Lower Bound Cost Estimation
for Logic Programs

Saumya Debray

Department of Computer Science
University of Arizona

Tucson, AZ 85721, U.S.A.
debray@cs.arizona.edu

Pedro Lépez-Garcia, Manuel Hermenegildo
Facultad de Informatica

Universidad Politécnica de Madrid

E-28660 Madrid, Spain

pedro@dia.fi.upm.es, herme@.fi.upm.es

Nai-Wei Lin

Department of Computer Science and Information Engineering
National Chung Cheng University

Chiayi, 62107, Taiwan, R.O.C.

naiwei@cs.ccu.edu.tw

Abstract

It is generally recognized that information about the runtime cost of computa-
tions can be useful for a variety of applications, including program transformation,
granularity control during parallel execution, and query optimization in deductive
databases. Most of the work to date on compile-time cost estimation of logic pro-
grams has focused on the estimation of upper bounds on costs. However, in many
applications, such as parallel implementations on distributed-memory machines, one
would prefer to work with lower bounds instead. The problem with estimating lower
bounds is that in general, it is necessary to account for the possibility of failure of
head unification, leading to a trivial lower bound of 0. In this paper, we show how,
given type and mode information about procedures in a logic program, it is possi-
ble to (semi-automatically) derive non-trivial lower bounds on their computational
costs. We also discuss the cost analysis for the special and frequent case of divide-
and-conquer programs and show how —as a pragmatic short-term solution —it may
be possible to obtain useful results simply by identifying and treating divide-and-
conquer programs specially. Finally, we present experimental results from a prelim-
inary implementation of the proposed approach, applied to automatic parallel task
size control.

Keywords: Cost Analysis, Lower Bound Estimation, Granularity Control, Paral-
lelism.

1 Introduction

It is generally recognized that information about the runtime cost of computations
can be useful for a variety of applications. For example, it is useful for granular-

ity control, i.e., dynamic control of thread creation in parallel implementations of
logic and functional languages [14, 4, 16, 9, 15, 12], and for query optimization in
deductive databases [5]. In the context of logic programming, the work on cost es-
timation has generally focused on upper bound cost analyses [6]. However, in many
cases one would prefer to work with lower bounds instead. As an example, consider
a distributed memory implementation of Prolog: suppose that the work involved in
spawning a task on a remote processor takes 1000 instructions, and that we infer that
a particular procedure call in a program will execute no more than 5000 instructions.
This suggests that it may be worth executing this call on a remote processor, but
provides no assurance that doing so will not actually produce a performance degra-
dation relative to a sequential execution (the call might terminate after executing
only a small number of instructions). On the other hand, if we know that a call
will execute at least 5000 instructions, we can be assured that spawning a task on a
remote processor to execute this call is worthwhile. Thus, while upper bound cost
information is better than no information at all, lower bounds may be more useful
than upper bounds.

The biggest problem with the inference of lower bounds on the computational cost
of logic programs is the possibility of failure. Any attempt to infer lower bounds has
to contend with the possibility that a goal may fail during head unification, yielding
a trivial lower bound of 0. An obvious solution would be to try and rule out “bad”
argument values by considering the types of predicates. However, most existing type
analyses provide upper approximations, in the sense that the type of a predicate is
a superset of the set of argument values that are actually encountered at runtime.
Unfortunately, straightforward attempts to address this issue, for example by trying
to infer lower approximations to the calling types of predicates, fail to yield nontrivial
lower bounds for most cases.

In [3], we showed how, given mode and (upper approximation) type information,
we can detect procedures and goals that can be guaranteed to not fail. Our technique
is based on an intuitively very simple notion, that of a (set of) tests “covering”
the type of a variable. We showed that the problem of determining a covering is
undecidable in general, and is co-NP-hard even if we have only finite types and
simple equality tests. We then gave an algorithm for checking whether a set of tests
covers a type, that is complete for tuple-distributive regular types, sound, and efficient
in practice.

Based on this information, we showed how to identify goals and procedures that
can be guaranteed to not fail at runtime. Note that this information is interesting
in its own right, in the context of program transformations (for example, we may
want to execute possibly-failing goals ahead of non-failing goals where possible) and
in systems that exploit speculative parallelism.

The main contributions of this paper are as follows: (1) we show how non-failure
information can be used to infer lower bounds on the computational costs of goals;
(#4) discuss how to bound the chromatic polynomial of a graph from below, and
thereby show how to infer lower bounds on the number of solutions a predicate can
generate (this information is useful, for example, for estimating communication costs
in distributed-memory implementations); (i74) show how information about the num-
ber of solutions computed can be used to improve lower bound estimates when all
solutions to a goal are required; and (iv) show how to obtain improved lower bound
estimates for a simple but common class of divide-and-conquer programs. We discuss
the application of our ideas to granularity control for parallel programs: in this case,
the use of lower bound cost estimates guarantees that no slowdowns will occur, even
in systems with significant overheads associated with parallel execution. Our ideas

have been implemented and the resulting lower bound cost estimates, given in Section
7, can be seen to be quite precise, especially for an automatic analysis tool. Exper-
imental results with granularity control using lower bound cost estimates indicate
that significant performance improvements can be attained using our approach.

