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Abstract

We present a technique to estimate accurate speedups for parallel logic programs with relative independence
from characteristics of a given implementation or underlying parallel hardware. The proposed technique
is based on gathering accurate data describing one execution at run—time, which is fed to a simulator.
Alternative schedulings are then simulated and estimates computed for the the corresponding speedups.
Such speedups can be used to compare different parallelizations of a program or to evaluate the performance
of parallel systems. A tool implementing the aforementioned techniques is presented, and its predictions are
compared to the performance of real systems, showing good correlation.
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1 Introduction

In recent years a number of parallel implementations
of logic programming languages, and, in particular,
of Prolog, have been proposed (some examples are
[HG91, AK90, SCWY90, She92, Lus90]). Relatively
extensive studies have been performed regarding the
performance of these systems. However, these stud-
ies generally report only the absolute data obtained
in the experiments, including at most a comparison
with other actual systems implementing the same
paradigm. This is understandable and appropriate
in that usually what these studies try to asses is
the effectiveness of a given implementation against
state-of -the-art sequential Prolog implementations
or against similar parallel systems.

In this paper, and in line with [SH91], we try to
find techniques to answer a different question: given
a (parallel) execution paradigm, what is the maxi-
mum benefit that can be obtained from executing a

program in parallel in a system designed according
to that paradigm? (we will refer to this as “maxi-
mum parallelism”). What are the resources (for ex-
ample, processors) needed to exploit all parallelism
available in a program? How much parallelism can
be ideally exploited for a given set of resources (e.g.
a fixed number of processors)? (we will refer to this
as “ideal parallelism”). The answers to these ques-
tions can be very useful in order to evaluate actual
implementations, or even parts of them, such as, for
example, parallelizing compilers. However, such an-
swers cannot be obtained from an actual implementa-
tion, either because of limitations of the implementa-
tion itself or because of limitations of the underlying
machinery, such as the number of processors or the
available memory. It appears that any approach for
obtaining such answers has to resort to a greater or
lesser extent to simulations.

There has been some previous work in the area
of ideal parallel performance determination through



simulation in logic programs, in particular the work
of Shen [SH91] and Sehr [SK92]. These approaches
are similar in spirit and objective to ours, but differ
in the approach (and the results).

In [SH91] a method is proposed for the evalua-
tion of potential parallelism. The program is ex-
ecuted by a high-level meta-interpreter/simulator
which computes ideal speedups for independent and—
parallelism, or—parallelism, and combinations thereof
(see [Con83] and Section 3 for a description of dif-
ferent types of parallelism in logic programs). Such
speedups can be obtained for different numbers of
processors.

This work is interesting, firstly in that it pro-
posed the idea of obtaining ideal performance data
through simulations in order to be able to evalu-
ate the performance of actual systems by contrast-
ing them with this ideal and, second, because it pro-
vides ideal speedup data for a good number of pro-
grams. However, the simulator proposed does suffer
from some drawbacks. The first one is that all calcu-
lations are performed using as time unit a resolution
step — i.e. all resolution steps are approximated as
taking the same amount of time. This makes the sim-
ulation either conservative or optimistic in programs
with (respectively) small or large head unifications.
To somewhat compensate for this, and to simulate
actual overheads in the machine, extra time can be
added at the start and end of each task. The sec-
ond drawback is that the meta-interpretive method
used for running the programs limits the size of the
executions which can be studied due to the time and
memory consumption implied.

In [SK92] a different approach was used, in order
to overcome the limitations of the method presented
above. The Prolog program is instrumented to count
the number of WAM [War83, AK91] instructions ex-
ecuted at each point, assuming a constant cost for
each WAM instruction. Only “maximal” speedup
is provided. Or—parallel execution is simulated by
detecting the critical (longest) path and comparing
the length of this path with the sequential execution
length. Independent and-parallel execution is han-
dled in a similar way by explicitly taking care of the
dependencies in the program. Although this method
can be more accurate than that of [SH91] it also has
some drawbacks. One is the fact mentioned above
that only maximal speedups are computed, although
this could presumably be solved with a back-end im-
plementing scheduling algorithms such as the ones
that we will present. Another is that the type of
instrumentation performed on the code does not al-
low taking control instructions into account. Also, a
good knowledge of the particular compiler being used

is needed in order to mimic its encoding of clauses.
Furthermore, many WAM instructions take different
amounts of time depending on the actual variable
bindings appearing at run-time, and this would be
costly and complicated to take into account. Finally,
the problem of being able to simulate large problems
is only solved in part by this approach, since running
the transformed programs involves non-trivial over-
heads over the original ones.

The approach that we propose tries to overcome
the precission and execution size limitations of previ-
ous approaches by using precise timing information.
Also, it allows gathering information for much larger
executions. We do that by placing the splitting point
between actual execution and simulation at a differ-
ent location: sequential tasks are not simulated or
transformed but executed directly in real systems.

Although the techniques we present have been de-
signed within the area of parallel logic programming,
we believe that the core idea can be applied to any
execution paradigm, and that the techniques (and
tools) developed can be applied directly to those
paradigms conforming to the initial assumptions.

The paper is structured as follows: Section 2
sketches our objectives. Section 3 describes more in
depth our approach and the techniques used in its im-
plementation. Section 4 relates the traces obtained
at run—time with the graphs used to simulate alterna-
tive schedulings. Sections 5 and 6, respectively, show
how the maximum and ideal parallelism are calcu-
lated. In Section 7 an overview of IDRA, the actual
tool, is given. Section 8 contains examples of simu-
lations made using IDRA and comparisons of actual
implementations with the results of the simulation.

