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Abstract

Static program analysis is becoming more relevant each day in current compilers,
as it allows obtaining information at compile-time about the program behaviour.
Such information can then be used to check whether the program satisfies the
given specifications and also to optimize the program. Some techniques for effi-
cient incremental analysis are presented, which allow reusing analysis information
when a program which has already been analyzed is modified. On the other hand
it is also studied how to correctly analyze all the features of real-life programming
languages.

The program optimization techniques presented can be formalized in the gen-
eral framework of program specialization. The resulting program after special-
ization is valid for the particular case being considered while being more efficient
than the original program. The specialization proposed is abstract in the sense
that the program is specialized not w.r.t. concrete values, but rather w.r.t. ab-
stract values, which can also be seen as (possibly infinite) sets of concrete values.
We further study the relationship between abstract specialization and traditional
partial evaluation and how to integrate them in a novel framework with the ad-
vantages of both of them.

An assertion language is presented which allows the user to express require-
ments (specifications) about the program and which is also valid to express anal-
ysis results. This language enables the communication between the user and
the different tools which may exist in a program development environment, and
among the tools themselves. We present a scheme for run-time checking of as-
sertions. Also, we study the possibility of compile-time checking (i.e., to prove

statically that an assertion does or does not hold) based on analysis information.
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Chapter 1
Introduction

Powerful computers are available nowadays in the marketplace with high comput-
ing and storage capabilities. Thus, it seems possible to make use of such machines
in order to solve highly complex problems in the field of Artificial Intelligence
[MMRS55, RN95], where high symbolic processing and search performance is
often required. Unfortunately, the process of developing programs capable of
tackling such problems is still a slow and costly task. Therefore, the study of
techniques which allow obtaining correct and efficient programs in a reasonable
time is of high interest.

The Logic Programming paradigm [Kow74, Kow80, Col87] has intensively
been applied in the context of Artificial Intelligence due to its appropriateness
for knowledge representation and for the implementation of typical applications
in this field, such as expert systems, knowledge bases, etc. Such applications are
in general complex and with a strong symbolic component. In addition, some re-
cent extensions to Logic Programming, such as the Constraint Logic Programming
paradigm [JM94] greatly facilitate the implementation and efficient execution of
some kinds of tasks which are also highly relevant in Artificial Intelligence, such
as planning, optimization, etc. For these reasons, in this work (Constraint) Logic
Programming is taken as the programming paradigm under consideration. How-
ever, most of the techniques developed will be general and thus equally applicable
to other programming paradigms. In addition, many of the techniques proposed
will be of use also in improving the development process of applications which
are not specific to Artificial Intelligence.

High level languages are characterized by allowing the programmer to write



programs not in terms of the particular machine being used but rather in terms
of the tasks the programs must perform. Thus, the programmer does not have to
worry about the specifics of the machine. This results in a less time-consuming
and error-prone developing process. Programs written in such high level lan-
guages are automatically translated into the language of a particular machine
by another program referred to as compiler. An important kind of high level
languages are the so-called declarative languages. They are called declarative in
contrast to the traditional high level languages such as FORTRAN, C, Pascal,
etc., which are generally referred to as imperative languages. The main difference
between declarative languages, a good example of them being logic programming
in its pure form, and imperative languages, is that in the former the program
only needs to express what the program should compute. However, in imperative
languages it is also required to express how to compute it by explicitly specifying

in the program the control flow.

One of the main difficulties for the practical application of higher level lan-
guages is the relative performance loss introduced as a result of having written
the program in a higher level language. There is a trade-off between a reduced
development cost and an efficiency loss when using high level languages. Much of
the efficiency loss mentioned above is due to the compilation phase, i.e., the trans-
lation from a high level language into the machine language. Such translation is
in most compilers merely syntactic: a systematic translation scheme is applied to
each high level program construct which produces a set of instructions in the low
level language. As the translation scheme must be valid for any expression in the
considered class, the low level code generated will not be in general as efficient
as the code which could have been generated for each particular case. Therefore,
obtaining efficient low level code from a program written in a high level language
is only possible if additional information to that provided by the (isolated) syntax

of a program fragment alone is available.

Another major problem that programmers must face when developing a pro-
gram is the lack of automatic tools for program verification. As a result of this,
much of the development time is spent in tests and manual debugging (in many
cases by tracing program execution) until reasonably satisfied with the program
behaviour. Thus, the development of automatic tools which allow proving that a

program is correct or otherwise help to easily identify the part(s) of the program
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responsible for an error is another prime objective. Such tools will on one hand
allow an important decrease in the program development time and on the other
hand allow guaranteeing that the program satisfies the given specifications and
does not contain bugs still not discovered. Verification is especially relevant in the
Artificial Intelligence area as the tasks considered are usually complex, dealing
with incomplete knowledge is often required, and test cases are often scarce. Par-
ticular examples are validating knowledge bases or otherwise helping in finding

where inconsistencies lie.

1.1 Thesis Objectives

The final objective of the work presented in this thesis is the development, imple-
mentation, and experimental evaluation of a set of novel compilation techniques
for (constraint) logic programs which contribute to improve the state of the art of
this research area by facilitating the development process of programs, especially
for those aimed at solving problems related to artificial intelligence. Advances in
compilation technology do not only allow obtaining more efficient programs, but
also they contribute in a direct way to allowing the practical use of languages
of even higher levels (with the associated decrease in development time) as they

contribute to make the efficiency loss associated to high level languages smaller.

The compilation techniques mentioned above focus, on one hand, in obtain-
ing more efficient programs, and on the other hand in the study of automatic

techniques for program debugging and verification.

The main technique proposed in order to accomplish the objectives above
is the use of static program analysis techniques with the objective of inferring
information at compile-time on the run-time behaviour of the program. Such
information will then be used to both optimize and verify or diagnose the pro-
gram. Even though the area of static program analysis has received considerable
attention, the existing techniques are not always satisfactory in order to achieve
the proposed research goals. Thus, it is also an objective of this thesis to study
improvements to existing analysis techniques when currently existing ones are

found lacking.



1.2 Structure of the Work

This thesis consists of three parts. Each one of them concentrates respectively
on the improvement of the existing techniques for: program analysis, program
optimization, and program debugging and validation. Next, each of these parts

is described in detail.

1.2.1 Part I: Advanced Techniques for Program Analysis

As mentioned before, the improvement of program analysis techniques is instru-
mental for the other tasks which are objectives of this thesis, i.e., obtaining more
efficient programs in an automatic way, and guaranteeing their correctness or
otherwise to detect existing errors.

The most interesting alternative for obtaining semantic information, i.e.,
about the meaning of the program, is automatic program analysis. Abstract
Interpretation, proposed by P. and R. Cousot [CC77], is at this point arguably
the most successful formal technique for the automatic analysis of programs at
compile-time [Deb89a, Bru91l, MH92, Deb92, MSJ94, CV94|.

Abstract interpretation has been successfully used in different systems in order
to obtain information at compile-time about the run-time behaviour of programs.
The fundamental idea is to simulate program execution, but rather than with the
actual values which variables will contain at run-time, with an abstract (i.e.,
symbolic) version of such values which is simpler. These abstract values allow
dealing with incomplete information and with infinite sets of values. The strong
mathematical basis of this technique guarantees the correctness of the results
obtained. Its successful implementation on a good number of compilers shows its
practicality [HWD92, VD92, MH92, SCWY91, BGH94b)].

There are, however, two practical reasons why abstract interpretation is not
yet included as a usual technique in commercial compilers. On one hand, even
though its efficiency is reasonable, this technique is still perceived by many as too
costly. On the other hand, most of the analyzers developed to date have as target
“pure” languages, in the sense that they usually do not consider the problematic
features of the language which often appear in practice, such as program code
which is missing or meta-programming. Thus, the analysis techniques presented

in this work are aimed at:



e improving analysis efficiency, by means of:

— the development of incremental analysis techniques

— the usage of more efficient fixpoint algorithms, and at

e extending analysis techniques to all the features present in real-life pro-

gramming languages.

In the following paragraph we explain our approach for tackling these issues.

Incremental Analysis Algorithms: Traditional global analyzers [MH92,
CV94] analyze whole programs at once in a non-incremental way. There are, how-
ever, many circumstances in which it is required to reanalyze (parts of) a program
which has already been analyzed. In such cases, the simple non-incremental model
is inefficient as it requires analysis to be started again from scratch. A promis-
ing alternative is to perform the analysis in an incremental way, i.e., reusing as
much information as possible from previous analyses. In Chapter 2 we study
the different kinds of modifications which may be performed to a program and
we propose four types of algorithms for incremental analysis which are capable
of dealing with all usual cases of incremental change: addition, deletion, local
change and arbitrary change. We also quantify experimentally the performance

improvements achievable by using incremental analysis.

Optimized Fixpoint Algorithms: The algorithms used in abstract interpre-
tation and in program analysis in general require global information about the
program. As a result, the effect of the computation performed in a part of the
program must be propagated to other parts in the program. This is usually done
by means of an algorithm which computes a fixpoint of the analysis functions,
i.e., iterations are performed until propagation does not modify the analysis in-
formation obtained in the previous iteration [MH90a, MH92]. It is thus very
important to have an analysis algorithm which is capable of reaching a fixpoint
in the least number of iterations possible. The usage of algorithms with detailed
dependency information allows critically reducing the time required by analysis.
In Chapter 3 we propose some optimized fixpoint algorithms [PH96¢c, PH96d] for
analysis which are applicable and efficient both for the incremental and for the

non-incremental (traditional) case.



Analysis of Full Languages: Even though in the implementation of an ana-
lyzer for a given programming language all the problems which may appear when
analyzing any possible construct in such programming language should be ad-
dressed in one way or the other, few proposals for analysis of full languages exist
which are effective. Most of them considerably restrict the class of programs
which may analyzed [Deb89b]. Thus, it seems mandatory to develop analysis
techniques which are capable of improving such situation, if we want analysis to
be able to deal with generic programs which make use of any of the features of
the language, may they be pure or not. In Chapter 4 we propose a set of tech-
niques (some novel, some well known) which when simultaneously applied allow

analyzing any program written in ISO standard Prolog.

1.2.2 Part II: Program Specialization based on Abstract

Interpretation

Compilers often use static knowledge regarding invariants in the execution state of
the program in order to optimize the program for such particular cases [AU77].
A good number of optimizations can be seen as special cases of program spe-
cialization, a formal and automatic tool for program optimization. The main
objective of program specialization is to automatically overcome losses in perfor-
mance which are due to general purpose algorithms by specializing the program
for known values of the inputs. This generalizes traditional compilation tech-
niques by identifying that specialization is the essence and common idea behind
such techniques. One of the most relevant techniques for program specialization is
Partial Evaluation [JGS93, CD93, GB90, GCS88, JLW90, LS91, Kom92, DGT96|
which consists in a source to source program transformation: a program pgm
together with a set s of partial input data which is known at compile-time is
transformed into another program pgms, obtained by computing the parts of pgm
which only depend on s. The gains in run-time obtained are due to computing at
compile time the parts of the program which do not depend on unknown input
values, and thus reducing the amount of computation which must be performed
at run-time.

Regarding program optimization, three kinds of source to source program

transformations will be studied. All of them rely on information obtained by



means of abstract interpretation:

e abstract multiple specialization,
e integration of partial evaluation into abstract specialization,

e optimization of dynamic scheduling.

Abstract Multiple Specialization: Multiple Specialization [JLW90, GHOI1,
Win92, KMM*95, KMM™96] is a technique capable of automatically generating
several versions of a program procedure for different uses of such procedure. This
allows further optimization as each version can be specialized independently of
the rest. Even though multiple specialization has received considerable theoreti-
cal attention, it has been never integrated into a compiler nor its effects have been
empirically quantified. In Chapter 5 a novel technique for multiple specialization
is studied which will use the analysis information obtained by an abstract in-
terpreter, and which requires little modification of existing abstract interpreters.
We also present the implementation of such specialization technique in the con-
text of a parallelizing compiler [BGH94b, Con83, CC94, HR95] and we study the
practical relevance of such technique.

Integration of Partial Evaluation in Abstract Multiple Specialization:
The relationship between abstract interpretation and partial evaluation has been
foreseen in several works. However, no work to date has clearly identified the
similarities and differences between these two frameworks. In Chapter 6 we com-
pare such frameworks and we study the specialization capabilities which abstract
specialization introduces and which are not possible by means of traditional par-
tial evaluation. We then propose several alternatives for achieving all the power

of partial evaluation in the framework of abstract multiple specialization.

Optimization of Dynamic Scheduling: Most second-generation logic pro-
gramming languages allow an execution strategy usually referred to as Dynamic
Scheduling which is more flexible than the traditional fixed left-to-right strategy
of Prolog. Dynamic scheduling allows delaying the execution of goals which are
not instantiated enough for (efficient) execution. Dynamic scheduling increases

the expressive power of logic languages but it also introduces additional overhead.
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The development of static analysis techniques capable of dealing with this kind of
programs [MGH94, GMS95] allows the use of automatic optimization techniques
in order to reduce the overhead of dynamic scheduling. In Chapter 7 we study
some program transformation techniques designed with the aim of reducing such
additional overhead while ensuring that the operational semantics of the program
is preserved. This is crucial so as not to obtain optimized programs which are

less efficient than the original program.

