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Abstract

This paper describes an algebraic approach to the sharing analysis of logic pro-
grams based on an abstract domain of set logic programs. Set logic programs are
logic programs in which the terms are sets of variables and unification is based on an
associative, commutative, and idempotent equality theory. All of the basic opera-
tions required for sharing analyses, as well as their formal justification, are based on
simple algebraic properties of set substitutions and set-based atoms. An ordering on
set-based syntactic objects, similar to “less general” on concrete syntactic objects,
is shown to reflect the notion of “less sharing” information. The (abstract) unifi-
cation of a pair of set-based terms corresponds to finding their most general ACI1
unifier with respect to this ordering. The unification of a set of equations between
set-based terms is defined exactly as in the concrete case, by solving the equations
one by one and repeatedly applying their solutions to the remaining equations. We
demonstrate that all of the operations in a sharing analysis have natural definitions
which are both correct and optimal.

1 Introduction

Two or more variables in a logic program are said to be aliased if in some
execution of the program they are bound to terms which contain a common
variable. A variable in a logic program is said to be ground if it is bound to a

Preprint submitted to Elsevier Preprint 10 November 1998



ground term in every execution of the program. A variable is said to be linear
if it is bound to a linear term in every execution of the program. Aliasing,
groundness and linearity information, often called sharing information in the
logic programming community, provide the basis for a wide range of program
optimizations and other useful applications. Such information can be used
to identify circumstances in which the occur check may be safely dispensed
with [33,35] or to determine run-time goal independence which can be used to
eliminate costly run-time checks in and-parallel execution of logic programs
[32,25,24]. In the context of concurrent logic programming languages, sharing
information can be used to identify single-writer properties (e.g., structures
which are constructed by a single process). Though most of these applications
focus on aliasing and groundness information, the availability of linearity in-
formation is also useful for improving the precision of sharing analyses.

This paper presents a novel algebraic approach for the sharing analysis of
logic programs using set logic programs. The terms in a set logic program are
sets of variables. Atoms contain sets of variables instead of terms. Standard
unification is replaced by a suitable unification for sets based on the well
studied notion of ACI1-unification [2,29]. Namely, unification in the presence
of an associative, commutative, and idempotent equality theory with a unit
element (the empty set). Sharing analyses are semantic based and formalized
in terms of an abstract domain consisting of set-based atoms and substitutions.
The variables in such atoms specify information about possible aliasing and
definite groundness and linearity in the corresponding argument positions of
concrete atoms. Substitutions are set substitutions, which are mappings from
variables to sets of variables.

All of the basic operations required for sharing analyses, as well as their formal
justification, are based on simple algebraic properties of set substitutions and
set-based atoms. The composition of set substitutions, application of a set
substitution to an atom, and the projection of a set substitution to a set of
relevant variables, all maintain their standard definitions (just as for standard
substitutions). An ordering on set-based syntactic objects (similar to “less
general” on concrete syntactic objects) reflects the notion of “less sharing”.
As a consequence, sharing is downwards closed with respect to this ordering.
The unification of a pair of set-based terms corresponds to finding their most
general ACI1 unifier with respect to this ordering. The unification of a set of
equations between set-based terms is defined exactly as in the concrete case,
by solving the equations one by one and repeatedly applying their solutions
to the remaining equations. We demonstrate that all of the operations in a
sharing analysis have natural definitions which are both correct and optimal.

Our approach has several additional advantages over previous proposals for
sharing analysis of logic programs: (1) The abstract substitutions in our do-
main are like substitutions and can hence be applied to other syntactic objects.



This facilitates the implementation, supporting an approach which combines
program abstraction (replacing terms by sets of variables) with concrete eval-
uation (enhanced by ACI1-unification). This approach is derived from ideas
presented in [23,14,22] and often termed abstract compilation. It has been ap-
plied in a variety of applications [20,21,9,11]. To our knowledge, no previous
work has provided an abstract compilation scheme for sharing information. (2)
Most of the recent work on sharing analyses for logic programs attempts to
justify the correctness of the proposed abstract operations (e.g., unification)
by mimicking the behavior of a suitable corresponding concrete algorithm (for
example as in [7,8]). In contrast, in this paper we focus on algebraic properties
(e.g., of a most general unifier). For example, we first characterize the alge-
braic properties of an abstract most general unifier in the context of a sharing
analysis, and then provide an abstract unification algorithm and prove that it
computes an object satisfying the required properties.

One of the more widely applied sharing analyses reported in the literature is
the so called set-sharing analysis due to Jacobs and Langen [25], first imple-
mented by Muthukumar and Hermenegildo [32]. This analysis plays a central
role in the And-Parallel Prolog compiler described in [24]. The analysis of
Jacobs and Langen as well as many of its extensions are developed within
the framework of abstract interpretation [16] which provides the basis for a
semantic approach to dataflow analysis. In this paper, we show that the do-
main of set substitutions is isomorphic to the set-sharing domain of Jacobs
and Langen and argue that set logic programs provide a natural and intuitive
means for describing correct and optimal set-sharing analyses. A contribution
of our presentation is thus an optimal sharing analysis for the domain of Jacobs
and Langen obtained through the domain isomorphism. To our knowledge, no
previous work has provided optimality results for sharing analysis.

The rest of this paper is structured as follows: Section 2 introduces prelimi-
nary definitions and presents some properties of (standard) substitutions and
atoms which provide the foundation for the proposed sharing analysis. Sec-
tion 3 presents the syntax of set logic programs with which we construct the
domains of abstract atoms and abstract substitutions for sharing analysis.
The abstract domains are detailed in Section 4 and their operations are de-
scribed in Section 5. For convenience in presentation, these sections focus on
groundness and aliasing information only, which is denoted, in a broad sense,
set-sharing. Section 6 proves that the domains based on set logic programs
are isomorphic to the well known set-sharing domain of Jacobs and Langen.
Section 7 provides an example of bottom-up sharing analysis constructed on
the basis of our abstract domain and the well-known s-semantics. Section 8
illustrates the extension of the domains with linearity information. Finally,
Section 9 concludes. This paper is an extended version of [12].



2 Preliminaries

This section introduces some preliminary definitions and fixes the notation
which will be used throughout. In addition, we introduce several properties
of substitutions and atoms which provide the background and basic intuition
for the set-sharing analyses developed in this paper. Of particular interest
are the non-standard orderings on syntactic objects for which set-sharing and
linearity information are downwards closed properties.

In the following we assume a familiarity with the standard definitions and
notation for logic programs as described in [30,1]. For a set of function symbols
¥ and variables V, we let T'(X,)) denote the set of terms constructed using
symbols from ¥ and variables from V. The set of atoms constructed using
predicate symbols from IT and terms from 7'(3,V) is denoted by By. The set
of variables occurring in a syntactic object s is denoted vars(s). We say that
a term ¢ is ground, denoted ground(t), if vars(t) = (). The term ¢ is linear,
denoted linear(t), if all variables in ¢ have single occurrences.

A substitution 0 is a mapping from V to T(3,V) which acts as the iden-
tity function except for a finite set of variables, i.e. its domain dom(f) =

{xEV

{ xf
usual and denoted @ o . A substitution ¢ is idempotent if 1 o) = ¢ (or
equivalently if dom (1)) N range(y) = 0). The set of idempotent substitutions
is denoted Sub. The empty (identity) substitution is denoted €. The projection
of a substitution # on a set of variables D, denoted by 6, is defined as usual.

A substitution extends to apply to any syntactic object in the usual way.

20 # x } is finite. The range of a substitution is defined as range(f) =

x € dom(0) } The composition of substitutions € and v is defined as

The standard “less general” ordering on terms is denoted ¢; < t5. Recall that a
term ¢, is less general than ¢, if there exists a substitution # such that ¢t; = 56.
Similarly, #; < 6, denotes that a substitution 6; is less general than #; which
is the case if there exists a substitution # such that #; = 65 o 6.

A set S is downward-closed with respect to a given order relation C if s € §
and s' C s implies s’ € S.

A unifier of two terms ¢; and ¢, is a substitution € such that £,0 = t,0. A
unifier 6 is said to be a most general unifier (mgu) of ¢; and ¢, if ¢ < @ for any
other unifier ¥ of t; and 5. This definition extends for other syntactic objects
such as atoms.

We typically consider syntactic objects “modulo the naming of variables”.
The elements of p(By), i.e., sets of atoms, modulo variable renaming, are



called interpretations. Given an equivalence class (induced by renaming) of
syntactic objects and a finite set of variables V, it is always possible to find a
representative of the class which contains no variables from V. Let I be a set
of (equivalence classes of) syntactic objects and let s be a syntactic object.
Then, A < I denotes that A is a renaming (representative) of an element
of I which does not share variables with s. Furthermore, we extend this to
specify tuples of renamed apart syntactic objects:

(Ag,... Ay <, I & A (A; < I) A Q (vars(A4;) Nwars(A;) = 0)
i#j

i=1

Abstract Interpretation: We assume the standard framework of abstract
interpretation [16] in which a program analysis is viewed as a non-standard,
abstract semantics defined over a domain of data descriptions. An abstract se-
mantics is constructed by replacing operations in a suitable concrete semantics
with corresponding abstract operations defined on data descriptions. Program
analyses are defined by providing finitely computable abstract interpretations
which preserve interesting aspects of program behavior. Formal justification
of program analyses is reduced to proving conditions on the relation between
data and data descriptions and on the elementary operations defined on the
data descriptions. Abstract interpretations are formalized in terms of Galois
insertions. A Galois insertion is a quadruple (A, «, B,7) where:

(1) (A,C4) and (B,Cp) are complete lattices of concrete and abstract do-
mains respectively;

(2) «: A — B and v: B — A are monotonic functions called abstraction
and concretization functions respectively; and

(3) a Ca v(a(a)) and a(y(b)) = b for every a € A and b € B.

Domain Isomorphism: We say that two abstract domains B; and B, of
a concrete domain A are isomorphic if they describe the same properties of
the concrete domain and are equally precise [17]. From the formal point of
view the corresponding Galois insertions (A, oy, By, 71) and (A, ag, Bs, 79) are
isomorphic if

(1) there exists a set isomorphism between the underlying posets B; and By
provided by a bijective function f : B; — B, and its inverse f ! : By
By;

(2) there is an order isomorphism (also called order-embedding) between B
and B, i.e., for any pair of elements by,0, € Bi, by Cp, b implies
f(by) Cp, f(b)), or equivalently for any pair of elements be, b, € Bs,
by Cp, b implies £~ (b2) Cp, f~(b));

(3) the closure operators y; o a; and 7, o ap are equivalent.



Set-Sharing: We say that a set of variables S occurs in a substitution 6
through the variable v, if S is (exactly) the set of variables in the domain
of 6 which are mapped to terms containing v. If S occurs in 6 through some
variable v then we say that S is a set of variables which share under 6. The
sharing of sets of variables is usually (informally) understood with respect to
a finite domain of variables of interest D C ). We shall assume, without loss
of generality, that the domain of interest is the domain of the substitution
being considered. As in [25], we provide the following definition for the notion
of occurrence:

occs : Sub x YV — p(V)

occs(6,v) = { z € Dy € vars(zh) } (1)

The set-sharing of a substitution 6, denoted .A(f), is the set of sets of variables
which share under 6:

A Sub — p(p(V))

2
A(f) = { oces(6,v) @

UEV}-

Observe that a variable x € D does not occur in any of the sets in A(6) if and
only if # maps x to a ground term.

Similar to the notion of set-sharing for substitutions we consider also the
sharing of variables between the argument positions of an atom. We say that
a set of (integer) argument positions N occurs in an atom p through the
variable v, if N is (exactly) the set of argument positions of p which contain
the variable v. If N occurs in p through some v then we say that NV is a set
of arguments which share in p. The following definitions are straightforward
extensions of Equations (1) and (2):

occs' : By x V — p(N)
oces' (p(ti, ... tn),v) = { 1<i<n

(3)

v € vars(t;) } .

