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We present a generic preprocessor for combined static/dynamic validation
and debugging of constraint logic programs. Passing programs through the
preprocessor prior to execution allows detecting many bugs automatically.
This is achieved by performing a repertoire of tests which range from sim-
ple syntactic checks to much more advanced checks based on static analysis
of the program. Together with the program, the user may provide a series
of assertions which trigger further automatic checking of the program. Such
assertions are written using the assertion language presented in Chapter 2,
which allows expressing a wide variety of properties. These properties extend
beyond the predefined set which may be understandable by the available
static analyzers and include properties defined by means of user programs.
In addition to user-provided assertions, in each particular CLP system as-
sertions may be available for predefined system predicates. Checking of both
user-provided assertions and assertions for system predicates is attempted
first at compile-time by comparing them with the results of static analysis.
This may allow statically proving that the assertions hold (i.e., they are val-
idated) or that they are violated (and thus bugs detected). User-provided
assertions (or parts of assertions) which cannot be statically proved nor dis-
proved are optionally translated into run-time tests. The implementation of
the preprocessor is generic in that it can be easily customized to different
CLP systems and dialects and in that it is designed to allow the integration
of additional analyses in a simple way. We also report on two tools which are
instances of the generic preprocessor: CiaoPP (for the Ciao Prolog system)
and CHIPRE (for the CHIP CLP(F' D) system). The currently existing anal-
yses include types, modes, non-failure, determinacy, and computational cost,
and can treat modules separately, performing incremental analysis.

3.1 Introduction

Constraint Logic Programming (CLP) [3.34] is a powerful programming
paradigm which allows solving hard combinatorial problems. As (constraint)
logic programming systems mature and further and larger applications are
built, an increased need arises for advanced development and debugging en-
vironments. In the current state of the practice, the tasks of validation and
debugging of CLP programs are very costly in the software development pro-



44 Germén Puebla et al.

cess. This is especially true when the problems to be solved involve a large
number of variables, constraints, and states.

As discussed in previous chapters, such advanced environments will likely
comprise a variety of co-existing tools ranging from declarative debuggers to
execution visualizers, such as those presented in this book. See also [3.24,
3.23] for a discussion on possible debugging scenarios. In order to have a
satisfactory program we need at least the following two properties:

— The program is correct. During the development phase we often have pro-
grams which produce wrong results and/or fail to produce results for some
valid input data, i.e., missing results. Also, the program may generate run-
time errors. Though it is true that these problems mainly occur in the
first stages of development, they may also appear later, for example, if the
program is modified (perhaps to improve performance). The approach we
propose is to use the generic preprocessor presented in this chapter for such
problems.

— The program is reasonably efficient. Though a program may be correct,
it may also be the case that the program takes too long to terminate for
practical purposes. If this occurs, the program may need to be modified.
For example, the constraint order, modeling of the problem, the solver
being used, the heuristics applied, etc. may need to be changed. Though
the preprocessor may be useful for efficiency debugging, for example using
cost analysis, other tools are also of use, for example the visualization tools
presented in chapters 6 through 10.

Correctness checking, or checking for short, can be performed either at
compile-time, i.e., before executing the program, or at run-time, i.e., while
executing the program, or both. In both cases it is important that such check-
ing be performed automatically. Also, the sooner in the development process
an incorrect program is detected, the better. Thus, compile-time checking is
generally preferable to run-time checking. In this chapter, we present a pre-
processor for correctness checking which is automatic, generic (in the sense
that it can be instantiated to different CLP languages), and it is based on
a certain preference for compile-time checking over run-time checking. It is
based on work previously presented in [3.39, 3.32, 3.31, 3.30].

3.1.1 Design of the Preprocessor

Most existing CLP systems perform correctness checks in one way or another.
The classical scenario of such checking is depicted in Figure 3.1. Compile-time
checking typically involves at least performing syntactic checking. Programs
to be executed have to adhere to a given syntax. Those programs which do
not satisfy such syntax are flagged at compile-time as syntactically incorrect
instead of being executed, as depicted in Figure 3.1. Clearly, the fact that
a program is syntactically correct does not guarantee that the program is
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Fig. 3.1. Correctness Checking in CLP Systems.

correct. Run-time checking typically involves at least checking that builtin
and library predicates are called as expected. If, for example, the types of
the arguments are not those expected, the code for the predicate may not be
valid and the possible results are not guaranteed to be correct. When some
call to a builtin or library predicate is detected to be invalid, an error message
is issued and generally execution aborted.

Ezample 3.1.1. Consider the following query and error message using CHIP:

227- X=g,indomain(X).
Error 119 : domain variable expected in indomain(g)

where the CHIP builtin indomain assigns to its argument (X in this case)
one of the values which remain available in its domain and enumerates all
possible values on backtracking. However, this only makes sense if X is a finite
domain variable. Clearly, this is not the case in the example, as X is bound
to the constant g.

Unfortunately, the kinds of incorrectness errors which most existing CLP
systems automatically detect either at compile-time or run-time are very
limited. One reason for this is that the system does not have clear criteria to
flag a program as incorrect other than syntax errors and invalid run-time calls
to system predicates. This is because the system does not know the expected
program behaviour which the user has in mind. A usual way to increase the
criteria to detect incorrect programs is to provide the system with assertions
(see Chapter 2) describing user’s intentions, and which the system can check
either at compile-time or at run-time.

The preprocessor we present greatly extends the checking capabilities of
CLP systems in order to automatically detect more incorrectness symptoms.
We have extended the traditional syntactic checks and also incorporated
assertion-based checking both at compile-time and run-time. In our prepro-
cessor, compile-time checking is based on a range of powerful program an-
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Fig. 3.2. Using the Preprocessor.

alyzers, which gives the system a new flavour: sometimes (semantic) errors
can be detected even without users having provided any assertion at all.

We call our system a preprocessor because programs are expected to be
passed through it prior to being run on the CLP system. When a program is
passed through the preprocessor, i.e., preprocessed, two kinds of messages may
be produced: error messages and warning messages (depicted in Figure 3.2
as CT error and CT warning, respectively). Error messages are issued when
evidence has been found that the program is definitely incorrect (i.e., an
incorrectness symptom has been found). Whenever an error message is issued
the program should be corrected, rather than executed. Warning messages
are issued when the program is suspect of being incorrect. Thus, warning
messages do not always mean that the program is incorrect, but they often
help detecting bugs. Warning messages should also be taken into account
in order to decide whether they correspond to bugs or not. If they do not,
they can often be avoided by making slight modifications to the program.
Thus, the next time the program is preprocessed such warning messages will
not be issued any more. This is not strictly required, but avoids distracting
messages which do not correspond to bugs. If messages are issued and the
program modified, it should be preprocessed once again. Several iterations
may be required until no more errors (nor warnings) are flagged.

As depicted in Figure 3.2, the starting point for assertion-based correct-
ness debugging is a set of check assertions (see Chapter 2) which provide
a (partial) description of the intended behaviour of the program. Besides
check assertions, the programmer may also supply entry assertions for the
program, which describe the valid queries to the program.

A fundamental design principle in our preprocessor is to be as unrestric-
tive as possible with regards to what the user needs to provide. To start
with, and as mentioned in Chapter 2, the assertion language allows express-
ing properties which are much more general than, for example, traditional
type declarations, and such that it may be undecidable whether they hold
or not for a given program. Once we lift the requirement that assertions be
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decidable, it is also natural to allow assertions to be optional: specifications
may be given only for some parts of the program and even for those parts
the information given may be incomplete. This allows preprocessing existing
programs without having to add assertions to them and still being able to
detect errors. And if we decide to add some assertions to our programs, such
assertions may be given for only some procedures or program points, and for
a given predicate we may perhaps have the type of one argument, the mode
of another, and no information on other arguments. Finally, we would like the
system to be able to generate assertions which describe the behaviour of the
existing program, especially for parts of the program for which there are no
check assertions. These assertions will have the status true (see Chapter 2)
and can be visually inspected by the user for checking correctness.’

Note that, although neither entry nor check assertions are strictly re-
quired, the more effort the user invests in providing accurate ones, the more
bugs can be automatically detected. Also, since check assertions may not
encode a complete specification of the program, the fact that all check as-
sertions hold does not necessarily mean that the program is correct, i.e.,
that it behaves according to the user’s intention. It may be the case that
the program satisfies the existing check assertions but violates some part of
the specification which the user has decided not to provide. However, for the
purposes of assertion checking, we say that a program is correct w.r.t. the
given assertions for given valid queries if all its assertions have been proved
for all the states that may appear in the computation of the program with
the given valid queries.

A consequence of our assumptions so far, is that the overall framework
needs to deal throughout with approzimations [3.7, 3.17, 3.31]. Thus, while
the system can be complete with respect to decidable properties (e.g., certain
type systems), it cannot be complete in general, and the system may or may
not be able to prove in general that a given assertion holds. The overall
operation of the system will be sometimes imprecise but must always be
safe. This means that all violations of assertions flagged by the preprocessor
should indeed be violations, but perhaps there are assertions which the system
cannot determine to hold or not. As already discussed in Chapter 2, this also
means that we cannot in general reject a program because the preprocessor
has not been able to prove that the complete specification holds.

Thus, and returning to our overall debugging process using the preproces-
sor (Figure 3.2), it may be the case that after some iterations of the check-
ing/program correction cycle the preprocessor is not capable of detecting
additional errors at compile-time nor to guarantee that the program is cor-
rect w.r.t. the existing check assertions. In such a situation the preprocessor
allows the possibility of performing dynamic checking of assertions, i.e., intro-
ducing run-time tests into the program (indicated as Program + RT tests

! Note however that if check assertions exist for such parts of the program they
are automatically checked.



48 Germén Puebla et al.

in Figure 3.2). Execution of the resulting program on the underlying CLP
system may then issue two kinds of error messages: those directly generated
by the CLP system (System RT error) due to incorrect run-time calls to sys-
tem predicates and those produced by the code added for run-time checking
(User RT error) if some user-provided assertion is detected to be violated
while executing the program.?

Our approach is strongly motivated by the availability of powerful and
mature static analyzers for (constraint) logic programs, generally based
on abstract interpretation [3.17]. These analyzers have proved quite effec-
tive in statically inferring a wide range of program properties accurately
and efficiently, for realistic programs, and with little user input (see, e.g.,
[3.33, 3.38, 3.13, 3.26, 3.27, 3.36, 3.5, 3.6] and their references). Such prop-
erties can range from types and modes to determinacy, non-failure, compu-
tational cost, independence, or termination, to name a few. Traditionally,
the results of static analyses have been applied primarily to program opti-
mization: parallelization, partial evaluation, low-level code optimization, etc.
However, as we have seen, herein we will be applying static analysis in the
context of program development (see, e.g., [3.2, 3.7, 3.31, 3.30]), and, in par-
ticular, in validation and error detection. This fits within a larger overall
objective (achieved to a large extent in CiaoPP [3.30]), which is to combine
both program optimization and debugging into an integrated tool which uses
multiple program analyses and (abstract) program specialization [3.41, 3.40]
as the two main underlying techniques.