Despite a suggestive similarity in names, our work is quite different from Basin
and Ganzinger’s work on complexity analysis based on ordered resolution [1]. They
consider resolution based on a well-founded total ordering on ground atoms, and use
this to examine the complexity of determining, given a set of Horn clauses N and
a ground Horn clause C, whether N | C. Our work, by contrast, is based on an
operational formulation of logic program execution that is not restricted to ground
queries (or, for that matter, to Horn programs, since it is easy to handle features such
as cuts and negation by failure). Because operational aspects of program execution
are modeled more accurately in our approach, the results obtained are considerably
more precise.

2 Lower-Bound Cost Analysis: The One-Solution
Case

If only one solution is required of any computation, it suffices to know whether a
computation will generate at least one solution, i.e., will not fail. Assuming that
this information is available, for example by using the technique mentioned in the
previous section, cost analysis for a particular predicate can then proceed as follows:

1. We first determine the relative sizes of variable bindings at different program
points in a clause by computing lower bounds on output argument sizes as
functions of input argument sizes. This is done by solving (or estimating lower
bound solutions to) the resulting difference equations: the approach is very
similar to that discussed in [6], the only difference being that whereas [6] es-
timated upper bounds on argument sizes using the maz function across the
output sizes of different clauses in a cluster, we use the min function across
clauses to estimate lower bounds on argument sizes.

2. The (lower bound) computational cost of a clause is then expressed as a function
of the input argument size, in terms of the costs of the body literals in that
clause.

Consider a clause C = ‘H :— By,...,B;,’. Let n be the r—tuple which rep-
resents the sizes of the r input arguments for the head of the clause, and let
(lower bounds on) the input argument sizes for the body literals By,..., B,
be ¢1(n),. .., dm(n) respectively. Assume that the cost of head unification and
tests for this clause is at least h(n), and let Costp, (x) denote a lower bound on
the cost of the body literal B;. Then, if By is the rightmost body literal that is
guaranteed to not fail, the following gives a lower bound on the cost Costc(n)
of the clause C on an input of size n:

k
h(n) + ZCostBi (¢i(n)) < Costc(n).

=

If the clause C' corresponds to a non-failing predicate, then we take k = m.

3. A lower bound on the cost Cost,(n) of a predicate p on an input of size n is
then given by

min{ Costc(n) | C is a clause defining p} < Cost,(n).

As discussed in [6], recursion is handled by expressing the cost of recursive goals
symbolically as a function of the input size. From this, we can obtain a set of
difference equations that can be solved (or approximated) to obtain a lower bound
on the cost of a predicate in terms of the input size.

Given a predicate defined by m clauses C1, ..., Cy,, we can improve the precision
of this analysis by noting that clause C; will be tried only if clauses C1,...,C;_1 fail
to yield a solution. For an input of size n, let §;(n) denote the least amount of work
necessary to determine that clauses Cy,...,C;_; will not yield a solution and that
C; must be tried: the function §; obviously has to take into account the type and
cost of the indexing scheme being used in the underlying implementation. In this
case, the lower bound for p can be improved to:

min{Costc; (n) + 6;(n) |1 <i <m} < Costp(n).

The pruning operator can also be taken into account, so that clauses which are
after the first clause, say C;, which has a non-failing sequence of literals just before
the cut, are ignored, and the lower bound on the cost of the predicate is then the
minimum of the costs of the clauses preceding the clause C; and this clause itself.

3 Lower-Bound Cost Analysis: All Solutions

In many applications, it is reasonable to assume that all solutions are required. For
example, in a distributed memory implementation of a logic programming system, the
cost of sending or receiving a message is likely to be high enough that it makes sense
for a remote computation to compute all the solutions to a query and return them
in a single message instead of sending a large number of messages, each containing
a single solution. For such cases, estimates of the computational cost of a goal can
be improved greatly if we have lower bounds on the number of solutions—indeed, as
the example of a distributed memory system suggests, in some cases the number of
solutions may itself be a reasonable measure of cost.

If we obtain lower bounds on the number of solutions that can be generated by
the literals in a clause (this problem is addressed in next section), we can use this
information to improve lower bound cost estimates for the case where all solutions
to a predicate are required. Consider a clause ‘p(Z) :— By,..., B’ where By is the
rightmost literal that is guaranteed to not fail. Let the input argument size for the
head of the clause be n, and let (lower bounds on) the input argument sizes for the
body literals By, ..., Bm be ¢1(n),..., ¢m(n) respectively. Assume that the cost of
head unification and tests for this clause is at least h(n), and let Costp,(z) denote
a lower bound on the cost of the body literal B;. Now consider a body literal B;,
where 1 < j < k41, i.e., all the predecessors of B; are guaranteed to not fail.
The number of times B; will be executed is given by the total number of solutions
generated by its predecessors, i.e., the literals By,...,B;_;. Let this number be
denoted by N; : we can estimate N; using Theorem 5.1 (or extensions thereof), e.g.,
by considering a clause whose body consists of the literals By,...,B;_1, and where
the output variables in the head are given by wvars(By,...,Bj_1) Nvars(By,...,By,).
Assume that the cost of head unification and tests for this clause is at least h(n),
and let Costp,(x) denote a lower bound on the cost of the body literal B;. Then, a
lower bound on the execution cost of the clause to obtain all solutions is given by

h(n) + Z(Nz x Costg,;(¢i(n)) < Costc(n).

i=1

4 Number of Solutions: The Single-Clause Case

In this section we address the problem of estimating lower bounds on the number of
solutions which a predicate can generate.

