
Improving the Compilation of Prolog to C Using

Type Information: Preliminary Results?

J. Morales M. Carro
jfran@clip.dia.fi.upm.es mcarro@fi.upm.es

Computer Science School
Technical University of Madrid

Boadilla del Monte, E-28660, Spain

Abstract. We describe the current status and preliminary results of a
compiler of Prolog to C. This compiler can use high-level information
on the initial Prolog program in order to optimize the resulting C code,
which is then fed into a off-the-shelf C compiler. The basic translation
process basically mimics the unfolding of a C-coded bytecode emulator
with respect to the bytecode corresponding to the Prolog program. This
allows reusing a sizeable amount of the associated machinery: ancillary
pieces of C code, data definitions, memory management routines and
areas, etc. We evaluate the performance of programs compiled both with
and without type information.

1 Introduction

Several techniques for implementing Prolog have been devised since the inter-
preter originally developed by Colmerauer and Roussel [Col93], many of them
aimed at achieving more speed. A good survey of part of this work can be found
in [Van94]. A rough classification of implementation techniques for Prolog (ex-
tensible to other languages) is the following:

– Interpreters (such as C-Prolog [Per87] and others), where a slight prepro-
cessing or translation might be done before program execution, but the bulk
of the work is done at runtime by the interpreter.

– Compilers to bytecode and their interpreters (often called emulators). The
compiler produces a relatively low level code in a special purpose language,
but an interpreter of such code is still needed. Most emulators are based on
the Warren Abstract Machine (WAM) [War83,AK91], but other proposals
exist [Tay91,KB95]. Highly optimized emulators [CDRA00] offer very good
performance.

– Compilers to a lower-level language, which generate an output requiring little
or no additional support to be executed. Ideally, the compiler should generate
directly machine code. Examples of this are the Aquarius system [VD92],
the SICStus Prolog [Swe99] compiler (for some architectures), the latest

? The authors have been partially supported by the Spanish MCYT Project TIC 99-
1151 EDIPIA and the EU ESPRIT Project 2001-34717 Amos

BimProlog compilers [VDW87,Mar93], the Gnu Prolog compiler [DC01], and
the Mercury. [SHC96] compiler1

Each solution has its advantages and disadvantages. Generation of low level
code promises faster programs at the expense of using more resources during the
compilation phase. Interpreters have smaller load/compilation time and are a
good solution due to their simplicity when speed is not a priority; executing the
same Prolog code in differente architectures boils down (in principle) to recom-
piling the interpreter. Compilers are more complex than interpreters, and the
difference is much more acute if some form of code analysis is performed as part
of the compilation, which impacts development time. Emulators place them-
selves in some intermediate point, retaining the portability of interpreters, since
only the emulator has to be recompiled for every target architecture (bytecode
is usually architecture-independent).

In this paper we will summarily describe work on progress on a compiler of
Prolog to C, together with a scheme to optimize the resulting code using higher-
level information on the source program. These optimizations can be used to
tackle lower-level issues, and therefore exceed what can be expressed solely by
means of Prolog-to-Prolog transformations. Note that the selection of C as tar-
get (low-level) language does not, in practice, prevent portability, as C compilers
exist for most architectures. Besides, C is low-level enough as to apply optimiza-
tions to its generation which will eventually make into the final executable code
in a form known beforehand, therefore offering a good compromise between speed
and portability.

2 Issues on Compiling Prolog to Lower Level Languages

Making as much work as possible at compile time in order to avoid run-time over-
head is expected to bring more speed to a system: native code has all the odds
to be faster than C, C has the same relationship with a bytecode emulator, and
a bytecode emulator with an interpreter. Additionally, code optimization can be
put to work at all levels —e.g., Prolog itself [Win89,PGH97], WAM code [FD99],
lower-level code, and native code. However, optimizations performed at a higher
language level are implicitly carried over onto lower levels, while new optimiza-
tions can be introduced as we approach native code level.