3.1.2 Chapter Outline

In the following sections, we describe the preprocessor, mainly by means of
examples, and discuss some technical issues of the correctness checking it
performs. We present the overall framework of the preprocessor (i.e., we give
some insight into the blank box of Figure 3.2) in Section 3.2. In Section 3.3
the techniques used for assertion checking both at compile-time and at run-
time are discussed. The ideas presented are summarized and exemplified in
Section 3.6 following a running example. In Section 3.5 we present how to
customize the preprocessor for a particular CLP system. Finally, Section 3.7
discusses some practical hints on the use of assertions for correctness checking
in our system.

In the rest of the text, we will use examples written in both CHIP [3.16,
3.1] and Ciao® [3.4, 3.29] and output from the corresponding preprocessors,
i.e.,, CHIPRE [3.9] and CiaoPP [3.8, 3.30]. We will be mixing explanations at
a tutorial level with some more technical parts in an effort to provide material

2 As we will see, the messages from system predicates can in fact be also made
come from the assertions present in the system libraries or those used to describe
the built-ins.

3 The Ciao system is available at http://www.clip.dia.fi.upm.es/Software/.



3. A Generic Preprocessor for CLP Debugging 49

syntax B
error/ Interactive |
warning semantic Diagnosis system :
run-time J§ run-time
error error

il Program ( cLP N
+
 RT tests IEOALEUN

Inspection

user

Builtins/
Libs

PREP_BQCESSOR

Fig. 3.3. Architecture of the Preprocessor

that is instructive for newcomers but also has enough detail for more expert
readers.

3.2 Architecture and Operation of the Preprocessor

The preprocessor is a complex system composed of several tools. Figure 3.3
depicts the overall architecture of the generic preprocessor. Hexagons repre-
sent the different tools involved and arrows indicate the communication paths
among the different tools. It is a design objective of the preprocessor that
most of such communication be performed also in terms of assertions. This
has the advantage that at any point in the debugging process the information
is easily readable by the user. In this section we provide an overall descrip-
tion of the different components of the preprocessor and give an overview
of the kinds of bugs the preprocessor can automatically detect by means of
examples. Further examples and details on some components will be given in
other sections throughout the remainder of the chapter.

3.2.1 The Syntax Checker

As mentioned before, the preprocessor performs an extension of the syntax-
level checking performed on programs prior to execution by traditional CLP
systems. Though for simplicity only error messages were depicted in Fig-
ure 3.1, the preprocessor (as the CLP system) may issue error and/or warning
messages (Figure 3.3).

Ezxample 3.2.1. Consider the program in Figure 3.4, which contains a tenta-
tive version of a CHIP program for solving the ship scheduling problem, which
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solve (Upper,Last,N,Dis,Mis,L,Sis) : -
length(Sis, N),
Sis :: 0..Last,
Limit :: O..Upper,
End :: 0..Last,
set_precedences(L, Sis, Dis),
cumulative(Sis, Dis, Mis, unused, unsed, Limit, End, unused),
min_max (labeling(Sis), End).

labeling([]).

labeling([HIT]) :-
delete(X, [H|T],R,0,most_constrained),
indomain (X),
labeling(R) .

set_precedences(L, Sis, Dis):-
Array_starts=..[starts|Sis], % starts(S1,52,S3,...)
Array_durations=..[durations|Dis], ) durations(D1,D2,D3,...)
initialize_prec(L,Array_starts),
set_pre_lp(l, array_starts, Array_durationms).

set_pre_lp([],Array_starts).
set_pre_lp([After #>= Before|R], Array_starts, Array_durations):-
arg(After, Array_starts, S2),
arg(Before, Array_starts, S1),
arh(Before, Array_durations, D1),
S2 #>= 512 + D1,
set_pre_lp(R, Array_starts, array_durations).

initialize_prec(_,_).

Fig. 3.4. A tentative ship program in CHIP

is one of the typical benchmarks of CHIP. When preprocessing this program
with CHIPRE, i.e., an implemented instance of the generic preprocessor for
the CHIP system, the following messages are generated:

WARNING: (1ns 34-35) predicate set_pre_lp/2:

has singleton variable(s) [Array_starts]
WARNING: (1lns 35-42) predicate set_pre_lp/3:

already defined with arity 2
WARNING: (1lns 35-42) predicate set_pre_lp/3:

has singleton variable(s) [S1,S512]
WARNING: (1ns 35-42) predicate arh/3 undefined in source

The first message indicates that the variable Array_starts is a singleton, i.e.,
it only appears once in the clause. This often indicates that we have mistyped
the name of a variable. However, in this case this does not correspond to a
bug. Array_starts is a singleton because its value is not used anywhere else
in the clause. The second message is issued because there are two predicates
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in the program with the same name but different arity. This often indicates
that we have forgotten an argument in the head of a clause or we have added
extra ones. In fact, we have forgotten the third argument in the first clause of
set_pre_lp. The third message marks both S1 and S12 as singletons. This is
actually a bug as we have typed S12 instead of S1 in the second clause. The
last message indicates that there is a call to a predicate which is not defined.
This is because in the second clause for predicate set_pre_lp there is a call
arh(Before, Array durations, D1), where the name of the CHIP builtin
predicate arg has been mistyped. However, unless we actually check that arh
does not correspond to some user-defined predicate (by looking at the whole
program) we cannot be sure that it corresponds to an undefined predicate.*

In addition to warning messages like the ones seen in the example above,
the preprocessor also issues warning messages when the clauses which define
a predicate are discontiguous. This may indicate that we have mistyped the
name of the predicate in a clause or that an old clause for the predicate which
should have been deleted is still in the program text. Some CLP systems
already perform some of the checks discussed, mainly the singleton variable
check.

As mentioned before, it is usually easy to make small (style) modifications
to a program in order to avoid generating warning messages which do not
correspond to bugs. Singleton variables can be replaced by anonymous vari-
ables, whose name start with an underscore. Predicates with the same name
but different arities can be renamed to avoid name coincidence. Discontiguous
clauses can always be put together. However, if we prefer not to modify the
program, we can also instruct the preprocessor not to issue warning messages
by setting the corresponding flag off.

Example 3.2.2. The following directive tells the preprocessor not to issue any
warning message for predicates with the same name and different arity (until
the flag is set to on):

:— set_prolog_flag(multi_arity_warnings,off).

Guided by the warning messages discussed above, we now replace the
definition of predicate set_pre_1p by the following one, for which no syntactic
warning message is issued anymore:

set_pre_1p([],_,_).
set_pre_lp([After#>=Before|R],Array_starts,Array_durations):-
arg(After, Array_starts, S2),
arg(Before, Array_starts, S1),
arg(Before, Array_durations, D1),
S2 #>= S1 + D1,
set_pre_lp(R, Array_starts, array_durations).

* A well designed module system is instrumental in the task of detecting undefined
predicates, especially when performing separate compilation [3.12].
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The extra syntactic checking done by the preprocessor is based on that
performed by the Ciao modular compiler [3.11]. This checking is simple to
implement, efficient to perform, as it does not need any complex analysis,
and very relevant in practice: it allows early bug detection and it does not
require any additional input from the user.

3.2.2 The Static Analyzers

Though syntactic checking is simple, it is also very limited. In fact, there
are plenty of incorrect programs which syntactically look fine. In order to go
beyond syntactic checking, we require semantic checking. This kind of check-
ing involves “understanding” to some extent what a piece of code does. This
task is performed at compile-time by so-called static analysis. Static analysis
is capable of inferring some useful properties of the behaviour of a program
without actually running it. By running the program on sample input data
we can obtain very precise information on the behaviour of the program, but
such information is not guaranteed to be correct for other input data. In con-
trast, information obtained by means of static analysis is indeed guaranteed
to be correct for any input data. However, analysis has to approximate its
results in order to ensure termination, and this causes analysis to lose some
information.

Example 3.2.3. Consider the following toy program:

pX,Y):- Y is 2%X + 1.

By executing the program with input value X=0 we can conclude that on
success of the program Y=1. Static analysis can conclude that, for exam-
ple, on success of the program the following properties hold for argument Y:
integer(Y) (using type analysis), ground(Y) (using mode analysis), and
0dd (Y) (using parity analysis) independently of the particular value of X.

Unfortunately, static analysis is a hard task. In fact, no existing commer-
cial CLP system contains a full fledged static analyzer.’ Thus, they cannot
perform effective semantic compile-time checking. However, several generic
analysis engines, generally based on abstract interpretation [3.17], such as
PLAI [3.38], GAIA [3.13] and the CLP(R) analyzer [3.37], facilitate construc-
tion of static analyzers for (C)LP. These generic engines have the description
domain as parameter. Different domains give analyzers which provide differ-
ent kinds of information and degrees of accuracy.

5 Some exceptions do exist in the academic world, notably the &-Prolog system
(the predecessor of Ciao and the first LP system to include a global analyzer
—PLAI- to perform optimization tasks), the Aquarius and PARMA systems (the
first LP systems to perform low-level optimizations based on global analysis),
and the latest version of the CLP(R) compiler.
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Static analysis can be local or global. In local analysis different parts of
the program can be treated independently from others, for example, by pro-
cessing one clause at a time. In global analysis, the whole program has to
be taken into account as the information obtained when processing other
clauses (predicates) is possibly needed for processing a given clause (predi-
cate). Thus, global analysis usually requires several iterations of analysis over
the program code. Also, care must be taken to ensure termination of analysis.
As a result, local analysis is generally simpler and more efficient than global
analysis, but also less accurate.

The success of compile-time checking greatly depends on the accuracy of
static analysis. As mentioned in Chapter 2, if analysis is goal-dependent, the
accuracy of analysis can be improved by providing accurate entry declara-
tions.

Ezxample 3.2.4. In the ship program, all initial queries to the program should
be to the solve predicate. However, the compiler has no way to automatically
determine this. Thus, if no entry assertions are given for the program then
most general entry assertions, i.e., of the form ‘:- entry p(X1,...,Xn)
true.’ have to be assumed for all predicates p/n in the program.® However,
if some entry assertion(s) exist they are assumed to cover all possible initial
calls to the program. Thus, even the simplest entry declaration which can
be given for predicate solve, i.e., ‘:- entry solve(A,B,C,D,E,F,G) : true.’
(which can also be written using some syntactic sugar as ‘:- entry solve/7.’)
is very useful for goal-dependent static analysis. Since it is the only entry
assertion, the only calls to the rest of the predicates in the program are
those generated during computations of solve/7. This allows analysis to start
from the predicate solve/7 only, instead of from all predicates, which can
result in increased precision. However, analysis will still make no assumptions
regarding the arguments of the calls to solve/7. This can be improved using
a more accurate entry declaration such as the following;:

:— entry solve/7 :
int * int * int * list(int) * list(int) * list * term.

which is syntactic sugar for ‘:- entry solve(4,B,C,D,E,F,G): (int(A),int(B),
int(C),1ist(D,int),list(E,int),list(F),term(G)).’. It gives the types of
the input arguments, and describes more precisely the valid input data.”

6 Another advantage of a strict module system such as that of Ciao [3.12] is that
only exported predicates of a module can be subject to initial queries. Thus most
general entry assertions need only be assumed for exported predicates.

