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Abstract. This paper describes an algebraic approach to the sharing
analysis of logic programs based on an abstract domain of set logic pro-
grams. Set logic programs are logic programs in which the terms are
sets of variables and unification is based on an associative, commutative,
and idempotent equality theory. We show that the proposed domain is
isomorphic to the set-sharing domain of Jacobs and Langen and argue
that there are good reasons to adopt our representation: (1) the abstract
domain and the abstract operations defined are based on a theory for
sets and set unification, resulting in a more intuitive approach to sharing
analysis; (2) the abstract substitutions are like substitutions and can be
applied to (abstract) atoms. This facilitates program analyses performed
as abstract compilation. Finally (3) our representation makes explicit
the “domain” of interest of an abstract substitution — which solves some
technical problems in defining the domain of Jacobs and Langen.

1 Introduction

Two variables in a logic program are said to be aliased if in some execution of the
program they are bound to terms which contain a common variable. A variable
in a logic program is said to be ground if it is bound to a ground term in ev-
ery execution of the program. Aliasing and groundness information, often called
sharing information in the logic programming community, provide the basis for
a wide range of program optimizations and other useful applications. Such infor-
mation can be used to identify circumstances in which the occur check may be
safely dispensed with [21, 23] or to determine run-time goal independence which
can be used to eliminate costly run-time checks in and-parallel execution of
logic programs [20, 16, 14]. In the context of concurrent logic programming lan-
guages, sharing information can be used to identify single-writer properties (e.g.,
structures which are constructed by a single process). One of the more widely
applied sharing analyses reported in the literature is the so called set-sharing
analysis due to Jacobs and Langen [16], first implemented by Muthukumar and
Hermenegildo [20]. This analysis plays a central role in the And-Parallel Prolog
compiler described in [14]. The analysis of Jacobs and Langen as well as many
of its extensions are developed within the framework of abstract interpretation
[8] which provides the basis for a semantic approach to dataflow analysis.



This paper presents an algebraic approach for the sharing analysis of logic
programs using set logic programs. In set logic programs terms are sets of vari-
ables, and standard unification is replaced by a suitable unification for sets based
on the well studied notion of ACI1-unification [1, 17]. Namely, unification in the
presence of an associative, commutative, and idempotent equality theory with
a unit element (the empty set). Analyses are semantic based and formalized in
terms of abstract atoms in which the arguments are sets of variables that specify
the possible sharing and definite groundness between the argument positions of
concrete atoms. Abstract atoms can also be viewed as abstract substitutions ap-
plied to atoms. Abstract substitutions are set substitutions, which are mappings
from variables (argument positions) to sets of variables (arguments). We show
that the domain of set substitutions is isomorphic to the set-sharing domain.
We argue that set logic programs provide a more natural and intuitive means
for describing sharing analyses.

The main advantage of our approach is that the operations on the abstract
domain and their formal justification follow from simple and obvious algebraic
properties of set substitutions. The composition of set substitutions, application
of a set substitution to an (abstract) atom, and the projection of a set substi-
tution to a set of relevant variables, all maintain their standard definitions (just
as composition, application and projection of usual substitutions). We introduce
a natural ordering on abstract syntactic objects which reflects a notion of “less
sharing” (similar to “less general” on concrete syntactic objects). The abstract
unification of a pair of abstract terms corresponds to finding their most general
unifier with respect to this ordering. Unification of abstract atoms is defined as
solving sets of unification equations between abstract terms.

Another advantage of the domain we propose is that it enables us to per-
form program analysis by combining program abstraction (replacing terms by
sets of variables) with concrete evaluation (enhanced by ACIl-unification). This
approach is often termed abstract compilation and derived from ideas presented
in [15, 7, 13] and has been applied in a variety of applications [11, 12, 2, 9]. To
our knowledge, no previous work has provided an abstract compilation scheme
for sharing information. This is no surprise, since the complexity involved in an
accurate analysis for such information makes it a non-trivial task. We attack this
problem by formulating abstract compilation as a transformation of logic pro-
grams into (abstract) set logic programs. The underlying algebraic framework
could be cast in terms of a generalized constraint system, following [13]. This
is for example the approach in [22], where (groundness and type) analyses are
designed as constraint solving. We prefer to follow a more compact presentation.
A similar approach based on ACI-unification has recently been applied to derive
polymorphic type dependencies [4].

