Incremental Analysis of Constraint Logic Programs

MANUEL HERMENEGILDO and GERMAN PUEBLA
Universidad Politécnica de Madrid

KIM MARRIOTT

Monash University

and

PETER J. STUCKEY

University of Melbourne

Global analyzers traditionally read and analyze the entire program at once, in a nonincremental
way. However, there are many situations which are not well suited to this simple model and
which instead require reanalysis of certain parts of a program which has already been analyzed.
In these cases, it appears inefficient to perform the analysis of the program again from scratch,
as needs to be done with current systems. We describe how the fixed-point algorithms used in
current generic analysis engines for (constraint) logic programming languages can be extended to
support incremental analysis. The possible changes to a program are classified into three types:
addition, deletion, and arbitrary change. For each one of these, we provide one or more algorithms
for identifying the parts of the analysis that must be recomputed and for performing the actual
recomputation. The potential benefits and drawbacks of these algorithms are discussed. Finally,
we present some experimental results obtained with an implementation of the algorithms in the
PLAI generic abstract interpretation framework. The results show significant benefits when using
the proposed incremental analysis algorithms.

Categories and Subject Descriptors: D.1.2 [Programming Techniques|: Automatic Program-
ming—Automatic analysis of algorithms, Program transformation; D.1.6 [Programming Tech-
niques|: Logic programming; D.3.4 [Programming Languages]: Compilers; F.3.1 [Logics and
Meanings of Programs]|: Specifying and Verifying and Reasoning about programs—Logics of
programs

General Terms: Languages

Additional Key Words and Phrases: abstract interpretation, constraint logic programming, incre-
mental computation, static analysis

This work was supported in part by ARC grant A49702580 and CICYT project TIC99-
1151 “EDIPIA”. Authors’ addresses: M. Hermenegildo and G. Puebla, Facultad de In-
formatica, Universidad Politécnica de Madrid, 28660-Boadilla del Monte, Madrid, Spain; email:
{herme;german}@fi.upm.es; K. Marriott, School of Computer Science and Software Engineering,
Monash University Clayton 3168, Australia; email: marriott@csse.monash.edu.au; P.J. Stuckey,
Dept. of Computer Science and Software Engineering, The University of Melbourne, Parkville
3052, Australia; email: pjs@cs.mu.oz.au.

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999, Pages 1-37.

2 . Manuel Hermenegildo et al.

1. INTRODUCTION

Global program analysis is becoming a practical tool in constraint logic program
compilation in which information about calls, answers, and the effect of the con-
straint store on variables at different program points is computed statically [Herme-
negildo et al. 1992; Van Roy and Despain 1992; Muthukumar and Hermenegildo
1992; Santos-Costa et al. 1991; Bueno et al. 1994]. The underlying theory, formal-
ized in terms of abstract interpretation [Cousot and Cousot 1977], and the related
implementation techniques are well understood for several general types of analysis
and, in particular, for top-down analysis of Prolog [Debray 1989; 1992; Bruynooghe
1991; Muthukumar and Hermenegildo 1992; Marriott et al. 1994; Charlier and Van
Hentenryck 1994]. Several generic analysis engines, such as PLAI [Muthukumar
and Hermenegildo 1992; 1990], GATA [Charlier and Van Hentenryck 1994], and
the CLP(R) analyzer [Kelly et al. 1998b], facilitate construction of such top-down
analyzers. These generic engines have the description domain and functions on this
domain as parameters. Different domains give analyzers which provide different
types of information and degrees of accuracy. The core of each generic engine is
an algorithm for efficient fixed-point computation [Muthukumar and Hermenegildo
1990; 1992; Charlier et al. 1993]. Efficiency is obtained by keeping track of which
parts of a program must be reexamined when a success pattern is updated. Current
generic analysis engines are nonincremental—the entire program is read, analyzed,
and the analysis results written out.

Despite the obvious progress made in global program analysis, most logic pro-
gram and CLP compilers still perform only local analysis (although the &-Prolog
[Hermenegildo and Greene 1991], Aquarius [Van Roy and Despain 1992], Andorra-I
[Santos-Costa et al. 1991], and CLP(R) [Kelly et al. 1998a] systems are notable
exceptions). We believe that an important contributing factor to this is the simple,
nonincremental model supported by global analysis systems, which is unsatisfactory
for at least three reasons:

—The first reason is that optimizations are often source-to-source transformations;*
optimization consists of an analyze, perform transformation, then reanalyze cy-
cle. This is inefficient if the analysis starts from scratch each time. Such analyze-
transform cycles may occur for example when program optimization and multi-
variant specialization are combined [Winsborough 1992; Puebla and Hermene-
gildo 1995; 1999]. This is used, for instance, in program parallelization, where an
initial analysis is used to introduce specialized predicate definitions with run-time
parallelization tests, and then these new definitions are analyzed and those tests
which become redundant in the multiply specialized program removed. It is also
the case in optimization of CLP(R) in which specialized predicate definitions are
reordered and then reanalyzed.

—The second reason is that incremental analysis supports incremental runtime

compilation during the test-debug cycle. Again, for efficiency only those parts of
the program which are affected by the changes should be reanalyzed. Incremental

1By source-to-source transformation we include transformations on the (high-level) internal com-
piler representation of the program source, which for (constraint) logic program compilers tend to
be very close to the source.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 3

compilation is important in the context of logic programs as traditional environ-
ments have been interpretive, allowing the rapid generation of prototypes. Incre-
mental analysis is especially important when the system uses analysis information
in order to perform compile-time correctness checking of the program [Puebla
et al. 2000; Hermenegildo et al. 1999b].

—The third reason is to better handle the optimization of programs in which rules
are asserted (added) to or retracted (removed) from the program at runtime.

Clearly, if we modify a program the existing analysis information for it may no
longer be correct and/or accurate. However, analysis is often a costly task, and
starting analysis again from scratch does not appear to be the best solution. In
this article we describe how the fixed-point algorithm in the top-down generic anal-
ysis engines for (constraint) logic programs can be extended to support incremental
analysis. Guided by the applications mentioned above, we consider algorithms for
different types of incrementality. The first, and simplest, type of incrementality is
when program rules are added to the original program. The second type of incre-
mentality is rule deletion. We give several algorithms to handle deletion. These
capture different trade-offs between efficiency and accuracy. The algorithms for
deletion can be easily extended to handle the third and most general type of incre-
mentality, arbitrary change, in which program rules can be deleted or modified in
any way. Finally, we consider a restricted type of arbitrary change: local change
in which rules are modified, but the answers to the rules are unchanged for the
calling patterns they are used with. This case occurs in program optimization, as
correctness of the optimization usually amounts to requiring this property. Local
change means that changes to the analysis are essentially restricted to recomputing
the new call patterns which these rules generate. We give a modification to the
fixed-point algorithm which handles this type of incrementality. Finally we give
a preliminary empirical evaluation. We argue that the experimental results show
that our algorithms are practically important.

In the next section we present the formalization of a fixed-point algorithm which
generalizes those used in generic analysis engines. In Section 3 we give an algorithm
to handle incremental addition of rules. In Section 4 we give two algorithms to
handle incremental deletion of rules. In Section 5 we modify these algorithms to
handle arbitrary change of rules. We also give an algorithm to handle the special
case of local change. In Section 6 we describe the implementation of the algorithms
and our empirical evaluation. Section 7 discusses related work while Section 8
concludes.

2. A GENERIC ANALYSIS ALGORITHM

We start by providing a formalization of a fixed-point algorithm for analysis of (con-
straint) logic programs. We assume the reader is familiar with constraint logic pro-
gramming (e.g., see Marriott and Stuckey [1998]) and abstract interpretation (see
Cousot and Cousot [1977]). The aim of goal-directed top-down program analysis
is, for a particular description domain, to take a program and a set of initial calling
patterns and to annotate the program with information about the current environ-
ment at each program point whenever that point is reached when executing calls
described by the calling patterns.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

4 . Manuel Hermenegildo et al.

2.1 Program Analysis by Abstract Interpretation

Abstract interpretation [Cousot and Cousot 1977] is a technique for static pro-
gram analysis in which execution of the program is simulated on a description (or
abstract) domain (D) which is simpler than the actual (or concrete) domain (C).
Values in the description domain and sets of values in the actual domain are related
via a pair of monotonic mappings {(«,): abstraction a : C — Dand concretization
7 : D— C which form a Galois connection. A description d € D approzrimates an
actual value ¢ € C if a(c) < d where < is the partial ordering on D. Correctness
of abstract interpretation guarantees that the descriptions computed approximate
all of the actual values which occur during execution of the program.

Different description domains may be used which capture different properties with
different accuracy and cost. The description domain that we use in our examples
is the definite Boolean functions [Armstrong et al. 1994], denoted Def. The key
idea in this description is to use implication to capture groundness dependencies.
The reading of the function — y is “if the program variable z is (becomes)
ground, so is (does) program variable y.” For example, the best description of the
constraint f(X,Y) = f(a,g(U,V)) is X A(Y + (UAV)). Groundness information
is directly useful for many program optimizations such as constraint simplification,
parallelization, and simplification of built-ins. It is also indirectly useful for almost
all other optimizations of (constraint) logic programs, since it can be combined with
many other analysis domains to give more precise analysis information.

We now recall some standard definitions in constraint logic programming. A con-
straint logic program or program is a set of rules of the form A :- Ly,..., L,, where
Lyq,..., L, are literals and A is an atom said to be the head of the rule. A literal is
an atom or a primitive constraint. We assume that each atom is normalized; that
is to say, it is of the form p(zy,...,zm) where p is an m-ary predicate symbol and
Z1,...,Tm are distinct variables. A primitive constraint is defined by the underly-
ing constraint domain and is of the form ¢(ey, . . .,) where ¢ is an m-ary predicate
symbol and the eq, ..., e, are expressions. For simplicity, in the examples we shall
restrict ourselves to the Herbrand domain (Prolog) where primitive constraints are
of the form e; = ey where e; and e, are terms.

As an example of goal-directed top-down program analysis, consider the following
program for appending lists:

app(x’Y’Z) e x=[], Y=Z.
app(X,Y,Z) :- X=[U|V], Z=[UIW], app(V,Y,W).

Assume that we are interested in analyzing the program for the call app(X,Y, Z)
with initial description Y indicating that we wish to analyze it for any call to
app with the second argument definitely ground. We will denote this as the calling
pattern app(X,Y, Z) : Y. In essence the analyzer must produce the program analysis
graph given in Figure 1, which can be viewed as a finite representation of the
(possibly infinite) set of (possibly infinite) AND-OR trees explored by the concrete
execution [Bruynooghe 1991]. Finiteness of the program analysis graph (and thus
termination of analysis) is achieved by considering description domains with certain
characteristics (such as being finite, or of finite height, or without infinite ascending
chains) or by the use of a widening operator [Cousot and Cousot 1977]. The graph
has two sorts of nodes: those belonging to rules (also called “AND-nodes”) and

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 5

¢

(app(X,Y,Z): Y » Y A (X & 2))

/N

app(X,Y,Z)° app(X,Y,Z)? - X = [U|V]*, Z = [U|W]?, app(V,Y,W)S.

Y

YA (X < (UAV))

YAX o (UAV)A(Z - (UAW))
T YANX e UAVIAZ - UAW)AV & W)

0:Y
1:YAX
2 : XAYNZ

[S2 NS B

Fig. 1. Example program analysis graph

those belonging to atoms (also called “OR-nodes”). For example, the atom node
(app(X,Y,Z) : Y —» Y A (X + Z)) indicates that when the atom app(X,Y, Z) is
called with description Y the resulting description is Y A (X < Z). This answer
description depends on the two rules defining app which are attached by arcs to
the node. These rules are annotated by descriptions at each program point of the
constraint store when the rule is executed from the calling pattern of the node
connected to the rules. The program points are at the entry to the rule, the point
between each two literals, and at the return from the call. Atoms in the rule body
have arcs to OR-nodes with the corresponding calling pattern. If such a node is
already in the tree it becomes a recursive call. Thus, the analysis graph in Figure 1
has a recursive call to the calling pattern app(X,Y,Z) : Y. How this program
analysis graph is constructed is detailed in Example 1.

It is implicit in this approach that sets of constraints are described by the de-
scription at each program point, rather than sequences of constraints. Although it
is possible to base an analysis on sequences rather than sets, (e.g., see Charlier et al.
[1994]) almost all generic (constraint) logic program analysis engines are set-based
rather than sequence-based, so we shall focus on these.

