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Abstract: Several types of parallelism can be exploited in logic programs while preserving
correctness and efficiency, i.e. ensuring that the parallel execution obtains the same results as
the sequential one and the amount of work performed is not greater. However, such results do
not take into account a number of overheads which appear in practice, such as process creation
and scheduling, which can induce a slow-down, or, at least, limit speedup, if they are not
controlled in some way. This paper describes a methodology whereby the granularity of parallel
tasks, i.e. the work available under them, is efficiently estimated and used to limit parallelism
so that the effect of such overheads is controlled. The run-time overhead associated with the
approach is usually quite small, since as much work is done at compile time as possible. Also,
a number of run-time optimizations are proposed. Moreover, a static analysis of the overhead
associated with the granularity control process is performed in order to decide its convenience.
The performance improvements resulting from the incorporation of grain size control are shown
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to be quite good, specially for systems with medium to large parallel execution overheads.
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1 Introduction

It has been shown (see e.g. [12]) that several types
of parallelism can be exploited in logic programs
while preserving correctness (i.e. the parallel ex-
ecution obtains the same results as the sequen-
tial) and efficiency (i.e. the amount of work per-
formed is not greater or, at least, there is no
slow-down). However such results assume an ide-
alized execution environment in which a number
of practical overheads are ignored, such as those
associated with task creation, possible task mi-
gration of tasks to remote processors, the associ-
ated communication overheads, etc. Due to these
overheads, and if the granularity of parallel tasks,
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i.e. the “work available” underneath them, is too
small, it may happen that the costs are larger
than the benefits in their parallel execution. This
makes it desirable to devise a method whereby
the granularity of parallel goals and their number
can be controlled. Granularity control has been
studied in the context of traditional program-
ming [16, 17], functional programming [13, 14],
and also logic programming [15, 4, 23, 5].

The benefits from controlling parallel task
size will obviously be greater for systems with
greater parallel execution overheads. In fact,
in many architectures (e.g. distributed memory
multiprocessors, workstation “farms”, etc.) such
overheads can be very significant and, in them,
automatic parallelization cannot in general be
done realistically without granularity control. In
some other architectures where the overheads for
spawning goals in parallel are small (e.g. in small
shared memory multiprocessors) granularity con-
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trol is not essential but it can also achieve impor-
tant improvements in speedup.

The aim of granularity control is to change
parallel execution to sequential execution or vice-
versa based on some conditions related to grain
size and overheads. However, granularity control
itself can induce new overheads, which should ob-
viously be minimized. Since granularity control
cannot in general be done completely at compile-
time, one way to minimize its impact is to do as
much work at compile-time as possible and rel-
egate some tests and final decisions to run-time.
One way to do this is by generating at compile-
time cost functions which estimate grain size as a
function of input data size, which are then eval-
uated at run-time when such size is known. This
was proposed in [4] in the context of logic pro-
grams and by Rabhi and Manson in the context
of functional programs [19]. An alternative is
to determine only the relative cost of goals [23],
which can be specially useful for optimizing an
on-demand run-time scheduler, but may not be
as effective in reducing task creation cost. These
approaches are in contrast with others, such as
that of Sarkar [21] who bases his algorithm on
information obtained via runtime profiling rather
than compile-time analysis. Hudak considers “se-
rial combinators” with reasonable grain sizes [9],
but does not discuss the compile time analysis
necessary to estimate the amount of work that
may be done by a call.

We address the problem by using the over-
all approach originally sketched in [4] of com-
puting complexity functions and performing pro-
gram transformations at compile-time based on
such functions, so that the transformed program
automatically controls granularity. However, the
central topic of [4] was really the problem of es-
timating upper bounds to task execution times,
leaving as future work the determination of how
that information was to be used. The method de-
scribed in this paper attempts to fill this gap by
illustrating and offering solutions for the many
problems involved, for both the cases when up-
per and lower bound information regarding task
granularity is available, and for a generic execu-
tion model. Such problems include on one hand
estimating the cost of goals, of the overheads as-
sociated with their parallel execution, and of the
granularity control technique itself. On the other
hand there is also the problem of devising, given
that information, efficient compile-time and run-
time granularity control techniques.

We know of no other work which describes
a complete granularity control system for logic
programs, discusses the many problems that arise

(some of them more subtle than they appear at
first sight) and provides solutions to them in the
generality that we present our work.

Space limitations prevent us from discussing
several issues completely or including proofs. We
refer the reader to [7] for details. Also, of the
different types of overheads which may appear in
a parallel execution when comparing it to a se-
quential execution, which may include not only
execution time-related overheads but also, for ex-
ample, memory consumption overheads, for con-
ciseness, and because we are more concerned with
speedups, we concentrate mainly on time-related
overheads. However, we conjecture that a sim-
ilar treatment to that which we propose can be
applied to the analysis and control of memory-
related overheads.

2 A General Model

We start by discussing the basic issues to be ad-
dressed in our general approach to granularity
control, in terms of a generic execution model.
In the following sections we will particularize to
the case of logic programs.

2.1 Deriving Sufficient Conditions

We first discuss how conditions for deciding be-
tween parallel and sequential execution can be
devised. We consider a generic execution model:
let g = g91,...,9, be a task such that subtasks
J1,---,9n are candidates for parallel execution,
T represents the cost (execution time) of the se-
quential execution of g, and T; represents the cost
of the execution of subtask g;.

