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Abstract. We have designed and implemented a framework that unifies unit
testing and run-time verification (as well as static verification and static de-
bugging). A key contribution of our approach is that a unified assertion lan-
guage is used for all of these tasks. We first propose methods for compiling run-
time checks for (parts of) assertions which cannot be verified at compile-time
via program transformation. This transformation allows checking preconditions
and postconditions, including conditional postconditions, properties at arbi-
trary program points, and certain computational properties. The implemented
transformation includes several optimizations to reduce run-time overhead. We
also propose a minimal addition to the assertion language which allows defining
unit tests to be run in order to detect possible violations of the (partial) spec-
ifications expressed by the assertions. This language can express for example
the input data for performing the unit tests or the number of times that the
unit tests should be repeated. We have implemented the framework within the
Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog
compliance and to the detection of different types of bugs in the Ciao system
source code. Several experimental results are presented that illustrate differ-
ent trade-offs among program size, running time, or levels of verbosity of the
messages shown to the user.

Keywords: dynamic verification, unit testing, static/dynamic debugging, as-
sertions. 1

1 Introduction

We present a framework (and its implementation) that unifies unit testing and run-
time verification (as well as static verification and static debugging). Our approach
builds on [BDD+97,HPB99,PBH00a,HPBLG05], where an approach to program devel-
opment has been designed and implemented whose objective is to on one hand validate
and on the other find bugs in programs with respect to specifications that are given
in terms of assertions. The approach is based on a novel and expressive language of
assertions for describing safety policies and, in general, very general program proper-
ties [PBH97,PBH00b][CLI97,BCC+06]. We have also proposed strategies for static (i.e.,
compile-time) checking of such policies as well as techniques for reducing at compile-
time, using information from static analysis, the number of checks that have to be done
dynamically (i.e., at run time) [PBH98,PBH99,HPBLG05]. Using these techniques, any
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assertions present in the program are falsified or verified as completely as possible dur-
ing the compilation phase, since compile-time checking is always preferable to run-time,
which is necessarily always incomplete as a means of verification. However the existence
in all practical programs of parameters and data only known at run-time and the rich
nature of the properties that we are interested in determine that a certain degree of
run-time checking is inevitable. In return the approach allows using very expressive
safety policies with reduced overhead.

While the static checking part of this model has been the subject of considerable
work, in this paper we shift to the actual run-time checking of safety policies, which
has received little previous attention. Our aim is to a) develop effective implementation
techniques for run-time checking that integrate seamlessly into our combined compile-
time/run-time framework and b) to also develop integrated facilities for unit testing.
To this end, we have first developed an implementation of run-time checks based on
transforming the program into a new one which at the same time preserves the se-
mantics of the original program and also checks during its execution the assertions
present in it, and thus the safety policy. The transformation allows checking precon-
ditions and postconditions, including conditional postconditions, i.e., postconditions
that must hold only when certain preconditions hold. It also allows checking properties
at arbitrary program points (i.e., between any two literals in a body clause) as well
as checking certain computational properties, i.e., properties that are not specific to a
program point but rather to whole computations, such as, for example, determinism,
non-failure, or use of resources (steps, time, memory, etc.).

Our transformation also addresses to some extent one of the main drawbacks of
run-time checking (in addition to incompleteness): the overhead introduced during
execution of the program. The proposed transformation reduces run-time overhead by
avoiding meta-interpretation whenever possible and by using special features of the
low-level language when appropriate. Also, run-time checks can be compiled inline as
opposed to calling a library, which introduces overhead due to additional (meta-)calls.

Another relevant issue addressed by our transformation is being able to provide
messages to the user which are as informative as possible when a violation of the safety
policy is found, i.e., when a run-time check fails. To this end, the transformation saves
appropriate information at source code level in the transformed file. Depending on the
level of code instrumentation selected, increasingly more accurate information about
the assertions will be saved, and, thus, presented, offering different trade-offs between
information level and program size.

With respect to the closely related subject of testing, we require only a minimal
extension to the assertion language in order to be able to define unit tests [ER96]. The
resulting language can express for example the input data for performing such unit
tests, the expected output, the number of times that the unit tests should be repeated,
etc. In contrast to previous work in this area (e.g., [BJ93], [ZGQC08], or the unit-test
framework recently included in SWI-Prolog), a key contribution of our approach is
that these unit tests blend in with and reuse the assertion language and the overall
framework. In particular, only test drivers need to be added because the assertions and
their run-time tests act as the checkers for the cases defined by the unit tests.

Both the run-time check generation and the unit testing approaches proposed have
been implemented within the CiaoPP/Ciao system. We provide some experimental
results which illustrate the implementation trade-offs involved. The integration with
the CiaoPP/Ciao compile-time checking allows reducing run-time overhead to checking
only those aspects of the safety policy that could not be determined statically. I.e., only
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the checks in assertions (including “tests”) which cannot be verified at compile-time
are converted into run-time checks. Note that since in our approach unit tests are
also assertions, static analysis this also eliminates parts of or whole unit tests which
may have been verified statically. At the same time, the tight integration also allows
using the unit test drivers to exercise run-time checks corresponding to those parts of
assertions that could not be checked at compile-time, even if they were not conceived
as tests. Finally, properties inferred by static analysis (e.g., types) can also be used for
automatically generating input data for the unit tests (see [GZAP08] for a technique
for this purpose).