4.1 Simple Conditions for Lower Bound Estimation

It is tempting to try and estimate a lower bound on the number of solutions generated
by a clause ‘H :— By,...,B,’ from lower bounds on the number of solutions gen-
erated by each of the body literals B;, possibly using techniques analogous to those
used in [6] for the estimation of upper bounds on the number of solutions. Unfortu-
nately, this does not work. For example, given a clause ‘p(X) :— ¢(X),r(X)’, where
X is an output variable, and assuming that ¢ and r generate n, and n, bindings,
respectively, for X, then min(ng,n,) is not a lower bound on the number of solutions
the clause can generate. To see this, consider the situation where ¢ can bind X to
either a or b, while r can bind X to either b or ¢: thus, min(ng,n,) = min(2,2) = 2,
but the number of solutions for the clause is 1.

The following gives a simple sufficient condition for estimating a lower bound on
the number of solutions generated by a clause.

Theorem 4.1 Let x1,...,%, be distinct unaliased output variables in the head of a
clause such that each of the x; occurs at most once in the body of the clause, and x;
and z; do not occur in the same body literal for i # j. If n; is a lower bound on the
number of bindings that can be generated for x; by the clause body, then H;L n; 18
a lower bound on the number of solutions that can be generated by the clause.

This result can be generalized in various ways: we do not pursue them here due
to space constraints. The utility of this theorem is shown in Example 5.1.

4.2 Handling Equality and Disequality Constraints

This section presents a simple algorithm for computing a lower bound on the number
of solutions for predicates which can be “unfolded” into a conjunction of binary
equality and disequality constraints on a set of variables. The constraints are in
the form of X =Y or X # Y for any two variables X and Y. The types of the
variables in a predicate are assumed to be the same and to be given as a finite set
of atoms. The problem of computing the number of bindings that satisfy a set of
binary equality and disequality constraints on a set of variables with the same type
can be transformed into the problem of computing the chromatic polynomial of a
graph G, denoted by C(G, k), which is a polynomial in k£ and represents the number
of different ways G can be colored by using no more than k colors (see [6]).
Unfortunately, the problem of computing the chromatic polynomial of a graph
is NP-hard, because the problem of k-colorability of a graph G is equivalent to the
problem of deciding whether C(G, k) > 0 and the problem of graph k-colorability is
NP-complete [11]. Therefore, we will develop an approximation algorithm to compute
a lower bound on the chromatic polynomial of a graph. The basic idea is to start
with a subgraph that consists of only a single vertex of the graph, then repeatedly
build larger and larger subgraphs by adding a vertex at a time into the previous
subgraph. When a vertex is added, the edges connecting that vertex to vertices
in the previous subgraph are also added. At each iteration, a lower bound on the
number of ways of coloring the newly added vertex can be determined by the number
of edges accompanied with the vertex. Accordingly, a lower bound on the chromatic

Let G = (V, E) be a graph of order n. The algorithm proceeds as follows:

begin
compute the degree for each vertex in V;
generate an ordering w = vy, ...,v, of V by sorting the vertices in
decreasing order on their degrees using the radix sort;
C(G,k) = k;
Gi = ({v1},0);
for i := 2 ton do
compute the order |G}| of the interfacing subgraph G};
C(G,k) :== C(G,k) x (k= |G}]);
construct the accumulating subgraph Gj;;
od
end

Figure 1: An approximation algorithm for computing the chromatic polynomial of a
graph

polynomial for the corresponding subgraph can be determined using the bound on
the polynomial for the previous subgraph and the bound on the number of ways of
coloring the newly added vertex.

We now describe the algorithm more formally. The order of a graph G = (V, E),
denoted by |G|, is the number of vertices in V. Let G be a graph of order n. Suppose
W = v1,...,U, is an ordering of V. We define two sequences of subgraphs of G
according to w. The first is a sequence of subgraphs G4y, ...,G,, called accumulating
subgraphs, where G; = (V;, E;), Vi = {v1,...,v;}, and E; is the set of edges of G
that join the vertices of V;, for 1 < i < n, The second is a sequence of subgraphs

5, ..., G, called interfacing subgraphs, where G = (V;/, E}), V! is the set of vertices
of G;_, that are adjacent to vertex v;, and E} is the set of edges of G;_; that join
the vertices of V}/, for 2 <i <n.

The algorithm for computing the chromatic polynomial of a graph, based on the
construction of accumulating subgraphs and interfacing subgraphs, is shown in Figure
1. This algorithm constructs the accumulating subgraphs according to an ordering of
the set of vertices. At each iteration, the number of ways of coloring the newly added
vertex is computed based on the order of the corresponding interfacing subgraph.