As we have seen, a program analysis graph is constructed from an initial set of
calling patterns and a program. It is defined in terms of five abstract operations
on the description domain. As is standard these are required to be monotonic
and to approximate the corresponding concrete operations; for more details see for
example Garcia de la Banda et al. [1998]. The abstract operations are

—Arestrict(CP, V) which performs the abstract restriction of a description CP to
the variables in the set V;
—Aextend(CP, V) which extends the description CP to the variables in the set V;

—Aadd(C, CP) which performs the abstract operation of conjoining the actual con-
straint C' with the description CP;

—Aconj(CPy, CP3) which performs the abstract conjunction of two descriptions;
—Alub(CPy, CP») which performs the abstract disjunction of two descriptions.
As an example, the abstract operations for the description domain Def are de-

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

6 . Manuel Hermenegildo et al.

fined as follows. The abstraction operation ap.s gives the best description of a
constraint. It is defined as

apef(z =1) = (z < /\{y € vars(t)})

where z is a variable, ¢ is a term, and the function vars returns the set of variables
appearing in some object. For instance, ape(X = [U|V]) is X & (UAV). We
note that term constraints can always be simplified to conjunctions of this form.
Extending to conjunctions, we have

aDef(el A--- A ek) = aDef(el) AR /\aDef(ek)

where e1, ..., e are term equations.
The remaining operations are defined as follows:

Arestrict(CP,V) = 3_y CP
Aextend(CP,V) = CP

Aadd(C, CP) = ape(C) A CP
Aconj(CPy, CPy) = CPy A CP,

AlUb(CPl,CPQ) = CP1|_|CP2

where 3_y F represents Juy - - - Jup F' where {vy,...,v5} = vars(F) —V, and U is
the least upper bound (lub) operation over the Def lattice (e.g., Armstrong et al.
[1994]). The top (T) of the the Def lattice is the formula ¢true while the bottom
(1) is the formula false.

For a given program and calling pattern there may be many different analysis
graphs. However, for a given set of initial calling patterns, a program and abstract
operations on the descriptions, there is a unique least analysis graph which gives
the most precise information possible.

For the reader with a formal bent, an alternative way of understanding the anal-
ysis graph is in terms of the recursive equations for the general goal-dependent
semantics given in Garcia de la Banda et al. [1998] The least analysis graph corre-
sponds to their least fixed point.

2.2 The Generic Algorithm

We will now describe our generic top-down analysis algorithm which computes the
least analysis graph. This algorithm captures the essence of the particular analysis
algorithms used in systems such as PLAI [Muthukumar and Hermenegildo 1990;
1992], GAIA [Charlier and Van Hentenryck 1994], and the CLP(R) analyzer [Kelly
et al. 1998b]. It will form the basis for our algorithms for incremental analysis. How-
ever there are several minor differences between the generic algorithm we present
and these systems:

—First, the order in which rules for the same predicate are processed to compute
the graph is not fixed, since the algorithm is parametric in the analysis strategy
used to determine this order. The reasons for this are two-fold: the first reason
is generality. The second reason is that the analysis strategy used for static
analysis is not necessarily good for incremental analysis, and so we need to be
able to explicitly refer to and reason about different strategies.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 7

—Second, the algorithm keeps detailed information about dependencies for each
literal in the graph. This is finer grained dependency information than that usu-
ally maintained in top-down analysis algorithms. We require this extra precision
for efficiency in most of the incremental analysis algorithms.?

—Third, the algorithm is deliberately simplified. It does not include many minor
optimizations, so as not to obscure the core behavior of the algorithm. Also it is
only defined for pure CLP programs. However, standard analysis techniques for
handling constructs such as cuts, not, and -> and other built-ins can be added
without difficulty [Bueno et al. 1996]; indeed the implementation actually handles
(almost) full ISO-Prolog.

We first introduce some notation. CP, possibly subscripted, stands for a descrip-
tion (in the abstract domain). AP, possibly subscripted, stands for a description
occurring as an answer description. Each literal in the program is subscripted with
an identifier or pair of identifiers. The expression A : CP denotes a calling pattern.
This consists of an atom (unsubscripted or subscripted) together with a calling
description for that atom.

As indicated earlier, rules are assumed to be normalized: only distinct variables
are allowed to occur as arguments to atoms. Furthermore, we require that each rule
defining a predicate p has identical sequence of variables z,,,...zp, in the head
atom, i.e., p(Zp,, ... Tp,). We call this the base form of p. Rules in the program are
written with a unique subscript attached to the head atom (the rule number), and
dual subscript (rule number, body position) attached to each body literal, e.g.,

Hy :- Br,..., Bim,

where By, ; is a subscripted atom or constraint. The rule may also be referred to
as rule k, the subscript of the head atom. For example, the append program of
Section 2.1 is written

app1 (X,Y,Z) :- X=[111, Y=Z1 5.
app2(X,Y,Z) :- X=[U|V]y1, Z=[U|Wls2, app23(V,Y,W).

The base form of app is app(X,Y, Z), and each app atom only involves distinct
variables as arguments.

The program analysis graph is implicitly represented in the algorithm by means
of two data structures, the answer table and the dependency arc table. Given the
information in these it is straightforward to construct the graph and the associated
program point annotations. The answer table contains entries of the form A :
CP — AP. A is always a base form. This corresponds to an OR-node in the
analysis graph of the form (A : CP— AP). It is interpreted as the answer pattern
for calls of the form CP to A is AP. A dependency arc is of the form Hy : CPy =
[CP1] By,; : CP,. This is interpreted as follows: if the rule with Hj, as head is called
with description CP, then this causes literal By, ; to be called with description CPs.
The remaining part CP; is the program annotation just before By ; is reached and
contains information about all variables in rule k. CP; is not really necessary, but is

2In fact, as we shall see, the overhead of keeping more detailed information is compensated for by
avoiding redundant recomputation when an answer pattern is changed.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

8 . Manuel Hermenegildo et al.

included for efficiency. Dependency arcs represent the arcs in the program analysis
graph from atoms in a rule body to an atom node. For example, the program
analysis graph in Figure 1 is represented by

answer table: app(X, Y, Z2) : Y » YA (X & 2)
dependency arc table:
app2(X,Y,Z): Y = Y A(X & (UAV))A(Z & (UAW))] app2,s(V,Y,W):Y

Intuitively, the analysis algorithm is just a graph traversal algorithm which places
entries in the answer table and dependency arc table as new nodes and arcs in the
program analysis graph are encountered. To capture the different graph traversal
strategies used in different fixed-point algorithms, we use a priority queue. Thus,
the third, and final, structure used in our algorithms is a prioritized event queue.
Events are of three forms:

—newcall(A : CP) which indicates that a new calling pattern for atom A with
description CP has been encountered.

—arc(R) which indicates that the rule referred to in R needs to be (re)computed
from the position indicated.

—updated(A : CP) which indicates that the answer description to calling pattern
A with description CP has been changed.

The generic analysis algorithm is given in Figure 2. Apart from the parametric
description domain-dependent functions, the algorithm has several other undefined
functions. The functions add_event and next_event respectively add an event to the
priority queue and return (and delete) the event of highest priority.

When an event being added to the priority queue is already in the priority queue,
a single event with the maximum of the priorities is kept in the queue. When an
arc Hy : CP = [CP"|By,; : CP' is added to the dependency arc table, it replaces
any other arc of the form Hy : CP = [|By,; : - in the table and the priority queue.
Similarly when an entry Hy : CP — AP is added to the answer table, it replaces
any entry of the form Hy : CP — _. Note that the underscore (_) matches any
description, and that there is at most one matching entry in the dependency arc
table or answer table at any time.

The function initial_guess returns an initial guess for the answer to a new calling
pattern. The default value is L but if the calling pattern is more general than an
already computed call then its current value may be returned.

The algorithm centers around the processing of events on the priority queue
in main_loop, which repeatedly removes the highest priority event and calls the
appropriate event-handling function. When all events are processed it calls re-
move_useless_calls. This procedure traverses the dependency graph given by the
dependency arcs from the initial calling patterns S and marks those entries in the
dependency arc and answer table which are reachable. The remainder are removed.

The function new_calling_pattern initiates processing of the rules in the definition
of atom A, by adding arc events for each of the first literals of these rules, and
determines an initial answer for the calling pattern and places this in the table.
The function add_dependent_rules adds arc events for each dependency arc which
depends on the calling pattern (A : CP) for which the answer has been updated.
The function process_arc performs the core of the analysis. It performs a single step

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 9

analyze(S)
foreach A: CP€ S
add_event(newcall(A : CP))
main_loop()

main_loop()
while E := next_event()
if (E = newcall(A : CP))
new_calling pattern(A : CP)
elseif (E = updated(A : CP))
add_dependent_rules(A : CP)
elseif (E = arc(R))
process_arc(R)
endwhile
remove_useless_calls(S)

new_calling pattern(A : CP)
foreach rule Ay :- By 1,.
CPy =
Aextend(CP,vars(Bg,1; .-+ B n,,))
CP1 := Arestrict(CPo,vars(Byg,1))
add_event(arc(
Ay : CP = [CPy] By : CP1))
AP := initial_guess(A : CP)
if (AP# 1)
add_event(updated(A : CP))
add A: CP+— AP to answer table

I .

add_dependent_rules(A : CP)
foreach arc of the form

Hy : CPy = [CPl] Bk,i :
in graph

where there exists renaming o
st. A: CP = (By, : CP2)o

add_event(arc(
Hy : CPy = [CPq] By; : CP»))

CP»>

Fig. 2.

process_arc(Hy, : CPg = [CP1] By ; : CP2)
if (B, ; is not a constraint)
add Hy, : CPy = [CP1] By :
to dependency arc table
W :=wvars(Ag i~ Bg,1,...,Brn,)
CP3 := get_answer(By, ; : CP2, CP1, W)
if (CP3 # L and i # ng)
CPy4 := Arestrict(CP3,vars(By,i+1))
add_event(arc(
Hk : CP() = [CP3] Bk,i+1 H
elseif (CP3 # L and i = ny)
AP; := Arestrict(CP3,vars(Hy))
insert_answer_info(H : CPo — AP1)

CPy

CPy))

get_answer(L : CP3, CP1, W)
if (L is a constraint)
return Aadd(L, CP;)
else
APq := lookup_answer(L : CP3)
APy := Aextend(APy, W)
return Aconj(CPy,AP;)

lookup_answer(A : CP)

if (there exists a renaming o s.t.
(A : CP) — AP in answer table)
return o~ !(AP)

else
add_event(newcall(c(A : CP)))
where o is a renaming s.t.
o(A) is in base form
return L

insert_answer_info(H : CP — AP)
APy := lookup_answer(H : CP)
APy = Alub(AP, AP,)
if (APy # APy)
add (H : CP +— AP1) to answer table
add_event(updated(H : CP))

Generic analysis algorithm.

of the left-to-right traversal of a rule body. If the literal By ; is an atom, the arc
is added to the dependency arc table. The current answer for the call By ; : CP>
is conjoined with the description CP; from the program point immediately before
By, ; to obtain the description for the program point after By ;. This is either used
to generate a new arc event to process the next literal in the rule if By ; is not
the last literal; otherwise the new answer for the rule is combined with the current
answer in insert_answer_info. The function get_answer processes a literal. If it is a
constraint, it is simply abstractly added to the current description. If it is an atom,
the current answer to that atom for the current description is looked up; then this
answer is extended to the variables in the rule the literal occurs in and conjoined
with the current description. The functions lookup_answer and insert_answer_info
lookup an answer for a calling pattern in the answer table, and update the answer
table entry when a new answer is found, respectively. The function lookup_answer

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

10 . Manuel Hermenegildo et al.

also generates newcall events in the case that there is no entry for the calling
pattern in the answer table.

2.3 Example of the Generic Algorithm

The following example briefly illustrates the operation of the generic fixed-point
algorithm. It shows how the app program would be analyzed, to obtain the program
analysis graph shown in Figure 1.

Ezxzample 1. Analysis begins from an initial set S of calling patterns. In our
example S contains the single calling pattern app(X,Y,Z) :Y. The first step in the
algorithm is to add the initial calling patterns as new calling patterns to the priority
queue. After this the priority queue contains

newcall (app(X,Y,Z):Y)

and the answer and dependency arc tables are empty. The newcall event is taken
from the event queue and processed as follows. For each rule defining app, an arc is
added to the priority queue which indicates the rule body must be processed from
the initial literal. An entry for the new calling pattern is added to the answer table
with an initial guess of false (L for Def) as the answer. The data structures are
now

priority queue: arc(app1 (X, Y, Z) : Y = [Y] X=[111 : true)
arc(app2 (X, Y, Z) : Y = [Y] X=[U|V]y; : true)
answer table: app(X, Y, Z) : Y — false

dependency arc table: no entries

An arc on the event queue is now selected for processing, say the first. The routine
get_answer is called to find the answer pattern to the literal X=[] with description
true. As the literal is a constraint, the parametric routine Aadd is used. It returns
the answer pattern X. A new arc is added to the priority queue which indicates
that the second literal in the rule body must be processed. The priority queue is
now

arc(appl(X, Y, 2):Y => [X/\Y] Y=Zl72 : X)
arc(app2(X, Y, Z) : Y = [Y] X=[U|V]y; : true).