There can be many different ways to execute g
in parallel, involving different choices of schedul-
ing, load balancing, etc., each having its own cost
(execution time). To simplify the discussion, we
will assume that T}, represents in some way all
of the possible costs. More concretely, T}, < T
should be understood as “Ts is greater or equal
than any possible value for T},”.

In a first approximation, we assume that the
points of parallelization of g are fixed. We also
assume, for simplicity, and without loss of gen-
erality, that no tests (such as, perhaps, “inde-
pendence” tests [12]) other than those related to
granularity control are necessary.

Thus, the purpose of granularity control will
be to determine, based on some conditions,
whether the g;’s are to be executed in parallel
or sequentially. In doing this, the objective is to
improve the ratio between the parallel and se-
quential execution times. An interesting goal is
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to ensure that T, < T. In general, this condition
cannot be determined before executing g, while
granularity control should intuitively be carried
out ahead of time. Thus, we are forced to use ap-
proximations. At this point one clear alternative
is to give up on strictly ensuring that T, < T and
use some heuristics that have good average case
behavior. On the other hand, it is not easy to find
such heuristics and, also, it is of obvious practical
importance to be able to ensure that parallel ex-
ecution will not take more time than the sequen-
tial one. This suggests an alternative solution:
evaluating a simpler condition which neverthe-
less can be proved to ensure that T, < Ts. Such
a condition can be based on computing an upper
bound for T}, and a lower bound for 7. Ensur-
ing T, < T, corresponds to the case where the
action taken when the condition does not hold
is to run sequentially, i.e. to a philosophy were
tasks are executed sequentially unless parallel ex-
ecution can be shown to be faster. This is useful
when “parallelizing a sequential program.” This
approach is discussed in the following section.
The converse case of “sequentializing a parallel
program”, in which detecting when the opposite
condition Ty < T}, holds is the objective, is con-
sidered in Section 2.1.2.

2.1.1 Parallelizing a Sequential Program

In order to derive a sufficient condition for the
inequality T, < 7T we derive upper bounds for
the left-hand-side and lower bounds for the right-
hand-side, i.e. a sufficient condition for T}, < T}
is T < Tt, where T} denotes an upper bound of
T, and T! a lower bound of T;. We will use the
superscripts / and u to denote lower and upper
bounds respectively throughout the discussion.
Assume that there are p free processors in the
system at the instant in which task g is about
to be executed. Assume also that p > 2 (if
there is only one processor, then execution is
performed sequentially) and let m be the low-
est integer which is greater than n/p, i.e. the
celhng of 2, denoted m = [2]. We have that
Spaw + C*%, where SPpaw is an upper
bound on the cost of creating the n parallel sub-
tasks, and C'* an upper bound on the execution
of g itself. Spaw¥ will be dependent on the par-
ticular system in which task g is going to be exe-
cuted. It can be a constant, or a function of sev-
eral parameters, such as input data size, number
of input arguments, number of tasks, etc. and can
be experimentally determined. We now consider
how C" can be computed. Let C}* be an up-
per bound on the cost of subtask g;, and assume

that C{,...,C} are ordered in descending order
of cost. Two possible ways of computing C* are
the following: C* = Y"7* | C¥; or C* = m C}.
Each C}* can be considered as the sum of two
components: Cj = Sched} + T}, Sched} de-
notes the time taken from the point in which
the parallel subtask g; is created until its execu-
tion is started by a processor (possibly the same
processor that created the subtask), i.e. the cost
of task preparation, scheduling, communication
overheads, etc.! T denotes the time taken by
the execution of g; disregarding all the overheads
mentioned before. T! can be computed as fol-
lows: TL =T +---+T! , where T is a lower
bound of the cost of the (sequential) execution of
subtask g;.

The following two theorems summarize the
previous discussion:

Theorem 2.1 If Spaw“+> 1" C¥ < T! +---+
T! , then T, < Ts.

Theorem 2.2 If Spaw“+m C} < T! +---+T¢
then T, < T,

As mentioned in the introduction, bounds on
execution costs often need to be evaluated to-
tally or partially at run-time, and thus also the
condition above. It would be desirable to make
this evaluation be as efficient as possible. There
is clearly a tradeoff between the evaluation cost
of such a sufficient condition and its accuracy.
A gufficient condition with a simpler evaluation
than 2.1 and 2.2 is given below, based on a series
of reasonable further assumptions.

Assume that it is ensured that gy,...,g, are
going to be executed in a time no greater than
that of their sequential execution (this can be
ensured for example in the case of logic pro-
grams for certain execution platforms if the tasks
are “independent”) and that Sched¥, ..., Sched®
are ordered in descending order of cost. Let
Thres" be a threshold computed using either one
of the following expressions: Thres* = Spaw" +
m Sched; or Thres* = Spaw® + »_;* | Sched.

Theorem 2.3 If there exist at least m + 1 tasks
Gis--->gm+1 such that for all i, 1 <i < (m+1),
Thres* < T, then T, < Tj.