2 The Ciao Assertion Language

Assertions are linguistic constructions which allow expressing properties of programs. In
the Ciao assertion language, assertions are always instances of some assertion schema.
Such schemas allow talking about preconditions, (conditional) postconditions, whole
executions, program points, etc. Each schema in turn contains one or two logic formulae
which are (intuitively) used to say things such as “X is a list of integers,” “Y is ground,”
“p(X) does not fail,” etc. In this approach the user has a high degree of freedom for
defining these logic formulae for the properties considered of interest.

For space considerations, we will focus on a subset of the Ciao assertion language
(see [PBH00b] for a detailed description of the full language). In particular, although
the language has assertions specifically designed for expressing properties related to
the declarative semantics, in this paper we will focus on the operational semantics
of programs. Also, although the assertion language incorporates significant syntactic
sugar, we will use only the (unfortunately more verbose) raw forms.

The assertions refer to execution states. An execution state 〈G θ〉 consists of the
current goal G and the current constraint store (or store for short) θ which contains
information on the values of variables. The operational semantics is given in terms
of derivations, which are sequences of reductions between such execution states. By
computation we mean the (sorted) execution tree containing all possible derivations of
a goal from a calling state. The rules for the grammar describing the assertion language
considered (including the extensions that will be described later) are listed in Fig. 1.

Predicate assertions: They refer to properties of a particular predicate. Given the
schemas below, a concrete assertion will include concrete properties in place of the
symbols Pred, Precond and Postcond. In all schemas Pred is a predicate descriptor,
i.e., a predicate symbol as main functor and all arguments are distinct free variables
(pred-desc in the grammar shown in Fig. 1), and Precond and Postcond are logic formu-
las about execution states, represented with the non-terminal symbol state-formula in
the grammar. An atomic state-formula is a State-prop constructed with a state property
predicate (e.g., list(X) or X > 3) which expresses properties about (the values) of the
variables. A state-formula can also be a conjunction or disjunction of state-formulae.
Standard (C)LP syntax is used, so that the comma should be interpreted as conjunction
(e.g., “( list(X), list(Y) )” ), and the semicolon as disjunction (e.g., “( list(X)
; int(X) )” ).

– Describing success states: :- success Pred [: Precond ] => Postcond.
Interpretation: in any invocation of Pred if Precond holds in the calling state and
the computation succeeds, then Postcond should also hold in the success state.

Example 1. :- success qsort(A,B) : list(A,num) => list(B,num).
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If Precond is omitted, it is equivalent to: :- success Pred : true => Postcond.
and it is interpreted as “in any activation of Pred which succeeds, Postcond should
hold in the success state.”

– Describing admissible calls: :- calls Pred : Precond.
Interpretation: in all activations of Pred the formula Precond should hold in the
calling state.

Example 2. The following assertion expresses that in all calls to predicate qsort/2
the first argument should be bound to a list:
:- calls qsort(L,R) : list(L).

The set of all call assertions is considered closed in the sense that they must cover
all valid calls.

– Describing properties of the computation:
:- comp Pred [: Precond ] + comp-formula.

Interpretation: in any activation of Pred if Precond holds in the calling state then
comp-formula should also hold for the computation of Pred.

Example 3. :- comp qsort(L,R) : ( list(L,num), var(R) ) + not_fails.
where the atom not fails is implicitly interpreted as not fails(qsort(L,R)),
i.e., it is as if it executed 〈qsort(L,R) θ〉 and checked that it does not fail.

In addition, entry and exit assertions are identical to pred assertions, except that
they refer to external calls to the module (or predicate). Independently of the schema
used, each assertion has a flag (check, trust, true, etc.), the assertion “status,” which
determines whether the assertion is to be checked, to be trusted, has already been
proved correct by analysis, etc. Again for simplicity we use only the check status
herein (which is assumed by default when no flag is present).

Program-point assertions: The program points that we will consider are the places
in a program in which a new literal may be added, i.e., before the first literal (if
any) of a clause, between two literals, and after the last literal (if any) of a clause.
Program-point assertions are literals appearing at the corresponding program point and
which are of the form: check(state-formula ). where state-formula is a logic formula
about execution states (see the grammar in Fig. 1). The resulting assertion should be
interpreted as “whenever execution reaches a state originated at the program point in
which the assertion is, state-formula should hold.”

The logic formulae: We allow conjunctions and disjunctions in the formulae, and
choose to write them down, for simplicity, in the usual CLP syntax. Thus, logic formulae
about execution states can be:

– An atom of the form p(t1, . . . , tn) with n ≥ 0, where p/n is a property predicate
(e.g., list(X) or X > 3).

– An expression of the form (F1, F2) where F1 and F2 are logic formulae about exe-
cution states and, as usual in CLP, the comma should be interpreted as conjunction
(e.g., “( list(X), list(Y) )” ).

– An expression of the form (F1; F2) where F1 and F2 are logic formulae about
execution states and, as usual in CLP, the semicolon should be interpreted as
disjunction (e.g., “( list(X) ; int(X) )” ).

4



program-assert ::= :- predicate-assert . | prog-point-assert
predicate-assert ::= pred-assert | status pred-assert | entry pred-cond | exit pred-cond

| exec pred-cond + exec-formula

pred-assert ::= calls pred-cond | success pred-cond => state-formula
| comp pred-cond + comp-formula

pred-cond ::= pred-desc | pred-desc : state-formula
pred-desc ::= Pred-name(args)
args ::= Var | Var,args
state-formula ::= (state-formula , state-formula) | (state-formula ; state-formula)

| compat(State-prop) | State-prop
comp-formula ::= (comp-formula , comp-formula) | (comp-formula ; comp-formula)

| Comp-prop
exec-formula ::= (exec-formula , exec-formula) | Exec-prop

status ::= check | true | checked | trust | false
prog-point-assert ::= status(state-formula)

Fig. 1. Syntax of the assertion language.
3 Run-Time Checking of Predicate Assertions

We start by discussing two possible approaches regarding the source-to-source trans-
formations to be performed in order to implement run-time checking schemes.