2 Objectives

Our objective is to perform speedup analysis of exe-
cutions of parallel logic programs, in a relatively inde-
pendent way from the characteristics (such as number
of processors, absolute speed, etc.) of the platform in
which they have been executed. Given a (parallel)
program and a number (which may be unbound) of
processors, different schedulings can (and do) greatly
affect the total execution time.!

Among the information we can extract from alter-
native schedulings, the following may be of interest:

LOf course, faster processors will affect the absolute exe-
cution time as well, but since ideally this speed scales to the
whole execution, the speedup obtained with respect to sequen-
tial executions should not change. This, in practice, is not
true, since, for example, bus bandwidth limits the attainable
speedup in memory—-intensive applications. This is, precisely,
one example of the limitations we want to overcome.



e Maximum parallelism: this corresponds to the
parallelism obtained with an unbound number of
processors, assuming no scheduling overheads.

e Ideal parallelism: this corresponds to the
speedup ideally attainable with a fixed num-
ber of processors. The tasks—processors map-
ping here decides the actual speedups attained.
Optimal scheduling algorithms and currently im-
plemented algorithms are clear candidates to be
studied.

Maximum parallelism is useful in order to deter-
mine the absolute maximum performance of a pro-
gram, i.e., the minimum time in which it could
have been executed while respecting the dependen-
cies among tasks. This is used, for example, for com-
paring different parallelizations/sequentializations of
a given program (e.g., if different domains or anno-
tators for parallelism are being evaluated, see for ex-
ample [BGH94a, BGH94b]) or different parallel al-
gorithms proposed for a given problem (e.g. [DJ94]).
In the simulation we know that the speedup obtained
has not been limited by the machine itself (e.g., num-
ber of processors, bus contention, etc.)

Ideal parallelism can be used to test the absolute
performance of a given scheduling algorithm in a fixed
number of processors, by comparing the speedup ob-
tained in the machine with the maximum speedup
attainable using that number of processors. The ef-
ficiency of an implementation can also be studied by
testing the actual speedups against those predicted
by the simulator using the same scheduling algorithm
as the implementation. Also, how the performance of
a program evolves for a number of processors as large
as desired can be studied; this gives interesting infor-
mation about the potential parallelism in a program.

We want our simulation to be useful for medium
size applications, and the results to be as accurate as
possible. That is why the simulation takes place at
the scheduling level, the sequential task timing being
(preferably) obtained using real executions.

3 Parallelism and Trace Files

To simulate an alternative scheduling of a parallel
execution we need a certain description of that ex-
ecution. This description must contain, at least,
the relationships and dependencies which hold among
the tasks (used to simulate new correct schedulings,
i.e., executions where the precedence relationships are
met), and the length (in time) of each task. Such a
description can be produced by executing programs
in actual implementations (not necessarily parallel

| Node | Comment
START_EXECUTION | Start of the whole execution
END_EXECUTION End of the whole execution
START _GOAL A sequential task starts
FINISH_GOAL A sequential task ends
FORK Execution splits
JOIN Different branches join
SUSPEND A task is suspended
RESTART A task is restarted

Table 1: Some common observables for parallel exe-
cution of logic programs

ones: only the description of the concurrency in the
execution and each task’s length must appear, the
parallelism among tasks being introduced by means
of the simulation) augmented to generate execution
logs, or even using other high-level simulators able to
produce information about dependencies in the pro-
gram and an estimation of the (relative) cost of exe-
cuting each sequential task. This considerably widens
the applicability of the developed tool because it al-
lows studying the (expected) performance of parallel
programs and scheduling algorithms without the need
of an actual parallel machine or in non-realistic con-
ditions (for example, unbound number of processors).

The descriptions of the executions are stored in
the form of traces, which are series of events. These
events are gathered at run—time by the system un-
der study. The events reflect observables (interesting
points in the execution), and allow the reconstruc-
tion of a skeleton of the parallel execution. Some
types of events that we have found useful, along with
a brief description, are shown in Table 1. Each event
has enough information to establish the dependen-
cies with other events from the same execution and
to know the relevant details of the sequential tasks
in the computation. Figures 1 and 2 represent two
parallel executions, in which some events have been
marked at the point where they occur for the types of
parallelism we will discuss in the following sections.
The length of the vertical segments is intended to re-
flect the actual time taken by the sequential tasks
and the scheduling delays.

In our case timing data is gathered by a modified
Prolog implementation (but it can be also generated
by other means), which ensures that the timing infor-
mation is realistic. The part that is simulated regards
the possible (alternative) schedulings of those sequen-
tial tasks, while respecting the precedences among
the tasks.

It should be noted that, in parallel dialects of Pro-
log, collecting traces is easy from the user point of
view. The structure of the Prolog language and its
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Figure 1: And—parallel execution

implicit control helps to automatically identify the
“interesting places” (for example, where a sequential
task starts or finishes) in the execution.

The parallel execution models which we will deal
with in this paper stem naturally from the view of
logic programming as a process—oriented computa-
tion. The two main types of parallelism available
in a logic program are and—parallelism and or—
parallelism. We will briefly review some related
concepts in the following sections.

3.1 Restricted And—parallelism

Restricted and—parallelism [DeG84, Her86] refers to
the execution of independent goals in the body of a
clause using a fork and join paradigm. Independent
goals are those that meet some “independence con-
ditions” (for example, they do not share variables at
run time, thus avoiding all possible Read—Write and
Write-Write conflict). Run—time tests may be placed
in the program source, if a static analysis (either au-
tomatic or by hand) could not determine if indepen-
dence conditions always hold or not.2 The only de-
pendencies existing in RAP appear among the goals
before and after the parallel execution and the goals
executed in parallel. Consider the &-Prolog [HG91]
program below, where the “&” operator, in place of
the comma operator, stands for and—parallel execu-
tion (the predicates not defined here are assumed to
be sequential):

main:- a, ¢ & b, g.