We treat now a slightly more complex case
in which we also consider other costs, including
the cost of granularity control itself: assume now
that the execution of g; takes T; time steps, such

INote that in some parallel systems, such as &-Prolog
[11], Sched} can in some cases be zero, since there is no
overhead associated with the preparation of a parallel task
if it is executed by the same processor as the one which
created the task.
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that T; = T, + W;, where W; is some “extra”
work due to either parallel execution itself (for
example the cost of accessing remote references)
or granularity control or both of them. Let [
(0 <1 < n) be the tasks for which we know
that W; # 0 (equivalently, T; > T,,). Assume
that W,...,W;* are ordered in descending or-
der of cost, and let r = min(l,m). Then, we can
compute a new threshold, Thresj,, by adding W
(Thres? = Thres*+ W) to the previous thresh-
old (Thres*). W can be computed in two possi-
ble ways: W =3, W¥ or W =r Wi

Theorem 2.4 If there exist at least m + 1 tasks
G1y- -3 Gmi1 such that for alli, 1 <i<(m+1),
Thres? <T. , then T, < Tj.

2.1.2 Sequentializing a Parallel Program

Assume now that we want to detect when T <
T}, holds, because we have a parallel program and
want to profit from performing some sequential-
izations. In this case we can compute Tll, and T}
Let T} be a lower bound on the execution time
of g;. Tzl, can be determined in several ways:

1.If n < p then:
max(T},...,T!) else:
|_%'| min(T¢,...,T!).

n

T} = Spaw' +
T = Spaw' +

2. T} = Spaw' + ¥ | T} where k = [2] and
Ti,...,T. are ordered in ascending order.

Tl o,

I _ !
3. T, = Spaw’ + >

The determination of 7! will depend, of
course, on the way g; is going to be executed.
If the execution is going to be performed in par-
allel with no granularity control, with granularity
control, or sequentially, we compute T}, T}, or
T}, respectively. The determination of T} and
T}, is discussed in Section 7.

We can choose the maximum of the differ-
ent possibilities for computing TII,. In general,
if there are mn different choices zi,...,z, for

computing T}, (T}, respectively) we will choose

TIZ, = max(zy,...,z,) ( Ty = min(zy,...,z,),
respectively).
2.2 Compile-time vs. Run-time

Control

The evaluation of the sufficient conditions pro-
posed in the previous sections can in principle be
performed totally at run-time, compile-time or
partially at each of them. For example, it might
be possible to determine at compile time if the

condition expressed in Theorem 2.3 will always
be true when evaluated at run-time. Let C! be
a lower bound of the cost of each g;, 1 < i < n,
then if Thres* < (n —m)C! the condition of the
theorem holds, since (n —m)C! is a lower bound
onT, ., +---+T,. Clearly, in this case it is
not necessary to perform any granularity control
and tasks can always be executed in parallel. The
converse case is also possible where tasks can be
statically determined to be better executed se-
quentially. Thus, from the granularity control
point of view program parts can be classified
as parallel (all the performed parallelizations are
unconditional), sequential (there are no parallel
tasks), and performing granularity control (tests
based on granularity information are performed
at run-time in order to decide between parallel
or sequential execution). Whether it is done at
compile-time or at run-time, in order to perform
granularity control two basic issues have to be
addressed: how the bounds on the costs and over-
heads which are the parameters of the sufficient
conditions are computed (cost and overhead anal-
ysis) and how the sufficient conditions are used
to control parallelism (granularity control). They
are the subjects of the following sections. Both of
these issues imply in general both compile-time
and run-time techniques in our approach.

2.2.1 Task Cost Analysis

Since task cost is not in general computable at
compile-time, we are forced to resort to approxi-
mations and, possibly, to performing some work
at run-time. In fact, as pointed out in [4], since
the work done by a call to a recursive procedure
often depends on the size of its input, such work
cannot in general be estimated in any reasonable
way at compile time and for such calls some run-
time work is necessary. The basic approach used
is as follows: given a call p, an expression ®,(n) is
computed that a) it is relatively easy to evaluate,
and b) it approximates Cost,(n), where Cost,(n)
denotes the cost of computing p for an input of
size n. The idea is that ®,(n) is determined at
compile time. It is then evaluated at run-time,
when the size of the input is known, yielding an
estimate of the cost of the call. In the follow-
ing we will refer to the compile-time computed
expressions ®,(n) as cost functions.

As mentioned in Section 2 the approximation
of the condition used to decide between paral-
lelization and sequentialization can be based ei-
ther on some heuristics or on a safe approxima-
tion (i.e. an upper or lower bound). For the
latter approach we were able to show sufficient
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conditions for parallel execution while preserv-
ing efficiency. Because of these results, we will
in general require ®,(n) to be not just an ap-
proximation, but also a bound on the actual
execution cost. Fortunately, as mentioned be-
fore, much work has been presented on (time)
complexity analysis of programs (see for example
[18, 22, 20, 2, 21, 24, 6]). The most directly ap-
plicable are [5, 3] which present methods for stat-
ically estimating cost functions for predicates in
a logic program. The two approaches have much
in common but they differ in the way the approx-
imation is done. In [5] upper bounds of task costs
are computed, that is Costp(n) < ®,(n),Vn,
while in [3], to be discussed later, the converse
approximation is done: Cost,(n) > ®,(n),Vn.

