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Abstract

We provide a method whereby, given mode and (upper approximation) type in-
formation, we can detect procedures and goals that can be guaranteed to not fail
(i.e., to produce at least one solution or not terminate). The technique is based on
an intuitively very simple notion, that of a (set of) tests “covering” the type of a
set of variables. We show that the problem of determining a covering is undecid-
able in general, and give decidability and complexity results for the Herbrand and
linear arithmetic constraint systems. We give sound algorithms for determining cov-
ering that are precise and efficient in practice. Based on this information, we show
how to identify goals and procedures that can be guaranteed to not fail at runtime.
Applications of such non-failure information include programming error detection,
program transformations and parallel execution optimization, avoiding speculative
parallelism and estimating lower bounds on the computational costs of goals, which
can be used for granularity control. Finally, we report on an implementation of our
method and show that better results are obtained than with previously proposed
approaches.

1 Introduction

There are two important motivations for considering compile-time analyses to iden-
tify non-failure in logic programs. The first is that it is usually very useful to be able
to identify badly-behaved programs where possible. For example, in statically typed
languages, the behavior one expects is that program components will be used in a
way consistent with their types, and compile-time type checking is used to detect
departures from this expected behavior. While this does not rule out programming
errors, it makes it a lot simpler to identify and localize certain kinds of common
programming errors. Similarly, in logic programs, the usual expectation is that a
predicate will succeed and produce one or more solutions. In most logic program-
ming systems, however, the only checking that is done is a rather simplistic—though
useful—check about the naming of singleton variables. The second reason is that
knowledge of non-failure can be used to aid a number of program transformations



and optimizations. For example, we may want to execute possibly-failing goals ahead
of non-failing goals where possible; and in parallel systems, knowledge of non-failure
can be used to avoid speculative parallelism and to estimate lower bounds on the
computational costs of goals [7, 5], which can be used for granularity control of
parallel tasks [9].

The problem with naive attempts to infer non-failure is that, in general, it is
always possible for a goal to fail because “bad” argument values cause a failure
during head unification. An obvious solution would be to try and rule out such
argument values by considering the types of predicates. However, most existing type
analyses provide upper approximations, in the sense that the type of a predicate is
a superset of the set of argument values that are actually encountered at runtime.
Unfortunately, straightforward attempts to address this issue, for example by trying
to infer lower approximations to the calling types of predicates, fail to yield nontrivial
lower bounds for most cases.

In this paper, we show how, given mode and (upper approximation) type infor-
mation, we can detect procedures and goals that can be guaranteed to not fail. Our
technique is based on an intuitively very simple notion, that of a (set of) tests “cov-
ering” the type of a variable. We show that the problem of determining a covering is
undecidable in general, and give decidability and complexity results for the common
cases involving the Herbrand and linear arithmetic constraint systems. We then give
an algorithm for checking whether a set of tests covers a type, that is efficient in
practice. Based on this information, we show how to identify goals and procedures
that can be guaranteed to not fail at runtime.

Space limitations prevent us from discussing several issues completely or includ-
ing some of the longer proofs. We refer the reader to [4] for details.

2 Preliminaries

We assume an acquaintance with the basic notions of logic programming. In or-
der to reason about non-failure, it is necessary to distinguish between unification
operations that act as tests (and which may fail), and output unifications that act
as assignments (and always succeed). To this end, we assume that programs are
moded, i.e., for each unification operation in each predicate, we know whether the
operation acts as a test or creates an output binding (note that this is weaker than
most conventional notions of moding in that it does not require input arguments
to be ground, and allows an output argument to occur as a subterm of an input
argument). Where it is necessary to emphasize the input tests in a clause, we write
the clause in “guarded” form, as

p(Z1,...,2n) 1— input_tests(zy,...,x,) | Body.
Consider a predicate defined by the clauses

abs(X,Y) : = X >0]Y =X.
abs(Y,Z) :— Y <0] Z=-Y.

Suppose we know that this predicate will always be called with its first argument
bound to an integer. Obviously, for any particular call, one or the other of the tests
‘X >0 and ‘X < 0’ may fail; however, taken together, one of them will succeed.
This shows that we cannot rely on examining the tests of each clause separately:
it is necessary to collect them together and examine the behavior of the collection
as a whole. When collecting tests together, however, we must be careful to make
sure that we do not get confused by different variable names in different clauses.
For example, in the abs predicate defined above, we need to make sure that (i) we



notice that the variable X in the first clause and the variable Y in the second clause
actually refer to the same component of the arguments to the predicate; and (i7) we
do not confuse the variable Y in the first clause with the variable Y in the second
clause.

These pitfalls can be avoided by normalizing clauses so that they use variable
names consistently and according to a predefined convention. We rely on the usual
approach of using sequences of integers to encode paths in ordered trees: the empty
sequence € corresponds to the root node of the tree, and if a sequence 7 corresponds
to a node N, then the sequences 71,..., 7k correspond to its children Ny,..., Ng
taken in order. We adopt the convention that a variable in a clause is designated
as X, where 7 is (the sequence encoding) the path from the root of the clause,
labeled :-/2, to the leftmost occurrence of that variable. To enhance readability,
the examples used in this paper will not resort to explicitly naming variables in this
way unless necessary, with the understanding that the algorithms are defined with
respect to normalized clauses.