2 Preliminaries

In the following we assume a familiarity with the standard definitions and no-
tation for logic programs as described in [18]. We assume a first order language



with a fixed set of predicate symbols I7, a fixed signature X' and a countable
set of variables V. The set of atoms constructed using predicate symbols from
IT and terms from T'(X,V) is denoted by By. The set of variables occurring in
a syntactic object o is denoted vars(o).

We assume the standard ordering on terms and other syntactic objects. We
let t; < t2 denote that t; is less general than t5. A substitution 6 is a mapping
from V to T'(X,V) which acts as the identity almost everywhere, i.e., its domain
dom(0) = {x € V| 26 # =z} is finite. The range of a substitution is defined as
range(f) = {26 | z € dom(6)}. Composition of substitutions § and ¢ is defined
as usual and denoted 6 o 9. A substitution v is idempotent if ¢ o b = 9 (or
dom(y) Nrange(y)) = B). The set of idempotent substitutions is denoted Sub.
For substitutions we write 8; < 62 to denote that 0; is less general than 65 if there
exists a substitution 6 such that 65 06 = ;. The empty (identity) substitution is
denoted . A substitution extends to apply to any syntactic object in the usual
way.

We say that a set of variables S share through a substitution 8 if there exists
a variable v such that S = { = € dom(0) |v € vars(z6) }. In this case we say
that the variables in S share in § through v. Jacobs and Langen denote this as
oces(8,v) = S [16]. Similarly, for an atom p(ti,...,t,) we say that the set of
argument positions I C {1,...,n} share if there exists a variable v such that
I= { i |v € vars(t;) } In this case we might say that the argument positions
in p(t1,...,t,) share through v.

3 Set Logic Programs

The sharing analyses described in this paper are constructed using a first order
language, similar to that of logic programs, which we call set logic programs.
Intuitively, set logic programs are logic programs in which the terms are sets of
variables, which we call abstract terms.

Abstract terms: Syntactically, we assume a set of variables V and an underlying
alphabet X¥® = {®,0} consisting of a binary function symbol @& which “glues”
elements together and a single constant symbol () to represent the empty set.
Abstract terms, or set expressions, are elements of the term algebra T'(X®,V)
modulo an equality theory consisting of the following axioms:

(z®y) Dz=1z® (y® =2) (associativity) T @ x = z (idempotence)
TOYy=yodr (commutativity) x@® 0 =z (unit element)

This equality theory is sometimes referred to as ACI1 and the corresponding
equivalence relation on terms denoted = 4¢ 1. This notion of equivalence suggests
that abstract terms can be viewed as sets of variables. For example, the terms
T1 DTy D T3, 11 Dx2 Dx3 D0, and z1 ® T2 ® T3 ® T can each be viewed as
representing the set {x1, 2,23} of three variables. In the following we do not
distinguish between set expressions and sets of variables, often referring to the
set of variables in a term as a set expression.



Abstract atoms: Abstract atoms are entities of the form p(m,...,7,) where
p/n € II and 7,...,7, are abstract terms. Abstract atoms are also viewed
modulo ACIl-equivalence. Namely, two abstract atoms are equivalent, denoted
T =AcI1 Te, if their corresponding arguments are equivalent. We denote the set
of abstract atoms modulo ACI1-equivalence by B‘Gf . In order to simplify notation
we often write an abstract atom 7 instead of its corresponding equivalence class
[m]=4cri - We also denote ACI1-equality (“=4cn”) of abstract atoms by equality
sign (“=") when it is unambiguous.

While our abstract domain is defined in terms of abstract atoms, abstract
substitutions also play a role in the presentation. Moreover, abstract substi-
tutions are used later to show the isomorphism between our domain and the
set-sharing domain of Jacobs and Langen.