Example 2.1 Consider the procedure q/2 de-
fined as follows:

q(d, 1.
q(HIT],XIY]):- X is H + 1, q(T,Y).

where the first argument is an input argument.
Assume that the cost unit is the number of res-
olution steps. In a first approximation, and for
simplicity, we suppose that the cost of a resolu-
tion step (i.e., procedure call) is the same as that
of the is/2 builtin. With these assumptions, the
cost function of q/2 is Costy(n) = 2 n+ 1, where
n is the size of the input list (first argument). O

2.2.2 Parallelization Overhead Analysis

Regarding the determination of the overheads
that appear together with the costs in the suf-
ficient conditions of Section 2.1.1, as mentioned
there, this is a more or less trivial task in sys-
tems where such costs can be considered con-
stant. However, it is often the case that such
costs have, in addition to a constant component,
other components which can be a function of sev-
eral parameters, such as input data size, number
of input arguments, number of tasks, number of
active processors in the system, type of proces-
sor, etc., in which case some run-time evaluation
will be needed. For example, in a distributed
system, task spawning cost is often proportional
to data size, since in many models a complete
closure (a call plus its arguments) is sent to the
remote processor. Thus, the evaluation of the
overheads also implies in general the generation
at compile-time of a cost function, to be evalu-
ated at run-time when parameters (such as data
size in our previous example) are known.

2.2.3 Performing Granularity Control

Let us assume that techniques, such as those de-
scribed in general terms above, for determining
task costs and overheads are given. Then, the
remainder of the granularity control task is to
devise a way to actually compute such costs and
then control task creation using such informa-
tion.

We take again the approach of doing as much
of the work as possible at compile-time. We
propose performing a transformation of the pro-
gram in such a way that the cost computations
and spawning decisions are encoded in the pro-
gram itself, and in the most efficient way possi-
ble. The idea is to postpone the actual computa-
tions and decisions until run-time when the pa-
rameters missing at compile-time, such as data
sizes or processor load, are available. In par-
ticular, the transformed programs will perform
the following tasks: compute input data sizes;
use those sizes to evaluate the cost functions; es-
timate the spawning and scheduling overheads;
decide whether to schedule tasks in parallel or
sequentially; decide whether granularity control
should be continued or not, etc.

3 Cost Analysis in LP

We now further discuss the cost analysis prob-
lem in the context of logic programs. We distin-
guish between the cases of and-parallelism and
or-parallelism.

3.1 Cost Analysis for

AND-Parallelism

In (goal level) and-parallelism the units being
parallelized are goals. We have developed a lower
bound goal cost analysis (which also includes a
non-failure analysis) which we briefly sketch (de-
tails can be found in [3]). The problem when
estimating lower bounds is that in general it is
necessary to account for the possibility of fail-
ure of head unification, leading a naive analy-
sis to always derive a trivial lower bound of 0.
Given (an upper approximation of) mode and
type information, the analysis of [3] can detect
procedures and goals which can be guaranteed
not to fail. The technique is based on an intu-
itively very simple notion, that of a (set of) tests
“covering” the type of a variable. Conceptually,
we can think of a clause as consisting of a set of
primitive tests on the actual parameters of the
call, followed by body goals. The tests at the be-
ginning determine whether the clause should be
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executed or not, and in general may involve pat-
tern matching, arithmetic tests, type tests, etc.
A type refers to a set of terms. For any given
clause, we refer to the conjunction of the primi-
tive tests that determine whether it will be exe-
cuted as “the tests of the clause;” the disjunction
of all the tests of the clauses that define a partic-
ular predicate will be referred to as “the test of
that predicate.” Informally, the test of a predi-
cate covers the type of a variable if binding this
variable to any value in the type, the test of the
predicate succeeds (the extension of this notion
to tuples of variables is straightforward).

An upper-bound cost analysis of goals can be
found in [5]. It is very similar and simpler than
that of lower bounds, since the fact that an up-
per bound on the actual run-time cost is being
computed allows assuming that each literal in
the body of the clause succeeds and also that all
clauses are executed (independently of whether
all solutions are required or not).

3.2 Cost analysis for

OR-Parallelism

The case of or-parallelism is similar to that of
and-parallelism except that the units being par-
allelized are branches of the computation rather
than goals. However, the cost analyses of the
previous sections can be adapted by simply tak-
ing into account the “continuation” of the choice
points being considered. As an example, con-
sider a clause h :— ...,L,Lq,...,L,.. Assume
that the predicate of literal L is p, and the defini-
tion of predicate p contains “a” “eligible” clauses:
{Cll,...,Cla}, where Cl; = h; :— b;. In the
OR-Parallel execution of literal L, the “a” choices
(each one corresponding to a clause of predicate
p) and their continuations (the rest of the L; and
the other goals L, 1 to Ly that may appear af-
ter them in the resolvent at the time L is left-
most) are executed in parallel. Let Cost., (z)
and Costr,(z) denote the cost of clause Cl; and
literal L; respectively, then the cost of the choice
corresponding to clause Cl;, denoted by Cost.p,
can be computed as follows: if we are comput-
ing lower bounds we have that Costl, (z) =

m
Costl, (z) + Y Costle (z), if non-failure is en-
=1

sured for clause Cl; and m is the first literal
for which non-failure is not ensured; or, alter-
natively, Cost!, (z) = Cost!, (z), if non-failure
is not ensured for clause Cl;. On the other
hand, when computing upper bounds we have

k
that Costy, (z) = Costy (z) + ) Cost} (x).
j=1

Lack of space prevents us from describing in de-
tail the determination of L, 1 to Ly, the contin-
uations of the clause under consideration, but we
note that this cannot be obtained directly from
the call graph in the presence of last call opti-
mization. For this reason, we have devised an
adaptation of the notion of FOLLOW sets from
the theory of context free grammars [1] to address
this problem [7].