3 Types, Tests, and Coverings

A type refers to a set of terms, and can be denoted by using several type repre-
sentations (e.g. type terms and regular term grammars as in [3], or type graphs as
in [13]). Let type[q] denote the type of each predicate ¢ in a given program. In this
paper, we are concerned exclusively with “calling types” for predicates—in other
words, when we say “a predicate p in o program P has type type[p]”, we mean that
in any execution of the program P starting from some class of queries of interest,
whenever there is a call p(t) to the predicate p, the argument tuple £ in the call will
be an element of the set denoted by type[p]. The non-failure analysis we describe is
based on regular types [3], which are specified by regular term grammars in which
each type symbol has exactly one defining type rule.

A more detailed treatment of these issues may be found in papers on type anal-
ysis, e.g., [3, 13]. Due to space limitations we do not pursue them further here. We
denote the Herbrand Universe (i.e., the set of all ground terms) as H, and the set of
n—tuples of elements of H as H".

Given a (finite) set of variables V, a type assignment over V is a mapping from V
to a set of types. A type assignment p over a set of variables {z1,...,z,} is written
as (z1 :a1,-..,ZTp : ay), where p(x;) = a;,1 < i < n, and qa; is a type representation.
Given a term ¢ and a type representation 7', we abuse of terminology and say t € T,
meaning that ¢ belongs to the set of terms denoted by 7.

A primitive test is an “atom” whose predicate is a built-in such as the unification
or some arithmetic predicate (<, >, <, >, #, etc.) which acts as a “test”. Define a
test to be either a primitive test, or a conjunction 73 A 7» or a disjunction 74 V 7, or
a negation -7y, where 77 and 7» are tests.

Fundamental to our approach to detecting non-failure is the notion of a test
“covering” a type assignment:

Definition 3.1 A test S(Z) covers a type assignment 7 : T, where T is a tuple of
nonempty types, if for every £ € T it is the case that z = = S(z). n
Consider a predicate p defined by n clauses, with input tests 7,...,7,:
p(Z) :— 7 (%) | Body,.

p(Z) :— m(Z) | Body,.
We refer to the test 7(Z) = 7 (Z) V -+ - V 7,(Z) as the input test of p. Suppose that
the predicate p has type type[p]: in the interest of simplicity, we sometimes abuse



terminology and say that the predicate p covers the type type[p] if the input test
7(Z) of p covers the type assignment Z : type[p].

Define the “calls” relation between predicates in a program as follows: p calls g,
written p ~» ¢, if and only if a literal with predicate symbol ¢ appears in the body
of a clause defining p, and let ~* denote the reflexive transitive closure of ~». The
importance of the notion of covering is expressed by the following result:

Theorem 3.1 A predicate p in the program is non-failing if, for each predicate q
such that p ~* q, g covers type[q].
Proof Assume that p can fail, i.e., there is a goal p(%), with { € type[p], that fails. It
is a straightforward induction on the number of resolution steps to show that there
is a ¢ such that p ~* ¢ and ¢ does not cover its type. n

Note that non-failure does not imply success: a predicate that is non-failing may
nevertheless not produce an answer because it does not terminate. This is illustrated
by the predicate, defined by the single clause given below, which is non-failing and—
on most existing Prolog systems—non-terminating;:

p(X) :— p(X).

Ideally, we would like to have a decision procedure to determine whether a test
covers a given type assignment. Unfortunately, this is impossible in general, as the
following result shows:
Theorem 3.2 Given an arbitrary test and type assignment, it is in general unde-
cidable whether the test covers the type assignment.

Proof The proof is straightforward from a result, due to Matijasevi¢, that shows
that determining the existence of (integer) solutions for arbitrary Diophantine equa-
tions is undecidable [16]. Given an arbitrary polynomial ¢(1,...,2,), consider the
test ¢(x1,...,o,) # 0. This test covers the type assignment (x; : integer,..., o, :
integer) if and only if every possible assignment of integers to the variables
Z1,...,T, causes the polynomial ¢ to take on a non-zero value, i.e., if and only
if the Diophantine equation ¢(z1,...,%,) = 0 has no integer solutions. But since
the problem of determining the existence of integer roots for an arbitrary Diophan-
tine equation is undecidable, it follows that the problem of determining whether an
arbitrary test covers an arbitrary type assignment is also undecidable. n

We are therefore forced to resort to sound (but, necessarily, incomplete) algo-
rithms to determine coverings. In the remainder of this section we show that covering
problems are decidable for most cases arising in practice—in particular, for equality
and disequality tests over the Herbrand domain and for linear arithmetic tests—
and give algorithms for deciding covering for these cases. Given a test and a type
assignment that we want to check for covering, our approach is to first partition
the test such that tests in different resulting partitions involve different constraint
systems, and then apply to each partition a covering algorithm particular to the cor-
responding constraint system. In this paper we consider two commonly encountered
constraint systems: first order terms with equality and disequality tests, on variables
with tuple-distributive regular types [3] (types which are specified by regular term
grammars in which each type symbol has exactly one defining type rule and each
type rule is deterministic); and for linear arithmetic tests on integer variables.

3.1 Covering in the Herbrand Domain

3.1.1 Decidability and Complexity

While covering is undecidable in the presence of arbitrary arithmetic operations, it
turns out to be decidable if we restrict ourselves to equations and disequations over
Herbrand terms. Before discussing the algorithm for this, we give a result on the
complexity of the covering problem for Herbrand:



Theorem 3.3 The covering problem for the Herbrand domain is co-NP-hard. It
remains co-NP-hard even if we restrict ourselves to equality tests.