The answer and dependency arc table remain the same.

Again, an arc on the event queue is selected for processing, say the first. As
before, get_answer and Aadd are called to obtain the next annotation X AY A Z.
This time, as there are no more literals in the body, the answer table entry for
app(X,Y,Z) : Y is updated. Alub is used to find the least upper bound of the new
answer X AY A Z with the old answer false. This gives X AY A Z. The entry in
the answer table is updated, and an updated event is placed on the priority queue.
The data structures are now

priority queue: updated(app(X, Y, Z2) :Y)
arc(app2 (X, Y, Z) : Y = [Y] X=[U|V]o; : true)
answer table: appX, Y, 2) : Y » XAYANZ

dependency arc table: no entries

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 11

The updated event can now be processed. As there are no entries in the de-
pendency arc table, nothing in the current program analysis graph depends on the
answer to this call, so nothing needs to be recomputed. The priority queue now
contains

arc(app2(X, Y, Z) : Y = [Y] X=[U|V]y, : true).

The answer and dependency arc table remain the same.
Similarly to before we process the arc, giving rise to the new priority queue

arc(app2(X, Y, Z) : Y = [YA(X & (UAV))] 2=[UIW]22 : true).
The arc is processed to give the priority queue

arcC app2 (X, ¥, 2D : Y => YAX S UAV)A(Z & (UAW))
app(V,Y,W)a3: Y).

This time, because apps,3(V,Y,W) is an atom, the arc is added to the arc depen-
dency table. The call get_answer(app(V,Y,W)a3: Y, YA (X & (UAV))A(Z &
(UAW)),{X,Y,Z,U,V,W}) is made. The answer table is looked up to find the
answer to app(V,Y,W)o 3: Y and, appropriately renamed, gives APy = VAY AW.
This description is extended to all variables (no change) and then conjoined with
the second argument to give the next annotation Y AVAW A (X < U)A(Z < U).
As this is the last literal in the body, the new answer Y A (X « Z) is obtained.
We take the least upper bound of this answer with the old answer in the table,
giving Y A (X ¢ Z). As the answer has changed, an updated event is added to the
priority queue. The data structures are now

priority queue: updated(app(X, Y, Z2) :Y)

answer table: app(X, Y, 2) : Y » YA (X & 2)

dependency arc table: app2(X, Y, Z) : Y = [YA(X & (UAYV))
NZ < (UAW))]
app23(V, Y, W) :Y

The updated event is processed by looking in the dependency arc table for all arcs
which have a body literal which is a variant of app(X,Y, Z) : Y and adding these
arcs to the priority queue to be reprocessed. We obtain the new priority queue

arc(appa(X, Y, Z) : Y= [YAX & (UAV)A(Z & (UAW))]
app2,3(V, Y, W) :Y)

This arc is reprocessed, and gives rise to the answer Y A (X + Z). Taking the
least upper bound of this with the old answer, the result is identical to the old
answer, hence no updated event is added to the priority queue. As there are no
events on the priority queue, the analysis terminates with the desired answer and
dependency arc table. O

2.4 Correctness

The generic algorithm provides a simple generic description of how top-down goal-
directed analysis is performed. It is somewhat less abstract than the semantic
equations, since we need to capture the use of dependency information during
analysis. The algorithm captures the behavior of several implemented algorithms

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

12 . Manuel Hermenegildo et al.

while at the same time is suitable for incremental analysis. Different top-down goal-
directed analysis algorithms correspond to different event-processing strategies. In
practice these algorithms also incorporate other optimizations. An example event-
processing strategy would be to always perform newcall events first, to process
nonrecursive rules before recursive rules, and to finish processing a rule before
starting another. This strategy would produce an algorithm which is quite close
to the one used in PLAT or GAIA (the differences between the proposed algorithm
and that used in PLAT are presented in more detail in Section 6).

In essence, the algorithm defines a set of recursive equations whose least fixed
point is computed using chaotic iteration [Cousot and Cousot 1977]. We note
that even though the order in which events are processed is not fixed, the events
themselves encode a left-to-right traversal of the rules, ensuring a unique result.
For the least fixed point to be well-defined we require that the abstract operations
are monotonic and that initial_guess returns a value below the least fixed point.
Under these standard assumptions we have

THEOREM 1. For a program P and calling patterns S, the generic analysis algo-
rithm returns an answer table and dependency arc table which represents the least
program analysis graph of P and S.

The dependency arc table does not quite capture the annotations on rules in the
analysis graph, since program points before constraint literals and the last program
point do not correspond to stored arcs. This information can easily be recomputed
from the dependency arc table, or indeed the algorithm can be simply modified to
save it as it executes.

The corollary of the above theorem is that the priority strategy does not involve
correctness of the analysis. This corollary will be vital when arguing correctness of
the incremental algorithms in the following sections.

COROLLARY 1. The result of the generic analysis algorithm does not depend on
the strategy used to prioritize events.

3. INCREMENTAL ADDITION

If new rules are added to a program which has already been analyzed, we have to
compute the success patterns for each rule, use this to update the answer table
information for the atoms defined by the rules, and then propagate the effect of
these changes. Note that this propagation is not limited to the new rules, but rather
a global fixed point has to be reached in order to ensure correctness of the analysis
results. Existing analysis engines for (constraint) logic programming are unable
to incrementally compute this new fixed point, and the only safe possibility is to
start analysis from scratch. However, the generic algorithm we propose can do this
rather simply. Computation of the success patterns for each rule is simply done by
adding a set of arcs to the event queue before calling again main_loop. Propagation
of the effects corresponds to processing, in the usual way, the updated events for
entries in the answer table which are modified due to the newly added rules. When
execution of main_loop ends, a new global fixed point has been reached.

The new routine for analysis of programs in which rules are added incrementally
is given in Figure 3. The routine takes as input the set of new rules R. If these

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 13

incremental_addition(R)
foreach rule Ay :- By 1,...,Bg,n, € R
foreach entry A : CP+— AP in the answer table
CPg := Aextend(CP,vars(Ag := By,1,---,Bin,))
CP1 := Arestrict(CPo,vars(By,1))
add_event(arc(Ay : CP = [CPo] By, : CP1))
main_loop()

Fig. 3. Incremental addition algorithm

match an atom with a calling pattern of interest, then requests to process the
rule are placed on the priority queue. Subsequent processing is exactly as for the
nonincremental case.

Example 2. As an example, we begin with the program for naive reversal of a
list, rev, already analyzed for the calling pattern rev(X, Y) : true but without
a definition of the append, app, predicate. The initial program is

(D11, Y= [,
[UIV]g,1, reveo(V, W), T = [Ulys, app2,4(W, T, Y).

The answer table and dependency arc tables are (State 1)

revi(X, Y) :- X
revo(X, Y) :- X

answer table: rev(X, Y) :true— X AY
app(X, Y, Z) : X — false
dependency arc table:
reva (X, Y) :true = [X & (UAV)] reveo(V, W) : true
revo(X, Y) ttrue= [(X © (UAV)AVAWA(T < U)] appea(W, T, Y): W

We now add the rules for app one at a time. The first rule to be added is
app3(X, Y, Z2) :- X = [131, Y = Z3.

The incremental analysis begins by looking for entries referring to app in the answer
table. It finds the entry app(X,Y, Z) : X so the arc

apps(X,Y,2) : X = [X] X = [13:: X

is put in the priority queue. After processing this rule, the new answer X A(Y + Z)
for app(X,Y,Z): X is obtained. This is lubbed with the current answer to obtain XA
(Y & Z), and the answer table entry is updated (causing an updated(app(X,Y,Z)
: X) event). Examining the dependency arc table, the algorithm recognizes that
the answer from rule 2 must now be recomputed. This gives rise to the new answer
(X & (UAV)AVAWA(U <+ Y) which restricted to {X,Y} gives X + Y. Taking
the least upper bound of this with the current answer X AY gives X < Y. The
memo table entry for rev(X, Y) : true is updated appropriately, and an updated
event is placed on the queue. Again the answer to rule 2 must be recomputed.
First we obtain a new calling pattern apps4(X, Y, Z) : true. This means that
the dependency arc

reve (X,Y) s true = [(X & (UAV)AV AW A (T < U)] app2,a(W,T,Y) : W
in the dependency arc table is replaced by
reva (X,Y) i true = [(X & (UAV)A(V & W)A (T < U)] app2,a (W,T,Y) : true

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

14 . Manuel Hermenegildo et al.

This sets up a new call app(X, Y, Z) : true. The current answer for the old call
app(X, Y, Z) : X can be used as an initial guess to the new, more general, call.
The algorithm examines rule 3 for the new calling pattern. It obtains the same
answer X A (Y & 2).

This leads to a new answer for reva (X, Y), (X & (UAV)A(V & W)AWA(T +
U)A (T + Y), which restricted to {X,Y} gives X < Y. This does not change
the current answer, so the main loop of the analysis is finished. The reachability
analysis removes the entry app(X, Y, Z) : X » X A (Y & Z) from the answer
table. The resulting answer and dependency arc table entries are (State 2)

answer table: rev(X, Y) :true— X &Y
app(X, Y, Z) :true—» X A (Y & Z)
dep. arc table:
revy (X,Y) : true = [X & (U AV)] revy o (V,W) : true
revy(X,Y) ttrue = [X & (UAVI)A(V & W)A (T < U)] app,a(W,T,Y) : true

If the second rule for app
aPP4(X;Y,Z) - X = [Ulv]4,1, Z = [Ulw]4,2, aPP4,3(V;st)-

is added, the analysis proceeds similarly. The final memo and dependency arc table
entries are (State 3)

answer table: rev(X, Y) :true— X &Y
app(X, Y, Z) :true— (X AY) & Z
dep. arc table:
(A) reva (X, Y) : true = [X & (UAV)] reva o (V,W) : true
(B) reva (X, Y):itrue = [X & (UAV)A(V & W)A(T + U)] app2,« (W, T,Y):true
(C) appa (X,Y,Z) s true = [X & (UAV)AZ & (UAW)] appa,z(V,Y,W) : true

O

Correctness of the incremental addition algorithm follows from correctness of
the original generic algorithm. Essentially execution of the incremental addition
algorithm corresponds to executing the generic algorithm with all rules but with
the new rules having the lowest priority for processing. It therefore follows from
Corollary 1 that:

THEOREM 2. If the rules in a program are analyzed incrementally with the in-
cremental addition algorithm, the same answer and dependency arc tables will be
obtained as when all rules are analyzed at once by the generic algorithm.

In a sense, therefore, the cost of performing the analysis incrementally can be no
worse than performing the analysis all at once, as the generic analysis could have
used a priority strategy which has the same cost as the incremental strategy. We
will now formalize this intuition. Our cost measure will be the number of calls to
the underlying parametric functions. This is a fairly simplistic measure, but our
results continue to hold for reasonable measures.

Let Cronine(F, R, S) be the worst-case number of calls to the parametric functions
F when analyzing the rules R and call patterns S for all possible priority strategies
with the generic analysis algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 15

Let Coqa(F, R, R',S) be the worst-case number of calls to the parametric func-
tions F' when analyzing the new rules R’ for all possible priority strategies with
the incremental addition algorithm after already analyzing the program R for call
patterns S.

THEOREM 3. Let the set of rules R be partitioned into Ri, ..., Ry, rule sets. For
any call patterns S and parametric functions F,

n i<i
Cnoninc(FaRa S) Z andd(Fa (U Rj)JR’iJS)‘
i=1 j=1

The theorem holds because the priority strategies which give the worst-case be-
havior for each of the Ry, ..., R, can be combined to give a priority strategy for
analyzing the program nonincrementally.

We note that our theorems comparing relative complexity of incremental and
nonincremental analysis (Theorems 3, 5, and 8) are rather weak, since they relate
only the worst-case complexity. Unfortunately, it is difficult to provide more in-
sightful analytic comparisons; instead we will provide an empirical comparison in
Section 6.

4. INCREMENTAL DELETION

In this section we consider deletion of rules from an already analyzed program and
how to incrementally update the analysis information. The first thing to note is
that, unlike incremental addition, we need not change the analysis results at all. The
current approximation is trivially guaranteed to be correct, because the contribution
of the rules are lubbed to give the answer table entry and so correctly describe the
contribution of each remaining rule. This approach is obviously inaccurate but
simple.