4 Granularity Control in LP

We now address the issue of performing the ac-
tual granularity control in logic programs.

4.1 Granularity Control for AND-

Parallelism

We use an example to explain the basic pro-
gram transformation intuitively since a formal
presentation would unnecessarily make it more
complex.?

Example 4.1 Consider the predicate q/2 de-
fined in Example 2.1, the predicate r/2 defined
as follows:

r([1,0).
r([X|RX], [X2|RX1]) :-
X1 is X = 2, X2 is X1 + 7, r(RX,RX1).

and the paral-
lel goal: ., 9X,Y) & r(X), ..., in which
literals q(X,Y) and r(Z) are executed in paral-
lel, as described by the & (parallel conjunction)
connective [11].

The cost functions of q/2 and r/2 are
Costy(n) =2 n+1 and Cost,(n) =3 n+1re-
spectively. Assume a number of processors p > 2.
According to Theorem 2.3, the previous goal can
safely be transformed into the following one:

., length(X, LX),
Cost_q is LX*2+1, Cost_r is LX*3+1,
(Cost_q > 15, Cost_r > 15
-> qX,Y) & rX); qX,Y), r(X)),

where a value for the threshold (T'hres®) of 15
units of computation is assumed, the variables
Cost_q and Cost_r denote the cost of the (se-
quential) execution of goal q(X,Y) and r(Z) re-
spectively, and LX denotes the length of the list
X. O

2 Although presenting the technique proposed in terms
of a source-to-source transformation is convenient for clar-
ity and also a viable implementation technique, the trans-
formation can also obviously be implemented at a lower
level in order to reduce the run-time overheads involved
even further.
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4.2 Granularity Control for OR-
Parallelism

Consider the clause body ...,L,Ly,...,L,. in
the example in Section 3.2. This body can be
transformed in order to perform granularity con-
trol as follows: ..., (cond > L' ; L),Ly,..., Ly.
Where L' is the parallel version of L, and is cre-
ated by replacing the predicate name of L (p) by
another one, say p', such that p’ is the parallel
version of p, and is obtained from p by replacing
predicate name p with p' in all clauses of p. p' is
then declared as “parallel” by means of the ap-
propriate directive. If cond holds, then the literal
L' (parallel version of L) is executed otherwise L
is executed.

A problem with the use of a predicate level
parallelism directive is that either all or none of
its clauses are executed in parallel. Since there
can be differences of costs between clauses, this
can lead to worse load-balancing, so a better
choice can be the use of some declaration which
allows us to specify clusters of clauses such that
within each cluster clauses are executed sequen-
tially, and the different clusters are executed in
parallel. That way, we can have several parallel
versions of a predicate, each of them executed if
a particular condition holds. This is illustrated
in the following example, where a call to p in

.,P> 9, r. and predicate p are transformed
as follows:

., (comd_1

-> pl
; (cond_2 -> p2; p)), q, r.

p:- ql, 92, q3.

p:- rl, r2.
p:- sl, s2.
P-

pl:- q1, 92, q3 // p2:- ql1, 92, q3 //

pl:-r1, r2 // p2:- rl, r2.

pl:- s1, s2. p2:- s1, s2.

pl. P2.

5 Reducing Granularity

Control Overhead

The transformations proposed inevitably intro-
duce some new overheads in the execution. It
would be desirable to reduce this run-time over-
head as much as possible. We propose optimiza-
tions which include test simplification, improved
term size computation, and stopping granularity
control, where if it can be determined that a goal
will not produce tasks which are candidates for

parallel execution, then a version which does not
perform granularity control is executed.

In order to discuss the optimizations we need
to introduce some terms. We first recall the no-
tion of “size” of a term. Various measures can
be used to determine the “size” of an input, e.g.,
term-size, term-depth, list-length, integer-value,
etc. (see e.g. [5]). The measure(s) appropriate
in a given situation can generally be determined
by examining the operations performed in the
program. Let |- |, : X — NL be a func-
tion that maps ground terms to their sizes un-
der a specific measure m, where H is the Her-
brand universe, i.e. the set of ground terms of
the language, and N the set of natural num-
bers augmented with a special symbol 1, de-
noting “undefined”. Examples of such functions
are “list_length”, which maps ground lists to
their lengths and all other ground terms to L;
“term_size”, which maps every ground term to
the number of constants and function symbols
appearing in it; “term_depth”, which maps ev-
ery ground term to the depth of its tree repre-
sentation; and so on. Thus, |[a,b]]iist_length = 2,
but |f(a)list_tength = L. We extend the defini-
tion of | - |, to tuples of terms in the obvious
way, by defining the function Siz,, : H" — N ",
stuch that Sizpn((t1, - tn)) = (t1lms- - s ltnlm)-
Let I and I’ denote two tuples of terms, & a set
of substitutions and # a substitution. We also
define the set of states corresponding to a cer-
tain clause point as those states whose leftmost
goal corresponds to the literal after that program
point. We define the set of substitutions at a
clause point in a similar way.