A practical matter is that compilers to native code need architecture-dependent
back-ends. This may make porting and maintaining them a non-trivial task.
Systems as Gnu Prolog try to avoid the mousetrap by using an intermediate
“mini-assembler” code, easy to translate into machine code for different archi-
tectures. But it requires, anyhow, different back-ends for different architectures.
Besides, recent performance evaluations [DC01] show that well-tuned emulator-
based Prolog systems can beat, at least in some cases, Prolog compilers which
generate machine code directly.

1 Although Mercury is not a Prolog compiler, the source language is close enough as
to be mentioned here.

A practical reason to compile to C is the availability of good C compilers
for most architectures, which will tackle the task of generating executable code.
In our case, the possibility of reusing components of an already emulator-based
existing system2 is a practical advantage: by adopting the same scheme for mem-
ory areas, data tagging, etc., existing fragments of C code (builtins, low-level file
and stream management, memory management and garbage collection routines,
etc.) can be used by the new compiler, which only has to replace the WAM
emulator.

The difference with other, similar systems which compile to C comes from us-
ing compile-time information regarding determinacy, types, instantiation modes,
etc. This information is expressed by means of a well-defined assertion lan-
guage [PBH00], and provided either by the user or by automatic global analysis
tools [HBPLG99]. For example, wamcc (a Gnu Prolog forerunner), which gener-
ated C, did not use extensive analysis information (but it included clever tricks
which in practice tied it to a single C compiler, gcc); Aquarius [VD92] used
analysis information at several compilation stages, but it generated directly ma-
chine code, and it was therefore difficult to port and maintain. Notwithstanding,
it proved the power of using global information in a Prolog compiler.

A drawback of putting more burden on the compiler is that compile times
grow, and compiler complexity increases. While this can turn out to a problem
in extreme cases (specially if global analysis is made), incremental analysis and
the aid of a module system [CH00] can help to alleviate it in practice. Moreover,
global analysis is, in our proposal, not mandatory, and can be left to generate fi-
nal executables. We expect that, as the system matures, the Prolog-to-C compiler
itself (now in a prototype stage) will not be slower than a Prolog-to-bytecode
compiler.

Another common issue in compiling to lower-level languages is the size of
the final object code files, usually bigger than their bytecode counterparts, since
single bytecode instructions correspond to several machine code instructions.
Global information can be used to reduce this size difference by specializing
C code, but additional means to reduce code size should be adopted in the
generation of C code itself.

3 An Overview of the Compiler

The compilation process starts by a preprocessing phase which canonizes clauses
(removing aliasing and structure unification from the head), and expands dis-
junctions, negations and if-then-else constructs. It also replaces is/2 by explicit
calls to arithmetic builtins and executes a simple, local analysis which gathers
information about the type and freeness state of variables. Having this analy-
sis in the compiler helps to improve the code even in the case that no external
information is available. The next steps include the traslation of Prolog to WAM-

2 Ciao Prolog [HBC+99] (http://clip.dia.fi.upm.es/Software/Ciao), a SICStus
Prolog 0.5 derivative which we are using as development platform.

put variable(I,J) 〈uninit,I〉 = 〈uninit,J〉
put value(I,J) 〈init,I〉 = 〈uninit,J〉

get variable(I,J) 〈uninit,I〉 = 〈init,J〉
get value(I,J) 〈init,I〉 = 〈init,J〉

unify variable(I[, J]) 〈uninit,I〉 = 〈modedep,J〉
unify value(I[, J]) 〈init,I〉 = 〈modedep,J〉

Table 1. Representation of some WAM unification instructions with types

based instructions (also used by the Ciao Prolog emulator), splitting these WAM
instructions into an intermediate low level code, and final traslation to C.

3.1 Typing WAM Instructions

WAM instructions dealing with data are internally handled with an enriched rep-
resentation which encodes the possible instantiation state of its arguments. This
helps in using type information, and also in generating and propagating low-level
information regarding the abstract machine type and instantiation/initialization
state of the variables (which is not seen at a higher level). Each unification in-
struction is represented as 〈TypeX,MemX〉 = 〈TypeY,MemY〉, where TypeX and
TypeY refer to the classification of WAM-level types (see Figure 1), and MemX
and MemY refer to the registers where these variables live.