4.1 Refinement

More accuracy can be obtained by applying a strategy similar to narrowing [Cousot
and Cousot 1979]. Narrowing is a generic fixed-point approximation technique in
which analysis proceeds from above the least fixed point and iterates downward
until a fixed point (not necessarily the least fixed point) is reached. We can use
this approach because the current approximations in the answer table are greater
than or equal to those in the answer table of the program analysis graph for the
modified program. Applying the analysis engine as usual except taking the greatest
lower bound (glb), written M, of new answers with the old rather than the least
upper bound is guaranteed to produce a correct, albeit perhaps imprecise, result.
We can let this process be guided from the initial changes using the dependency
graph information. Care must be taken to treat new calling patterns that arise in
this process correctly. Note this narrowing-like strategy is correct in part because
of the existence of a Galois connection between the concrete and abstract domains,
as this means that glb on the abstract domain approximates glb on the underlying
concrete domain.

Example 3. Consider the program in Example 2 after both additions. The cur-
rent answer table and dependency graph entries are given by State 3. Deleting
rule 4 results in the following process.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

16 . Manuel Hermenegildo et al.

First we delete any dependency arcs which correspond to deleted rules. In this
case we remove the arc apps(X, Y, Z) : true = [] apps,1 (V, Y, W) : true. In
general we may subsequently delete other dependency arcs which are no longer
required.

We recompute the answer information for all (remaining) rules for app (X, Y, Z)
for all calling patterns of interest using the current answer information. We obtain
app(X, Y, Z) :true—» X A (Y & 2).

Because this information has changed we now need to consider recomputing an-
swer information for any calling patterns that depend on app(X, Y, Z) : true, in
this case rev(X, Y) : true. Recomputing using rules 1 and 2 obtains the same an-
swer information X < Y. The result is State 2 (with the useless entry for app (X,
Y, Z):X removed).

Deleting rule 3 subsequently leads back to State 1 as expected. In contrast
removing rule 3 from the program consisting of rules 1 to 4 does not result in re-
covering State 1 as might be expected. This highlights the possible inaccuracy of
the narrowing method. In this case rule 4 prevents more accurate answer informa-
tion from being acquired. O

The disadvantage of this method is its inaccuracy. Starting the analysis from
scratch will often give a more accurate result. We now give two algorithms which
are incremental yet are as accurate as the nonincremental analysis.

4.2 “Top-Down" Deletion Algorithm

The first accurate method we explore for incremental analysis of programs after
deletion is to remove all information in the answer and dependency arc tables which
depends on the rules which have been deleted and then to restart the analysis. Not
only will removal of rules change the answers in the answer table, it will also mean
that subsequent calling patterns may change. Thus we will also remove entries in
the dependency arc table for those rules which are going to be reanalyzed.

Information in the answer table and dependency arc table allows us to find these
no longer valid entries. Let D be the set of deleted rules and H be the set of atoms
which occur as the head of a deleted rule, i.e., H is {A|(A :- B) € D}. We let
depend(H) denote the set of calling patterns whose answers depend on some atom
in H. More precisely, depend(H) is the smallest superset of

{(A: CP)|(A: CP+— AP) € answer table and A € H}

such that if A : CP is in depend(H) and there is an dependency arc of the form
B_: CPy = [JA' : CP' such that A’ : CP' is a renaming of A : CP then B : CP, is
also in depend(H). After entries for these dependent calling patterns which are no
longer valid are deleted, the usual generic analysis is performed. The routine for
top-down rule deletion is given in Figure 4. It is called with the set of deleted rules
D and a set of initial calling patterns S.

Example 4. Consider the program

ar - pia X, V), rio(X, Y, Z), si13(Y, Z).
P2 (X, Y) - X = a1, Y = b272.

PB(X, Y) - X = Y3’1.

I‘4(X, Y, Z) - X = Z4,1.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 17

top_down_delete(D, S)
H := {A|(A :- B) € D}
T := depend(H)
foreach A: CPeT
delete entry A : CP — _ from answer table
delete each arc A_: CP = [_] - : _ from dependency arc table
foreach A: CPe SNT
add_event(newcall(A : CP))
main_loop()

Fig. 4. Top-down incremental deletion algorithm

I'5(X, Y, Z) =Y = 25’1.
S6(Y, Z) =Y = C6,1 -

After program analysis we obtain (State 5)

answer table: q: true — true
p&X, Y) :true—» X &Y
rX, Y, 2): XY (X e Y)AY & 2)
s(Y, Z): Y ZYNZ
dependency arc table: (D) qp : true = [true] p11(X, Y) : true
(E)qr :true=>[X Y] r X, Y, 2): XV
F)ai:true=>[(X VALY ©2)] si13(, 2): Y Z

Now consider the deletion of ruler5. H = {r(X,Y,Z)} and depend(H) = {r(X,Y,Z) :
X ¢ Y,q:true}. Hence all the dependency arcs are deleted, as well as the answer
table entries for r and q. The initial state (State 6) when we start the main loop
is

answer table: p&X, Y) i true— X &Y
s(¥, Z): Y Z-YNZ
dependency arc table: no entries

The priority queue entry is newcall(q : true). We start a new answer entry for
q : true — false and add an arc event for (D). This is selected; arc (D) is
added again to the dependency arc table; and arc (E) is placed on the priority
queue. This is selected; arc (E) is placed back in the dependency arc table, and
the event newcall(r (X, Y, Z) : X « Y) is placed on the queue. This generates
an answer entry r(X, Y, Z) : X & Y — false and arc ry (X, Y, Z) : X &
Y = [X & Y] X =Z: true. This in turn generates new answer information
(X ¢ Y)A (Y & Z) and the event updated(r(X, Y, Z) : X < Y). This is
replaced with arc (E), which is replaced with arc (F'), which results in arc (F)
being added again to the dependency graph and new answer info q : true — true
and an event updated(q : true) which is removed with no effect. The resulting state
is identical to the starting state (State 5). O

Example 5. Consider again the rev and app program in Example 2. After anal-
ysis of the entire program we are in State 3. Now consider the deletion of rule
3 from the program consisting of rules 1 to 4. T = depend(app(X, Y, Z)) is all

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

18 . Manuel Hermenegildo et al.

the calling patterns, so the answer table and dependency arc table are emptied.
Reanalysis is complete starting from the initial calling pattern rev(X,Y) : true and
results in State 1 as expected. Note that this is the case in Example 3 for which
the refinement method yielded an inaccurate answer. O

Correctness of the incremental top-down deletion algorithm follows from correct-
ness of the original generic algorithm. Execution of the top-down deletion algorithm
is identical to that of the generic algorithm except that information about the an-
swers to some call patterns which do not depend on the deleted rules is already in
the data structures.

THEOREM 4. If a program P is first analyzed and then rules R are deleted from
the program and the remaining rules are reanalyzed with the top-down deletion
algorithm, the same answer and dependency arc tables will be obtained as when the
rules P\ R are analyzed by the generic algorithm.

The cost of performing the actual analysis incrementally can be no worse than
performing the analysis all at once. Let Cye_¢a(F,R,R',S) be the worst-case
number of calls to the parametric functions F when analyzing the program R
with rules R’ deleted for all possible priority strategies with the top-down deletion
algorithm after already analyzing the program R for call patterns S.

THEOREM 5. Let R and R' be sets of rules such that R C R. For any call
patterns S and parametric functions F',

CTLOTLiTLC(FJR\RIJS) Z Cdelftd(FaRa Rlas)-

4.3 “Bottom-up” Deletion Algorithm

The last theorem shows that the top-down deletion algorithm is never worse than
starting the analysis from scratch. However, in practice it is unlikely to be that
much better, as on average deleting a single rule will mean that half of the depen-
dency arcs and answers are deleted in the first phase of the algorithm. The reason
is that the top-down algorithm is very pessimistic—deleting everything unless it
is sure that it will be useful. For this reason we now consider a more optimistic
algorithm. The algorithm assumes that calling patterns to changed predicate defi-
nitions are still likely to be useful. In the worst case it may spend a large amount
of time reanalyzing calling patterns that end up being useless. But in the best case
we do not need to reexamine large parts of the program above changes when no
actual effect is felt.

The algorithm proceeds by computing new answers for calling patterns in the
lowest strongly connected component® (SCC) of the set depend(H) of calling pat-
terns which could be affected by the rule deletion. After evaluating the lowest SCC,
the algorithm moves upward to higher SCCs. At each stage the algorithm recom-
putes or verifies the current answers to the calls to the SCC without considering
dependency arcs from SCCs in higher levels. This is possible because if the answer
changes, the arc events they would generate are computed anyway. If the answers

3The set of nodes in a graph can be partitioned into strongly connected components Si,...,Sn
n > 0 so that no node in S; can reach a node is S;,Vj > i. Two nodes ni,n2 are in the same
strongly connected component S; if and only if both n; can reach ny and na can reach np.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 19

bottom up_delete(D, S)
H:=0
foreach rule Ay :- By 1,...,Bgpn, € D
foreach A: CP+— AP in answer table
H:=HU{A: CP}
delete each arc A_: CP = [_]- : _from dependency arc table
while H is not empty
let B : _€ H be such that B is of minimum predicate SCC level
T := calling patterns in program analysis graph for predicates in
the same predicate SCC level as B
foreach A: CP €T
delete each arc A_: CP = [-]- : _from dependency arc table
foreach A : CP € external_calls(T,S)
move entry A : CP+— AP from answer table to old answer table
foreach arc By : CPg = [CP1] By ; : CP2 in dependency arc table
where there exists renaming o s.t. (A: CP) = (By,; : CP2)o
move By : CPyg = [CP1] By,; : CP> to old dependency table
add_event(newcall(A : CP))
main_loop()
foreach A : CP € external_calls(T,S)
foreach arc By : CPg = [CP1] By ; : CP> in old dependency arc table
where there exists renaming o s.t. (A : CP) = (By,;j : CP2)o
if answer pattern for A : CP in old answer table and answer table agree
move By : CPy = [CP1] By, : CP2 to dependency arc table
else
H:= HU{B: CPy}
H:=H-T
empty old answer table and old dependency arc table
external_calls(T), S)
U:=0
foreach A: CPeT
where exists arc By : CPg = [CP1] By, ; : CP2
and B: CPy ¢T
and there exists renaming o s.t. (A: CP) = (By,; : CP2)o
%% this means there is an external call
U=UU{A:CP}
return UU (T N S)

Fig. 5. Bottom-up incremental deletion algorithm

are unchanged then the algorithm stops; otherwise it examines the SCCs which
depend on the changed answers (using the dependency arcs). For obvious reasons
we call the algorithm Bottom-Up Deletion. It is shown in Figure 5.

Rather than using the program analysis graph to determine SCCs, an object
which changes as the analysis proceeds, the algorithm uses the predicate call graph
of the program P before the rule deletions to determine the calling patterns that
can affect one another. This is static, and gives overestimates on the SCCs of
the program analysis graph (at any stage), and hence this approach is safe. The
predicate call graph has predicate names as nodes, and an arc from node p to q
if there exists a rule with predicate p in the head and an atom for predicate q
appearing in the body. We can use this graph to define a predicate SCC' level
to each predicate (and atom) where predicates in lower levels cannot reach any

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

20 . Manuel Hermenegildo et al.

predicate in a higher level.

The algorithm begins by collecting all the calling patterns for atoms with deleted
rules, and deleting all dependency arcs for deleted rules, since they can play no
part in the reanalysis. It calculates as H the initial calling patterns which must be
reevaluated since they have had a rule removed.

It then chooses the minimum predicate SCC level for predicates in H and collects
all the affected calling patterns in this level in T'. All the dependency arcs for pairs
in T are deleted; the current answers for pairs in 7" are moved to the old table for
later comparing with the new answers.

Next the external calls to calling patterns in T are calculated by external_calls(T,S).
These are the calling patterns for which there is dependency arc from a higher SCC
levels, or an external call from S. All the dependency arcs which call T' from higher
SCC are moved temporarily into the old dependency arc table. During analysis of
this SCC, updated events may be generated which do not need to be propagated
outside the SCC, as the answer computed after deleting some rules may (finally)
be equal to the one computed for the original program. In effect this isolates the
calls T from the rest of the higher SCC levels of the program analysis graph. Each
external call is then treated as a newcall event.

After the SCC has been fully analyzed, a comparison is made for each external
calling pattern A : CP. If the new and old answers in the table agree then no
recomputation of calling patterns which depend on this A : CP is required. Oth-
erwise the dependent calling patterns are added to H, the calling patterns which
need recomputation. Finally the calling patterns T are deleted from H, and the
process proceeds.