Proof By reduction from the problem of determining whether a propositional
formula in disjunctive normal form, containing at most 3 literals per disjunct, is a
tautology ([10], problem LOS). n

3.1.2 A Decision Procedure

The decision procedure presented here is inspired by a result, due to Kunen [14],
that the emptiness problem is decidable for Boolean combinations of (notations
for) certain “basic” subsets of the Herbrand universe of a program. It also uses
straightforward adaptations of some operations described by Dart and Zobel [3].

The reason the covering algorithm for Herbrand is as complex as it is is that we
want a complete algorithm for equality and disequality tests. It is possible to simplify
this considerably if we are interested in equality tests only. Before describing the
algorithm, we introduce some definitions and notation.

We use the notions (to be defined in the following) of type-annotated term, and
in general elementary set, as representations which denote some subsets of H" (for
some n > 1). Given a representation S (elementary set or type-annotated term),
Den(S) refers to the subset of H" denoted by S.

Definition 3.2 [type-annotated term] A type-annotated term is a pair M = (i, p),
where £ is a tuple of terms, and p is a type assignment (z1 : T1,...,7k : Tx). To
enhance readability, the type of z; in M, i.e., T;, will sometimes be written as
type(z;, M) or as type(x;, p). Also, given a type-annotated term M, we denote its
tuple of terms and its type assignment as s and pjs respectively. A type-annotated
term denotes the set of all the ground terms (%) such that 6(z) € type(t, p) for each
variable in £. n

Given a type-annotated term (%, p), the tuple of terms ¢ can be regarded as a type
term and p can be considered to be a type substitution. This is useful for using
an algorithm described by Dart and Zobel [3] to compute the “intersection” and
“inclusion” of type-annotated terms, to be defined later. Let T denote the type of
the entire Herbrand universe. When we have a type-annotated term (Z, p) such that
p(x) = T for each variable z in £, we omit the type assignment p for brevity and use
the tuple of terms ¢. Thus, a tuple of terms # with no associated type assignment can
be regarded as a type-annotated term which denotes the set of all ground instances
of t.

Definition 3.3 [elementary set] An elementary set is defined as follows:

e A is an elementary set, and denotes the set @ (i.e., Den(A) = ();
e a type-annotated term (%, p) is an elementary set; and

e if A and B are elementary sets, then AQ B, A® B and comp(A) are elementary
sets that denote, respectively, the sets of (tuples of) terms Den(A) N Den(B),
Den(A) U Den(B), and H" \ Den(A). m

We define the following relations between elementary sets: A C B iff Den(A) C
Den(B). A ~ B iff Den(A) = Den(B).
Definition 3.4 [cobasic set] A cobasic set is an elementary set of the form comp(B),
where B is a tuple of terms. n

Definition 3.5 [minset] A minset is either A or an elementary set of the form
X ® comp(Y1) ® --- ® comp(Y,), for some p > 0, where X is a tuple of terms,
comp(Y1),...,comp(Y,) are cobasic sets, and for all 1 < ¢ < p, ¥; = X6, and
X Z'Y; for some substitution 6;. m



For brevity, we write a minset of the form X ® comp(Y1) ® - - - ® comp(Y,) as X/C,
where C = {Y1,...,Y,} (we say that C is the set of cobasic sets of the minset,
although syntactically Y7,...,Y), are tuples of terms).

Definition 3.6 [type-annotated term instance] We say that the type-annotated
term I is an instance of the type-annotated term R if Den(I) C Den(R) and there
is a substitution @ such that t; = tg6. n

Consider a predicate p defined by n clauses, with input tests 71(Z), ..., 7 (Z): Sup-
pose that the predicate p has type type[p]. Testing whether the input test of
p, T7(Z), covers the type assignment Z : type[p] can be reduced to test whether
MCS &---®S5,, where M is a type-annotated term which is a representation of
Z : type[p], and each S; is a minset, which is the representation of 7;(Z). 7;(Z) can
be transformed into the minset S; as follows:

1. Assume that the test 7;(Z) is of the form E; A D} A --- A D", where E; is the
conjunction of all unification tests of 73(Z) (i.e., a system of equations) and
each D] a disunification test (i.e., an disequation).

2. Let 6; be the substitution associated with the solved form of E; (this can be
computed by using the techniques of Lassez et al. [15]).

3. Let 0{ , for 1 < j < m, be the substitution associated with the solved form of
E; A N}, where N} is the negation of D.

4. S; = B; ® comp(B}) ® - - - ® comp(B"), where B; = (z)6; and Bf = (3‘3)02, for
1<j<m.

Then, we have that M C S1 & --- & Sy, iff M ® comp(S1) ® -+ ® comp(Sp,) ~ A.
We then can write comp(S1) ® --- ® comp(Sp,) into disjunctive normal form as
M, @ --- ® M, where each M; is a minset. ! Since M ® (M; @ --- & M,) ~
MM &---dMQQM,, wehavethat M C S; ®---® S, iff M ® M; ~ A for
all 1 <4 < u. Thus, the fundamental problem is to devise an algorithm to test
whether M ® S ~ A, where M is a type-annotated term and S a minset. The
algorithm that we propose is given by the boolean function empty(M, S), defined in
Figure 1.2 First, it performs the “intersection” of M and the tuple of terms of the
minset S. This intersection is implemented by the function intersection(R, Cob),
which returns R® Cob (recall that a tuple of terms is a type-annotated term), and is
a straightforward adaptation of the function unify(r1,72,T,©) described in [3], that
performs a type unification where 7, and 75 are type terms, © a type substitution
for the variables in 74 and 75, and T a set of type rules defining 71, 75, and ©. Then,
if the mentioned intersection is not empty, nor A (S = A/C) is “included” in R,
it calls emptyl (C, R, (), which checks whether R/C ~ A. This is done by checking
if R is “included” in some cobasic set in C' (in which case R/C ~ A). For this
purpose, it uses the function included (R, Co), which is a straightforward adaptation
of the function subsetr(ri,72) described in [3], that determines whether the type
denoted by one pure type term is a subset of the type denoted by another (i.e.,
included (R, Co) returns true if and only if R C Co).

