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Abstract. The selection of predefined analytic grids (partitions of the
numeric ranges) to represent input and output functions as histograms
has been proposed as a mechanism of approximation in order to control
the tradeoff between accuracy and computation times in several areas
ranging from simulation to constraint solving. In particular, the appli-
cation of interval methods for probabilistic function characterization has
been shown to have advantages over other methods based on the sim-
ulation of random samples. However, standard interval arithmetic has
always been used for the computation steps. In this paper, we introduce
an alternative approximate arithmetic aimed at controlling the cost of
the interval operations. Its distinctive feature is that grids are taken into
account by the operators. We apply the technique in the context of prob-
ability density functions in order to improve the accuracy of the prob-
ability estimates. Results show that this approach has advantages over
existing approaches in some particular situations, although computation
times tend to increase significantly when analyzing large functions.

Keywords: Interval computations, probabilistic analysis, estimation, approxi-
mate arithmetic, abstract interpretation.

1 Introduction

Recently, there has been increasing interest and activity in the theory and appli-
cation of Interval Analysis and Interval Computation [1,12,14]. These techniques
are recognized as a powerful tool for manipulating imprecise data and dealing
with uncertainty. Therefore, they provide a formal basis for abstractions aimed
to support quantitative approximation processes in a large number of application
areas ranging from, e.g., robotics to constraint programming [2, 3, 11].

The point of view of using interval arithmetic as an abstraction can be de-
scribed formally in terms of abstract interpretation [8]. A set of values in the
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Fig. 1. Relationship between domains in abstract interpretation

concrete domain D of operands (generally a numeric domain, either continuous
or discrete but typically large) is approximated by a set of intervals. Each such
set of intervals can be seen as an element of a non-standard domain D, called
an abstract domain, which is usually a complete lattice. D, is then the set that
contains all the admissible sets of intervals. We consider two monotonic map-
pings (i.e., mappings f which satisfy + Cy = f(z) C f(y)) which relate the
concrete and abstract domains and which are called abstraction o : D — D,
and concretization v : Dy — D (see Figure 1). Given a set of values v in D
the abstraction function a(v) returns the corresponding (minimal) set of inter-
vals. Conversely, given a set of intervals (an element i of D,), the concretization
function «y(¢) returns a (possibly infinite) set of concrete values from D.

Also, for each component operation op which operates on elements of D
(e.g., +, *,...) an abstract counterpart ops (+a, *a,...) is defined that operates
on the corresponding sets of intervals in D,. These abstract operations 4+,
*q4,--. are the standard interval arithmetic operations, augmented to operate on
sets of intervals. A function is then computed or approximated by replacing
the operators in the program by their abstract counterparts and applying the
resulting abstract function to sets of inputs at a time, such sets being represented
as sets of intervals. In order to reason about the correctness of this process,
partial order relations are considered in the concrete and abstract domains:
(D, C) and (D, ). The definition of C is induced by C (set inclusion in D)
and « such that Vi,i' € D, : i C i’ & (i) C (i), i.e., a set of intervals 7 is
“smaller” than another set of intervals ¢’ if it corresponds to fewer values in D.

The standard interval operations (+4, *q, ---) do verify two important proper-
ties. The first one is that they compute safe approrimations, i.e., given two sets of
concrete values a and b, then a+b C y(a(a)+q,a(b)) (where by a+b we mean the
set of results of pairwise adding all elements of a and b), axb C v(a(a) x4 a(b)),
etc. Le., it is guaranteed that the intervals which are result of an operation con-
tain all possible values that can be obtained from the operation of values from
the interval operands. However, these operations are not completely precise in
the sense that if there are data dependencies between the operands (e.g., due
to variables appearing more than once in the computation), the interval result
is not guaranteed to be the minimum interval that contains all possible output
values (i.e. data dependencies are only considered at the interval level, not at
the level of individual values) [12,9].