7 Note that since, as mentioned in Chapter 2, properties (and, therefore, types) are
considered instantiation properties by default, the assertion above also specifies
a mode: all arguments except the last two are required to be ground on calls.
The last but one argument is only required to be instantiated to a list skeleton,
while no constraint is placed on the last argument.
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3.2.3 Cousistency of the Analysis Results

The results of static analysis are often good indicators of bugs, even if no
assertion is given. This is because “strange” results often correspond to bugs.
As is the case with the syntactic warnings presented before, these indicators
should be taken with care (as they do not ensure any violation of assertions)
and thus warning messages rather than error messages are produced. An
important observation is that plenty of static analyses, such as modes and
regular types, compute over-approximations of the success sets of predicates.
Then, if such an over-approximation corresponds to the empty set then this
implies that such predicate never succeeds. Thus, unless the predicate is dead-
code,? this often indicates that the code for the predicate is erroneous since
every call either fails finitely (or raises an error) or loops.

Example 3.2.5. When preprocessing the current version of our example pro-
gram using regular types [3.44, 3.18, 3.26] (see also Chapter 4 for a detailed
discussion on regular types) analysis we get the following messages:
WARNING: Literal set_precedences(L, Sis, Dis)
at solve/7/1/5 does not succeed!

WARNING: Literal set_pre_lp(l, array_starts, Array_duration)
at set_precedences/3/1/4 does not succeed!

The first warning message refers to a literal (in particular, the 5th literal
in the 1st clause of solve/7) which calls the predicate set_precedences/3,
whose success type is empty. Also, even if the success type of a predicate
is not empty, i.e., there may be some calls which succeed, it is possible
to detect that at a certain program point the given call to the predicate
cannot succeed because the type of the particular call is incompatible with
the success type of the predicate. This is the reason for the second warn-
ing message.® Note that the predicate set_pre_1p/3 can only succeed if
the value at the first argument is compatible with a list. However, the call
set_pre_1p(l, array.starts, Array duration) has the constant 1 at the
first argument. This is actually a bug, as 1 should be L. Once we correct
this bug, in subsequent preprocessing of the program both warning messages
disappear. In fact, the first one was also a consequence of the same bug which
propagated to the calling predicates of set_precedences/3.

3.2.4 The Assertion Normalizer

As seen in Chapter 2, the assertion language in addition to the “basic” syntax
for assertions also has an “extended” syntax which can be seen as syntactic

8 If analysis is goal-dependent and thus also computes an over-approximation of
the calling states to the predicate, predicates which are dead-code can often
be identified by having an over-approximation of the calling states which corre-
sponds to the empty set.

9 This kind of reasoning can only be done if the static analysis used infers prop-
erties which are downwards closed.
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sugar for writing assertions. The role of this module is to convert assertions
possibly written in the extended syntax into the basic assertion language.
For example, compound assertions (see Chapter 2) are converted into basic
ones prior to compile-time checking. This module is represented in Figure 3.3
by the hexagon labeled Assertion Normalizer & Lib Itf. This module is
also in charge of generating and reading interface files for modules. Interface
files contain assertions describing the predicates exported by the module.
This allows correctly analyzing and checking programs composed of several
modules without having to preprocess the auxiliary modules over and over
again [3.42]. Le., interface files allow modular analysis and assertion checking.

3.2.5 The Assertion Comparator

A simple (but tedious) possibility in order to use the information obtained
by static analysis for detecting correctness problems at compile-time is to
visually inspect the analysis results: unexpected results often indicate cor-
rectness problems. A more attractive alternative is to automatically compare
the analysis results with our expectations, given as assertions.

As depicted in Figure 3.3, this is done in the preprocessor by the tool
named Comparator. The result might be that the assertion is validated or
that it is proved not to hold. In the first case the corresponding assertions are
rewritten as checked assertions; in the second case abstract symptoms are
detected, the corresponding assertions are rewritten as false assertions, and
error messages are presented to the user. It is also possible that an assertion
cannot be proved nor disproved. In this case some assertions remain in check
status, and warning messages could be presented to the user to indicate this.
In the case that errors are generated, diagnosis should be started. One option
is to use the type-based diagnoser presented in Chapter 4 if the properties
in the assertion are regular types, or other forms of abstract diagnosis [3.14,
3.15], in order to detect the cause of the error. Also, as we will see, the
preprocessor does perform a certain amount of diagnosis, in the sense that it
locates not only the assertion from which the the error or warning is generated
but also, for example, the clause body literal that originates the call which is
identified to be in error (see Section 3.2.7). Also, we believe it is not difficult
to extend the preprocessor to perform more extensive diagnosis, using the
quite detailed information on dependencies between program points that the
analyzers keep track of.

3.2.6 Assertions for System Predicates

A very important feature of the preprocessor, explained in detail in Sec-
tion 3.5.1, is that the behaviour of system predicates (not only of user pred-
icates) is given in terms of assertions. By system predicates we denote both
builtin and library predicates provided by the programming system. As many
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as possible of these system predicates should be described using assertions.
Such assertions for system predicates, which are depicted in Figure 3.3 as
Builtin/Libs, are in principle meant to be written by system developers
when generating a particular instance of the preprocessor for a given CLP
system. For example, the assertions describing the system predicates in Ciao
have been written by the authors of this chapter and other Ciao developers
and are part of the Ciao system libraries, whereas the assertions describing
the builtin predicates in CHIP have been written at COSYTEC (i.e., the
CHIP developers).

The existence of assertions which describe system predicates is beneficial
for at least two reasons. One which is seemingly simple but quite relevant
in practice is the possibility of automatic generation of documentation (pri-
marily reference manuals) directly from the assertions [3.28]. In fact, the
documentation of the preprocessor itself [3.9, 3.8] is generated this way. An-
other one is that though system predicates are in principle considered correct
under the assumption that they are called with valid input data, it is still
of use to check that they are indeed called with valid input data. In fact,
existing CLP systems perform this checking at run-time. The existence of
such assertions allows checking the calls to system predicates at compile-
time in addition to run-time in CLP systems which originally do not perform
compile-time checking. This may allow automatically detecting many bugs at
compile-time without any user-provided assertions. The only burden on the
user is (1) to optionally provide one or more entry assertions which describe
the valid queries and (2) to wait the time required by the preprocessor in
order to both perform static analysis and compare the analysis results with
the expected calls to system predicates.

Example 3.2.6. Consider the current version of the ship program, and as-
sume that the only existing entry declaration is ‘:- entry solve/7.’. When
preprocessing the program the following messages are issued:

ERROR: Builtin predicate
cumulative(Sis,Dis,Mis,unused,unsed,Limit,End,unused)
at solve/7/1/6 is not called as expected (argument 5):
Called: “unsed
Expected: intlist_or_unused

ERROR: Builtin predicate arg(After,Array_starts,S2)
at set_pre_lp/3/2/1 is not called as expected (argument 2):
Called: “array_starts
Expected: struct

In error messages, the marker ~ is used to distinguish constants (terms) from
regular types (which represent sets of terms). By default, values represent
regular types. However, if they are marked with ~ they represent constants.
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In our example, intlist _or_unused is a type since it is not marked with -
whereas “unsed is a constant.'°

The first message is due to the fact that the constant unused has been mis-
takingly typed as unsed in the fifth argument of the call to the CHIP builtin
predicate cumulative/8. As indicated in the error message, this predicate
requires the fifth argument to be of type intlist_or_unused which was de-
fined when writing assertions for the system predicates in CHIP and which
indicates that such argument must be either the constant unused or a list of
integers. The exact definition of this type can be found in Section 3.5.1.

In the second message we have detected that we call the CHIP builtin
predicate arg/3 with the second argument bound to array starts which
is a constant (as indicated by the marker ~) and thus of arity zero. This is
incompatible with the expected call type struct, i.e., a structure with arity
strictly greater than zero. In the current version of CHIP, this will generate a
run-time error, whereas in other systems such as Ciao and SICStus, this call
would fail but would not raise an error. Though we know the program is incor-
rect, the literal where the error is flagged, arg(After, Array_starts, S2)
is apparently correct. We correct the first error and leave detection of the
cause for the second error for later.

The different behaviour of seemingly identical builtin predicates (such
as arg/3 in the example above) in different systems further emphasizes the
benefits of describing builtin predicates by means of assertions. They can be
used for easily customizing static analysis for different systems, as assertions
are easier to understand by naive users of the analysis than the hardwired
internal representation used in ad-hoc analyzers for a particular system.

Run-time checking of assertions describing system predicates presents
some peculiarities. When the system predicates (of a particular CLP system)
already perform the required run-time checks, the preprocessor does not in-
troduce any extra code for run-time checking, even if this option has been
selected (in contrast to what happens for user-provided assertions). However,
if we design a CLP system from the start which is always going to be used in
conjunction with the preprocessor a very interesting alternative exists: we can
avoid introducing in the system predicates any code for checking the calls, as
that can be done by the preprocessor. The advantage of this approach is that
programs can be more efficient, as the preprocessor may prove that many of
the run-time tests are redundant, and thus not introduce run-time tests for
them.

10 Though it is always possible to define a regular type which contains a single
constant such as unsed, we introduce the marker ~ (“quote”) to improve the
readability and conciseness of the messages. Note that defining such type ex-
plicitly instead would require inventing a new name for it and providing the
definition of the type together with the error message.
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3.2.7 Assertions for User-Defined Predicates

Up to now we have seen that the preprocessor is capable of issuing a good
number of error and warning messages even if the user does not provide any
check assertions. We believe that this is very important in practice. However,
adding assertions to programs can be useful for several reasons. One is that
they allow further semantic checking of the programs, since the assertions
provided encode a partial specification of the user’s intention, against which
the analysis results can be compared. Another one is that they also allow
a form of diagnosis of the error symptoms detected, so that in some cases
it is possible to automatically locate the program construct responsible for
the error. This is important since it is often the case that the preprocessor
issues an error message at a program point which is actually far from the
cause of the error. This happens, for example, when a predicate is called in
the wrong way. Thus, one possibility is to visually inspect the program in
order to detect which is (are) the wrong call(s) to the predicate among all
the existing ones in the program. This does not seem like a good idea if the
program being debugged is large and such predicate is used in several places.
Thus, a better alternative is to add to the program an assertion on the calls
to such predicate. This assertion can then be used by the preprocessor in
order to automatically detect the wrong call(s) to the predicate.

Ezample 3.2.7. Consider again the pending error message from the previous
iteration over the ship program. We know that the program is incorrect be-
cause (global) type analysis tells us that the variable Array_starts will be
bound at run-time to the constant array starts. However, by just looking
at the definition of predicate set_pre_1p it is not clear where this constant
comes from. This is because the cause of this problem is not in the definition
of set_pre_1p but rather in that the predicate is being used incorrectly (i.e.,
its precondition is violated). We thus introduce the following calls assertion:

:— calls set_pre_1p(A,B,C): (struct(B),struct(C)).

In this assertion we require that both the second and third parameters of the
predicate, i.e., B and C are structures with arity greater than zero, since in
the program we are going to access the arguments in the structure of B and
C with the builtin predicate arg/3.

