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Abstract

We address the design and implementation of visual paradigms for observing the execution of
constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus
on the display of data in CLP executions, where representation for constrained variables and for
the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised
depictions, have been implemented, and are used to showcase the usefulness of the visualizations
developed.
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1 Introduction

Program visualization has been classically used by computer scientists for many different purposes,
including teaching, debugging, and optimization. However, classical program visualizations are often
too dependent on the programming paradigms they were devised for, and do not adapt well to the
nature of the computations performed in other paradigms (e.g., visualization of concurrent programs
focuses on aspects which are not present in sequential programming). In particular, Constraint Pro-
gramming nature differs radically from that of other programming paradigms and the visualization
should address different problems. Moreover, it appears that the needs of CP practitioners are also
different from those using other paradigms.

In any case, a good pictorial representation is fundamental to achieve a useful visualization. Thus,
it is important to devise depictions which are well suited to the characteristics of CLP data and control.
In addition, a recurring problem in the graphical representations of even medium-sized executions is
the huge amount of information that is usually available. To cope successfully with these undoubtedly
relevant cases, abstractions of the representations are needed. Ideally, such abstractions should show
the most interesting characteristics (according to the particular objectives of the visualization process,
which may be different in each case), without cluttering the display with unneeded details.

2 Constraint Logic Programming in a Nutshell

Constraint Programming (CP) is “one of the most exciting developments in programming languages
of the last decade” [MS98]. CP refers to programming using the equations which characterize the
solution to a problem. These equations, which are similar to the arithmetical ones, can range over
a wide gamut of domains: integers, reals, terms (i.e., data structures), strings, sets,. . . A CP system
would automatically (and incrementally) solve these equations, therefore yielding a solution to the
initial problem. This approach has undoubtedly much to do with, on one hand, mathematics itself,
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and, on the other hand, Operation Research. But, from a practical point of view, it departs from them
in two ways: the ability to set up dynamically the equations which model a problem (and probably
retract some of them at some point and add new ones), and the use of domains not usually found in
mathematics.

Constraint Logic Programming (CLP) [Van89] merges the constraint-based approach with the
Logic Programming (LP) ideas, resulting in a highly synergetic combination. The properties of logic
programming variables (single assignment, unification) and the control usually implemented in LP
(automatic search procedures with backtracking, goal delaying) fit particularly well within constraint
programming. The result is a family of languages which naturally extends LP in a unified framework
(such that LP can be seen as a case of the more general CLP), patching up some weaknesses (especially
in arithmetic) found in LP languages.

One of the most useful CLP domains is finite domains: finite domain variables range over finite
sets of integers, and the operations allowed between them are pointwise extensions of the regular
arithmetic operations and relations. Although there is no elimination procedure similar to that of
linear equations over the reals, a set of equations in finite domains can always be decided to have
or not solution, ultimately thanks to the finiteness of the domains, using a mixture of simplification,
value propagation, and labeling (i.e., assignment of values to variables). We will focus mainly, due to
their practical importance, in finite domain variables.

3 Displaying Constrained Variables

The concept of variable binding in CLP is more complex than in imperative and functional languages:
the value of a CLP variable is actually a complex object representing a (potentially infinite) set of
values plus the constraints attached to the variable which relate it with the rest of the variables. Tex-
tual representations are usually not very informative and difficult to interpret and understand, and a
graphical depiction of the variables can offer a view that is easier to grasp. Also, if we wish to follow
the history of the program it is desirable that the graphical representation be either animated or laid
out spatially as a series of pictures. The latter allows comparing different behaviors easily, trading
time for space.

3.1 Depicting Finite Domain Variables

FD variables are instantiated to an initial domain, which is narrowed as equations are incrementally
added and as the constraint system is simplified (either by algebraic rewriting or by the labeling
procedure). At any state in the execution, each FD variable has an active domain (the set of allowed
values for it) which is usually accessible by means of language primitives. For several reasons (space
limitations, speed of addition/removal of constraints, etc.) this domain is usually represented using an
upper approximation of the actual set of values that the variable can take.

A possible graphical representation is to assign a dot (or, depending on the visualization desired,
a square) to every possible value a variable can take, highlighting those values in the current domain.
An example of the representation of a variable

�
with current domain ���������
	����� from an initial

domain ������������ is shown in Figure 1.
It is extremely interesting to follow the evolution of a set of program variables throughout the

execution. Probably the most useful portray is to simply stack the different state representations, as in
Figure 2. It can reflect time accurately (for example, by mapping it to the height between changes) or
ignore it by simply stacking a new row of a constant height every time a variable domain changes or
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Figure 1: Depiction of a FD variable Figure 2: History of a single variable

:- use_module(library(clpfd)).
:- use_module(library(tracing_library)).

program:-
Variables = .... ,
Names = .... ,
open_log(Variables, Names, Handle), %% Added
constrain_values(Variables, Handle),
log_state(Handle), %% Added
visual_labeling(Variables, Handle),
close_log(Handle). %% Added

Figure 3: An annotated program skeleton

an enumeration step is performed. This representation allows the user to perform an easy comparison
between states and has the additional advantage of allowing more time-related information to be added
to the display. Other possibilities we will not explore include animating the display, so that time is
represented as such, or using different color hues or shades of grey.