Note that R/C can be seen as a system of one equation (corresponding to R)
and zero or more disequations (each of them corresponding to a cobasic set in C).
Thus the problem can be seen as determining whether such system has no solutions.

INote that @, ®, and comp constitute a Boolean algebra, and the operation ® is computable
for type-annotated terms.

2We use the type representation of [3], and assume that there is a common set of rules where type
symbols are described. For brevity, we omit such set of rules in the description of the algorithms.



We say that a cobasic set Cob is “useless” (for determining the unsatisfiability of the
system) whenever if R/(C — {Cob}) # A, then R/C # A. Any useless cobasic set
Cob can be removed from C, since R/(C' —{Cob}) ~ A if and only if R/C ~ A (note
that if R/(C — {Cob}) ~ A, then obviously R/C ~ A). If a cobasic set Cob in C' is
“disjoint” with R, then it is useless (however, there can be useless cobasic sets in C
which are not disjoint with R). If R is not “included” in none of the cobasic sets in C,
this means that R is “too big”, and thus, it is “expanded” to a set of “smaller” type-
annotated terms (with the hope that each of them be “included” in some cobasic
set in C'). This is done in step 4, where a cobasic set Cob of C" is selected, and R is
“expanded” by using the function expansion(R, Cob), which takes a type-annotated
term R and a cobasic set Cob and returns a pair (R, Rest) (which is a “partition”
of R) such that: R’ is a type-annotated term; Rest is a set of type-annotated terms;
for all z € vars(R'), 0 is a variable, where 8§ = mgu(tgr,Cob), or type(z,R') = T;
(UxegrestDen(X)) U Den(R') = Den(R); and for all X € Rest, X ® Cob ~ A.
R' is an instance of R obtained by expanding R to some “decision depth.” This
depth allows us to detect if the cobasic set Cob is useless. The function mgu(A, B)
returns an (idempotent) most general unifier § of the tuples of terms A and B.
For example, assume that R = ((X,Y),(X : list,Y : list)) and C = {C1,C2},
where C1 = ([H|L],Z) and C3 = ([],Z). R is not included in none of the cobasic
sets in C, but if we expands R using C, i.e., {R1, Ra} = ezpansion(R,C}), where
Ry = (([H1|L1],Y1),(H1 : T,L1 : list, Y1 : list)) and Ry = (([],Y2), (Y2 : list)),
we have that R; and R, are included in C; and C; respectively. However, in other
situations, the problem cannot be solved by expanding R: assume, for example, that
now C = {(Z,Z)}, in this case, R is not included in (Z, Z) because this cobasic set
introduces an equality constraint in Den(R) (note that here R is already expanded
to the “decision depth,” in which the equality constraints are given by the “aliased
variables”). In step 6, these aliased variables are computed by using the function
aliased (R, Cob), which takes a cobasic set Cob and a type-annotated term R such
that for all z € vars(R), z0 is a variable, where § = mgu(tg, Cob), and returns a set
of variables AlVars such that v € AlVars iff v € vars(R) and exists v' € vars(R)
such that v = v'6. If for some z € vars(R'), it holds that type(z,R') = T and
either z € AVars, or 20’ is not a variable, then we can say that C'ob useless. This
can be proved by using the variable x to construct an instance S such that: assuming
that there exists an instance I of R, such that I ® C's ~ A for all Cs € Cset, where
Cset =C'"U{CS | (B,A,CS) € AL}, then, S can be constructed from I so that
S ® Co =~ A for all Cy € {Cob} U Cset.

The function empty! (C, R, AL) performs a “first round” over the cobasic sets
in C. After this round (whose end is detected in step 2 by the condition C"' = ),
cobasic sets which have been detected to be useless are ignored (removed) and the
rest are stored in AL, which is an accumulation parameter. In step 7, R' and AVars
(besides Cob) are recorded in this parameter, because aliased variables whose type
is infinite (or which after having been expanded get bounded to a term containing
variables whose type is infinite) allow us to detect useless cobasic sets (which are
removed before empty2(AL’, R) is called in step 2).

The function empty2(AL, R) selects a cobasic set Cob in AL, and, if R is not
included in it, then R is expanded as a set of type-annotated terms Ri,..., R, by
expanding only “decision variables”. This ensures that every R; is either “included”
in C'ob or “disjoint” with it. It also ensures that R is not infinitely expanded (note
that the type of such variables is finite).



Example 3.1 Consider the predicate reverse/2:

reverse(X,Y) :— X =[] [Y=1].
reverse(X,Y) :— X [X1]X2] | reverse(X2,Y2), append(Y2,[X1],Y).

and the type assignment p = (X : list), where list == [] | [T|list]. Let 7 be the
input test of the predicate reverse/2,ie., 7= X =[]V X = [X1|X2]. Let M be
the type-annotated term which is a representation of p, i.e., M = ((X), (X : list)).
The minset representations of X = [] and X = [X1|X2] are ([]) and ([X1]|X2])
respectively (in this example we deal with unary tuples).