The next time our ship program is preprocessed, having added the calls
assertion, besides the pending error message of Example 3.2.6, we also get
the following one:

ERROR: false assertion at set_precedences/3/1/4
unexpected call (argument 2):
Called: “array_starts
Expected: struct

This message tells us the exact location of the bug, the fourth literal of the
first clause for predicate set_precedences/3. This is because we have typed
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the constant array_starts instead of the variable Array_starts in such
literal.

Thus, as shown in the example above, user-provided check assertions
may help in locating the actual cause for an error. Also, as already mentioned,
and maybe more obvious, user-provided assertions may allow detecting errors
which are not easy to detect automatically otherwise.

Example 3.2.8. After correcting the bug located in the previous example,
preprocessing the program once again produces the following error message:

ERROR: false assertion at set_pre_lp/3/2/5
unexpected call (argument 3):
Called: “array_durations
Expected: struct

which would not be automatically detected by the preprocessor without user-
provided assertions. The obvious correction is to replace array_durations in
the recursive call to set_pre_lp in its second clause with Array durations.
After correcting this bug, preprocessing the program with the given assertions
does not generate any more messages.

Finally, and as already discussed in Section 3.1.1, if some part of an as-
sertion for a user-defined predicate has not been proved nor disproved during
compile-time checking, it can be checked at run-time in the classical way, i.e.,
run-time tests are added to the program which encode in some way the given
assertions. Introducing run-time tests by hand into a program is a tedious
task and may introduce additional bugs in the program. In the preproces-
sor, this is performed by the RT tests Annotator tool in Figure 3.3. How
run-time checks are introduced is discussed in detail in Section 3.4.

3.3 Compile-Time Checking

Compile-time checking of assertions is conceptually more powerful than run-
time checking. However, it is also more complex. Since the results of compile-
time checking are valid for any query which satisfies the existing entry decla-
rations, compile-time checking can be used both to detect that an assertion is
violated and to prove that an assertion holds for any valid query, i.e., the as-
sertion is validated. The main problem with compile-time checking is that it
requires the existence of suitable static analyses which are capable of proving
the properties of interest. Unfortunately, static analyzers are complex to build
and also some properties are very difficult to prove without actually running
the program. On the other hand, though run-time checking is simpler to im-
plement than compile-time checking, it also has important drawbacks. First,
it requires test cases, i.e., sample input data, which typically have an incom-
plete coverage of the program execution paths. Therefore, run-time checking
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cannot be used in general for proving that a program is correct with respect
to an assertion, i.e., that the assertion is checked, as this would require test-
ing the program with all possible input values, which is in general unrealistic.
Second, run-time checking clearly introduces overhead into program execu-
tion. Thus, it is important that we have the possibility of turning it on and
off, as is the case in the preprocessor.

We now show informally how the actual checking of the assertions at
compile-time is performed by means of an example. Then, we briefly discuss
on the technique used in the preprocessor for “reducing” (i.e., validating and
detecting violations of) assertions. Precise details on how to reduce assertions
at compile-time can be found in [3.39].

Example 3.3.1. Assume that we have the following declarations of properties
and user-provided assertions:

:— shfr prop ground/1.

:— shfr prop var/1.

:— regtype prop list/2.

list([1,_P).

list([X|Xs],P):- P(X), list(Xs,P).

:— non_failure cprop does_not_fail/1.
:— cprop terminates/1.

:— check success p(X,Y) : ground(X) => ground(Y).
:— check success p(X,Y) => (list(X,int), 1list(Y,int)).
:— check comp p(X,Y)
(list(X,int), var(Y)) + (does_not_fail,terminates).

which declare ground/1, var/1, and list/2 as properties of execution
states and does not_fail/1 and terminates/1 as properties of computa-
tions (see Chapter 2). In addition, the declarations inform the preprocessor
that properties ground/1 and var/1 can be treated using the inference sys-
tem shfr, property 1ist/2 using regtypes, and does not_fail/1 using the
non_failure inference system.!!

As already mentioned in Chapter 2, assertion checking can be seen as com-
puting the truth value of assertions by composing the value eval (AF, 0, P,1S)
of the atomic properties AF' at the corresponding stores 6 reachable during
execution. In the case of compile-time checking we must consider all possi-
ble stores reachable from any valid query. The abstract interpretation-based
inference systems shfr and regtype compute a description (abstract substi-
tution) for the calls and success states of each predicate (in fact they also

1 1t is worth mentioning that since the properties shown in the example above
are quite standard it is good practice to have their declarations (and possibly
also their definitions) in a library module, so that users can simply include the
module in their code rather than having to write the declarations from scratch
for every new program. Also, in each particular instantiation of the preprocessor
a set of such library modules should exist which are adapted to the analyses
available.
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do so for every program point). In compile-time checking we consider an ab-
stract evaluation function eval,(AF, A, P,IS) in which the concrete store 6
has been replaced by an abstract description A\. We denote by «(A) the set
of stores which a description A represents. Correctness of abstract interpre-
tation guarantees that () is a safe approximation of the set of all possible
stores reached from valid initial queries, i.e., all such states are in y(A).

Ezample 3.3.2. After performing static analysis of the program (whose text
we do not show as the discussion is independent of it) using shfr and
regtypes we obtain a description of the calls and success states for pred-
icate p/2. For readability, we now show the results of such analyses in terms
of assertions:

:— true success p(X,Y):(ground(X),var(Y)) => (ground(X),ground(Y)).
:— true success p(X,Y):(list(X,int),term(Y))=>(list(X,int),int(Y)).

We denote by A.(p/2) and A\;(p/2) the description of the calling and suc-
cess states, respectively, of p/2. In our example, the static inference system
shfr allows us to conclude that the evaluation of the three atomic prop-
erties eval,(ground (X), Ac(p/2), P, shfr), evaly(ground(Y), As;(p/2), P, shfr),
and evaly(var(Y),A.(p/2), P,shfr) take the value true. Additionally, the
regtypes analysis determines that on success of p/2, i.e., in A\;(p/2), the
type of argument Y is int, which is a predefined type in regtypes. This
type is incompatible with Y being a list of integers, which is what was ex-
pected. Thus, eval, (1ist(Y,int), A.(p/2), P, regtypes) takes the value false.
The implementation of eval, in the preprocessor is discussed below and is
based on the notion of abstract executability [3.41, 3.40].

Regarding the non_failure inference system, we assume it is implemented
(asin [3.19]) as a program analysis which uses the results of the shfr and
regtypes analyses for approximating the calling patterns to each predicate,
and then infers whether the program predicates with the given calling pat-
terns might fail or not based on whether the type is recursively “covered”.

Example 3.3.3. Assume that non_failure analysis concludes that p/2 does
not fail for its calling pattern p(X,Y):(list(X,int),var(Y)). This can be in-
dicated by an assertion of the form:

:— true comp p(X,Y) : (list(X,int), var(Y)) + does_not_fail.

and thus eval, (does not_fail (p(X,Y)), A.(p/2), P,non_failure) is guaranteed
to take the value true.

Assume also that we do not have any static inference system which can de-
cide whether terminates(p(X,Y)) with calling pattern (list(X,int),var(Y))
holds or not. Thus, eval, for this property has to take the value “don’t

know?” .12

12 Note that this could also happen even if a termination analysis exists in the
system. Termination analyses may not able in general to determine whether a
given computation terminates or not.
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The next step consists of composing and simplifying the truth value of
each logic formula from the truth value computed by eval,.

Example 3.3.4. After composing the results of evaluating each atomic prop-
erty in the assertion formulae we obtain:

:— check success p(X,Y) : true => true.
:— check success p(X,Y) => (true, false).
:— check comp p(X,Y) : (true, true) + (true, terminates).

We can now apply typical simplification of logical expressions and obtain:

:— check success p(X,Y) : true => true.
:— check success p(X,Y) => false.
:— check comp p(X,Y) : true + terminates.

The third and last step is to obtain, if possible, the truth value of the
assertion as a whole. As assertion takes the value true, i.e., it is validated if
either its precondition (more formally, the appa formula of Chapter 2) takes
the value false (i.e., the assertion is never applicable) or if its postcondition
(more formally, the sata formula of Chapter 2) takes the value true. The
postcondition of the first assertion of our example takes the value true. Thus,
there is no need to consider such an assertion in run-time checking, and we
can rewrite it with the tag checked. An assertion is violated if its precondi-
tion takes the value true and its postcondition takes the value false.!®> This
happens to the second assertion in our example. Thus, we can rewrite it with
the tag false. Whenever an assertion is detected to be false at compile-time,
in addition to being rewritten with the false tag, the preprocessor also is-
sues an error message. This allows the user to be aware of an incorrectness
problem without looking at the assertions obtained by compile-time checking.

If it is not possible to modify the tag of an assertion, then such assertion
is left as a check assertion, for which run-time checks might be generated.
However, as the assertion may have been simplified, this allows reducing the
number of properties which have to be checked at run-time.

Example 3.3.5. The final result of compile-time checking of assertions is:

:— checked success p(X,Y) => (ground(X),ground(Y)).
:— false success p(X,Y) => (list(X,int), list(Y,int)).
:— check  comp p(X,Y) + terminates.

13 There is a caveat in this case due to the use of over-approximations in program
analysis. It may be the case that a compile-time error is issued which does not
occur at run-time for any valid input data. This is because though any activation
of the predicate would be erroneous, it may also be the case that the predicate
is never reached in any valid execution but analysis is not able to notice this.
However, we believe that such situations do not happen so often and also the
error flagged is actually an error of the program code. Though it can never show
up in the current program it could do so if the erroneous part of the program is
used in another context (in which it is actually used) in another program.
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where the third assertion still has the tag check since it is not guaranteed
to hold nor to be violated. Note also that the two assertions whose tag has
changed appear as in the original version rather than the simplified one. The
preprocessor does so as we believe it is more informative.

One important consideration about compile-time checking is that, for a
given analysis, not all properties are equally simple to reduce at compile-time
to either true or false. Unless otherwise stated, we assume that, as is usually
the case, analysis computes over-approximations (but it is straightforward to
develop dual solutions for under-approximations). We first study the case of
reducing a property to true and then the case for reducing it to false.

A declaration of the form ‘:- InfSys prop Prop/n.’ implicitly states that
there is some abstract description Arg(Prop/n) computable by the static anal-
ysis InfSys such that for all stores 8 in v(Arg(Prop/n)) the property Prop/n
holds. In such case, if at the corresponding context, analysis computes a de-
scription A such that y(A) C v(Ars(Prop/n)) then the property is clearly
guaranteed to hold for any store in ~(\). This process corresponds to ab-
stractly executing the property to the value true [3.41, 3.40].

Another way of proving that a property holds may be provided by the exis-
tence of a declaration of the form ¢:- proves Prop(X) : Prop2(X).’ (see Chap-
ter 2), which indicates that in order to prove Prop(X) it is sufficient to prove
Prop2(X). Note that these proves declarations may be chained to any length.
If we reach some PropN(X) for which a declaration ‘:- InfSys prop PropN.’
exists, then we can try to prove it as described above.