Abstract substitutions: Abstract substitutions, or set substitutions, are substitu-
tions which map variables of V to abstract terms. We denote the set of idempo-
tent abstract substitutions by Sub®. The application of an abstract substitution
L to an abstract term 7 is defined as usual by replacing occurrences of each vari-
able z in 7 by the abstract term u(x). We say that two abstract substitutions
and pg are ACIl-equivalent if they map variables to equivalent abstract terms,

M1 =acn p2 & VZ €V: zpy =acn T

The standard operations on abstract substitutions such as projection and com-
position are defined just as for usual substitutions.
We say that an abstract substitution ¢ is linear if

Va,y € dom(y): z#y = zpNyyp =0. (1)

Our interest in linear substitutions is due to the fact that they do not introduce
additional sharing dependencies when applied to a syntactic object. Namely, if
and y are distinct variables and 9 is a linear abstract substitution then zy and
y1 do not have any variables in common. Linear substitutions induce an ordering
on syntactic objects which reflects the “amount” of sharing they contain.

An ordering: We say that an abstract atom m; is less general than 7y, denoted
m X 7o, if and only if there is a linear substitution v such that m; =acr1 ™.
It is straightforward to show that m; < mo implies that the arguments of
contain more sharing and less groundness than the arguments of 7;. Namely, if
I is a set of argument positions which share in 7 (through some variable), then
I also share in 72 (through some variable). Moreover, if w5 binds a variable z to
the empty set, then so must 7.

Ezample 1. Consider the following abstract atoms:

T = p({A,B}, {Ba C}: {A: B, D})a T2 = p({X}, {Xa Y}: {Xa Z}),
T3 = p({U}, {V}: {Ua W})



The first and the third arguments of m; share through A, while all three arguments
share through B. In 75 there is sharing between all three arguments through X, and in
73 there is sharing between the first and the third argument. Thus, w1 contains more
sharing than each of w2 and m3. In our domain this is captured as w2 < w1 and 73 < 71.
This because m2 = w191 and 73 = w112 where:

p={A—0, B»X, C—Y, D Z}

Yo={A—U B—0, C—V, D— W}

Note also that the ordering “<” naturally induces the ACI1-equivalence of atoms,
i.e., (7T1 < 7T2) A (71'2 < 7T1) = (7T1 =ACI1 7T2).

A similar ordering is defined for abstract substitutions. An abstract substi-
tution py is less general than uo, denoted p; =< o, if and only if there exists
a linear substitution 1 such that ps o ¥ =,¢; p1. Note that if pu; < po and
2 = py then py and pe map variables to ACIl-equivalent terms and are hence
ACIl-equivalent.

Least upper bound: The least upper bound of two abstract atoms with the same
predicate symbol and arity is induced by the ordering of abstract objects.

Proposition1. For two abstract atoms p(ti,...,7,) and p(r{,...,7;,) of the
same predicate symbol p/n:

P(Tiyee sy, Tn) UP(TL, oy 7)) =P(TL BTy e v, T D T

Proof. Technical.

The notion of least upper bound extends to sets of abstract atoms by combining
all of the atoms with the same predicate symbol. Let Z C B%B , then

UZ={w{p(r,...,m) €L}|p/nel}. (2)

4 An Abstract Domain for Sharing Analysis

We propose set logic programs as a formal basis for studying sharing properties
of logic programs. The sets of variables in the arguments of an abstract atom
represent possible sharing information in corresponding concrete arguments. The
formal relation between concrete atoms and abstract atoms is given in terms of
an abstraction function on atoms which replaces the concrete terms in an atom
by the set of variables it contains.

o :T(%,V) = T(Z9,V)

) = {@ if vars(t) =0 (3)

o 1D - DIy, if’l}aTS(t):{mla---axn}’n>0

The abstraction of atoms is obtained by application of term abstraction sepa-
rately to each argument:

o:By - BY
Wit 1)) = P(o(t1), -, o(tn) )



Example 2. Consider the concrete atom a = p([X,Y|Xs], f(Vs),9(X,Y, Z)). Its ab-
straction is:
o(a) = o(p([X, Y |Xs], f(Y5),9(X, Y, Z) = p(X &Y & X5, Vs, X &Y & )
=pX'®Xs, Vs, X' & Z)

where the equivalence of the last two atoms is provided by the pair of linear substitu-
tions: < ={Y » 0, X » X'} and ¢ = {X' » (X ®Y)}

We say that an abstract atom 7 describes a concrete atom a if o(a) <X T,
denoted 7 o a. Namely, if the arguments of 7 contain more sharing than those
of a, and if any argument position of 7 which is ground is also ground in a.