Theorem 4.2 Let G = (V,E) be a graph of order n and w be an ordering of V.
Suppose the interfacing subgraphs of G corresponding to w are G}, ...,G), . Then:

kI (k = |Gil) < C(G, k).

The proof of this theorem is given in [13]; we omit it here due to space constraints.
Since the bound obtained from this may depend on the ordering chosen for the
vertices in the graph, we use a heuristic to find a “good” ordering. The intuition
behind the heuristic is that if the maximum order of the interfacing subgraphs is
smaller, then we can get a nontrivial lower bound (# 0) on C(G, k) for more values
of k. Therefore, we use the ordering that sorts the vertices in the decreasing order
on the degrees of vertices.

Let the graph under consideration have n vertices and m edges. First, the com-
putation for the degrees of vertices in the graph can be performed in O(n + m).

Second, since the degrees of vertices in the graph are at most n — 1, we can sort
the vertices using radix sort in O(n). Third, the total cost for the construction of
accumulating subgraphs G;, i <i < n, is O(n + m) because each edge in the graph
is examined only twice. Finally, since only the orders of the interfacing subgraphs
are needed to compute the chromatic polynomial, it is not necessary to construct
the interfacing graphs. The orders of the interfacing subgraphs can be obtained as
a by-product of constructing the accumulating graphs. Therefore, the complexity of
the whole algorithm is O(n + m).

5 Number of Solutions: Multiple Clauses

The previous section discussed the estimation of lower bounds on the number of
solutions computed by a single clause. In this section we discuss how we can estimate
the number of solutions for a group of clauses.

Theorem 5.1 Consider a set of clauses S = {C1,...,Cy} that all have the same
head unification and tests. If n; is a lower bound on the number of solutions gener-
ated by C;, 1 < i < n, then Y ; n; is a lower bound on the total number of (not
necessarily distinct) solutions generated by the set of clauses S.

The restrictions in this theorem can be relaxed in various ways: we do not pursue
this here due to space constraints. We can use the result above to estimate a lower
bound on the number of solutions generated by a predicate for an input of size n
as follows: partition the clauses for the predicate into clusters such that the clauses
in each cluster have the same head unification and tests, so that Theorem 5.1 is
applicable, and compute lower bound estimates of the number of solutions for each
cluster. Then, if a number of different clusters—say, clusters C1, ..., C}, with number
of solutions at least n1, ..., ny respectively, may be applicable to an input of size n,
then the number of solutions overall for an input of size n is given by min(nq, ..., ny).
The utility of this approach is illustrated by the following example.

Example 5.1 Consider the following predicate to generate all subsets of a set rep-
resented as a list:

subset([], X) :- X = [].
subset ([HIL], X) :- X = [HI|X1], subset(L, X1).
subset ([H|L], X) :- subset(L, X).

As discussed in Section 2, recursion is handled by initially using a symbolic repre-
sentation to set up difference equations, and then solving, or estimating solutions
to, these equations. In this case, let (a lower bound on) the number of solutions
computed by subset/2 on an input of size n be symbolically represented by S(n).
The first clause for the predicate yields the equation

S(0) = 1.

From Theorem 4.1, on an input of size n, n > 0, the second and third clauses each
yield at least S(n —1) solutions. Since they have the same head unification and tests,
Theorem 5.1 is applicable, and the number of solutions given by these two clauses
taken together is therefore at least S(n — 1) + S(n — 1) = 2S(n — 1). Thus, we have
the equation

S(n) = 25(n — 1).

These difference equations can be solved to get the lower bound S(n) = 2™ on the
number of solutions computed by this predicate on an input of size n. O

6 Cost Estimation for Divide-and-Conquer Pro-
grams

A significant shortcoming of the approach to cost estimation presented is its loss
in precision in the presence of divide-and-conquer programs in which the sizes of
the output arguments of the “divide” predicates are dependent. In the familiar
quicksort program (see Example 6.1), for example, since either of the outputs of the
partition predicate can be the empty list, the straightforward approach computes
lower bounds under the assumption that both output can simultaneously be the
empty list, and thereby significantly underestimates the cost of the program. In
some sense, the reason for this loss of precision is that the approach outlined so far
is essentially an independent attributes analysis [10]. However, even if we came up
with a relational attributes analysis that kept track of relationships between the sizes
of different output arguments of a predicate, it is not at all obvious how we might,
systematically and from first principles, use this information to improve our lower
bound cost estimates. For the quicksort program, for example, if the input list has
length n, then the two output lists of the partition predicate have lengths m and
n —m — 1 for some m, 0 < m < n. The resulting cost equation for the recursive
clause is of the form

Cn)y=C(m)+C(n—m—-1)+... 0<m<n-1)

In order to determine a worst-case lower bound solution to this equation we need
to determine the value of m that minimizes the function C(n), and doing this au-
tomatically, when we don’t even know what C(n) looks like, seems nontrivial. As
a pragmatic solution, we argue that it may be possible to get quite useful results
simply by identifying and treating common classes of divide-and-conquer programs
specially.