2Non-restricted independent and-parallelism allows exe-
cution structures which cannot be described by FORK-JOIN
events. Such structures are generated, for example, by Con-
ery’s model [Con83] and by &—Prolog [HG91] when wait, which
can suspend a task until a certain condition is met, is used.
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Figure 2: Or—parallel execution

c:-d & e & f.

A (simplified) dependency graph for this program is
depicted in Figure 1. In the RAP model there is
a JOIN closing each FORK (failures are not seen at
this level of abstraction), and FORKS are followed by
START_GOALS of the tasks originated. In turn, JOINs
are preceded by FINISH_GOALs. In the case of nested
FORKs, the corresponding JOINs will appear in re-
verse order to that of the FORKs. The START_GOAL
and FINISH_GOAL events (note that finish can also
be caused by ultimate goal failure) must appear bal-
anced by pairs. Under these conditions, a RAP ex-
ecution can be depicted by a directed acyclic planar
graph, where and—parallel executions appear nested.

3.2 Or—parallelism

Or—parallelism corresponds to the parallel execution
of different alternatives of a given predicate. Since
each alternative belongs conceptually to a different
“universe” there are (in principle) no dependencies
among alternatives. However, each alternative does
depend on the fork that creates it. In fact, additional
dependencies arise in real systems due to the partic-
ular way in which common parts of alternatives are
shared, and due to side—effects and extra-logical con-
structs that can affect the execution of other branches
— from a dependency graph point of view, much
as wait introduces dependencies among and—parallel
branches. For the sake of simplicity we will not ad-
dress those cases in depth here.

As an example, consider the following program,
which has alternatives for predicates b, p and q:



b:-p p:-
b:- q p:-
q:- p:-
q:-

Assuming that p and q have no or—parallelism in-
side, a possible graph depicting an execution of this
predicate is shown in Figure 2. Note that the right-
most branch in the execution is suspended at some
point and then restarted. This suspension is probably
caused by its sibling, because a side—effect predicate
or a cut would impose a serialization of the execu-
tion. In terms of dependencies among events, FORKS
are not balanced by JOINs. The resulting graph is
thus a tree. If p or q had parallelism, inside a similar
representation would be recursively applied.

The END_EXECUTION event, which does not appear
in Figure 2, can be supposed to be issued immediately
after the last FINISH_.GOAL by the system executing
the program, or added afterwards by some tool.

4 From Traces to Graphs

From a practical point of view, the format of the
traces may depend on the system that created them:
traces may have information that is not necessary, or
be structured in an undesirable way, perhaps because
they may serve to other purposes as well.> On the
other hand, scheduling algorithms are usually formu-
lated in terms of the well-known job graphs (see, e.g.,
[MC69, LL74, Hu61, HB88]). However, in job graphs
only tasks and relationships are reflected: scheduling
delays do not appear—or are assumed to be a part
of the tasks themselves. To be able to change the de-
lays introduced by the scheduling algorithms, and to
somewhat separate the traces from the internal struc-
tures, we will use execution graphs as an intermediate
object that abstracts the trace containing only the in-
formation needed to simulate new schedulings.

4.1 The Execution Graph

An execution graph translates the idea of events and
their dependencies into a mathematical object. An
execution graph is a directed acyclic weighted graph
G(X,U,T) where:

X ={zo,%1,-..,Tn-1} is a set of nodes,

U = {u;;0 < i < j < n} is the set of edges
connecting node z; to node z;, and

3This is the case for the actual parallel systems that we
study—see Section 7—where traces originally designed for vi-
sualization are used by our simulation.

Figure 3: Execution graph, and—parallelism

T = {t;;,0 < i < j < n} is the set of weights
labeling each u; ;.

In the execution graph each node corresponds to
an event, and has associated a type (the same of the
event—see Table 1) and the point in time in which the
corresponding event has occured. Each edge reflects a
dependency between events, and its associated weight
represents the time elapsed between them. We distin-
guish two types of edges: those which represent the
sequential execution of a task and those which repre-
sent delays introduced by scheduling. The edges fall,
thus, in one of the following two categories:

Scheduling Edges: FORK to START_GOAL,
FINISH_GOAL to JOIN.

Execution Edges: START_GOAL to FINISH_GOAL,
START_GOAL to FORK, JOIN to FINISH_GOAL,
JOIN to FORK.

Figures 3 and 4 show, respectively, the structure
of the execution graphs corresponding to the traces
depicted in Figures 1 and 2 (the weights have been
omitted for simplicity). The execution graphs is a
formal, intermediate representation for event traces.
This representation is transformed into a job graph,
wich is in turn used to simulate the schedulings.

4.2 The Job Graph

A job graph G(X,U) consists of a set of nodes X =
{zo,...,2n_1} and a set of edges U = {u; ;,0 <i <



Figure 4: Execution graph, or—parallelism

Figure 5: Job graph for and—parallelism

J < n}, where each u; ; represents an edge from node
z; to z;. The graph contains a node for each se-
quential task in the execution and an edge for each
dependency between tasks. Each node z; has infor-
mation related to the task it represents, such as its
length I(z;) and its starting time ¢(x;). There is a
partial ordering < among the tasks in X given by
the dependencies present in the execution. We will
say that z; < z; iff u;; € U. Figures 5 and 6 show
job graphs for the and— and or—parallel examples we
have been using throughout the paper.