Abstraction of substitutions: Abstract atoms and abstract substitutions are in
fact two equivalent representations of the same dependency information. More-
over, abstract atoms are no more than “syntactic sugar” for IT x Sub®. However,
abstract substitutions are sometimes more convenient objects to reason about.
Thus, similarly to the case of atoms, we define the notions of abstraction and
approximation for substitutions. A substitution is abstracted by abstracting the
terms in its range:

o : Sub — Sub®
o@)={z—o(t)|z—~teb}. (5)

We say that an abstract substitution p describes a concrete substitution 8, de-
noted p o 8, if o(8) X p.

Abstract interpretations: An abstract domain for sharing analysis and the cor-
responding abstraction and concretization functions are obtained by considering
abstract interpretations, i.e., sets of abstract atoms. We view sets of abstract
atoms as being downwards-closed. A set S € p(By}) is downwards-closedif m € S
and 7' < 7 implies 7’ € S. We equip B with an ordering defined as

T R Iy & Vm € UL mg € UTy @ m X o (6)
The corresponding equivalence relation:
Thir1I, & (Il < IQ) N (IQ < Il) (7)

provides a basis for relating abstract interpretations to downwards-closed sets
of (abstract) atoms (also called c-interpretations in [10]). Let S| denote a min-
imal downwards-closed set containing S. Equation (7) provides S =~ S| for any
S € p(By) ), i.e., any member of p(B5) is equivalent to some downwards-closed
set. The quotient [p(BS )]~ of the equivalence relation will be denoted in the
following by an abuse of notation as p(BS).

Lemma 2. (p(B), <) is a complete lattice.

Proof. If L is a set of downwards-closed sets then NL and UL are downwards-
closed, therefore lub(L) ~ UL and glb(L) ~ NL.



The relation between concrete and abstract interpretations is formalized as
usual in terms of a pair of abstraction and concretization functions lifted from
the abstraction function ¢ on atoms in the standard way:

p(By) — @(B@) '7:50(316;) — p(By) (8)
_I_I{ IaGI} YI)=U{I|all)=T}

Theorem 3. (p(By),a, p(BY),7) is a Galois insertion.
Proof. Straightforward from the above definitions.

In order to ensure terminating analysis and finite approximations we establish
finiteness of our abstract domain modulo the equivalence relation of Equation
(7). But first note that for any abstract interpretation Z, Z = UZ. This follows
by Equation (6). Intuitively, this means that we view abstract interpretations as
“lubbed”. It is worth noting that LIZ is an abstract interpretation with minimal
cardinality among those equivalent to Z, containing at most one abstract atom
for each predicate symbol in I7.

Theorem 4. Bf) is finite.

Proof. The elements of B{Gf are equivalence classes of abstract atoms [r]—,,.
Therefore it suffices to prove that for any predicate symbol p/n the number
of associated equivalence classes of abstract atoms [n]—=,,, is finite. We prove
the claim of the theorem demonstrating that each equivalence class of abstract
atoms constructed using p/n has a representative with a number of variables
bounded by 2™ — 1. Assume an atom 7 has more than 2™ — 1 distinct variables.
Then there are at least two variables ¢ and y occurring in exactly the same set
of argument positions of 7. Consider the atom 7’ = 7 - {z — 0, y — 2} where
z is a fresh variable. By construction we have 7' < 7 and it is easy to see that
m 27 withm =7x"-{2+— (z ®y)}. Thus, 7 and 7’ are in the same equivalence
class and |vars(n')| = |vars(w)| — 1. It follows that for any atom having two or
more variables in the same set of argument positions we can find an equivalent
atom with a smaller set of variables. So, for any atom constructed using p/n
there exists an equivalent atom with all variables occurring in distinct subsets
of argument positions, i.e., an atom with at most 2" — 1 variables.