We have that 7 covers p iff ((X),(X : list)) C ([]) & ([X1]X2]) iff
((X), (X : list)) ® comp(([]) @ ([X1|X2])) = A iff ((X), (X : list)) @ comp(([]) ®
comp(([X1]X2])) ~ A. The disjunctive normal form of comp(([])) @comp(([X1|X2]))
is (X3) ® comp(([])) ® comp(([X1]|X2])), which has only one minset. Now, we have
to prove that ((X),(X : list)) ® (X3) ® comp(([])) ® comp(([X1]|X2])) =~ A, ie.,
whether the call empty(M,S), where M = (tar, pur), tnr = (X), pur = (X : list),
and S = (X3)/{([]); ((X1|X2])} returns true. This call proceeds as follows (and in
fact returns true):

1. intersection(M, (X 3)) returns the type-annotated term ((X4), (X4 : list)).

2. Since this intersection is not “empty” and (X3)—which represents the type-
annotated term ((X3),(X3 : T)) —is not “included” in ((X4), (X4 : list)),
the call empty! ({([]), ((X1]X2))}, ((X4),(X4 : list)),D) is performed. This
calls returns true and the computation is as follows:

(a) We have that ((X4), (X4 :list)) is not “included” in none of the cobasic
sets in {([]), ([X1|X2])}. Thus, a cobasic set is selected from this set.
Assume that ([X1|X2]) is the selected cobasic set;

(b) (R',Rest) = expansion(((X4),(X4 : list)),([X1]|X2])), where R' =
(([X5]|X6]),(X5 : T,X6 : list)), and Rest = {(([]),0)} (§ denotes an
empty type assignment, since ([]) has no variables).

(¢) The call included(R',([X1|X2])) returns true, and thus the call
emptyl ({([D}, (([1),0),0) is performed. This call also returns true, be-
cause (([1),0) C ([])- Thus, the initial call returns true. O

The covering algorithm we present is complete for tuple-distributive regular types:

Theorem 3.4 Let M be a type-annotated term in which all types are tuple-
distributive regular types, and S a minset. Then empty(M,S) terminates, and re-
turns true iff M @ S ~ A.

While sound, the algorithm is not complete for regular types in general (though we
believe it is fairly accurate in practice):

Theorem 3.5 Let M be a type-annotated term where all types are regular types, and
S a minset. Then empty(M,S) terminates, and if it returns true then M ® S ~ A.

For each of these theorems, correctness can be argued by induction on the depth
of recursion of functions emptyl and empty2 upon termination; the termination
arguments follow standard lines. Complete proofs can be found in [4].

One reason for imprecision in the case of non tuple-distributive regular types
is that the function intersection(M, A) described above computes a superset of the
exact intersection when we deal with general regular types (this result can be derived
from the work of Dart and Zobel [3]). Another reason comes from the use of the
function ezpansion(R,Cob) to partition the type-annotated term R in the boolean



Input: a type-annotated term M and a minset S (S = A/C, where A is a tuple of terms,
and C a set of tuples of terms).

Output: a boolean value denoting whether M ® S ~ A.

Process:
1.

2.
3.

if S = A then return(true), otherwise, let R = intersection (M, A);
if R = A then return(true);
otherwise, if included (A, R) then return(false) else return(empty! (C, R, 0)).

‘ emptyl (C, R, AL) : ‘

Input: a type-annotated term R, a set of cobasic sets C, and, a set AL of triples of the
form (B, AV, CS) where:

B is a type-annotated term,
CS is a cobasic set,
For all z € vars(B), z0 (where § = mgu(tg, CS)) is a variable, and,

v € AV iff v € vars(B) and exists v’ € vars(B) such that v6 = v'6 (ie., AV
is the set of variables in vars(B) which are aliased with some other variable in
vars(B) by 6).

Output: a boolean value denoting whether R/C; ~ A, where Ci = C U {Cob |
(B,A,Cob) € AL, for some B and A}.

Process:

1. Let C"”" = {Cob € C | intersection(R,Cob) # A};
2. If C" = 0 then return(empty2(AL’,R)), where AL' = {(S, AVars,Cob) |

(S, AVars,Cob) € AL, intersection(R,Cob) # A,0 = mgu(ts,tr), and for all
z,y such that ¢ € AVars and y € vars(z6), type(y,R) is finite (there are
straightforward algorithms to test whether a type expression denotes an infi-
nite or finite set of terms) }.

Otherwise, if included (R, Co) for some cobasic set Co in C” then return(true);
Otherwise, take a cobasic set Cob of C", and let ¢' = C"” — {Cob} and
(R, Rest) = exzpansion(R, Cobd);

If included(R', Cob) then return(A . .., emptyl (C', X, AL));

6. Otherwise, let AVars = aliased(R', Cob). If for some z € vars(R'), it holds

that type(x,R') = T and either x € AVars, or zf is not a variable, where
¢ = mgu(tr,Cob), then return(empty1(C’', R, AL));
Otherwise, let AL’ = ALU {(R', AVars,Cob)};

8. return(empty! (C', R', AL') A (A x ¢ pes; emptyl (C', X, AL)));

empty2(AL, R):

1. If AL = 0 then return(false); otherwise, take an item A € AL. Assume that
A= (B,AV,Cob), and let AL' = AL — {A} and 6 = mgu(ts,tr);

2. if included(R,Cob) then return(true), otherwise, for all variables y € AV, expand
all variables z such that z € vars(yf) (necessarily z € vars(R) and type(z, R) is
finite). Let RS be the set of type-annotated terms resulting from these expansions.