Example 6. Consider the same deletion as in Example 4. Initially the set H
is {r(X,Y,2) : X & Y}, and T is the same set. There are no dependency arcs
for pairs in T', and the single pattern is an external call because of arc (E). The
answer table entry r(X,Y,2) : X &V » (X & Y)A (Y & Z) is moved to the
old answer table. The dependency arc (E) is moved to the old dependency table.
The event newcall(r (X,Y,Z) : X + V) is placed on the queue. This (re)generates
new answer information r(X,Y,2) : X &Y —» (X ¢ Y)A (Y & Z) and an event
updated(r (X,Y,Z) : X + Y). As the dependency arc table has no arc that needs
to be recomputed we stop. Because the answer for r(X,Y,Z) : X < Y is unchanged
the arc (F) is moved to the dependency arc table and the algorithm terminates,
without recomputing q : true. O

Example 7. Consider the rev and app program. After analysis of the entire
program we are in State 3. Now consider the deletion of rule 3 from the program.
H is initially {app(X,Y,Z) : true}. So is T. We remove the arc (C'). We move
the answer pattern for app(X,Y,Z) : true and the arc (B) to the old tables. The
event newcall(app(X,Y,Z) : true) is placed in the queue. The analysis proceeds to
compute answer app(X,Y,Z) : true — false. Since this has changed, rev(X,Y) :
true is added to H. app(X,Y,Z) : true is removed from H. In the next iteration
H = {rev(X,Y) : true}. The answer pattern for rev(X,Y) : true is moved to the old
table, and the arc (A) is removed. Reanalysis proceeds as before including building
anew call to app(X,Y,Z) : X. This gives the answer rev(X,Y) : true — X AY. The
resulting state is State 1 as expected. Note that the reanalysis of app(X,Y,Z) :

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 21

true was unnecessary for computing the answers to the call to rev (this was avoided
by the top-down deletion). O

Proving correctness of the incremental bottom-up deletion algorithm requires an
inductive proof on the SCCs. Correctness of the algorithm for each SCC follows
from correctness of the generic algorithm.

THEOREM 6. If a program P is first analyzed for calls S, and then rules R are
deleted from the program, while the remaining rules are reanalyzed with the bottom-
up deletion algorithm, then the same answer and dependency arc tables will be
obtained as when the rules P\ R are analyzed by the generic algorithm for S.

Unfortunately, in the worst case, reanalysis with the bottom-up deletion algo-
rithm may take longer than reanalyzing the program from scratch using the generic
algorithm. This is because the bottom-up algorithm may do a lot of work recom-
puting the answer patterns to calls in the lower SCCs which are no longer made.
In practice, however, if the changes are few and have local extent, the bottom-up
algorithm will be faster than the top-down.

5. ARBITRARY CHANGE

In this section we consider the most general case of program modification, in which
rules can both be deleted from and added to an already analyzed program and how
to incrementally update the analysis information. Given the above algorithms for
addition and deletion of rules we can handle any possible change of a set of rules by
first deleting the original and then adding the revised version. This is inefficient,
since the revision may not involve very far reaching changes, while the deletion and
addition together do. Moreover we compute two fixed points rather than one.

Instead, we can use the top-down and bottom-up deletion algorithms in order
to perform incremental analysis while only computing a single fixed point. For
the case of top-down deletion it suffices to execute main_loop with the updated set
of rules. For using the bottom-up deletion algorithm, and unlike in the case of
incremental deletion, we must recompute the SCCs in order to ensure correctness,
as new cycles may have been introduced in the call dependency graph due to the
newly added rules. Then, we can use the bottom-up deletion algorithm as usual
with the updated set of rules.

Example 8. Consider the following program:
q1 (x, Y) T P1a (x, Y) .
p2(X, Y) :- X=as1, Y=bas.
The complete analysis information for the initial call q(X, Y): X is

answer table: X, N : X » X AY
P&, VD : X XAY
dependency arc table: qi1 (X, Y) : X = p11(X, ¥) : X

Consider replacing the rule for p by p3 (X, Y) :- U = ag1, q32(U, Y).Ifwedo
not recompute the SCCs, the bottom-up algorithm would analyze the rule ps (X, Y)
:- U = ag1, q32(U, Y) with entry description X. Using the (no longer correct)
entry q(X, Y) : X —» X AY in the answer table, analysis would compute the

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

22 . Manuel Hermenegildo et al.

local_change(S, R)
let R be of the form Ay :- Dy 1,..., Dy n,
T:=0
foreach A : CP— AP in answer table
T:=TU{A: CP}
T := T plus all B : CPy in same SCCs of program analysis graph
delete each arc of the form Ay : - = [_]_ : _from the dependency arc table
foreach A : CP € external_calls(T,S)
CPy := Aextend(CP,vars(Dy,1,- -+, Dgn,))
CP1 := Arestrict(CPo,vars(Dy,1))
add_event(arc(Ay : CP = [CPo] Dy 1 : CP1))
main_loop()

Fig. 6. Local change algorithm

incorrect entry p(X, Y) : X — X AY which is consistent with the old table and
thus terminate. However, if we had recomputed the SCCs, since p and q are in the
same SCC, the entry q(X, Y) : X = X AY would not be in the answer table but
rather in the old table. O

5.1 Local Change

One common reason for incremental modification to a program is optimizing compi-
lation. Changes from optimization are special in the sense that usually the answers
to the modified rule do not change. This means that the changes caused by the mod-
ification are local in that they cannot affect SCCs above the change. Thus, changes
to the analysis are essentially restricted to computing the new call patterns that
these rules generate. This allows us to obtain an algorithm for local change (related
to bottom-up deletion) which is more efficient than arbitrary change.

The algorithm for local change is given in Figure 6. It takes as arguments the
original calling patterns S and a modified rule R, which we assume has the same
number as the rule it replaces.

The local change algorithm resembles bottom_up_delete in that only (part of) an
SCC is reanalyzed. An important difference is that in local change it is guaranteed
that we do not need to reanalyze the SCCs above the modified one. First all possibly
affected calling patterns are collected in 7T'. Because it is a local change we do not
need to consider calling patterns outside the SCC of the program analysis graph.
The arcs corresponding to the deleted rule are then deleted, and new arc events are
added to process the new version of the changed rule.

Correctness of the local change algorithm essentially follows from correctness of
the bottom-up deletion algorithm. Let A :- B and A :- B’ be two rules. They are
local variants with respect to the calls S and program P if for each call pattern in
S the program P U {A :- B} has the same answer patterns as PU{A :- B'}.

THEOREM 7. Let P be a program analyzed for the initial call patterns S. Let R
be a rule in P which in the analysis is colled with call patterns S', and let R' be a
local variant of R with respect to S' and P\ {R}. If the program P is reanalyzed
with the routine local_change(S,R’) the same answer and dependency arc tables will
be obtained as when the rules PU{R'}\ {R} are analyzed by the generic algorithm.

The cost of performing the actual analysis incrementally can be no worse than

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 23

performing the analysis all at once. Let Cioear(F, P, R, R',S) be the worst-case
number of calls to the parametric functions F when analyzing the program P
with rule R changed to R’ for all possible priority strategies with the local change
algorithm after already analyzing the program P for call patterns S.

THEOREM 8. Let P be a program analyzed for the initial call patterns S. Let R
be a rule in P which in the analysis is called with call patterns S', and let R’ be a
local variant of R with respect to S' and P\ {R}. For any parametric functions F,

Cnoninc(papu {RI} \ {R},S) Z Clocal(Fa Pa R; Rlas)-
6. EXPERIMENTAL RESULTS

We have conducted a number of experiments using the PLAT generic abstract inter-
pretation system in order to assess the practicality of the techniques proposed in the
previous sections. PLAT can be seen as an efficient restricted instance of the generic
algorithm of Section 2 specialized for the case of analyzing the whole program at
once. As mentioned in Section 2, PLAI uses the concrete strategy of always per-
forming newcall events first, processing nonrecursive rules before recursive rules,
and finishing processing a rule before starting another. Prior to the invocation of
the fixed-point algorithm a step is performed in which the set of predicates in the
program is split into the SCCs based on the call graph of the program found using
Tarjan’s algorithm [Tarjan 1972]. This information, among other things, allows
determining which predicates and which rules of a predicate are recursive. PLAIT
(and its incremental extensions) also incorporates some additional optimizations
such as dealing directly with nonnormalized programs and filtering out noneligible
rules using concrete unification (or constraint solving) when possible.

In one way, however, the original PLAI differed from the algorithm given in Sec-
tion 2: in order to simplify the implementation, the original fixed-point algorithm
did not keep track of dependencies at the level of literals, but rather, in a coarser
way, at the level of rules. As a result, when an updated event takes place, the
dependent arcs have to be recomputed from the head of the rule. However, all sub-
sequent iterations do not affect those rules which are detected not to be recursive.
Since keeping track of dependencies at the literal level allows the analysis to only
recompute from the point where the changed answer can first affect the analysis
information for the rule, it can avoid a significant amount of recomputation. This
idea has been applied as an optimization technique (in a nonincremental analysis
setting) in the prefiz version [Englebert et al. 1993] of GAIA. The technique proved
quite relevant in practice for GATA, as it allowed avoiding recomputation of nonre-
cursive rules and starting reanalysis of a rule from the first literal possibly affected.
This prefix version of GAIA can also be taken as a starting point for implementing
an instance of the generic algorithm. We modified PLAI in order to keep track
of dependencies at the literal level and to store such dependencies explicitly, i.e.,
in such a way that it computes the dependency arc table of the generic algorithm.
PLAIT, as most analysis engines not designed for incremental analysis, does compute
the answer table, but loses the dependency information when analysis terminates.
As a result, the modified version of PLAI, which uses the dependency arc table for
guiding recomputations, constitutes precisely an instance of the generic algorithm.
As we will see below, and unlike for the prefix version of GAIA, such modification

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

24 . Manuel Hermenegildo et al.

Table I. Summary of Benchmark Statistics

Benchmark Mean Max #of | # of | % direct | % mutual

vars/rule | vars/rule | preds | rules | recursion | recursion
aiakl 4.58 9 7 12 57 0
ann 3.17 14 65 170 20 36
bid 2.20 7 19 50 31 0
boyer 2.36 7 26 133 3 23
browse 2.63 5 8 29 62 25
deriv 3.70 5 1 10 100 0
fib 2.00 6 1 3 100 0
grammar 2.13 6 6 15 0 0
hanoiapp 4.25 9 2 4 100 0
mmatrix 3.17 7 3 6 100 0
occur 3.12 6 4 8 75 0
peephole 3.15 7 26 134 7 46
progeom 3.59 9 9 18 66 0
gplan 3.18 16 46 | 148 32 28
gsortapp 3.29 7 3 7 100 0
query 0.19 6 4 52 0 0
rdtok 4.20 13 24 54 12 33
read 3.07 7 22 88 27 40
serialize 4.18 7 5 12 80 0
tak 7.00 10 1 2 100 0
warplan 2.47 7 29 101 31 17
witt 4.57 18 7 160 35 22
zebra 2.06 25 6 18 33 0

does not speed up PLAI much, since the original PLAT algorithm already avoids
reanalysis of nonrecursive rules.

A relatively wide range of programs have been used as benchmarks. These bench-
marks are the de-facto standard for logic program analysis. Some statistics on their
size and complexity are given in Table I. Dead code, i.e., code which is unreachable
from the original calling patterns, has been removed from the benchmarks. We give
the average and maximum number of variables in each rule analyzed; total number
of predicates and rules in the program; the percentage of directly and mutually
recursive predicates.

All the analysis algorithms we experiment with have been implemented as ex-
tensions to the PLAIT generic abstract interpretation system, which is an efficient,
highly optimized, state-of-the-art analysis system and which is part of a working
compiler. We argue that this makes the comparisons meaningful, since the algo-
rithms have been implemented using the same technology, with many data struc-
tures in common. They also share the domain-dependent functions, which are those
of the sharing+freeness domain [Muthukumar and Hermenegildo 1991] in all the
experiments. The whole system is implemented in Prolog and has been compiled
using Ciao Prolog 0.9 [Bueno et al. 1997] with compilation to bytecode.® All of

4PLAI is currently integrated in CiaoPP [Hermenegildo et al. 1999a], the preprocessor of the Ciao
Prolog System. The analysis information produced by PLAI is used for static debugging [Puebla
et al. 2000], program specialization, and program parallelization.