In the first kind of transformation the run-time checks are placed before and after
any call to predicates which are affected by assertions; let p/2 be one such predicate.
We will call this kind of transformation “transforming calls”. In the second kind of
transformation the original predicate is rewritten so that it performs the run-time
checks itself, each time it is called. In this case only the definition of the procedure is
modified (in the example the original p predicate is renamed to p’ and a new definition
of p is added which performs the run-time checks; calls to p are left unchanged). We
will call this kind of transformation “transforming procedure definitions.”

Clearly, each scheme has advantages and disadvantages, specially when considering
a program consisting of several modules. When transforming calls, additional run-
time checking code will be introduced in all modules that call the predicate which
contains a given assertion. This will likely result in a larger code size than in the
transforming procedure definitions approach, since a program can easily see a large
number of assertions from, e.g., libraries. Also, if a given file containing an assertion is
modified, all the modules using it will have to be recompiled. The big advantage of the
transforming calls approach is that if no run-time assertion checking is required in a
given module, only that module needs to be recompiled, whereas in the transforming
procedure definitions approach all the modules containing procedures with run-time
checks and which are used by the given module need recompilation. Thus, for libraries,
in the transforming calls approach only one version of each file is compiled whereas in
the transforming procedure definitions approach typically two versions of the libraries
are kept in the system, one with run-time checks and the other one without. Both
approaches allow mixing modules with and without run-time checks. Another potential
advantage of the transforming calls approach is that it makes it easier for certain kinds
of analysis and specialization algorithms (specially those which are not multivariant)
to analyze and optimize programs annotated with run-time checks. On the other hand,
if the analysis and specialization system is multivariant (as in the case of CiaoPP) this
is less of an issue.

In view of all the advantages and disadvantages discussed in this work, we currently
use the transforming procedure definitions approach. Figure 3 illustrates this approach
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Step One Step Two

pred :-
entry-checks,
exit-checks (preconditions),
pred’,
exit-checks (postconditions).

%% rename pred by pred’
%% inside the module

pred’ :-
calls-checks,
success-checks (preconditions),
comp-checks (call stack( pred”, locator) ),
success-checks (postconditions).

pred” :- body0. . . .
pred” :- bodyn.

Fig. 2. Transformation scheme for a predicate pred , predicate assertions.

Assertion: The definition of Pred is transformed into:

:- calls Pred : Cond. Pred :- rtcheck(Cond), Pred’.
Pred’ :- ... .

:- success Pred : Precond => Postcond. Pred :- checkc(Precond,F), Pred’,
checkif(F,Postcond).

Pred’ :- ... .

:- comp Pred + Comp. Pred :- check comp(Comp,Pred’).
Pred’ :- ... .

:- comp Pred : Precond + Comp. Pred :- checkc(Precond,F),
checkif comp(F,Comp,Pred’).

Pred’ :- ... .

Fig. 3. Translation schemes for different kinds of predicate assertions.

for any assertion. Our run-time checking system is composed of a set of transformations,
to be performed by the preprocessor, and a library containing a number of primitives
that the transformed programs will call. Figure 3 presents schemes of how procedures
are transformed in order to incorporate run-time checking, for each type of (kernel),
predicate level assertions, i.e., calls, success, or comp. Other, higher-level assertions
(such as pred assertions) and all additional syntactic sugar (such as modes or star
notation) is translated by the compiler into the kernel assertions before applying the
transformation. In the case of entry and exit assertions, a renaming technique is used
inside the module to avoid checks in internal calls, as shown in the “Step One” column.

The run-time library includes the following predicates. These predicates can actu-
ally be used for both the transforming calls and transforming procedure definitions
approaches.
checkc(C,F): checks condition C and sets F to true or false depending on whether

it succeeds or not. From a logical point of view this can be understood as:
(\+ C -> F = false ; F = true) .

rtcheck(C): checks if condition C succeeds or not. If C fails an exception is raised.
From a logical point of view this can be understood simply as \+ \+ C.

checkif(F,P): postcondition P is checked iff F is true. If P fails an exception is
raised. From a logical point of view this can be understood as:

(F == true -> rtcheck(P) ; true).
rtcheck(C) is a specialized version of checkif(true,C).

check compif(F,Comp,Pred′): checks a computational property iff F is true. For a
given computational property P/1, and a predicate Pred’ to be checked, a term
P(Pred’) is built and passed as Comp. For example, if the property is not fails/1
and the predicate qsort 1(A,B), then Comp = not fails(qsort 1(A,B)). In
turn, Pred′ is used to pass the direct call to the predicate (i.e., qsort 1(A,B)
in the example). If F is false then Pred′ is called, executing the procedure di-
rectly. If F is true then Comp is called. This relies on the fact that comp properties
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are written assuming that the goal to be called is passed as an argument and that
they take care of both running the procedure and checking whether the computa-
tional property holds. Again, if the (in this case, computational) property does not
hold an exception is raised. From a logical point of view this can be understood as:

(F == true -> Comp ; Pred′).
check comp(Comp,Pred′): a specialized version of check comp(true, Comp,Pred′)

where the first parameter is assumed to be true.
call stack(C, L): adds the current source code locator L to the locator stack S

allowing to show the call stack on run-time errors. This can be understood as:
intercept(C,rtc error(S, T), throw(rtc error([L|S], T))).
The previous library predicates are implemented in such a way that they perform

the checks without modifying the program state, introducing side effects, errors, etc. In
other words, if all run-time errors are intercepted, the semantics of the program must
be preserved.