The abstract domain (p(By), a, p(B)),~) provides a basis for the sharing
analysis of logic programs. When constructing a program analysis for logic pro-
grams three main operations must be defined: abstract unification, abstract ap-
plication (or projection®), and abstract least upper bound. We show that all of
these operations are straightforward to define in our domain.

3 The role of projection is to restrict a substitution to a set of variables of interest.
Using application instead facilitates the design of the analysis.



Abstract Unification: Formally speaking, the unification of abstract atoms is
similar to the well studied notion of ACI1-unification [1, 17]. Recall that an ACI1-
unifier of two terms 71, 75 is a substitution 1 such that 7Y =051 ™. However,
there are two important differences: (1) because the underlying alphabet contains
only one binary function symbol and only one constant, abstract terms always
unify* and have exactly one most general unifier (in the general case there may
be a finite number of most general unifiers and the unification problem is NP-
complete). And (2) because we define the ordering on terms using the notion
of linear substitutions, the most general unifier is non-standard (though well
defined).

The abstract unification (for sharing analysis) of a pair of terms 71, 72, de-
noted mguacq1 (71, 72), is the most general substitution u such that 7 u =401
Top. Figure 1 describes a simple algorithm to compute the most general unifier
of a pair of abstract terms. Note in the figure that if 7 or 75 is ground then
S =0 and Z = () which implies that u binds all variables to 0.

Lemmab’. Let t; and t2 be concrete terms with 8 = mgu(ti,t2). Let & =
mguacii(o(ty),o(ts)), computed by the algorithm in Figure 1. Then £ x 6.

Proof. Technical, by observing that the algorithm in Figure 1 enables all possible
sharing which might occur in the unification of ¢; and to. If 8 implies less sharing
than that, a linear abstract substitution 1 can be constructed such that it maps
out the extra sharing, and therefore £ o ¢ = o(6).

The abstract unification mguA(m ,m2) of atoms 7 and 7o is defined in terms
of the set £ of equations between the terms in the corresponding argument
positions by:

0 ifE=10

A
mgu”(£) = e ) ifE={(r=")}ue ©)
womgu™(E'p) and p = mguacn (r, )

Abstract unification is thus defined much the same as in the concrete case.
It is parameterized on abstract unification of terms and abstract composition of
substitutions. The following result about abstract composition is instrumental
in proving correctness of abstract unification.

Lemma 6. Let 0; and 62 be concrete substitutions, and py and po abstract sub-
stitutions such that py o< 01 and pg o< 03. Then (u1 o us) o< (61 o 6s).

Proof. Since p; o< 67 and ps o 62, we have that Iy : py oy = o(61) and
g 1 po 0hy = o(f2). We have to prove that I : py opsotp = o (61 063). It is
easy to see that this holds with 1 = 1)1 o 1)s.

4 Observe that the substitution which binds all variables in two terms to () is always
a unifier.



Input: abstract terms 71 and 7
Output: most general ACIl-unifier

v1 = vars(ri)

vy = vars(rz)

S = { sg(v1Uv2)|sﬂv1;é(0, Sﬂ’Uz;é@}
let S = {s1,...s%}

Z ={z1,-..,2} // fresh variables corresponding to members of S
z € (v1 Uws)
® T A @ m {zl,...,zn}z{zi|x€5¢}}

Fig. 1. ACIl-unification of two terms

Theorem 7 abstract unification is correct.

Let a1 and a2 be concrete atoms such that mgu(ai,as) = 6. Let m; and w2 be
abstract atoms such that m1 < a1 and 7y X az. Let p = mguA(m,m). Then
o 6.

Proof. By induction on the length of corresponding tuples of abstract terms with
base case provided by Lemma 5 and the induction step provided by Lemma 6.

The result of Theorem 7 is one of the main points in our presentation. It
shows that there is a natural ordering (based on linear substitutions) for set-
sharing analysis for which abstract unification is defined as inductive solving
equations similarly to the case of concrete unification.