Table 1 summarizes the aforemen-top

init uninit modedep

first local unsafe

bottom

Fig. 1. Lattice of WAM types

tioned representation for some selected
cases. The registers taken as arguments
are the temporary registers (x(I)), the
stack registers (y(I)) and the register
for structure arguments (n(I)). The
last one can be seen as the second ar-
gument which is implicit in the unify *
WAM instructions. A number of other
registers (ok, temp, . . .) are available.
* constant, * nil, * list and * structure

WAM instructions are represented similarly.
The advantage of this representation is that it is more uniform than WAM

instructions In particular, as more information is known about the variables,
the associated (low level) types can be refined in order to generate more specific
code. Using a richer lattice and initial information (Section 4), a more descriptive
intermediate code is generated and used in the back-end.

3.2 Generation of Intermediate Low Level Language

WAM instructions are split into simpler ones, which are more suitable for opti-
mizations and to simplify the generation of the final C code (and probably also
the generation of code in languages of similar level). The deegre of complexity
of the low-level code is similar to the one proposed in the BAM [VR90]. Table 2

no choice Mark that there is no alternative
first choice(Arity, Alt) Create a choicepoint
middle choice(Arity, Alt) Change the alternative
last choice(Arity) Remove the alternative
complete choice(Arity) Complete the choice point
cut choice(Chp) Cut to a given choice point
push frame Allocate a frame on top of the stack
complete frame(FrameSize) Complete the stack frame
modify frame(NewSize) Change the size of the frame
pop frame Deallocate the last frame
recover frame Recover after returning from a call
ensure heap(CS, Amount, Arity) Ensure that enough heap is allocated.

(CS indicates completion status of the choice point)

Table 2. Choice, stack and heap management instructions

while (code != NULL)

code = ((Continuation (*)(State *))code)(state);

Continuation foo(State *state) {

...

state->cont = &foo_cont;

return &foo2;

}

Continuation foo_cont(State *state) {

...

return state->cont;

}

Fig. 2. The C execution loop and blocks scheme

shows the low level instructions related to the management of the stacks, which,
at the moment, are very similar to those in the WAM.

Table 3 shows special control and data instructions. The Type argument
which appears in several instructions is intended to reflect the type of the in-
struction arguments: for example, in the instruction bind, Type used to specify
if the arguments contain a variable (and, if this is known, wether it lives in
the heap, in the stack, etc.) or not. For the unification of structures, the use
of write and read modes is avoided using a two-stream scheme (see [Van94]
for an explanation and references). This scheme requires explicit control in-
structions, hence the existence of jump instructions (jump, cjump, and ijump).
Jumps are performed to labels, marked as global (when they have to be stored
in global data structures, such as the next alternative in a choicepoint) or local.
For efficient indexing, the WAM instructions switch on term, switch on cons and
switch on functor are also included, although the C back-end does not exploit
them fully at the moment, resorting to a linear search in some cases. Failing is
done by jumping to the special label fail. Builtins return an exit state in one
argument, which is used to decide whether to backtrack or not.

Scheme of the Compilation to C The compilation produces C code which
corresponds roughly to an unfolding of the initial bytecode emulator loop with

Data

load(X, Type) Load X with a term
trail if conditional(A) Trail if A is a conditional variable
bind(TypeX, X, TypeY, Y) Bind X and Y
read(Type, X) Begin read of the structure arguments of X
deref(X, Y) Dereference X into Y
move(X, Y) Copy X to Y
globalize if unsafe(X, Y) Copy X to Y ensuring safeness
globalize to arg(X, Y) Copy X to argument register Y ensuring safeness

function(N, Is, O, H, Live) Call a function
builtin(N, Is, Success) Call a builtin

Control

ijump(X) Jump to the address stored in X
jump(Label) Jump to Label
cjump(Cond, Label) Jump to Label if Cond is true
switch on type(X, Var, Str, List, Cons) Jump to the label that matchs the type of X
switch on functor(X, Table, Else)
switch on cons(X, Table, Else)