The set-sharing for an atom a, denoted A'(a), is the set of sets of argument
positions which share in p:

A" By = p(p(N))

A'(a) = { occs'(a,v) (4)

UEV}-



In fact, set-sharing for substitutions and for atoms represent the same kind

of information considering that an atom a(ty,...,%,) can be represented as a
pair a(xy,...,z,),{z1 — t1,...,2, — t,} where z1,...,x, are fresh distinct
variables not occurring in ty,...,%,.

Linearity: Traditionally, information about aliasing of variables is augmented
by linearity. The linear argument positions in an atom a or a substitution 6
are denoted linearity(a) and linearity(#) respectively and defined by:

linearity(p(ti, ..., t,)) = { 1<i<n

linear(t;) }

linearity(f) = { x € dom(0) rlmear(xe) }

Orderings for Sharing Analysis: Two special types of substitutions are
of particular interest for our presentation.

(1) We say that a substitution v is an independent-range substitution (ir-
substitution for short) if

Vr,y € dom(¥). (x #y) = (vars(zv) Nwars(y) =0).  (6)

(2) We say that v is a linear substitution if ¢ is an independent-range sub-
stitution which maps variables to linear terms.

Independent-range and linear substitutions are of interest as they do not in-
troduce additional set-sharing and non-linearity to the syntactic objects to
which they are applied. To formalize this we introduce two partial orders on
atoms (and other syntactic objects):

(1) We say that a; <; as (a; precedes ay in the ir-ordering) if there exists
an ir-substitution ¢ on the variables of as such that a; = ao1. Similarly,
01 <;r 0>, assuming without loss of generality the domain of interest
D = dom(f) = dom(fy)", if there exists an ir-substitution ¢ on the
range of 6, such that 6; = (6, 0 ¥)[p.

(2) Wesay that a; <j, as (a; precedes ay in the lin-ordering) if there exists a
linear substitution ) on the variables of as such that a; = a»®. Similarly,
01 <yn 02 assuming without loss of generality the domain of interest
D = dom(6,) = dom(fy), if there exists a linear substitution ) on the
range of 6, such that 6; = (6, o ¥)[p.

1 We always may extend #; and/or 0 with “renaming mappings” of the form
V — V' in such a way that this assumption holds.



The relation between these two orderings and sharing properties is clarified
by the following lemma:

Lemma 2.1 For substitutions 0, 0', such that dom(0) = dom(0') = D and
atoms a, a':

(1) 6<,, 0= A(f) C A(¥)

(2) a<yad = Aa) CAd)

(3) 0 <yn 0" = linearity(0) 2 linearity(6')
(4) a <y, ' = linearity(a) 2 linearity(a’)

PROOF. We prove (1) and (3). The proofs of (2) and (4) are similar.

If # <;. 0 then there exists an ir-substitution ¢ on the range of € such
that 8 = (6’ o ¢)[,. Consider a member of A(#' o ¢). It is of the form:

oces(f o Y, v) = { T € D‘U € vars(z0'y) } for some variable v. Since 1

is an ir-substitution and vars(range(')) = dom(%), there is exactly one
variable v' € wvars(range(6')) mapped by % to a term containing v. Thus,
the set of variables occurring in 6ty through v occur in €' through ¢/, i.e.,
oces(0' o1, v) = oces(@',v"). Therefore, occs(6' o), v) € A(F'), or equivalently
A(0) C A(#).

If 0 <pn 0 then there exists a linear substitution i on the range of 6’ such
that 6 = (0'ov)],. For a variable z € D, the substitution ¢ maps all variables
in 6 to linear terms which have no variables in common (since ¥ is also an
ir-substitution). Thus, linearity of ' implies linearity of z6'tp. O

Corollary 2.2 The properties of linearity and (the complement of ) set-sharing
are downwards closed with respect to <y, and <, respectively.

Note that the orderings <;. and <j;,, capture the notions of “less aliasing” and
“more linearity”, respectively. Observe also that A(f) C A(#') implies that 0
grounds more variables than #'. Thus, “less sharing” means also (possibly)
“more groundness”.

Example 1 Consider the following substitutions:

601 {Ar—)P,B»—)Q,CHt(R,R)}
0 = {Ar—)f(X,Y), B g(Y, 2), Cr—>t(W,V)}

03

A~ f(F,a), B+ g(a,Q), CHt(H,H)}

0= A f(a,I), B+ g(J,J), Cr—)t(b,b)}



Assume the domain of variables of interest D = {A, B,C}. The substitutions 01, 03
and 04 are independent-range but non-linear due to non-linear terms t(R, R) and
t(H,H) and g(J,J) in their ranges. The substitution 62 is not independent-range
since it introduces sharing between A and B through Y. As a result it is also non-
linear even though all terms in its range are linear.

Now consider the standard ordering between these substitutions:
o 03 < 01 provided by 05 = (61 0 13)[p, where

P13 = {P — f(F,a), Q@+ g(a,G), R— H}
o 04 < 0 provided by 04 = (61 0 Y14)[, where

P14 = {P = fla,I), Q+— g(J,J), R+ b}
o 03 < 0y provided by 03 = (02 0 2,3)[, where

¢2—>3={X»—>F, Y—a, Z—G, W H, Vr—>H}

The substitution 1,3 is linear; W14 s independent-range; and Py_,3 is not an
independent-range substitution due to the aliasing of W and V provided by variable
H. Thus, in addition to the standard ordering we can say that 03 <;, 61 and
04 <ir 01. Of course, 03 <y 01 implies also 03 <; 01.

Unification with Linear Terms: The following property of most general
unifiers when linear terms are involved is useful when designing an abstract
unification algorithm in the presence of linearity information.

Let ¢; and t5 be terms. We say that a variable z in the equation t¢; = %5 is
co-linear if vars(t;) Nvars(tz) = () and either x € vars(tz) and linear(t;) or
x € vars(t;) and linear(ts).

Lemma 2.3 Let t and t' be terms. Then, the projection of mgu(t,t') on the
co-linear variables of the equation t = t' is a linear substitution.

PROOF. Let t = (t1,...,t,) and ¢ = (t},...,t) be tuples of terms such
that ¢ is linear and vars(t) Nwvars(t’) = . We show that the projection of
6 = mgu(t, ') on vars(t') is a linear substitution. Define the depth factor of a
tuple (t1,...,t,) to be a pair (d,n) where d is the maximal depth of a term in
(t1,...,t,). The proof is by induction on the depth factor of (¢1,...,t,) (the
linear tuple).



For the base case, the depth factor is (0,1) which means that the unification
is of the form mgu(X,t') or of the form mgu(a,t') (i.e. the left argument
is either a variable or a constant). In both cases the projection of the most
general unifier on vars(t') is trivially a linear substitution.

Assume now that the lemma holds for all tuples of linear terms with a depth
factor less than (d,n) (in the standard enumeration for pairs). Consider a
unification of the form 6 = mgu({t1,...,%,),(t},...,t,)) such that the depth
factor of (t1,...,t,) is (d,n). Observe that 6 = ¢ o ¢ where ¢ = mgu(ty,t})
and ¢ = mgu({te, ..., tn), (th, ...t )1). Note that ¢ does not affect the vari-
ables in (ts,...,t,) which does not share any variables with ¢; nor #|. Both
unification problems have left arguments which are linear and have depth fac-
tors which are smaller than (d,n). Hence by the induction hypothesis 1 and
¢ have linear projections on vars(t}) and vars({tj,...,t,)). This implies that
their composition # has a linear projection on vars({t,...,t,)). O

The following example demonstrates that Lemma 2.3 does not hold if we relax
the requirement that vars(t;) Nwvars(ty) = 0.

Example 2 Consider the unification of the linear term t, = f(A, B) with ty =
flg(X, X), A) which involves a common variable A. The most general unifier of t1

and ty is 0 = { A g(W W), B g(W,W), X =W } Observe that the projec-

tion of @ on vars(ta) is not linear.

Note that if both #; and ¢, are linear then Lemma 2.3 implies that mgu(t1, t2)
is a linear substitution.

3 Set Logic Programs

The sharing analyses described in this paper are constructed using a first order
language, similar to that of logic programs, which we call set logic programs.
Intuitively, set logic programs are logic programs in which the terms are sets
of variables. This section introduces the syntactic constructs for set logic pro-
grams. Namely, the set-based notions of terms, atoms and substitutions. As
these form the basis for an abstract domain they are referred to as abstract
terms, abstract atoms and abstract substitutions. The definitions and func-
tionality of these entities resemble closely those of the corresponding concrete
syntactic elements.

10



Abstract Terms and Atoms

Syntactically, we assume a set of variables V and an underlying alphabet
Y% = {®, 0} consisting of a single binary function symbol & which “glues”
elements together and a single constant symbol () to represent the empty set.
Abstract terms, or set expressions, are elements of the term algebra T(X®) V)
modulo an equality theory consisting of the following axioms:

(z®y)®z=2& (y® 2) (associativity)
TQY=ydz (commutativity)
rTPr =1 (idempotence)
r@b==z (unit element)

This equality theory is sometimes referred to as ACI1 and the corresponding
equivalence relation on terms denoted =4¢r;. This notion of equivalence sug-
gests that abstract terms can be viewed as flat sets of variables. For example,
the terms 71 ®xo D w3, T1 DT Dx3 D0, and 1 Dwo D3P x5 can each be viewed
as representing the set {x, zo, 3} of three variables. In the following we do
not distinguish between set expressions and sets of variables, often referring to
the set of variables in a term as a set expression. Abstract atoms are entities
of the form p(7y,...,7,) where p/n € Il and 74, ..., 7, are abstract terms.

Abstract Substitutions

Abstract substitutions, or set substitutions, are substitutions which map vari-
ables of V to abstract terms from 7'(3%,V). We denote the set of idempotent
abstract substitutions by Sub®. The application of an abstract substitution p
to an abstract term 7 is defined as usual by replacing occurrences of each vari-
able x in 7 by the abstract term x . The standard operations on abstract sub-
stitutions such as projection and composition are also defined just as for usual
substitutions. Abstract independent-range substitutions and a corresponding
partial order on abstract terms, atoms and substitutions are defined as in the
concrete case. Namely, an abstract substitution is said to be independent-
range if it satisfies the condition of Equation (6). For abstract atoms m; and
Ty, we say that m; <;. my if there exists an abstract independent-range sub-
stitution ¢ on the variables of my such that m; = me1p. Similarly, for abstract
substitutions p; and ps such that D = dom(ui) = dom(ua), p1 =i po, if
there exists an independent-range substitution ¢/ on the range of s such that

p1 = (p2 0 ).

These preorders induce corresponding equivalence relations on abstract atoms
and substitutions and partial orders on the equivalence classes. We say that

11



the abstract atoms (or substitutions) m; and 7y are ir-equivalent, denoted by
T R T if T Xy Mo and mo = -

Note that similar to the case of concrete syntactic objects, abstract substi-
tutions considered together with predicate names are equivalent to abstract
atoms. In Section 6 we use this property for establishing an isomorphism be-
tween our domain for sharing analysis (based on atoms) and the domain of
Jacobs and Langen (based on substitutions).

The set of abstract atoms modulo ir-equivalence is denoted [By]x,,. We often
write by abuse of notation By instead of [B} ], and denote the equivalence
class [7]x,, by m. We also denote the equivalence of abstract atoms m =%, Ty
by equality m; = 7o because the corresponding equivalence classes [m]n, and
[T2]n,;, are identical in this case.

Intuitively, the orders =<;. on abstract atoms and substitutions reflect a no-
tion of “less sharing” similar to the corresponding orders on concrete objects
described in Section 2. In fact, it is straightforward to apply the definitions
of set-sharing and the results of Lemma 2.1 from Section 2 also to abstract
atoms and substitutions.

Observation 1 The statements of Lemma 2.1 apply also to abstract atoms
and substitutions.

When constructing the abstract domains a stronger result will be obtained:
m =<4 Ty implies that the concrete objects described by 7 contain less sharing
than the concrete objects described by m. However, this is better delayed until
the appropriate definitions have been introduced.