Abstract application: The application of an abstract substitution to an abstract
atom is defined just as for the case of a standard substitution. The correctness
for sharing analysis follows as a corollary from Theorem 7.

Corollary 8 application of abstract mgu is correct.

Let ay and ay be concrete atoms, and w1 and 7wy be abstract atoms. Let w1 o< a1
and wy x ay, with mgu(ay,as) = 8 and mgu?(my, m3) = p. Let h be a concrete
atom. Then o(h)u o< hé.

Proof. From Theorem 7 it holds o(a16) X mu, which implies that o({h,a1)6) <
(o(h), m1)p. Thus, o(h6) = o (h)p.

Abstract lub: Tt is easy to see that the least upper bound operation on abstract
atoms of Section 3 is safe, and precise, for sharing analysis.

Lemma9 abstract lub is correct.
For abstract atoms m; and ms and concrete atoms a, and as,

(7(1 X al) N (’ITQ X 0,2) = (7r1 Ly X al) N (7r1 L g X az).



Proof. Straightforward. Since 7; U 72 is an upper bound of 7; and 7, we have
m =X (m Ums) and m2 < (m U ms). Because m; < a; and 7 o az we have
o(ay) X m and o(as) X my. Thus, o(a1) < (7 Umy) and o(az) =X (m Ums), ie.,
m Uy X ag andm Uy X as.

When considering the lub of abstract interpretations, the operation is trivially
precise as the ordering of Equation (7) already views interpretations as “lubbed”.
It follows that «y is indeed well defined, as 7 =~ UZ and v(Z) = y(UZ).

5 Set Logic Programs vs Set-Sharing

We show that the abstract domain based on set logic programs is isomorphic
to the well-known set-sharing representation of Jacobs and Langen [16]. In the
following we denote by Sharing the abstract domain of [16].

We say that two abstract domains of a given concrete domain are isomorphic
if (1) they are isomorphic as partial orders; and (2) the interpretation of the
corresponding abstract objects is the same. Namely, the closure operators v o a
defined by the corresponding abstraction and concretization functions are the
same.

The domain of set-sharing: Recall the original definition of the Sharing domain
which consists of sets of sets of program variables ordered by set inclusion. Shar-
ing information is characterized using a notion of the occurrences of a variable
through a substitution,

oces : (Sub x V) = p(V)
oces(6,v) = { x € dom(6) |v € vars(z) }.

If oces(6,v) = S then S is the set of variables which # maps to a term containing
v. Each set S in an abstract substitution x represents the possibility of a variable
v occurring through the variables of S in the range of a substitution described
by k. The abstraction function for the sharing domain is defined in terms of the
sharing groups of a substitution, formalized by:

A : Sub — Sharing
A(0) = { oces(8,v) | v € vars(range(d)) } .

A Galois insertion is then constructed:

" : p(Sub) — Sharing 5" . Sharing — p(Sub)
a*M@)=U{A®) |00} r)={0ecSub|A®) Ck}

The following example illustrates the description of concrete substitutions by
set-sharing substitutions.

Example 3. Let k = { {4, B},{B,C},{A},{B},{C}, (7)} be an abstract substitution
in the Sharing domain. The substitutions §; = {A — f(X,Y),B — ¢g(Y¥,Z),C —
f(Z,V)} and 6 = {A — f(X),B+— g(Y),C — f(Z)} are described by «: In 61, X
occurs through {A}, Y occurs through {4, B}, Z occurs through {B,C} and V occurs
through {C}, and in 6> there are variables which occur through {A}, {B} and {C} —
and these occurrences are all specified in k.

(10)



An isomorphism: In principle the domain based on set logic programs is formal-
ized in terms of a Galois insertion of abstract atoms while the set-sharing domain
of Jacobs and Langen is based on a Galois insertion of abstract substitutions. This
introduces some technicalities into the formal proofs. The reader should notice
that in fact set-sharing analyses, such as those used in [16, 20], are actually based
on pairs consisting of a concrete atom of the form p(z1,...,z,) together with
an abstract substitution.® Note that an abstract atom p(r1,...,7,) in our do-
main can also be viewed as a pair p(z1,...,z,) together with a set substitution
{.731 = Tl,.-.,2p Tn}.