Conditions

not(Cond) Negate the Cond condition
test(Type, X) True if X matchs Type
equal(X, Y) True if X and Y are equal
erroneous(X) True if X has an erroneous value

Table 3. Control and data instructions

respect to the bytecode. In the points where the emulated program counter
changes a continuation passing using pointers to functions is used. Each block of
bytecode, which begins in a label and ends in a instruction involving a possible
jump, is translated to a C function with the state of the abstract machine as
input argument and the next continuation as output argument. Schemes of the
execution loop and of the functions code blocks are compiled into are shown in
Figure 2. Additionally, we have implemented an optimization which reduces the
function calling overhead, by using goto statements for jumps to local labels
which are located in the same code block.

This scheme does not require using machine-dependent options of the C com-
piler or extensions to the ANSI C language (although machine-dependent opti-
mizations can of course be given to the C compiler). Other systems, as [CDRA00]
or [SHC96], take advantage of machine-dependent and non-portable constructs
to obtain very good performance. However, one of the goals of our system is
studying optimizations of a fixed compilation scheme with the use of program
information, and portability and code cleanliness is given a high priority.

3.3 An Example: the fact/2 Predicate

We will illustrate summarily the compilation stages with a sample implementa-
tion of the well-known factorial program (Figure 3). We have chosen it due to

its simplicity, since the performance gain is not very high in this case. The code
after canonizing and rewriting is shown in Figure 4. The WAM code correspond-
ing to the recursive clause is in the leftmost column of Table 4, and the internal
representation of this code appears in the same table, in the middle column.
Note how variables are annotated using information which can be deduced from
local inspection of the clause.

This WAM-like representation is translated to the low-level code shown in
Figure 5 (ignore, at the moment, the shadowed and framed regions; they will be
further discussed in Section 4). This code, which is quite low level now, is finally
translated to C.

Executing fact(100, N) 20000 times took 3.32 seconds using the bytecode
emulator, and 2.84 seconds with the C-compiled code C without external type
information (a speedup of 1.16). We will see in the next section how this perfor-
mance can be improved with the use of type information.

fact(0, 1).

fact(X, Y) :-

X > 0,

X0 is X - 1,

fact(X0, Y0),

Y is X * Y0.

Fig. 3. Factorial, initial code

fact(A, B) :-

0 = A,

1 = B.

fact(A, B) :-

A > 0,

builtin__sub1_1(A, C),

fact(C, D),

builtin__times_2(A, D, B).

Fig. 4. Factorial, after preprocessing

4 Improving Code Generation

The code generation seen so far can be greatly improved by using more infor-
mation regarding, e.g., types, modes, determinacy, etc., as done in several other
compilers. In the current version of the compiler we are using type information,
which is expressed by means of the assertion language of Ciao Prolog [PBH00],
as mentioned in Section 2. An example of assertions can be seen in the example
of Section 4.2.

The generation of low-level code using additional type information uses an
extended type lattice obtained by replacing the init element in the lattice in
Figure 1 with the type domain in Figure 6. This information enriches the Type
parameter of the low-level code.

4.1 Using Information inside the Compiler

During the compilation to low level code the information about the types of the
variables is used to avoid unnecesary tests. The standard WAM compilation per-
forms also some optimization, but it is based on ad-hoc per-clause implicit anal-
ysis, and it does not carry, e.g., information deduced from arithmetical builtins.
By using richer type/mode information, a number of further optimizations can
be done:

WAM code Without Types With Types

put constant(0,2) 0 = 〈uninit,x(2)〉 0 = 〈uninit,x(2)〉
builtin 2(37,0,2) 〈init,x(0)〉 > 〈int(0),x(2)〉 〈int,x(0)〉 > 〈int(0),x(2)〉
allocate builtin push frame builtin push frame
get y variable(0,1) 〈uninit,y(0)〉 = 〈init,x(1)〉 〈uninit,y(0)〉 = 〈var,x(1)〉

get y variable(2,0) 〈uninit,y(2)〉 = 〈init,x(0)〉 〈uninit,y(2)〉 = 〈int,x(0)〉

init([1]) 〈uninit,y(1)〉 = 〈uninit,y(1)〉 〈uninit,y(1)〉 = 〈uninit,y(1)〉
true(3) builtin complete frame(3) builtin complete frame(3)
function 1(2,0,0) builtin sub1 1(builtin sub1 1(