Regarding reducing a property to false, analyses based on over-approxi-
mations are not so appropriate. Assume that the result of analysis is a de-
scription A which is an over-approximation of the set of stores which may
occur during the execution of a given program construct. The fact that there
are elements in y(\) in which a property AF does not hold does not guar-
antee that AF actually does not hold during execution. It is possible that
such elements correspond to stores approximated by (A) but which do not
actually occur during execution of the given program construct. They might
have been introduced due to the loss of precision of the analysis. In any case,
if the property AF does not hold in any of the elements of v(\) then it does
not hold in any of the actual stores either. This is a sufficient condition for
the property to be false.

Despite the discussion above, and as we will see in the coming example,
it is important to mention that it is possible to reduce a property Prop/n to
false using an inference system InfSys without the need of any assertion of
the form ‘:- InfSys prop Prop/n’ which declares Prop/n as directly provable
in InfSys, and even if no disproves assertion exists for Prop/n. This is very
convenient, since in order to add an assertion °
need to know a suitable Arg(Prop/n) and this requires a good understanding
of both the inference system InfSys and the property under consideration
Prop/n. As a result of being able to reduce very general properties to false,

:- InfSys prop Prop/n’ we
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the preprocessor can detect incorrectness problems at compile-time even if
the properties used in the assertions have not been written with any static
inference system in mind.

Example 3.3.6. Consider a property sorted num list to check for sorted
lists of numbers (defined as in Section 3.6), and mode and regular type anal-
yses. Although the property cannot be proved with only (over approxima-
tions) of mode and regular type information, it may be possible to prove that
it does not hold (an example of how properties which are not provable of any
analysis can also be useful for detecting bugs at compile-time). While the reg-
ular type analysis cannot capture perfectly the property sorted num 1ist(T),
it can still approximate it (by analyzing the definition) as 1ist(T,num). If
type analysis for the program generates a type for T which is incompatible
with 1ist(T,num), then a definite error symptom is detected.

Similarly to the case of reducing properties to true, a declaration of the
form ‘:- disproves Prop(X) : Prop2(X).’ can be used to disprove Prop(X) if
we can prove Prop2(X). Again, we can also have a chain of proves declarations
which may allow proving Prop2(X) and thus disproving Prop(X). Further dis-
cussion on how to deal with the different kinds of properties and the impact
of approximations can be found in [3.7, 3.39].

Properties that are directly provable in an inference system InfSys are
the main targets for abstract execution when using InfSys as static inference
system, since it is often possible to either prove them or disprove them,
provided that InfSys is accurate enough. This is the case for the properties
ground, 1list(int) and does not_fail in the example above. Note that, if
the analysis InfSys is precise (in the sense that the abstract operations do not
lose information beyond the abstraction implied by the abstraction function
used [3.17]) and, obviously, terminates, then there are properties which can
be reduced to either true or false in all cases, i.e., for which the analysis is
a complete inference system. In fact, in systems conceived for compile-time
checking only, the properties admitted in assertions are usually restricted to
those which are (almost) perfect observables of the analysis available, i.e.,
they can (almost) always be proven or disproven. This is not our case, and
nevertheless, we have seen how interesting properties —which are not perfect
observables— can still be used to detect incorrectness symptoms.

Though the process just shown simplifies predicate assertions using the
information static analysis has inferred for the global (call and) success states
for the predicate, in order to perform compile-time checking of program-
point assertions the inference system needs to be able to compute information
at each program point. In fact, both shfr and regtypes do so. It is also
important to mention that it is also very useful to perform compile-time
checking of predicate assertions at each program point. The interest in doing
this is because many different calls to a predicate may exist in the program
and it is likely that only some of them are incorrect. Thus, as some analyses
summarize all possible calls in one description (by losing precision), it is
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not possible with these analyses to detect that an assertion is violated in
some calls to the predicate. One way to solve this problem is to compute
analysis information at each program point and then compare the analysis
information at each program point with the assertions for the corresponding
predicate called at that particular program point.'4

Be it at the predicate level or at the program-point level, the fact that
an assertion remains in status check cannot be taken as an indicator of an
incorrectness problem, as is the case in strong type systems, since it may be
due to the lack of an static analysis for which the given property is provable,
or to the loss of precision of the analyzer. In any case, issuing a warning
might be helpful, but (automatic) checking would have to be performed at
run-time.

3.4 Run-Time Checking

The aim of run-time checking of assertions is to detect those assertions which
are violated during the execution of the program for the data being explored.
Such checking involves:

1. At each execution state it must be determined which are the assertions (if
any) which affect the corresponding state together with the logic formulae
which have to be evaluated at the correspondig store.

2. Actually evaluating the required atomic formulae AF, i.e. computing
eval(AF,0,P,IS).

3. Obtaining the truth value of the logic formulae as a whole.

4. Obtaining the truth value of the assertion as a whole. If the assertion is
detected to be violated error messages should be issued.

As discussed earlier (Figure 3.2), run-time checking in the preprocessor
is implemented as a program transformation which adds new code to the
program as needed to perform the required checking during execution of the
program. This program transformation, presented in Section 3.4.2 below, is in
charge of solving item 1 above. As discussed in Chapter 2, item 2 above, i.e.,
evaluation of the atomic formulae, must be performed by a suitable inference
system 1.S. We discuss how this evaluation is performed in our preprocessor in
Section 3.4.1, under the assumption that we use the underlying CLP system
as the inference system IS. This section also discusses how to obtain the
truth value of the logic formulae as a whole, i.e., item 3 above. Finally, in
Section 3.4.2 we present the overall program transformation and a series of
predicates which are in charge of obtaining the truth value of each assertion
as a whole and of issuing errors when an assertion is detected to be violated.

4 Furthermore, since the analysis is multi-variant, a single program point may be
reflected in analysis by several descriptions. Thus, it is in principle possible to
perform assertion checking and diagnosis at a finer-grained level.
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The code of such predicates is independent of the particular program being
checked and is stored in a library program named rtchecks which is loaded
by the the transformed program (which requires such library in order to run
correctly). If the checking proves that an assertion is violated, a concrete'®
incorrectness symptom is detected and some kind of error message is given to
the user. A procedure for localizing the cause of the error, such as standard or
declarative diagnosis can then be started. It is out of the scope of this chapter
to discuss how program diagnosis should be performed. However, techniques
such as declarative debugging [3.43, 3.3, 3.20, 3.21] (see Chapter 5) or more
traditional interactive debuggers [3.10, 3.22] may be applied. Correctness of
the transformation requires that the transformed program only produce an
error message if the specification is in fact violated.

3.4.1 Evaluating Atomic Logic Formulae

As discussed in Chapter 2, one of the design decisions of our assertion lan-
guage is that property predicates are defined in the source language. Given
this, and although the assertion language design leaves the choice of im-
plementation for the inference system open, it seems interesting to study
the viability of using the underlying (C)LP system to perform the run-time
checks, i.e., to study whether eval(AF,0,P,1S) can be reduced to true or
false with IS being the (C)LP system in which the program is running.

This introduces some simplifications in the problem: since IS is given,
0 is the current store, and P is the program itself, then we can simplify
eval(AF,0,P,1S) to simply eval(AF). Since AF is a predicate of the pro-
gram, then the answer to this question could be obtained, at least at a first
level of approximation, simply by calling AF directly and seeing whether it
succeeds or fails. This raises at least two issues. First, the fact that the system
will interleave calls to the code which defines each property predicate with
the execution of the program imposes in practice some limitations on such
code. Essentially, we would like the behaviour of the program not to change
in a fundamental way independently of whether the program contains run-
time checks or not. The second issue is whether we can use the result of the
execution of AF in the current store as the value of eval(AF).

Regarding the first issue above, while we can tolerate a degradation in
execution speed, turning on run-time checking should not introduce non-
termination in a program which otherwise terminates. Also, checking a prop-
erty should not change the answers computed by the program or produce
unexpected side-effects (such as new program errors, other than those from
assertion violations). In light of this, a reasonable set of requirements on the
definitions of the predicate properties is the following:

15 As opposed to abstract incorrectness symptoms, which are the ones detected by
compile-time checking.
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1. The execution of the code which defines the property predicate should
terminate, and it should do so with success or failure, not error, for any
possible input.

2. The code defining a property should not perform input/output, add or
delete clauses, etc., which may interfere with the program behaviour.

3. The execution of a property should not further instantiate its arguments
or add new constraints, it may not change the store 8 seen by the subse-
quent part of the execution.

In practice, these conditions can be relaxed somewhat in order to simplify
the task of writing property predicates. In particular, and as we will see, the
program transformation that we present below guarantees requirement 3, i.e.,
run-time checking is guranteed not to introduce any undesired constraints,
independently of how the property predicates are written. Thus, condition
3 can be ignored in practice. Also, some basic checks on the code defining
property predicates are enough in most cases for requirement 2, i.e., the sys-
tem can easily be made to reject a property predicate which does not satisfy
condition 2. However, the user is responsible for guaranteeing termination of
the execution of the properties defined. To this end, our system assumes that
property predicates declared with prop (i.e., those of the execution states)
will always terminate for any possible calling state.

We now turn to the second issue above, i.e., whether the result of execut-
ing AF in the current store can be used as the value of eval(AF). Recall that
the assertion language (Chapter 2) specifies that the checking of properties
about execution states has to guarantee that they are treated as instantia-
tion checks, unless they are qualified by compat, in which case they should
be treated as compatibility checks. The fact that the assertion language al-
lows writing the definitions of properties in such a way that they can be used
both in instantation and compatibility checks, imposes the need for some ma-
chinery beyond simply calling AF'. It turns out that performing instantiation
checks corresponds to performing what is referred in (C)LP as entailment
and disentailment tests [3.32, 3.39]. A constraint is entailed by a constraint
store if the constraint is implied by the store. Conversely, a constraint is dis-
entailed by a constraint store if it is inconsistent with the store. We extend
the notion of entailment and disentailment, originally defined on constraints,
to property predicates. We say that a property predicate is entailed by a
constraint store if its execution succeeds without affecting the store, i.e., any
constraint added to the store only affects variables which are local to the def-
inition of the predicate. Also, we say that a property predicate is disentailed
by a constraint store if its execution fails. An instantiation property is true
if it is entailed, and false if it is disentailed.

Given these definitions, the question then is how can entailment and dis-
entailment tests be performed by evaluation of the property formulae and how
the characteristics of the CLP system might affect this evaluation. Figure 3.5
lists definitions for entailed/1 or disentailed/1 which achieve this task,
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disentailed((LogForm,LogForms)):- !,

( disentailed(LogForm); disentailed(LogForms) ).
disentailed ((LogForm;LogForms)):- !,

disentailed(LogForm), disentailed(LogForms) .
disentailed(compat(LogForm)):- !,

system_dependent_incompatible (LogForm) .
disentailed (AtomForm) : -

\+ \+ system_dependent_disentailed(AtomForm) .
disentailed (AtomForm) : -

disproves (AtomForm,SufficientCond),

entailed (SufficientCond) .

entailed ((LogForm,LogForms)):- !,
entailed(LogForm), entailed(LogForms).
entailed ((LogForm;LogForms)):- !,
( entailed(LogForm); entailed(LogForms) ).
entailed(compat (LogForm)):- !,
system_dependent_compatible (LogForm) .
entailed (AtomForm) : -
\+ \+ system_dependent_entailed(AtomForm) .
entailed (AtomForm) : -

proves (AtomForm,SufficientCond),
entailed (SufficientCond) .