1.2.3 Part III: Program Debugging

It is often the case that much of the program development time is spent in pro-
gram debugging and testing until we are reasonably satisfied with the program
behaviour. It seems very desirable to improve this situation by developing novel
techniques which help in program validation and debugging. This last part of
the thesis concentrates on this objective. An important advantage of high level
languages such as Prolog or constraint logic languages is that the language used
to write programs is, in many cases, valid for expressing specifications about
the expected behaviour of the program. This is an important factor which may
contribute to encouraging the programmer to write and actually use (partial)
specifications of the program. Such specifications may then be used in order to
automate the validation and debugging process as much as possible.

Assertion Language: Assertions are syntactic constructions which allow ex-
pressing properties of programs. Assertions may be used to allow the communica-
tion between the user and the system and among different modules of the system.
They have been used in order to replace the oracle [DNTM88] in declarative de-
bugging [Sha82] and for the communication with the analyzer in [BCHP96|.

In Chapter 8 we define an assertion language [PBH97] which is general enough
S0 as to serve as a communication vehicle among the different modules and tools
which may co-exist in an integrated development and debugging environment. It
is also important that the assertion language be as simple as possible. The pro-
posed assertion language allows expressing properties both of what the program
does (for example, in order to express analysis results) and of what the program

should do (requirements).



Semantic Approximations in Program Debugging: During program val-
idation and debugging we are interested in finding out whether the program we
have satisfies the requirements given for it. Often, requirements are partial spec-
ifications (approximations of the actual specifications). Moreover, the behaviour
of the program may be complex and abstract interpretation techniques may be
used in order to approximate the program behaviour. In Chapter 9 we study
the role of semantic approximations for program validation and diagnosis. For
example, they may be used at compile-time in order to prove that the program
satisfies the (approximate) requirements or to show that it does not satisfy them
[Bou93, CLMV96b]. In the latter case, the program is “incorrect” and diagnosis
should be performed for it.

1.3 Main Contributions

The main contributions of this thesis are enumerated below. Some of these results
have already been published and presented in international forums, in which
case the relevant publication(s) is(are) mentioned explicitly. Also, some of these
contributions have been made in collaboration with other researchers in addition

to the thesis supervisor. This is also explicitly mentioned below.

e The fixpoint algorithm used in generic analysis systems has been augmented
in order to allow incremental analysis. This allows reusing the (parts of
the) information from previous analyses which is still valid when analyzing
modified versions of a program which has already been analyzed. We have
identified a set of possible changes which may be performed to a program
which covers the usual modifications performed in practice. For each type of
change, one or several algorithms are given which allow performing analysis
in an incremental way. The proposed algorithms have been implemented in
the PLAI system and the experimental results obtained show important im-
provements in the efficiency of the analysis. This work has been performed
in collaboration with Kim Marriott, from Monash University, and with Pe-
ter Stuckey, from the University of Melbourne. These studies have been
published in the International Conference on Logic Programming (ICLP)
in 1995 [HPMS95].



e The requirements imposed by incremental analysis on the fixpoint algorithm
to be used have been identified. Also, we have identified an important class
of analysis strategies which satisfy the requirements mentioned above while
at the same time providing very efficient analysis performance even in the
non-incremental case. “A priori” conditions have been provided which en-
sure that the analysis strategies considered belong in the class mentioned
above. We have proposed, implemented, and evaluated experimentally a
novel algorithm for incremental analysis based on such ideas. The exper-
imental results obtained show that such algorithm is very efficient in the
incremental case and is also comparable to, and in many cases consider-
ably more efficient than, other advanced algorithms (developed for the non-
incremental case) even for non-incremental analysis. This work has been
published at the Sixth International Symposium on Static Analysis (SAS)
in 1996 [PH96¢| and a short version has been presented at the Workshop
on Static Analysis [PH96d] associated to JICSLP’96.

e Program analysis techniques based on abstract interpretation have received
considerable attention. Both general analysis frameworks and abstract do-
mains are comparatively well understood. However, most of the analysis
techniques proposed to date restrict in one way or the other the class of
programs which can be analyzed. We have proposed the first set of analysis
techniques (some known, some novel) which allow analyzing in a correct way
any program written using any of the features of ISO standard Prolog. This
work has been performed in collaboration with Francisco Bueno and Daniel
Cabeza, both from the CLIP group the Technical University of Madrid
(UPM). This work has been presented at the Workshop on Static Analysis
[BCHP95]| associated to the International Conference of Logic Program-
ming (ICLP) in 1995 and an improved version published at the European
Symposium on Programming (ESOP) in 1996 [BCHP96].

e Multiple specialization has been studied in depth from a theoretical point of
view, but is has never been implemented nor evaluated experimentally. We
have developed a multiple specialization framework which is equivalent to
the most powerful existing one. We have implemented and integrated such

framework into a parallelizing compiler. The experimental results show that
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multiple specialization is a relevant technique in practice. Parts of this work
have been presented at the ACM Symposium on Partial Evaluation and
Semantic Program Manipulation (PEPM) in 1995 [PH95], at the Dagstuhl
Seminar on Partial Evaluation [HP96], at the International Workshop on
Synthesis and Transformation of Logic Programs (LoPSTr) in 1996 [PH97b],
and in the fifth International Workshop on Meta-Programming and Meta-
Reasoning in Logic (META) in 1996 [PH96a]. A combination of such works
is to appear in the Journal of Logic Programming (JLP) [PH97a].

Important contributions have been performed towards the integration of
partial evaluation in the abstract multiple specialization framework men-
tioned previously. We have proposed an algorithm which allows obtaining a
specialized program from an analysis graph obtained by means of abstract
interpretation. We have compared the specialization capabilities of this
method with those achievable by traditional partial evaluation techniques.
We have explained how abstract interpretation helps in solving two of the
problems of partial evaluation: that the resulting program is “covered”,
and that the specialization process terminates. We have identified for the
first time how the problems of local and global control usually considered
in partial evaluation of logic programs appear in the setting of abstract
interpretation. This work has been performed in collaboration with John
Gallagher, from Bristol University and has been presented at the Work-
shop on Specialization of Declarative Programs [PGH97| associated to the

International Symposium on Logic Programming (ILPS) in 1997.

Two kinds of program transformation techniques are presented which aim
at reducing the additional cost introduced by dynamic scheduling while
preserving the semantics of the original program. Previous optimization
techniques mainly aimed at eliminating dynamic scheduling, but as they
did not ensure that the operational semantics of the program is preserved,
it may be the case that the optimized program is less efficient than the
original one. The proposed techniques have been implemented using in-
formation obtained by static analysis. The experimental results obtained
show that the proposed techniques may produce significant performance

improvements. Preliminary results have been published as a poster at the
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International Symposium on Programming, Implementation, Logics, and
Programs (PLILP) in 1996 [PH96b]. A more thorough study, performed
in collaboration with Maria Garcia de la Banda and Kim Marriott from
Monash University and Peter Stuckey from the University of Melbourne,
has been presented at the Workshop on Abstract Interpretation of Logic
Languages (WAILL) in 1997 [PGH"96] and published at the International
Conference on Logic Programming (ICLP) in 1997 [PGMS97].

We have defined an assertion language which allows the communication
among the different tools which may exist in an advanced environment for
the development and debugging of (constraint) logic programs. The asser-
tion language is parametric w.r.t. the constraint domain, the specific imple-
mentation of the language, and the kind of properties which each tool makes
use of. We have studied the possibility of checking assertions at compile-
time by means of static analysis and we have given an example framework
for run-time checking of assertions. This work has been performed in col-
laboration with Francisco Bueno and has been presented at the Workshop
on Tools and Environments for (Constraint) Logic Programming [PBH97]
associated to the International Symposium on Logic Programming (ILPS)
in 1997.

We have performed a detailed study of the role of semantic approximations
in program debugging. During program development, a usual question is
whether the program satisfies the properties expected from it (requirements)
or not. Usually, requirements are incomplete and they are often given my
means of approximations. Thus, program validation and debugging must
be able to deal with approximations of both the actual and intended se-
mantics of the program. We have studied the kind of approximations which
may be used in order to obtain conclusions about the usual questions which
appear in the different tools involved in program validation and debug-
ging. This work has been performed in collaboration with Francisco Bueno,
from the Technical University of Madrid (UPM); Pierre Deransart, from IN-
RIA Rocquencourt; Wlodek Drabent and Jan Matuszynski, from Link&ping
University; and with Gerard Ferrand from the University of Orleans. This

study has been presented at the International Workshop on Automated and
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Algorithmic Debugging (AADEBUG) in 1997 [BDD197] as an invited talk.
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Chapter 2
Incremental Analysis

Global analyzers traditionally read and analyze the entire program at once, in
a non-incremental way. However, there are many situations which are not well
suited to this simple model and which instead require reanalysis of certain parts
of a program which has already been analyzed. In these cases, it appears inef-
ficient to perform the analysis of the program again from scratch, as needs to
be done with current systems. We describe how the fixpoint algorithms used in
current generic analysis engines can be extended to support incremental analy-
sis. The possible changes to a program are classified into three types: addition,
deletion, and arbitrary change. For each one of these, we provide one or more
algorithms for identifying the parts of the analysis that must be recomputed and
for performing the actual recomputation. The potential benefits and drawbacks
of these algorithms are discussed. Finally, we present some experimental results
obtained with an implementation of the algorithms in the PLATI generic abstract
interpretation framework. The results show significant benefits when using the

proposed incremental analysis algorithms.

2.1 Introduction

Global program analysis is becoming a practical tool in (constraint) logic program
compilation in which information about calls, answers, and substitutions at dif-
ferent program points is computed statically [HWD92, VD92, MH92, SCWY91,
BGH94b, Deb89a, Bru91, Deb92, MSJ94, CV94|. The underlying theory, formal-

ized in terms of abstract interpretation [CC77], and the related implementation
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techniques are well understood for several general types of analysis and, in par-
ticular, for top-down analysis of Prolog [Deb89a, Bru91, MH92, Deb92, MSJ94,
CVa4].

Several generic analysis engines, such as PLAI [MH92, MH90a], GAIA [CV94]
and the CLP(R) analyser described in [KMSSar|, facilitate construction of
such top-down analyzers. These generic engines have the description domain
and functions on this domain as parameters. Different domains give analyz-
ers which provide different types of information and degrees of accuracy. The
core of each generic engine is an algorithm for efficient fixpoint computation
[MH90a, MH92, CDMV93]. Efficiency is obtained by keeping track of which
parts of a program must be reexamined when a success pattern is updated. Cur-
rent generic analysis engines are non-incremental—the entire program is read,

analyzed and the analysis results written out.

Despite the obvious progress made in global program analysis, most LP and
CLP compilers still perform only local analysis (the &-Prolog [HG91], Aquarius
[VD92], Andorra-I [SCWY91] and CLP(R) [KMM*95, KMM*96] systems are
notable exceptions). We believe that an important contributing factor to this is
the simple, non-incremental model supported by global analysis systems, which is
unsatisfactory for at least four reasons. The first reason is that optimizations are
often source-to-source transformations, and so optimization consists of an ana-
lyze, perform optimization then reanalyze cycle. This is inefficient if the analysis
starts from scratch each time. Such analyze-optimize cycles may occur for ex-
ample when program optimization and multivariant specialization are combined
[Win92, PH95| (see Chapter 5 for details). This is used, for instance, in program
parallelization, where an initial analysis is used to introduce specialized predicate
definitions with run-time parallelization tests, and then these new definitions are
analyzed and redundant tests removed. This is also the case in optimization
of CLP(R) in which specialized predicate definitions are reordered and then re-
analyzed. The second reason is that incremental analysis supports incremental
run-time compilation during the test-debug cycle. Again, for efficiency only those
parts of the program which are affected by the changes should be reanalyzed. In-
cremental compilation is important in the context of logic programs as traditional
environments have been interpretive, allowing the rapid generation of prototypes.

The third reason is to handle correctly and accurately the optimization of pro-
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grams in which clauses are asserted or retracted at run-time. The fourth reason
is to support incremental compilation of programs broken into modules.

In this chapter we describe how the fixpoint algorithm in the generic anal-
ysis engines can be extended to support incremental analysis. Guided by the
applications mentioned above, we consider algorithms for different types of incre-
mentality. The first, and simplest type of incrementality is when program clauses
are added to the original program. The second type of incrementality is clause
deletion. We give several algorithms to handle deletion. These capture differ-
ent tradeoffs between efficiency and accuracy. The algorithms for deletion can
be easily extended to handle the third and most general type of incrementality,
arbitrary change, in which program clauses can be deleted or modified in any
way. Finally, we consider a restricted type of arbitrary change: local change in
which clauses are modified, but the answers to the clauses are unchanged for the
calling patterns they are used with. This case occurs in program optimization as
correctness of the optimization usually amounts to requiring this property. Local
change means that changes to the analysis are essentially restricted to recom-
puting the new call patterns which these clauses generate. We give an algorithm
which handles this type of incrementality. Finally we describe an implementation
of the algorithms in the PLAT system and give a preliminary empirical evaluation.
We argue that the experimental results show that our algorithms are practically

important.