4 Combining Several Predicate Assertions
The schemes presented previously have illustrated how a single assertion is translated
into run-time checks. Translating several calls or success assertions is relatively
straightforward: the corresponding rtcheck/1 and checkc/2 are placed before the call
to Pred’, and any calls to checkif/2 are gathered after it. But note that in the case of
calls assertions, run-time check exceptions for the unsatisfied assertions are thrown
only if all such checks failed.

Combining computational properties is somewhat more involved. First we consider
the case of a single comp assertion with several properties, such as, e.g.:
:- comp qsort(A,B) : (list(A, int), var(B)) + ( is_det, not_fails ).

In this case the properties will simply be nested in the Comp field as follows: prop1(prop2(
... propN (Pred’) ... )) (the Pred’ field stays obviously the same). For example, for
the assertion above the Comp field will be not fails(is det(qsort 1(A,B))). If the
comp property has a precondition, it will be checked only once and then either the
Comp field or Pred′ will be called.

The situation is more complex when several comp assertions have to be combined.
Consider for example the following two comp assertions:
:- comp qsort(A,B) : (ground(A), var(B)) + is_det.
:- comp qsort(A,B) : (list(A,int), var(B)) + not_fails.

Assuming that F1 and F2 are the flags resulting from checking the conditions ground(A),
var(B) and list(A,int), var(B) respectively, the composition of the two assertions
above would be:
checkif_comp(F2, not_fails(checkif_comp(F1, is_det(qsort_1(A,B)),qsort_1(A,B))),

checkif_comp(F1,is_det(qsort_1(A, B)),qsort_1(A,B))).

5 Run-Time Checking of Program-Point Assertions
Clauses are transformed as follows for run-time checking at program-points:

Program-point assertion: The clause is transformed into:

Pred :- ..., check(Cond), ... Pred :- ..., rtcheck(Cond), ...

Pred :- ..., check(CompProp(Goal)), ... Pred :- ..., check comp(CompProp(Goal)), ...

This is a comparatively simpler task than implementing predicate-level assertions: the
natural transformation is a similar one to the “transforming calls” approach, but with
the advantage that only one program point needs to be transformed for each assertion.
Also, only the rtcheck/1 and check comp/1 primitives are required. In the case of
computational properties its definition is called directly.
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6 Defining Unit Tests

In order to define a unit test we have to express on one hand what to execute and on
the other hand what to check at run-time. A key characteristic of our approach is that
we use the assertion language supported by the Ciao/CiaoPP system for expressing
what to check. This way, the same properties that can be expressed for static or run-
time checking can also be checked in unit testing. However, we have added a minimal
number of elements to the assertion language grammar for expressing what to execute.
They appear underlined in Fig. 1. In particular, we have added a new assertion schema
for expressing what to execute: :- exec Pred [: Precond ] [+exec-formula].

This assertion states that we want to execute (as a test) a call to Pred with its
variables instantiated to values that satisfy Precond. exec-formula is a conjunction of
properties about how to drive this execution. In uur approach many of the properties
usable in Precond (e.g., types) can be run as value generators in order to generate values
for these variables. We also have specific generator properties such as, for example, for
generating random values for the variables (e.g., for floating point numbers) including
special cases like infinite, not-a-number or zero with sign. Properties typically inferred
by static analysis (e.g., types) can also be used for automatically generating input data
for the unit tests (see [GZAP08] for a technique for this purpose).

Regarding the atomic formulas appearing exec-formula (Exec-prop in the grammar)
the following are two (currently defined) useful properties:
try sols(N): Expresses an upper bound N on the number of solutions to be checked.
times(N): Expresses that a the execution should be repeated N times. This increases

the chances of test failure, for intermittent failures.

Example 4. The assertion:
:- exec append(A, B, C) : (A=[1,2,3],B=[4],var(C)) + times(5).

expresses that a call to append/3 with the first and second arguments bound to [1,2,3]
and [4] respectively and the third one unbound should be executed five times.

Example 5. The assertion:
:- exec append(A, B, C): (A=X, B=Y, C=Z) + try_sols(7).

expresses that the call to append(X, Y, Z) should be executed to get at most the first
7 solutions through backtracking.

Example 6. We can define a unit test with the previous assertion in Example 4 together
with the following two assertions expressing what to check at run-time:

:- check success append(A,B,C):(A=[1,2],B=[3],var(C)) => C=[1,2,3].
:- check comp append(A,B,C):(A=[1,2],B=[3],var(C)) + not_fails.

The success assertion states that if a call to append/3 with the first and second
arguments bound to [1,2] and [3] respectively and the third one unbound terminates
with success, then the third argument should be bound to [1,2,3]. The comp assertion
says that such a call will not fail. 2

The advantage of the integrated framework that we propose is that the execution
expressed by the first assertion for unit testing is also used for checking parts of other
assertions that could not have been checked at compile-time and thus remain as run-
time checks. This way, a single run-time checking machinery is used for run-time checks
and unit testing. In addition, static checking of assertions can safely avoid (parts of)
unit tests execution.
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7 Compound Assertions for Unit Tests
In order to simplify the process of writing tests we introduce another predicate assertion
schema, the test schema, which can be seen as syntactic sugar for a set of predicate
assertions, and has the form:2

:- test Pred [: Precond ] [=> Postcond ] [+ Comp-Exec-Props].
This assertion is interpreted as the combination of three assertions, one assertion ex-
pressing what to execute:

:- exec Pred [: Precond ] [+ Exec-Props].
and two assertions expressing what to check:

:- check success Pred [: Precond ] [=> Postcond ].
:- check comp Pred [: Precond ] [+Comp-Props].