3. Let RS’ = {r € RS | intersection(r,Cob) ~ A} (necessarily for all s € RS and
s ¢ RS', s C Cob);

4. if RS’ = () then return(true), otherwise return(/\ , . 5 empty2(AL', X)).

Figure 1: | empty(M, S)



function emptyl (C,R,0). Given a pair (R, Rest) where R’ is a type-annotated
term, and Rest is a set of type-annotated terms, we assume that all type-annotated
terms in Rest are disjoint with the cobasic set C'ob, but this is not true for general
regular types, and, consequently, precision may be lost. A possible solution in order
to obtain a complete algorithm for general regular types would be to rewrite the
type annotated term which represents the input type of a predicate as a union of
type annotated terms containing only tuple-distributive types, and then apply the
above described covering algorithm for each of the elements of the union.

3.2 Covering in Linear Arithmetic over Integers

In this section, we consider linear arithmetic tests over integers (the ideas extend
directly to linear tests over the reals, which turn out to be computationally somewhat
simpler). Without loss of generality, assume that the tests are in disjunctive normal
form, i.., they are of the form ®(z) = \/;_; AL, ¢i;(Z) where each of the tests
¢:;(Z) is of the form ¢;;(Z) = ap+arz1+---+arzr @ 0, with @ € {=,#,<,<,>, >}
Determining whether ®(Z) covers the type assignment of integer to each variable in
Z amounts to determining whether |= (VZ)®(z). This is true if and only if (32)—®(Z)
is unsatisfiable. In other words, we need to determine the unsatisfiability of

~®(z) = /\ \/ —¢i;(Z) = /\ v¢ij(177),

i=1j=1 i=1j=1
JERN. . — — k

where 1;;(Z) is derived from —¢;;(Z) as follows: let ¢;;(Z) = >, jaix; @ 0. If @

is a comparison operator other than ‘=", ¢;;(Z) is simply Ei;) a;z; @ 0, where O

is the complementary operator to (D, e.g., if @ = ‘>’ then @) = ‘<. If ) = ‘=,
the corresponding complementary operator is ‘#’, but this can be written in terms
of two tests involving the operators ‘>’ and ‘<’:

Vij(@) = (Tiipaswi > 0) V (Ciigaiws <0).

The resulting system, transformed to disjunctive normal form, defines of a set of
integer programming problems: the answer to the original covering problem is “yes”
if and only if none of these integer programming programs has a solution. Since a
test can give rise to at most finitely many integer programs in this way, it follows
that the covering problem for linear integer tests is decidable.

Since determining whether an integer programming problem is solvable is NP-
complete [10], the following complexity result is immediate:

Theorem 3.6 The covering problem for linear arithmetic tests over the integers is
co-NP-hard.

It should be noted, however, that the vast majority of arithmetic tests encountered
in practice tend to be fairly simple: our experience has been that tests involving
more than two variables are rare. The solvability of integer programs in the case
where each inequality involves at most two variables, i.e., is of the form az + by < ¢,
can be decided efficiently in polynomial time by examining the loops in a graph
constructed from the inequalities [1]. The integer programming problems that arise
in practice, in the context of covering analysis, are therefore efficiently decidable.

3.3 Covering Analysis: Putting it Together

Let 7 be the input test of predicate p and p a type assignment. Consider the type
assignment p written as a type-annotated term M, and 7 written in disjunctive
normal form, i.e., 7 =7 V.-V 7,, where each 7; is a conjunction of primitive tests
(recall that primitive tests are unification, disunification, etc.). Consider the test
7; written as 7 A 7/, where 7F and 7/ are a conjunction of primitive unification
and arithmetic tests respectively (i.e., we write arithmetic tests after unification



tests). Consider also TiH written as a minset D; (recall that D; is the intersection

(conjunction) of a tuple of terms, and zero or more cobasic sets). Let D be the union
(disjunction) of the these minsets.

Example 3.2 Let p be the predicate partition/4 from the familiar quicksort pro-
gram. Let 7 be X = [|V(X =[H|L]AH >Y)V(X = [H|L]AH <Y) and let p be
(X :intlist,Y :integer), where intlist ::= [] | [integer|intlist]. In this case, we have
that M is ((X,Y), (X :intlist,Y :integer)). n=X =[], =X =[H|L],H >V,
and 73 = X = [H|L],H < Y. 7 can be written as 7f{ A 7{}, where 7l = X =[]
and 7{! = true. Similarly, 7# = X = [H|L] and ' = H > Y, and 7 = X = [H|L]
and 78 = H <Y. D = D; ® D> @ D3, where D; = ([],Y), Dy = ([H|L],Y) and
Ds; = ([H|L],Y). O

To test whether 7 covers p, we first test that D covers M, ignoring the arithmetic
tests. If D does not cover M, then obviously, the (whole) input test of p, 7, does
not cover M, and we report failure. Otherwise, we create (zero or more) covering
subproblems, each of them containing only arithmetic tests, as follows:

1. Let A be the set of all the tuples of terms and negations of cobasic sets ap-
pearing in D (note that the negation of a cobasic set is a tuple of terms, thus
A is a set of tuples of terms), and let A’ ={be A| M @b # A}.