Example 3 Consider the following abstract atoms:

1 :p({A,B},{B,C},{A,B,D}), T2 :p({X},{X,Y},{X, Z})a
m3 =p({U},{V},{U,W}) my = p({F},0,{F})

The first and the third arguments of w1 share through A, while all three arguments
share through B. The second and third arguments of w1 contain independent vari-
ables (C and D respectively) which are not shared with other arguments. In
all three arguments share through X, and in w3 the first and the third arguments
share. In w4 also the first and the third arguments share, however in contrast to
73 the third argument contains no independent variables and the second argument
is ground. Thus, w1 contains more set-sharing than each of my, w3 and my4. In our
domain this is captured as mo =i 1, T3 Sir W1 and w4 =4 7. This is because

12



T = M1, w3 = W1 and w4 = w3 where:

P1=3A—0, B~ X, C—Y, D»—>Z},
Yo=9 AU, B—=0, C—V, Dn—>W},

3= A— F, B—0, C— 0, D»—)(Z)}

Note also that w4 =4 w3 with T4 = w31py where Yy = { U—F V=0 We0 } .

The following observation considers the case when m; <, 7o and m %, mo. It
follows that there exists a ground (abstract) substitution 1 such that m; = ma1.

Observation 2 For abstract atoms w1 and wo such that w1 % m and T <4
Ty there exists a variable z in vars(my) such that my < w4 z +— @ ¢. This is

because the variables are meant to represent possible aliasing of the atom ar-
guments. If my and my belong to different ir-equivalence classes, and m =<, o,
then my represents more sharing than m,. Therefore, my has at least one vari-
able more than m . By grounding this variable mo may still represent more
sharing, or the same sharing than m . A similar result holds for abstract
substitutions and implies that if uy % pe and py =i e then there exists

a variable z in range(us) such that py <4 (p2o{ 2z 0 ) I, assuming

dom(p1) = dom(ug) = D.

Example 4 Figure 1 depicts the lattice of abstract atoms constructed using a pred-
icate symbol p/2 € 11, ordered by the <y relation. Note that p({A, B},{A,C}) is the
most general atom (with respect to this ordering) in the lattice, and not p({B},{C?}).
This fact reflects the main difference between <;.-ordering and the standard ordering
of syntactic objects. In the <;--ordering an atom containing all possible set-sharing
1s the most general among all comparable atoms. Note that for each pair of abstract
atoms connected by an edge, the lower atom can be obtained by applying a ground
substitution (which binds a single variable to 0) to the upper atom.

It is important for the sharing analysis and interesting on its own right that
the equivalence of abstract atoms partitions B} into a finite number of equiv-
alence classes (assuming of course a finite set IT). This result guarantees finite
approximations and terminating analyses in our domain as we will see in the
following.

Theorem 3.1 [Bf],, is finite.

PROOF. It suffices to prove that for any predicate symbol p/n the number
of associated equivalence classes of abstract atoms [p(y,...,7,)]x,, is finite.

13



p({4,B},{4,C})

p({4},{4,CHp({B},{C})p({4, B}, {A})

r(0,{C}) p({4}.{4}) p({B},0)

p(0,0)

Fig. 1. Abstract atoms constructed using p/2 € II ordered by <.

We prove the claim by demonstrating that each equivalence class of the form
[p(71, ..., 7n)]a,, has a representative containing at most 2" — 1 variables. As-
sume an atom 7 has more than 2" — 1 distinct variables. Then there are at
least two variables z and y occurring in exactly the same set of argument
positions of . Consider the atom 7' = 7 - {z — (), y — 2z} where z is a fresh
variable. By construction we have 7’ <;, 7 and it is easy to see that 7 <;,. 7’
with 7 = 7'-{z — x®y}. Thus, 7 and 7’ are in the same equivalence class and
lvars(n")| = |vars(n)| — 1. It follows that for any atom having two or more
variables in the same set of argument positions we can find an equivalent atom
with a smaller set of variables. So, for any atom constructed using p/n there
exists an equivalent atom with all variables occurring in distinct subsets of
argument positions, i.e., an atom with at most 2" — 1 variables. O

Theorem 3.1 demonstrates that for any equivalence class of abstract atoms
there exists a “minimal” representative with a bound number of abstract vari-
ables. This representative is canonical up to renaming of abstract variables.
In the following we assume that such a canonical representative of the corre-
sponding equivalence class is considered.

Example 5 Note that p(X @Y ®Xs, Vs, X@YDZ) =i p(X'®Xs, Vs, X'®Z)
where the equivalence is provided by the pair of independent-range substitutions:
Yz, = {X' = X@Y} and ¢, ={Y = 0, X — X'}. Note that the first and
third arguments share through X and Y, as well as through X' alone. This is redun-
dant, since the variables are meant to represent possible aliasing of the arguments,
regardless of the number of variables shared (and of the particular variables shared).
Therefore, the atom p(X'® Xs, Ys, X' ® Z) (modulo renaming) will be considered
the minimal canonical representative of its class. Intuitively, this is so because the
set-sharing represented by all atoms in such a class is already present in the above
atom, and it has the minimal number of variables.

The reader familiar with the Sharing domain of [25] will observe that the
equivalence relation on abstract atoms reflects the same notion as that con-
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veyed by the sharing sets of Jacobs and Langen. This is no coincidence and is
elaborated on in Section 6. Note also that from the implementation perspec-
tive, abstract atoms should be maintained using minimal representatives of
their corresponding equivalence classes.

4 An Abstract Domain for Sharing Analysis

We propose set logic programs as a formal basis for studying sharing properties
of logic programs. The sets of variables in the arguments of an abstract atom
represent possible set-sharing between corresponding concrete arguments.

Abstraction of Terms, Atoms and Substitutions

The formal relation between concrete and abstract atoms is given in terms
of an abstraction function on atoms which replaces the concrete terms in an
atom by the set of variables it contains.

o:T(S,V) = T(29,V)
1] if vars(t) =0 (7)

1D B, ifvaTS(t)Z{xb---axn}an>0

The abstraction of atoms is obtained by considering the term abstraction
separately for each argument of the atom:

o: By = BY

o(p(ty, .- tn)) = plo(tr),. .., o(tn))

(8)

Example 6 Consider the concrete atom p([X,Y|Xs], f(Ys),9(X,Y, Z)). Its ab-
straction 1is:

o(p([X,Y|Xs], f(Ys),9(X,Y,Z)) = p(X @Y ® Xs, Ys, X0 @ 2).
Observe that p(X @Y & Xs, Ys, X®Y ® Z) =~y p(X' @ Xs, Ys, X' ® Z) as
explained in Example 5.

We say that an abstract atom 7 describes a concrete atom a, denoted 7  «,
if o(a) <4 w. Observe that m o« a implies that 7 contains more set-sharing
than a.

Lemma 4.1 Let m and a be abstract and concrete atoms such that 7 x a.
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Then, m contains more set-sharing than a.

PROOF. First note that by Observation 1 the results of Lemma 2.1 apply
also to abstract atoms. If 7 o< a then by definition o(a) <; 7 which implies
that A'(o(a)) € A'(r). However, note that A'(o(a)) = A’(a) which implies
the claim. 0O

A substitution is abstracted by abstracting the terms in its range?:

o Sub— Sub®

9
o(f) = { x +— o(z6) ®)

z € dom(0) } :

We say that an abstract substitution g describes a concrete substitution 6,
denoted p o 0, if o(0) < p.

The following lemma establishes the relation between the abstraction of atoms
and substitutions.

Lemma 4.2 For any atom b and substitution 0: o(b0) = o(b) - o(6).

PROOF. Assume that b is of the form p(t¢4,...,t,). For each argument ¢
we have vars(t;,0) = vars(o(t;0)) = vars(o(t;) - 0(6)) since the abstractions
defined in Equations (7) and (9) preserve the original variables of ¢t and 6. Thus,
o(t;0) = o(t;) - o(0) for each t;, which implies the statement for atoms. O

The Lattice of Abstract Atoms

The domain [B{]s,, of abstract atoms forms a lattice w.r.t. the (induced) =;,
ordering. The least upper bound of abstract atoms 7; and 75 (with respect to
=ir) is denoted 71 LIy and can also be characterized by the following theorem.

Theorem 4.3 (least upper bound of abstract atoms)

Let my = p(11,...,T,) and my = p(7{, ..., 7)) be (representatives of equivalence

classes of ) abstract atoms which are renamed apart. Then,
mUm=p(n®1,...,Tn®T)).

2 To simplify notation, we denote by o the abstraction functions for terms, atoms,
and substitutions. The intended use will always be clear from the context.
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PROOF. Let t =p(n & 74,...,7T, ® 7},). Observe that 7 is indeed an upper
bound of m; and my. To demonstrate this we construct an ir-substitution ¢
which maps all variables of m; to (). Clearly, m) = m, and thus m =<, .
Similarly m <;, 7.

Now, let us prove that 7 is a least upper bound of m; and m,. Consider an
upper bound 7’ of m; and my such that 7' <;, m. By contradiction, if 7’ # m,
then by Observation 2 there exists at least one variable z in 7 such that

w < T { 20 } By construction of 7 there exists at least one variable 2’

which occurs in m; or 7 in the same argument positions as z occurs in 7. At
the same time 7' does not contain a variable occurring in the same argument
positions as z occurs in 7. Thus, either m; A; 7' or m ZA; @' which means
that 7’ is not an upper bound of m; and m. The contradiction implies that
is a least upper bound of 7; and m. O

The notion of least upper bound extends to sets of abstract atoms with the
same predicate symbol in the natural way and to arbitrary sets by combining
all of the atoms with the same predicate symbol. Let Z C B}, then

I_II:{ Ll{p(Tl,...,Tn)EI}‘p/nEH}. (10)

Abstract Interpretations

An abstract domain for sharing analysis is obtained by considering sets of
abstract atoms modulo a suitable notion of equivalence. We view sets of ab-
stract atoms as being downwards-closed with respect to <;: if a € Z C By
and @’ <; a then @’ € Z. To do this we impose the following ordering on sets
of abstract atoms:

Il j IQ <:>V7Tl € |—|II 371'2 € |_|IQ Im jir 9. (11)

This ordering can be lifted up to the quotient of the corresponding equivalence
relation:

Lir1I, & (Il < IQ) N (ZQ < Il) (12)

The domain of abstract interpretations is thus the lower powerdomain, or
Hoare powerdomain, of (closed sets of elements of) [BY], with the < or-
dering. This domain is the quotient [p([BS]x,, )]~ of the equivalence relation
of Equation 12, which is denoted in the following by an abuse of notation
as p(BY). It is worth noting that for any set Z of abstract atoms, LIZ is an
abstract interpretation with minimal cardinality among those equivalent to Z
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(w.r.t. &), containing at most one abstract atom for each predicate symbol in
II. These are the canonical representatives of the corresponding equivalence
classes.

Lemma 4.4 (p(BY), <) is a complete lattice.

PROOVF. If Lisaset of downwards-closed sets then NL and UL are downwards-
closed, therefore lub(L) ~ UL and glb(L) ~ NL. O

The relation between concrete and abstract interpretations is formalized as
usual in terms of a pair of abstraction and concretization functions lifted from
the abstraction function ¢ on atoms in the standard way:

a: p(By) = p(By) 7: 9(BY) = p(By) 13)
o) ={o@lacr} 1D =u{1|aw=1}

Theorem 4.5 (p(By),®, p(BY),7) is a Galois insertion.

PROOF. It follows immediately from the definitions that « and ~ are mono-
tonic. Moreover:

VI € p(By) : y(a(D) =U{ I
since I € { I

VI € p(BF) : a((@) = o (U] 1

%
(-
—N
o
=
2 o

=
IA
N

——
%
N
|

5 Abstract Operations for Sharing Analysis

When constructing a semantic based program analysis for logic programs sev-
eral main operations must be defined: abstract unification, abstract compo-
sition, application of abstract substitutions (or projection) and least upper
bound. The concrete atoms and substitutions encountered during a computa-
tion are described by corresponding abstract atoms and substitutions. Given
descriptions of concrete syntactic objects the abstract operations describe the
possible results of all corresponding concrete operations.