Surprisingly, there has been little research into incremental analysis for (con-
straint) logic programs. Several researchers have looked at compositional analysis
of modules in (constraint) logic programs [CDG93]. There has been much research
into incremental analysis for other programming paradigms (see for example the
bibliography of Ramalingam and Reps [RR93|). However, to our knowledge this
is the first work to identify the different types of incremental change which are
useful in logic program analysis and to give practical algorithms which handle
these types of incremental change. Another contribution of this work is a gen-
eralization of the non-incremental fixpoint algorithms used in generic analysis
engines. We formalize the analysis as a graph traversal and couch the algorithm
in terms of priority queues. Different priorities correspond to different traversals
of the program analysis graph. This simple formalization greatly facilitates the

description of our incremental algorithms and their proofs of correctness.
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6: YAX 6 (UAVIAZ & (UAW)AU & W

Figure 2.1: Example Program Analysis Graph

2.2 A Generic Analysis Algorithm

As mentioned above, we start by providing a formalization of a fixpoint algorithm
which generalizes those used in a good number of the existing generic analysis
engines. The purpose of our presentation is not so much to present a practical al-
gorithm for performing program analysis but rather to capture the core behaviour
of the standard algorithms (whose exact description would be too involved for
the space available), and then use this stylized algorithm to present our proposals
regarding how to make them incremental.

The aim of the kind of (goal oriented) program analysis performed by the
above mentioned engines is, for a particular description domain, to take a program
and a set of initial calling patterns and to annotate the program with information
about the current environment at each program point whenever that point is
reached when executing calls described by the calling patterns.

To illustrate this, we now develop an example. The description domain, as
in all of our examples, will be the definite Boolean functions [AMSS94]. The key
idea in this description is to use implication to capture groundness dependencies.
The reading of the function x — y is: “if the program variable z is (becomes)
ground, so is (does) program variable y.” For example, the best description of
the constraint f(X,Y) = f(a,g9(U,V))is X AY < (UAYV).

Now consider the program for appending lists:

app(X,Y,Z) :- X=[1, Y=Z.
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app(X,Y,Z) :- X=[UIV], Z=[UIW], app(V,Y,W).

Assume that we are interested in analyzing the program for the call app(X,Y, Z)
with initial calling pattern Y indicating that we wish to analyze it for any call
to app with the second argument definitely ground. In essence the analyzer must
produce the program analysis graph given in Figure 2.1, which can be viewed as a
finite representation (through a “widening”) of the set of AND-OR trees explored
by the concrete execution [Bru91]. The graph has two sorts of nodes: those
belonging to rules (also called “AND-nodes”) and those belonging to atoms (also
called “OR-nodes”). For example, the atom node (app(X,Y,Z): Y = YA (X &
7)) indicates that the calling pattern Y for the atom append(X,Y, Z) has answer
pattern Y A(X < Z). This answer pattern depends on the two rules defining app
which are attached by arcs to the node. These rules are annotated by descriptions
at each program point of the constraint store when the rule is executed from the
calling pattern of the node connected to the rules. The program points are entry
to the rule, the point between each two literals, and return from the call. Atoms
in the rule body have arcs to OR-nodes with the corresponding calling pattern. If
such a node is already in the tree it becomes a recursive call. Thus, the analysis
graph in Figure 2.1 has a recursive call to the calling pattern app(X,Y,Z) : Y.
A program analysis graph is defined in terms of an initial set of calling pat-
terns, a program, and five abstract operations on the description domain. The

abstract operations are:
e Aproject(CP,V) which performs the abstract restriction of a calling pattern
CP to the variables in the set V;

e Aextend(CP,V) which extends the description C'P to the variables in the
set V'

e Aadd(C,CP) which performs the abstract operation of conjoining the ac-
tual constraint C with the description C'P;

e Acombine(CP,,CP,) which performs the abstract conjunction of two de-

scriptions;

o Alub(CP;,CP,) which performs the abstract disjunction of two descrip-

tions.
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For a given program and calling pattern there may be many different analysis
graphs. However, for a given set of initial calling patterns, a program and abstract
operations on the descriptions, there is a unique least analysis graph which gives
the most precise information possible. This analysis graph corresponds to the
least fixpoint of the abstract semantic equations.

We now give an algorithm which computes the least analysis graph. We
first introduce some notation. CP, possibly subscripted, stands for a calling
pattern (in the abstract domain). AP, possibly subscripted, stands for an answer
pattern (in the abstract domain). Each literal in the program is subscripted with
an identifier or pair of identifiers. A : C'P stands for an atom (unsubscripted)
together with a calling pattern. Ay : CP or Ai,; : CP stands for subscripted
literals together with a calling pattern. Rules are assumed to be normalized and
each rule for a predicate p has identical sets of variables p(z,,, ... x,,) in the head
atom. Call this the base form of p. Rules in the program are written with a unique
subscript attached to the head atom (the rule number), and dual subscript (rule
number, body position) attached to each body atom (and constraint redundantly)
e.g. Hy < By1,..., By, where By ; is a subscripted atom or constraint. The
rule may also be referred to as rule £, the subscript of the head atom. E.g. the

append program is written:

app: (X,Y,2) :- X=[111, Y=Zi,.
appe (X,Y,2) :- X=[U|V]y;, Z=[UIWls2, appas(V,Y,W).

The program analysis graph is implicitly represented in the algorithm by
means of two data structures, the answer table and the dependency arc table.
The answer table contains entries of the form A : CP +— AP. A is always a base
form. This represents a node in the analysis graph of the form (A : CP — AP).
It is interpreted as the answer pattern for calls of the form CP to A is AP. A
dependency arc is of the form Hy : CPy = [CPy] By, : CP,. This is interpreted as
that if the rule with Hj as head is called with calling pattern C'F, then this causes
literal By ; to be called with calling pattern C'P,. The remaining part C'P,; is the
program annotation just before By ; is reached and contains information about
all variables in rule k. C'P; is not really necessary, but is included for efficiency.
Dependency arcs represent the arcs in the program analysis graph from atoms in
a rule body to an atom node. E.g. the program analysis graph in Figure 2.1 is

represented by
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answer table: appX, Y, ) : Y » YA (X + 2)
dependency arc table:
app2 (X,Y,2): Y = [YAX & (UAV)ANZ & (UAW)] appes(V,Y,W): Y

Intuitively, the analysis algorithm is just a graph traversal algorithm which
places entries in the answer table and dependency arc table as new nodes and
arcs in the program analysis graph are encountered. To capture the different
graph traversal strategies used in different fixpoint algorithms, we use a priority
queue. Thus, the third, and final structure used in our algorithms is a prioritized
event queue. The priority mechanism for the queue is left as a parameter of the

algorithm. Events are of three forms:

e updated(A : CP) which indicates that the answer pattern to atom A with
calling pattern C'P has been changed.

e arc(R) which indicates that the rule referred to in R needs to be

(re)computed from the position indicated.
e newcall(A : CP) which indicates that a new call has been encountered.

The generic analysis algorithm is given in Figure 2.2. Apart from the para-
metric description domain dependent functions, the algorithm has several other
undefined functions. The function vars returns the variables appearing in some
program part. The functions add_event and next_event respectively add an event
to the priority queue and return (and delete) the event of highest priority. When
an event being added to the priority queue is already in the priority queue, a sin-
gle event with the maximum of the priorities is kept in the queue. When an arc
Hy : CP = [CP"|By; : CP'is added to the dependency arc table, it overwrites
any other arcs of the form Hy : CP = [|By,; : _ in the table and in the priority
queue. The function initial_guess returns an initial guess for the answer to a new
calling pattern. The default value is L but if the calling pattern is more gen-
eral than an already computed call then its current value may be returned. The
procedure remove_useless_calls traverses the dependency graph given by the de-
pendency arcs from the initial calls S and marks those entries in the dependency

arc and answer table which are reachable. The remainder are removed.
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analyze(S)
foreach A:CP € S
add_event(newcall(A : CP))

main_loop()

main_loop()
while E := next_event()
if (E == newcall(A : CP))
new_calling pattern(A4: CP)
elseif (E == updated(A : CP))
add_dependent rules(A : CP)
elseif (E == arc(R))
process_arc(R)
endwhile
remove_useless_calls(S)

new_calling pattern(A4: CP)
foreach rule Ay < By1,...,Bin,
CPhy :=
Aextend(C'P,vars(Bg,1,. .., Brn,))
CP, := Aproject(CPy,vars(By,1))
add_event(arc(
Ap . CP > [CP()] Bk,l H CPl))
AP := initial_guess(A : CP)
if (AP <> 1)
add_event(updated(A : CP))
add A : CP — AP to answer_table

add_dependent rules(A: CP)
foreach arc of the form

H,:CP = [CPl] Bk,i :CP,y
in graph

where there exists renaming o
st. A:CP = (By,; : Ch)o

add_event(arc(
Hy : CPy = [CPi] By, : CP,))

process_arc(Hy : CPy = [CPi] By,; : CP»)
if (Bg,; is not a constraint)
add Hy, : CPy = [CPi] By, : CPs
to dependency_arc_table
AP, := get_answer(By,; : CP,)
CPs; := Acombine(CP;, AR,)
if (CP3 <> 1 and i <> ny)
CPy := Aproject(CPs,vars(By ;y1))
add_event( arc(
Hy, : CPO = [CP3] Bk,i+1 : CP4))
elseif (CP; <> L and i == ny)
APy := Aproject(CPs,vars(Hy))
insert_answer_info(H : CPy — AP;)

get_answer(L : CP)
if (L is a constraint)
return Aadd(L,CP)

else return lookup_answer(L,CP)

lookup_answer (A : CP)

if (there exists a renaming o s.t.
(A : CP) — AP in answer_table)
return o ! (AP)

else
add_event(newcall(c(A : CP)))
where o is a renaming s.t.
o(A) is in base form

return L

insert_answer_info(H : CP — AP)
APy := lookup_answer(H : CP)
APy := Alub(AP, AF,)
if (APy <> AP,)
add (H : CP — APy) to answer_table
add_event(updated(H : CP))

Figure 2.2: A generic analysis algorithm

2.2.1 Example Execution of the Generic Algorithm

The generic algorithm presented in Figure 2.2 essentially represents standard

fixpoint algorithms, and as such is given in this work only the amount of descrip-

24



tion needed to understand the algorithms for incremental analysis. The following
example, illustrates how the app program would be analyzed.

The abstract operations for the description domain Def of definite Boolean
functions are defined as follows. The abstraction operation ap.s gives the best
description of a constraint. It is defined as: ap.s(X = f(V1,...,Yn)) = X <
(YiA---AY,), and apep(er A---Aeg) = apep(er) A-- - Aapes(er) where eq, ..., e

are term equations. The remaining operations are defined as follows:
Aproject(CP,V) = 3 yCP

)
Aextend(CP, V) cpP
Aadd(C,CP) = ap(C)ACP
)
)

Acombine(C’Pl,C'PQ = CPl/\CPQ
A|Ub(CP1,CP2 = CPl\/CPQ

Example 2.2.1 Analysis begins from an initial set S of calls. In our example
S contains app(X,Y,Z) :Y. The first step in the algorithm is to add the initial

calls as new calls to the priority queue. After this the priority queue contains
newcall( app(X,Y,Z):Y)

and the answer and dependency arc tables are empty. The newcall event is taken
from the event queue and processed as follows. For each rule defining app, an
arc is added to the priority queue which indicates that the rule body must be
processed from the initial literal. An entry for the new call is added to the answer
table with an initial guess of L as the answer. The data structures are now:

priority queue: arc( app1 (X, Y, Z2) : Y = [V] X=[11; : true)
arc( appo(X, Y, Z) : Y = [V] X=[UIV]o; : true)
answer table: app(X, Y, Z) : Y — L

dependency arc table: no entries

An arc on the event queue is now selected for processing, say the first. The
routine get_answer is called to find the answer pattern to the literal X=[1 with
calling pattern true. As the literal is a constraint, the parametric routine Aadd
is used. It returns the answer pattern X. This is combined using Acombine with
the initial annotation Y to give X A'Y, which is the next annotation in the rule
body. A new arc is added to the priority queue which indicates that the second

literal in the rule body must be processed. The priority queue is now:
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arc( appl(X, Y, Z):Y = [X/\Y] X=Zl’2 : X)
arc( appo(X, Y, Z) : Y = [Y] X=[U|V]ly; : true).

The answer and dependency arc table remain the same.

Again, an arc on the event queue is selected for processing, say the first. As
before, get_answer, Aadd and Acombine are called to obtain the next annotation
X AY A Z. This time, as there are no more literals in the body, the answer table
entry for app(X,Y,Z) : Y is updated. Alub is used to lub the new answer
X ANY A Z with the old answer 1. This gives X AY A Z. The entry in the answer
table is updated and an updated event is placed on the priority queue. The data
structures are now:

priority queue: updated( app(X, Y, Z) :Y)
arc( appa(X, Y, Z2) : Y = [V]| X=[U|V]ly; : true)
answer table: app(X, Y, Z2) : Y XAYANZ

dependency arc table: no entries

The updated event can now be processed. As there are no entries in the
dependency arc table, nothing in the current program analysis graph depends on
the answer to this call, so nothing needs to be recomputed. The priority queue

now contains
arc( appo(X, Y, Z) : Y = [Y] X=[U|V]y; : true).

The answer and dependency arc table remain the same.