Job graphs are obtained from execution graphs
by eliminating the scheduling times (represented by
scheduling edges) and transforming the execution
edges (which represent actual sequential tasks) into
nodes. The dependencies in the job graph and the
length of each task are inherited from the execution
graph. This transformation can, of course, be pa-
rameterized to take into account actual or minimal

Figure 6: Job graph for or—parallelism

scheduling delays, incrementing the usefulness of the
tool.

4.3 Scheduling in Job Graphs

A scheduling for a given execution G(X,U) can be
formally viewed as a function o : X — Z7T that as-
signs a starting time to each task, the task’s length
remaining unchanged. In order for ¢ to represent a
correct scheduling, no task can start before all its
predecessors have finished:
Ve, zj € Xt <z; = o(z;) +1(z;) <o(z;) (1)
A scheduling o that minimizes the time spent in
the execution has to meet the following condition:
Let L, = rwr1€a)>(<(a'(x) +1(z)) forao’ € {X = ZT}.

Then ¢ is such that L, = min  (Ly)

o' e{X—Z+)}

Scheduling algorithms can be classified depending
on whether they are deterministic (used when all data
pertaining the execution is available [MC69, LL74,
Hu61]) or non deterministic (in which random vari-
ables with known characteristic functions are used to
model non available data [HB88]). Since we are do-
ing “post—mortem” scheduling simulations, our case
is the former.

5 Maximum Parallelism

As mentioned in Section 2, maximum parallelism as-
sumes a null scheduling time and an infinite number
of processors, so that newly generated tasks can be
started without any delay at all. A scheduling with
these conditions can be modeled as a function o, as
described in Section 4.3 and which meets conditions 1
and 2.

Two interesting results we can obtain from a sim-
ulation with these characteristics are the maximum
speedup attainable and the minimum number of pro-
cessors needed to achieve it. Obtaining both these
numbers is an N P—complete problem [GJ79]; how-
ever, the exact maximum speedup and an upper

2)



bound on the number of processors is easy to obtain.
This is still useful, because it gives an estimation of
the best performance that can be expected from the
program(s) under study. It can serve to compare al-
ternative parallelizations of a program, without the
possible biases and limitations that actual executions
impose, but still retaining the accuracy in the timing
of the tasks.

We can recalculate the starting time t(z) assigned
to each node x € X, starting at 0 for the first node in
the execution, so that the starting time in each task
corresponds to the maximum of the ending time of
its predecessors. Then, assuming that z, ; is the
node corresponding to the last task in the execu-
tion, the minimum time that the execution can take
is t(xp—1) + l(xp—1). From this, speedups with re-
spect to sequential executions are straightforward to
obtain, the sequential execution time being the sum
of the lengths of all the tasks.

The maximum number of tasks simultaneously ac-
tive is an upper bound on the minimum number of
processors needed to achieve this execution time. Let
N(t) be defined as

N(t) = {z € X|t(z) <t < t(x) + (=)} (3)
i.e.,, N(T) is the number of tasks active at time ¢. The
minimum number p of processors needed to execute
without delays is

p= max N(t)

- 0<t<t(Zn_1)+l(Tn-1)

assuming again that the program execution starts at
time 0.

Note that high speedups do not necessarily mean
that the program is a good candidate for parallel
execution: this depends, of course, on the number
of processors at which this maximum parallelism is
achieved. We will see examples illustrating this in
Section 8.2.

6 Ideal Parallelism

By ideal parallelism we refer to the situation in which,
for a given number m of processors, a perfect schedul-
ing has been performed, in the sense that the mini-
mum execution time possible (with that number of
processors) was achieved. A scheduling algorithm
that performs ideal parallelism can be modeled by
a mapping o as defined in 4.3, to which the following
restriction has been added:

V8,0 <t < t(zn1) + U@n 1), N(t) <m (4)

where N (t) is as defined in equation 3, i.e., the num-
ber of tasks simultaneously active is less than or equal
to m.

Such ¢ gives the optimum starting time for each
task. From it, a processor—task mapping is straight-
forward, since it is required that no more than m
tasks be active at a time. When a task is finished,
the processor that executed it can be assigned to the
task with the nearest starting time.*

It would be interesting to find out the speedups
achievable using a perfect scheduling. Unfortunately,
obtaining an optimal task/processor allocation is, in
general, an N P—complete problem [GJ79]. Since we
want to deal with sizeable, non trivial, programs, this
option is too computationally expensive to be used.
Instead, we will employ non optimal scheduling al-
gorithms which give an adequate (able to compute a
reasonable answer for a typical input), but not ap-
propriate (every processor is attached to a sequential
task until this task is finished) scheduling.

From a high level point of view, the ideal paral-
lelism simulation takes a description of the execution,
a scheduling algorithm A, and a number of processors
N, and returns the maximum speedup attainable in
the form of a function ¢t : X — Z7* that reflects the
calculated starting time for each task.

The algorithm we implemented to find out quasi-
optimal schedulings is the so—called subsets [HB8§]
algorithm, which in fact gives optimal results under
certain conditions (that are however not always met
in our more general case).

Testing the quality of an existing scheduler against
an idealized one is also interesting, because that com-
parison would give an idea of how good is the im-
plementation of the scheduling algorithm. Follow-
ing that idea, we also implemented a version of the
scheduling scheme found in the &-Prolog system
[HG91, Her87]. We expect the comparison of the ac-
tual &—Prolog system speedups and the results ob-
tained from IDRA to serve as an assessment of the
accuracy of our technique, whereas the comparison
among a (quasi-)optimal scheduling and a real one
would serve to estimate the performance of the ac-
tual system.