In our case all of these operations, except for unification, have already been
defined and it is straightforward to prove that they are correct and optimal
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in the context of sharing analysis. These proofs can be found in Appendix
A. This section focuses on the definition of abstract unification for sharing
analyses.

We distinguish between the unification of abstract terms and that of ab-
stract atoms. For abstract terms we rely on the well-studied notion of ACI1-
unification [2]. Intuitively, ACI1-unification provides the basis for the unifi-
cation of sets of objects. This allows us to formalize in a concise manner the
intuition that, upon unification, any variable in one term might match any
subset of the variables in the other term.

Recall that an ACI1 unifier of two terms 7; and 7 is a substitution px such
that 74 =acr1 Top- In the general case, ACI1-unification is finitary. Namely,
the unification of 7; and 75 admits a finite number of “most general” unifiers
(in contrast to standard unification which is “unitary”, i.e., admits at most
one most general unifier). In the general case the decision problem for ACI1-
unification —whether two terms 71 and 75 are unifiable — is NP-complete.
This can be shown by reducing the ACI-matching problem (which is shown
to be NP-complete in [26]) to ACI1-unification as shown in [27].

In our domain we consider a restricted alphabet for ACIl-expressions and
consequently, ACI1-unification is far simpler. In our domain there is only one
binary function symbol and only one constant. As a consequence, two abstract
terms are always unifiable and the underlying decision problem is trivial. In-
deed, for any two abstract terms 7; and 75 the substitution binding the vari-
ables of both terms to () is always a unifier. It turns out that in our case any
two abstract terms always have exactly one most general unifier.

There is another important difference between general ACI1-unification and
the abstract unification of terms in our domain: we are not interested in the
most general ACI1 unifier with respect to the standard instantiation ordering
but rather in the most general ACI1 unifier with respect to <;.. We denote by
ir-mguacr (71, 72) the most general ACI1 unifier of 77 and 7 with respect to
this ordering. Note that ir-mguacr (71, T2) is not necessarily an independent-
range substitution. It only has to be the most general with respect to <.
Moreover, usually this unifier is not an independent-range substitution since
it unifies the terms, thus, binding more than one original variable to the same
set, of variables.

Example 7 Consider the ACI1-unification of A® B and X.

A Z1® Zy, B Zy @ Z3,
X =718 Zy® Zs

ir-mguacri(A® B, X) =
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Note that this unifier is more general than the unifier

/A:{AHYh B|—>Y2, Xl—)Y1EBY2}

since there is an independent-range substitution

1/):{21'—”/1, Zo 0, Z3+—>Y2}

such that p = (ir-mguacni(A® B, X) o ¢)|, . Note that the abstract substitu-

om(i)
tion {A =0, B>0, X+ Q)} 1s also a unifier of these terms. This is the “least

general” unifier.

The following lemma establishes the uniqueness of ir-mguacri for abstract
terms.

Lemma 5.1 Two abstract terms 11,75 € T(X%,V) always have a unique
1r-mguacr-

PROOF. Since 11 and 7 always unify there always exists at least one most
general unifier. Let us show that it is unique. Assume by contradiction that
there exist at least two maximal unifiers of 71 and 75 denoted by pu; and us
respectively. Assume without loss of generality that dom(u;) = dom(us) and
that the terms in range(y,;) are renamed apart from the terms in range(us).
Consider the substitution p = Az.(zu; & zps).

Observe that p is also a unifier of 7, and 7 since Ty = Ty B Ty s = Tofty B
Tolty = Top. Moreover, py =< p and py = p since the independent-range
substitutions mapping variables of dom(u;) or variables of dom(uz) to () are
obvious. Thus, i is a more general unifier than p; and pe which contradicts
with the assumption that u; and us are maximal unifiers of 7, and 7. O

Figure 2 describes a simple algorithm to compute the ir-mguacri of a pair
of abstract terms. The unification procedure consists of two phases. The set
S computed in the first phase consists of sets of variables representing all
possible sharing in a corresponding unification. The second phase converts
S into an abstract substitution by mapping each variable to a set of labels
corresponding to those sets of S in which it appears.

Theorem 5.2 The algorithm depicted in Figure 2 computes a most general
ACIT1 unifier of 7,1 € T(X®,V) with respect to the <;.-ordering.
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ir-mguAcn (’T]_, 7'2) :

v1 = vars(m)

vg = vars(Ty)
if (v; =0) V (v, = 0) then return Az € (v; U wvy).

else

S:{sg(mUUg)

Sﬂ?Jl?é@, Sﬂ’l)g?é@}
let S={s1, ..., sk}
Z ={z1, ..., z} // fresh variables

return Az € (v Uwy). @ 2
TES;

Fig. 2. ACI1-unification of abstract terms

PROOF. The claim is straightforward for the cases when v or v, is empty.
Consider the situation when v; # @ and v, # 0. Denote the output of the
algorithm shown on Figure 2 by p. Clearly p is a unifier of 73 and 75 because
T = Tot = 21D . . .0 2. Let us show that u is a most general unifier. Assume
by contradiction that there exists an ACI1 unifier i/ of 71 and 75 which is
strictly more general than py, i.e., u <;, p' and p # p'. Assume without loss of
generality that dom(u) = dom(y') = v1Uve = D. Then by Observation 2 there

exists a variable z € wvars(range(y')) such that p <, (,u’ o { 20 }) ry

Variable z occurs in g’ through some subset of variables from D. Namely,

z € vars(zy') }

oces(p, z) = { x € vy U,y

Assume oces(p', z) = s, for s, € S as computed by the algorithm. Consider
the substitution pux = po { zi—0 ‘z +k } This substitution maps all vari-
ables of si, to 2 and all other variables of dom(u) to 0. Clearly, py < u, and

thus by our initial assumption ux <; o< z — () ¢. However, variables of s,
are not mapped by u o { 20 } to any common variable and thus, there is

no ¢r-instance of y o { Z2> 0 } having a projection on D equal to .

If oces(p!, z) # s; for any 4 then either occs(p', z)Nwy = B or oces(p', 2)Nwg = (.
In both cases z occurs in only one term of either 71" or 7ou', and thus, ' is
not a unifier of 7, and 7.
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In any case, the contradiction implies that there is no unifier of 71 and 7
which is more general than py. O

The following example demonstrates the algorithm for ACIl-unification of
abstract terms.

Example 8 Consider the evaluation of ir-mguacri(A® B, Y). In the first step,

the algorithm computes the non-empty sets of variables vi = { A B ¢ and vo =
{ Y } In the next step, S = { {A,Y}, {B,Y} ,{A,B,Y} } and the fresh variables

Z = { 71, Zy, Zs ¢ are associated with the corresponding elements of S. The final

step computes the unifier, by mapping each variable from vi U vy to a term con-
structed from the corresponding fresh variables from the set Z. For instance, for
A the corresponding variables are Z1 and Zs since A appears in the first and the
third set of S. Thus, for A the resulting binding is A — Z1 ® Zs. The result of the
unification is:

A Z1 @ Z3, B> Zy @ Zs,
Y= 21028 Z3

ir-mguacri(A® B, Y) =

In the following we justify the special role that ACIl-unification plays in the
formalization of an abstract unification algorithm for sharing analysis. We first
discuss the relation between the standard unification of two terms ¢;, ¢; and the
ACIl1-unification of their abstractions o(t1), o(t2). The following two lemmata
state that ACIl-unification provides a correct and optimal description of the
corresponding concrete unification. It is important to note that there is a
technical difficulty in stating this argument as we have not given a formal
notion of description for terms (but only for other syntactic objects, such as
atoms and substitutions). It is inappropriate to do so, because the idea of the
description relation is based on the sharing of variables between the terms
in a syntactic object and formalized in terms of an appropriate equivalence
relation. Observe that an abstract term has no “meaning” on its own. It is
only in the context of a more complex syntactic object that the notion of
sharing has a meaning. The following example illustrates this point.

Example 9 Consider the abstract atom = = p(A @ B, B) and abstract term T =
A@® B. The abstract atom 7 represents a concrete atom of the form p(f(A, B), g(B))
or of the form p([W, X,Y, Z],[X,Y, Z]) in which there are some variables in common
in the two arguments. But we can not say that T describes the concrete terms f(A, B)
or W, X,Y, Z].

The following lemma states that the unification of concrete terms is approxi-
mated by the ACI1-unification of their abstractions. The correctness of ACI1-
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unification in this special case is used below to establish correctness of ACI1-
unification of terms within a given context, i.e., within atoms.

Lemma 5.3 (ACI1-unification of abstract terms is correct)
For the concrete terms t; and to:

ir-mguacn(o(ti),o(ts)) o< mgu(ty,ts)

PROOF. Let 0 = mgu(ty,ts) and p = ir-mguacri(o(t1),o(t2)). Since 0 is a
unifier of ¢; and ¢t and by Lemma 4.2 we have o(t16) = o(t20) = o(t1)-0(f) =
o(ty)-o(f). Thus, o(f) is an ACI1 unifier of o(t1) and o(ts). Since p is a most
general ACI1 unifier of o(t1) and o(t2) we have o(f) <; u, or equivalently,
poch. O

Lemma 5.4 (ACIl-unification of abstract terms is optimal)

For abstract terms 1 and 15 and abstract unifier p = ir-mguacr (11, 72), and
for any p' which is (strictly) less general than u, there exist concrete terms t;
and ty such that o(ty) =1, o(tz) = 1, and p' & mgu(ty,ts).

PROOF. The proof is technical and can be found in Appendix A. O

Now let us consider the correctness of ACI1-unification of abstract terms for
sharing analysis. We now have to consider the context in which the terms
occur, i.e., as arguments of abstract atoms.

Consider a pair of abstract atoms 7 = p(m,...,7,) and 7" = p(7{,..., 7).
We argue that an appropriate (correct and optimal) abstract unification for
sharing analysis is obtained by considering the ACI1-unification of the corre-
sponding pairs of abstract terms 7; and 7;. To argue correctness and optimality,
each such unification must be considered in the context of the entire set of
equations { 7y = 7{,..., 7, = T ¢

Lemma 5.5 (ACIl-unification of abstract terms is correct)

Letm =p(ry,...,m), 7 =p(r,...,7.),a =p(t1,...,t,) anda’ = p(t,..., 1)
such that m o< a and ©" < a'. Then fori, 1 <i<n:

T - ir-mguacr (7i, 7;) < a - mgu(t;, t;).

PROOF. See Appendix A. O
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Now consider the abstract unification of a pair of abstract atoms. The abstract
unifier of atoms 7, and 75, denoted mgu”(m;, ), is defined in terms of the
set of equations between the terms in the corresponding argument positions:

€ ifE&E=0

mgu™(€) = pomgut(E'u)ifE = {r=7}u& (14)

and p = ir-mguacn (7, 7')

Abstract unification is thus defined much the same as in the concrete case. It
is parameterized by abstract unification of terms and abstract composition of
substitutions.

It is interesting to note that it is possible to define the abstract unification
for abstract atoms, similar to the case of abstract terms, as the most general
ACI1 unifier of the atoms (with respect to <;.). However, this results in a
very imprecise (although correct) abstract unification operation for sharing
analysis. Indeed, we shall see that mgu“ as defined in Equation (14) is both
correct and optimal for our domain.

Example 10 Consider the unification of the abstract atoms p(A, B) and p(X,Y).
The most general ACI1 unifier (with respect to =<;.) for these atoms is

AI—)Zl@ZQ, Bw— Zy & Zs,
X Z1®Zy, Y — Zo® Zy

This unifier is correct for sharing analysis since it approzimates all possibilities
of unification of two atoms with independent arguments. However, ( is impre-
cise since it introduces (through Zs) the possibility that all four arguments (of
both atoms) be aliased. Obviously, the concrete unification of atoms with inde-
pendent arguments does not introduce such an aliasing. Consider now the abstract
unification mgu(p(A, B),p(X,Y)) which is computed by solving the set of equa-

tions {A =X, B= Y}. The ACII-unification for the first equation results in
ir-mgu(A, X) = {A —Z, X—Z } Applying this result to the rest of the equa-

tions gives { B=Y } Now, ir-mguacn(B,Y) = {B =W, Y — W} and finally

u:mguA({A:X, B:Y})Z{Ar—)Z, B W, X Z, Yl—)W}-

This unifier indeed correctly approxzimates the result of unifying two atoms with

independent arguments. Note also that u < ¢ provided by p = (¢ °¢)rdom(“) where
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1 is the independent-range substitution 1 = { Zivs Zy, Zo— 0, Z3— W }

The following illustrates a more complex example of abstract unification.