Similarly to before we process the arc, giving rise to the new priority queue
arc( appoX, Y, Z) : Y = [YAX & (UAV)] Z=[UIWlgy : true).
The arc, is processed to give the priority queue

arc(appy X,Y,2): Y = YAX < (UAV)ANZ & (UAW)] appe,3(V,Y,W): Y)

This time, because appy3(V,Y,W) is an atom, the arc is added to the arc
dependency table. The answer table is looked up to find the answer and, appro-
priately renamed, the next annotation is Y AVAWAX < UAZ < U. As this
is the last literal in the body, the new answer Y A X < Z is obtained. This is
lubbed with the old answer in the table, giving Y A X <+ Z. As the answer has
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changed an updated event is added to the priority queue. The data structures

are now:
priority queue: updated( app(X, Y, Z) :Y)
answer table: appX, ¥, ) : Y » YA (X & Z)

dependency arc table: app.(X, Y, Z) : Y =
YAX > (UANV)NZ < (UAW)] appas(V,Y,W): Y

The updated event is processed by looking in the dependency arc table for all
arcs which have a body literal which is a variant of app(X,Y, Z) : Y and adding
these arcs to the priority queue to be reprocessed. We obtain the new priority

queue

arc(appa(X,Y,2): Y = [YAX & (UAV)ANZ & (UAW)] appes(V,Y,W): Y)

This arc is reprocessed, and gives rise to the answer ¥ A X < Z. This is
lubbed with the old answer, and the result is identical to the old answer. Thus,
no updated event is added to the priority queue. As there are no events on the
priority queue, the analysis terminates with the desired answer and dependency
arc table.

It is also important to remember the purpose of this algorithm. It is not
intended as a practical algorithm for computing a program analysis graph, as
the overhead of event handling is too high. Rather it is intended to capture
the behaviour of several algorithms which are used for computing the program
analysis graph. Different algorithms correspond to different event processing
strategies. In addition, practical algorithms incorporate a series of optimizations.
For example, one strategy would be to always perform newcall events first, to
process non-recursive rules before recursive rules, and to finish processing a rule
before starting another. This strategy would produce an algorithm which is quite
close to the one used in PLAI or GAIA (the differences between the proposed

algorithm and that used in PLAT are presented in more detail in Section 2.7).

Theorem 2.2.2 For a program P and call patterns S, the generic analysis
algorithm returns an answer table and dependency arc table which represents the

least program analysis graph of P and S.
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incremental addition(R)
foreach rule Ay < Bj1,...,Bgpn, € R
foreach entry A : CP — AP in the answer_table
CPy := Aextend(C'P,vars(Bg,1,-- -, Brn,))
CP, := Aproject(C Py, vars(By,1))
add_event(arc(Ay : CP = [CPy] By, : CP))

main loop()
Figure 2.3: Incremental Addition Algorithm

The corollary of this is that the priority strategy does not involve correctness
of the analysis. This corollary will be vital when arguing correctness of the
incremental algorithms in the following sections.

Corollary 2.2.3 The result of the generic analysis algorithm does not depend
on the strategy used to prioritize events.

2.3 Incremental Addition

Since the answer and dependency arc tables are incrementally extended in the
generic analysis of a program, incremental addition of new rules and new calling
patterns does not place extra demands on the generic analysis algorithm. If the
analysis is required for new calling patterns, then the routine analyze(S), where
S is the set of new calling patterns may be repeatedly called.

The new routine for analysis of programs in which rules are added incremen-
tally is given in Figure 2.3. The routine takes as input the set of new rules
R. If these define a calling pattern of interest, then requests to process the rule
are placed on the priority queue. Subsequent processing is exactly as for the

non-incremental case.

Example 2.3.1 As an example, we begin with the program for naive reverse,
rev, already analyzed for the calling pattern true but without a definition of the
append, app, predicate. The initial program is

[A] rev; (X,Y) :- X
[B] revy (X,Y) :- X

i1, Y= [12.
[UlV]le, I’eVQ,Q(V,W), T = [U]Q,g, app274(W,T,Y).
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The answer table and dependency arc tables are (State 1):

answer table: rev(X, Y) :true— X AY
app(X, Y, Z) : X — L
dependency arc table:
revy (X,Y) : true = [X < (UAV)] revys(V,W) : true
revo (X,Y) s true = [(X < (UAV)AVAWA(T < U)] appesa(W,T,Y) : W

We now add the clauses for app one at a time. The first clause to be added is
[Clapps(X, Y, Z) := X =[31, Y = Z35.

The incremental analysis begins by looking for entries referring to app in the
answer table. It finds the entry app(X,Y,Z) : X so the arc apps(X,Y,Z) :
X = [X] X = [131 : X is put in the priority queue. After processing this rule,
the new answer X A (Y «+» Z) for app(X,Y,Z): X is obtained. This is lubbed with
the current answer to obtain X A (Y «» Z) and the answer table entry is updated
(causing an updated(app(X,Y,Z) : X) event). Examining the dependency arc
table, the algorithm recognizes that the answer from clause [B] must now be
recomputed. This gives rise to the new answer (X < (UAV)AVAWA(U + Y))
which simplifies to X <> Y. Lubbing this with the current answer X AY gives
X < Y. The memo table entry for rev(X, Y) : true is updated appropriately,
and an updated event is placed on the queue. Again the answer to clause [B|
must be recomputed. First we obtain a new calling pattern for apps4 (X, Y, Z)

of true. This means that the dependency arc

revo (X,Y) s true = [(X < (UAV))AV AW A(T < U)| appaa (W,T,Y) : W
in the dependency arc table is replaced by
revy (X,Y) s true = [(X < (UAV)A(V <> W)A(T <> U)] appaa (W,T,Y) : true

This sets up a new call app(X, Y, Z) : true. The current answer for the old call
app(X, Y, Z) : X can be used as an initial guess to the new, more general, call.
The algorithm examines clause [C] for the new calling pattern. It obtains the
same answer X A (Y < 7).

This leads to a new answer for revy (X, Y), (X < (UAV)A(V & W) A
W AT < U)A (T «< Y), which simplifies to X <> Y. This does not change
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the current answer so the main loop of the analysis is finished. The reachability
analysis removes the entry app(X, Y, Z) : X — X A (Y < Z) from the answer

table. The resulting answer and dependency arc table entries are (State 2):

answer table: rev(X, Y) :true— X &Y
app(X, Y, Z) :true— X A (Y < 2)
dep. arc table:
revy (X,Y) : true = [X <> (UA V)] reve o (V,W) : true
revy(X,Y) :true = [X < (UAV)A(V & W)A(T < U)| appaa(W,T,Y) : true

If the second clause for app
[D] app4(X,Y,Z) - X = [UlV]4’1, Z = [Ulw:|4’2, app4,3(V,Y,W) .

is added, the analysis proceeds similarly. The final memo and dependency arc
table entries are (State 3):

answer table: rev(X, Y) :true— X &Y
app(X, Y, Z) :true— (X AY) < Z
dep. arc table:
(1) revo (X, Y) : true = [X <> (U A V)] revy s (V,W) : true
(2) revy (X, Y) : true =
(X (UAV)AV < W)A(T <> U)] appea(W,T,Y) : true
(3) apps(X,Y,Z) s true= [X <> (UAV)ANZ < (UAW)] appas(V,Y,W) : true

Correctness of the incremental addition algorithm follows from correctness of
the original generic algorithm. Execution of the incremental addition algorithm
corresponds to executing the generic algorithm with all rules but with the new

rules having the lowest priority for processing.

Theorem 2.3.2 If the rules in a program are analyzed incrementally with the
incremental addition algorithm, the same answer and dependency arc tables will

be obtained as when all rules are analyzed at once by the generic algorithm.

In a sense, therefore, the cost of performing the analysis incrementally can be
no worse than performing the analysis all at once, as the generic analysis could

have used a priority strategy which has the same cost as the incremental strategy.
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We will now formalize this intuition. Our cost measure will be the number of calls
to the underlying parametric functions. This is a fairly simplistic measure, but
our results will continue to hold for reasonable measures.

Let Croninc(F, R, S) be the worst case number of calls to the parametric func-
tions F' when analyzing the rules R and call patterns S for all possible priority
strategies with the generic analysis algorithm.

Let C,qq(F, R, R',S) be the worst case number of calls to the parametric
functions F' when analyzing the new rules R’ for all possible priority strategies
with the incremental addition algorithm after already analyzing the program R
for call patterns S.

Theorem 2.3.3 Let the set of rules R be partitioned into Ry, ..., R, rule sets.

For any call patterns S and parametric functions F,

B n 3 71<t
Cnoninc(Fa R, S) > andd(F; (U Rj)a Ria S)
i=1 j=1

2.4 Incremental Deletion

In this section we consider deletion of clauses from an already analyzed program
and how to incrementally update the analysis information. The first thing to note
is that we need not change the analysis results at all. The current approximation
is trivially guaranteed to be correct. This approach is obviously inaccurate but
simple. More accuracy can be obtained by applying a narrowing like strategy.
Starting the analysis from scratch will often give a more accurate result. We first
discuss a narrowing-like strategy and then present in detail two algorithms which

are incremental yet are as accurate as the non-incremental analysis.

2.4.1 Narrowing-like Strategy

More accuracy can be obtained by applying a narrowing-like strategy. The current
approximation in the answer table is greater than the least fixpoint of the semantic
equations. Thus applying the analysis engine as usual except taking the greatest
lower bound of new answers with the old rather than the least upper bound
is guaranteed to produce a correct, albeit perhaps imprecise result. Again we

let this process be guided from the initial changes using the dependency graph
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information. Care must be taken with treating new calling patterns that arise in
this process correctly.

Example 2.4.1 Consider the program in Example 2.3.1 after both additions.
The current memo table and dependency graph entries are given by State 3.
Deleting clause [D] results in the following process.

First we delete any dependency arcs which correspond to deleted clauses. In
this case we remove the arc apps(X, Y, Z) : true =[] apps1 (V, Y, W) : true.
In general we may subsequently delete other dependency arcs which are no longer
required.

We recompute the answer information for all (remaining) clauses for app (X,
Y, Z) for all calling patterns of interest using the current answer information.
We obtain app(X, Y, Z) : true — X A (Y « Z).

Because this information has changed we now need to consider recomputing
answer information for any calling patterns that depend on app(X, Y, Z) : true,
in this case rev(X, Y) : true. Recomputing using clauses [A] and [B] obtains the
same answer information X <+ Y. The result is State 2 (with the useless entry
for app(X, Y, Z): X removed).

Deleting clause [C] subsequently leads back to State 1 as expected. In con-
trast removing clause [C] from [A,B,C,D] does not result in recovering State 1 as
might be expected. This highlights the possible inaccuracy of the narrowing-like
strategy. In this case clause [D] prevents more accurate answer information from

being acquired.

The above example does not illustrate how new calling patterns are handled
by the narrowing method. New calling patterns are guaranteed to be more infor-
mative than the patterns before deletion, hence we can correctly use the join of
the new call pattern with the answer pattern for a more general call to abstract

any new calling patterns.
Example 2.4.2 Consider the program

Q- piaX, V), roX, ¥, 7).
p2(X, Y) :-= X =a, Y =b.
p3(X, Y) (- X =Y.

rs (X, Y,
rs(X, Y, Z) :- Y

N
~
|
>
1]
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The state of the completed analysis is

State 4

q: true — true

pX, Y) :true— X &Y

rX, Y, Z2): XY= XoYo 7

q : true = [true] p11(X, Y) :true
q:true=[X Y] r.X, Y, 2): XY

Deleting the clause p3(X, Y) :- X = Y results in the new dependency arc q; :
true = [XAY]ri2(X, Y, Z) : X AY. In the addition process the initial answer
pattern forry; (X, Y, Z) : XAY is L but this may lead to incorrect results (say if
r was recursive). In this case we let the initial answer be (X < Y <> Z)M(XAY)
so the entry isr(X, Y, Z) : X AY — X AY A Z. This is also the final answer

after incremental reanalysis.

2.4.2 “Top-Down” Deletion Algorithm

As mentioned before, the main disadvantage of narrowing-like strategies is the
possibly inaccurate result w.r.t. restarting analysis from scratch. In this section
and in Section 2.4.3 below we present two algorithms for incremental deletion
which are as accurate as restarting analysis from scratch.

The first method for incremental analysis of programs after deletion is to
remove all information in the answer and dependency arc tables which depends
on the rules which have been deleted and then to restart the analysis. Not only
will removal of rules change the answers in the answer table, it will also mean
that subsequent calling patterns may change. Thus we must also remove entries
for calling patterns which may no longer exist.

Information in the dependency arc table allows us to find these no longer valid
call and answer patterns. Consider the dependency arcs of the analyzed program.
Let D be the set of deleted rules. Let H be the set of atoms which occur as the
head of a deleted rule. Let up(H) be the set of atom/calling pattern pairs whose
answers depended on an atom in H. That is, all of the atom /calling pattern pairs
that can reach a pair p : C'P in the dependency graph where p € H. After entries

concerning these now invalid atom/calling pattern pairs are deleted, the usual
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top_down_delete(D, S)
H := {4|(A+ B) € D}
T := up(H)
foreach A:CPeT
delete entry A : CP — AP from answer_table
delete each arc Ay : CP = [CP,|By,; : CP; from dependency. arc_table
foreach A:CPe SNT
add_event(newcall(A : CP))

main loop()
Figure 2.4: Top-down Incremental Deletion Algorithm

generic analysis is performed. The routine for top-down rule deletion is given in
Figure 2.4. It is called with the set of deleted rules D and a set of initial calls S.