The variation of the inherent parallelism with the
problem size is also a topic of interest. Frequently
one wants more performance not only to solve ex-
isting problems faster, but also to be able to tackle
larger problems in a reasonable amount of time. In
simple problems the number of parallel tasks and the
expected attainable speedups can be calculated, but
in non—trivial examples it may not be so easy to es-

4Under the implicit assumption that any processor is able
to execute any task.



timate that. Problems in which available parallelism
does not increase with the size of the problem would
not benefit from a larger machine. In Section 8 ex-
amples illustrating this are given.

In the next two sections we will describe the two
scheduling algorithms currently implemented in the
simulation tool.

6.1 The
rithm

Subsets Scheduling Algo-

The subsets [HB88] algorithm avoids performing a
global scheduling by splitting the nodes (tasks) in the
job graph into disjoint subsets (those inside dashed
rectangles in Figure 5). The nodes in each subset
represent tasks that are independent among them,
and so they are candidates for parallel execution.

Each processor 7,0 < j < p, is modeled as a num-
ber T); which represents the moment from which it is
free to execute new work. The set P = {Ty,...,Tp—1}
contains the availability times of the processors in the
system. At any given time, no task can be scheduled
before mingep(T).

The initial subset is a singleton containing only the
first task: So = {x0}, and for each subset S;, S;1 is
the set of nodes which can start once all the nodes in
S; have finished.

If all the tasks in subset S;y; started after the last
task in S; finish, the subsets could have been sched-
uled independently. Since a given task in S;y; may
depend only on some of the tasks in S;, the starting
time of each task in S;;1 is set to the time in which
all their predecessor tasks in S; have finished. In
each subset S; = {t1,...}, the scheduling algorithm
assigns one task t; to one processor from P. For each
subset S # S, the algorithm performs as follows:

For each task t; € S do:

Step 1 Let Time; = maxXyecx, z<¢; (t(x)). This is the
earliest time in which ¢; can start.

Step 2 If there is any processor p such that T, <
Time;, assign processor p to task t;, and set
T, = T, + I(t;) and t(t;) = Time;.

Step 3 Otherwise, find T, = mingep(T). Assign
task ¢; to processor g and set T, = T, + I(t;).

Tasks are assigned to free processors. If no free
processor exists at a given moment, the first processor
to become idle is chosen. The need to make a choice
in the non—deterministic Step 2 is one of the sources
of the non optimality of the algorithm. In Step 3, T,
is chosen using a heuristic that tries to increase the
occupation time of the processors.

6.2 The Andp Scheduling Algorithm

The andp scheduling algorithm [Her87] mimics the
behavior of one of the &—Prolog schedulers. For each
processor, &—Prolog has the notion of local and non
local work: local work is the work generated by a
given processor, and it is preferably assigned to it. To
keep track of the local work, each processor is mod-
eled as a couple (T, L) where T is as before, and L is
the list of tasks generated by the processor. Roughly
speaking, the scheduling algorithm tries first to ex-
ecute tasks locally; if this is not possible, a task is
stolen from another processor’s list.

The andp scheduling algorithm can be split into
two different parts: the first one takes care of obtain-
ing work available in the system, and the second one
generates new work and stores it in the processor’s
local stack.

Processor 0 is selected as having the initial task;
thus at the beginning Ly = {zo}. The rest of the
processors have empty stacks: L; = 0,0 < i < p, and
all of them are free: T; = 0,0 < i < p. The part of
the scheduling algorithm that is in charge of getting
work is as follows:

Step 1If V<T17LZ> € P L; = @, finish. Oth-
erwise select the processor p such that 7, =
minr; r;yep(T7)

Step 2 If L, # 0 assign the first task z € L, to
processor p and go to Step 1.

Step 3 If L, = 0, find the processor ¢ such that
Tq = min(T,-,L,-)EN,LH/:@ (T,) ASSigl’l the first task
x € L to processor p and go to Step 2.

The generation of new work, after task z from the
list of tasks L, is assigned to processor p, is as follows:

Step 1 Set L, = Ly — {z}.
Step 2 Set T, = T, + ().

Step 3 Set L, = L, U {x; € X s.t. & < ;}.

7 Overview of the Tool

A tool, named IDRA (IDeal Resource Allocation),
has been implemented using the ideas and algorithms
shown before. The traces used by IDRA are the same
as those used by the visualization tool VisAndOr
[CGH93]. Thus, IDRA can calculate speedups for
the systems VisAndOr can visualize (namely, the in-
dependent and—parallel system &—Prolog and the or—
parallel systems Muse and Aurora — the determin-
istic dependent and—parallel system Andorra-I is not



supported yet — as well as others which implement
parallelism of a similar structure) using directly the
trace files that VisAndOr accepts, without the need
of any further processing.

The tool itself has been completely implemented
in Prolog. Besides the computation of maximum and
ideal speedups, IDRA can generate new trace files
for ideal parallelism, which can in turn be visualized
using VisAndOr and compared to the original one.
IDRA can also be instructed to generate automati-
cally speedup data for a range of processors. This
data is dumped in a format suitable for a tool like
xgraph to read.

The traces used with IDRA (and with VisAndOr),
need not be generated by a real parallel system. This
is a very interesting feature, in that it is possible to
generate them with a sequential system augmented
to dump information about concurrency. The only
requirement is that the dependencies among tasks be
properly reflected, and that the timings be accurate.

In some platforms accuracy in the timings has not
been straightforward to obtain. Somo usual UNIX
environments do not provide good access to the sys-
tem clock: calls to standard OS routines to find out
the current time either were not accurate enough for
our purposes, or the time employed in such calls were
a significant portion of the total execution time of the
benchmark, thus leading to incorrect results (sequen-
tial tasks being traced were noticeably longer than
without tracing). To obtain accurate timings we used
the microsecond resolution clock available in some Se-
quent multiprocessors [Seq87], which is not only very
precise, but also memory mapped and can thus be
read in the time corresponding to one memory access,
with negligible effect on performance. For platforms
in which the clock has a high but predictable access
time, we had to develop a technique based on sub-
tracting the accumulated clock access time from the
timings.