Fig. 3.5. Entailment and Disentailment of Logic Formulae

i.e., properties are treated as instantiation checks unless they are marked
as compat, in which case they are treated as compatibility checks, and also
make sure that checking does not affect program execution by posing any
additional constraints on the store.

The implementation of Figure 3.5 also takes care of an additional issue:
guaranteeing that the possible incompleteness of the constraint solver does
not affect correctness of the dynamic assertion checking. By incompleteness
we mean the fact that the solver may fail to detect that some state (con-
straint store) is inconsistent when it is indeed inconsistent. This may happen
because of constraints which the solver decides to delay, as they are hard to
treat in the current state, and will be taken into account when more infor-
mation is available. Note that a simple sufficient condition for a property to
be disentailed is that the execution of the predicate defining it actually fails,
which means that the constraints it imposes are inconsistent with the store.
If the solver is incomplete, properties which are false may go undetected, and
preconditions which in fact do not hold might be deemed to hold, which is
obviously incorrect.

Moreover, finding a sufficient condition for entailment of a property is
not as easy as with disentailment. In fact, many CLP systems do not even
have an entailment test for constraints. Also, checking that the constraint
store remains the same after the execution of a property predicate (i.e.,
that its execution has not added constraints to the store) may not be an
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easy task, as store comparison is an operation which is usually not avail-
able. Therefore, these checks have to be defined separately for each CLP
system. L.e., system implementors should provide suitable definitions for the
predicates system dependent_entailed, system dependent disentailed,
system_dependent_compatible, and system dependent_incompatible. Pos-
sible implementations for a particular constraint system are given in Sec-
tion 3.5.2.

Also, note that there are properties for which no accurate definition can
be written in the underlying language, and therefore it is difficult that exe-
cutable definitions are given for them. For these properties, an approzrimate
definition may be given, and this approximation should be correct in the
usual sense that all errors flagged should be errors, but there may be er-
rors that go undetected. This can be done in the assertion language with
proves and disproves assertions. These assertions are translated during
the transformation of the program into two tables of facts, proves/2 and
disproves/2, which are then considered during run-time checking by the
appropriate clauses of the predicates entailed/1 and disentailed/1, as
seen in the code presented above.

Finally, the situation is slightly different for properties of the computa-
tion, i.e., those property predicates declared with cprop. These predicates
may have to reconstruct the computations of which they have to decide if
the property they define holds or not. Since the necessary part of the com-
putation required may be an infinite object, it is possible that the process
of reconstructing such computation does not terminate, in which case the
execution of the property predicate will not terminate either. Thus, we ad-
mit that the predicates for properties of the computation do not terminate,
provided that the execution of the corresponding computation does not ter-
minate either. Note that in this case run-time checking will not introduce
non-termination into the program, in the sense that if the execution of the
original program terminates then its execution with run-time checking will
also terminate. It is also worth mentioning that the run-time translation pre-
sented is valid provided that the computation on which a property has to be
checked does not perform side-effects (or the property is written in such a way
that it captures calls to side-effects and avoids them). Otherwise, such side-
effects may be performed more than once since after checking the assertion
the computation is performed anyway.

3.4.2 A Program Transformation for Assertion Checking

This behaviour can be acomplished by a program transformation which, ba-
sically, precedes each call to a predicate involved in a predicate assertion with
calls to the atomic properties in the precondition of the assertion, and post-
pones calls to the atomic properties in the postcondition until after success
of the call.
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We now provide a possible scheme for translation of a program with as-
sertions into code which will perform run-time checking. Our aim herein is
not to provide the best possible transformation (nor the best definition of
auxiliary predicates used by it), but rather to present simple examples with
the objective of showing the feasibility of the implementation and hopefully
clarifying the approach further.

Given a predicate p/n for which assertions have been given, the idea is to
replace the definition of p/n so that whenever p/n is executed the assertions
for it are checked and the actual computation originally performed by p/n
is now performed by the new predicate p-new/n (where p_new stands for a
fresh atom which is guaranteed not to concide with other predicate names).
ILe., given the definition of a predicate p/n as:

p(til,...,tin):- body_1.
p(tmi,...,tmn) :- body_m.

it gets translated into:

p(X1,...,Xn):-
check_assertions_and_ezecute ‘‘pnew(X1,...,Xn)’’.

pnew(til,...,tin):- body_1.

p-new(tmi,...,tmn) :- body m.

I.e., the definition of p_new/n corresponds to the definition of p/n in the
original program and is independent of the assertions given for p/n. The
checks present in the new definition of predicate p/n depend on the existing
assertions for such predicate.

Success Assertions. A possible translation scheme for success assertions
with a precondition is the following. Let A(p/n) represent the set of assertions
for predicate p of arity n. Let RS be the set {(p(Y1, ..., Yy,), Precond, Postcond)
s.t. ;- success p(Y1,...,Yn) : Precond => Postcond’ € A(p/n)}. Then the
translation is:

p(X1,...,Xn):-
prec(RS,p(X1,...,Xn),S),
p_new(X1,...,Xn),
postc(S,p(X1,...,Xn)).

where prec/3 collects the elements in RS s.t. Precond definitely holds at the
calling state to p/n. A possible implementation of the prec/3 predicate is
the following;:

prec([],_Goal,[1).

prec([(Pred_desc, Precond, Postcond) |RS],Goal,NRS):-
test_entailed (Precond,Pred_desc,Goal),!,
NRS = [(Pred_desc, Precond, Postcond) |MoreRS],
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prec(RS,Goal,MoreRS) .
prec([_IRS],Goal,NRS) : -
prec (RS,Goal,NRS) .

test_entailed(LogForm,Pred_desc,Goal) :-
\+(\+((Pred_desc=Goal, entailed(LogForm)))).

note that those assertions whose precondition cannot be guaranteed to hold
are directly discarded.

Finally, postc/2 checks whether the Postcond of each assertion collected
by prec/3 holds or not. If it does not hold then the corresponding assertion is
definitely violated and usually an error message will be given to the user (ac-
tually, in CiaoPP an exception is raised), and optionally, computation halted.
If either they hold or they cannot be guaranteed not to hold computation will
generally continue as usual. A possible implementation follows:'6

postc([1,.).

postc([(Pred_desc,Precond , Postcond)|_Cs],Goal):-
Pred_desc = Goal,
disentailed(Postcond),
write (’ERROR: for Goal °),
write(Pred_desc), nl,
write(°with Precondition ’),
write(Precond), nl,
write(’ holds but Postcondition ’),
write (Postcond),
write(’ does not.’),nl,
fail.

postc([_|Cs],Goal):~
postc(Cs,Goal).

note that the call p(X1,...,Xn) is passed as an argument to both prec/3
and postc/2. However, such call is not executed but rather it is used to
pass the values of the arguments X1,...,Xn just before and after execut-
ing pnew(X1,...,Xn). Something similar happens in the calls/2 predicate
introduced below.

Calls Assertions. A possible translation scheme for calls assertions is the
following. As before, let A(p/n) be the set of assertions for predicate p of arity
n. Let C be the set {(p(Y1,...,Yn), Precond) s.t. ‘:- calls p(¥1,...,Yn)
Precond’ € A(p/n)}. Then the translation is:

p(X1,...,Xn):-
calls(C,p(X1,...,Xn)),
p_new(X1,...,Xn).

where calls/2 checks whether the preconditions for the predicate hold or
not. If it detects that some Precond in C does not hold for some call to the

6 In the code we use for simplicity calls to write/1. However in the actual imple-
mentation this is better implemented by raising exceptions (using throw).
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predicate then the corresponding assertion is violated. A possible implemen-
tation of the calls/2 predicate follows:

calls([],_Goal).
calls([(Pred_desc, Precond)|_Calls],Goal):-
Pred_desc = Goal,
disentailed (Precond),
write (’ERROR: undefined call for predicate ’),
write(Goal), nl,
fail.
calls([_|Calls],Goal) :-
calls(Calls,Goal).

Comp Assertions. A possible translation scheme for comp assertions is
the following. Let RC be the set {(p(Y1,...,Yn), Precond, Comp_prop) s.t.
‘.- comp p(Y1,...,Yn) : Precond + Comp_prop’ € A(p/n)}. Then the trans-
lation is:

p(X1,...,Xn):-
check_comp(RC1,p(X1,...,Xn)),
p_new(X1,...,Xn).

where in RC1 we have added to each property of the computation in RC the
goal p-new(X1,...,Xn) as the first argument.

Example 3.4.1. Given RC={(p(¥1,...,Yn), ground(Y1),deterministic) } then
RC1= [(p(Y1,...,Yn), ground(Y1), deterministic(p_new(X1,...,Xn)))].

The check_comp predicate aims at checking Comp_prop for those comp
assertions whose precondition holds. If Comp_prop is guaranteed not to hold
then the corresponding assertion is definitely violated. A possible implemen-
tation follows:

check_comp([],_Goal).

check_comp([(Pred_desc, Precond, CompProp)|_RC],Goal):-
test_entailed (Precond,Pred_desc,Goal),
Pred_desc = Goal,
system_dependent_incompatible (CompProp) ,
write (’ERROR: for Goal ’),
write(Pred_desc), nl,
write(’with Precondition ’),
write(Precond), nl,
write(’ holds but CompProp ’),
remove_int_goal (CompProp,NCompProp) ,
write (NCompProp) ,
write(’ does not.’), nl,
fail.

check_comp ([_|RC],Goal):-
check_comp(RC,Goal) .

Note that in this case in order to guarantee that Comp_Prop actually
does not hold, system dependent_incompatiblerather than disentailedis
used. This is because in contrast to properties of execution states, properties
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of the computation are not treated by default as instantiation properties
since the computation itself may add constraints and the property can still
be considered to hold. Such constraints will be eliminated from the store by
forcing backtracking (see the definition of system dependent_incompatible
in Section 3.5.2).

Program-Point Assertions. Since they are part of the program, in order
to execute a program which contains program-point assertions, a definition
of the (meta) predicate check/1 must be provided. A possible definition is
the following;:

check (LogForm) : -
disentailed(LogForm), !,
write (’ERROR: false program point assertion’),
nl, write(LogForm),nl.

check(_).

where the definition of disentailed is given below. If run-time checking is
not desired there are two possibilities, either the preprocessor can simply
remove the program-point assertions from the program or, as already men-
tioned in Chapter 2, the alternative definition for check/1 is used:

check(_).

3.5 Customizing the Preprocessor for a CLP System:
The CiaoPP and CHIPRE Tools

We have implemented the schema of Figure 3.3 as a generic preprocessor. This
genericity means that different instances of the preprocessor for different CLP
systems can be generated in a straightforward way. One reason for this is that
within the DiSCiPl Project, several platforms exist (Ciao, CHIP, ProloglV,
etc.) for which the preprocessor is of use. The preprocessor is parametric
w.r.t. the set of system predicates, small syntax differences (mainly definition
of operators) and the set of analyzers available. The generic preprocessor is
a stand-alone application written in Ciao Prolog, which is a public domain
next generation logic programming system developed by the Clip group at
UPM.