Definition 5.1 [Comp function] Given a state
s1 corresponding to a clause point p;, the current
substitution 8 corresponding to that state, and
another clause point ps, we define comp(8, p2) as
the set of substitutions at point p, which corre-
spond to states that are in the same derivation
as s1- m

Definition 5.2

[Directly computable sizes] Consider a set ® of
substitutions at a clause point p; and another
clause point py. Sizy,(I') is directly computable
in py from Siz,(I) with respect to ® if exists a
(computable) function ¢ such that for all 6, 6',
0 € @, and 0’ € comp(8,p2), Sizm(16) is defined
and Siz,(I'0") = Y (Sizm(16)). n

Definition 5.3

[Equivalence of expressions] Two expressions E
and E' are equivalent with respect to the set of
substitutions ® if for all § € ® E@ yields the same
value as E'6 when evaluated. g
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5.1 Test Simplification

Informally, we can view test simplification as fol-
lows: the starting point is an expression which is
a function of the size of a set of terms. We try to
find an expression which is equivalent to it but
which is a function of a smaller set of terms. Also,
we apply standard arithmetic simplifications to
this expression. Since this new expression will
have less variables, simplification will be easier
and the corresponding simplified expression will
be less costly to compute.

Let us now formally describe the notion of
simplification of expressions. Consider the set of
substitutions ®' at clause point ps, just before
execution of goal g. Assume that we have an
expression E(Sizy,(I')) to evaluate at pa. The
objective is to find a program point p; and a set
of terms I such that Siz,(I") is directly com-
putable at p, from Siz,,(I) with respect to ®
with the function ¢, where ® is the set of sub-
stitutions at clause point p; and either p; = po
or py precedes py and E(Sizy,,(I')) appear after
p1- We have that E(¢(Sizn,(I)) is equivalent to
E(Sizy,(I')) with respect to ®'. Then we can
compute an expression E' which is equivalent to
E(¢(Sizm(I)) (by means of simplifications) with
respect to @' and its evaluation cost is less than
that of E(¢(Sizm(I)). The following example il-
lustrates this kind of optimization.

Example 5.1 Consider the
goal ..., q(X,Y) & r(X), . in Example 4.1.
In this example I = I' = (X); Siz(I') is di-
rectly computable from Siz(I) with respect to ®
with 1), where 1 is the identity function. Siz(I0)
is defined for all § in ®, since X is bound to a
ground list. Thus, we have that for all § € ® and
for all ' € comp(8,p2), Siz(I'8") = ¥ (Siz(I16)).
E(Siz(I)) = maz(2 Siz(X)+1,3 Siz(X)+1)+
15 < 2 Siz(X) + 143 Siz(X) + 1. Let us
now compute E'. We have that for all § € @,
maz(2 Siz(X)+1,3 Siz(X)+1) =3 Siz(X)+1,
so we have 3 Siz(X)+1+ 15 < 2 Siz(X) +
1+ 3 Siz(X) + 1 which is simplified to 15 <
2 Siz(X) + 1 and then to 7 < Siz(X) which is
E'. Using this expression we get a more efficient
transformed program than in Example 4.1:

., length(X, LX),
(LX>7 ->qE, VN &rX
;o aX, V), (X)),

O

In some cases test simplification avoids evalu-
ating cost functions, so that term sizes are com-
pared directly with some threshold. Assume that
we have a test of the form Costp(n) > G where
G is a number and Cost,(n) is a monotone cost

function on one variable for some predicate p.
In this case, a value k& can be found such that
Costp(k) < G and Cost,(k + 1) > G, so that the
previous expression can be reduced to n > k.

5.2 Stopping Granularity Control

An important optimization aimed at reducing the
cost of granularity control is based on detecting
when an invariant holds recursively on the condi-
tion to perform parallelization/sequentialization
and executing in those cases a version of the pred-
icate which does not perform granularity control
and executes in the appropriate way which cor-
responds to the invariant.

Example 5.2 Consider the predicate gsort/2
defined as follows:

gsort([], [1).

gsort([First|L1], L2) :-
partition(First, L1, Ls, Lg),
(gsort(Ls, Ls2) & gsort(Lg, Lg2)),
append(Ls2, [First|Lg2], L2).

The following transformation will perform gran-
ularity control based on the condition given in
Theorem 2.3 and the detection of an invari-
ant (tests have already been simplified —~we omit
details— so that the input data sizes are directly
compared with a threshold):

g_gsort([1, [1).
g_gsort([First|L1], L2) :-
partition(First, L1, Ls, Lg),
length(Ls,SLs), length(Lg,SLg),
SLs > 20 —>
(SLg > 20 ->
g_gsort(Ls,Ls2) & g_gsort(Lg,Lg2);
g_qgsort(Ls,Ls2), s_gsort(Lg,Lg2));
(SLg > 20 ->
s_gsort(Ls,Ls2), g_qgsort(Lg,Lg2);
s_gsort(Ls,Ls2), s_gsort(Lg,Lg2)),
append(Ls2, [First|Lg2], L2).

s_gsort([1, [1).

s_gsort ([First|L1], L2) :-
partition(First, L1, Ls, Lg),
s_gsort(Ls, Ls2), s_gsort(Lg, Lg2),
append(Ls2, [First|Lg2], L2).