The stacking approach is one of the visualizations available in VIFID. VIFID is a Prolog li-
brary which represents the state of variables as instructed by spy-points introduced by the user in the
program. Figure 3 shows an skeleton example of such an annotated program. The open_log/3
primitive initializes the Handle data structure which contains the Variables to be observed and
their Names. close_log/1 takes the necessary actions in order to finish the visualization (e.g.,
closing a file, sending appropriate messages to the windows, etc.). The actual step-by-step depiction
of the current state is made by the log_state/1 primitive. It contacts with the visual side of the
tool in order to communicate the current state of the variables and update the windows.

An important part of the CLP execution is the labeling phase, which tries to assign values to the
variables which are compatible with the existing constraints. This labeling is usually performed by
a builtin, which receives a list of variables and an indication of the labeling strategy. We visualize

visual_labeling([], _Handle).
visual_labeling([Q|Qs], Handle):-

labeling([Q]),
log_state(Handle),
visual_labeling(Qs, Handle).

Figure 4: The visual_labeling/2 library predicate
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Figure 5: Evolution of FD variables for a 10-queens problem
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Figure 6: Several variables side to side
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Figure 7: Changing a domain

the evolution of the variables during labeling by recoding this builtin so that the state of the variables
is logged after each labeling step. Figure 4 shows an example implementation, which receives the
list of variables to label and the Handle to the visualization and performs a tailored labeling. It
is a simplified code for illustration purposes, but it clarifies how this (and other primitives) can be
interfaced with the visual tools without too much effort.

Figure 5 shows a screen dump of a window generated by VIFID presenting the evolution the
state variables when solving the Queens problem for a board of size 10. Each column in the display
corresponds to one program variable. The possible values are the row numbers in which a queen
can be placed. Lighter squares represent values still in the domain, and darker squares represent
discarded values. Each row in the display corresponds to a spy-point in the source program, and
points where backtracking happened are marked with small hooks. It is straightforward to see that
very little backtracking was necessary, and that variables are highly constrained, so that enumeration
(proceeding left to right) quite quickly discarded initial values.

4 Representing Constraints

It is obviously interesting to represent the relationships among several variables as imposed by the
constraints affecting them. Textual representation is often not straightforward (or even possible in
some constraint domains), can be computationally expensive, and provides too much level of detail
for an intuitive understanding. Moreover, in general there are many states of the variables which
meet the restrictions imposed by the constraints. A general solution which takes advantage of the
representation of the actual values of a variable (and which is independent of how this representation
is actually performed) is to use projections to present the data piecemeal and to allow the user to update
the values of the projected variables, while observing how the variables being shown are affected by
such changes. This can often give the user an intuition of the relationships linking the variables (and
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detect, for example, the presence of erroneous constraints). We will use the constraint C1, below, in
the examples which follow:

C1 � ��� ����� � ���� ���� ��� ����	� ��
 � ����� � ����
 � � ����� � ��� ����� � ��

Figure 6 shows the domains of FD variables
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Figure 8: Enumerating Y, representing enumerated
domains for X and Z

X, Y, and Z subject to C1. An update of the do-
main of a variable should induce changes in the
domains of other related variables. For example,
we may discard the values 1, 5, and 6 from the
domain of Y, which boils down to representing
the constraint C2 � C1 � ���� ��� ��� �

Figure 7 represents the new domains of the
variables. Values directly disallowed by C2 are
shown as crossed boxes; values discarded by the
effect of this constraint are shown in a lighter shade. In this example the domains of both X and Z
are affected by this change, and so they depend on Y; this type of user-driven visualization is also
available in the VIFID tool. A more detailed inspection can be done by leaving just one element in
the domain of a variable, and watching how the domains of other variables are updated. In Figure 8 Y
is given a definite value from 1 (in the leftmost rectangle) to 6 (in the rightmost one). This allows the
programmer to check that simple constraints hold among variables, or that more complex properties
(e.g., that a variable is made definite by the definiteness of another one) are met.
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Figure 9: X against Y
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Figure 10: X against Z
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Figure 11: Y against Z

A static version of this view can be obtained by plotting values of pairs of variables in a 2-D grid.
This is schematically shown in Figures 9, 10, and 11, where the variables are subject to the constraint
C2. From these representations we can deduce that the values X = 3 and X = 6 are not feasible,
regardless of the values of Y and Z. It turns out also that the plots of X against Y and X against Z
(Figures 9 and 10) are identical. From this, one might guess that perhaps Y and Z have necessarily
the same value, i.e., that the constraint Z = Y is entailed by the store. This possibility is discarded
by Figure 11, in which we see that there are consistent pairs where X