The overhead of gathering the traces depends ul-
timately on the system executing the program being
traced. For the &—Prolog/Muse systems, it typically
falls in the range 0% — 30% — usually less than 20%
— of the total execution time.

The time that a simulation takes depends, of
course, on the trace being inspected. It can be sub-
stantially larger than the execution itself if the pro-
gram executes many small tasks, and can be shorter
than executing the actual program in the opposite
case: few, large tasks.

8 Using IDRA

In this section we will show examples of the use of
IDRA on real execution traces. The traces we will
use have been generated by the &—-Prolog system for
and—parallelism, and by &—Prolog and Muse for or—
parallelism. The generation of the traces correspond-
ing to or—parallelism needed of a slight modification
of &-Prolog to make it issue an event each time a
choice-point is created.

The reason to generate or—parallel traces using &—
Prolog was that or—parallel schedulers (and that of
Muse in particular) usually make work available to
parallel execution only for some choicepoints. This,
in our approach, would not allow us to find out the
maximum or ideal parallelism hidden in the program,
since opportunities for performing work in parallel
would be lost. This is why &—Prolog-generated or—
parallel traces achieve better speedups than the corre-
sponding ones generated by Muse: more tasks can be
scheduled for parallel execution. On the other hand,
the reason why the Muse scheduler does not sched-
ule all possible tasks for parallel execution is that
the added overhead would possibly result in poorer
speedups.

8.1 Description of the Programs

We include a brief description of the programs used to
test the tool, in order to help in understanding their
behavior, both in simulation and in execution. The
sequential execution time and the number of tasks
generated by each benchmark program are shown in
Table 2, as an indication of the program size. The
figures that appear next to some of the benchmark
names represent the size of the input data: for ma-
trix, the number of rows and columns of the matrix
to be multiplied; for quicksort, the length of the list
to be sorted, and for bpebpf, bpesf and pesf, the
number of factors in the series.

e Programs with and—parallelism

deriv performs symbolic derivation.
occur counts occurrences in lists.
tak computes the Takeuchi function.

boyer adaptation of the Boyer-Moore theorem
prover.

matrix square matrix multiplications (the vec-
tor times vector multiplications are sequen-
tial tasks).

quicksort standard quicksort program, using
append/3 instead of difference lists.



|| Program | Time (ms) | Number of tasks generated ||

deriv 240 2109

occur 1750 126

tak 610 4744

boyer 110 747
matrix—10 170 321

matrix-15 550 726

matrix—20 1270 1270
matrix-25 2460 2047
quicksort—400 590 1230
quicksort—600 1070 1500
quicksort—750 1500 1700
bpebpf-30 220 1395

bpesf-30 180 90

pesf-30 200 93

|| &—Prolog or traces | Muse traces ||

domino 130 1002 340
queens 70 458 176
witt 5090 1878 230
lanford1 160 458 130
lanford2 2090 2047 832

Table 2: Some information about each benchmark program

bpebpf calculates the number e, using the se-
ries e = & + 4+ 2 + -+ A divide-and-
conquer scheme is used both for the series
and for each of the factorial calculations.
This causes the generation of a very large
number of tasks.

bpesf is similar to above, but each factorial
is computed sequentially. The number of
tasks is much smaller than above.

pesf also calculates e using the same series, but
here each factor is computed in parallel
with the rest of the series, from left to right.

Programs with or—parallelism:
domino calculates all the legal sequences of 7

dominoes.

queens computes all the solutions to the 5
queens problem.

witt is a conceptual clustering program.

lanford1l determines some elements needed to
complete a Lanford sequence.

lanford2 similar to lanford1, but with differ-
ent data structures.

8.2 Maximum Parallelism Performance

Tables 3 and 4 show the maximum speedup attain-
able according to the simulation, the number of pro-
cessors at which this speedup is achieved, and the
relative efficiency with respect to a linear speedup,
i.e., efficiency = % for the programs mentioned
above.

Programs which require a large number of proces-
sors despite the problem to be solved not being very
big are usually those where tasks are small. This
would suggest that a parallel system would need some
sort of granularity control to execute them efficiently.
This turns out not to be always the case for real ex-
ecutions on shared memory multiprocessors with a
small number of processors,” as we will see in Sec-
tion 8.3 and Table 5, but will certainly be an issue in
larger or distributed memory machines.

In programs with a regular structure, such as ma-
trix, potential speedups grow accordingly with the
size of the problem, which in turn determines the
number of tasks available. However, in programs
where the length of the tasks is variable and the ex-
ecution structure is not homogeneous (i.e., quick-

5In addition, &-Prolog concept of local work allows to speed
up programs with small granularity, since stealing local tasks
is much cheaper than stealing foreign tasks