Note that if the input size is less than the thresh-
old (20 units of computation in this case) then a
(sequential) version which does not perform gran-
ularity control is executed. This is based on the
detection of a recursive invariant: in subsequent
recursions this goal will not produce tasks with
input sizes greater or equal than the threshold,
and thus, for all of them, execution should be per-
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formed sequentially and obviously no granularity
control is needed. In [8] techniques are presented
for detecting such invariants. O

5.3 Reducing Term Size Computa-
tion Overhead

With regard to term size computation, the stan-
dard approach is to explicitly traverse terms, us-
ing builtins such as length/2. However such
computation can also be carried out in other ways
which can potentially reduce run-time overhead:

1. In the case where input data sizes to the
subgoals in the body that are candidates for
parallel execution are directly computable
from those in the clause head (an example
of this is the classical “Fibonacci” bench-
mark — see Example 7.1) such sizes can
be computed by evaluating an arithmetic
operation. Clause heads can supply their
input data size through additional argu-
ments.

2. Otherwise term size computation can be
simplified by transforming certain proce-
dures in such a way that they compute term
sizes “on the fly”. This technique is fully
described in [10].

3. In the cases where term sizes are com-
pared directly with a threshold it is not
necessary to traverse all the terms involved,
but rather only to the point at which the
threshold is reached.

6 Taking Into Account the
Cost of Granularity Con-
trol

As a result of the simplifications proposed in the
previous sections three different types of special-
ized versions of a predicate can be generated:
sequential, parallel with no granularity control,
and parallel with granularity control. In this sec-
tion we address the issue of how to select among
these versions. We can view this as a reconsider-
ation of the original problem of deciding between
parallel and sequential execution, addressed in
Section 2, but where we add the new issue of
deciding whether to perform granularity control
or not. Let T, T}, and T, denote the execu-
tion time of the sequential, parallel, and gran-
ularity control versions for the predicate corre-
sponding to a given call. The original problem

tackled in Section 2 can be viewed as determin-
ing min(Ts,Tp,T,). Essentially, what we would
now like to determine is min (T, Tp, Ty). Again,
this is not computable ahead of the execution of
the goals and we are once more forced to com-
pute an approximation based on heuristics or suf-
ficient conditions. We again take the latter ap-
proach, i.e. using sufficient conditions, which we
would in principle try to compute for each of the
six possible cases involved: T, < T,, T, < T,
T, <Ty, Ty <Ty, Ty <Tpand T, < T,. Since we
can only approximate these conditions an impor-
tant issue is the decision taken when none of such
conditions can be proved to hold. One solution
is to have a pre-determined order relation which
is used unless another relation can be proven to
be true. This corresponds to the two cases of
“sequentializing by default” or “parallelizing by
default” studied in Section 2, where only one con-
dition was considered. For example, a default or-
dering might be: Ty < T, < T}, which essentially
expresses a default assumption that the optimal
execution time is achieved when execution is per-
formed in parallel with granularity control unless
the contrary is proven. Goals are also executed
sequentially unless parallel execution is proven to
take less time. If the “no-slowdown” condition is
to be enforced, i.e. it is required that the sequen-
tial execution time not be exceeded, then, in all
pre-determined order relations we must have that
T, <Ty and Ty < T,

Note that these pre-determined order rela-
tions can be partial. In that case at some point
a heuristic has to be applied. The order between
two costs T7 and T» can then determined as fol-
lows:

1. If T} and T, are related in the pre-
determined order relation, then compute a
sufficient condition to prove the opposite
order;

2. else, if some sufficient condition to prove ei-
ther of the relations 77 < Ty or T < T}
holds then we choose the corresponding
one; otherwise the order can be determined
by means of some heuristics.

A good heuristic can be to use the average of the
lower and upper bound which are already com-
puted or take the average of the computed costs
of the different clauses of a predicate.
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7 Determining 7, and 7} of a
call

The determination of a bound for T has already
been addressed in the previous sections. There,
T, was simply assumed to be the same as T}, tak-
ing as its approximation the opposite bound to
that used for Ts. We now address the issue of de-
termining 7T}, more precisely and also determining
T,. For conciseness, we present the techniques by
means of an example.

Example 7.1 Let us consider a transformed
version of the £ib/2 predicate (g_fib/2) which
performs run-time granularity control:

g_fib(0,0).

g_fib(1,1).

g_fib(N,F) :-
N1 is N-1, N2 is N-2,
N > 15 >

(g_fib(N1,F1) & g_fib(N2,F2))
; (s_fib(N1,F1), s_fib(N2,F2)),
F is F1+F2.

s_fib(0,0).

s_fib(1,1).

s_fib(N,F) :-

N > 1, N1 is N-1, N2 is N-2,
s_fib(N1,F1), s_fib(N2,F2), F is F1+F2.
O

7.1 Cost of parallel execution with-

out granularity control: 7,
7.1.1 TUpper bounds

In general it is difficult to give a non-trivial up-
per bound on the cost of the parallel execution
of a given set of tasks, since it is difficult to pre-
dict the number of free processors that will be
available to them at execution time. Note that
a trivial upper bound can be computed in some
cases by assuming that all the potentially parallel
goals are created as separate tasks but they are
all executed by one processor.