Example 2.4.3 Consider the program

a - pi X, V), rioX, Y, Z2), si13(Y, Z2).
p2(X, Y) = X =az;, Y = bos.
ps(X, Y) :- X

rs(X, Y, 2) :-X = Zy 1 -
rs(X, Y, Z) : =Y = Z5;,.
s¢(Y, Z) := Y = cqg1.

1]
<
w
—

After program analysis we obtain (State 5):

answer table: q: true — true
pX, Y) :true— X <Y
rX, Y, Z) : XY =XYoo
s(Y, Z2): Y Z—YANZ

dependency arc table: (A) qi : true = [true] pi1(X, Y) : true
B)ay:true=[X Y] r X, Y, 2): XV
C)ar:true=[X Y] s135(, 2):Y 2

Now consider the deletion of rule rs. The initial state when we start the main

loop has
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pX, Y) :true— X <Y
sV, 2): Y Z—-YNZ

in the answer table and the dependency arc table is empty. The priority queue
entry is newcall(q : true). We start a new answer entry for q : true — 1 and add
event arc(A). This is selected, arc A is re-added to the dependency arc table,
and arc(B) is placed on the priority queue. This is selected and arc B is placed
back in the dependency arc table and the event newcall(r (X, Y, Z) : X < Y)is
placed on the queue. This generates an answer entry r(X, Y, Z) : X <Y — |
and the event arcr, (X, Y, Z) : X &Y = [X & Y]|X = Z: trueis added to the
priority queue. This in turn generates new answer information X <> Y < Z and
the event updated(r (X, Y, Z) : X < Y). This is replaced with arc(B), which is
replaced with arc(C), which results in arc C' being re-added to the dependency
graph and new answer info q : true — true and an event updated(q : true) which
is removed with no effect. The resulting state is identical to the starting state.

Example 2.4.4 Consider again the rev and app program from Example 2.3.1.
After analysis of the entire program we are in State 3. Now consider the deletion
of clause [C] from [A,B,C,D]. T' = up(app(X,Y, 7)) is all the calling patterns so,
all the answer table and dependency arc table are emptied. Reanalysis is complete

starting from the initial call rev(X,Y) : true and results in State 1 as expected.

Correctness of the incremental top-down deletion algorithm follows from cor-
rectness of the generic algorithm. Execution of the top-down deletion algorithm
is identical to that of the generic algorithm except that information about the
answers to some call patterns which do not depend on the deleted rules is already
in the data structures.

Theorem 2.4.5 If a program P is first analyzed and then rules R are deleted
from the program and the remaining rules are reanalyzed with the top-down
deletion algorithm, the same answer and dependency arc tables will be obtained

as when the rules P\ R are analyzed by the generic algorithm.

The cost of performing the actual analysis incrementally can be no worse
than performing the analysis all at once. Let Cyy_tw(F, R, R, S) be the worst

case number of calls to the parametric functions F' when analyzing the program R
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with rules R' deleted for all possible priority strategies with the top-down deletion
algorithm after already analyzing the program R for call patterns S.

Theorem 2.4.6 Let R and R’ be sets of rules such that R C R. For any call
patterns S and parametric functions F),

Cnom’nc(pa R\ Rla S) Z Cdel—td(Fa R, Rla S)

2.4.3 “Bottom-up” Deletion Algorithm

The last theorem shows that the top-down deletion algorithm is never worse
than starting the analysis from scratch. However, in practice it is unlikely to be
that much better, as on average deleting a single rule will mean that half of the
dependency arcs and answers are deleted in the first phase of the algorithm. The
reason is that the top-down algorithm is very pessimistic—deleting everything
unless it is sure that it will be useful. For this reason we now consider a more
optimistic algorithm. The algorithm assumes that calling patterns to changed
predicate definitions are still likely to be useful. In the worst case it may spend a
large amount of time reanalyzing calling patterns that end up being useless. But
in the best case we do not need to reexamine large parts of the program above
changes when no actual effect is felt. The algorithm proceeds by computing
new answers for calls to the lowest strongly connected component' (SCC) in
the program call graph which is affected by the rule deletion, and then moving
upwards to higher SCCs. At each stage the algorithm recomputes or verifies the
current answers to the calls to the SCC without considering dependency arcs
from SCC in higher levels. This is possible because if the answer changes, the arc
events they would generate are computed anyway. If the answers are unchanged
then the algorithm stops, otherwise it examines the SCCs which depend on the
changed answers (using the dependency arcs). For obvious reasons we call the

algorithm Bottom-Up Deletion. It is shown in Figure 2.5.

Example 2.4.7 Consider the same deletion as in Example 2.4.3. Initially
H is r(X,Y,Z) : X < Y. Its answer table entry r(X,Y,Z2) : X & YV —
X < Y < Z is moved to the old_table. The dependency arc (B) is moved

LA strongly connected component (SCC) in a directed graph is a set of nodes S such that
Vni,no € S there is a path from n; to ns.
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bottom_up_delete(S, D)
H:=0
foreach rule Ay < By 1,...,Bypn, € D
foreach A : CP +— AP in table
H:=HU(A:CP)
while H is not empty
let B : _ € H be such that B is of minimum predicate SCC level
T := calling patterns in dependency graph for predicates in
same predicate SCC as B
foreach A:CPeT
delete each arc Ay : CP = [CP;]By, ; : CP, from dependency_arc_table
foreach A : CP € external calls(T,S)
move entry A : CP — AP from answer_table to old_table
foreach arc By, : CPy = [CP1] By,; : CP» in dependency_arc_table
where there exists renaming o s.t. (A: CP) = (By,; : CP)o
move By, : CPy = [CPi] By, j : CP» to old_dependency_table
add_event(newcall(A : CP))
main_loop()
foreach A : CP € external calls(T,S)
foreach arc By, : CPy = [CP,] By, : CP; in old_dependency_table
where there exists renaming o s.t. (4 : CP) = (By; : CP)o
if answer pattern for A : C'P in old_table and answer_table agree
move By, : CPy = [CPy] By,; : CP, to dependency_arc_table
else
H:=HU(B:CH)
H:=H-T
delete old_table

external calls(T,S)

U:=10

foreach A:CP €T
where exists arc By, : CPy = [CPy] By,; : CPy
and B:CPy ¢T
and there exists renaming o s.t. (A: CP) = (By,; : CPy)o
%% this means there is an external call
U=UU(A:CP)

return U U (T'NS)

Figure 2.5: Bottom-up Incremental Deletion Algorithm
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to old_dependency_table. The event newcall(r(X,Y,Z) : X < Y) is placed on
the queue. This (re)generates new answer information r(X,Y,Z) : X «< YV —
X & Y < Z and an event updated(r(X,Y,Z) : X < Y). As the dependency
arc table has no arc that need be recomputed we stop. Because the answer for
r(X,Y,Z) : X + Y is unchanged the arc (B) is moved to the dependency arc table
and the algorithm terminates, without recomputing q : true.

Example 2.4.8 Consider the rev and app program. After analysis of the en-
tire program we are in State 3. Now consider the deletion of clause [C] from
[A,B,C,D]. H is initially {app(X,Y,Z) : true}. So is T. We remove the arc
(3). We move the answer pattern for app(X,Y,Z) : true and the arc (2) to
the old_dependency_table. The event newcall(app(X,Y,Z) : true) is placed in
the queue. The analysis proceeds to compute answer app(X,Y,Z) : true — L.
Since this has changed rev(X,Y) : true is added to H. app(X,Y,Z) : true is
removed from H. In the next iteration S equals H. The answer pattern for
rev(X,Y) : true is moved to old_table, and the arc (1) is removed. Reanalysis
proceeds as before including building a new call to app(X,Y,Z) : X. This gives
the answer rev(X,Y) : true — X AY. The resulting state is State 1 as expected.
Note that the reanalysis of app(X,Y,Z) : true was unnecessary for computing the
answers to the call to rev (this was avoided by the top-down deletion).

Proving correctness of the incremental bottom-up deletion algorithm requires
an inductive proof on the SCCs. Correctness of the algorithm for each SCC
follows from correctness of the generic algorithm.

Theorem 2.4.9 If a program P is first analyzed for calls S and then rules R
are deleted from the program and the remaining rules are reanalyzed with the
bottom-up deletion algorithm, the same answer and dependency arc tables will

be obtained as when the rules P\ R are analyzed by the generic algorithm for S.

Unfortunately, in the worst case, reanalysis with the bottom-up deletion al-
gorithm may take longer than reanalyzing the program from scratch using the
generic algorithm. This is because the bottom-up algorithm may do a lot of work
recomputing the answer patterns to calls in the lower SCCs which are no longer
made. In practice, however, if the changes are few and have local extent, the

bottom-up algorithm will be faster than the top-down.
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2.5 Arbitrary Change

Given the above algorithms for addition and deletion of clauses we can handle
any possible change of a set of clauses by first deleting the original and then
adding the revised version. This is inefficient since the revision may not involve
very far reaching changes while the deletion and addition together do. Moreover
we compute two fixpoints rather than one.

In fact, the bottom-up and top-down deletion algorithms of the previous sub-
sections can handle arbitrary change with only minor modification. Care must
be taken to ensure that we reset enough answer information to L to guarantee
correctness. In particular the call dependency graph may have been altered after

the change, so we must recompute the SCCs.

Example 2.5.1 Consider the following program

alX, V) - paX, V).
p2(a, b).

The complete analysis information for the initial call q(X, Y): X is

answer table: qiX, NV : X — X AY
pX, V): X —» XAY
dependency arc table: q1 (X, Y) : X = pi 1 (X, ¥) : X

Consider replacing the clause pa(a, b) by ps(X, ¥Y) :- U = a, q2(U, X).
Clearly we must set the answer for p(X, Y) : X to L but in the analysis of the
(modified) clause we determine a dependency arc p3(X, Y) : X = qu (X, Y) : X.
Hence because q(X, Y) : X is now mutually recursive with p(X, Y) : X is must

also have its answer information set to L.

2.6 Local Change

One common reason for incremental modification to a program is optimizing
compilation. Changes from optimization are special in the sense that usually
the answers to the modified clause do not change. This means that the changes

caused by the modification are local in that they cannot affect SCCs above the
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local_change(S, R)
let R be of the form Ay <~ Dp1,...,Dgp,
T:=0
foreach A : CP — AP in answer table
T:=TU(A:CP)
T := T plus all B: CPF, in same SCCs of dependency graph
delete each arc of the form Ay : CPy = [CPy] By,; : CP» from graph
foreach A : CP € external calls(T,S)
CPFy := Aextend(CP,vars(Dg,...,Drpy))
CP, := Aproject(CFy,vars(Dy1))
add_event(arc(Ay : CP = [CPRy] Dy, : CPy))

main_loop()

Figure 2.6: Local Change Algorithm

change. Thus, changes to the analysis are essentially restricted to computing
the new call patterns that these clauses generate. This allows us to obtain an
algorithm for local change (related to bottom-up deletion) which is more efficient
than arbitrary change.

The algorithm for local change is given in Figure 2.6. It takes as arguments
the original calling patterns S and a modified rule R, which we assume has the
same number as the rule it replaces.

Correctness of the local change algorithm essentially follows from correctness
of the bottom-up deletion algorithm.

Let A + B and A < B’ be two rules. They are local variants with respect to
the calls S and program P if for each call pattern in S the program PU{A < B}
has the same answer patterns as P U {A < B'}.

Theorem 2.6.1 Let P be a program analyzed for the initial call patterns S.
Let R be a rule in P which in the analysis is called with call patterns S’ and let
R' be a local variant of R with respect to S’ and P \ {R}. If the program
P is reanalyzed with the routine local_change(S,R') the same answer and
dependency arc tables will be obtained as when the rules P U {R'} \ {R} are
analyzed by the generic algorithm.

The cost of performing the actual analysis incrementally can be no worse than
performing the analysis all at once. Let Cleai(F, P, R, R',S) be the worst case
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number of calls to the parametric functions ' when analyzing the program P
with rule R changed to R’ for all possible priority strategies with the local change
algorithm after already analyzing the program P for call patterns S.

Theorem 2.6.2 Let P be a program analyzed for the initial call patterns S.
Let R be a rule in P which in the analysis is called with call patterns S’ and let
R’ be a local variant of R with respect to S’ and P\ {R}. For any parametric

functions F,

Cnoninc(Fa PuU {RI} \ {R}, S) Z C’loca.l(F’a Pa Ra Rla S)

2.7 Experimental Results

We have conducted a number of experiments using the PL AT generic abstract in-
terpretation system in order to assess the practicality of the techniques proposed
in the previous sections. As mentioned in Section 2.2 the original fixpoint used in
PLAI uses the concrete strategy of always performing newcall events first, pro-
cessing non-recursive rules before recursive rules, and finishing processing a rule
before starting another. Prior to the invocation of the fixpoint algorithm a step
is performed in which the set of predicates in the program is split into the SCCs
based on the call graph of the program found using Tarjan’s algorithm [Tar72].
This information is used among other things to determine which predicates and
which clauses of a predicate are (can be) recursive, used as mentioned above.