2. For each tuple of terms b in A':

(a) Let I = M ® b and 0 = mgu(ty,t1);

(b) Let = V;n:1 rj, where {ri,...,rn} = {t; | b £ D; for some 1 <
i < n and t; is the result of applying 6 to TiA (this is done to take into
account possible variable aliasing)}. Note that there is an algorithm to
test whether b C D; in [14].

(c) Test whether 7, covers py (recall that pr refers to the type assignment of
I):

i. Assume that 7, = s1V---Vs, and each s; is a conjunction of primitive
arithmetic tests. If 7, = true then report success;
ii. otherwise, if for some variable x appearing in all s;, 1 < i < n, it
holds that type(z, pr) is not a numeric type, then report failure;
iii. otherwise, use the algorithm described in section 3.2 to test whether
Tp COVETS py.

Theorem 3.7 If D covers M and for each b € A', 7, covers I, then the input test
of p, T, covers M.

Proof It is clear that if D covers M, then the disjunction of all the basic sets in
A" also covers M. Thus, for any tuple of terms T which is an instance of M, there
is at least a b € A’, such that Z is an instance of b, and all the tests TZ-H such that
b C D;, will succeed for . If 7, covers M, then at least one of the tests ¢; in 7 will
succeed for . Thus, by the construction of 73, at least one 7; will succeed for Z, and
we conclude that 7 covers M. ]

Example 3.3 Consider Example 3.2. Tt is clear that D covers M, thus we proceed
as follows:

1. A= {([]7Y)a ([H|L];Y)}, and A’ = A.
2. Let bl = ([],Y) and b2 = ([H|L]). Then 7y = trueand 7, = H > YVH < Y.

3. We have that true covers (([],Y), (Y : integer)), and alsothat H > YVH <Y
covers (L : intlist, H : integer,Y : integer), thus 7 covers M. 0O



4 Non-Failure Analysis
4.1 The Analysis Algorithm

Once we have determined which predicates cover their types, determining non-failure
is straightforward: from Theorem 3.1, analysis of non-failure reduces to the determi-
nation of reachability in the call graph of the program. In other words, a predicate
p is non-failing if there is no path in the call graph of the program from p to any
predicate ¢ that does not cover its type. It is straightforward to propagate this
reachability information in a single traversal of the call graph in reverse topological
order. The idea can be illustrated by the following example.

Example 4.1 Consider the following predicate taken from a quicksort program:

gs(X1,X2) :— X1 =[] [ Xx2=1].
gs(X1,X2) :— X1 = [H|L] | part(H,L,Sm,Lg),
gs(Sm,Sm1), gs(Lg,Lgl), app(Smi, [H|Lgl],X2).

Suppose that gs/2 has mode (in, out) and type (intlist, -), and suppose we
have already shown that part/4 and app/3 cover the types (int, intlist, -, -)
and (intlist, intlist, -) induced for their body literals in the recursive clause
above. The input tests for qs/2 are X1 = [1 V X1 = [HIL], and this covers the
type intlist, which means that head unification will not fail for qs/2. It follows
that a call to qs/2 with the first argument bound to a list of integers will not fail.
O

4.2 A Prototype Implementation
In order to evaluate the effectiveness and efficiency of our approach to non-failure
analysis we have constructed a relatively complete prototype which performs such
analysis in an automatic way. The system takes Prolog programs as input, which
include a module definition in the standard way. In addition, the types and modes
of the arguments of exported predicates are given, as well as the required type
definitions. The system uses the PLAT analyzer to derive mode information, using
the Sharing+Freeness domain [17], and an adaptation of Gallagher’s analysis to
derive the types of predicates [8]. The resulting type- and mode-annotated programs
are analyzed using the algorithms presented for Herbrand and linear arithmetic tests.

Herbrand covering is checked by a naive direct implementation of the analyses
presented. Testing of covering for linear arithmetic tests is implemented directly
using the Omega test [18]. This test determines whether there is an integer solution
to an arbitrary set of linear equalities and inequalities, referred to as a problem.

We have tested the prototype first on a number of simple standard benchmarks,
and then on more complex ones. The latter are taken from those used in the cardi-
nality analysis of Braem et al. [2], which is the closest related previous work that we
are aware of. Some relevant results of these tests are presented in Table 1. Program
lists the program names, N the number of predicates in the program, F the number
of predicates detected by the analysis as non-failing, Cov the number of predicates
detected to cover their type, C the number of non-failing predicates detected in [2],
T the time required by the covering analysis (SPARCstation 10, 55MHz, 64Mbytes
of memory), T the time required to derive the modes and types, and T the total
analysis time (all times are given in milliseconds). Averages (per predicate in the
case of analysis time) are also provided in the last row of the table.

The results are quite encouraging showing that the developed analysis is fairly
accurate. The analysis is significantly more powerful than those previously reported
in non-failure detection (the experimental results presented in [2] suggest that it is



more appropriate for detecting determinacy than for non-failure). It is pointed out
in [2] that the sure success information can be improved by using a more sophisticated
type domain. However, this is also applicable to our analysis, and the types inferred
by our system are similar to those used in [2]. Much of the power of our algorithm
comes from the use of the notion of covering, which allows detecting when at least
one of the clauses (not necessarily the same) defining a predicate will not fail for
all possible calls. The cardinality analysis detects non-failure only when at least
one of the clauses (always the same) defining a predicate will not fail for all the
possible calls. The non-failure analysis times are quite good, despite the currently
naive implementation of the system (for example, the call to the omega test is done
by calling an external process). The overall analysis times are quite acceptable, even
when including the type and mode analysis times, which are in any case very useful
in other parts of the compilation process.