Consider the predicate £ib/2 defined in Ex-
ample 7.1. Let Is denote the size of the in-
put (first argument) and T,(Is) the cost of the
parallel execution without granularity control of
a call to predicate £ib/2 for an input of size
Is. The following difference equation can be set
up for the recursive clause of £ib/2: T}'(Is) =
Cy(Is)+ Spaw*(Is)+ Sched" (Is)+ Ty (Is—1)+
Ty (Is —2) + C(Is) for Is > 1, where Cy(Is)
and C,(Is) represent the costs of the sequential

execution of the literals before and after the par-
allel call respectively, that is, Cy(Is) represents
the cost of N1 is N-1,N2 is N-2 and Cost,(Is)
the cost of F is F1+F2. The solution to this dif-
ference equation gives the cost of a call to £ib/2
for an input of size I's. The following boundary
conditions for the equation are obtained from the
base cases: T;(0) = 1 and T'(1) = 1.

7.1.2 Lower bounds

A trivial lower bound (taken non-failure into ac-
count, as discussed in [3]) can be computed

1

as follows: Ti(Is) = Wols)  Ghere W] repre-
sents the work performed by the parallel exe-
cution with no granularity control of a call to
predicate fib/2 for an input of size Is, and
can be computed by solving the following differ-
ence equation: W}(Is) = Ci(Is) + Spaw'(Is) +
Sched (Is)+W}(Is—1)+W}(Is—2)+CL(Is) for
Is > 1, with the boundary conditions: W}(0) = 1
and WE(1) = 1.

As an alternative, another value for T} (Is)
can be obtained by solving the following differ-
ence equation: T}(Is) = C}(Is) + Spaw'(Is) +
Sched'(Is) + T}(Is — 1) + CL(Is) for Is > 1,
with the boundary conditions: T}(0) = 1 and
T}(1) = 1. In this case, an infinite number of pro-
cessors is considered. Since in each “fork” there
are two branches, the longest of them (7(Is—1))
is chosen.

7.2 Cost of the execution with
granularity control: T

7.2.1 TUpper bounds

The following difference equation can be set up
for the recursive clause of fib/2: T(Is) =
Cy(Is)+Test(Is) + Spaw"(Is) + Sched"(Is) +
Ty (Is — 1) + Tj(Is — 2) + Cy(Is) for Is > 15.
We assume that all the potentially parallel goals
are created as separate tasks but they are all
executed by one processor, as is done in Sec-
tion 7.1.1.

For a call with Is = 15 there is no over-
head associated with parallel execution since it
is performed sequentially, so that the following
boundary conditions are obtained: T, (15) =
Test*(15) + T(15); and T*(Is) = T¥(15) for
Is < 15, where T*(15) denotes the sequential ex-
ecution time of a call to £ib/2 with an input of
size 15.
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7.2.2 Lower bounds

A trivial lower bound (taken non-failure into ac-
count) can be computed as follows: Tgl(I s) =
W (Is)

, where W/ represents the work performed
by the execution with granularity control of a
call to fib/2 for an input of size Is, which
can be computed by solving the following differ-
ence equation: W) (Is) = C}(Is) + Test'(Is) +
Spaw'(Is) + Sched' (I's) + Wl(Is — 1)+ W}(Is —
2) + C!(Is) for Is > 1, with the boundary
conditions: W}(15) = Test!(15) + T:(15), and
Wi(Is) = Ti(15) for Is < 15, where T:(15) de-
notes a lower bound on the sequential execution
time of a call to £ib/2 with an input of size 15.

Another value for Tj(Is) can be obtained
by solving the following difference equation:
Ti(Is) = Ci(Is) + Test'(Is) + Spaw'(Is) +
Sched! (Is) +Té (Is—1)+C!(Is) for Is > 1, with
the boundary conditions: T}(15) = Test!(15) +
Ti(15), and T}(Is) = Ti(15) for Is < 15.

8 Experimental Results

We have developed a granularity control system
based on the ideas presented for (independent,
goal level) and-parallelism in logic programs and
tested it with &-Prolog [11], a parallel Prolog sys-
tem, on a Sequent Symmetry multiprocessor us-
ing 4 processors. Table 1 presents results of gran-
ularity analysis (showing execution times in sec-
onds) for four representative benchmarks (more
results can be found in [7]) and for two levels of
task creation and spawning overhead (O): mini-
mal (m), representing the default overhead found
in the &-Prolog shared memory implementation
(which is very small — a few microseconds), and
an overhead (the &-Prolog system allows adding
arbitrary overheads to task creation via a run-
time switch) of 5 milliseconds (5), which should
be representative of a hierarchical shared mem-
ory system or of an efficient implementation on
a multicomputer with a very fast interconnect.
The program unb matrix performs the multi-
plication of 4 x 2 and 2 x 1000 matrices. Re-
sults are given for several degrees of optimiza-
tion of the granularity control process: naive
granularity control (gc), adding test simplifica-
tion (gct), adding stopping granularity control
(gcts), and adding “on-the-fly” computation of
data size (gctss). Results are also given for the
sequential execution (seq) and the parallel exe-
cution without granularity control (ngc) for com-
parison. The obtained speedups have been com-
puted with respect to ngc. The importance of

the optimizations proposed is underlined by the
fact that they result in steadily increasing per-
formance as they are added. Also, except in the
case of gsort on a very low overhead system,
the fully optimized versions show substantial im-
provements w.r.t. performing no granularity con-
trol. Note that the situations studied are on a
small shared memory machine and actualy imply
very little parallel task overhead, i.e. the condi-
tions under which granularity control offers the
least advantages. Thus the results can be seen
as lower bounds on the potential improvement.
Obviously on systems with higher overheads such
as distributed systems, the benefits can be much
larger.
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