Example 11 Consider the unification of the abstract atoms: 7 = p(A, A® B, B)
and my = p(X,Y,Z). The unifier mgu™(my,m) is computed as defined by Equa-

tion 14 by solving the set of equations {A =X, AB=Y, B= Z}. In each

iteration we apply the ir-mguacr of the first (upper) equation in the set to the
other equations. We also assume that on each iteration the resulting substitution
is projected on the set of variables of the original equations, i.e. on the domain of
variables of interest.

A=X,
y A 7y, Al ZeB=Y,
mgu A@B:Y, = o Mmgu =
X 7 B=7Z
B=2Z7
Y= 287230 W,
Ai—)Zl, A
= 0R Zi v Za W, o mgu ({ZQ@W:Z})Z
X = Z
BHZQ@W
YHZQ@Z:}@W, ZE—>Z4@Z5@WI,
A 7y,
= o Z1— Zsd W, o Z21—>Z4@W’,
X = Z
B ZyeoW W ZsoW'

The final result is thus:

4 X Z3075, Y = 23D 7, D Zs,
mgu’(my, ma) =

2 Zu® 75, Av> Z3® Zs, B> Z4® Zs

in which W' collapses to Zs because of equivalence. Notice that mguA(m,ﬂg) in-
dicates the possibility of simultaneous sharing between all variables of the initial
atoms (expressed by Zs) as justified for example by considering the unification of
the concrete atoms p(A, f(A, B), B) with p(X, f(Y,Y), Z).

Correctness and optimality of abstract unification now follow from the cor-
rectness and optimality results of the “atomic” operations used to define the
abstract unification of tuples of abstract terms in Equation (14).

Theorem 5.6 (abstract unification is correct for set-sharing)
Let a and a' be concrete atoms such that mgu(a,a’) = 0. Let m and 7' be
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abstract atoms such that m < a and 7@ o a'. Let p = mgu?(w, 7). Then
T X af.

PROOF. Let 7 = p(m,...,7), @ = p(7{,...,7,), a = p(ts,...,t,) and
a = p(ty,...,t). Let u; = ir-mgu(r; - (U1 0 ... 0 pi—1),7 - (410 ... 0 fi_1))
and 6; = mgu(t; - (f1o0...060;_1),t; - (01 0...06;_1)), for i = 1,...,n, and
w; = 6; = e for i = 0. We prove that - (g 0---ou;) xa-(f;0---06;) is an

invariant of the unification process implied by Equation (14).

It trivially holds at the beginning of the process, since 7 = 0 implies that
the invariant is equivalent to m oc a. If it holds for + = k then, applying
Lemma 5.5, it also holds for ¢ = k + 1. Finally, for ¢ = n it implies that
7 (pro---opy)oxa-(Byo---08,),ie., - -mgut(r, ') < a-mgu(a,d). O

Theorem 5.7 (abstract unification is optimal for set-sharing)

Let £ be a set of abstract equations and denote u = mgu”(E). There is no
unifier u' for £ which is more precise than u, i.e., such that p' =<; p and
Wi 1!, which is also correct for set-sharing.

PROOF. See Appendix A. O

The reader might have noticed that although abstract unification is defined
as solving sets of equations, the examples actually consider sequences of equa-
tions. The following result, which is a consequence of Theorem 5.7 justifies
this.

Corollary 5.8 (abstract unification is confluent)
An abstract unifier for a set of abstract equations is independent of the order
in which the equations are solved.

The results of Theorems 5.6 and 5.7 make one of the main points in our pre-
sentation. They show that there is a natural ordering (based on independent-
range substitutions) for set-sharing analysis for which abstract unification is
defined simply by solving a set of equations just as in the concrete case. Cor-
rectness and optimality of the abstract operations is a clear consequence of
the “algebraic” nature of the abstract domain.

6 Set Logic Programs and Set-Sharing

This section illustrates that the abstract domain based on set logic programs
is isomorphic to the well-known Sharing domain of Jacobs and Langen [25].
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Recall the original definition of the Sharing domain which consists of sets
of sets of program variables ordered by set inclusion. Sharing information is
characterized using the notion of variable occurrences through a substitution,
as specified by Equation (1). The elements of the Sharing domain are abstract
substitutions which are sets of sets of variables and hence we denote Sharing =

p(p(V))-

A set of variables S in an abstract substitution x indicates the possibility
of sharing between these variables. Namely, the possibility that the variables
in S occur in a substitution described by x through some variable. Concrete
substitutions are abstracted to elements of the Sharing domain using the
function A : Sub — p(p(V)) given in Equation (2). The abstraction and
concretization functions for the sharing domain are defined as follows:

" : o(Sub) — Sharing v . Sharing — o(Sub)

a¥(0) = U{ A@)|oeo } vSh (k) = { 0 € Sub| A(9) C x } (15)

and a Galois insertion is then constructed.

The following example illustrates the description of concrete substitutions by
Sharing substitutions.

Example 12 Let k = {{A,B},{B,C},{A},{B},{C},Q} be an abstract sub-

stitution in the Sharing domain. The substitutions 61 = {A — f(X,Y),B —
9V, 2),C — f(Z,V)} and 0 = {A— f(X),B— g(Y),C — f(Z)} are described
by k: In 61, X occurs through {A}, Y occurs through {A,B}, Z occurs through
{B,C} and V occurs through {C}, and in 0, there are variables which occur through
{A}, {B} and {C} — and these occurrences are all specified in k. Note that the
domain of an abstract substitution k € Sharing must be explicitly specified, as any
variable of interest not occurring in k is considered ground. In contrast, the variables
of interest for a set substitution are those in its domain.

In principle the domain based on set logic programs is formalized in terms of
a Galois insertion of abstract atoms while the Sharing domain is based on
a Galois insertion of abstract substitutions. The reader should notice that in
fact set-sharing analyses, such as those used in [25,32], are actually based on
pairs consisting of a concrete atom of the form p(zy,...,z,) together with
an abstract substitution. Note however, that Sharing substitutions cannot be
applied to atoms, since they are in fact an encoding of sharing information
rather than “true” substitutions. Similarly, an abstract atom p(7,...,7,) in
our domain can also be viewed as a pair (p(Z), p), where Z is a vector of n
variables and p is a set substitution in the form {z; — 7,...,2, — 7,}. To
facilitate the proof of isomorphism we provide an equivalent definition for our
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abstract domain defining it as a domain of abstract substitutions:

a® : p(Sub) — Sub® v® 1 Sub® — p(Sub)

a®(©) =L { o0) |0 } 12t ={ o€ sup (16)

o(0) =i K } ;

where | |;, denotes a least upper bound of two or more set substitutions with
respect to the <;.-ordering. The formal construction of a Galois insertion is
analogous to that given in Equation (13) and Theorem 4.5.

The following theorem establishes the isomorphism of two representations of
sharing information. Namely, that each element in the set Sub® corresponds
to an element in Sharing and vice versa.

Lemma 6.1 There exists a set isomorphism between Sub® and Sharing.

PROOF. Note that the abstraction function A : Sub — Sharing extends
naturally to a function A : Sub® — Sharing viewing sets of variables as
ordinary terms. Hence, we prove the lemma demonstrating that A : Sub® —
Sharing is a bijective function for which an inverse function A~! : Sharing —
Sub® can be provided.

Let k = {S1,...,Sn} be an element of the Sharing domain defined for a set
D of variables of interest. Assume without loss of generality that the domain
of substitutions in Sub® is D. Let {z1,...,2,} be a set of fresh variables, one
for each S; in k. The inverse function yielding the set substitution g which
corresponds to « is defined by:

z €D } .

It is straightforward to see that Ao A~! and A~! o A correspond to identity
functions in Sub® and Sharing respectively. O

At Sharing — Sub®
At (k) = { T ® oz

TES;

Example 13 Recall the abstract substitution x of Example 12. Consider the set
substitution, p = {A — {X,U},B —» {X,Y,V},C — {Y,W}}. We have that

Alw) = { (4, B, (B,C}, {4}, {B}. (€}, } = r and that A () = {A > {X',T"),
B {X",Y',V'},C— {Y ,W'}} =i p.
The following lemma establishes the relation between the ordering of set sub-

stitutions and the ordering in the Sharing domain. Namely the fact that the
orders of elements in these abstract domains are isomorphic.
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Lemma 6.2 (order embedding)
There is an order embedding between (Sub®, ;) and (Sharing, C).

PROOF. Let u; and po be two abstract substitutions and let D be the set
of variables of interest. Assume without loss of generality that dom(u;) =
dom(pz) = D. We prove that p, < pg < A(p1) € A(pa).

(=) The proof of (1) in Lemma 2.1 applies.
(<) Given A(p1) € A(uz) we construct an independent-range substitution
1 as follows:

o= {0 T oces(in ) € (A \ A)

T otherwise

The substitution 1) maps to () all variables of y; which make the set-sharing
of py different to that of ;. Thus, A(ps 01) = A(u1) and consequently, by

Lemma 61, H1 = (IU’Q o (ll}) Fdom(ul)'

Thus, set substitutions of Sub® and abstract substitutions of Sharing form
isomorphic partial orders. Considering the relation of these partial orders to
the concrete domain we establish the following result:

Theorem 6.3 (domain isomorphism)

(p(Sub), @, Sharing, v*") = (p(Sub), a®, Sub®, 7*)

PROOF. Lemma 6.1 and Lemma 6.2 prove that the underlying posets (Sub®,
=<ir) and (Sharing, C) are isomorphic partial orders. It remains to demon-
strate that 75" o " and v® o a® are equivalent closure operators.

7" ot = X0 € p(Sub). {E‘A(f)QUSh{A(Q)‘QEG}}'

The isomorphism of partial orders (Sharing, C) and (Sub®, <;.) implies also
the isomorphic behavior of Lig, and Ll;,. Thus, the former expression is equiv-
alent to

A0 € p(sub). { €|o(©) = L { o9 c0} | =10a® O

The following example illustrates the isomorphism of the two representations
of sharing information.

Example 14 Recall the abstract substitution k and the concrete substitutions 0,
and 02 of Example 12. Consider the set substitution of Ezample 13, p = {A —
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{X,U},B—{X,Y,V},Cw— {Y,W}}, which is isomorphic to k. The substitutions
01 and 6> are described by p: X indicates the possible aliasing of A and B, Y
indicates that of B and C, and U, V and W the possible presence in A, B and
C of variables not shared with other variables. The abstract substitution k and the
set substitution p also describe the substitutions 65 = {A — f(X),B — g(X)} and
0s={A~ f(X,Y),B—g(X,Y),C— Z}.

Observe that the above Theorem 6.3 implies also that the domain of abstract
interpretations, i.e., subsets of B5 ordered by =<;, describe the same sharing
information as the elements of II x Sharing.

