verification of a c value analysis
based on abstract interpretation. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis.
pp. 324–344. Springer Berlin Heidelberg, Berlin, Heidelberg (2013) 14

3. Brummayer, R., Biere, A.: Fuzzing and delta-debugging smt solvers. In: Proceedings of
the 7th International Workshop on Satisfiability Modulo Theories. p. 1–5. SMT ’09, Asso-
ciation for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1670412.1670413, https://doi.org/10.1145/1670412.1670413 14, 15

4. Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M.V., Maluszyn-
ski, J., Puebla, G.: On the Role of Semantic Approximations in Validation and Diagno-
sis of Constraint Logic Programs. In: Proc. of the 3rd Int’l. Workshop on Automated
Debugging–AADEBUG’97. pp. 155–170. U. of Linköping Press, Linköping, Sweden (May
1997), ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz 3

5. Bueno, F., Lopez-Garcia, P., Hermenegildo, M.V.: Multivariant Non-Failure Analysis via
Standard Abstract Interpretation. In: 7th Int’l. Symposium on Functional and Logic Pro-
gramming. LNCS, vol. 2998, pp. 100–116. Springer-Verlag (April 2004) 12, 13

6. Bueno, F., Lopez-Garcia, P., Puebla, G., Hermenegildo, M.V.: A Tutorial on Program
Development and Optimization using the Ciao Preprocessor. Tech. Rep. CLIP2/06, Tech-
nical University of Madrid (UPM), Facultad de Informática, 28660 Boadilla del Monte,
Madrid, Spain (January 2006) 13

7. Bugariu, A., Wüstholz, V., Christakis, M., Müller, P.: Automatically testing implementa-
tions of numerical abstract domains. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. p. 768–778. ASE 2018, Association for
Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3238147.
3240464, https://doi.org/10.1145/3238147.3240464 15

8. Cadar, C., Donaldson, A.: Analysing the program analyser. In: International Conference
on Software Engineering, Visions of 2025 and Beyond Track (ICSE V2025). pp. 765–768
(5 2016) 14

9. Casso, I., Morales, J.F., Lopez-Garcia, P., Giacobazzi, R., Hermenegildo, M.V.: Comput-
ing Abstract Distances in Logic Programs. In: Gabbrielli, M. (ed.) Proceedings of the
29th International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’19). LNCS, vol. 12042. Springer-Verlag (April 2020). https://doi.org/10.1007/
978-3-030-45260-5_4, https://doi.org/10.1007/978-3-030-45260-5_4 15

10. Casso, I., Morales, J.F., Lopez-Garcia, P., Hermenegildo, M.V.: An Integrated Approach
to Assertion-Based Random Testing in Prolog. In: Gabbrielli, M. (ed.) Proceedings of the
29th International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’19). LNCS, vol. 12042, pp. 159–176. Springer-Verlag (April 2020). https://doi.
org/10.1007/978-3-030-45260-5_10, https://doi.org/10.1007/978-3-030-45260-5_10 2, 5,
14

11. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In: Fifth ACM SIGPLAN Int’l. Conf. on Functional Programming. pp. 268–
279. ICFP’00, ACM (2000) 5, 15

12. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
The astrée analyzer. Lecture Notes in Computer Science 3444, 21–30 (Sep 2005), 14th
European Symposium on Programming, ESOP 2005, held as part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005 ; Conference date: 04-04-
2005 Through 08-04-2005 14

13. Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B., Yang, X.:
Testing static analyzers with randomly generated programs. In: Goodloe, A.E., Person, S.

16

https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/1670412.1670413
https://doi.org/10.1145/1670412.1670413
https://doi.org/10.1145/1670412.1670413
ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz
https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/978-3-030-45260-5_10
https://doi.org/10.1007/978-3-030-45260-5_10
https://doi.org/10.1007/978-3-030-45260-5_10

(eds.) NASA Formal Methods. pp. 120–125. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012) 14, 15

14. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring en-
gines. In: Proceedings of the the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering. p. 185–194. ESEC-FSE ’07, Association for Computing Machinery,
New York, NY, USA (2007). https://doi.org/10.1145/1287624.1287651, https://doi.org/
10.1145/1287624.1287651 14

15. Debray, S., Lopez-Garcia, P., Hermenegildo, M.V.: Non-Failure Analysis for Logic Pro-
grams. In: 1997 International Conference on Logic Programming. pp. 48–62. MIT Press,
Cambridge, MA, Cambridge, MA (June 1997) 12, 13

16. Dubois, C.: Proving ml type soundness within coq. In: Aagaard, M., Harrison, J. (eds.)
Theorem Proving in Higher Order Logics. pp. 126–144. Springer Berlin Heidelberg, Berlin,
Heidelberg (2000) 14