In many of these programs, the sum of the sizes of the input for the “divide”
predicates in the clause body is equal to the size of the input in the clause head
minus some constant. This size relationship can be derived in some cases by the
approach presented in [6]. However, this is not possible in other cases, since in
this approach the size of each output argument is treated as a function only of the
input sizes, independently of the sizes of other output arguments, and, as a result,
relationships between the sizes of different output arguments are lost (consider for
example the partition/4 predicate defined in example 6.1). Although the analysis
does not break down for these cases, it can lose precision. A possible solution to
improve precision is to use one of the recently proposed approaches for inferring size
relationships for this class of programs [2, 7].

Assuming that we have the mentioned size relationship for these programs, in the
cost analysis phase we obtain an expression of the form:

y(0) =C,
y(n) =y(n—1—k)+y(k)+ g(n) for n > 0, where k is an arbitrary value
such that 0 < k <n —1, C is a constant and g(n) is any function.

where y(n) denotes the cost of the divide-and-conquer predicate for an input of size
n and g(n) is the cost of the part of a clause body which does not contain any call
to the divide-and-conquer predicate.

For each particular computation, we obtain a succession of values for k. Each
succession of values for k yields a value for y(n).

In the following we discuss how we can compute lower /upper bounds for expres-
sions such as that for Costqsert(n) in Example 6.1. Consider the expression:

y(0) = C,
y(n) =y(n —1—k) + y(k) for n > 0, where k is an arbitrary value such
that 0 < k <n —1 and C is a constant.

A computation tree for such an expression is a tree in which each non-terminal
node is labeled with y(n), n > 0, and has two children y(n — 1 — k) and y(k) (left-
and right-hand-side respectively), where k is an arbitrary value such that 0 < k <
n — 1. Terminal nodes are labeled with y(0) and have no children. Assume that
we construct a tree for y(n) following a depth-first traversal. In each non-terminal
node, we (arbitrarily) chose a value for k£ such that 0 < k¥ <n — 1. We say that the
computation succession of the tree is the succession of values that have been chosen
for k in chronological order, as the tree construction proceeds.

Lemma 6.1 Any computation tree corresponding to the expression:

y(0) =C,
y(n) =y(n —1—k) + y(k) for n >0, where k is an arbitrary value such
that 0 < k <n—1 and C is a constant,

has n + 1 terminal nodes and n non-terminal nodes.

Proof By induction on n. For n = 0 the theorem holds trivially. Let us assume
that the theorem holds for all m such that 0 < m < n, then, we can prove that for all
m such that 0 < m < mn + 1 the theorem also holds by reasoning as follows: we have
that y(n + 1) = y(n — k) + y(k), where k is an arbitrary value such that 0 < k < n.
Since 0 < k < n, we also have that 0 < n — k < n, and, by induction hypothesis, the
number of terminal nodes in any computation tree of y(n — k) (respectively y(k)) is
n — k + 1 (respectively k + 1). The number of terminal nodes in any computation
tree of y(n + 1) is the sum of the number of terminal nodes in the children of the
node labeled with y(n + 1), i.e. (n —k+ 1)+ (k+1) =n + 2. Also, the number
of non-terminal nodes in any computation tree of y(n — k) (respectively y(k)) is
n—k (respectively k). The number of non-terminal nodes of any computation tree of
y(n + 1) is the sum of the number of non-terminal nodes of the children of the node
labeled with y(n + 1) plus one (the node y(n + 1) itself, since it is non-terminal) i.e.
1+ (n—k)+k=n+1 n

Theorem 6.2 For any computation tree corresponding to the erpression:

y(0)=0C,
y(n) =y(n —1— k) +y(k) for n >0, where k is an arbitrary value such
that 0 < k <n—1 and C is a constant,

it holds that y(n) = (n +1) x C.

Proof By Lemma 6.1, any computation tree has n + 1 terminal nodes labeled with
y(0) and the evaluation of each of these terminal nodes is C. m

Theorem 6.3 Given the expression:

y(0) = C,
y(n) =y(n—1—k)+y(k)+ g(k) for n > 0, where k is an arbitrary value
such that 0 <k <n—1, C is a constant and g(k) a function,

for any computation tree corresponding to it, it holds that y(n) = (n +1) x C +
S g(k;), where {k;}?_, is the computation succession of the tree.

Proof By Lemma 6.1, any computation tree has n + 1 terminal nodes and n non-
terminal nodes. The evaluation of each terminal node yields the value C and each
time a non-terminal node ¢ is evaluated, g(k;) is added. n

In order to minimize (respectively maximize) y(n) we can find a succession {k;}7
that minimizes (respectively maximizes) Y . , g(k;). This is easy when g(k) is a
monotonic function, as the following corollary shows.

Corollary 6.1 Given the expression:

y(0) =C,

y(n) = yln — 1 — k) + y(k) + g(k) for n > 0, where k is an arbitrary
value such that 0 < k < n —1, C is a constant and g(k) an increasing
monotonic function,

Then, the succession {k;}?_,, where k; = 0 (respectively k; =n—1) for all1 <i<n
gives the minimum (respectively mazimum) value for y(n) of all computation trees.