7 Sharing Analysis with Set Logic Programs

The abstract operations defined in Section 4 (unification, application, least
upper bound) provide the building blocks to construct an abstract semantics
for the sharing analysis of logic programs. Several sharing analyses have been
described using these techniques: A bottom-up approach based on abstrac-
tion of the well-known s-semantics [18,19,4] is described in [12]. A top-down
approach based on tabulation using XSB is described in [10]. In this section
we illustrate as an example a simple bottom-up approach based on an ab-
stract immediate consequences operator Tp : p(BS) — p(BY) for set logic
programs. For a logic program P the least fixed point of 7;p) provides the
sharing analysis for P.

c= h(—bl,...,bne'P, al,...,an<<cI
pu=mgu({b1,...,by),{(a1,...,ay))

Let us consider the analysis of the well-known append program depicted in
Figure 3 (left) using the technique discussed above. The analysis is obtained
as a least fixed point of 7,(p) applied to the abstract version of append, de-
picted in Figure 3 (right). In the first iteration of the evaluation we collect

(1) append([ ],Ys,Ys). (1) append(D,{Y s},{Y s}).
(2) append([X|Xs],Y's,[X|Zs]) < (2) append({X, Xs},{Vs} {X,Zs}) +
append(Xs,Y s, Zs). append({Xs},{Y s}, {Zs}).

Fig. 3. The append program and its set based abstraction.

an abstract atom of the form m = append(d, {Y s}, {Y's}) corresponding to
fact (1') in Figure 3, characterizing the set of atoms in which the first argu-
ment is ground and the second and third arguments are equal terms. In the
second iteration a renaming of m; is unified with the body of clause (2') in
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Figure 3. Abstract unification in this case specifies that Xs is bound to § (a
ground term) and that Y's and Zs are bound to the same set (variable Y's').
Consequently the head of clause (2') under such bindings can be represented
as mo = append({X }, {Ys'}, {X,Ys'}). This abstract atom describes the con-
crete atoms of the form append(t;,ts,t3) which exhibit sharing between t;
and t3 and between ¢y and t3. Note that {m} & {m, 7} since m =<; mo with
m = mp - {X — 0}. An additional iteration results in a new abstract atom
of the form 73 = append({X, X'}, {YVs'},{X, X', Ys'}), which is equivalent to
my. Thus, the fixed point is reached with

Up(Toaw) = { append (X}, (¥}, (X)) |

This result correctly describes the set of atoms in the non-ground s-semantics
of the append/3 program which are of the form

append([Xi, ..., X,], Vs, [ X1, ..., X,|Ys])

in which the variable sharing of the last argument with the first and with the
second is evident.

8 Sharing Analysis with Linearity

Traditionally, aliasing and groundness analyses are enhanced with other kinds
of information such as linearity and freeness, as first noted by Langen [28] and
later studied in numerous works [6,7,15,31,5]. The information about variable
linearity and freeness is useful in its own right and can significantly improve
the set-sharing information obtained. In [13] the authors demonstrate that lin-
earity information improves the precision of set-sharing analyses and reduces
the cost of its computation. The following example illustrates this point.

Example 15 Reconsider the unification of two abstract terms A® B and Y dis-
cussed in Example 7. The abstract unifier

A Z1® Zy, B Zy @ Z3,
Y —Z1® 72,8 Z3

ir-mguacri(A® B,Y) =

introduces the possibility that A and B be aliased, which is expressed in the resulting
unifier by the variable Zy. Indeed, the wvariables A and B may be aliased in the
unification of corresponding concrete terms due to the possible non-linearity of the
term represented by Y. For instance, in the unification of the concrete terms f(A, B)
with f(Y,Y).
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Assume now that the abstract term Y is restricted to represent only linear concrete
terms. By Lemma 2.8, in any corresponding concrete unification A and B are bound
to independent linear terms. Thus, knowing that Y represents a linear term we can
compute a more precise abstract unifier. Such an abstract unifier will not introduce
aliasing of A and B and thus, it is less general (more precise) than ir-mguacy-

Two things must be done in order to extend the sharing analyses described
above with linearity information. First, a suitable notation must be adopted to
represent linearity information in the abstract domain elements; and then the
abstract operations on these elements must be refined to take into account
the new information. This section describes such an extended domain. The
new domain, the enhanced operations and their formal justification all remain
clean and intuitive. After adopting a simple annotation for linear abstract
terms (sets of variables which are designated to represent linear terms), the
ordering =, is refined to an ordering denoted =j;,. Most of the operations
defined on abstract objects extend with ease to consider the new annotations.
Abstract unification is the exception. However, also in this case the extended
operation remains simple due to Lemma 2.3 which induces constraints on the
abstract unifier when linearity information is involved.

Syntax: All of the syntactic constructs for sharing analysis with linearity
information remain the same as those described in Section 3 with the single
difference that abstract terms are annotated to distinguish between /linear
and possibly non-linear set expressions. An annotated abstract term 7 is a set
expression of the form {o} or {o[}, where 0 = 21 @ - - - ® z,,, often denoted
{z1,...,2,} and {zi,...,z,[} respectively. An abstract term is said to be
linear if it is of the form { o[} or of the form ). Abstract atoms and substitutions
maintain their definitions from Section 3, with the only difference that they
involve annotated abstract terms. We say that two syntactic objects m; and
Ty are equivalent up to annotation denoted m =4, mo, if they are equal up to
the annotation of the abstract terms they contain.

Example 16 Abstract atoms m = p({|4, B|},{B}) and my = p({A, B}, {B][}) are
equal up to annotation and thus we write w1 =gnn w2. Observe that these atoms
describe the same set-sharing, because they contain the same variables in the same
argument positions.

The notion of an independent-range abstract substitution also maintains its
definition. We say that an abstract substitution is linear if it is an abstract
independent-range substitution which maps variables to linear abstract terms.
So, the main difference is that we can distinguish linear terms in abstract
entities.
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Application and Composition: For an abstract term 7 of the form {of}
or 7 = {0} and an abstract substitution x we define the application of u to 7
as follows:

= { {loul} if 7 and the projection of y on o are linear

{op} otherwise (18)

Example 17 Consider applications of an abstract substitution p = {W — {A[},
X — {B,C},Y — {D,E}, Z — {|F[}} to abstract terms. Let 7 = {{X,Y[}. Then
T = {B,C, D, E} because the non-annotated set expression o corresponding to T is

X @Y and the projection of u on o is py = {X — {|B,C[}, Y — {D,E} }, which

18 non-linear.

The application of p to the following abstract terms T yields:

| gwxy Wy qwy qwyy qw,z)
ru{{A,B,C} {4} {A} {4,D,E} {A,T}

The composition of annotated set substitutions is defined in terms of applica-
tion as illustrated by the following example.

Example 18 Consider a composition of two abstract substitutions in the anno-
tated domain:

p1 = {X»—>{|A,B[}, YH{B,C}},

u2={A|—>{W,V}, CH{IZI}}-

The composition 1 o ps is computed using the definition of Equation (18) for ap-
plication of o to the terms in the range of u1. Thus, {{A, B[} - po = {W,V, B} and
{B,C} - p2={B,Z}. Hence

NIOMZZ{XH{W,V,B}, Y s {B,Z}, A {W,V}, C'—>{|Z|}}-

The Abstract Domain: We introduce an ordering <;;,, on annotated ab-
stract objects, similar to the ordering <j;, given in Section 2. This ordering
reflects both set-sharing and linearity information in abstract objects.

For abstract atoms m; and 79, we say that 7, precedes ms in the <;,-ordering if
7o contains more set-sharing information and more non-linearity than ;. For-
mally, we say that m <y, 7o if linearity(m) 2D linearity(ms) and if there exists
an independent-range abstract substitution ¢ on the variables of 7y such that
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M1 =ann Tot. Similarly, for abstract substitutions p; and po, p1 =i 2, assum-
ing without loss of generality the domain of interest dom(u1) = dom(us) = D,
if there exists an independent-range abstract substitution % on the range of
o such that p =4n, (p2 0 ¥)[p and if linearity(p,) 2 linearity(us).

Example 19 Let m; = p({{A, B[}, {B}) and mo = p({X, Y },{Y, Z}). Let us demon-
strate that w1 <y wo. The independent-range substitution

v={ x4y, v (B), 250}

applied to mo results in p({A, B}, {B}) which is equal up to annotation to m1. Observe
also that linearity(m) = {1} and linearity(me) = 0 and thus, linearity(m) 2
linearity(me). Therefore, both requirements for m =<y, T2 are satisfied.

Observe that if m; <;, m then there exists a linear abstract substitution
on the variables of w9 such that m; = m1. Observe also that the linearity
information in abstract atoms is downwards closed with respect to =<;,-

Similar to the construction in Section 3, we let <;, induce an equivalence
relation on the sets of abstract atoms and substitutions and corresponding
partial orders on equivalence classes. We denote m =y, 7o if 71 <p;, 72 and
o Xlin T1-

The relation between abstract and concrete atoms and substitutions is formal-
ized as a Galois insertion the construction of which is completely analogous
to that given in Section 4. We elaborate only that the abstraction of a term
is formalized by:

(

0 if vars(t) =0

{1 & ... ® z,|} if vars(t) = {z,...,z,}

o(t) =5 and linear(t) (19)
{r1®...®x,} ifvars(t) ={z1,...,z,}

and not linear(t)

This definition is the straightforward extension of Equation (7) enhanced to
specify the linearity information in a concrete term. The abstraction for sub-
stitutions is defined in the similar way.

Example 20

(1) o([X, X[ Xs]) = {X, Xs}; () o(X) ={X;
(2) o(tree(X, Left, Right)) = {X, Left, Right|}; 4) o)) =
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We say that an abstract atom (or substitution) 7 describes an atom (or a
substitution) a, denoted 7 o a if o(a) <y, 7.

Example 21

(1) p({]X|},{]Y|},{X,Y}) OCP([XlaXQLYS’ [X1’X2|Y3]) and
p({XHLAY}{X,Y}) < p([],Ys,Ys), but
p({IXHAY [}, {X,Y}) « p([X1,X1],Ys,[X1,X1|Ys]) since the first argument

is not linear;
(2) p({X}) o< p(X) and p({X}) o« p(a);
(3) pAX[}) o< p(X) and p({X[}) o< p(a);
(4) p(0) < p(a) but p(0) & p(X).
The operations on abstract atoms and substitutions with linearity informa-
tion are straightforward extensions of the definitions in Section 5. For the
operations of application, projection, composition and lub, this involves a

straightforward case analysis. We only present here the definition for abstract
lub.

Least Upper Bound: The least upper bound of two abstract atoms is
based on the notion of union of two abstract terms.

Let 7, and 75 be two abstract terms with o; and o, being the corresponding
ACI1-expressions, i.e., ; = {o;[} or 7, = {0;} for i = 1,2. The union of 7; and
Ty, denoted by 71 U 75 is defined as:

1] ifrp=0and =0
nUn ={ {o1 @]} if linear(r,) and linear(r,) (20)
{o1 ® 02} otherwise

Example 22
(1) {A,B}U{A,C}={4,B,C} (2) {4, B}U{C}u0={A,B,C}

The least upper bound for atoms (with respect to <;;) can be characterized
by the following result, the proof of which is similar to that of Theorem 4.3.
Theorem 8.1 For the abstract atomsm = p(11,...,7,) andm = p(7{,...,7,):

r'n

mUm=p(nUTt,...,7nUT.).
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Example 23

(1) m  =p({A}, {B},{4,B})
m = p({IY[L{Y[}, {Y]})
m Urs p({4, Y} B, Y[, {4,B,Y})

(2) m p( 0, Y[AY])
m  =p({A},{Bl},{4,B})
m Une p({A},{B,Y[},{4,B,Y}).
Observe that p({A},{|B,Y[},{4, B,Y}) ~u, p({A},{Bl[}, {4, B}).

Abstract Unification: As illustrated by Example 15 abstract unification
can give more precise results for set-sharing when linearity information is
present. To formalize this we recall Lemma 2.3 which imposes additional con-
straints about linearity information for concrete unification problems. In par-
ticular, we recall that the most general unifier of two terms ¢; and ¢, is guar-
anteed to have a linear projection on the co-linear variables of ¢; and t,. As a
consequence, the abstract unifier for a pair of (annotated) abstract terms 7
and 7, can safely be chosen as their most general ACI1 unifier (with respect to
<iin) Which has a linear projection on their co-linear variables. Observe that
if neither 7; nor 75 is annotated as linear then this boils down to the definition
of ir-mgu o from Section 5.