Currently, two different experimental debugging environments have been
developed using this generic preprocessor:

— CiaoPP [3.8, 3.30], the Ciao system preprocessor, developed by the Clip
group at UPM, and

— CHIPRE [3.9], a preprocessor for CHIP developed also by the Clip group
at UPM, in collaboration with Pawel Pietrzak at Link&ping University
(adaptation of Gallagher’s type analysis to the CLP(F D)language used by
CHIP), and Helmut Simonis at COSYTEC (initial customization asser-
tions for supporting the CHIP builtin predicates —see Section 3.5.1- and
development of a graphical user interface to the tool).
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In order to port the preprocessor to another CLP system we basically
require the following:

— The preprocessor should understand the syntactic and semantic partic-
ularities of the CLP system. Understanding the syntactic particularities
generally amounts to the definition of a set of operators which are prede-
fined in the language. Understanding the semantic particularities amounts
to providing a description of the system predicates in the given CLP. This
issue is further discussed in Section 3.5.1 below. This allows both per-
forming accurate static analysis and checking calls to system predicates at
compile-time.

— The CLP system should be able to read programs with assertions. This is
needed since in order to exploit the full power of the preprocessor users
should add assertions to their programs. This can be solved by adding
to the CLP system a library program which contains the definitions of
operators required for reading assertions. We provide such a library, called
assertions, together with the distribution of the preprocessor.

— The CLP system should be able to run programs which have been subject
to the run-time checking translation scheme. Such transformation includes
in the program calls to predicates whose definition is also provided in a
library program called rt_checks. Most of the code of this program is
independent of the CLP system being used. However, depending on the
system, some predicates have to be customized for the particular system
being used. Much in the same way as assertions for builtin predicates,
the definitions of such predicates are supposed to be provided by system
developers rather than by users of the preprocessor. More details on this
are presented in Section 3.5.2 below.

It is also important to mention that another way of customizing the pre-
processor is by integrating new analyses in addition to the existing ones. This
can be done by defining new domains for analysis for the generic analysis en-
gine i.e., PLAI [3.38], in the preprocessor. Due to space limitations, we do
not go into the details on how to define new analysis domains here.

3.5.1 Describing Builtins using Assertions

Assertions for builtin predicates should be provided by the system program-
mers to allow compile-time checking of the system predicates in the prepro-
cessor (and also facilitate their run-time checking, as discussed before). The
system predicate assertions must be available at the time of installing the
preprocessor, so that it is configured for the particular language, and there-
fore, it understands the builtin predicates of the language. It is convenient to
provide assertions that describe:

— Their success states. This is useful for improving the information obtained
by static analysis. Note that many of the builtin predicates may be written
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in other languages, such as C. Therefore, it is not easy to automatically an-
alyze their code with the analyzers of the preprocessor, which are designed
for CLP languages.

— Their required calling states. This is useful for performing compile-time
checking of the calls to the system predicates. Unless this is done, checking
of such calls has to be done at run-time.

The former can be described using trust success assertions, the latter
with check calls assertions. They should define all and the only possible
uses of a predicate.!” If the preprocessor can determine that a system predi-
cate is used in a way which is different from those described by the assertions
for it, its behaviour is deemed to be unpredictable and a compile-time error
is issued.

Example 3.5.1. Consider the cumulative/8 builtin global constraint of CHIP.
A call of the form:

cumulative(Starts,Durations,Resources,Ends,Surfaces,High,End,Int)

states, in its most simple form, that the cumulative use of a resource by
all tasks with starts dates (in the list of finite domain ranges of) Starts,
durations (in the list of ranges of) Durations, and resource use (in the list
of ranges of) Resources is below the (range of) limit High. In this use of
the constraint the arguments Ends, Surfaces, End, and Int are assigned the
value unused. However, in its most general form, the cumulative constraint
can be used with any of Ends and End assigned a list of ranges, Int a range,
and/or Surfaces a list of integers.

To describe the behaviour of the cumulative constraint in terms of, e.g.,
regular types, one needs to use the type “list of finite domain variables” (i.e.,
list (anyfd)), the type “assigned value unused”, as well as the types which
describe the rest of the arguments. These types may be defined with the
regular predicates:

:— regtype prop notused/1.
notused (unused) .

:— regtype prop fd_or_unused/1.
fd_or_unused(unused) .
fd_or_unused(X) :- anyfd(X).

:— regtype prop fdlist_or_unused/1.
fdlist_or_unused(unused) .
fdlist_or_unused(X) :- list(X,anyfd).

:— regtype prop intlist_or_unused/1.
intlist_or_unused (unused) .
intlist_or_unused(X) :- list(X,int).

'7 For this purpose pred assertions can be used, which are translated into one
check calls and several trust success assertions.
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so that the following assertion describes all the possible uses of the cumulative
constraint:

:— trust pred cumulative/8
: list(anyfd) #* list(anyfd) * list(anyfd)
* fdlist_or_unused * intlist_or_unused * anyfd
* fd_or_unused * fdlist_or_unused
=> list(anyfd) # list(anyfd) * list(anyfd)
* fdlist_or_unused * intlist_or_unused * anyfd
* fd_or_unused * fdlist_or_unused .

However, it is also convenient to provide descriptions for particular uses
of the predicates, since this may allow the analyzers to improve accuracy.
Detailed descriptions of different uses provide more information than a unique
global description of all possible uses. In order to do this, one could have
added success assertions for some (or all) of the possible uses of the predicate.

Ezample 3.5.2. The abovementioned use of the cumulative constraint (which
corresponds to a typical use in manpower resource restricted scheduling), in
which the arguments named above Ends, End, Int, and Surfaces are not
used, is described by the (additional) assertion:

:— trust success cumulative/8
: list(anyfd) # list(anyfd) * list(anyfd)
* notused * notused * anyfd * notused * notused.
=> list(anyfd) #* list(anyfd) * list(anyfd)
* notused * notused * anyfd * notused * notused .

Though it may be argued that writing the assertions describing the system
predicates is a tedious task, such task is not supposed to be performed by the
users of the preprocessor, which can assume that such assertions are already
present in the preprocessor. Also, this task is in any case definitely much
simpler than writing an analyzer from scratch or adapting an existing one
written for another CLP system.

However, a disadvantage of describing system predicates in terms of asser-
tions rather than in some lower-level description is a relative loss of efficiency.
This is because, as is usual in software, the more general a piece of software
is, the less efficient. In fact, software can often be optimized by specializ-
ing [3.35, 3.25] it w.r.t. some particular case. In our case, we would like our
system to be at the same time easily portable to different systems and as
efficient as if it had been designed with a particular system in mind. With
this aim, we have implemented a program called builtintables which takes
as input the assertions describing the system predicates and converts such
information into the internal format of the analyzers. This is conceptually
equivalent to specializing an analyzer to a particular set of system predi-
cates. However, rather than using a general purpose specializer, we follow the
simpler to implement generating extension approach of partial evaluation in
that the above mentioned program only knows how to specialize the analyzer
w.r.t. the assertions describing the system predicates. The builtintables
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program is only executed whenever the assertions for system predicates are
modified.

3.5.2 System Dependent Code for Run-Time Checking

In order to perform run-time checking, a library rtchecks should be provided
by the system. Most of the predicates in this library are independent of the
underlying CLP system used, and possible implementations of such predicates
have been given above. However, there are four predicates whose definition
was not provided. This is because they depend on the particular CLP system
being used.

The role of the system dependent predicates is basically to determine
whether properties hold (are entailed) or not (are disentailed). Since individ-
ual properties may appear with the compat qualifier, we also need predicates
for testing for compatibility and incompatibility.

We have chosen to define the system dependent predicates for the case
of using Prolog as underlying system. This is both because we assume most
readers are familiar with Prolog and because of the “good behaviour” of
the Herbrand solver. However, we indicate which parts of the definitions are
valid in any system and which other ones can only be used under certain
assumptions.

The predicate system dependent_entailed should succeed only if we can
guarantee that Prop is implied by the store. This is probably the most system-
dependent predicate of the four. Some constraint systems may have a com-
plete entailment test, while others may not. In Herbrand this can be done
by checking that NProp, which is a copy of Prop, succeeds and no new con-
straints (bindings) have been generated during its execution. This is checked
by predicate instance which succeeds iff Prop is an instance of NProp:

system_dependent_entailed (Prop) : -
copy_term(Prop,NProp),
call(NProp), !, instance(Prop,NProp).

Next we provide a definition for predicate system dependent_compatible,
which is valid for any constraint system which is “quick rejecting” (also called
immediate), as is the case in Herbrand. In those systems, whenever we add
a constraint which is inconsistent with the current store, this is immediately
detected and a failure is issued. Note that this is not always the case since
the system may delay the consistency check until further constraints added
to the store allow performing the check in a simple way:

system_dependent_compatible (Prop) : -
\+(\+(call(Prop))).

Next we provide a definition of predicate system dependent disentailed
which in contrast to the other three predicates is defined by two clauses. Each
one provides a sufficient condition for disentailment. The first one corresponds
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to the case of incompatibility (whose definition appears later). Clearly, if Prop
is incompatible with the current store it is also disentailed (but not the other
way around). The second clause corresponds to the case in which execution
of the property succeeds but it explicitly requires additional information in
order to succeed. An example of this is the property list(X) which is an
instantiation type which requires X to be instantiated (at least) to a list
skeleton, and with the store containing the information X = [1]Y]. In this
case, X is compatible with a list (and thus the first clause would fail) but it
is not actually a list. A call to 1ist([1]Y]) would succeed but would for
example add the extra information that Y=[]:

system_dependent_disentailed(Prop) :-
system_dependent_incompatible (Prop),!.
system_dependent_disentailed(Prop):-
copy_term(Prop,NProp),
call(NProp), !, \+(instance(Prop,NProp)),
instance (NProp,Prop) .

Finally, for predicate system dependent_incompatible we provide a def-
inition which is valid in any system:

system_dependent_incompatible (Prop) : -
\+(call(Prop)).

3.6 A Sample Debugging Session with the Ciao System

In order to illustrate from the users point of view several of the points made
in the previous sections we now present a sample debugging session with a
concrete tool, CiaoPP, the Ciao system preprocessor [3.30, 3.8] which is cur-
rently part of the programming environment of Ciao, and which, as mentioned
before, is an instance of the generic preprocessor presented in this chapter.
CiaoPP uses as analyzers both the LP and CLP versions of the PLAI ab-
stract interpreter [3.38, 3.6, 3.27] and adaptations of Gallagher’s regular type
analysis [3.26], and works on a large number of abstract domains including
moded types, definiteness, freeness, and grounding dependencies (as well as
more complex properties, such as bounds on cost, determinacy, non-failure,
etc., for Prolog programs).

Basic Static Debugging. The idea of using analysis information for debug-
ging comes naturally after observing analysis outputs for erroneous programs.
Consider the program in Figure 3.6. The result of regular type analysis for
this program includes the following code:

:— true pred gsort(A,B)
: ( term(h), term(B) )
=> ( list(A,t113), list(B,t118) ).