The Mercury system [11] allows the programmer to declare that a predicate
will produce at least one solution, and attempts to verify this with respect to the
Herbrand terms with equality tests. As far as we know, the Mercury compiler does
not handle disequality constraints on the Herbrand domain. Nor does it handle
arithmetic tests, except in the context of the if-then-else construct. As such, it is
considerably weaker than the approach described here.

[ Program | N | F (%) | Cov (%) | C ] Tr | Tu | Tr |
Hanot 2 | 2 (100) 2 (100) N/A 60 860 920
Deriv T[T (100) | 1(100) | N/A 80 940 | 1,020
Fib T [1(100) | 1(100) | N/A 20 90 110
Mmatriz | 3 | 3(100) | 3(100) | N/A 90 350 40
Tak T[T (100) | 1(100) | N/A 10 110 120
Subs T1(100) | 1(100) | N/A 50 90 140
Reverse 2 | 2 (100) 2 (100) N/A 10 100 110
Qsort 313 (100) | 3(100) | 0(0) 80 10 520
QsoriZ 51 3 (60) 3 (60) | 0 (0) 100 390 90
Queens 51 2 (40) 3(40) | 0 (0) 120 360 480
Gabriel [ 20 | 3(15) |10 (30) | 0 (0) 100 | 1,860 | 2,280
Read 33 8 (21) | 19 (50) | 8 1) 540 | 12,240 | 12,780
Kalah 44 | 18 (40) 29 (65) | 6 (13) 1,500 14,570 16,070
Plan 16 [ 4(25) | 11(68) | 0(0) 810 | 7,000 | 7,810
Credit 25 [ 10 (40) | 18 (72) | 0(0) | 4,720 T470 | 6,190
Py 0 2(20) 6 (60) | 0(0) 540 1,600 3,140

(Mean [ | 6% 6% 3% 51 (p) [ 259 () [ 991 ()]

Table 1: Accuracy and efficiency of the non-failure analysis (times in mS).

5 Applications

There are several applications of this analysis. The first application is implementing
granularity control in parallelizing compilers. All of the work that we know of in
this context involves estimating upper bounds to the cost of goals (see, for example,
[6]). The use of upper bounds allows us to guarantee that, given a program that
is already parallelized, we can make it run more efficiently by running some of the
parallel goals sequentially. However, the problem faced by parallelizing compilers is
in fact exactly the converse of the one tackled above: what needs to be guaranteed is
that the parallel execution will be more efficient than the sequential one, rather than
the other way around. This type of granularity control can be solved using essentially
the same general approach, but we need a lower bound on the cost of each goal. The



detection of such lower bounds is not too different from that of upper bounds, except
that it requires knowledge of non-failure, since otherwise only a trivial lower bound
of zero can be derived [7]. The techniques presented in the paper directly address
this problem. In fact, the usefulness of lower bounds was already clear when the
work presented in [6] was developed, but the determination of useful lower bounds
was deemed too difficult at the time. This approach allows us to guarantee that,
given a sequential program, it will run more efficiently by running some of the goals
in parallel. This in effect allows obtaining guaranteed speedups (or, at least, ensuring
that no slow-downs will occur) from automatic parallelization, even in architectures
for which parallel execution involves a significant overhead. We know of no other
approach which can achieve this.

The second application has to do again with (and-)parallelism, in particular with
the avoidance of speculative computation. Consider a number of goals in a resolvent
which are determined to be independent. As shown in [12], and ignoring paralleliza-
tion overheads (which can be dealt with as illustrated above), the time involved
in their parallel execution can be guaranteed to be smaller or equal to that of the
corresponding sequential execution. However, it is impossible to guarantee that no
more work will be performed. This is due to the possibility of failure of one of the
goals. Consider two goals p and ¢ so that ¢ is executed after p in the sequential
execution. Assume also that p fails (both in the sequential and, correspondingly, in
the parallel execution). If p and ¢ are scheduled for execution in parallel, a part of ¢
may be executed until the point in which p fails (the execution of ¢ will normally be
killed at this point). Although not producing a slow-down, this constitutes unneces-
sary computation which steals computing resources from any useful work that may
exist in the system (and therefore does reduce speedup). Determining that goals
in a conjunction will not fail (at least all but the rightmost one — note that failure
of ¢ in the example above does not have these ill-effects) thus allows guaranteeing
avoidance of speculative computation.

A third application is in the general area of program transformation, where
information about non-failure can be used in determining the order of execution of
literals in a clause. Consider a clause

H :— B]_,p(X),B2,q(X),Bg
where By, Bs, B; are sequences of literals, p(X) produces bindings for X, and ¢(X)
is the left-most body goal that has X as an input argument. If p is known to be
non-failing, it may be possible to transform this clause to

H :— Bl;B27p(X)7q(X)aBS-
The resulting code may be more efficient than the original if a goal in By can fail.

Finally, among the most important applications of non-failure we envision is in

speeding up program development by assisting programmers by reporting predicates
that are not guaranteed to not fail. This can help in detecting programming errors
at compile time, in much the same way as type checking does in statically typed lan-
guages, since in logic programs the usual expectation is that a predicate will succeed
and produce one or more solutions. In most logic programming systems, however,
little compile-time checking is performed. The system is currently integrated in the
CIAO system and used for these purposes (as well as for optimization).
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