Lemma 10. There exists a set isomorphism between Sub® and Sharing.

Proof. Note that the abstraction function A : Sub — Sharing extends naturally
to a function A : Sub® — Sharing viewing sets of variables as ordinary terms.
Hence, we prove the lemma demonstrating that A : Sub® — Sharing is a
bijective function for which an inverse function A~! : Sharing — Sub® can be
provided.

Let k = {S1,...,S,} be an element of the Sharing domain defined for a set
D of variables of interest. Assume without loss of generality that the domain
of substitutions in Sub® is D.% Let 21,...,2, be a set of fresh variables, one
for each sharing group in k. The inverse function yielding the set substitution u
which corresponds to « is defined by:

A1 : Sharing = Sub®
Al(n)z{mH ® zi|:c€D}.

z€eS;
It is straightforward to see that A o A~! and A~! o A correspond to identity
functions in Sub® and Sharing respectively.

The following lemma establishes the relation between the ordering of set
substitutions and the ordering in the Sharing domain:

Lemma11. There is an order embedding between (Sub®, <) and (Sharing, C).

Proof. Let p; and ps2 be two abstract substitutions and let D be a set of variables
of interest. Assume without loss of generality that dom(u1) = dom(us) = D. We
prove that pu; < ps < A(u1) C A(uz).

(=) We have to demonstrate that if u is a set substitution and v is a linear
substitution then A(uy) C A(u). Each member of the set A(u) is of the form:
oces(up,v) = { z|v € vars(zpy) }. Assume without loss of generality that
range(u) = dom(1)). Since 1 is linear, there is exactly one variable v’ € range(p)

5 However, set-sharing substitutions can not be applied to atoms, since they are in
fact an encoding of sharing information rather than “true” substitutions.

5 Note that the domain of an abstract substitution x € Sharing must be explicitly
specified, as any variable of interest not occurring in s is considered ground. In
contrast, the variables of interest for a set substitution are those in its domain.



mapped by 1 to a set expression containing v. Thus, all the variables occurring
in py through v occur in p through o', i.e., occs(uw,v) = oces(p,v'). And so,
we have occs(u,v) € A(u).

(<) Given A(u1) C A(ue) we construct a linear substitution ¢ as follows.
Consider the set of variables: S = {v|occs(uz2,v) € A(uz2) \ A(p1)}. For any
variable v € S we add a mapping {v — 0} to . Thus, we have A(uxv) = A(u1)
and consequently, by Lemma 10, p19 = ps.

Thus, set substitutions of Sub® and abstract substitutions of Sharing form
isomorphic partial orders. Considering abstract substitutions together with pred-
icate names we establish that both abstract domains approximate the same shar-
ing information.

Theorem 12 domain isomorphism.
(I x Sharing, C,a%") = (p(BS),=,0)

Proof. Technical, by Lemmas 10 and 11 and by observing that A : Sub —
Sharing and o : Sub — Sub® map concrete substitutions to isomorphic ab-
stract substitutions. Namely, that V0 € Sub: A(f) = A(c(f)), which follows by
definition.

The following example illustrates the isomorphism of the two representations
of sharing information.

Ezample 4. Recall the abstract substitution x and the concrete substitutions #; and 6
of Example 3. Consider the set substitution, p = {A — {X,U},B— {X,Y,V},C —
{Y,W}}. The substitutions §1 and 62 are described by p: X indicates the possible
sharing of A and B, Y indicates that of B and C, and U, V and W the possible presence
in A, B and C of variables not shared with other variables. The abstract substitution &
and the set substitution p also describe the substitutions 3 = {A — f(X), B — g(X)}
and 0, = {A— f(X,Y),B— g(X,Y),C— Z}.

6 Sharing Analysis with Set Logic Programs

The abstract operations defined in Section 4 (unification, application, least upper
bound) provide the building blocks to construct an abstract semantics for the
sharing analysis of logic programs. We have constructed several such program
analyses. A bottom-up approach is described in [5]. A top-down approach based
on tabulation using XSB is described in [3]. In this section we illustrate as an
example a bottom-up approach based on an abstract immediate consequences
operator Tp : p(B5)) — p(BY)) for set logic programs. For a logic program P the
least fixed point of 7,(py provides the sharing analysis for P.