5See http://www.clip.dia.fi.upm.es/Software for downloading instructions.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 25

our experiments have been performed on a Pentium II at 400mH and 512MB RAM
running RedHat linux 5.2. Execution times are given in milliseconds and memory
usage in kilobytes. In order to have an accurate measure of memory usage, garbage
collection is turned off during analysis. Memory usage has been computed as fol-
lows. We measure the size of the heap® (where dynamic terms are built) plus the
size of dynamic code” (where asserted information is stored) both before and after
analyzing each benchmark. The difference between those two values is taken as
the memory used in the process. Other memory structures such as the environ-
ment stack are not considered, since their size has been measured to be irrelevant
when compared to the heap space. Though the resulting memory usage is high,
it is important to note that run-time garbage collection actually reduces memory
consumption by a very large amount.

6.1 Efficiency of the Generic Algorithm

Our first experiment compares the original PLAT fixed-point approach, where de-
pendencies are kept at the level of rules, versus the approach with dependency
tracking at the level of literals. This also serves to show that our baseline, the
PLAT instance of the generic algorithm, is competitive with other top-down analy-
sis engines. The results are shown in Table II.

In this table, as in the other tables in this section, there are basically two kinds
of columns. Those which present the cost of analysis both in terms of time and
memory usage for a given algorithm, and those which compare the costs of two
analysis algorithms. Columns of the first kind are labeled with the name of the
algorithm, say Alg, while columns of the second kind are labeled by Alg; / Algs.
The values in these columns are computed as the cost of analysis using Alg; divided
by cost using Alg,. In addition, below columns which compare algorithms we
summarize the results for the different benchmarks using two different measures:
the arithmetic mean of the values in the column above and a weighted mean which
place more importance on those benchmarks with relatively larger analysis times /
memory usage figures. We use as the weight for each program the actual analysis
time or memory usage for it using Alg,. We believe that the weighted mean is
more informative than the arithmetic mean, as, for example, doubling the speed in
which a large and complex program is analyzed is more important than doing this
for small, simple programs.

As shown in Table II, it turns out that the additional cost of keeping track
of more detailed dependencies is offset by savings on recomputation. The value
of 0.97 for the weighted mean for both time and memory consumption indicates
that the original algorithm is slightly faster and uses slightly less memory than the
modified algorithm. In any case, the differences in analysis times are due to the
difference in dependency tracking rather than the cost of supporting incrementality.
Hence modifying the analysis algorithm in order to support incremental analysis
has not significantly slowed nonincremental analysis nor posed additional memory
requirements. All subsequent experiments use the modified PLAI as the basic
analysis algorithm, both for the incremental and nonincremental case. In Tables III

60Obtained using statistics(global_stack, [G,_]).
7Obtained using statistics(program, [P,_]).

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

26 . Manuel Hermenegildo et al.

Table II. Cost of Literal Based Dependency Tracking

Benchmark Modified PLAI Original PLAI Original / Modified
Time Memory | Time Memory | Time Memory

aiakl 867 3304 1003 3712 1.16 1.12
ann 1655 6324 1743 6347 1.05 1.00
bid 178 668 171 602 0.96 0.90
boyer 573 2190 761 2659 1.33 1.21
browse 87 294 85 270 0.98 0.92
deriv 105 408 177 683 1.69 1.67
fib 2 22 4 21 2.00 0.95
grammar 25 98 26 96 1.04 0.98
hanoiapp 113 475 115 432 1.02 0.91
mmatrix 57 244 51 222 0.89 0.91
occur 68 258 69 262 1.01 1.02
peephole 1453 5639 1611 5843 1.11 1.04
progeom 39 144 37 137 0.95 0.95
gplan 433 1285 413 1218 0.95 0.95
gsortapp 64 273 61 256 0.95 0.94
query 19 46 21 45 1.11 0.98
rdtok 137 399 143 379 1.04 0.95
read 10695 38396 | 9475 35086 0.89 0.91
serialize 147 621 115 468 0.78 0.75
tak 11 79 14 73 1.27 0.92
warplan 823 2970 979 3452 1.19 1.16
witt 491 1651 509 1662 1.04 1.01
zebra, 591 2172 579 2144 0.98 0.99
Arithmetic mean 1.10 1.01

Weighted mean 0.97 0.97

and VI we denote by Orig the cost of analyzing the whole program at once using
this modified PLAI algorithm.

6.2 Incremental Addition

The next experiment compares the relative performance of incremental and non-
incremental analysis in the context of addition. To do so for each benchmark we
measured the cost of analyzing the program adding one rule at a time, rather than
analyzing the whole program at once. That is, the analysis was first run for the first
rule only. Then the next rule was added and the resulting program (re-)analyzed.
This process was repeated until all rules had been added. Table III shows the
cost of this process using the incremental approach of Section 3, and using a non-
incremental approach, where analysis starts from scratch whenever a new rule is
added. For the nonincremental case the same implementation was used but the
tables were erased between analyzes. This factors out any differences in fixed-point
algorithms. Since for the nonincremental approach the analysis tables are erased
after each analysis, we can reuse memory space. Thus, we take as memory usage
the maximum amount of memory used when analyzing rules 1 to ¢ of the benchmark
for ¢ € {1...n}, where n is the number of rules in that benchmark. Usually, the
maximum is reached when all the rules are analyzed, i.e., 7 is n. In the next column
we compare the relative costs of nonincremental and incremental analysis. Finally
we compare the cost of analyzing the entire program one rule at a time using the

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 27

Table III. Incremental vs. Non-incremental Addition

Benchmarks Incremental Non-incremental Non / Inc Inc / Orig
Time Mem Time Mem | Time Mem | Time Mem
aiakl 973 1399 1750 3361 1.80 2.40 1.12 0.42
ann 5136 6470 23688 7333 4.61 1.13 3.10 1.02
bid 861 260 3617 831 4.20 3.20 4.84 0.39
boyer 3632 1054 59867 2554 | 16.48 2.42 6.34 0.48
browse 395 145 2881 433 7.29 2.99 4.54 0.49
deriv 681 1482 369 442 0.54 0.30 6.49 3.63
fib 9 29 13 34 1.44 1.17 4.50 1.32
grammar 84 40 223 136 2.65 3.40 3.36 0.41
hanoiapp 189 392 358 494 1.89 1.26 1.67 0.83
mmatrix 153 191 216 266 1.41 1.39 2.68 0.78
occur 74 263 151 285 2.04 1.08 1.09 1.02
peephole 12930 1752 | 136145 6118 | 10.53 3.49 8.90 0.31
progeom 69 159 168 206 2.43 1.30 1.77 1.10
gplan 7970 1147 35492 1898 4.45 1.65 | 18.41 0.89
gsortapp 127 175 263 298 2.07 1.70 1.98 0.64
query 365 31 839 139 2.30 4.48 | 19.21 0.67
rdtok 609 227 4112 725 6.75 3.19 4.45 0.57
read 42195 25673 | 246754 51361 5.85 2.00 3.95 0.67
serialize 322 793 719 667 2.23 0.84 2.19 1.28
tak 22 84 25 94 1.14 1.12 2.00 1.06
warplan 9147 2151 26429 3335 2.89 1.55 | 11.11 0.72
witt 3808 1543 13536 2523 3.55 1.64 7.76 0.93
zebra 1685 1426 5836 2240 3.46 1.57 2.85 0.66
Arithmetic mean 4.00 1.97 5.40 0.88
Weighted mean 6.16 1.83 4.91 0.69

incremental approach (column 1) with analyzing the entire program once using the
nonincremental approach (column 2 of Table II).

The results are quite encouraging: using an incremental analysis was 6.16 times
faster than using nonincremental analysis on average, while the cost of incrementally
analyzing a program rule by rule as opposed to all at once was only 4.91 times worse
on average (5.40 arithmetic mean). Though not explicitly shown in the table, using
a nonincremental approach is over 30 times worse than analyzing the program at
once.

An important observation is that incremental analysis performed when adding
rules one by one (Inc), although slower than when performing the analysis nonin-
crementally all at once (Orig), on average requires significantly less memory (only
69% as much). This indicates that those programs which are too large to be ana-
lyzed at once (because the system runs out of memory) could be tackled by splitting
them in several parts and performing incremental addition, albeit at the price of
increasing analysis time somewhat.

6.3 Incremental Deletion

In order to test the relative performance of incremental and nonincremental analysis
in the context of deletion, we timed the analysis of the same benchmarks where
each rule was deleted one by one. Starting from an already analyzed program,
the last rule was deleted and the resulting program (re-)analyzed. This process

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

28 . Manuel Hermenegildo et al.

Table IV. Top-Down Incremental Deletion

Benchmark | Top-down incr. Non-incr. Non / Top-down
Time Mem Time Mem | Time Mem

aiakl 650 1407 869 1579 1.34 1.12
ann 4955 28 21542 1009 4.35 36.04
bid 1124 241 3425 824 3.05 3.42
boyer 17478 1400 59731 2544 3.42 1.82
browse 529 238 2843 428 5.37 1.80
deriv 230 336 264 360 1.15 1.07
fib 1 4 4 8 4.00 2.00
grammar 80 39 194 125 2.42 3.21
hanoiapp 149 255 144 242 0.97 0.95
mmatrix 139 178 142 193 1.02 1.08
occur 9 10 27 31 3.00 3.10
peephole 30761 2454 | 134902 6073 4.39 2.47
progeom 19 4 128 202 6.74 50.50
gplan 27380 629 34954 1893 1.28 3.01
qgsortapp 83 100 173 234 2.08 2.34
query 399 37 818 137 2.05 3.70
rdtok 1300 340 3927 720 3.02 2.12
read 201059 38748 | 234405 51356 1.17 1.33
serialize 114 112 564 664 4.95 5.93
tak 2 18 7 23 3.50 1.28
warplan 18737 2032 25977 3330 1.39 1.64
witt 2432 152 12974 2513 5.33 16.53
zebra 2040 2021 5233 2224 2.57 1.10
Arithmetic mean 2.98 6.42

Weighted mean 1.75 1.51

was repeated until no rules were left. This experiment has been performed using a
nonincremental approach and using the top-down deletion algorithm of Section 4.2
and the bottom-up deletion algorithm of Section 4.3. Table IV presents the results
for top-down deletion and the nonincremental approach, while Table V contains
the figures for the bottom-up algorithm together with a comparison of the two
incremental deletion algorithms.

The results are also very encouraging. The improvement of analyzing rule by
rule in an incremental fashion gave an average speedup with respect to the non-
incremental algorithm of 1.75 for the top-down deletion algorithm and 7.30 for
the bottom-up deletion algorithm. The results favor the bottom-up algorithm in
this experiment, as shown in the comparison column in Table V, where bottom-up
deletion is 4.16 times faster than top-down deletion.

Examining memory usage, we see that both the top-down and bottom-up deletion
algorithms require less memory than the nonincremental approach (by a factor of
1.51 and 1.40 respectively). Between the two incremental deletion algorithms, top-
down deletion, though slower, requires somewhat less memory than the bottom-up
algorithm. In our experiments, top-down requires (only) 92% of the amount of
memory used by the bottom-up algorithm. As for the incremental addition exper-
iment, we take as memory usage for the nonincremental approach the maximum
amount of memory when analyzing rules 1 to ¢ of the benchmark with i € {1...n}

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 29

Table V. Bottom-Up Incremental Deletion

Benchmark | Bottom-up incr. | Non / Bottom-up | Top-down / Bottom-up
Time Mem | Time Mem | Time Mem

aiakl 514 1110 1.69 1.42 1.26 1.27
ann 979 469 | 22.00 2.15 5.06 0.06
bid 331 138 | 10.35 5.97 3.40 1.75
boyer 4535 1372 | 13.17 1.85 3.85 1.02
browse 196 155 | 14.51 2.76 2.70 1.54
deriv 230 347 1.15 1.04 1.00 0.97
fib 1 4 4.00 2.00 1.00 1.00
grammar 47 35 4.13 3.57 1.70 1.11
hanoiapp 147 248 0.98 0.98 1.01 1.03
mmatrix 39 57 3.64 3.39 3.56 3.12
occur 17 18 1.59 1.72 0.53 0.56
peephole 8754 2562 | 15.41 2.37 3.51 0.96
progeom 14 5 9.14 40.40 1.36 0.80
gplan 623 392 | 56.11 4.83 | 43.95 1.60
qgsortapp 57 64 3.04 3.66 1.46 1.56
query 110 13 7.44 10.54 3.63 2.85
rdtok 301 224 | 13.05 3.21 4.32 1.52
read 55517 45162 4.22 1.14 3.62 0.86
serialize 84 122 6.71 5.44 1.36 0.92
tak 6 18 1.17 1.28 0.33 1.00
warplan 1135 1437 | 22.89 2.32 | 16.51 1.41
witt 528 446 | 24.57 5.63 4.61 0.34
zebra 259 707 | 20.20 3.15 7.88 2.86
Arithmetic mean | 11.35 4.82 5.11 1.31

Weighted mean 7.30 1.40 4.16 0.92

where n is the number of rules in that benchmark. Note that we start with the
program already analyzed, and thus analysis of the complete program (i.e., with
rules 1-n) is not considered.