For example, the assertion:
:- test append(A,B,C) : (A=[1,2],B=[3],var(C)) => C=[1,2,3]

+ (not_fails,times(5)).
is translated into the assertion in Example 4, plus the two in Example 6.

We now give some more (non-exhaustive) examples of unit test definition using
compound assertions.
Example 7. Testing Failures and Exceptions: In this example we illustrate the use
of some computational properties, namely, the property fails (respectively not fails),
which expresses that the whole computation described by the test should fail (respec-
tively should not fail), and the property exception(Excep), which is used for express-
ing that a test execution should throw the exception Excep. Consider the predicate p/2
defined as follows:
p(a).
p(b) :- fail.
p(c) :- throw(error(c, "error c")).
The following tests succeed:
:- test p(A) : (A = a) + not_fails.
:- test p(A) : (A = b) + fails.
:- test p(A) : (A = c) + exception(error(c,_)).

The first one says that the call p(a) should not fail; the second one says that the
call p(b) should fail; and the third one that the call p(c) should raise an exception.
However, the following test reports an error, i.e., fails:
:- test p(A) : (A = c) + not_fails.
Example 8. Testing the Written Output: For this purpose we use the (computa-
tional) property user output(String), which expresses that a predicate should write
the string String into the current output stream.
The following test involving the library predicate display/ 1 succeeds:
:- test display(A) : (A = hello) + user_output("hello").
However, the following tests report an error:
:- test display(A) : (A = hello) + user_output("bye").
:- test display(A) : (A = hello) + user_output("hello!").
Example 9. Testing Multiple Solutions: Assume now that want to check all possible
solutions to a call to append/3 with the first two arguments uninstantiated. We can
write the following assertion for this purpose:
:- test append(A,B,C) : (var(A),var(B),C=[1,2,3])

=> member((A, B), [([],[1,2,3]),([1], [2,3]),
([1,2], [3]),([1,2,3],[])]) + not_fails.

There are also other properties that can be used for example to express that a
predicate should write the string Str into the current error stream (user error(Str)),
to express a time-out T for a test execution (resource(ub, time, T)), or to generate
random input data values with a given probability distribution.2 Note that the syntax grammar presented previously does not include this extension.
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8 Generating User-friendly Messages

Whenever a run-time check fails an exception is raised. An exception handler will
then catch the exception and report the error. However, with the transformations
presented so far little information can be provided to the user, beyond the precondition
or postcondition that is producing the violation, since this is the only parameter passed
to most of the checking predicates.

Reporting simply that some condition failed is less informative than saying where
it did, to what assertion it corresponds, or what was the last call mode of the predicate
that violated it. In the case of a comp assertion the actual call could also be printed.

In contrast, during compile-time checking, when an assertion is proved not to hold,
both the assertion and the program point where the assertion was violated are reported,
an in a particular format so that the graphical program development environment can
locate these points in the source code and highlight them automatically.

Our goal is to provide precise information when reporting violated assertions also
when performing run-time checks. This requires adding an extra argument to the check-
ing predicates through which certain information is passed, such as the location of the
corresponding assertion(s) and the call program point in the source code. This infor-
mation can then be passed to the exception handler when the exception occurs, and
the handler can print it out in a suitable way. In particular, messages are generated
in a format that is compatible with that used when reporting compile-time checking
errors, and thus run-time errors can also be easily traced back to the sources by the pro-
gram development environment. The transformation is responsible for instrumenting
the transformed code to include the necessary information.

On the other hand, while having rich information available when a run-time check
fails is crucial to being able to locate bugs in programs, there is a clear trade-off be-
tween the size of the program and the overhead introduced in it and the quality of
the messages issued. Different levels of information may be appropriate for different
contexts. For example, programs can be compiled with a setting that implies lower
overhead and, if an exception is raised, the program can be recompiled with a higher
level of instrumentation and rerun until the exception is raised again, this time obtain-
ing more precise information for location of the error in the sources. Also, in systems
that are resource constrained, such as many pervasive and embedded systems, lower
levels of instrumentation would be appropriate and perhaps even load and use of the
pretty printer library can be avoided, since the error messages can be interpreted in a
different host.

There are several levels of instrumentation in the current implementation of the run-
time check transformations that can be configured. However, to keep this discussion
shorter, we report on 2 levels in our experiments, explained below:

Low: information is saved to report the actual assertion being violated and the prop-
erty or properties that caused such violation.

High: in addition, predicates with assertions are further instrumented so that when a
run-time check fails, a call stack dump is also shown up to the exact program point
where the violation occurs, showing for each predicate the literal in its body that
caused such violation.3

To illustrate the different code instrumentation levels, consider the following assertion
and property definitions, in addition to a definition of qsort/2 such as that of Figure 4:
3 This can also be done at a lower level, via engine primitives, but we are interested in

measuring the cost of source level-only transformations.
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:- success qsort(A,B) => (ground(B),sorted_num_list(B)).
:- prop sorted_num_list/1.
sorted_num_list([]).
sorted_num_list([X]):- number(X).
sorted_num_list([X,Y|Z]):- number(X),number(Y),X=<Y,sorted_num_list([Y|Z]).

which ensures that qsort/2 always returns a ground, sorted list. Assume also that the
program has been written in a buggy way (about which we will discover later). If we
select low instrumentation level the output during execution would be similar to:

?- qsort([1,2],X).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

Unsatisfied <<success>> property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort/2.