Proof It follows from Theorem 6.3 and from the fact that g(k) is an increasing
monotonic function. n

It follows from Corollary 6.1 that the solution of the difference equation (obtained
by replacing k by 0):

y(0) =C,
y(n) = y(n —1) +y(0) + g(0) for n > 0,

i.e. (n+1)xC+nxg(0)is the minimum of y(n), and the solution of the difference
equation:

y(0)=C,
y(n) =y(0) +y(n—1)+gn—1) for n >0,

ie. (n+1) x C+n x g(n—1) is the maximum of y(n).

Note that we can replace g(k) by any lower/upper bound on it to compute a
lower /upper bound on y(n). We can also take any lower /upper bound on each g(k;).
For example, if g(k) is an increasing monotonic function then g(k;) < g(n — 1)
and g(k;) > ¢(0) for 1 < i < n, thus, y(n) < (n+1) x C +n x g(n — 1) and
y(n) > (n+1) x C+n x g(0).

Let’s now assume that the function g depends on n and k:

Corollary 6.2 Given the expression:

y(0) = C,
y(n) =y(n—1—k) +y(k) + g(n, k) for n > 0, where k is an arbitrary
value such that 0 < k <n—1, C is a constant and g(n, k) a function.

Then, the solution of the difference equation:

f(0) =0,
f(n)=f(n—-1)+C+L forn>0,

where L is a lower/upper bound on g(n, k), is a lower/upper bound on y(n) for all
n > 0 and for any computation tree corresponding to y(n). In particular, if g(n, k)
is an increasing monotonic function, then L = g(1,0) (respectively L = g(n,n — 1))
is a lower (respectively upper) bound on g(n, k).

Example 6.1 Let us see how, using the described approach for divide-and-conquer
programs, the lower-bound cost analysis can be improved. We first consider the
analysis without the incorporation of the optimization, and then we compare with
the result obtained when the optimization is used.

Consider the predicate qsort/2 defined as follows:

gsort([1, [I).

gsort ([First|L1], L2) :-
partition(L1, First, Ls, Lg),
gsort(Ls, Ls2), gsort(Lg, Lg2),
append(Ls2, [First|Lg2], L2).

partition([], F, [1, [1).
partition([X|Y], F, [X|Y1], Y2) :-
X =< F,
partition(Y, F, Y1, Y2).
partition([X|Y], F, Y1, [X|Y2]) :-
X > F,
partition(Y, F, Y1, Y2).

append([], L, L).
append([H|L], L1, [HIR]) :- append(L, L1, R).

Let Costp(n) denote the cost (number of resolution steps) of a call to predicate
p with an input of size n (in this example, the size measure used for all predicates is
list length [6]). The estimation of cost functions proceeds in a “bottom-up” way as
follows:

The difference equation obtained for append/3 is:

Costappena(0,m) = 1 (the cost of head unification),
Costappend(1,m) = 1 + Costappena(n — 1,m).

where Costappena(,m) is the cost of a call to append/3 with input lists of lengths
n and m (first and second argument, respectively). The solution to this equation is:
Costappena(n, m) = n + 1. Since this function depends only on n, we use the function
Costappena(n) instead.

The difference equation for partition/4 is:

Costpartition(0) = 1 (the cost of head unification),
COStpartition(n) =1+ COStpartition(n - 1)

where Costpartition(n) gives the cost of a call to partition/4 with an input list (first
argument) of length n. The solution to this equation is: Costpartition(n) =n + 1.
For gsort/2, we have:

Costggort(0) = 1 (the cost of head unification),
Costggort(n) = 1 4 Costpartition(n — 1) + 2 X Costgsort (0) + Costappena(0)

because the computed lower bound for the size of the input to the calls to gsort and
append is 0. Thus, the cost function for gsort/2 is given by:

Costgeort(0) =1,
Costggort(n) = n + 4, for n > 0.

Now, we use the described approach for divide-and-conquer programs. Assume
that we use the expression:

Costgsort(0) =1,
Costgsort(n) = 1 + Costpartition(n — 1) + Costgsort (k)
+Costgsort(n — 1 — k) 4+ Costappena(k), for 0 <k <n—1and n > 0.

Replacing values, we obtain:

Costgsort(n) = 1+ k + 2 + Costgsort (k) + Costgsort(n — 1 — k),
for0<k<n-—1.

According to Corollary 6.2, by giving to n and &k the minimum possible value, i.e.
1 and 0 respectively, we have that n + k + 2 > 3, and thus we replace n + k+ 2 by 3
in order to obtain a lower bound on the former expression, which yields:

Costggort(n) = 3 + Costggort(k) + Costgsore(n — 1 — k), for 0 <k <n —1.
which is equivalent to the difference equation:
Costggort(n) = 3+ 1+ Costgsort(n — 1), for n > 0.

The solution of this equation is Costggsors(n) = 4n + 1, which is an improvement
on the former lower bound. O

The previous results can be easily generalized to cover multiple recursive divide-
and-conquer programs and programs where the sum of the sizes of the input for the
“divide” predicates in the clause body is equal to the size of the input in the clause
head minus some constant which is not necessarily 1.