PLAT also incorporates some additional optimizations such as dealing directly
with non-normalized programs and filtering out non-eligible clauses using concrete
unification (or constraint solving) when possible. Also, instead of explicitly stor-
ing the annotation and call-pattern in the dependency arcs, it is recomputed from
the head of the rule. In one way, however, PLAI is somewhat simpler than the
generic algorithm given in Section 2.2: in order to simplify the implementation,
the original fixpoint algorithm does not keep track of dependencies at the level
of literals, but rather, in a coarser way, at the level of clauses.

Since relatively detailed dependencies, as described in the previous sections,
seem quite useful in incremental analysis, we first introduced support for such
more detailed dependencies in PLAI’s fixpoint, as well as the quite small amount

of additional code required to handle incremental addition.
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Bench. Av | Mv | Ps| Cl S| M| Gs
aiakl 4.58 9 7| 12| 57| 0 9
ann 317 14| 65| 170 | 20| 36| 99
bid 2.20 7119 50| 31| 0| 39
boyer 2.36 71 26| 133 3123 | 49
browse 2.63 5 81 29| 62| 25 9
deriv 3.70 5 1] 10100| O 1
fib 2.00 6 1 31100] O 2
grammar || 2.13 6| 6| 15 0] 0 7
hanoiapp || 4.25 9 2 41100 O 3
mmatrix || 3.17 7| 3 6100 O 4
occur 3.12 6| 4 7wl 0 5
peephole || 3.15 7| 26| 134 7146 | 39
progeom || 3.59 9| 9] 18| 66| 0| 13
gplan 3.18 | 16| 46 | 148 | 32| 28| 56
gsortapp || 3.29 7| 3 71100 0] 13
query 0.19 6 41 52 0 O 4
read 420 13| 24| 54| 1233 | 75
rdtok 3.07 T 22| 8 | 27|40 | 37
serialize || 4.18 7| 5| 12| 80| O 8
tak 7.00 | 10 1 2(100] O 3
warplan 2.47 71291101 31| 17| 64
witt 4.57 | 18| 77160 | 35| 22| 102
zebra 206 | 25| 6| 18| 33| 0] 11

Table 2.1: Summary of benchmark statistics

A relatively wide range of programs has been used as benchmarks. Some
statistics on their size and complexity is given in Table 2.1. Av, Mv are re-
spectively the average and maximum number of variables in each clause analyzed
(dead code is not considered); Ps and Cl are, respectively, the total number of
predicates and clauses analyzed; S, and M are, respectively, the percentage of
simply and mutually recursive predicates; Gs is the total number of different goals

solved in analyzing the program, i.e., the total number of syntactically different
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calls.

Bench. Strd | Incr Icl NIcl |[ISD | NISD |ISU
aiakl 3746 | 3859 4050 6153 | 1.05 1.59 | 1.52
ann 7882 | 7746 | 50830 | 643609 | 6.56 83.09 | 12.66
bid 916 962 4436 16937 | 4.61 17.61 | 3.82
boyer 3625 | 2808 | 20853 | 271043 | 7.43 96.53 | 13.00
browse 495 516 1703 9560 | 3.30 18.53 | 5.61
deriv 766 492 3199 1736 | 6.50 3.03 | 0.54
fib 46 52 53 89 | 1.02 1.71 ] 1.68
grammar 155 175 496 1193 | 2.83 6.82 | 241
hanoiapp 613 629 1036 1419 | 1.65 2.26 | 1.37
mmatrix 306 329 733 1003 | 2.23 3.06 | 1.37
occur 342 335 396 523 | 1.18 1.56 | 1.32
peephole | 7256 | 6605 | 65546 | 567572 | 9.92 85.93 | 8.66
progeom 240 256 406 1066 | 1.59 4.16 | 2.63
gplan 1973 | 2036 | 41912 | 154500 | 20.59 75.88 | 3.69
gsortapp 346 372 646 1169 | 1.74 3.14 | 1.81
query 176 185 2079 4626 | 11.24 25.01 | 2.23
rdtok 2032 | 2793 | 23606 39193 | 8.45 14.03 | 1.66
read 36416 | 47899 | 187512 | 1044112 | 3.91 21.80 | 5.97
serialize 569 733 1596 3556 | 2.18 4.85 | 2.23
tak 109 123 127 166 | 1.03 1.35 | 1.31
warplan 4682 | 3966 | 45592 | 122562 | 11.50 30.90 | 2.69
witt 2543 | 2526 | 21143 65109 | 8.37 25.78 | 3.08
zebra 4068 | 4146 9312 45340 | 2.25 10.94 | 4.87

Average | 5.44 33.53 | 6.16

Table 2.2: Incremental vs. Non-incremental Addition

All execution times presented in the tables are milliseconds on a Sparc 10.
In all the experiments, the description (abstract) domain uses is the shar-
ing+freeness domain [MH91]. In Table 2.2 Strd is the time taken by PLAT’s
original fixpoint in order to analyze the whole program as one block. Incr is the

equivalent figure for the slightly modified fixpoint including the more detailed
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dependencies. It turns out that the additional cost of keeping track of more de-
tailed dependencies is essentially offset by some improvement in the convergence
of the fixpoint algorithm. In any case, the differences are due to the difference
in dependency tracking rather than the cost of incrementality. Thus, the fully
incremental algorithm shows no real disadvantage when analyzing programs in
one block.

In order to test the relative performance of incremental and non-incremental
analysis in the context of addition, we timed the analysis of the same benchmarks
but adding the clauses one by one. I.e., the analysis was first run for the first
clause only. Then the next clause was added and the resulting program re-
analyzed. This process was repeated until the last clause of the program. The
total time involved in this process is given in Table 2.2 by I_cl, for the case of
incremental analysis, and by NI_cl for the case of restarting the analysis from
scratch every time a clause is added (as would be necessary with the original
PLAI system). In the latter case, the same incremental implementation was
actually used (but erasing the tables between analyses) in order to factor out any
differences in fixpoint algorithms. I SD and NI SD represent, respectively, the
slowdown due to clause by clause addition with respect to analyzing the whole
program at once (i.e., with respect to Incr). I SU (NI.cl / I.cl) shows the
speedup obtained by incremental analysis. The results are quite encouraging: in
the worst case studied of compiling clause by clause the slowdown with respect
to analyzing the entire file in one block is on the average of only a factor of
5.44. Doing the same thing with the non-incremental analysis implies an average

slowdown of 33.53 (i.e., over six times worse than the incremental analysis).

In order to test the relative performance of incremental and non-incremental
analysis in the context of deletion, we timed the analysis of the same benchmarks
but deleting the clauses one by one. Starting from an already analyzed file, the
last clause was deleted and the resulting program (re-)analyzed. This process
was repeated until the file was empty. The total time involved in this process
is given in Table 2.3 by NI, for the case of restarting the analysis from scratch
every time a clause is deleted (this is equivalent to NI_cl - Incr in Table 2.2),
by I_td for the case of incremental analysis using the “top-down” algorithm, and
by I_bu for the “bottom-up” algorithm. I_td SU and I_bu SU represent the
speedups obtained by the top-down and bottom up algorithms, respectively, with
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Bench. NI| Itd I.bu|Itd SU |Ibu SU | td/bu
aiakl 2294 1676 1016 1.37 2.26 1.65
ann 635863 | 37590 | 14230 16.92 44.68 2.64
bid 15975 4463 1726 3.58 9.26 2.59
boyer 268235 | 54656 | 19903 4.91 13.48 2.75
browse 9044 1693 720 5.34 12.56 2.35
deriv 1244 1136 1033 1.10 1.20 1.10
fib 37 23 23 1.61 1.61 1.00
grammar 1018 399 253 2.55 4.02 1.58
hanoiapp 790 746 723 1.06 1.09 1.03
mmatrix 674 626 180 1.08 3.74 3.48
occur 188 63 80 2.98 2.35 0.79
peephole | 560967 | 125843 | 37472 4.46 14.97 3.36
progeom 810 110 86 7.36 9.42 1.28
gplan 152464 | 51079 3086 2.98 49.41 | 16.55
gsortapp 797 497 316 1.60 2.52 1.57
query 4441 2179 700 2.04 6.34 3.11
rdtok 36400 | 26242 8146 1.39 4.47 3.22
read 996213 | 716599 | 254420 1.39 3.92 2.82
serialize 2823 553 449 5.10 6.29 1.23
tak 43 46 40 0.93 1.07 1.15
warplan | 118596 | 63690 5426 1.86 21.86 | 11.74
witt 62583 3413 2466 18.34 25.38 1.38
zebra 41194 | 13289 2110 3.10 19.52 6.30

Average 2.63 8.21 3.12

Table 2.3: Incremental vs. Non-incremental Deletion

with respect to top-down.
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respect to non-incremental analysis (NI). The results are also very encouraging:
in the worst case studied of compiling clause by clause the speedup with respect
to the non-incremental algorithm is on the average a factor of 2.63 for top-down
and 8.21 for bottom-up. The results seem to favour the bottom-up algorithm, as
shown by td/bu in Table 2.3, giving an average speedup of 3.12 for bottom-up




Bench. | Cl 1* | Inc | Scr | Scr\Inc | Scr\(1% + Inc)
aiakl 1| 3859 | 642 | 4046 6.30 0.90
ann 11| 7746 | 3526 | 10256 2.91 0.91
bid 6 962 | 533 | 1395 2.62 0.93
boyer 2| 2808 | 909 | 4725 5.20 1.27
browse 4 516 | 545 | 1043 1.91 0.98
deriv 4 492 | 1018 | 1239 1.22 0.82
hanoiapp | 1 629 | 319 778 2.44 0.82
mmatrix 2 329 | 416 669 1.61 0.90
occur 2 335 | 473 752 1.59 0.93
peephole 2| 6605 | 1082 | 7546 6.97 0.98
progeom 1 256 52 276 5.31 0.90
qplan 2| 2036 | 273 | 2312 8.47 1.00
query 2 185 | 109 242 2.22 0.82
read 1| 47899 52 | 48618 934.96 1.01
serialize 1 733 58 803 13.84 1.02
warplan 81 3966 | 4086 | 22589 5.03 2.81
zebra 1| 4146 | 3019 | 4729 1.57 0.66

Average 6.55 1.11

Table 2.4: Local Change

Although we have implemented it, we do not report on the performance of
arbitrary change because of the difficulty in modeling in a systematic way the
types of changes that are likely to occur in the circumstances in which this type
of change occurs (as, for example, during an interactive program development
session). We have studied however the case of local reanalysis in a realistic en-
vironment: within the &-Prolog compiler, in which, after a first pass of analysis,
new, specialized clauses are generated containing run-time tests, and a reanaly-
sis is performed in order to propagate the more precise information which can
be obtained in the program beyond the points where the new tests have been
introduced. This more precise information is then used for multiple specializa-
tion (see Chapter 5). The results are shown in Table 2.4 in which benchmarks

that do not generate run-time tests have been left out, since no specialization

46



is performed for them and no reanalysis is needed in that case. Only program
entry points are given to the analysis, i.e., no input patterns are specified for such
entry points. This represents the likely situation where the user provides little
information to the analyzer and also produces more run-time tests and thus more
specializations and reanalysis, which allows us to study more benchmarks (note
that if very precise information is given by the user then many benchmarks are
parallelized without any run-time tests and then no specialization—and thus no
reanalysis—occurs). Cl is the number of clauses that have changed. 1% is the
time for analysis of the program in the first pass. Inc is the time for additional
analysis after annotation (using the incremental algorithm). Scr is the time for
additional analysis after annotation but restarting the analysis from scratch, i.e.,
no incrementality. Scr\Inc is the speedup in the reanalysis part due to incre-
mentality. Scr\(1%*+1Inc) is a measure of the incrementality (close to one or over
one is desirable). The results of incremental analysis of local change are even
more encouraging than the previous ones. The speedups are quite impressive
and the incrementality level is high or very high in all cases. In fact, in boyer,
and, specially, in warplan incrementality is indeed very high. This is related to
the fact that there is a high degree of specialization in these programs and the
first analysis is run over many less clauses than the second pass, which penalizes

reanalyzing from scratch.

2.8 Chapter Conclusions and Future Work

We have presented a generic fixpoint algorithm which generalizes the analysis
algorithms used in current analysis engines. Such generic analysis engine is used
as a basis for describing the proposed algorithms for incremental analysis. We
have classified the possible changes to a program into addition, deletion, local
change, and arbitrary change, and proposed, for each one of these, algorithms for
identifying the parts of the analysis that must be recomputed and for performing
the actual recomputation. We have also discussed the potential benefits and
drawbacks of these algorithms. Finally, we have presented some experimental
results obtained with an implementation of the algorithms in the PLAI generic
abstract interpretation framework. The results show significant benefits when

using the proposed incremental analysis algorithms.
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We argue that our work contributes to open the door to practical, every day
use of global analysis in the compilation of logic programs, even in the interactive
environment which is often preferred by the users of such systems. We also argue
that our results may shed new light into new possibilities for modular analysis.
Furthermore, while current analyzers can deal correctly with dynamic program
modification primitives, this implies having to give up on many optimizations
not only for the dynamic predicates themselves but also for any code called from
such predicates. The ability to update global information incrementally (and thus
with reduced overhead) down to the level of single clause additions and deletions
makes it possible to deal with these primitives in a much more accurate way.