〈init,x(0)〉, 〈uninit,x(0)〉) 〈int,x(0)〉, 〈uninit,x(0)〉)

put y value(1,1) 〈var,y(1)〉 = 〈uninit,x(1)〉 〈var,y(1)〉 = 〈uninit,x(1)〉
call(fac/2,3) builtin modify frame(3) builtin modify frame(3)

fact(〈init,x(0)〉, 〈init,x(1)〉) fact(〈init,x(0)〉, 〈var,x(1)〉)

put y value(2,0) 〈init,y(2)〉 = 〈uninit,x(0)〉 〈int,y(2)〉 = 〈uninit,x(0)〉
put y value(2,1) 〈init,y(1)〉 = 〈uninit,x(1)〉 〈number,y(1)〉 = 〈uninit,x(1)〉

function 2(9,0,0,1) builtin times 2(〈init,x(0)〉, builtin times 2(〈int,x(0)〉,
〈init,x(1)〉,〈uninit,x(0)〉) 〈number,x(1)〉, 〈uninit,x(0)〉)

get y value(0,0) 〈init,y(0)〉 = 〈init,x(0)〉 〈var,y(0)〉 = 〈init,x(0)〉

deallocate builtin pop frame builtin pop frame
execute(true/0) builtin proceed builtin proceed

Table 4. WAM code and internal representation without and with external types
information. Underlined instruction changed due to additional information.

global(fact/2):
first choice(2,V1)
ensure heap(incompleted choice,callpad,2)

deref(x(0),x(0))

cjump(not(test(var,x(0))),local(V3))
load(temp2,int(0))
bind(var,x(0),nonvar,temp2)

jump(local(V4))
local(V3):

cjump(not(test(int(0),x(0))),fail)

local(V4):

deref(x(1),x(1))

cjump(not(test(var,x(1))),local(V5))

load(temp2,int(1))

bind(var,x(1),nonvar,temp2)jump(local(V6))

local(V5):
cjump(not(test(int(1),x(1))),fail)

local(V6):

complete choice(2)

ijump(continuation)
global(V1):

last choice(2)

load(x(2),int(0))

builtin(numgt 2,[x(0),x(2)],ok)

cjump(not(ok),fail)
push frame
move(x(1),y(0))

move(x(0),y(2))
load(y(1),var(stack))

complete frame(3)

function(sub1 1,[x(0)],x(0),0,1)

cjump(erroneous(x(0)),fail)
move(y(1),x(1))

modify frame(3)
load(continuation,global(V0))

jump(global(fact/2))
global(V0):

recover frame

move(y(2),x(0))
move(y(1),x(1))

function(times 2,[x(0),x(1)],x(0),0,2)
cjump(erroneous(x(0)),fail)

deref(y(0),temp)
deref(x(0),x(0))

builtin(unify,[temp,x(0)],ok)

cjump(not(ok),fail)

pop frame

ijump(continuation)

Fig. 5. Low level code for the fact/2 example (see also Section 4)

init

var

first local unsafe

nonvar

list str

str(N/A)

atomic

number

int

int(X)

large

large(X)

atom

atom(X)

bottom

Fig. 6. Extended init subdomain

Unify instructions A call to the general unify builtin can be replaced by the
more specialized bind instruction if one or both arguments are known to store
variables. When arguments are known to be constants, a simple comparision
instruction can be emitted instead.

Two-Stream Unification The unification of a register with a structure or constant
needs some tests for determining the unification mode (read or write). Also, in
read mode, an additional test is required to compare the register value with the
constant or the structure functor. These tests can often be reduced to true or
false if enough information is known about the variable.

Index Tree Generation Type information is also used to optimize the generation
of index trees, used as part of the clause selection. An index tree is generated
by selecting some literals from the beginning of the clause, mostly builtins and
unifications, which give some amount of type/mode information. This is used
to construct a decision tree on the types of the first argument.3 When type
information is available, the indexing tree can be optimized by removing some
of the tests in the nodes.