Regarding the second property, consider representing the intervals corre-
sponding to the operands of abstract operations as sets of disjoint subintervals,
i.e., consider a new abstraction function o' which represents an operand a in-
stead of by ¢ = a(a) by another element i’ = o'(a) (i, € D,) composed of
disjoint subintervals of i (note that then (i) = v(i')). Now consider general-
ized versions of the interval operations +,/, *4/,... which operate such sets by
computing their Cartesian product and merge the results in a single interval.
Then a(a) +o a(b) C afa) +4 a(b), a(a) xo a(b) C ala) x4 a(b), etc. Le., the
results of the operations on subintervals are included in the intervals obtained
from operating the original interval operands: the accuracy of the output can
increase. This is because there is less loss of precision in the abstract operations
due to the fact that data dependencies are considered in greater detail [12, 14]. In
the limit, assigning one subinterval to each possible value of each operand would
yield an exact interval result in all cases, e.g., a * b = Y(Quimit (@) *a Quimit(b)).

The two properties above allow defining abstractions based on predefined
partitioning strategies, which will be referred to as grids. Such grids are analytic
partitions of the numeric ranges of interest that force a specific representation,
and are the basis for the definitions of new abstract domains and abstraction
functions. Furthermore, it is possible to associate a value (e.g., a probability)
with each element of the abstract domain associated with a given grid, resulting
in the notion of histogram grids and the definitions of interval operations on such
grids. This allows the application of this class of abstractions to probabilistic
characterization of functions.

The application of interval methods to perform operations on probability den-
sity functions (PDFs) represented as histograms has been previously suggested
(for detailed references see [4]). The standard interval data type is extended with
a probability mass distributed inside the interval to form a histogram bar (called
interval or bar in the following). This model does not provide information about
the probability distributions inside the bars so only verifiable bounds on the out-
put cumulative distribution functions (CDFs) can be obtained [4]. A common
approximation to avoid this problem and obtain estimates of the output PFDs
is to assume that the distributions inside the bars are always uniform [7]. This
is justified by the second property above as long as discrete values are used (we
consider integers) because, in the limit, the distribution of a probability mass
inside an interval containing a single value is uniform.

The uniformity approximation allows using interval analysis for probabilistic
(quantitative) function characterization. In fact, interval methods have been de-
scribed as having more advantages than traditional random sampling approaches
(i.e. Monte Carlo simulation) [10,4]. Exhaustive exploration of the input data
space is possible when represented in terms of intervals but, in general, it is
infeasible when considering individual numeric values. Therefore, from the first
property above, interval computations can provide safe bounds for the output
distributions, while Monte Carlo approaches (based on partial random simula-
tion of the input data space) cannot guarantee that the worst case scenario is
actually considered in the results.



Two problems appear when applying intervals to PDF estimation. First, the
computation of the Cartesian product of input histogram bars yields a set of
output bars that must be merged into a single output histogram. However, the
complexity of this merging can increase to infeasible levels (merging two intervals
with non-empty intersection produces three smaller intervals, so every new merge
is bound to deal with more intersections as computation progresses). Second, it
has been argued that assuming uniform distributions inside the histogram bars
can be a problem with some operations that significantly increase the size of the
output interval but causing sparse distributions (i.e. integer multiplication).

Approaches based on the definition of grids have been proposed to minimize
these problems and, in general, to control the accuracy of the enclosures (and
PDFs) obtained through interval computations [7, 5, 6]. Histogram grids by forc-
ing a specific representation on input and output histograms, allow controlling
the sizes of their bars. However, the computation is typically still performed in
terms of standard interval arithmetic.

In this paper, we introduce an alternative arithmetic (i.e., alternative ab-
stract operations) to evaluate the effect of taking grids into consideration also
during the computation. This arithmetic directly produces the histogram repre-
sentation of an interval result in terms of the same grid used to represent the
input intervals. This approach provides a more accurate probabilistic description
of the operation result and thus allows increased accuracy in the output PDFs.

In the following sections, the notion of abstraction using grids is introduced
as well as the corresponding abstract interval operations. Then, the notion of in-
terval is generalized to that of a histogram bar, and the notion of histogram grids
is presented, applied to the particular case of PDF computation. Then a new
arithmetic, with operators based on a specific grid, and its computation model
are presented. Finally, the new approach is compared to the case of performing
computation using standard interval arithmetic (in terms of accuracy and com-
putation times) when applied to a simple sequence of computations including
data dependencies. Finally, the main conclusions are summarized.

2 Using Interval Grids as Abstractions

The definition of the abstract domain D, is based on the so-called grids which
are abstractions based on intervals.

Definition 1. An interval [a,b] is the set of N = (b — a + 1) integers x that
verify a < x < b.

Definition 2. A grid G is a partition of the concrete domain D in terms of
intervals I;: G = {I;| Uy; I; = D,Ny;I; = 0}.