T?(I):U{hﬂ h<bi,....,by €P, ai,...,an €L }

p = mguA((b, .., ba), ar, .., an)) (1)

Let us consider the analysis of the well-known append program depicted in
Figure 2 (left) using the technique discussed above. The analysis is obtained



(1) append([],Ys,Ys). (1) append(d, {Y s}, {Y s}).
(2) append([X|Xs],Y's,[X|Zs]) ¢~ (2') append({X, Xs},{Y's},{X, Zs}) «
append(Xs,Ys, Zs). append({Xs},{Y s}, {Zs}).

Fig. 2. The append program and its set based abstraction.

as a least fixed point of 7,(p) applied to the abstract version of append, de-
picted in Figure 2 (right). In the first iteration of the evaluation we collect
an abstract atom of the form m; = append(0,{Ys},{Ys}) corresponding to
fact (1) in Figure 2, characterizing the set of atoms in which the first argu-
ment is ground and the second and third arguments are equal terms. In the
second iteration a renaming of m; is unified with the body of clause (2') in
Figure 2. Abstract unification in this case specifies that Xs is bound to 0 (a
ground term) and that ¥'s and Zs are bound to the same set (variable Y's').
Consequently the head of clause (2') under such bindings can be represented
as ma = append({X},{Ys'},{X,Ys'}). This abstract atom describes the con-
crete atoms of the form append(t1,ts,t3) which exhibit sharing between ¢; and
ts and between t and t3. Note that {m} = {mi,m2} since m =< m2 with
m = m2 - {X — (}. An additional iteration results in a new abstract atom of
the form 73 = append({X, X'},{Ys'},{X, X', Ys'}), which is equivalent to .
Thus, the fixed point is reached with I fp(7,(p)) = { append({X},{Y},{X,Y}) }
providing an approximation of sharing information for append.

7 Extensions to Set Logic Programs

Traditionally, sharing analyses have been enhanced with other kinds of informa-
tion like linearity and freeness. This information is interesting in its own right,
since it allows for further compile-time optimizations. Besides, it can significantly
improve sharing information.

It is often said that properties such as linearity are hard to deal with in
program analysis because they are not downwards-closed. Namely, ¢ may be a
linear term but 6 non-linear. Note that our domain is downwards-closed with
respect to the ordering “<” (not with respect to the standard instantiation
ordering). Consequently, downwards closure of the abstract domain preserves
linearity. As a result, linearity can be captured straightforwardly by annotating
variables in an adequate way, i.e., by distinguishing between linear and non-
linear abstract terms. Unification is extended accordingly (see [5]). Freeness can
also be added in a similar way.

Incorporating term structure to sets substitutions can also be done in a natu-
ral way. Abstract substitutions can be obtained by considering terms constructed
very much like in the concrete case, but using (annotated) set expressions instead
of variables. In order to guarantee finiteness of the domain, and termination of
the analysis, the classical depth-k bound on terms can be imposed. Similar ex-
tensions to sharing analysis with structural information have been proposed in



[19], based on the formalism of abstract equation systems, and in the Pat(R) do-
main [6]. Arguably, we expect that the extension sketched here offers advantages
of easy design and formal justification.

8 Conclusion

We have described an alternative and isomorphic representation of an abstract
domain for sharing analysis. The new domain based on set logic programs leads
to intuitive definitions for the abstract operations needed to provide for sharing
analyses. This in itself is an advantage over the existing definitions which are
hard to motivate and justify. The definitions given in this paper have been ex-
tended also for linearity information. It is straightforward to also extend them
for term structure information. Top-down and bottom-up analyses based on
these domains have been fully implemented. The current prototypes are not as
efficient as carefully handcrafted interpreter-based analyzers for goal-dependent
analysis, but are comparable for goal-independent analysis. Current efforts are
being devoted to more efficient unification algorithms.
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