Avoiding Unnecesary Variable Safeness Tests Another optimization made in the
low level code with type information is the replacement of globalizing instructions
for unsafe variables by explicit dereferences. When the type of a variable is
nonvar, its globalization is equivalent to a dereference, which is faster.

Selecting Optimized Builtins Calls to builtins can also be optimized in the pres-
ence of type information. While the code of some of them is currently written
in C and is external to the compiler, specialized versions can exist and be se-
lected using the call patterns deduced from the type information. Currently,
only arithmetic builtins are (partly) specialized, but this gives good speedups in
many cases.

4.2 An Example: the fact/2 Predicate with program information

Let us assume that it is known that fact/2 (Figure 3) is always called with its
first argument instantiated to a small integer (an integer which fits into a tagged

3 This can of course be extended to other arguments.

word of the internal representation) and its second argument is a free variable.
This information can be written with the assertion language as:

:- entry fact(X, Y) : (t_int(X), t_var(Y)).

which reflects the call types / modes. The propagation of that information
through the canonized predicate gives the annotated program shown in Figure 7.

fact(A, B) :-

true(t_int(A)),

0 = A,

true(t_var(B)),

1 = B.

fact(A, B) :-

true(t_int(A)),

A > 0,

true(t_int(A)), true(t_var(C)),

builtin__sub1_1(A, C),

true(t_any(C)), true(t_var(D)),

fact(C, D),

true(t_int(A)), true(t_number(D)),

true(t_var(B)),

builtin__times_2(A, D, B).

Fig. 7. Annotated factorial (using type information)

The WAM code generated for this example is shown in the rightmost column
of Table 4. Underlined instructions were made more specific due to the initial in-
formation — note, however, that the representation is homogeneous with respect
to the “no information” case.

The impact of type information in the generation of low-level code can be
seen in Figure 5. Instructions in the shaded regions are removed when type
information is available, and the (arithmetical) builtins enclosed in rectangles
are replaced by calls to versions specialized to work with small integers and
which do not perform type/mode testing.

The optimized fact/2 program took 2.360 seconds with the same call as
in Section 3.3: a 40% speedup with respect to the bytecode version and a 20%
speedup over the compilation without type information.

5 Performance Measurements

We have evaluated the performance behavior of the executables generated with
our compiler with respect to the emulated bytecode on a set of selected bench-
marks. The benchmarks are not real-life programs, and some of them have been
executed up to 10.000 times in order to obtain reasonable execution times. All
the measurements have been made in a Pentium 4 @ 1.7GHz with a 256KB
cache and 256MB of RAM, running Linux with a 2.4 kernel and using gcc 3.0.4
as C compiler.

The summary of the results appears in Table 5; the second, third, and fourth
columns correspond, respectively, to the execution times of programs compiled
to bytecode, to C, and to C optimized using information on the program. The

Program Bytecode C Code Opt. C Bytecode/C Bytecode/Opt. C

queens(11) 780 550 260 1.41 3.00
crypt 1770 1260 920 1.40 1.92
tak 1120 1050 640 1.06 1.75
qsort 610 450 370 1.35 1.65
primes 1240 1110 820 1.11 1.51
knights 720 660 600 1.09 1.20
poly 510 520 440 0.98 1.15
exp 561 530 540 1.06 1.03
fib 350 420 380 0.83 0.92

Average 851 727 552 1.14 1.57
Table 5. Bytecode emulation vs. unoptimized and optimized compilation to C

next two columns show the speedup of programs compiled to C and to optimized
C with respect to the emulated bytecode version.

The performance gain in the näıve translation to C is not impressive, and
there are some programs which even show some slowdown. We have traced this
to be due to several factors:

– The simple compilation scheme generates C code as clean and portable as
possible, avoiding tricks which would speed the programs up. The profile
execution is also very near to what the emulator would make.

– The C execution loop (Figure 2) is slightly more costly (for a few assembler
instructions) than the fetch/switch loop of the emulator. We have traced this
to be the cause of the slowdown of the fib benchmark. We want to improve
this point in a future.