10



|| Program Speedup | Processors | Efficiency |Tpej”go -
deriv 100.97 378 0.26 000 —
occur 31.65 49 0.64 1000
tak 44.16 315 0.14 ﬁi
boyer 3.49 11 0.31 16.00
matrix-10 26.86 80 0.33 o
matrix—15 58.70 170 0.34 1200 /
matrix—20 101.91 286 0.35 ig
matrix—25 161.68 462 0.34 1000 /
quicksort—400 3.93 15 0.26 9.00 /
quicksort—600 | 4.07 17 0.23 S
quicksort—750 4.28 19 0.22 6.00 /
bpebpf-30 23.21 260 0.08 |
bpest-30 10.11 31 0.32 3001 |
pesf-30 2.59 25 0.10 200 /
1.00
0.00 20.00 40.00 60.00 80.00 100.00 Processors
Table 3: Estimated maximum and-—parallelism
Figure 7: Computation of e
|| Program | Speedup | Processors | Efficiency ||
domino 32.01 59 0.54 Sposkp _
110.00 matrix 25
queens 18.14 40 0.45 105.00
witt 1.12 25 0.04 o 7
lanford1 19.72 44 0.44 90.00
lanford2 114.87 475 0.24 o 7
75.00 //
70.00
Table 4: Estimated maximum or—parallelism 6500 /f
oo 7
sort), the expected maximum speedup achievable  soo £
grows very slowly with the size of the problem. In %
the case of quicksort, the sequential parts caused by = 0
the partitioning and appending of the list to be sorted
finally dominate the whole execution, preventing fur- ;5)3
ther speedups and giving an example that confirms 1500
once again Amhdal’s law. 1000
e
0.00 50.00 100.00 150.00 Processors

8.3 Ideal Parallelism Performance

For each benchmark we have determined the ideal
parallelism and the actual speedups on one to nine
processors (Table 5 and 6). For each benchmark,
the rows marked real correspond to actual execu-
tions in real systems (&—Prolog for the and—parallel
benchmarks, and Muse for the or—parallel ones). The
rows marked subsets and andp correspond to sim-
ulations performed using those algorithms. There
are two additonal subdivisions for each benchmark
in the or—parallel case, under the column “Tracing
System”, which reflect in which system were gath-
ered the traces.
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Figure 8: 25x25 matrix multiplication

The data obtained for and-parallelism with &—
Prolog was gathered using a version of the scheduler
with reduced capabilities (for example, no parallel
backtracking was supported) and a very low over-
head, so that the andp simulation and the actual ex-
ecution be as close as possible. In general the results
from the simulation are remarkably close to those
obtained from the actual execution, which seems to
imply that the simulation results are quite accurate



Program Scheduling Processors
Algorithm | 1 [ 2 [ 8 | 4 | 5 | 6 [ 7 ]| 8 | 9
subsets 1.00 | 1.99 | 2.99 | 3.97 | 495 | 5.93 | 6.90 | 7.86 | 8.82
deriv andp 1.00 | 1.99 | 2.97 | 3.94 | 4.86 | 5.77 | 6.79 | 7.56 | 8.40
real 1.00 | 2.00 | 3.00 | 4.00 | 4.80 | 4.80 | 6.00 | 8.00 | 8.00
subsets 1.00 | 1.99 | 2.97 | 3.97 | 449 | 5.14 | 5.96 | 7.10 | 873
occur andp 1.00 | 1.99 | 2.55 | 3.28 | 3.97 | 4.45 | 5.12 | 5.92 | 7.08
real 1.00 | 1.96 | 2.96 | 3.97 | 4.48 | 5.83 | 5.83 | 7.00 | 8.75
subsets 1.00 | 1.99 | 2.97 | 3.93 | 4.86 | 5.77 | 6.65 | 7.51 | 8.33
tak andp 1.00 | 1.97 | 2.95 | 3.91 | 4.85 | 5.76 | 6.57 | 7.54 | 8.30
real 1.00 | 1.90 | 2.65 | 3.58 | 4.35 | 5.08 | 5.54 | 6.09 | 6.77
subsets 1.00 | 1.78 | 2.34 | 2.65 | 2.84 | 2.94 | 3.05 | 3.09 | 3.13
boyer andp 1.00 | 1.79 | 2.37 | 2.76 | 3.02 | 3.15 | 3.25 | 3.30 | 3.31
real 1.00 | 1.57 | 1.83 | 2.20 | 2.20 | 2.20 | 2.20 | 2.20 | 2.20
subsets 1.00 | 1.98 | 2.91 | 3.86 | 4.74 | 5.57 | 6.41 | 7.26 | 8.02
matrix—10 andp 1.00 | 1.97 | 2.70 | 3.59 | 4.59 | 5.21 | 6.09 | 6.86 | 7.54
real 1.00 | 1.88 | 2.83 | 3.39 | 4.25 | 5.66 | 5.66 | 6.80 | 8.50
subsets 1.00 | 1.99 | 2.96 | 3.94 | 491 | 5.84 | 6.76 | 7.71 | 8.62
matrix—15 andp 1.00 | 1.97 | 2.85 | 3.51 | 440 | 5.36 | 6.37 | 7.15 | 7.84
real 1.00 | 1.96 | 2.89 | 3.92 | 4.58 | 5.50 | 6.87 | 7.85 | 7.85
subsets 1.00 | 1.99 | 2.98 | 3.97 | 494 | 592 | 6.88 | 7.85 | 8.80
matrix—20 andp 1.00 | 1.99 | 2.78 | 3.56 | 4.36 | 5.23 | 6.07 | 6.95 | 8.01
real 1.00 | 1.95 | 2.95 | 3.84 | 4.88 | 5.77 | 6.68 | 7.47 | 8.46
subsets 1.00 | 1.99 | 2.98 | 3.98 | 497 | 5.94 | 6.92 | 7.91 | 8.88
matrix—25 andp 1.00 | 1.97 | 2.73 | 3.51 | 444 | 5.54 | 6.41 | 7.34 | 7.98
real 1.00 | 1.98 | 2.96 | 3.96 | 491 | 5.85 | 6.83 | 7.93 | 8.78
subsets 1.00 | 1.76 | 2.32 | 2.69 | 2.95 | 3.15 | 3.28 | 3.35 | 3.40
quicksort—400 | andp 1.00 | 1.76 | 2.26 | 2.66 | 3.00 | 3.23 | 3.68 | 3.60 | 3.60
real 1.00 | 1.73 | 2.26 | 2.68 | 3.10 | 3.27 | 3.47 | 3.47 | 3.47
subsets 1.00 | 1.80 | 2.41 | 2.84 | 3.15 | 3.38 | 3.563 | 3.64 | 3.71
quicksort—600 | andp 1.00 | 1.75 | 2.25 | 2.75 | 3.20 | 3.34 | 3.79 | 3.97 | 4.00
real 1.00 | 1.72 | 2.37 | 2.74 | 3.14 | 3.45 | 3.68 | 3.82 | 3.96
subsets 1.00 | 1.78 | 2.36 | 2.75 | 3.04 | 3.25 | 3.38 | 3.47 | 3.53
quicksort—750 | andp 1.00 | 1.71 | 2.42 | 2.60 | 3.13 | 3.55 | 3.66 | 3.75 | 3.67
real 1.00 | 1.82 | 241 | 2.88 | 3.40 | 3.65 | 3.94 | 4.05 | 4.16
subsets 1.00 | 1.96 | 2.88 | 3.74 | 4.60 | 5.41 | 5.41 | 5.41 | 5.41
bpebpf-30 andp 1.00 | 1.93 | 2.81 | 3.69 | 4.30 | 5.16 | 5.60 | 6.32 | 6.98
real 1.00 | 1.83 | 2.44 | 3.66 | 4.40 | 4.40 | 5.50 | 5.50 | 7.33
subsets 1.00 | 1.96 | 2.88 | 3.75 | 4.53 | 5.18 | 5.99 | 6.33 | 6.75
bpesf-30 andp 1.00 | 1.88 | 2.59 | 3.27 | 3.67 | 4.23 | 4.56 | 5.08 | 5.12
real 1.00 | 1.80 | 2.57 | 3.60 | 4.50 | 4.50 | 4.50 | 6.00 | 6.00
subsets 1.00 | 1.47 | 1.74 | 1.92 | 2.05 | 2.14 | 2.20 | 2.26 | 2.31
pest-30 andp 1.00 | 1.41 | 1.65 | 1.83 | 1.95 | 2.02 | 2.10 | 2.18 | 2.26
real 1.00 | 1.33 | 1.66 | 1.81 | 1.81 | 1.81 | 2.00 | 2.00 | 2.22