}

Note that two errors are reported for a single run-time check failure. The first error
shows the actual assertion being violated and the second marks the first clause of the
predicate which violates the assertion. However, not enough information is provided to
be able to determine the literal in which the predicate was called causing the violation.
If we perform instead the transformation with the high instrumentation level the output
is:

?- call_rtc(qsort([3,1,2],B)).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

Unsatisfied <<success>> property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort/2.

ERROR: (lns 16-21) Check failed when invocation of

qsort([3,1,2],_1)

called qsort([1,2],_2) in its body.

}

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([3,1,2],[3,2,1]).

Unsatisfied <<success>> property:

sorted_num_list([3,2,1]).

ERROR: (lns 16-21) Check failed in qsort/2.

}

In this example we have used the call rtc/1 meta-predicate, which intercepts the
run-time error, shows the related message and lets the execution program continue as
if the program where not being checked. With this new output it is easier to detect
the error. Looking at the call stack dump, we can see the list of predicates being
checked up to the call of the buggy code. Note that the first part of the assertion is
not violated, since B is ground. However, on success, the output of qsort/2 is a sorted
list but in reverse order, which gives us a hint: the arguments in the call to append/3
are mistakenly swapped.

11



:- calls qsort(A,B) : list(A,num).

:- success qsort(A,B) : list(A,num) => list(B,num).

:- comp qsort(A,B) : (list(A,num), var(B)) + not_fails.

qsort([X|L],R) :- partition(L,X,L1,L2), qsort(L2,R2), qsort(L1,R1),

append(R2,[X|R1],R).

qsort([],[]).

:- calls partition(A,B,C,D) : (list(A),num(B)).

:- success partition(A,B,C,D) : (list(A), num(B)) => (list(C), list(D)).

:- comp partition(A,B,C,D) : (list(A), num(B)) + (not_fails,is_det).

partition([],B,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- partition(R,C,Left,Right1).

Fig. 4. A quick-sort program with assertions.

Qsort Low High

Obj Size: Inline Library Inline Library
7625 (bytes) Modes Types Modes Types Modes Types Modes Types

Entry 1.37 1.04 1.19 1.22 1.81 2.11 1.32 1.35
Exit 1.50 1.78 1.11 1.15 1.94 2.22 1.23 1.28
Comp* 1.69 1.93 5.43 5.45 2.60 2.85 5.53 5.55

E/E/C 2.27 2.62 5.72 5.77 3.20 3.55 5.83 5.88

Calls 1.32 1.62 1.14 1.17 1.72 2.01 1.23 1.26
Success 1.45 1.73 1.07 1.11 1.85 2.13 1.14 1.19
Comp 1.64 1.88 5.35 5.38 2.57 2.81 5.45 5.48

C/S/C 2.07 2.41 5.53 5.58 3.01 3.35 5.64 5.69

Table 1. Qsort size increment with several configurations of run-time checks.

9 Implementation and Experimental Results
We have implemented the framework within the Ciao/CiaoPP system.

The call stack dump was implemented by reusing the exception handling mecha-
nism which is native in Ciao. Each time an exception is cached in a predicate with
run-time checks enabled, a locator is added to the exception. This way, a more infor-
mative message of the form “Failed when ... called ...” can be generated. However, such
exception handling mechanism was implemented using meta-calls, assert and retracts,
causing a negative impact in the benchmarks that use it.

We now report on some experimental results from our implementation within the
Ciao/CiaoPP system of the testing and run-time checking transformations proposed.
The experiments report both size and time overhead due to run-time checks. We have
used the qsort program in Figure 4, with an input list of size 600 to run several exper-
iments for different variations of the following parameters:
– Library or inlined run-time checks: we have implemented the transformation

first as described in the previous sections, where the check predicates are assumed
to be in a library. The results are provided in the columns labeled Library. The
ratios shown are with respect to the execution time of the program with no run-time
checks. In addition, an alternative approach has been implemented, in which the
definitions of the run-time check library predicates are actually inlined in the calling

12



Qsort Low High

exec time: Inline Library Inline Library
661 (us) Modes Types Modes Types Modes Types Modes Types

Entry 1.00 1.75 1.00 1.77 1.01 1.76 1.01 1.77
Exit 1.00 2.51 1.01 2.64 1.01 2.52 1.02 2.54
Comp* 1.00 1.76 1.01 1.77 1.05 1.81 1.06 1.82
E/E/C 1.00 3.26 1.03 3.29 1.05 3.31 1.08 3.35

Calls 3.36 50.89 65.30 121.37 36.58 86.15 112.65 169.62
Success 4.58 101.00 151.54 265.54 38.98 141.96 209.01 325.77
Comp 6.25 53.59 95.86 152.66 118.47 164.30 223.53 281.82
C/S/C 10.20 117.84 192.01 323.90 120.74 238.56 386.44 547.87

Table 2. Slowdown of qsort/2 with several configurations of run-time checks.

program. This often achieves allows better performance but sometimes at the cost
of the increased code size. Note however that not in all cases the code is increased,
because such inlining is in fact, a restricted kind of partial evaluation, that tries to
solve as many unifications as possible at compilation time, and sometimes terms
become smaller after such optimization.

– Use of types or modes properties: since checking complex types, such as in the
list(int) check, which needs to traverse lists of integers over and over again,4 is
more expensive than checking modes (which in our case is handled through a call to
the var/1 ISO-Prolog builtin) we have separated these cases in the experiments. In
the columns labeled Types only types are checked, whereas in the columns labeled
Modes only the modes are checked.

– Low or high instrumentation: as defined in Section 8.
– Using several kinds of assertions: several combinations of different kinds of

assertions have been tested (first column).