17. Garcia-Contreras, I., Morales, J., Hermenegildo, M.V.: Multivariant Assertion-based
Guidance in Abstract Interpretation. In: Proceedings of the 28th International Sympo-
sium on Logic-based Program Synthesis and Transformation (LOPSTR’18). pp. 184–
201. No. 11408 in LNCS, Springer-Verlag (January 2019). https://doi.org/10.1007/
978-3-030-13838-7_11 7

18. Garcia-Contreras, I., Morales, J., Hermenegildo, M.V.: Incremental Analysis of Logic Pro-
grams with Assertions and Open Predicates. In: Proceedings of the 29th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’19). pp.
36–56. LNCS, Springer-Verlag (2020). https://doi.org/10.1007/978-3-030-45260-5_3 2

19. García de la Banda, M., Hermenegildo, M.V., Bruynooghe, M., Dumortier, V., Janssens,
G., Simoens, W.: Global Analysis of Constraint Logic Programs. ACM Trans. on Pro-
gramming Languages and Systems 18(5), 564–615 (1996) 13

20. Hermenegildo, M.V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J.,
Puebla, G.: An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming 12(1–2), 219–252 (January 2012). https://doi.org/doi:10.1017/
S1471068411000457, http://arxiv.org/abs/1102.5497 2, 3, 4

21. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using Global Analysis, Partial Specifica-
tions, and an Extensible Assertion Language for Program Validation and Debugging. In:
Apt, K.R., Marek, V., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming
Paradigm: a 25–Year Perspective, pp. 161–192. Springer-Verlag (July 1999) 2, 3

22. Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Program Development
Using Abstract Interpretation (and The Ciao System Preprocessor). In: 10th International
Static Analysis Symposium (SAS’03). pp. 127–152. No. 2694 in LNCS, Springer-Verlag
(June 2003) 2

23. Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated Program De-
bugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao
System Preprocessor). Science of Computer Programming 58(1–2), 115–140 (October
2005). https://doi.org/10.1016/j.scico.2005.02.006 3, 4

24. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of Con-
straint Logic Programs. ACM Transactions on Programming Languages and Systems
22(2), 187–223 (March 2000) 2

25. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified c static
analyzer. SIGPLAN Not. 50(1), 247–259 (Jan 2015). https://doi.org/10.1145/2775051.
2676966, https://doi.org/10.1145/2775051.2676966 14

26. Kapus, T., Cadar, C.: Automatic testing of symbolic execution engines via program gen-
eration and differential testing. In: IEEE/ACM International Conference on Automated
Software Engineering (ASE 2017). pp. 590–600 (11 2017) 14, 15

27. Klinger, C., Christakis, M., Wüstholz, V.: Differentially testing soundness and precision of
program analyzers. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. p. 239–250. ISSTA 2019, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3293882.3330553, https:
//doi.org/10.1145/3293882.3330553 14, 15

17

https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1007/978-3-030-13838-7_11
https://doi.org/10.1007/978-3-030-13838-7_11
https://doi.org/10.1007/978-3-030-45260-5_3
https://doi.org/doi:10.1017/S1471068411000457
https://doi.org/doi:10.1017/S1471068411000457
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1145/3293882.3330553

28. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. p. 216–226. PLDI ’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2594291.2594334, https://doi.org/
10.1145/2594291.2594334 14, 15

29. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic program
mutation. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. p. 386–399. OOP-
SLA 2015, Association for Computing Machinery, New York, NY, USA (2015). https:
//doi.org/10.1145/2814270.2814319, https://doi.org/10.1145/2814270.2814319 14

30. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115
(Jul 2009). https://doi.org/10.1145/1538788.1538814, https://doi.org/10.1145/1538788.
1538814 14

31. Lidbury, C., Lascu, A., Chong, N., Donaldson, A.F.: Many-core compiler fuzzing. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. p. 65–76. PLDI ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2737924.2737986, https://doi.org/
10.1145/2737924.2737986 14

32. Lopez-Garcia, P., Bueno, F., Hermenegildo, M.V.: Determinacy Analysis for Logic Pro-
grams Using Mode and Type Information. In: Proceedings of the 14th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR’04). pp. 19–35.
No. 3573 in LNCS, Springer-Verlag (August 2005) 13

33. Lopez-Garcia, P., Bueno, F., Hermenegildo, M.V.: Automatic Inference of Determinacy
and Mutual Exclusion for Logic Programs Using Mode and Type Information. New Gen-
eration Computing 28(2), 117–206 (2010) 13

34. McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10, 100–107
(1998) 15

35. Mera, E., Lopez-Garcia, P., Hermenegildo, M.V.: Integrating Software Testing and Run-
Time Checking in an Assertion Verification Framework. In: 25th Int’l. Conference on Logic
Programming (ICLP’09). LNCS, vol. 5649, pp. 281–295. Springer-Verlag (July 2009) 2, 3

36. Midtgaard, J., Møller, A.: QuickChecking Static Analysis Properties. Softw. Test., Verif.
Reliab. 27(6) (2017). https://doi.org/10.1002/stvr.1640, https://doi.org/10.1002/stvr.
1640 15

37. Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and Freeness
of Program Variables Through Abstract Interpretation. In: International Conference on
Logic Programming (ICLP 1991). pp. 49–63. MIT Press (June 1991) 13

38. Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming 13(2/3), 315–347 (July
1992) 2

39. Puebla, G., Bueno, F., Hermenegildo, M.V.: An Assertion Language for Constraint Logic
Programs. In: Deransart, P., Hermenegildo, M.V., Maluszynski, J. (eds.) Analysis and
Visualization Tools for Constraint Programming, pp. 23–61. No. 1870 in LNCS, Springer-
Verlag (September 2000) 4

40. Puebla, G., Bueno, F., Hermenegildo, M.V.: Combined Static and Dynamic Assertion-
Based Debugging of Constraint Logic Programs. In: Logic-based Program Synthesis and
Transformation (LOPSTR’99). pp. 273–292. No. 1817 in LNCS, Springer-Verlag (March
2000) 3

41. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction for c
compiler bugs. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation. p. 335–346. PLDI ’12, Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2254064.2254104, https:
//doi.org/10.1145/2254064.2254104 14

42. Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified binaries.
SIGPLAN Not. 37(1), 217–232 (Jan 2002). https://doi.org/10.1145/565816.503293, https:
//doi.org/10.1145/565816.503293 14

18

https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1002/stvr.1640
https://doi.org/10.1002/stvr.1640
https://doi.org/10.1002/stvr.1640
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/565816.503293
https://doi.org/10.1145/565816.503293
https://doi.org/10.1145/565816.503293

43. Stulova, N., Morales, J.F., Hermenegildo, M.V.: Practical Run-time Checking via Unob-
trusive Property Caching. Theory and Practice of Logic Programming, 31st Int’l. Con-
ference on Logic Programming (ICLP’15) Special Issue 15(04-05), 726–741 (September
2015). https://doi.org/10.1017/S1471068415000344, http://arxiv.org/abs/1507.05986 2

44. Stulova, N., Morales, J.F., Hermenegildo, M.V.: Reducing the Overhead of Assertion Run-
time Checks via Static Analysis. In: 18th Int’l. ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming (PPDP’16). pp. 90–103. ACM Press (September
2016) 2

45. Sun, C., Le, V., Su, Z.: Finding compiler bugs via live code mutation. In: Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. p. 849–863. OOPSLA 2016, Association for Com-
puting Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2983990.2984038,
https://doi.org/10.1145/2983990.2984038 14

46. Vaucheret, C., Bueno, F.: More Precise yet Efficient Type Inference for Logic Programs.
In: 9th International Static Analysis Symposium (SAS’02). Lecture Notes in Computer
Science, vol. 2477, pp. 102–116. Springer-Verlag (September 2002) 13

47. Wu, J., Hu, G., Tang, Y., Yang, J.: Effective dynamic detection of alias analysis er-
rors. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software En-
gineering. p. 279–289. ESEC/FSE 2013, Association for Computing Machinery, New
York, NY, USA (2013). https://doi.org/10.1145/2491411.2491439, https://doi.org/10.
1145/2491411.2491439 3, 14, 15

48. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c com-
pilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. p. 283–294. PLDI ’11, Association for Comput-
ing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1993498.1993532,
https://doi.org/10.1145/1993498.1993532 14, 15

49. Zeller, A.: Yesterday, my program worked. today, it does not. why? SIGSOFT Softw.
Eng. Notes 24(6), 253–267 (Oct 1999). https://doi.org/10.1145/318774.318946, https:
//doi.org/10.1145/318774.318946 10

50. Zhang, C., Su, T., Yan, Y., Zhang, F., Pu, G., Su, Z.: Finding and understanding bugs in
software model checkers. In: Proceedings of the 13th Joint Meeting of the 18th European
Software Engineering Conference and the 27th Symposium on the Foundations of Software
Engineering. pp. 763–773 (2019). https://doi.org/10.1145/3338906.3338932 14, 15

19

https://doi.org/10.1017/S1471068415000344
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2491411.2491439
https://doi.org/10.1145/2491411.2491439
https://doi.org/10.1145/2491411.2491439
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/3338906.3338932

	Testing Your (Static Analysis) Truths