The algorithm depicted in Figure 4 computes the most general abstract uni-
fier of two annotated abstract terms. It is based on the algorithm of ACI1-
unification (Figure 2). For the cases when one term is linear the algorithm
computes an annotated most general (with respect to <) ACI1 unifier with
a linear projection on the second term. If two abstract terms are linear then the
algorithm computes a most general ACI1 unifier with two linear projections.
The case of unification of two non-linear terms is analogous to the unification
performed in the algorithm of Figure 2. The set S computed in a first phase
consists of sets of variables representing all possible sharing in a corresponding
(concrete) unification. The formation of this set relies on the result of Lemma
2.3. For instance, if one of the terms is linear (second “else”), then each vari-
able of the second term appears in exactly one member of S. This ensures that
the projection of the abstract unifier on each of the co-linear variables (v) is
a linear substitution.

Correctness of this algorithm is based on Theorem 5.2 with the additional
restrictions on linearity provided by Lemma 2.3. Its optimality can also be
proven, using the same principle as in the proof of Lemma 5.4; the complete
proof can be found in Appendix A.
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lin—mguACIl (7'1, 7'2) :

v1 = vars(m)

vg = vars(Ty)

if (v; =0) V (v, = 0) then return Az € (v; U wvy).

else if 7; is linear and 7 is linear and v; N v, = () then
S = { {u, v}

else if 7, is linear and v; N vy = () then

Sz{{v}Us v € vy, 5 C vy, s;é@}

UGUl,UGUQ}

else if 7 is linear and v; N vy = () then

SZ{{U}US v E vy, s C v, s#@}

else

S:{sg(mUUQ)

sNuy # 0, Sﬂ’l)g?é@}

Z ={z, ..., z} // fresh variables

{ ® 2} if z is co-linear

xTES;
return Az € (v; U vg). { { EeB zi}  otherwise
res;

Fig. 4. Abstract unification of annotated terms

Example 24 Let us demonstrate how the unification algorithm shown in Figure /
is applied to compute a precise unifier for the abstract terms from Ezample 15. In
this example we assumed the Y represents only linear terms, which means that in
the annotated domain we consider the unification of {Y[} with {A, B}. Since both
abstract terms are non-empty and have no variables in common, the set S computed

by the algorithm is S = { {A,Y}, {B,Y} } The members of S are labeled by fresh
variables Z1 and Zy respectively. Thus, the unifier computed by the algorithm is yu =
{ A {Zi}, B {Z}, Y — {Z1, 25} } Note that p does not introduce aliasing

between A and B, which indeed cannot occur in the unification of corresponding
concrete terms as discussed in Example 15.

Unification of abstract atoms is defined as usual by incremental unification of
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corresponding abstract terms.

€ if =10
A —
mguy,(€) = pomguis (E'n) if E={r=7}u& (21)
and p = lin-mgu ey (7, 7')
Example 25 In the following examples, adapted from [8], we solve at each step

the first (upper) equation in the set and apply the result to the other equations:

(1) Consider the unification of abstract atoms: m = p({ A}, {4, B}, {B|}) and
m = p({ X1 {Y [}, {Z}).

{AF ={X},
mguiy, | $ {A, B} = {Y[, =
{B} = {7}
_JAn{Z}, o mau? {Z1.By={¥], || _
X = {Z1)) "\l By = {2}
A z B = {]Z2|}a
= X:{{Izl}'; oY — {Zs, Zs}, omguﬁn(ﬂz2|} ={Z}) =
1 Zl — {]Z3|}
A {Z B = {2}, s
- X'—>{Z1}’ o4 Y 5 (2, 25}, Vo Z|—>{|Z4|},
I—>{] 1|} Z1|—>{|Z3|} 2}_>{ 4}

which gives:

X = {|Z3‘}a Y — {Z47Z3}7 Z {lZ4|}
A— {Zg}, B {Z4}

mguA(m, o) =

Notice that there is no aliasing between A and B and that X and Z are bound
to linear terms.

(2) Consider the unification of abstract atoms: m = p({ A}, {4, B},{B|}) and
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m =p({X},{Y},{Z}).

(A} = {x},
mguiy, | { 44, By ={Y}, ¢ | =
1B} = {2}

_amimn | (B =)
X {Zi]) "\ Br=1{2

Y — {2y, Z5, W},

. A {Zl}a ol 7 A 7o Wl={Z1) —
= 1= {Z3, W}, o mgujyy, ({22, W}={Z}) =
X = A{|z:
B~ {ZQ,W}
Y= {Z27Z35W}7 Z {Z4aZ5aW,}7
_ A {Zl}, ,
- ° Zl — {Z37W}7 ° Z2 — {Z47W }a
X {21} ,
BH{ZQ,W} Wl—){Z5,W}

which gives:

X = {Z3,Z5}, Y = {Z3, Z4, Z5},
7 — {Z4,Z5}, A~ {Z3,Z5}, B~ {Z4,Z5}

mguﬁn (7T17 7T2) =

in which W' collapses to Zs because of equivalence. Notice that there is (pos-
sible) aliasing between A and B and that X and Z are bound to non-linear
terms.

Again, the correctness and optimality (and confluence) of the abstract unifi-
cation for sharing analysis follow naturally. The proofs are similar to those of
theorems 5.6 and 5.7.

9 Conclusion

We have described an algebraic approach for the sharing analysis of logic pro-
grams based on an abstract domain of set logic programs. The main advantage
of this approach is that the specification of the abstract unification algorithm
relies on the well-studied notion of ACI1-unification. The justification of the
abstract operations needed to define a sharing analysis all follow a clear and in-
tuitive argument based on simple algebraic properties of set substitutions and
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set-based atoms. We have given full proofs of correctness and optimality for
these operations and we have proven that the well-known set-sharing domain
of Jacobs and Langen is isomorphic to our domain. We do not know if the ab-
stract operations defined by Jacobs and Langen are optimal (the authors have
not proven this). But, in case they are not, then this paper provides optimal
abstract operations for the set-sharing domain via the domain isomorphism.
Another advantage of our approach is the simplicity in which it is extended
with linearity information. Finally we note that the approach described in this
paper facilitates implementation based on abstract compilation — be it in a
top-down or in a bottom-up approach.

We close the paper with two proposals for future work:

(1) It would be interesting to cast the algebraic framework demonstrated in
this paper in terms of a generalized constraint system, following [22]. This
is for example the approach in [34], where (groundness and type) analyses
are designed as constraint solving. In particular, it would be interesting to
consider the implementation of the approach described here using recent
developments in set logic programming.

(2) It would be interesting to investigate the application of our approach for
pair sharing analysis based on the results of [3]. In that paper, the authors
prove that the set sharing domain is over complex for the analysis of pair
sharing (i.e. to answer the question: “do variables X and Y share?”.
In particular the authors show how to avoid using the expensive star-
closure operation of set sharing and hence to obtain polynomial abstract
algorithms.
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Appendix A: Proofs

We first discuss the operations of abstract application, composition and lub. The
role of abstract application is to extract the sharing information expressed by an
abstract substitution which is relevant for a given (abstract) atom or other syntactic
object.

Lemma A.1 (application of an abstract substitution is correct)
Let a, 0, m and u be concrete and abstract atoms and substitutions such that ™ < a
and p < 0. Then wu x af.

PROOF.

by Lemma 4.2]

[

o(0) =i [because p o 0]
[because 7 o a]
[

by definition of o]

Lemma A.2 (application of an abstract substitution is optimal)

Let a and 7 be concrete and abstract atoms such that o(a) = w, and 0 and p be
concrete and abstract substitutions such that o(0) = p. There is no abstract atom
7 (not equivalent to wu) such that 7 oc af and ' =< T.

PROOF. By Lemma 4.2 we have o(af) = o(a) - 0(f) = wp. If 7’ o< af then
o(af) =, 7', and therefore Ty < /. O

Correctness and optimality of composition for abstract substitutions are implied by
the corresponding results for abstract application as established by the following
two lemmata.

Lemma A.3 (composition of abstract substitutions is correct)

Let 01 and 02 be concrete substitutions, and p1 and uo abstract substitutions such
that p1 < 61 and pe o 0. Then assuming dom(u1) = dom(61) and dom(uz) =
dom(6s), (1 0 p2) o< (61 0 62).

PROOF. Let T be a tuple of variables of interest. Lemma A.1 implies that Zu;
Z61 and (Zp1)pg o< (Z601)62. Thus Z - (1 o pug) o< Z- (61 0602), which implies the lemma
statement. O
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Lemma A.4 (composition of abstract substitutions is optimal)

Let 01 and 02 be concrete substitutions, and p1 and uo abstract substitutions such
that py oc 01 and ps o< Oo. There is no abstract substitution p' (not equivalent to
p1 o po) such that p' o< (01 0 62) and p' <y (11 0 p2).

PROOF. Follows from the optimality of abstract application established by Lemma A.1
similarly as the correctness of abstract composition (Lemma A.3) follows from the
correctness of abstract application. O

Lemma A.5 (abstract lub is correct)
For abstract atoms w1 and wo and concrete atoms a1 and as,

(m1 < a1) A (mg oxag) = ((m Umg) < ar) A ((m U mg) o ag).

PROOF. Since 7y LI o is an upper bound of 7; and my with respect to =, we
have m < (w1 Ume) and mo <4 (m U me). Because m; o< a1 and 7o o as we have
0'((1,1) <ir ™ and U(ag) =ir ma. Thus, o(al) =ir (7‘('1 LI 7'('2) and U(ag) =r (7‘('1 LI 7'('2),
ie., m Ume xa; and m Umg xx ag. O

Lemma A.6 (abstract lub is optimal)

For abstract atoms 71 and wo and concrete atoms a1 and as, such that 1 o« a1 and
o X ag, there is no abstract atom ' (not equivalent to m U mo) such that 7' o aq,
7’ o a9, and 7w <; w1 Ums.

PROOF. Straightforward since 71 U o is a least upper bound of m; and 7o with
respect to = as established by Theorem 4.3. O

Similar results for the operations on abstract atoms and substitutions with linearity
information can be obtained. The above proofs are on the whole easy to enhance
for this purpose. To justify correctness and optimality we have only to focus on the
added linearity information, which involves a straightforward case analysis, which
we omit here.

We now consider abstract unification. We first claim that ACIl-unification of a
single equation in a context (of a set of equations for the unification of atoms)
is well defined. Namely, that it does not depend on the particular representative
element.

Observation A.7 Consider abstract terms 11, T2, p1, and po, such that vars(m) C

vars(p1) and vars(re) C vars(p2), and denote p = ir-mguacri(m,m2) and u'
ir-mguacri(p1, p2). Consider the abstract substitutions 1 and p:

lp:{x'—)@

z € (vars(p1) \ vars(r1)) U (vars(ps) \ vars(ms)) } ;
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Y= { z— 0 ‘ Jy € range(y'). (yp = 0) A (z € vars(yu')) } )

Then, u' o ¢ is a renamed instance of 1 o u. To justify this observation, let us
consider the case when p1 = 71 @ z (where z is a fresh variable) and py = T9. So

¢:{z._>(2)} andcpz{mH@ :I;Efuars(zu')}-

Consider the set S in the evaluation of i’ following the algorithm of Figure 2. The
variables in zu' are the labels for the sets in S which contain z. Thus, 'y is the
same as j except that it maps z to (. In other words, u' o ¢ is a renamed instance

of o pu.

Lemma A.8 (unification of abstract terms is well defined)
Let & be an equivalence class of abstract equations with representative elements
E=(n=1],...,7n=71}) and € = (p1 = p!, ..., pn = pl,) such that € =i E. Then

A

& - ’iT—mgUAcn(Ti,Ti') Sir £- ir"mguACIl(piap;)'

PROOF. We may assume without loss of generality that £ is a “minimal” context
for the abstract unification, i.e., a context constructed from two tuples of abstract
terms minimized as in the proof of Theorem 3.1. Since the lemma trivially holds
for contexts which are renamed instances of one another, we may assume that
vars(r;) C wvars(p;) and vars(t]) C vars(p;) for any i and that variables from
vars(p;) \ vars(r;) and from vars(p;) \ vars(r}) do not occur in £. Thus, a ground

substitution ¢ providing £ = Ey is:

P = { T 0|z € (vars(p;) \ vars(t;)) U (vars(p}) \ vars(t!)) } .