Grids can be defined by hand by the user or described through analytic mod-
els. Here, we consider analytic grids parameterized by a type, which determines
their formal description, and a granularity (g), which determines the size of its
intervals. In particular, the following two types are considered.



Definition 3. A linear grid with granularity g is the set of adjacent intervals
[A, B], each of them uniquely identified by integer n, that verify one of the fol-
lowing identities:

[gn+ 1,9(n+1)] (n < =1)
[-g+1,-1] (n=-1)
[4,B] = { 0,0 (n=0)
[1,9—1] (n=1)
[g(n —1),gn —1] (n>1)

Definition 4. A geometric grid with granularity g is the set of adjacent inter-
vals [A, B], each of them uniquely identified by integer n, that verify one of the
following identities:

[—g_" +1, —g_("H)] (n<0)
[4,B] =< [0,0] (n=0)
(gD, g™ — 1] (n>0)

In both definitions, integer n is called the level of the corresponding interval
in the grid. In linear grids intervals are of equal size (except around the center),
while in geometric grids interval size increases exponentially away from the ori-
gin. More complex grid models can be found in [5] where the center of symmetry
of the grid can be moved from the origin to any other value.

Let’s consider the set I of all possible intervals of D. In this situation, the
set

IG:{”?'G-[’@SJ:J EG}

where < represents interval inclusion, is the set of all possible intervals allowed
by a grid G, and the abstract domain induced by a grid G, D,,q is defined by
2/¢ i.e., it contains all the sets of possible intervals allowed by the grid. Given
a set of concrete values V, an abstraction function can be associated with the
grid which returns the abstract value corresponding to V in D, ¢.

Definition 5 (ag(V)). The abstraction function associated with a grid G, ag(V)
is defined as:

ag(V) ={V4|Va € Do,g,Yv € V,F*Vy /v € Vy Bul, € Va, vl Cun}

This means that all concrete values in the same grid interval are represented
by a single element of the abstract domain. For example, the set of integers
{0,1,3,4,6} C D is represented in terms of a linear grid with g = 4 as the set
{[0,0],[1,3],[4,6]} C Dy, in(a), or in terms of a geometric grid with g = 2 as the
set {[Oa O]a [1: l]a [37 3]a [4a 6]} Cc Da,geo(2) .

Standard definitions of operations between intervals are used as abstract
operations for the computation [12,14]. For example, in the case of positive



intervals (those with both endpoints > 0):

[z1 + y1, 22 + 2]
[1’1 — Y2, T2 — yl]
[5171 X Y1,T2 X y2]

[z1/y2, z2/y1]

[z1, 22] + [y1,92
[971, 372] - [yl,yz
[21, z2] X [y1, 92
[z1,%2] / [y1,Y2

] =
]=
] =
] =

As an example of how the use of grids can improve accuracy consider the
operation [2, 4] *[8, 9] which results using standard interval arithmetic in [16, 36].
If a geometric grid with g = 2 is applied the interval [2,4] becomes [2, 3], [4, 4]
and thus the operation yields [16,27],[32, 36].

It should be noted that linear grids are better suited for sequences of additions
and subtractions while geometric grids allow large reductions in the size of the
input space and compensate for the range expansion produced by multiplications
and exponentiations, at the cost of coarser intervals away from the origin.

3 Using Interval Histogram Grids as Abstractions

We now generalize the notion of interval by associating a weight with each such
interval. In particular, and given the intended application to PDF computation,
probabilities are assigned to intervals:

Definition 6. An interval [a,b]/p is the set of N = (b— a + 1) integers = that
verify a < x < b with an associated probability mass p.

It is assumed that p is uniformly distributed in [a, b], so that the probability
of any z € [a, b] can be computed as p/N. In this situation, a histogram is simply
described as a set (ordered list) of disjoint generalized intervals. This assumption
allows simplifying the computation model. The impact depends on the type of
grid and the granularity selected. In the limit, if each interval contains a single
integer value, probabilities are indeed uniform.

The grid-based approach for PDF estimation was partially introduced in
[7] and later developed in [5,6]. In particular, the representation of a generic
histogram in terms of a given grid is governed by two rules:

— Merge rule: all intervals of the histogram occurring inside the same interval
of the grid are represented as a single interval with probabilities added.