6.4 Local Change

Although we have implemented it, we do not report explicitly on the performance of
arbitrary change because of the difficulty in modeling in a meaningful way the types
of changes that are likely to occur in the circumstances in which this type of change
occurs (as, for example, during an interactive program development session). We
have studied, however, the case of local change in a context in which it occurs in a
way which is more amenable to systematic study: within the &-Prolog compiler.?
The &-Prolog system is capable of executing, in parallel, goals which are inde-
pendent [Conery and Kibler 1981; Hermenegildo and Rossi 1995]. The &-Prolog
compiler includes an automatic parallelizer which replaces some conjunctions of
literals in the body of rules which are possibly independent with parallel expres-
sions [Bueno et al. 1999b]. The conditions for independence can often be proved
at compile-time by the use of global analysis [Bueno et al. 1999a]. However, there
are cases in which run-time tests have to be introduced in the program in order to
ensure independence. If the run-time tests fail, the goals are executed sequentially.

8Currently also integrated into the Ciao System preprocessor.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

30 . Manuel Hermenegildo et al.

Table VI. Local Change

Benchm CGEs Incremental Non-incr. Non / Inc Non/(Orig+Inc)
Time Mem Time Mem Time Mem | Time Mem

aiakl 2 97 347 823 3404 8.48 9.81 0.85 1.02
ann 12 739 2605 2035 8193 2.75 3.15 0.85 1.24
bid 6 111 363 257 948 2.32 2.61 0.89 1.27
boyer 2 181 710 975 3876 5.39 5.46 1.29 1.68
browse 4 93 331 179 697 1.92 2.11 0.99 1.96
deriv 4 211 821 243 980 1.15 1.19 0.77 1.16
hanoiapp 1 42 187 135 567 3.21 3.03 0.87 1.12
mmatrix 2 81 337 120 501 1.48 1.49 0.87 1.44
occur 2 81 328 131 558 1.62 1.70 0.88 1.63
peephole 2 267 938 1579 6286 5.91 6.70 0.92 1.10
progeom 1 11 30 a7 156 4.27 5.20 0.94 1.04
qgplan 2 51 203 415 1430 8.14 7.04 0.86 1.05
query 2 13 62 31 79 2.38 1.27 0.97 1.20
read 1 13 35 | 10979 38425 | 844.54 1097.86 1.03 1.00
serialize 1 10 32 161 666 16.10 20.81 1.03 1.06
warplan 8 721 2496 4693 17359 6.51 6.95 3.04 5.14
zebra, 1 379 1325 627 2382 1.65 1.80 0.65 1.05
Arithmetic mean 53.99 69.31 1.04 1.48

Weighted mean 7.56 7.76 1.12 1.28

Though the system does not introduce redundant tests, the parallelized programs
can be further optimized if a multivariant analysis (of which both PLAT and its
incremental versions are capable) is performed on such programs. The additional
optimization (e.g., recursive invariant extraction) is possible because more precise
information can be propagated beyond the program points in which tests have been
introduced [Puebla and Hermenegildo 1995; 1999]. The interesting point in our con-
text is that in this process the program is analyzed once, parallelized (introducing
conditionals), and then reanalyzed before performing the multiple specialization
step, and that between these two analysis phases changes are made to the program
that correspond to our local change scenario.

We have applied the process to our set of benchmarks, and the results are shown
in Table VI. Benchmarks for which no run-time tests were added in the parallelized
program during the first step of the process have been omitted, since the special-
ization step is not performed for them, and no reanalysis is needed in that case.
The calling patterns S used for these tests were just program entry points with
the most general calling pattern, i.e., no information about constraints in calls.
This represents the likely situation where the user provides little information to
the analyzer. The case is also interesting in our context because it produces more
run-time tests and thus more specializations and reanalyzes, which allows us to
study more benchmarks (note that if very precise information is given by the user
then many benchmarks are parallelized without any run-time tests, and then no
specialization—and thus no reanalysis—occurs).

Table VI presents the results for this experiment. The first column shows the
number of conditional graph expressions (CGEs), which are parallel expressions
“guarded” by run-time tests. It is an indicator of the number of changes intro-

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 31

duced during parallelization. The following columns present the cost of performing
the second analysis using the incremental algorithm for local change and by simply
reanalyzing from scratch. The next column compares the incremental and nonin-
cremental approaches, giving the ratio of nonincremental reanalysis costs to incre-
mental reanalysis costs. The final column compares the cost of analyzing the par-
allelized program either by a nonincremental analysis of the parallelized program,
or by analyzing the original program and then after parallelization, incrementally
reanalyzing.

The results of incremental analysis of local change are even more encouraging
than the previous ones. The improvement in analysis time and memory usage is
very high overall (7.56 and 7.76 respectively). For large programs with little modifi-
cations, such as read, the incremental approach is three orders of magnitude better
than reanalyzing from scratch. In addition, for a number of benchmarks, in partic-
ular boyer and warplan, it is actually less costly both in terms of time and memory
to analyze first the original program and then update the analysis information after
the modifications introduced by the parallelizer than analyzing the specialized pro-
gram alone. This is because parallelization has introduced parallel expressions, and
thus complicated even further, rules for highly recursive and complex predicates
for which analysis requires several iterations until a fixed point is reached. Because
the incremental approach already starts with an answer for such predicates which
is already a fixed point (which has been computed with a simpler but equivalent
version of the predicates), the algorithm for local change requires much less work to
complete the analysis than analyzing the entire specialized program from scratch.
As a result, analysis plus local change is faster by a factor of 1.12. The results for
memory usage are even better (1.28). This is because we do not have to add the
memory used in both analyses, as we can reuse the heap space. All the information
required by the second (incremental) analysis is asserted. Thus, memory usage is
the maximum heap space usage for the two analysis phases plus the sum of the
program space used by each phase.

7. RELATED WORK

Surprisingly, there has been little research into incremental analysis for (constraint)
logic programs apart from previous work by the authors Hermenegildo et al. [1995;
Puebla and Hermenegildo [1996]. Also, Krall and Berger [1995a; Krall and Berger
[1995D] define a compiled analysis approach for logic programs that use the Vienna
abstract machine model. They briefly mention that there approach can be used
for incremental analysis, though the only kind of incremental change they consider
is incremental addition. Several researchers have looked at compositional analysis
of modules in (constraint) logic programs [Codish et al. 1993; Bossi et al. 1994],
but this does not consider incremental analysis at the level of rules. Also, prelim-
inary studies of full modular analysis of (constraint) logic programs [Puebla and
Hermenegildo 2000] indicate that the techniques presented in this article may be
very valuable in that context.

There has, however, been considerable research into incremental analysis for other
programming paradigms (see for example the bibliography of Ramalingam and
Reps [1993]). The need for incremental analysis techniques was realized very early
in research on data flow analysis of traditional languages. The first algorithm was

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

32 . Manuel Hermenegildo et al.

proposed by Rosen [1981], and since then a bewildering array of algorithms for the
incremental data flow analysis of traditional languages has been suggested.

Generally, these algorithms can be separated into two approaches which reflect
the underlying mechanism used to solve the data flow equations. Elimination-based
methods use variable elimination, much like in Gauss-Jordan elimination, to solve
the equations, while iterative methods find the least fixed point® essentially by
computing the Kleene sequence. Incremental analysis algorithms based on each of
these approaches have been suggested. Those based on elimination include Burke
[1990], Carroll and Ryder [1988], and Ryder [1988]; those based on iteration meth-
ods include Cooper and Kennedy [1984] and Pollock and Soffa [1989]; while a hybrid
approach is described in Marlowe and Ryder [1990].

Our algorithms are formulated in terms of the standard top-down abstract in-
terpretation framework for (constraint) logic programs. Like iteration-based data
flow analysis algorithms this framework also computes the Kleene sequence in order
to find the least fixed point of the recursive equations. Thus our algorithms are
most closely related to those using iteration. Early incremental approaches such
as Cooper and Kennedy [1984] were based on restarting iteration. That is, the fixed
point of the new program’s data flow equations is found by starting iteration from
the fixed point of the old program’s data flow equations. This is always safe, but
may lead to unnecessary imprecision if the old fixed point is not below the least
fixed point of the new equations [Ryder et al. 1988]. Reinitialization approaches
such as Pollock and Soffa [1989] improve the accuracy of this technique by reini-
tializing nodes in the data flow graph to bottom if they are potentially affected by
the program change. Thus they are as precise as if the new equations had been
analyzed from scratch.

Our first algorithm, that for incremental addition, works by restarting iteration
from the old fixed point. However, because the contribution of each rule is lubbed
together, if rules are added to the program, the least fixed point will always in-
crease. Thus restarting iteration is guaranteed to be as precise as starting from
scratch in the case rules are incrementally added. Of course, this “monotonicity”
of rule addition does not apply to traditional programming languages. The top-
down deletion algorithm can be viewed as a variant of the reinitialization approach
in which dependency arcs are used to keep track of which information will be af-
fected by deletion of a rule. The bottom-up deletion and local change algorithms
are to the best of our knowledge novel.

Despite the similarities between our work and previous research into incremental
analysis there are a number of important differences. First, other research has
concentrated on traditional programming languages. To our knowledge this is the
first article to identify the different types of incremental change which are useful in
(constraint) logic program analysis and to give practical algorithms which handle
these types of incremental change. Second, our research is formalized in terms of
the generic data flow analysis technique, abstract interpretation. This means that
our algorithms are usable with any abstract domain approximating constraints.

9For consistency with the rest of this article, we have reversed the usual data flow terminology so
as to accord with abstract interpretation terminology in which the description lattice is ordered
by generality, with the most general element at the top of the lattice.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 33

This contrasts to earlier work in which the algorithms applied only to a single type
of analysis or at best to a quite restricted class of analyses. Another contribution
of the paper is a simple formalization of the nonincremental fixed-point algorithms
used in generic analysis engines. We formalize the analysis as a graph traversal
and couch the algorithm in terms of priority queues. Different priorities correspond
to different traversals of the program analysis graph. This simple formalization
greatly facilitates the description of our incremental algorithms and their proofs of
correctness. Finally, we have given a detailed empirical evaluation of our algorithms.

8. CONCLUSIONS

We have described extensions to the fixed-point algorithms used in current top-down
generic analysis engines for constraint logic programming languages in order to
support incremental analysis. We have classified the possible changes to a program
into addition, deletion, arbitrary change, and local change, and proposed, for each
one of these, algorithms for identifying the parts of the analysis that must be
recomputed and for performing the actual recomputation. We have also discussed
the potential benefits and drawbacks of these algorithms. Finally, we have presented
some experimental results obtained with an implementation of the algorithms in
the PLAI generic abstract interpretation framework.

Our empirical evaluation shows that the incremental analysis algorithms have
little overhead compared with the standard nonincremental analysis algorithms
but offer considerable benefits both in terms of analysis times and memory usage
over these algorithms if the program must be reanalyzed after modification. Thus
optimizing compilers for constraint logic programming which rely on a repeated
source-to-source transformation and reanalysis cycle should make use of incremen-
tal algorithms, such as those presented in this article. Indeed we have successfully
employed them [Puebla and Hermenegildo 1999] in an automatic parallelizer for
logic programs [Bueno et al. 1999b] and an optimizing compiler for CLP(R) [Kelly
et al. 1998a]. Modifying PLAI to support our algorithms for incremental anal-
ysis was relatively straightforward. The only real difficulty was the addition of
dependency arc tracking, which also enabled handling updated events. We believe
it would also be straightforward to modify other analysis engines for (constraint)
logic programs in a similar way.

We believe that our work contributes to opening the door to practical, everyday
use of global analysis in the compilation of (constraint) logic programs, even in
the interactive environment which is often preferred by the users of such systems.
Furthermore, while current analyzers can deal correctly with dynamic program
modification primitives, this implies having to give up on many optimizations not
only for the dynamic predicates themselves but also for any code called from such
predicates. The ability to update global information incrementally (and thus with
reduced overhead) down to the level of single rule additions and deletions makes it
possible to deal with these primitives in a much more accurate way.

Throughout the article we have concentrated on the analysis of pure CLP pro-
grams. There is nothing precluding the use of standard analysis techniques for
handling logical and nonlogical built-ins within the incremental framework. Indeed
the implementation [Bueno et al. 1996] actually handles (almost) full ISO-Prolog,
and many such built-ins occur in the benchmarks. For simplicity we have also

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

34 . Manuel Hermenegildo et al.

ignored the abstract operation of widening [Cousot and Cousot 1979] in our anal-
ysis framework. However, it is straightforward to modify the algorithms to include
widening of call and answer patterns.