Let us denote ir-mguacyi (i, 7;) by i and ir-mguacri(pi, p;) by fi. Then

Ei = [because £ ~;, &£ and vars(€) C vars(€)]

Ep ~ir |because £ has no occurrences of variables in dom()]
Epji i [by Observation A.7]

Epia ~;r [because £ has no occurrences of variables of dom(1))]
En O

We now prove the correctness of ACIl1-unification of abstract terms in the context
of a set of equations between abstract terms.

Observation A.9 Consider abstract terms 11, T2, p1, and ps, such that vars(r) C
vars(p1) and vars(ry) C vars(ps), and denote p = ir-mguacn (m1,72) and p' =
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ir-mguacri(p1, p2). Consider the abstract substitution:

P = { z = 0|z € (vars(py) \ vars(m)) U (vars(ps) \ vars(rs)) } .

Then p' o v is equivalent to u. To justify this consider again the unification of
p1 = T1 D z with ps = T2, as in Observation A.7.

It is easy to see that the same variable sets share in ' and in p, except for the occur-

rence of variable z. Since p' o { 20 } makes z ground —and thus it cannot share

through any variable—, then the set-sharing of u and u'o{ 2= 0 } is the same, i.e.,
A(p' o { 20 }) = A(up), and consequently, by Lemma 6.1, ' o { z+ 0 } Rir [.

Lemma 5.5 (ACIl-unification of abstract terms is safe)
Let 7 = p(11,..-T), © = p(1],...,7.), a = p(t1,...,tn) and a’ = p(t},...,t,)
such that m o< a and 7 < a’. Then fori, 1 <i<n:

7 -ir-mguacr (7i, 7)) o a - mgu(t;, ).

PROOF. Assume without loss of generality that m and 7’ are representative el-
ements such that vars(r;) 2 wvars(t;), vars(r]) 2 wvars(t;), and variables from
vars(m;) \ vars(t;) and from vars(r}) \ vars(t;) do not occur in a.

Let ¢ = ir-mguacri(o(ti),o(t))), u = ir-mguacri (i, 7;), and 8 = mgu(t;, t;). From
Observation A.9 there is a ground substitution 1 such that o 9 =; p. Also, from
Lemma 5.3, o(af) =< o(a)C.

Since m «x a we have o(a) =; 7, and therefore, o(a)u =i 7. Since (o =y p
we have o(a) - (( 0 9) = mu. Since variables of dom (i) do not occur in a we
get o(a)( =i mwp. Since o(af) =i o(a)(, and by transitivity of =;., it follows
o(af) < . O

As we have seen, the above result is instrumental in the proof of correctness of
abstract unification for set-sharing analysis (Theorem 5.6). The above proof can be
easily enhanced for the case of including linearity information. The corresponding
lemma leads us to a correctness result for sharing analysis of the abstract unification
with linearity, in the same way as that of Theorem 5.6. We now turn our attention
to optimality.

Lemma 5.4 (ACI1-unification of abstract terms is optimal)

For abstract terms 71 and 7o and abstract unifier p = ir-mguacri(m1,72), and for
any p' which is (strictly) less general than u, there exist concrete terms t1 and to
such that o(t1) = 11, o(t2) = T2, and p' ok mgu(ty,ts).
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PROOF. If at least one of 71 and 72 equals to () then y binds all variables found
in 7, and 7y to (), thus, precisely approximating the result of concrete unification
when one or both terms are ground. For this case y is trivially optimal.

Now consider the case when both 71 and 7 have variables. Assume by contradic-
tion that there exists 4’ which is more precise than p such that p' o< mgu(ty,t2).
Hence, p' =i p and p # p', and by Observation 2, there exists a variable z €

vars(range(u)) such that ' < po< 2z 0 } We assume without loss of generality

that z is a fresh variable not occurring in 71 and 5.

Let (without loss of generality) occs(u,z) N wvars(ri) = {z1,...,zm} and
oces(p,z) N wvars(te) = {y1,...,Yp}. Since p is a unifier these sets are surely
nonempty. Denote the variables in 71 which are not in oces(u, z) by {Tm+1,.--,Zn}
and the variables in 75 which are not in occs(u, z) by {yp+1,- -, yq}- Let us construct
the following concrete terms:

1= 8(6(1‘1,... axm)af(xla"' a'Tl)ag('Tm-f—l?' . amn)’ h(a’a"' aa’) )

t2:s(e(y17""y1)’f(yla"'ayp)a g(a‘a"'aa’)7 h(yp-l—la"'ayq))'

Clearly, o(t1) = 71 and o(t2) = 2. Note that:

TL W, .., Ty = WYL > W, .., Yp > W,
mgu(ti,te) =
Tl P> Gy ooy Ty > Gy Yptl F> Ay en, Yg > A
and
T W, Ty > W, Y1 W, Yp W,
a(mgu(ty,t2)) =
Tm+1 Hma"'aw’n'_)q)ayp+1 Hﬁa"'ayq'_)(a

It is easy to see that p o 6, or equivalently u o1 = o(f) with 1 the following
independent-range substitution:

¢:)\${w fz==z

# otherwise.

Let us demonstrate now that p' ¢ . Assume that there exists an independent-range
substitution 1’ satisfying p' o 9’ = o(#). This substitution is of the form:

1/)':>\:v.{w ifx=y

0 otherwise

for some variable y € range(u'). Note that since 9 is an independent-range sub-
stitution, only one variable in the range of p’ can be mapped by 7' to w. We may
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assume that both p and ' are in their “minimal” form, i.e., each variable in these
substitutions occurs in a distinct set of terms in their ranges. Consequently, 4’ has
no variable 2’ such that occs(u, z) = oces(p', 2'). It follows that for any choice of y in
the above 1)/, the unifiers p o1 and u' o)’ are different. Thus, for any independent-
range substitution ', y' o ¢’ # o(#). Therefore, y' is not a correct abstract unifier.
The contradiction implies that u is a most precise abstract unifier of 71 and 75. O

Theorem 5.7 (abstract unification is optimal for set-sharing)

Let £ be a set of abstract equations and denote pu = mgu™(E). There is no unifier
u' for & which is more precise than p, i.e., such that p' < p and p %4 p', which
is also correct for set-sharing.

PROOF. Assume by contradiction that there exists another unifier u' for £ such
that p' =< p and p % p'. Thus, by Observation 2 there exists a variable z €

vars(range(u)) such that p' <; po {z — 0 } Let &€ = {61, e sen } By Equa-

tion (14), p = p1opgo: - -ouy, where 1 = ir-mguacr (e1) and p; = ir-mguacn (ep' ™),
and p' = piopgo--opi_, fori=2,... n.

Let uy, be the first substitution such that z € vars(range(ug))- Let & = { €kt1s---5En }

Thus, on step k of the resolution in Equation (14) we have u = p*~!o py o

mgu” (Eku’“‘luk)-

Note that z appears in the range of y and thus, the steps from k£ 4+ 1 to n do not
compute any bindings for z. Therefore, applying the substitution { zZ Q)} to u
at step k is equivalent to applying it at the end of the resolution process. Since

' =i { Z — () ¢, there must hold one of the following possibilities:

(1) g =i pF 1o (Hko{zl—)@}) omguA(Ek- (Mko{z*—)@}))a

if ¢ 250 } is applied to ir-mgu(ey), i.e., to ug;

(2) #' Zir pF71 0 py o mguAt ((gkﬂk) : { z () })a
if { 2= 0 } is applied to the result of application of uj to &;

(3) W Zir pFLopgo { z— 0 } o mgu(Exhk),

k-1

if { 2z 0 } is applied to the result of the composition of p*~* with py.

If one of these possibilities holds then the corresponding “atomic” operation on step
k, i.e., ACIl-unification, application, or composition, admits a more precise result.
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But this contradicts one of the Lemmas 5.4, A.2 and A.4 establishing the optimality
of all operations used in the abstract unification. O

Again, for the case of including linearity similar optimality results are obtained.
We include here the prove of the lemma for the optimality of abstract unification
of terms (with linearity). A result similar to Theorem 5.7 for abstract unification
of atoms is obtained using this lemma, much in the same way as in the case of
Theorem 5.7.

Lemma A.10 (optimality of lin-mguacy1)

For abstract terms 7, and 1o and abstract unifier p = lin-mguacri(m,72), and for
any p' which is (strictly) less general than u, there exist concrete terms t1 and to
such that o(t1) = 11, o(t2) = 12, and p' & mgu(ty,t2).

PROOF. First we consider whether the terms being unified have variables in com-
mon or not. If they have, we have seen in Example 8 that any possible set-sharing
can appear during the unification of these terms. In this case lin-mgu o defaults
to ir-mgu acri1, and therefore the proof is a case of Lemma 5.4, except for the an-
notation of terms in the range of the unifier. Moreover, the terms variables in this
case can be bound to non-linear terms, which is also demonstrated in Example 8.
But this is exactly what lin-mgu o1 does in this case.

If the terms do not have variables in common then either (1) they are both non-
linear, (2) one of them is linear but the other is not, or (3) both are linear. If both
are non-linear lin-mguscr defaults again to ir-mguacri, and the claim follows
directly from Lemma 5.4. Let us now prove the optimality of unification of abstract
terms for the cases when lin-mgu ¢y is more precise than ir-mguacyi, ie., (2)
and (3).

We prove (2); the prove of (3) is similar. Assume without loss of generality that
71 is non-linear and 7o is linear. Let u = lin-mguacri(7m1,72) and 0 = mgu(ty,t2).
Assume by contradiction that there exists a more precise unifier u' of 7 and 7
such that g’ o< 6. The substitution p' can be more precise than p if it exhibits less
set-sharing and/or more linearity than y.

Let us consider linearity first. The projection of y on variables of 7, is a linear
substitution (since by lin-mguacr p is linear, and 7o also is). Observe that if the
projection of 11’ on the variables of 75 is a non-linear substitution then linearity(u) 2
linearity(p') and thus, 4’ is not more precise than y. Thus, both projections of
and p' on the variables of 75 are linear substitutions. Because of this, w.r.t. linearity
only 71 needs be considered.

If linearity(p') D linearity(u) then p' maps some variables of 7; to linear terms.
In this situation a contradiction is easily obtained by constructing a linear concrete
term t1 and a non-linear term ¢, such that o(t;) = 71, o(t2) = 72, and the unification
of t; with t5 binds all variables of #; to non-linear terms. It follows that if ' is a
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correct unifier then linearity(u) D linearity(u') and consequently, if 4 is an optimal
unifier then linearity(u) = linearity(y').

Now let us consider the case when p’ is more precise than p because it introduces
less set-sharing. In this case there exists at least one variable z in the domain of y

such that p' <, po { z 0 } Assume that

T =219D...OTn,

T2 =y1D...OYp,

such that (without loss of generality) occs(u, z) Nwvars(m) = {z1,...,Zm}, m < n,
and occs(u,z) = {y1} (recall that according to lin-mguacy1 on Figure 4 only one
variable of 75 occurs through each variable in the range of 1). Consider the following
concrete terms:

t1=f(x1, «o-s Tmy Gy vy G Tmgls ---y Tn)

t2:f(y15"'7y15 Y2, ---» Yp, 9, 7g)

As we can see, o(t1) = 71, o(ta) = 72 and t; is linear. The unifier @ of ¢; and ¢o
binds all variables x1,..., %, to some variable w and binds all other variables to
ground terms. It is easy to see that u oc 6, observing that p o = o(6) where

1[):>\1‘.{gw|} fr==z

otherwise.

The rest of the proof is the same as for Lemma 5.4. We demonstrate that ' ¢ 6 by
showing that there is no linear substitution ' for which o(8) = u' o 9/, and thus,
p' is not a correct unifier. From this contradiction we conclude that y is an optimal
abstract unifier of 7 and 7. O
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