7 Implementation

We have implemented a prototype of a lower bound size/cost analyzer, by recoding
the version of CASLOG [6] currently integrated in the CIAO system [8]. The analysis
is fully automatic, and only requires type information for the program entry point.
Types, modes and size measures are automatically inferred by the system. Table 1
shows some accuracy and efficiency results of the lower bound cost analyzer. The
second column of the table shows the cost function (which depends on the size of
the input arguments) inferred by the analysis. Ty, is the time required by the type,
mode, and size measure analysis (SPARCstation 10, 55MHz, 64Mbytes of memory),
Tny the time required by the non-failure analysis, and T, and T, are the time
required by the size and cost analysis respectively. Total is the total analysis time
(Total = Tyms + Tny + Ts + Teq). All times are given in milliseconds.

8 Application to Automatic Parallelization

As briefly mentioned in the introduction, one of the most attractive applications of
lower bound cost analysis is implementing granularity control in parallelizing compil-
ers, an issue on which we expand in this section. Parallel execution of a task incurs
various overheads, e.g. overheads associated with process creation and scheduling, the
possible migration of tasks to remote processors and the associated communication
overheads, etc. In general, a goal should not be a candidate for parallel execution
if its granularity, i.e., the “work available” underneath it, is less than the work nec-
essary to create a separate task for that goal. While the overheads for spawning
goals in parallel in some architectures are small (e.g. in small shared memory mul-
tiprocessors), in many other architectures (e.g. distributed memory multiprocessors,

Program Cost function Tims | Thy Ts | T.o | Total
fibonacci Ax.1.447 x 1.618" + 90 10 20 20 140
0.552 x (—0.618)" —1
hanoi Ax.x2® +2° 1 -2 430 30| 60| 60 580
gsort Ar.de +1 420 50 70 50 590
nreverse Az.0.5z% + 1.5z + 1 220 | 20| 30| 30 300
mmatrix Mz, y).2zy + 2z + 1 350 90 [90 | 90 620
deriv Ae.x 1010 80 | 170 | 120 1,380
addpoly Mz, y)z +1 220 70 | 40| 30 360
append Az +1 100 20 10 10 140
partition Ar.x+1 175 30 30 20 255
substitute Xz, y,z).x 70 50 | 110 | 100 330
intersection Mz, y).x +1 150 | 130 | 20 | 30 260
difference Mz, y).x +1 140 90 | 20 | 40 290

Table 1: Accuracy and efficiency of the lower bound cost analysis

workstation “farms”, etc.) such overheads can be very significant. The consequence
is that automatic parallelization cannot be achieved realistically in the latter without
some form of granularity control.

As we have already pointed out, all of the previous work that we know of in this
context involves estimating upper bounds on the cost of goals. Given a program
that is already parallelized, upper bound cost information can be used to produce a
program in which some of the parallel goals are forced to run sequentially, in such
a way that the resulting execution can be guaranteed to be faster (or, at least, no
slower) than that of the original parallel program. However, the problem faced by
parallelizing compilers is in fact exactly the converse: what needs to be guaranteed is
that the parallel execution will be more efficient than that of the original sequential
program, rather than the other way around. This type of granularity control can
be performed applying essentially the same techniques as when using upper bound
information [14], but, of course, lower bound information on the cost of each goal
is required instead, and this is where the techniques proposed in this paper fit in.
The usefulness of lower bounds was already clear when the work presented in [4] was
developed, but the determination of useful lower bounds was deemed too difficult
at the time. Using lower bounds allows obtaining guaranteed speedups (or, at least,
ensuring that no slow-downs will occur) from automatic parallelization, even in ar-
chitectures for which parallel execution involves a significant overhead. We know of
no other approach which can achieve this.

We have interfaced the cost analysis stage (see Section 7) with the granularity
control system described in [14] (which is also integrated in the CIAO system as an-
other stage, and which includes an annotator which transforms programs to perform
granularity control). The result is a complete program parallelizer with (lower bound
cost based) granularity control. Since our objective herein is simply to study the use-
fulness of the lower bound estimates produced, only a very simple granularity control
strategy has been selected: goals are always executed in parallel provided their grain
sizes are estimated to be greater than a given fixed threshold, which is a constant
for all programs. Also, the versions of the programs that perform granularity control
are simple source-to-source transformations which add granularity control tests to
the original versions. A discussion of more advanced strategies that include variable
thresholds (which depend on parameters such as data transfer cost, number of pro-
cessor, system load, etc.), lower level transformations, and performing goal groupings

to increase granularity can be found in [14].

programs seq ngc gclb(175) gclb(959)
mmatrix(100) | 52.389 | 74.760 (0.70) | 29.040 (1.80) | 27.981 (1.87)
mmatrix(50) 6.469 | 5.978 (1.08) | 3.378 (1.92) | 3.758 (1.72)
fib(19) 0.757 | 1.458 (0.52) | 0.128 (5.93) | 0.103 (7.32)
hanoi(13) 1.442 | 1.464 (0.98) | 0.677 (2.13) | 0.619 (2.33)
gsort(1000) 0475 | 0.414 (1.15) | 0.230 (2.06) | 0.314 (1.51)
qsort(3000) 1142 | 2423 (1.71) | 1.094 (3.79) | 1575 (2.63)

Table 2: Granularity control results for benchmarks on ECL!PSe.