:— regtype prop t113/1.
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:— module(gsort, [gsort/2], [assertions]).

gsort ([XIL],R) :-
partition(L,L1,X,L2),
gsort(L2,R2), gsort(L1,R1),
append (R2, [x|R1] ,R).
gsort([1,[1).

partition([],_B,[1,[]1).
partition([e|R],C, [E|Left1] ,Right) :-

E < C, !, partition(R,C,Leftl,Right).
partition([E|R],C,Left, [EIRight1]):-

E >= C, partition(R,C,Left,Rightl).

append([],X,X).
append ([H|X],Y,[H|Z]) :- append(X,Y,Z).

Fig. 3.6. A tentative gsort program

t113(A) :- arithexpression(A).

t113([1).

t113([AIB]) :- arithexpression(A), list(B,t113).
t113(e).

:- regtype prop t118/1.
t118(x).

where arithexpressionis a library property which describes arithmetic ex-
pressions. Two new names (t113 and t118) are given to types inferred, and
their definition included, because no definition of such types were found vis-
ible to the module. In any case, the information inferred does not seem com-
patible with a correct definition of gsort, which clearly points to a bug in
the program.

In order to debug the program, we add to it a declaration of its valid
queries as follows:

:— entry gsort(A,B) : (list(A, num), var(B)).

Turning on compile-time error checking and selecting the regtype and shfr
static analyses we obtain the following messages:

WARNING: Literal partition(L,L1,X,L2) at gsort/2/1/1
does not succeed!
ERROR: Predicate E>=C at partition/4/3/1 is not called as expected:
Called: num>=var
Expected: arithexpression>=arithexpression

The first message warns that all calls to partition will fail, something
normally not intended (e.g., in our case). The second message indicates a
wrong call to a builtin predicate, which is an obvious error. This error has
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been detected by comparing the information obtained by the shfr inference
system, which at the corresponding program point indicates that E is a free
variable, with the assertion:

:— check calls A<B : (arithexpression(A), arithexpression(B)).

which is present in the default builtins module, and which implies that the
two arguments to </2 should be bound to arithmetic expressions, and thus
ground. The message signals an abstract incorrectness symptom, indicating
that the program does not satisfy the specification given (that of the builtin
predicates, in this case). Checking the indicated call to partition and in-
specting its arguments we detect that in the definition of qsort, partition
is called with the second and third arguments in reversed order — the correct
call is partition(L,X,L1,L2).

After correcting this bug, we proceed to perform another round of compile-
time checking, which produces the following message:

WARNING: Clause ’partition/4/2’ is incompatible with its call type
Head: partition([e|R],C, [E|Left1] ,Right)
Call Type: partition(list(num),num,var,var)

This time the error is in the second clause of partition. Checking this clause
we see that in the first argument of the head there is an e which should be E
instead. Compile-time checking of the program with this bug corrected does
not produce any further warning or error messages.

Validation of User Assertions. In order to be more confident about our
program, we add to it a partial specification of the program in the form of
the following check assertions:

:— shfr prop ground/1.
:— regtype prop list/2.
:— prop sorted_num_list/1.
sorted_num_list([]).
sorted_num_list ([X]) :— number(X).
sorted_num_list([X,Y[Z]):-
number (X), number(Y), X<Y, sorted_num_list([Y|Z]).

:— calls gsort(A,B) : list(A, num). % A1l
:— success gsort(A,B) => (ground(B), sorted_num_list(B)). % A2
:— calls partition(4,B,C,D) : (ground(A), ground(B)). % A3
:— success partition(4,B,C,D) => (1ist(C, num),ground(D)). % A4
:— calls append(A,B,C) : (list(A,num),list(B,num)). % A5

where we also use a new property, sorted num list, defined in the module
itself. We then ask CiaoPP to check them, by comparing them with the
information inferred by analysis, which produces:

:— checked calls gsort(A,B) : list(A,num). %A1
:— check success gqsort(A,B) => sorted_num_list(B). %A2
:— checked calls partition(A4,B,C,D) : (ground(A),ground(B)). %A3

:— checked success partition(4,B,C,D) => (1list(C,num),ground(D)).%A4
:— false calls append(A,B,C) : (list(A,num),list(B,num)). %A5
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Assertion A5 has been detected to be false. This indicates a violation of the
specification given, which is also flagged by CiaoPP as follows:
ERROR: (1ns 22-23) false calls assertion:

:- calls append(A,B,C) : list(A,num),list(B,num)
Called append(list("x),["xl1list("x)],var)

The error is now in the call append (R2, [x|R1],R) in qsort (x instead of X).
After correcting this bug and preprocessing the program again we get:

:— checked calls gsort(A,B) : list(A,num). %A1
:— check success gqsort(A,B) => sorted_num list(B). %A2
:— checked calls partition(A,B,C,D) : (ground(A),ground(B)). %A3
:— checked success partition(4,B,C,D) => (list(C,num),ground(D)).%A4
:— checked calls append(A,B,C) : (list(A,num),list(B,num)). %A5

Ie., assertions A1, A3, A4, and A5 have been validated but it was not possi-
ble to prove statically assertion A2, which has remained with check status,
though it has been simplified. On the other hand the analyses used in our
session (regtypes and shfr) do not provide enough information to prove
that the output of gsort is a sorted list of numbers, since this is not a native
property of the analyses being used. While this property could be captured by
including a more refined domain (such as constrained types), it is interesting
to see what happens with the analyses selected for the example.'®

Dynamic Debugging with Run-time Checks. Assuming that we stay
with the analyses selected previously, the following step in the development
process is to compile the program obtained above with the “generate run-
time checks” option. In the current implementation of CiaoPP we obtain the
following code for predicate gsort where the new predicate name generated
is gsort_1:

gsort(A,B) :-
gsort_1(A,B),
postc([ (gsort(C,D), true, sorted(D)) 1, gsort(4,B)).

gsort_1([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2), gsort(L1,R1),
append (R2, [X|R1],R).
gsort_1([1,[1).

where the code for partition and append remain the same as there is no
other assertion left to check. If we now run the program with run-time checks
in order to sort, say, the list [1,2], the Ciao system generates the following
error message:

?- gsort([1,2],L).

ERROR: for Goal gsort([1,2],[2,1])

Precondition: true holds, but
Postcondition: sorted_num_list([2,1]) does not.

8 Note that this property, although not provable with the analyses selected, it is
however disprovable.
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L=1[2,1]7

Clearly, there is a correctness problem with gsort, since [2,1] is not the re-
sult of sorting [1,2] in ascending order. This is a (now, run-time, or concrete)
incorrectness symptom, which can be used as the starting point of diagnosis.
The result of such diagnosis should indicate that the call to append (where
R1 and R2 have been swapped) is the cause of the error and that the right
definition of predicate gsort is the following:

gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2), gsort(L1,R1),
append (R1, [X|R2] ,R).
gsort([]1,[1).

Other CiaoPP Functionalities. In addition to the debugging-related
functionality discussed before, CiaoPP includes a number of other capabil-
ities related to the application of analysis results to program optimization,
such as program specialization and program parallelization. While most of
these functionalities are in general outside our current scope, we will discuss
a particular one, abstract (multiple) specialization [3.41, 3.40]. As we will see
later, this type of optimization, performed as a source to source transforma-
tion of the program, and in which static analysis is instrumental, is indeed
relevant in our context.

Program specialization optimizes programs for known values (substitu-
tions) of the input. It is often the case that the set of possible input values
is unknown, or this set is infinite. However, a form of specialization can still
be performed in such cases by means of abstract interpretation, specializa-
tion then being with respect to abstract values, rather than concrete ones.
Such abstract values represent of a (possibly infinite) set of concrete values.
For example, consider the definition of the property sorted num_list/1, and
assume that regular type analysis has produced:

:— true pred sorted(A) : list(A,num) => list(A,num).
Abstract specialization can use this information to optimize the code into:

sorted_num_list([]).
sorted_num_list([_]).
sorted_num_list([X,Y|Z]):- X<Y, sorted_num_list([Y|Z]).

which is clearly more efficient because no number tests are executed. The
optimization above is based on “abstractly executing” the number literals to
the value true, the same notion used in reducing assertions during compile-
time checking.

The importance of abstract specialization in our context relies partly in
that the availability of the abstract specializer [3.41, 3.40] allows an alterna-
tive implementation of the whole framework (also using both compile-time
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and run-time checking of assertions) by first generating in a naive way a pro-
gram which performs run-time checking of all assertions and then applying
the abstract specializer to this program. The resulting code would be similar
to that obtained with the previous approach (first simplifying the assertions
in a specialized module and then generating code for those which cannot
be statically proved): checked assertions will result in run-time tests that
are optimized away, false assertions will result in run-time tests that are
transformed to error, etc. However, we have opted for the first alternative
because we have found that it is easier for the user to understand things in
terms of simplified assertions rather than by looking at the run-time tests
which remain in the transformed code.

3.7 Some Practical Hints on Debugging with Assertions

As mentioned before, one of the main features of the preprocessor we present
is that assertions are optional and can state partial specifications. The fact
that assertions are optional has important consequences on the ease of use
and the practicality of the whole approach. An important drawback of many
verification systems is the need for a relatively precise specification of the pro-
gram. Writing such a specification is usually a tedious and not straightforward
task. As a result, users in practice often get discouraged and may decide not
to use systems which require quite detailed specifications. In contrast, in our
framework assertions can be written “on demand”, perhaps adding them only
for those predicates, program points, and properties that the user wants to
check in a given program. Clearly, as more (and more precise) assertions are
added to a program, more bugs can potentially be detected automatically.
Note that during the process of program development and debugging we will
often turn our attention from some parts of the programs to others, and thus
the set of assertions may change from one iteration to another.

The fact that assertions are optional obviously raises questions regarding
issues such as, for which parts of the program should one write check asser-
tions, what kinds of assertions should be used for a given objective, which
kind of properties should be used in a given assertion, etc. Many of these
questions are still open for research. Nevertheless, we can attempt to provide
a few answers.

A point to note is that, from the point of view of their use in debugging,
calls assertions are conceptually somewhat different from success and comp
assertions. It is not of much use to introduce success and comp assertions
during debugging for predicates which are known to be correct. Introducing
success and comp assertions is in general most useful for suspect predicates.
On the other hand, introducing calls assertions is a good idea even for cor-
rect predicates because the fact that a predicate is correct does not guarantee
that it is called in the proper way in other parts of the program.
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An important remark is that it is usually the case that different parts of
the program are perceived by the user as having different levels of reliability
[3.23]. For example, in order to detect a bug it is usually good practice to
assume that library predicates are correct. For a tool to be successful, we
believe that such different levels of reliability should somehow be reflected
during the validation/debugging session so that the programmer’s attention
can concentrate on a particular part of the code. Otherwise the debugging
task becomes unrealistic for real programs. This can be achieved in our frame-
work by adding assertions for those predicates that attention is focussed on
and by “removing” assertions for others which are no longer under consid-
eration. One very sensible way of doing this is by using modules. Dividing a
program into modules allows performing compile-time checking by focusing
on a single module, while not judging the code in other modules, of which we
are only aware through a high-level description of the imported predicates
(i-e., assertions for internal predicates of an imported module are effectively
“turned off”). This is the approach used in CiaoPP.
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