Finally, it should be pointed out that in order to have a fully incremental
compiler not only the analysis phase, but also the optimization phases of the
compiler which use the information obtained from global analysis must be made
incremental. We have reported on our results for a certain kind of such incre-
mental optimization in the context of local change due to specialization in the
&-Prolog parallelizer. Given the good results obtained in our experiments we plan
on making the complete optimization process of both the &-Prolog and CLP(R)

compilers fully incremental.
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Chapter 3

Optimized Algorithms for

Incremental Analysis

Global analysis of logic programs can be performed effectively by the use of one
of several existing efficient algorithms. However, the traditional global analy-
sis scheme in which all the program code is known in advance and no previous
analysis information is available is unsatisfactory in many situations. As seen
in Chapter 2, incremental analysis of logic programs is feasible and much more
efficient in certain contexts than traditional (non-incremental) global analysis.
However, incremental analysis poses additional requirements on the fixpoint algo-
rithm used. In this chapter we identify these requirements, identify an important
class of strategies meeting the requirements, present sufficient a priori conditions
for such strategies, and propose, implement, and evaluate experimentally a novel
algorithm for incremental analysis based on these ideas. The experimental results
show that the proposed algorithm performs very efficiently in the incremental case
while being comparable to (and, in some cases, considerably better than) other
state-of-the-art analysis algorithms even for the non-incremental case. We argue
that our discussions, results, and experiments also shed light on some of the many

tradeoffs involved in the design of algorithms for logic program analysis.
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3.1 Introduction

As seen in Chapterchap:Incremental-Analysis, incremental analysis of logic pro-
grams has been shown to be feasible and much more efficient in certain contexts
than traditional (non-incremental) global analysis (see [HPMS95, KB95] for a
different approach). In particular, in Chapter 2 we have discussed the different
types of changes that have to be dealt with in an incremental setting, provided
overall solutions for dealing with such changes (in terms of which parts of the
analysis graph need to be updated and recomputed), and proposed a basic set of
techniques that showed the feasibility of the approach. It was also observed that
incremental analysis poses additional requirements on the fixpoint algorithm used
since some assumptions on the program that traditional algorithms make are no
longer valid. In this chapter, we directly address this issue by identifying more
concretely such requirements and proposing optimizations in order to improve
the performance of the fixpoint algorithm while meeting the requirements. We
also aim to define, implement, and evaluate experimentally a novel algorithm for
incremental analysis and compare it to some previously proposed algorithms for
incremental as well as non-incremental analysis.

To the best of our knowledge, this is the first work dealing with the design and
experimentation of fixpoint algorithms specially tailored for incremental analysis
of logic programs. Additionally, our results imply performance improvements
even in a non-incremental setting. Thus, we believe our discussions, results, and
experiments may also clarify some of the many tradeoffs involved in the design

of algorithms for logic program analysis in general.

3.2 Incremental Analysis Requirements

As mentioned before, the aim of the kind of (goal oriented) program analysis
performed by the analysis engines mentioned in the previous section is, for a par-
ticular description domain, to take a program and a set of initial calling patterns
(descriptions of the possible calling modes into the program) and to annotate
the program with information about the current environment at each program
point whenever that point is reached when executing calls described by the calling

patterns.
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The aim of incremental global analysis is, given a program, its least analysis
graph, and a series of changes to the program, to obtain the new least analysis
graph as efficiently as possible. A simple but inefficient way of computing the new
least analysis graph is to simply discard the previous analysis graph and start
analysis from scratch on the new program. However, much of the information in
the previous analysis graph may still be valid, and incremental analysis should
be able to reuse such information, instead of recomputing it from scratch.

Unfortunately, traditional fixpoint algorithms for abstract interpretation of
logic programs cannot be used directly (at least in general) in the context of in-
cremental analysis for reasons of accuracy, efficiency, and even correctness. This
is because such algorithms assume that once a local fixpoint has been reached for
a calling pattern, i.e., an answer pattern for this calling pattern has been com-
puted, this information will not change and can be used safely thereafter. This
assumption is no longer valid in the incremental case, since an answer pattern may
become inaccurate if some clauses are eliminated from the program (incremental
deletion) or even incorrect if more clauses are added to the program (incremental
addition). When performing arbitrary change on the program (i.e., when both
additions and deletions are performed), the old answer pattern can be incorrect,
inaccurate, or both.

We now discuss two requirements that incremental analysis poses on the fix-

point algorithm.

Detailed Dependency Information: Most practical fixpoint algorithms try
to make iterations as local as possible by using some kind of dependency infor-
mation. Thanks to this information it is possible to revisit only a reduced set of
nodes of the graph when an answer pattern changes during analysis. Addition-
ally, dependency information can also be used to detect earlier that a fixpoint
has been reached. The more accurate such dependency information is, the more
localized (and, thus, less costly) the fixpoint iterations can be.

In the context of incremental analysis, in addition to localizing the fixpoint and
detecting termination earlier, dependencies are useful for a third reason: they help
locate the parts of the analysis graph that may be affected by program changes
and which thus need to be recomputed as required by such changes. Obviously,

if more detailed dependency information is kept track of, a smaller part of the
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analysis graph will have to be recomputed after modifying the program.

Propagation of Incrementally Updated Answer Patterns: Incremental
deletion, local change, and arbitrary change (Chapter 2) do not pose extra require-
ments on the analysis algorithm, provided that detailed dependency information
is available, since such changes only require the analysis algorithms to deal with
new calling patterns. However, in incremental addition, i.e., when new clauses
are added to a program already analyzed, the new clauses may also generate
unexpected changes to previously computed answer patterns, i.e., they may up-
date any answer pattern in the analysis graph. Once a global fixpoint has been
reached, there is usually no way to propagate this updated information to the
places in the analysis graph that may be affected using traditional analysis algo-
rithms. If an algorithm is to deal efficiently with incremental addition it needs
to be able to deal incrementally with the update (due to the additional clauses)

of any answer pattern.

3.3 Optimizing the Generic Algorithm

The generic algorithm presented in Section 2.2 is parametric with respect to the
event handling strategy in the priority queue, in order to capture the behaviour
of several possible algorithms. As seen in Chapter 2, correctness of the analysis
does not depend on the order in which events are processed. However, efficiency

does.

The cost of analysis can be split into two components. The cost of computing
the arc events, which for a given program P and a queuing strategy ¢ will be
denoted C,(P, q), and the cost associated with dealing with the event queue which
will be denoted C,(P, ¢). There is clearly a trade-off between C,(P, q) and C,(P, q)
in that a more sophisticated event handling strategy may result in a lower number
of arcs traversed but at a higher event handling cost. We now discuss some

possible optimizations to the generic fixpoint algorithm.
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3.3.1 General Simplifications

Dealing Only with Arc Events in the Priority Queue: The generic fix-
point algorithm in Section 2.2 has to deal with three different kinds of events,
namely updated, arc and newcall. This can make the priority mechanism for the
queue rather complicated. Looking at the actions performed for each one of these
events and the optimizations presented below, it can be seen that the effect of
both updated and newcall can be reduced to that of the arc events. Additionally,
newcall performs an initial guess of the answer pattern. However, we will always
use L as the trivial initial guess for newcall events. Therefore, the event queue
only needs to deal with arc events. Whenever the generic analysis algorithm
would add to the queue an updated or newcall event, the optimized algorithm
will directly add to the queue the required arc events.

In what follows, the current event queue will be denoted as () and will be
a set of triples (arc, g(arc), type), where type can be either newcall or updated
and indicates whether such arc was introduced due to a newcall or an updated
answer pattern, and ¢ will be a function called queuing strategy that will assign
a priority (a natural number) to each arc event. T(Q) is a function that returns

(and deletes) from a non-empty queue @) an element with highest priority.

Only One Priority per Rule and Calling Pattern: The generic algorithm
makes intensive use of the event queue. Without loss of generality, we will assign
priorities to arcs at a somewhat coarser level. Instead of assigning a (possibly)
different priority to each arc event, we will always assign the same priority to all

the arcs for the same rule and calling pattern.

Never Switching from an Arc to Another with the Same Priority: Once
computation for an arc has finished (no other arc with a higher priority can be
in the queue), the generic algorithm would add the rest of the arc (if any) to the
queue and retrieve one of the arcs with highest priority. Instead, as there cannot
be any other arc with higher priority, it is always safe to continue with the arc
just added to the queue. Rather than adding the rest of the arc and retrieving it
immediately, it is more efficient to process it directly. This optimization allows

using the queue only once for each rule and calling pattern.
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Indexing the Dependency Arc Table: Whenever a pattern is updated, all
the arcs that used the old (incorrect) pattern must be found in order to generate
arc events for them. This is done in procedure add_dependent_rules by checking
all the entries in the dependency arc table against the pattern that has been
updated. This process has linear complexity in the size of the analysis graph.
The proposed optimization implies keeping a table that for each calling pattern
contains the set of arcs that have used this information. In such a way, the set

of arcs that depend on a given calling pattern can be found in constant time.

3.3.2 Restricting the Set of Queuing Strategies

Definition 3.3.1 [Dynamic Call Graph| The dynamic call graph of a program
P, denoted as D(P), is the graph obtained from the answer table and the depen-
dency arc table generated for P by the generic analysis algorithm as follows: for
each entry A : CP — AP, in the answer table create the node A : C'P and for
each entry H : CPy = [CPy] By, : CP; in the dependency arc table create an
arc from node H : CP, to node B : C'Pg, where B : C'Pg is the unique calling
pattern for which there exists a renaming o s.t. B: CPg = (By,; : CP)o.

Definition 3.3.2 [Reduced Call Graph] The reduced call graph of a program P,
represented as Dg(P) is the directed acyclic graph obtained by replacing each
SCC in D(P) by a single node in Dg(P) labeled with the set of nodes in the
SCC, and eliminating all arcs which are internal to the SCC.

Definition 3.3.3 [SCC-preserving] A queuing strategy ¢ is SCC-preserving if
V program P V(A1 q(A1),typel), (As, q(Az),type2) € Q, where A; = arc(Hy, :
CPy = [CPy] By; : CPy) and Ay = arc(Hy : CPy = [CPy] By : CPy) :
if there is a path in Dg(P) from Hy : CPy to Hy : CPy then q(4;) < q(A,).

Theorem 3.3.4 V queuing strategy ¢ 3¢’ s.t. ¢’ is SCC-preserving and V pro-
gram P C,(P,q¢') < C.(P,q).

This theorem implies that if C,(P, ¢') is low enough, the set of queuing strate-
gies considered can be restricted to those which are SCC-preserving. Defini-
tion 3.3.3 (SCC-preserving) is not operational because Dg(P) cannot be com-

puted until analysis has finished. It is thus an “a posteriori” condition. Next,
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we give sufficient “a priori” conditions that ensure that a queuing strategy is
SCC-preserving.

Definition 3.3.5 [Newcall Selecting] Let @ # 0 be a queue with (A4, g(A), type)
= T(Q) where A = arc(Hy : CPy = [CP)]| By, : CP,). Let Ay,..., A, be the
set of arc events which the event newcall(By; : CP,) will insert in the queue. A
queuing strategy ¢ is newcall selecting iff V(A', q(A"),type’) € Q Vi =1...,n:
a(A) > q(A").

The intuition behind a newcall selecting strategy is that analysis processes
calling patterns in a depth-first fashion. Note also that if no recursive predicate
appears in the program, the least fixpoint would be obtained in one iteration. If
the queuing strategy is not newcall selecting, several iterations may be needed

even for non-recursive programs.

Definition 3.3.6 [Update Selecting] Let @ # () be a queue with (A, ¢(A), type)
= T(Q). Suppose that after processing the last literal in A, an updated(H : CP)
event is generated. Let A,..., A, be the set of arc events which the event
updated(H : CP) will insert in the queue and let (A, q(Ax), newcall) € Q be
such that V(A’, q(A4"), newcall) € @Q : q(Ax) > q(A’). A queuing strategy ¢ is
update selecting iff V(A', q(A"),type’) € Q Vi = 1...,n : (¢(Ax) > q(4")) —
(g(A;) > q(A")). Le., the arc events generated by an updated event must have
higher priority than any existing arc in the queue except for the arcs of updated
type that were introduced after the last newcall.

When update selecting strategies are used together with delayed dependencies
introduced below, the analysis algorithm locally iterates whenever an answer
pattern may not be final rather than using this possibly incorrect information in
parts of the analysis graph outside the SCC the answer pattern belongs to.

Delaying Entries in the Dependency Arc Table: This modification to the
generic algorithm consists in executing “AP, := get_answer(By; : CP,)” before
the conditional “if (B is not a constraint) add (...) to dependency_arc_table” in
the procedure process_arc in the generic algorithm. The aim is not no introduce
any dependency until an answer pattern is actually used.

Notice than in this case we are not restricting the set of considered queuing

strategies but rather we are modifying the generic algorithm itself.
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Theorem 3.3.7 [Delaying Dependencies| If the queuing strategy is newcall and
update selecting then the algorithm obtained from the generic one by delaying

dependencies produces the same analysis results as the generic algorithm.