– The increment in size of the program (Table 6) may also cause more cache
misses. We still have to investigate this point in more detail.

As expected, the performance obtained by using compile-time information is
much better. The best speedups are obtained in benchmarks using arithmetic
builtins (the only ones which have optimized versions), in which several ground-
ness and type checks can be removed from the C code. This is, for example, the
case of queens, in which it is known that all the numbers involved are small
integers (i.e., no need for unbound length number arithmetic is needed). Be-
sides avoiding checks, the functions which implement the arithmetic operations
for small integers are simple enough as to be inlined by the C compiler. This
is an example of an added benefit which comes for free from compiling to an
intermediate language (C, in this case) and using tools designed for it.

Table 6 compares object size of the bytecode and of the schemes of com-
pilation to C. As mentioned in Section 2, due to the different granularity of
instructions, larger object files and executables are expected when compiling to
C. The ratio is, however, not excessive: the worst case yields a tenfold increase
with respect to the bytecode, the average case being below five times the byte-
code size; some cases do not reach a threefold increase. In general, the ratio
improves when optimizing information is used (rightmost column), since several

Program Bytecode C Code Opt. C C/Bytecode Opt. C/Bytecode

queens(11) 7157 22432 19776 3.13 2.76
crypt 10632 69860 71588 6.57 6.73
primes 6398 23368 18000 3.65 2.81
tak 5434 15732 16120 2.89 2.96
poly 13531 81444 69660 6.01 5.14
qsort 6972 71788 58824 10.2 8.43
exp 6453 20536 20808 3.18 3.22
fib 5323 11852 11868 2.22 2.22
knights 7801 28496 28388 3.65 3.63

Average 7744 38389 35003 4.61 4.21

Table 6. Compared size of object files (bytecode vs. C)

tests are removed from the program. In some cases the size of the C code grows,
however, when using more compile time information. The reason is that in the
optimized version the bind instruction and arithmetic operations are inlined by
the compiler generating slightly larger code.

Some of the optimizations used in the compilation to C do not give compara-
ble results when applied directly to a bytecode emulator. For example, a version
of the bytecode emulator hand-coded to work only with small integers (which
can be boxed into a tagged word) gave a lower performance than that obtained
doing the same with compilation to C. That means that when the overheads of
calling to builtins is reduced, as is the case of the compilation to C, some minor
optimizations for emulated systems acquire greater importance.

6 Conclusions and Future Work

We have reported on the scheme and performance of a Prolog-to-C compiler
which uses type analysis information to improve final code by removing type
and mode checks and by making calls to specialized versions of some builtins.
The compiler is still on a preliminary version, but it shows promising results.

The compilation uses internally a simplified and more homogeneous repre-
sentation for WAM code, which is then translated to a lower-level intermediate
code. This step uses the type information available at compile time. This code is
finally translated into C by the compiler back-end; using the intermediate code,
as is done in other similar compilers, eases the final translation step, and would
allow developing more easily back-ends to other target languages.

We have found using the same information to optimize a WAM bytecode em-
ulator to be more difficult and to give less speedup, due to the greater granularity
of the bytecode instructions (which aims at reducing the cost of fetching them).
The same result has been reported elsewhere [Van94], although some recent work
tries to improve WAM code by means of local analysis [FD02,FD99].

We expect to be able to use more information (e.g., determinacy information)
to improve also clause selection, as well as to generate a better indexing scheme at

the C level by using hashing on constants, instead of the linear search performed
now. Also, we want to study which other optimizations can be added to the
generation of C code without breaking its portability, and how the intermediate
representation can be used to generate code for other back-ends (for example,
GCC RTL, CIL, Java bytecode, etc.).

We want also to connect the analysis results given by CiaoPP with the com-
piler itself, so that the user does not have to enter type information but in the
cases where automatic analysis fails to deduce the more concrete types.

References

[AK91] Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.
MIT Press, 1991.

[CDRA00] V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. The Yap Prolog
User’s Manual, 2000. Available from http://www.ncc.up.pt/~vsc/Yap.