— Split rule: any interval of the histogram spanning over several intervals of the
grid is decomposed into as many intervals with proportional probabilities
before applying the merge rule.

These two rules are the key to controlling the number of bars in a histogram
through the appropriate selection of a grid. They can be used to reduce the
impact of the problems outlined in the previous section: the merging process that
occurs when collecting output intervals in global histograms, and the uniformity
assumption in large intervals obtained after operations causing sparse output



distributions. Besides, they provide a formal mechanism to control the size of
the interval input space (the Cartesian product of input bars) and, consequently,
the estimation time.

Although this interval method of representation may suggest some resem-
blance to Latin Hypercube Sampling (LHS) as used in approaches based on
Monte Carlo simulation, they are not related in any way as the interval method is
based on a different computation model with different data types (i.e. intervals).
(LHS divides the range of each of the k input variables into n non-overlapping
intervals, randomly selects n values -one value from each interval- for each of
the k variables, and combines them randomly into n k-tuplets which are used as
input vectors for the simulation. While LHS reduces the number of samples for
a given accuracy, they are much harder to compute so, in general, it has only a
limited advantage with respect to standard Monte Carlo sampling [13,15]).

Once grids have been selected for input and output representation, the his-
togram computation model is adapted from [4] as:

1. Consider the input space Ni X ... x Ny where N; is the set of intervals
describing the histogram of input ¢ in terms of a selected grid.

2. For each vector (..., [a;j,bi;]/pij, - -.) of the input space, where [a;;, bi;]/pij
represents the j-th bar of the histogram describing input i:
(a) Compute its probability P = Hle Dij-
(b) Execute the operations using interval arithmetic.
(c) Assign P to each resulting interval.
(d) Collect the results in output histograms described in terms of selected

grids applying the split and merge rules.

When considering a sequence of arithmetic operations, the use of grids allows
controlling the size of the intervals in each input vector (...,[a;;,bi;]/pij, - --)-
However, the size of the interval(s) obtained after the computation (before ap-
plying the output grid) is determined by the type of operations in the sequence.
Therefore, the approximation of assuming uniform distributions inside the in-
tervals worsens if large intervals representing sparse distributions are obtained.
The impact of this uniformity approximation is controlled through the value
of P which is indirectly determined by the grid (finer grids reduce the impact
but require longer computation times). However, it remains to be seen if using
grid-based operators can provide advantages over using more detailed grids.

4 Grid-based Histogram Arithmetic

In the following sections, alternative arithmetic operators based on a specific
grid are derived. The objective is to evaluate their impact in the estimation
process. In particular, a geometric grid with g = 2, called G in the following, is
considered. The choice of a geometric grid is simply due to the fact that it is
more interesting and novel than a linear one. A granularity value of 2 is the most
appropriate for the ranges of values being considered in the examples. Larger
granularities are useful for larger value ranges. A generalization of these models



for other grids is out of the scope of this study, although it should be fairly easy
in the case of geometric grids.

Assuming interval operands represented according to G the new operators
return the result of the operation also represented in terms of G. When this
result includes more than one interval (in general, it is a histogram), the oper-
ator distributes the probability P among the output intervals according to the
behavior of the specific arithmetic operation. (In order to have consistent in-
put and output data types, this new arithmetic can be formulated as histogram
arithmetic, as inputs can be viewed as histograms having a single interval).

From the previous description, the input of any intermediate operation in
any run of the computation is a histogram. In this situation, the computation
model of the previous section is modified as:

1. Consider the input space N1 x ... x Ny where N; is the set of intervals
describing the histogram of input ¢ in terms of G.
2. For each vector (..., [aj, bij]/pij, - - .) of the input space:

(a) Compute the probability P = HLI Dij-
(b) Transform each [a;;, b;;]/pi; into a histogram with a single bar [a;;, b;;]/1.
(¢) For each operation with input histograms Hj, (with one or several inter-
vals), and for each combination of intervals from the Cartesian product
of the intervals of histograms Hy,:
i. Represent each interval as a single-bar histogram.
ii. Obtain a histogram result using G-based histogram arithmetic.
ili. Proceed with the next operation, if any (step ¢). Then return.
iv. Multiply the probability of each resulting histogram interval by P.
v. Collect the result histogram in an output histogram in terms of G.