Table 1 and 2 present the overhead, in size and time respectively for the experiments,
expressed as the ratio w.r.t. the execution of the program with run-time checks disabled.
Execution was on a MacBook Pro, Intel Core 2 Duo at 2.4Ghz, 2GB of RAM, Ubuntu
Linux 8.10 and Ciao version 1, patch 13.

Note that the columns in the tables have been organized with several combinations
of the configurations explained above. In the rows of the tables we have tested the
different kind of assertions. For assertions about computational properties we have
that in Comp* the check is performed only at the entry point of the module, but not
for the internal calls that occur inside.

The results show that the high level of instrumentation is quite expensive while the
overhead implied by the low level is better, specially in the case of inlining. This con-
firms our expectations. The high overhead implied by the high level of instrumentation
is also due in part to the lack of optimization in the exception handling mechanism of
Ciao.

Table 3 shows experimental results for larger programs, namely, the systems Ciao,
CiaoPP and LPdoc (and the libraries they use), all of which contain numerous asser-
tions in their code. It shows the size (in kilobytes) of binary and object files using
4 This overhead can be significantly reduced via multiple specialization [PH99,PH95]. How-

ever, that optimization has not been applied in this case in order to measure the overhead
of fully checking the assertion.
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App Source Metrics Compiled Run-Time Checked (ratio)
Name Size Assertions Binary Low High

Lines Modules Objects Inline Library Inline Library

Ciao S 4018 A 3062 B 2881 1.34 1.39 1.47 1.48
L 121305 M 610 O 6660 2.78 2.73 2.93 2.85

CiaoPP S 4819 A 1131 B 13073 1.15 1.17 1.20 1.21
L 152536 M 517 O 12868 1.28 1.28 1.33 1.32

LPdoc S 316 A 105 B 5052 1.22 1.23 1.33 1.29
L 8810 M 8 O 736 1.18 1.07 1.23 1.12

Table 3. Size (in kilobytes) of binary and object files using several instrumentation
levels of run-time checks, for large benchmarks.

several instrumentation levels of run-time checks. The binary refers to the statically
linked executable of the main program of such systems and in all of them, it is the com-
mand line tool provided. The object files include all the libraries used by such systems.
Note that in all cases the sizes of the files depend on the number of assertions instru-
mented for run-time checking. Interestingly, the impact of run-time tests on execution
time in these much larger benchmarks is much smaller than for qsort. For example,
the overhead introduced in the execution of LPdoc, which includes a good number of
assertions in its source, is below the measurement noise level.

In order to facilitate the execution of tests, the unit testing framework has been
integrated in the development environment allowing executing the tests present in a
module easily. The execution of the tests is done as follows:

1. The user selects the module or the directory that contains the modules with tests
to be executed.

2. The assertions are read and each time a test is found, a method is added to the
main procedure of an auto generated program that invoques such method. The
goal of such method is to call the predicate being tested in the way specified by
the unit test commands.

3. The modules being tested are compiled with run-time checking enabled.
4. The main procedure that invoques the tests is called by the unittest driver in a

separate process, to prevent undesirable side effects or failures if the program being
checked aborts due to an unexpected error. This program writes a log file containing
the results of the execution (such as, for example, exit or failure of the predicate,
unhandled exceptions and so on), that is further analyzed by the unittest driver in
order to take actions depending on the observed behavior.

5. If a test causes the failure of the main program, the control is returned to the driver,
and the aborted test is recorded to be processed. After that, the driver (optionally)
tries to execute the remaining tests. This process continues until all the tests are
executed.

6. The generated log file is processed by the driver and, depending on the verbosity
level, different information about the execution is presented, such as for example,
the tests passed, failed, aborted and in each one the cause of such behavior. At this
point, the run-time check exceptions saved in the log file are processed in order to
show the related message.

We have added at the time of writing 220 unit tests to the Ciao/CiaoPP system (in
addition to the other traditional system tests which did not use the unit test frame-
work), which have helped us to check whether some errors have been introduced in the

14



development process. The execution time of such tests is approximately 90 seconds in
the computer described before. We also have applied the implemented framework to
the verification of ISO-prolog compliance of Ciao. We have coded 976 unit tests for this
purpose. These tests currently run in under 15 seconds. This time is much less than
the other tests for Ciao because they are concentrated in only one file and the driver
does not need to scan all the source code. Note that in these experiments we are not
doing any compile-time checking, that would in fact eliminate many of the unit tests.

10 Conclusions

We have described our design and implementation of a framework that unifies unit
testing and run-time verification (as well as static verification and static debugging).
A key contribution of our approach is that a unified assertion language is used for
all of these tasks. This has allowed us to propose and implement unit testing via a
minimal addition to the assertion language. We have proposed methods for compil-
ing run-time checks for (parts of) assertions which cannot be verified at compile-time
via program transformation. This transformation allows checking preconditions and
postconditions, including conditional postconditions, properties at arbitrary program
points, and certain computational properties. We also have proposed a minimal ad-
dition to the assertion language which allows defining unit tests to be run in order
to detect possible violations of the (partial) specifications expressed by the assertions.
We have implemented the framework within the Ciao/CiaoPP system and effectively
applied it to the verification of ISO-prolog compliance and to the detection of different
types of bugs in the Ciao system source code. Several experimental results have been
presented to illustrate different trade-offs among program size, running time, or levels
of verbosity of the messages shown to the user. The experimental results confirm our ex-
pectations regarding these trade-offs: run-time checks do not pose an excessive amount
of overhead, except with high levels of instrumentation (e.g., gathering information on
the call stack). However, this is due to the simplistic way in which this type of instru-
mentation is implemented, which can be optimized using lower-level primitives. For
example, it prevents the compiler from performing some classical optimizations like tail
recursion. We also plan to further extend the assertion language with more primitives
such as time out(T), which can be used to express that a test should finish in less
than T milliseconds, user error(Str) which expresses that a predicate should write
the string Str into the current error stream, or to add more properties for generating
random input data values with a given probability distribution. We plan to study
how the multiple specialization present in CiaoPP can further reduce run-time over-
head. Finally, we are also working on an improved and more compositional strategy to
defining computational properties.
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Appendix A: Transformation Schemes
We start by discussing two possible approaches regarding the source-to-source transforma-