We have performed some preliminary experiments in which a series of benchmarks
have been parallelized automatically, with the compiler option corresponding to in-
clusion of granularity control both enabled and disabled. The resulting programs
have been executed on the ECL!PS® system using 10 workers, and running on a SUN
SPARC 2000 SERVER with 10 processors. We have chosen this system, which im-
plements and-parallelism on top of or-parallelism, because it has considerably greater
parallel task execution overhead than systems which implement and-parallelism na-
tively (such as, for example, the &-Prolog engine used in the CIAO system). As a
result, this system offers an interesting challenge — it proved very difficult to achieve
and-parallel speedups on it automatically with previous parallelizers.

Table 2 presents the results. It shows wall-clock execution times in seconds.
Results are given for the sequential execution (seq), the parallel execution with-
out granularity control (nge), and the versions which perform granularity control
(gclb(175) and gclb(959)). The two numbers correspond to two different choices
of threshold, and illustrate the comparatively low sensitivity of the results to the
choice of this parameter that we have observed.

The results of the experiments appear promising, in the sense that the granularity
control does improve speedups in practice, in a quite challenging situation. On
systems with higher overheads, such as distributed systems, the benefits can be
much larger, although it may be difficult to achieve actual speedups in some cases
(i-e., given high enough overheads, the result of the granularity analysis can often be
simply a sequential program). In any case, we believe that it is possible to improve
these results significantly by using more sophisticated control strategies, as mentioned
above.

Acknowledgements

The work of S. Debray was supported in part by the National Science Foundation
under grant CCR-9123520. The work of M. Hermenegildo and P. Lépez-Garcia was
supported in part by ESPRIT project LTR 22532 “DiSCiP1” and CICYT proyect
number TIC96-1012-C02-01. The work of N.-W. Lin was supported in part by the
NSC of ROC under grant NSC83-0408-E-194-010.

References

[1] D. Basin and H. Ganzinger. Complexity Analysis based on Ordered Resolution Proc.
11th. IEEE Symposium on Logic in Computer Science, 1996.

[2] F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). Proc. 6th
International Workshop on Logic Program Synthesis and Transformation, Stockholm
University /Royal Intitute of Technology, 1996, pp. 134-153.

3]

(4]

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Debray, P. Lépez Garcia, and M. Hermenegildo. Non-Failure Analysis for Logic Pro-
grams. In 1997 International Conference on Logic Programming, pages 48-62, Leuven,
Belgium, June 1997. MIT Press, Cambridge, MA.

S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

S.K. Debray and N.-W. Lin. Static estimation of query sizes in horn programs. In Third
International Conference on Database Theory, Lecture Notes in Computer Science 470,
pages 515-528, Paris, France, December 1990. Springer-Verlag.

S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions on
Programming Languages and Systems, 15(5):826-875, November 1993.

R. Giacobazzi, S.K. Debray, and G. Levi. Generalized Semantics and Abstract Interpre-
tation for Constraint Logic Programs. Journal of Logic Programming, 25(3):191-248,
1995.

M. Hermenegildo, F. Bueno, M. Garcia de la Banda, and G. Puebla. The CIAO
Multi-Dialect Compiler and System: An Experimentation Workbench for Future
(C)LP Systems. In Proceedings of the ILPS’95 Workshop on Visions for the Fu-
ture of Logic Programming, Portland, Oregon, USA, December 1995. Available from
http://www.clip.dia.fi.upm.es/.

L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to Guide
Parallel Thread Creation. In Proc. ACM Conf. on Lisp and Functional Programminyg,
June 1994.

Neil D. Jones and Steven S. Muchnick. Complexity of flow analysis, inductive assertion
synthesis, and a language due to Dijkstra. In Steven S Muchnick and Neil D Jones,
editors, Program Flow Analysis: Theory and Applications, chapter 12, pages 380-393.
Prentice-Hall, 1981.

R. M. Karp. Reducibility among Combinatorial Problems. Complezity of Computer
Computations, R. E. Miller and J. W. Thatcher (eds), Plenum Press, New York, 1972,
pp- 85-103.

S. Kaplan. Algorithmic Complexity of Logic Programs. In Logic Programming, Proc.
Fifth International Conference and Symposium, (Seattle, Washington), pages 780-793,
1988.

N.-W. Lin. Approximating the Chromatic Polynomial of a Graph. Proc. Nineteenth In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science, Amsterdam,
June 1993.

P. Lépez Garcia, M. Hermenegildo, and S.K. Debray. A Methodology for Granularity
Based Control of Parallelism in Logic Programs. Journal of Symbolic Computation,
Special Issue on Parallel Symbolic Computation, (22):715-734, 1996.

F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Parallelism
in Functional Programs. Res. Rep. CS-90-1, Dept. of Computer Science, Univ. of
Sheffield, England, Jan 1990.

X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan. To-
wards an Efficient Compile-Time Granularity Analysis Algorithm. In Proc. of the 1992
International Conference on Fifth Generation Computer Systems, pages 809-816. In-
stitute for New Generation Computer Technology (ICOT), June 1992.