This computation model is much more complex because a tree of histograms
is generated from each input vector (..., [as;,bi;]/pij,...). Of course, there is
a risk of a combinatorial explosion in the number of histograms produced, and
grid-based operators should be carefully used. The theorems presented in the
following sections provide hints on the conditions to avoid this problem by setting
bounds on the number of intervals generated by the operations.

4.1 Addition/Subtraction Model

Subtractions are treated as particular cases of additions by considering that if
[a,b] is an interval at level I, —[a, b] = [-b, —a] is at level —I.

Two interval operands [a1, a2]/p. and [b1, b2]/pp at levels I, and I, of G (ge-

ometric grid with g = 2), containing N, and N, integers respectively, are con-
sidered. When they are added, the endpoints of the output range are computed
as [¢1,¢2] = [a1 + b1, as + b2] (from standard interval arithmetic).
Theorem 1. The addition of two intervals A and B at positive levels [, and [
of G produces at most two intervals at levels max{l,,l,} and (max{l,,l;} + 1).
Proof. Considering the largest intervals at levels [, and I, and the endpoints at
levels max{l,,l;} and (max{l,,lp} + 1),

A+B= [21a—1 + 215—172141 + ole _ 2] C [Qmaz{la,lb}—172maz{la,lb}+1 _ 1]
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Fig. 2. Relative positions between a grid interval and the distribution of results in the
addition of intervals with uniform density functions
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Fig. 3. Exact and G-based density functions of [—-7,—4]/1 + [9, 14]/1

Assuming uniform distributions in the operands, the distribution of the
M = N,N, integer results or occurrences in [c1, ca] has the general shape of a
trapezoid, with a height h = min{N,, Ny}, and corners ¢;, ¢2, wy = (c1 + h—1),
and wa = (c2 — h+ 1) (see Figure 2). The number of occurrences m of any value
Z € [c1, 2] can be obtained as:

z—c+1lca<zx<u
m=<h w <2< ws
cc—z+1lw<z<ce

As [¢1, 2] must be described in terms of G, in general, it becomes a set of
intervals (histogram) with probabilities proportional to the previous distribu-
tion of occurrences. These probabilities are obtained from analyzing the possible
positions of a grid interval with respect to the three sections of the distribution
above (Figure 2).

Definition 7. The G-based addition of two intervals [ay1,az2]/p, and [by,bs]/ps
with N, and Ny integers respectively, produces the set of intervals described by

{ [cla 02] /papb if l1 = l2
[Cla 211 - ]-] /pllaLJ22:;11_|-1[21_172z - ]-]/pla [212_1502] plz lf ll 7£ l2

where 1y is the level including c1 = a1 + by, and ly is the level including co =
az+be. Whenly # L, for each interval [x1, x2)/py of the set, py = Papp My /Ny Ny
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Fig. 4. Area approximation

with M, obtained as

r(:El +.’L‘2—201+2)(.Z‘2—.Z‘1+1)/2 Tro < Wq

(w1 +21 —2¢1 + 1) (w1 — 1) /2 + (w2 — wy + 1)h+

M, = < +(2CQ—UJ2—SE2+1)(ZU2—U)2)/2 T < Wi,To > W2
h(za — 21 +1) wy <1 < wa, T2 < W2
(w2 — 1 + 1)h+ (262 — wWo — Ty + 1)(.’)&'2 —’11)2)/2 w; < z1 < Wy, Ty > Wa
L(262—.’1&'1—3&'24—2)(1‘2—."IJ1—}-].)/2 xr1 > W2

As an example, Figure 3 represents the output distribution of the addition
[-7,—4]/14]9,14]/1. The plot on the left is the exact density function. The plot
on the right is obtained with the G-based operator. It should be noted that if
standard interval arithmetic is applied, a uniform distribution (at p(z) = 0.111)
in [2,10] is obtained.

4.2 Multiplication and Division Models

Multiplication produces, in general, sparse distributions of results in wide ranges.
So interval results contain values that cannot be obtained from the correspond-
ing integer multiplication. (Only positive intervals are considered here as sign
computation can be performed independently).

Theorem 2. The product of two intervals A and B at levels [, and Il of G,
produces at most two intervals at levels (I, + 1, — 1) and (I, + Ip).