[CH00] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In
International Conference on Computational Logic, CL2000, number 1861
in LNAI, pages 131–148. Springer-Verlag, July 2000.

[Col93] A. Colmerauer. The Birth of Prolog. In Second History of Programming
Languages Conference, ACM SIGPLAN Notices, pages 37–52, March 1993.

[DC01] D. Diaz and P. Codognet. Design and Implementation of the GNU Prolog
System. Journal of Functional and Logic Programming, 2001(6), October
2001.

[FD99] M. Ferreira and L. Damas. Multiple Specialization of WAM Code. In Prac-
tical Aspects of Declarative Languages, number 1551 in LNCS. Springer,
January 1999.

[FD02] Michel Ferreira and Lúıs Damas. Wam local analysis. In Bart Demoen, ed-
itor, Proceedings of CICLOPS 2002, pages 13–25, Copenhagen, Denmark,
June 2002. Department of Computer Science, Katholieke Universiteit Leu-
ven.

[HBC+99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,
P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and
System: An Experimentation Workbench for Future (C)LP Systems. In
Parallelism and Implementation of Logic and Constraint Logic Program-
ming, pages 65–85. Nova Science, Commack, NY, USA, April 1999.

[HBPLG99] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program
Analysis, Debugging and Optimization Using the Ciao System Preproces-
sor. In 1999 International Conference on Logic Programming, pages 52–66,
Cambridge, MA, November 1999. MIT Press.

[KB95] Andreas Krall and Thomas Berger. The VAMAI - an abstract machine
for incremental global dataflow analysis of Prolog. In Maria Garcia
de la Banda, Gerda Janssens, and Peter Stuckey, editors, ICLP’95 Post-
Conference Workshop on Abstract Interpretation of Logic Languages, pages
80–91, Tokyo, 1995. Science University of Tokyo.

[Mar93] André Mariën. Improving the Compilation of Prolog in the Framework of
the Warren Abstract Machine. PhD thesis, Katholieke Universiteit Leuven,
September 1993.

[PBH00] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language
for Constraint Logic Programs. In P. Deransart, M. Hermenegildo,
and J. Maluszynski, editors, Analysis and Visualization Tools for Con-
straint Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag,
September 2000.

[Per87] F. Pereira. C-Prolog User’s Manual, Version 1.5. University of Edinburgh,
1987.

[PGH97] G. Puebla, J. Gallagher, and M. Hermenegildo. Towards Integrating
Partial Evaluation in a Specialization Framework based on Generic Ab-
stract Interpretation. In M. Leuschel, editor, Proceedings of the ILPS’97
Workshop on Specialization of Declarative Programs, October 1997. Post
ILPS’97 Workshop.

[SHC96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of
Mercury: an efficient purely declarative logic programming language. JLP,
29(1–3), October 1996.

[Swe99] Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista,
Sweden. SICStus Prolog 3.8 User’s Manual, 3.8 edition, October 1999.
Available from http://www.sics.se/sicstus/.

[Tay91] A. Taylor. High-Performance Prolog Implementation. PhD thesis, Basser
Department of Computer Science, Unversity of Sidney, June 1991.

[Van94] P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Imple-
mentation. Journal of Logic Programming, 19/20:385–441, 1994.

[VD92] P. Van Roy and A.M. Despain. High-Performace Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54–68,
January 1992.

[VDW87] P. Van Roy, B. Demoen, and Y. D. Willems. Improving the Execution
Speed of Compiled Prolog with Modes, Clause Selection, and Determin-
ism. In Proceedings of TAPSOFT ’87, Lecture Notes in Computer Science.
Springer-Verlag, March 1987.

[VR90] P.L. Van Roy. Can Logic Programming Execute as Fast as Imperative
Programming? PhD thesis, Univ. of California Berkeley, 1990. Report No.
UCB/CSD 90/600.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Center, SRI International, 333 Ravenswood Ave,
Menlo Park CA 94025, 1983.

[Win89] W. Winsborough. Path-dependent reachability analysis for multiple spe-
cialization. In 1989 North American Conference on Logic Programming.
MIT Press, October 1989.