�� Z. Furthermore, the slope
of the highlighted squares on the grid suggests that there is an inverse relationship between Z and
Y: incrementing one of them would presumably decrement the other—and this is actually the case,
from constraint C1. A VIFID window showing a 10-Queen 2-D plot appears in Figure 12; the check
buttons at the bottom allow the user to select the variables to depict.
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5 Abstraction for Constraint Visualization

It is often the case that executions of large programs result in too much data being displayed. Even
if an easy-to-understand depiction is provided, the amount of data can overwhelm the user with an
unwanted level of detail. Abstraction is a method to cope with this problem.

5.1 Abstracting Values

While the presence of a large number of variables can be partially solved by a careful selection of
variables, another problem remains: representations of variables with a large number of possible
values can convey information too detailed. At the limit, the screen resolution may be insufficient
to assign a pixel to every value in the domain. This is easily solved by using scrollable canvases,
providing means for zooming, fish-eye views, etc. That was the approach taken in the VisAndOr
tool [CGH93] aimed at showing the parallel execution of logic languages.

However, these methods are more “physical” approaches than true conceptual abstractions of the
information, which are richer and more flexible.

An alternative is to use an application-oriented filtering of the variable domains. For example, if
some parts of the program are trusted, their effects can be masked out by removing the values already
discarded from the representation of the variables: e.g., if a variable is known to take only odd values,
the even values are simply not shown in the representation. This filtering can be specified using the
source language—in fact, the constraint which is to be abstracted should be the filter of the domain of
the displayed variables.

Another alternative is to perform a more semantic “compaction” of parts of the domain. As an
example, consider presenting the domain of a variable simply as a number, denoting how many values
remain in its current domain, thus providing an indication of its “degree of freedom”. This idea is the
basis of our next visualization.

5.2 Domain Compaction and New Dimensions

Besides the problems in applications with large domains, the static representations of the history of
the execution (Figure 5) can also fall short in showing intuitively how variables converge towards their
final values, again because of the excess of points in the domains, or because an execution shows a
“chaotic” profile. A better option is to use the number of active values in the domain as coordinates

Figure 12: Relating variables in VIFID
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X The CLP(FD) variables.

Y An abstraction of the variable: the size of its domain.

Z Time.

Figure 13: Meaning of the dimensions in the 3-D representation.

:- use_module(library(clpfd)).
:- use_module(library(trifid)).

dgr(ListOfVars):-
ListOfVars = [G,O,B,N,E,A,R,L,T,D],
open_log(ListOfVars, Handle), %% Added
domain(ListOfVars, 0, 9),
log_state(Handle), %% Added
D #> 0,
log_state(Handle), %% Added
G #> 0,
log_state(Handle), %% Added
all_different(ListOfVars),
log_state(Handle), %% Added
100000*D + 10000*O + 1000*N + 100*A + 10*L + D +
100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=
100000*R + 10000*O + 1000*B + 100*E + 10*R + T,
log_state(Handle), %% Added
visual_labeling(ListOfVars, Handle),
close_log(Handle).

Figure 14: The annotated DONALD + GERALD = ROBERT FD program.

in an additional dimension. Figure 14 shows a CLP(FD) program for the DONALD + GERALD =
ROBERT puzzle. The program was annotated with calls to predicates which act as spy-points, and log
the sizes of the domains of each variable at the time of each call.

Figure 15 is an execution of the program in Figure 14. The variables closer to the origin (the ones
which were labeled first) are assigned values quite soon in the execution and they remain fixed. There
are backtracking points scattered along the execution, which appear as blocks of variables protruding
out of the picture. There is also a variable (viewed as a white strip in the middle of the picture) which
appears to be highly constrained, so that its domain is reduced right from the beginning; that variable
is probably a good candidate to be labeled soon in the execution. Some other variables apparently
have a high interdependence (at least, from the point of view of the solver): in case of backtracking,
the change of one of them affects the others. This suggests that the variables in this program can be
classified into two categories: one with highly related variables (those whose domains change at once
in case of backtracking) and a second one which contains variables relatively independent from those
in the first set.

These figures have been generated by a tool, TRIFID, integrated into the VIFID environment.
They were produced by using the ProVRML package [SCH99], which allows reading and writing
VRML code from Prolog, with a similar approach to the one used by PiLLoW [CH97]. One advantage
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Figure 15: Execution of the DONALD + GERALD = ROBERT program

Figure 16: Constraints represented as a graph Figure 17: Bold frames represent definite values

of using VRML is that sophisticated VRML viewers are readily available for most platforms. The
resulting VRML file can be loaded into such a viewer and rotated, zoomed in and out, etc. Another
reason to use VRML is the possibility of using hyper-references to add information and animation to
the depiction of the execution without cluttering the display.