Proof. Considering the largest intervals at levels [, and I, and the endpoints at
levels (I, + 1, — 1) and (I, + ), and applying standard interval arithmetic

Ax B = [Zla+lb_272la+lb —9la _ 9l + 1] C [21a+lb_272la+lb _ 1]

The model of the G-based interval multiplication is based on a computation
in the concrete domain. Considering the region defined by z € [a1,,a2r] = [a1 —
0.5,a2+0.5] and y € [by, bar] = [b1 —0.5, b2+ 0.5], the number of products below

10

(wy + 21 —2¢1 + 1) (w1 —21) /24 (B2 — w1 + )bz <wy,w; < 22 < Wwo
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Fig. 5. Relative positions of xy = K in the defined region

a value K can be approximated by the area below the curve zy = K included in
the previous region. From the previous theorem, a value K = 2late—1 geparates
the products that belong to each of the two output intervals. An approximation
of the number of occurrences in the lower output interval can be obtained as:

T2
A:/ (K)dx—c:Kln(ﬁ)—c
z1 X I

As shown by some examples in Figure 4, it is an approximation because this
expression provides the real area below the curve, instead of the number of
unit squares corresponding to integer occurrences. (A more sophisticated model
accounting for long tails that do not include unit squares is used in the imple-
mentation to reduce the impact of the approximation). The values of z1, z2 and
C are obtained from analyzing the possible positions of the curve xy = K with
respect to the rectangle defined by the ranges of  and y. These positions are
represented in Figure 5.

Definition 8. The G-based multiplication of two intervals, [a;,as]/p, and [by,bs]/pp
at levels 1, and ly and with N, and Ny integers respectively, produces the intervals

[c1, 2l — 1) /p, [2LF et o] [papy — pif 1 < 20Tl < ¢y
[c1, ¢2] /Papb else

where ¢1 = a1b1, ca = agby, K = 2leth=1 p— (%) (Kln (ﬁ—f) — C’), and

x = air K S alrb2r
K/b2r K > alrb2r
Ty = a2r K > as by
K/blr K < asbir
C= { bir(z2 — 21) K < airboy
bir(z2 — 21) — Np(21 — a1r) K > a1,bor

The model for division is based on similar ideas. In this case, it is assumed
that the endpoints of the denominator cannot be 0.
Theorem 3. The division of two intervals A and B at levels [, and [, of G,
produces at most two intervals at levels (I, — ) and (I, — Iy + 1).
Proof. Considering the largest intervals at levels [, and I, and the endpoints at
levels (I, — 1) and (I, — Iy + 1), and applying standard interval arithmetic

A/B = [2l71 /2l — 1,2l — 17271 C [2lemhoml plamhotl]

11
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Fig. 6. Exact and G-based density functions of [4, 6]/1 x [8,15]/1

The curve to be considered in this case for the area computation is z/y = K
with K = 2la—l g0

zo 2 2
_ T _o_T2"T
A_/M (K)dx c==--c (1)

Definition 9. The G-based division of two intervals, [a1,a2]/ps and [b1,b2]/pe
at levels 1, and l, and with N, and Ny integers respectively, produces the intervals

[0,0] /paps if I, <l
[c1, 207t —1] [papy — p, [257 co] [pif 1o > 1p00 <2070 <
[c1,¢2] /Papy else

2 2
where ¢; = ay /by, ca = ag /by, K =270 p= (—1325)\?5) (—zg}zl - C), and

P air K< alr/blr
bi. K K> alr/blr
Ty = asr K> a2r/b2r
bor K K< a2r/b2r
C= {bu(iﬂz — 1) K > as [bay
bir(z2 — 21) — Ny(az, — 22) K < ag, /by,

As an example, exact and G-based plots are represented in Figure 6 for
the multiplication [4,6]/1 x [8,15]/1. The uniform distribution obtained from
standard interval arithmetic has a constant density at p(z) = 0.017.

5 Example of a Computation

Although it is clear that individual G-based operators are more accurate than
standard interval operators, it is also important to characterize their behavior
when considering sequences of operations (implying data dependencies). For this
purpose, the following example of computation is considered (from the reliability
estimation of a robot arm joint [6]):

J =84 XS8p+Mm—S8, X8 XM

12



where s, and s; are sensor probabilities of failure described by the left plot of
Figure 7, and m is a motor probability of failure represented in the plot on the
right of Figure 7.
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0

Fig. 7. Probability density functions of s, and s, (left), and m (right)

It can be observed that in order to apply the estimation approaches presented
here it is required to scale the data (and the computation) for a description in the
integer domain. In particular, probabilities of failure with two fractional digits
are considered, thus requiring a scaling by 100. For more details, see [6]. (Such
scaling is undone in the representation of the computation results).