Table 5: Ideal and—parallelism
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and useful. Usually, the results with the subsets
scheduling algorithm are slightly better, but due to
its non optimality, it is surpassed sometimes by the
andp algorithm and by &—Prolog itself (see, for ex-
ample, the row corresponding to the quicksort—750
benchmark). With respect to the relationship be-
tween the speedups obtained by the andp algorithm
and the actual &—Prolog speedups, sometimes the ac-
tual speedups are slightly better than the simulation
and sometimes they are not, but in general they are
quite close. This is understandable, given the heuris-
tic nature of these algorithms.

Benchmarks that show good performance in Ta-
bles 3 and 4 have good speedups here also. But
the inverse is not true: benchmarks with low per-
formance in maximum parallelism can perform very
well in actual executions (see, for example, the data
for bpebpf). Figure 7 shows the simulated speedups
for the benchmark bpebpf; Figure 8 shows a simi-
lar figure for matrix multiplication. The speedup in
the first one, although showing a logarithmic behav-
ior, is quite good for a reduced number of processors.
The second one has a larger granularity and shows
almost linear speedups with respect to the number of
processors. When the number of processors increases
beyond a limit, the expected sawtooth effect appears
due to the regularity of the tasks and their more or
less homogeneous distribution among the available
processors.

Concerning the data for or—parallelism, Muse per-
forms somewhat worse than the prediction given by
the simulation when &-Prolog or traces are used.
This is not surprising, since Muse has an overhead
associated with task switching (due to copying) that
is not reflected in the traces. Moreover, the traces
correspond to the case in which all or branches are
available for parallel execution, whereas the traces
generated by Muse only contain the branches that
the Muse scheduler considered worthwhile for parallel
execution. Thus, in the case of the or traces gener-
ated by & Prolog, more (and smaller) parallel tasks
(and potential parallelism) exist — thus the higher
speedups predicted by the tool, which largely sur-
pass those obtained from real executions. In the case
of simulations using Muse traces, the predictions are
more accurate (but then, they do not reflect the par-
allelism available in the benchmark, but rather that
exploited by Muse). In general, the results show the
simulation to be highly accurate and reliable. In fact,
the system has been used successfully in several stud-
ies of parallelizing transformations [DJ94] and paral-
lelizing compilers [BGH94b].

13

9 Conclusions and Future Work

We have reported on a technique and a tool to com-
pute ideal speedups using simulations which uses as
input data information about executions gathered us-
ing real systems. We have applied it to or— and in-
dependent and—parallel benchmarks, and compared
the results with those from actual executions. The
results show that the simulation is quite reliable and
corresponds well with the results obtained from ac-
tual systems, in particular with those obtained from
the &-Prolog system. This corresponds with expec-
tations, since the particular version of the &—Prolog
systems used has very little overhead associated with
parallel execution.

The technique can be extended for other classes
of systems and execution models (also beyond logic
programming), provided that the data which models
the executions can be gathered with enough accuracy.

We plan to modify the simulator in order to sup-
port other execution paradigms, such as Andorra-
I [SCWY90], ACE [GHPC94], AKL [JH91], IDIOM
[GSCYHI1], etc. and to study other scheduling algo-
rithms. Finally, we believe the same approach can be
used to study issues other than ideal speedup, such
as memory consumption, copying overhead, etc.
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