5.3 Abstracting Constraints

As the number and complexity of constraints in programs grow visualizing them as relationships
among variables may cause the same problems we faced when trying to represent values of variables.
The solutions suggested for the case of representation of values are still valid and can give an intuition
of how a given variable relates to others. However, it is not always easy to deduce from them how
variables are related to each other, due to the lack of accuracy in their representation.

A different approach to abstracting the constraints in the store is to show them as a graph [MR91]
where variables are represented as nodes which are linked iff the corresponding variables are related
by a constraint (Figure 16)1. This representation provides the programmer with an approximate un-
derstanding of the constraints in the solver (but not exactly which constraints they are). Moreover,
since different solvers behave in different ways, this can provide hints about better ways of setting
up constraints for a given program and constraint solver. The topology of the graph can be used to
decide whether a reorganization of the program is advantageous; for example, if there are subsets of
nodes in the graph with a high degree of connectivity, but those subsets are loosely interconnected, it

1This particular figure is only appropriate for binary relationships; constraints of higher arity would need hypergraphs.
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may be worth to set up the tightly connected sections and make a (partial) enumeration early, to favor
local constraint propagation, and then link the different regions. Animation can reflect propagation
and how variables acquire a definite value. In Figure 17 some variables became definite, and as a
result some constraints them are not shown any more: this reflects the idea of a system being progres-
sively simplified, and also visualizes how backtracking affects the constraint store. Further filtering
can be accomplished by selecting which types of constraints are to be represented (e.g, represent only
“greater than” constraints, or certain constraints flagged in the program through annotations).

6 Implementation Details

VIFID and TRIFID are implemented in Prolog and Tcl/Tk, and rely on a few primitives to open
socket connections and to spawn and communicate with other processes (primarily for the Tcl/Tk
part). VIFID is completely interactive, and since the library has direct access to the program variables,
the user can update them on the fly. The execution can continue after updating, but the user does not
have to commit to this update: a RESET button forces the program to backtrack to the point where the
update was made. Only a few rutines commonly used throughout the execution were written directly
in Tcl/Tk. The flexibility of Tcl/Tk was enough, since most of the windows have a simple layout.
The speed of Tcl/Tk was not much of a problem, except when the number of objects in the window
became very large. Overall, the tool was strong enough to be used routinely, and the visualization was
found to be useful and easy to understand.

TRIFID shares many ideas with VIFID : it is also a Prolog library which scans the variables it has
access to, but instead of starting an interactive 3-D visualization, we decided to take advantage of a
Prolog to VRML interface and generate VRML. Gathering the data was not a computational problem;
instead, we found troubles related with the size of the generated files2, and with the speed of the
VRML visualizers (freely) available.

7 Related Work

Early work in constraint visualization was made for Eclipse [ECR93]; the GRACE system [Mei96]
represented the values of constrained variables as we did in Section 3.1, connected to a Byrd box
model for program debugging. Additional information was encoded using different color shades.
More recently, the DisCiPl project [DHM00] fostered the use of visualization and assertion-based
debugging tools.

Some constraint applications need to set up complex relationships among the variables. In those
cases a visualization which mimics the initial problem helps in mapping problems in the constraint
solving to the original problem. The Global Constraint visualization tool [SABB00] does precisely
this, by incorporating special visualizations tailored to some of the complex constraints available in
the CHIP system. Although this gives an intuitive representation, it needs the user to map the problem
to one of these standard complex constraint templates.

The visualization of constraint networks, proposed here as an constraint abstraction amenable of
being treated and studied, was implemented at a different level in the Constraint Investigator [TM99],
interfaced with the Oz Explorer [Sch97]. This proposal visualizes a graph which is close to the imple-
mentation. The ability to expand and collapse the constraint net and to filter the variables increases the

2More precisely, the VRML visualizers had problems with that!
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tool usefulness in the case of big executions. It gives a good representation of the store, but probably
needs some further structure to represent complex problems.

8 Conclusions

We have discussed techniques for visualizing data evolution in CLP. The graphical representations
have been chosen based on the perceived needs of a programmer trying to analyze the behavior and
characteristics of an execution. We have proposed solutions for the representation of the run-time
values of the variables and of the run-time constraints among them. In order to be able to deal with
large executions, we have also discussed some abstraction techniques, including the 3-D rendition
of the evolution of the domain size of the variables. The proposed visualizations for variables and
constraints have been tested using two integrated prototype tools: VIFID and TRIFID. VIFID and, to
a lesser extent, TRIFID, which is less mature, have evolved into a practical system. Also, some of the
views and ideas proposed have since made their way to other tools, such as those developed for the
CHIP system [SA00].
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