Although we have focussed on top-down goal-dependent analysis of constraint
logic programs, our results are also applicable to goal-independent analysis. Again
the key is to keep track of dependencies between the head of a rule and the literals
in the rule and answers to each atom. It is straightforward to modify the generic
algorithm of Figure 2 and our incremental algorithms to define an incremental top-
down goal-independent analysis (by restricting the possible calling patterns in the
answer table). Similar ideas can also be used to give incremental algorithms for
bottom-up goal-independent analysis, which are far simpler, since information flow
is only in one direction (upward).

ACKNOWLEDGEMENTS

The authors would like to thank Marfa Garcia de la Banda, Harald Sgndergaard,
and the anonymous referees for useful comments.

REFERENCES

ARMSTRONG, T., MARRIOTT, K., SCHACHTE, P., AND G H. SONDERGAARD. 1994. Boolean functions
for dependency analysis: Algebraic properties and efficient representation. In Static Analysis
Symposium, SAS’94. Number 864 in LNCS. Springer-Verlag, Namur, Belgium, 266—280.

Bossi, A., GABBRIELL, M., LEvi, G., AND MEO, M. 1994. A compositional semantics for logic
programs. Theoretical Computer Science 122, 1,2, 3—47.

BRUYNOOGHE, M. 1991. A practical framework for the abstract interpretation of logic programs.
Journal of Logic Programming 10, 91-124.

BuUENO, F., CABEzA, D., CARRO, M., HERMENEGILDO, M., LOPEZ-GARCIA, P., AND PUEBLA, G.
1997. The Ciao Prolog system. reference manual. The Ciao System Documentation Series—TR
CLIP3/97.1, School of Computer Science, Technical University of Madrid (UPM). August.

BuENO, F., CABEzA, D., HERMENEGILDO, M., AND PUEBLA, G. 1996. Global analysis of standard
Prolog programs. In European Symposium on Programming. Number 1058 in LNCS. Springer-
Verlag, Sweden, 108-124.

BUENO, F., GARCIA DE LA BANDA, M. G., AND HERMENEGILDO, M. 1999a. Effectiveness of ab-
stract interpretation in automatic parallelization: A case study in logic programming. ACM
Transactions on Programming Languages and Systems 21, 2 (March), 189-238.

BUENO, F., GARCiA DE LA BANDA, M. G., HERMENEGILDO, M., AND MUTHUKUMAR, K. 1999b.
Automatic compile-time parallelization of logic programs for restricted, goal-level, independent
and-parallelism. Journal of Logic Programming 38, 2, 165-218.

BUENO, F., GARCIA DE LA BANDA, M., AND HERMENEGILDO, M. 1994. Effectiveness of global
analysis in strict independence-based automatic program parallelization. In International Sym-
postum on Logic Programming. MIT Press, Cambridge, Massachusetts, 320-336.

BURKE, M. 1990. An interval-based approach to exhaustive and incremental interprocedural data-
flow analysis. ACM Transactions on Programming Languages and Systems 12, 3, 341-395.
CARROLL, M. AND RYDER, B. 1988. Incremental data flow analysis via dominator and attribute
updates. In 15th ACM Symposium on Principles of Programming Languages (POPL). ACM

Press, San Diego, 274-284.

CHARLIER, B. L. AND VAN HENTENRYCK, P. 1994. Experimental evaluation of a generic abstract
interpretation algorithm for Prolog. ACM Transactions on Programming Languages and Sys-
tems 16, 1, 35-101.

CHARLIER, B. L., DEGIMBE, O., MICHAEL, L., AND VAN HENTENRYCK, P. 1993. Optimization
techniques for general purpose fixpoint algorithms: Practical efficiency for the abstract inter-
pretation of Prolog. In Workshop on Static Analysis. Springer-Verlag, 15-26.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 35

CHARLIER, B. L., RossI, S., AND VAN HENTENRYCK, P. 1994. An abstract interpretation framework
which accurately handles Prolog search-rule and the cut. In International Symposium on Logic
Programming. MIT Press, 157-171.

CopisH, M., DEBRAY, S., AND GIACOBAZZI, R. 1993. Compositional analysis of modular logic
programs. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL’93. ACM, Charleston, South Carolina, 451-464.

CONERY, J. S. AND KiIBLER, D. F. 1981. Parallel interpretation of logic programs. In Proc. of the
ACM Conference on Functional Programming Languages and Computer Architecture. (1981).
ACM Press, 163-170.

COOPER, K. AND KENNEDY, K. 1984. Efficient computation of flow insensitive interprocedural
summary information. In ACM SIGPLAN Symposium on Compiler Construction (SIGPLAN
Notices 19(6)). ACM Press, 247-258.

CousoT, P. AND CousoT, R. 1977. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth ACM Symposium
on Principles of Programming Languages. ACM Press, Los Angeles, 238-252.

Cousor, P. AND CousoT, R. 1979. Systematic design of program analysis frameworks. In Sizth
ACM Symposium on Principles of Programming Languages. ACM Press, San Antonio, Texas,
269-282.

DEBRAY, S., Ed. 1992. Journal of Logic Programming, Special Issue: Abstract Interpretation. Vol.
13(1-2). North-Holland, Amsterdam.

DEBRAY, S. K. 1989. Static inference of modes and data dependencies in logic programs. ACM
Transactions on Programming Languages and Systems 11, 3, 418-450.

ENGLEBERT, V., LE CHARLIER, B., ROLAND, D., AND VAN HENTENRYCK, P. 1993. Generic ab-
stract interpretation algorithms for Prolog: Two optimization techniques and their experimental
evaluation. Software Practice and Ezperience 23, 4 (Apr.), 419-459.

GARCIA DE LA BANDA, M., MARRIOTT, K., SONDERGAARD, H., AND STUCKEY, P. 1998. Differential
methods in logic program analysis. Journal of Logic Programming 35, 1, 1-37.

HERMENEGILDO, M. AND GREENE, K. 1991. The &-Prolog system: Exploiting independent and-
parallelism. New Generation Computing 9, 3,4, 233-257.

HERMENEGILDO, M. AND RossI, F. 1995. Strict and non-strict independent and-parallelism in
logic programs: Correctness, efficiency, and compile-time conditions. Journal of Logic Program-
ming 22, 1, 1-45.

HERMENEGILDO, M., BUENO, F., PUEBLA, G., AND LOPEzZ-GARCiA, P. 1999a. Program analy-
sis, debugging and optimization using the Ciao system preprocessor. In 1999 International
Conference on Logic Programming. MIT Press, Cambridge, MA, 52-66.

HERMENEGILDO, M., PUEBLA, G., AND BUENO, F. 1999b. Using global analysis, partial specifica-
tions, and an extensible assertion language for program validation and debugging. In The Logic
Programming Paradigm: a 25-Year Perspective, K. R. Apt, V. Marek, M. Truszczynski, and
D. S. Warren, Eds. Springer-Verlag, 161-192.

HERMENEGILDO, M., PUEBLA, G., MARRIOTT, K., AND STUCKEY, P. 1995. Incremental analysis
of logic programs. In International Conference on Logic Programming. MIT Press, 797-811.
HERMENEGILDO, M., WARREN, R., AND DEBRAY, S. K. 1992. Global flow analysis as a practical

compilation tool. Journal of Logic Programming 13, 4 (August), 349-367.

KELLY, A., MACDONALD, A., MARRIOTT, K., SONDERGAARD, H., AND STUCKEY, P. 1998a. Op-
timizing compilation for CLP(R). ACM Transactions on Programming Languages and Sys-
tems 20, 6, 1223-1250.

KELLY, A., MARRIOTT, K., SONDERGAARD, H., AND STUCKEY, P. 1998b. A practical object-
oriented analysis engine for CLP. Software: Practice and Ezperience 28, 2, 199-224.

KRALL, A. AND BERGER, T. 1995a. Incremental global compilation of Prolog with the Vienna
abstract machine. In International Conference on Logic Programming. MIT Press, Tokyo,
333-347.

KRALL, A. AND BERGER, T. 1995b. The VAMaj—an abstract machine for incremental global
dataflow analysis of Prolog. In ICLP’95 Post-Conference Workshop on Abstract Interpretation

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

36 . Manuel Hermenegildo et al.

of Logic Languages, M. G. de la Banda, G. Janssens, and P. Stuckey, Eds. Science University
of Tokyo, Tokyo, 80-91.

MARLOWE, T. AND RYDER, B. 1990. An efficient hybrid algorithm for incremental data flow
analysis. In 17th ACM Symposium on Principles of Programming Languages (POPL). ACM
Press, San Francisco, 184-196.

MARRIOTT, K. AND STUCKEY, P. 1998. Programming with Constraints: an Introduction. MIT
Press.

MARRIOTT, K., SONDERGAARD, H., AND JONES, N. 1994. Denotational abstract interpretation of
logic programs. ACM Transactions on Programming Languages and Systems 16, 3, 607—-648.
MUTHUKUMAR, K. AND HERMENEGILDO, M. 1990. Deriving a fixpoint computation algorithm
for top-down abstract interpretation of logic programs. Technical Report ACT-DC-153-90,

Microelectronics and Computer Technology Corporation (MCC), Austin, TX 78759. April.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1991. Combined determination of sharing and freeness
of program variables through abstract interpretation. In 1991 International Conference on Logic
Programming. MIT Press, Paris, 49-63.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1992. Compile-time derivation of variable dependency
using abstract interpretation. Journal of Logic Programming 13, 2/3 (July), 315-347. Orig-
inally published as Technical Report FIM 59.1/IA/90, Computer Science Dept, Universidad
Politecnica de Madrid, Spain, August 1990.

PoLLOCK, L. AND SOFFA, M. 1989. An incremental version of iterative data flow analysis. IEEE
Transactions on Software Engineering 15, 12, 1537-1549.

PUEBLA, G. AND HERMENEGILDO, M. 1995. Implementation of multiple specialization in logic
programs. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based
Program Manipulation. ACM Press, La Jolla, California, 77-87.

PuEBLA, G. AND HERMENEGILDO, M. 1996. Optimized algorithms for the incremental analysis of
logic programs. In International Static Analysis Symposium. Number 1145 in LNCS. Springer-
Verlag, 270-284.

PUEBLA, G. AND HERMENEGILDO, M. 1999. Abstract multiple specialization and its application to
program parallelization. J. of Logic Programming. Special Issue on Synthesis, Transformation
and Analysis of Logic Programs 41, 2&3 (November), 279-316.

PUEBLA, G. AND HERMENEGILDO, M. 2000. Some issues in analysis and specialization of modular
Ciao-Prolog programs. Electronic Notes in Theoretical Computer Science 30, 2 (March). Special
Issue on Optimization and Implementation of Declarative Programming Languages.

PueBLA, G., BueEnoO, F., AND HERMENEGILDO, M. 2000. A generic preprocessor for program
validation and debugging. In Analysis and Visualization Tools for Constraint Programming,
P. Deransart, M. Hermenegildo, and J. Maluszynski, Eds. Springer-Verlag. To appear.

RAMALINGAM, G. AND REPS, T. 1993. A categorized bibliography on incremental computation.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages POPL’93.
ACM, Charleston, South Carolina.

ROSEN, B. 1981. Linear cost is sometimes quadratic. In Eighth ACM Symposium on Principles
of Programming Languages (POPL). ACM Press, Williamsburg, Virginia, 117-124.

RYDER, B. 1988. Incremental data-flow analysis algorithms. ACM Transactions on Programming
Languages and Systems 10, 1, 1-50.

RYDER, B., MARLOWE, T., AND PAULL, M. 1988. Conditions for incremental iteration: Examples
and counterexamples. Science of Computer Programming 11, 1, 1-15.

SANTOS-COSTA, V., WARREN, D., AND YANG, R. 1991. The Andorra-I preprocessor: Supporting full
Prolog on the basic Andorra model. In 1991 International Conference on Logic Programming.
MIT Press, Paris, 443-456.

TARJAN, R. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 140-160.

VAN ROY, P. AND DESPAIN, A. 1992. High-performace logic programming with the aquarius Prolog
compiler. IEEE Computer Magazine 25, 1 (January), 54—68.

WINSBOROUGH, W. 1992. Multiple specialization using minimal-function graph semantics. Journal
of Logic Programming 13, 2 and 3 (July), 259-290.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

Incremental Analysis of Constraint Logic Programs . 37

Received July 1998; revised July 1999; accepted November 1999

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.