The plots in figures 8 to 11 represent the density functions of j obtained
from four different computational approaches. In each figure, the plot on the left
corresponds to the result of the approach represented by merging exactly all the
individual results (in general, the intersection of two individual results produces
three output bars). The plot on the right is the representation of the same result
when an output grid G (geometric with g = 2) is used to collects the results.

Figure 8 displays the exact output density functions obtained from the ex-
haustive exploration of the 108 vectors of the input space (considering integers).
Note that the ”small” size of the problem allows obtaining this exact result, in
general unknown, and that the peak around 0.5 cannot be totally represented
when using G.

The plots in Figure 9 are obtained by using standard interval computations
on the intervals of histograms in Figure 7. Again, collection times, as previously
explained, do not become prohibitive due to the small size of the problem. In
this case, data dependencies are taken into account at a coarse level of detail
(large input intervals), so the approximation is poor and the results merely show
the peak around 0.5.

The results obtained applying an input grid G with standard interval arith-
metic are represented in Figure 10. The approximation is much better than
without grids. The two peaks of the PDF are clearly seen. However, when repre-
sented in terms of GG, probability masses do not distribute as in the exact PDF
(the second peak appears displaced around the value 0.25).

Finally, Figure 11 contains the plots computed using G-based arithmetic,
which also implies an input grid G. Once again, results are improved, as both
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Fig. 9. PDF of j computed with intervals but without grids

peaks are reflected in the plots but, in this case, the second peak appears around
0.4, so the representation in terms of G is the best of the three approximations.

Table 1 contains some statistics from the four computations, including the
number of operations performed (Size), the computation time in msec. (Time),
the number of intervals saved to disk after the computation (Memory. This num-
ber also includes intervals describing the inputs and intermediate variables), and
the error in the result. This error is obtained by comparing the representations
in terms of G. It is a weighted percentage of the exact distribution computed as

act — Approx |
2 x Exact

E
Error(%) = 100 x Z | Ex
Vbars

where Exact is the probability of a bar in the exact distribution and Approx is
the probability of the corresponding bar in the approximate distribution. The
factor 2 accounts for the fact that each misplaced results causes a difference in
the distributions of twice its probability.

The table shows several interesting results. Clearly, exhaustive integer explo-
ration of the input space (first two rows) would be infeasible in larger examples,
as the computation time is a function of the input space size. The impact of col-
lection times can be observed by comparing results with and without an output
grid. Using no output grid causes a significant increase in the total time even
though this is a small example with a limited number of output values (100).

Errors confirm the qualitative analysis of the plots previously made. The im-
provement achieved with G-based operators is at the cost of longer (but accept-
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able) computation times. As previously mentioned, this cost can increase signifi-
cantly in larger examples as the computation with G-based operators can gener-
ate many more intermediate results than standard interval operators. However,
the theorems from the previous section seem to anticipate moderately longer
computation times when using operators based on grids like the one used here
(geometric with g = 2), as most interval operations are proven to generate at
most two output intervals.

6 Conclusions

In this paper, after introducing grids as abstractions with the objective of im-
proving the precision of interval computations, a new set of approximate arith-
metic operators for probabilistic characterization of functions has been pre-
sented. The new operators bring grids into the behavior of the operators them-
selves. Results from operators developed for a particular grid show that this
approach provides the ability to control the accuracy and computation times of
the estimation process at a different level than approaches based on grids for in-
put and output representation. The new approach reduces the error of the PDF
estimates at the cost of longer computation times. The results from a particular
example show that this is a moderate increase, although this can be different in
other examples with different grids and data sets.

15



| Input [Computation] Output [ Size | Time [Memory|Error (%)]]

integer integer no grid 6181806|2773459| 20844 -
integer integer |geometric(2) ([6181806|2297749| 10651 0
no grid no grid no grid 750 490 739 -
no grid no grid | geometric(2) || 750 240 602 17.42
geometric(2)| no grid no grid 3072 1640 1159 -
geometric(2)| mno grid |geometric (2)|| 3072 820 642 6.55
geometric(2)|geometric(2)| no grid 3072 | 2120 1490 -
geometric(2)| geometric(2) | geometric(2) || 3072 1260 642 3.94

Table 1. Statistics from the Computation
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