tions to be performed in order to implement run-time checking schemes. We concentrate first
on the predicate (calls, success, and comp) assertions. These two approaches are illustrated
in Figure 5.

In the first kind of transformation (Figure 5-b) the run-time checks are placed before and
after any call to predicates which are affected by assertions (p/2 in the example). We will call
this kind of transformation “transforming calls.” In the second kind of transformation (Fig-
ure 5-c) the original predicate is rewritten so that it performs the run-time checks itself, each
time it is called. In this case only the definition of the procedure is modified (in the example
the original p predicate is renamed to p’ and a new definition of p is added which performs
the run-time checks; calls to p are left unchanged). We will call this kind of transformation
“transforming procedure definitions.”

:- calls p(A,B): (list(A);tree(B)).
:- success p(A,B): list(A)=>list(B).
:- success p(A,B): tree(A)=>tree(A).

p(A,B) :-
...

q :-
...,
p(X,Y),
...,
p(Z,W).

r :-
...,
p(L,M),
...

p(A,B) :-
...

q :-
...,
call-related checks,
p(X,Y),
success-related checks,
...,
call-related checks,
p(X,W),
success-related checks.

r :-
...,
call-related checks,
p(L,M),
success-related checks,
...

p(A,B) :-
call-related checks,
p’(A,B),
success-related checks.

p’(A,B) :-
...

q :-
...,
p(X,Y),
...,
p(X,W).

r :-
...,
p(L,M),
...

(a) (b) (c)

Fig. 5. Two possible transformation schemes (b and c) for predicate assertions.

Appendix B: Examples of unit test Definitions
Other examples:

:- test pred display_fail + (user_output("hello"), fails) # "Test OK".

display_fail :- display(hello), fail.

Characteristics Transforming Calls Transforming Predicates

Code size increase higher lower

Number of files to recompile if an assertion
changes

many one

Two versions of each file needed in order to
compile with and without run-time checks

no yes

Modules with and without run-time checks
can be mixed

yes yes

Fig. 6. Advantages and disadvantages of transformation schemes.
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Assertion: The definition of Pred is transformed into:

:- calls Pred : Cond. Pred :-

check(Cond),
Pred’.

Pred’ :-
... ,

:- success Pred : Precond => Postcond. Pred :-

checkc(Precond,F),
Pred’,
checkif(F,Postcond).

Pred’ :-
... ,

:- comp Pred + Comp. Pred :-

check comp(Comp,Pred’).

Pred’ :-
... ,

:- comp Pred : Precond + Comp. Pred :-

checkc(Precond,F),
checkif comp(F,Comp,Pred’).

Pred’ :-
... ,

Fig. 7. Translation schemes for different kinds of predicate assertions.

:- test pred call_test10(X) : (X=(write(3), call(1)))

+ (user_output("output"),

exception(error(type_error(callable, 1), ’in metacall’)))

# "Wrong test".

:- meta_predicate call_test10(goal).

call_test10(X) :- call(X).

:- test pred cut_test5 + (user_output("Cut disjunction"), fails) # "Test OK".

cut_test5 :- (! ; write(’No’)), write(’Cut disjunction’), fail.

Appendix C: Verifying ISO-prolog Compliance of Ciao
In this section we describe how the implemented the framework within the Ciao/CiaoPP sys-

tem has effectively been applied to the verification of ISO-prolog compliance.
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Tests failed

i Incompatible format of syntax error exception 10
i Incompatible format of type error exception 9
i Incompatible format of permission error exception 28
i Incompatible format of Domain error exception 2
i An error is expected, but ciao just fails 138
i Ciao throws an error different than the specified in the standard 15
i The predicate in Ciao Fails, but in ISO, it should succeed 22
i The execution of a predicate should raise an error, but it succeed 19
m Predicates with missing functionality 24
i Ciao adds more information to a predicate (module expansion) 6
i More solutions than the expected 1
f stream manipulation related errors 14
f unexpected abort of the test being executed 14
i non-ascii characters (not iso, but SICSTUS-EDDBALI-like behavior) 7
f aborted tests 1
m Tests changed because currently we can’t deal with several errors 7
m stream options unimplemented: 2
m alias for streams unimplemented: 32
m stream option eof action unimplemented: 12
m stream option past end of stream unimplemented: 2
m unimplemented options for close: 5
f char handling related errors: 2
i Malformed body (negation of cut): 1
f current output related: 1
i predicate that succeeds: 1
m failed test because time out( ) property is not implemented: 1
f Tests with side effects: 7
i Arity mismatch issues: 3
m Not relevant tests in ciao, due to unimplemented arithmetic behavior 5

i Incompatibilities 262

m Missing predicates or functionality 90

f Failures and errors 39

Total number of failed tests 391
Total number of executed tests 976

Percentage of passed tests 60 %

Fig. 8. Summary of the application of unit tests for ISO-prolog compliance
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