Theorem 3.3.8 If dependencies are delayed and the queuing strategy is newcall
and update selecting then all the arc events generated by an updated(A : CP)
event belong to the same SCC as A : C'P.

Suppose that when processing the event arc(Hy : CPy = [CPi| By, : CP),
the answer pattern for By; : CP; is updated m times. In the worst case, the
continuation of arc(Hy : CPy = [CPy] By; : CP,) would be computed m times.
Additionally, this computation may generate an updated(Hy : CPy) event which
may in turn generate update events for any calling pattern in the analysis graph.
This theorem ensures that unless By ; : CP, and Hy : CF, are in the same SCC,
the continuation of the arc will only be computed once due to updated values of
By ; : CP,, independently of the number of times the answer pattern for By ; : CP,

is updated and the number of iterations needed to compute it.

Theorem 3.3.9 [SCC-preserving] If dependencies are delayed then if a queuing

strategy ¢ is newcall selecting and update selecting then ¢ is SCC-preserving.

This is a sufficient “a priori” condition to obtain SCC-preserving strategies.

3.3.3 Parametric Strategies

Ordering Arcs from Newcall Events — the Newcall Strategy: Although
SCC-preserving strategies are efficient in general, for any given program P differ-
ent SCC-preserving strategies may have different values for C,(P, ¢) and C,(P, q).
There are still several degrees of freedom associated with the event handling strat-
egy. The first one, which we will call the newcall strategy refers to the priorities
among the different arcs generated by a single newcall (there will be one arc event
per clause defining the called predicate). We know that all of them should have a
higher priority than the existing arcs, but nothing has been said up to now about

their relative priorities.
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analyze(S)
foreach A: CP € S
new_calling pattern(A: CP)

process_update(Updates)
if Updates = A; :: As
UAs := process_arc(A;)
NAs =
global updating strategy(As,U As)
process_update(N As)

insert_answer_info(H : CP — AP)
APy := lookup_answer(H : CP)
AP, := Alub(AP, AP,)
A=)
if (APy <> APy)
add (H : CP — AP;) to answer_table
foreach arc of the form
Hy :CPy = [CP] B, : CPy
in dependency_arc_table
where there exists renaming o
st. H:CP = (By,; : CPy)o
A:=A{
{Hk :CPy = [Cpl] Bk,i : CPQ}
return:=local updating strategy(A)

lookup_answer(A : CP)

if (there exists a renaming o s.t.
o(A: CP) — AP in answer_table)
return 0~ 1(AP)

else
return o~ (

new_calling pattern(c(4 : CP)))

where ¢ is a renaming s.t.

o(A) is in base form

new_calling pattern(A4: CP)
add A : CP — 1 to answer_table
AO = {}
foreach rule Ay < By 1,...,Bin,

CPFy := Aextend(CP,vars(By,1,. .., Brn.))

CP, := Aproject(CP, By 1)

Ao = AO U

{Ak :CP = [CP] Bk,1 :CPl}
Arcs := newcall_strategy(Aog)
processnewcall(Arcs)
Let o be a renaming s.t.

(A : CP) — AP in answer_table

return 0~ !(AP)

process newcall(NewCalls)
if NewCalls = A, :: As
UArcs := process_arc(A4;)
process_update(U Arcs)

process newcall(As)

process_arc(Hy :CPy = [CP] By,; :CP)
if (By,; is not a constraint)
APy := lookup_answer(By, ; : CP,)
add Hy : CPy = [CPy] By, : CP,
to dependency_arc_table
else
APO = Aadd(Bk,i,C’PQ)
CP; := Acombine(CPy, AP,)
if (CP; <> L and i <> nyg)
CPy := Aproject(C’P3,Bk,,~+1)
U := process_arc(
Hy, : CPy = [CPs] Bg,i+1: CPy)
elseif (CP; <> 1)
AP, = Aproject(CPs, Hy,)

U := insert_answer_info(
H: CPO = APl)
return U

Figure 3.1: Optimized SCC-preserving analysis algorithm
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Ordering Arcs from Updated Events — the Updating Strategy: The
newcall selecting condition is in a sense stronger than the updating strategy
condition. The newcall selecting condition requires the new arcs to be assigned
priorities which are higher than any other existing one. Therefore, there is even
more freedom to assign priorities to arcs generated by updated events. The
approach taken will be to split the updating strategy into two components. One
is the relative order of the arc events introduced by a single updated event (local
updating strategy). The other one is the order of these new arc events with respect
to the already existing updated type arc events in the queue that were introduced

in the queue later than any newcall type arc event (global updating strategy).

3.4 An Optimized Analysis Algorithm

Figure 3.1 presents an optimized analysis algorithm in which dependencies are
delayed. It also ensures that the newcall selecting and updating selecting condi-
tions will hold, thus always providing SCC-preserving strategies (Theorem 3.3.9).
It is parametric with respect to the newcall strategy and local and global updat-
ing strategies introduced above. Different choices of these strategies will provide
different SCC-preserving instances of the algorithm with possibly different effi-

ciency.

The two different types of arc events are treated separately by procedures
process_newcall and process_update. Also, rather than having an external
data structure for the queue, we will use explicit parameters to store the arc
events that have to be processed. The run-time stack of procedure and func-
tion calls will isolate and store the arcs. Assuming that the pseudo-code used
to describe the algorithm is sequential, the newcall selecting condition is satis-
fied because if no entry is stored for a calling pattern in the answer table, the
procedure look_up_answer will have to wait for new_calling pattern to fin-
ish before returning control to the calling process_arc procedure. The update
selecting condition is also satisfied because in the procedure process_newcall,
process_update is called after processing each arc and before executing the re-

cursive call to process_newcall for the remaining arcs from the same newcall.
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incremental addition(R)

Ao ={} process_inc_update(Updates)
foreach rule Ay < By1,...,Bgn, € R if Updates = A; :: As
foreach entry A: CP — AP U := process_arc(4;)
in the answer_table NAs =
CPy := Aproject(CP, By,1) inc_updating strategy(As,U)
Ao = Aol process_inc_update(IN As)

{Ak :CP = [CP] Bk,l : CP1}
A := inc_updating strategy(4o)

process_inc_update(A)

Figure 3.2: Optimized Incremental Addition Algorithm

3.4.1 Augmenting the Algorithm for Incremental Addi-

tion

In order to cope with incremental addition, i.e., a set of rules R is added to
a program, analysis should process each rule in R with all the existing calling
patterns in the answer table for the predicate the rule belongs to. This is done by
procedure incremental_addition in Figure 3.2. Note that a specialized version
of procedure process_update which is called process_inc_update is used to start
incremental analysis of the new arcs. However, in this case delaying dependencies
is not possible because before incrementally analyzing the new clauses, a fixpoint
will have been reached and all dependencies will have been introduced. Therefore,
for any node A : C'P which existed in the analysis graph before incremental
analysis started the arc events generated by an event updated(A : CP) will not
necessarily belong to the same SCC as A : C'P and analysis may no longer be SCC-
preserving. Thus, it makes sense to use a more involved updating strategy for this
case than for the non-incremental one in order to avoid unneeded recomputations.
This strategy will be called the inc_updating_strategy. Incremental addition will be
SCC-preserving or not depending on this strategy. However, for any new calling
pattern in the analysis graph it is possible to delay dependencies and thus the
algorithm in Figure 3.1 will be SCC-preserving for them. Thus, for such calling
patterns it is profitable to use process_update whenever possible rather than
process_inc_update. This is automatically achieved as the call to process_arc
in procedure process_inc_update will always call process_update for any new

calling pattern.
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3.5 Experimental Results

A series of experiments has been performed for both the incremental and non-
incremental case. The fixpoint algorithms we experiment with have been imple-
mented as extensions to the PLAI generic abstract interpretation system. We
argue that this makes comparisons between the new fixpoint algorithms and that
of PLAI meaningful, since on the one hand PLAI is an efficient, highly optimized,
state-of-the-art analysis system, and on the other hand the algorithms have been
implemented using the same technology, with many data structures in common.
They also share the domain dependent functions which, as in Chapter 2, are those
of the sharing+freeness domain [MH91] in all the experiments.

Three analysis algorithms, as well as PLAI' have been considered. DD is the
algorithm for incremental analysis used in Chapter 2 (Incr or I in the experi-
mental results). Both DI and DIg are instances of the algorithm presented in
Figure 3.1, with the extensions for incremental addition presented in Figure 3.2.
The difference between DI and DIg is the newcall strategy used. DIg uses the
more elaborated strategy of computing the SCC of the static graph in order to
give higher priority to non-recursive clauses. DI simply uses the lexical order of
clauses to assign them different priorities. Both use the same updating strategy:
the local strategy is to process arcs in the order they were introduced in the de-
pendency arc table, and the global strategy is to use a LIFO stack and eliminate
subsumed arcs, i.e., other arcs in the queue exist which ensure that their compu-
tation is redundant. The incremental updating strategy is to use a FIFO queue
and eliminate subsumed arcs. DD uses depth-dependent and both DI and DIg
depth-independent propagations.

3.5.1 Analysis Times for the Non-Incremental Case

Table 3.1 shows the analysis times for a series of benchmark programs using the al-
gorithms mentioned above. Times are in milliseconds on a Sparc 10 (SICStus 2.1,
fastcode). The same set of benchmark programs as in Chapter 2, where they are
briefly described. They can be obtained from http://www.clip.dia.fi.upm.es.

!The algorithm used for PLAT is the one in the standard distribution which has been aug-
mented to keep track of detailed dependencies that are later used in multiple specialization (see
Chapter 5). This introduces a small overhead over the original algorithm.
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| Bench. | C1|PLAI| DD | DIs| DI|DD.SU|DIs;SU|DLSU |

aiakl 12 3526 | 3532 | 2563 | 2483 1.00 1.38 1.42
ann 170 6572 | 6593 | 6615 | 6906 1.00 0.99 0.95
bid 50 783 779 769 789 1.01 1.02 0.99
boyer 133 2352 | 2346 | 2339 | 2475 1.00 1.01 0.95
browse 29 329 339 343 393 0.97 0.96 0.84
deriv 10 420 436 421 406 0.96 1.00 1.03
fib 3 29 36 29 33 0.81 1.00 0.88
grammar | 15 132 128 129 119 1.03 1.02 1.11
hanoiapp 4 579 565 619 539 1.02 0.94 1.07
mmatrix 6 309 306 312 326 1.01 0.99 0.95
occur 8 296 299 316 273 0.99 0.94 1.08
peephole | 134 5855 | 5919 | 4870 | 5090 0.99 1.20 1.15
progeom 18 199 199 199 219 1.00 1.00 0.91
gplan 148 1513 1499 1422 1383 1.01 1.06 1.09
gsortapp 7 346 332 323 402 1.04 1.07 0.86
query 52 108 116 109 89 0.93 0.99 1.21
rdtok 54 2528 | 2509 | 1316 | 1209 1.01 1.92 2.09
read 88 | 44362 | 44259 | 14123 | 11765 1.00 3.14 3.77
serialize 12 629 629 663 616 1.00 0.95 1.02
tak 2 98 99 102 103 0.99 0.96 0.95
warplan | 101 3439 | 3352 | 2789 | 2803 1.03 1.23 1.23
witt 160 1902 | 1902 | 1762 | 1738 1.00 1.08 1.09
zebra 18 3376 | 3356 | 3362 | 3259 1.01 1.00 1.04
Overall 1.00 1.75 1.84

(1.00) | (1.13) | (1.12)

Table 3.1: Analysis Times for the Non-Incremental Case

However, the number of clauses is included in the table (column Cl) for reference.
DD _SU, DI5s_SU and DI_SU are the speed-ups obtained in analysis time by
each fixpoint algorithm with respect to PLAIL. As already observed in Chapter 2
the performance of DD is almost identical to that of PLAI (it introduces no
relevant overhead) but has the advantage of being able to deal with incremental
addition. On the other hand, both DI and DIg show significant advantage with
respect to DD (and PLAI). DI is the most efficient of the three, but the margin
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Bench. | DD | DIs| DI|SUpp | SUps, | SUps | SDpp | SDpi, | SDpy |

aiakl 3860 | 3527 | 3237 1.52 1.38 1.29 1.09 1.38 1.30
ann 41680 | 25686 | 8120 12.66 22.82 | 72.83 6.32 3.88 1.18
bid 4220 | 2240 | 1433 3.82 6.54 9.80 5.42 2.91 1.82
boyer 20029 | 9039 | 3870 13.00 29.21 | 69.35 8.54 3.86 1.56
browse 1110 652 556 5.61 3.91 4.82 3.27 1.90 1.41
deriv 3083 | 1570 | 1126 0.54 1.63 2.07 7.07 3.73 2.77
fib 57 49 49 1.68 1.96 1.84 1.58 1.69 1.48
grammar 510 300 209 2.41 4.17 5.34 3.98 2.33 1.76
hanoiapp 990 779 816 1.37 1.86 1.46 1.75 1.26 1.51
mmatrix 709 360 343 1.37 2.67 3.12 2.32 1.15 1.05
occur 456 396 322 1.32 3.73 3.97 1.53 1.25 1.18
peephole 59899 | 15333 | 8533 8.66 28.19 | 52.05 10.12 3.15 1.68
progeom 389 360 283 2.63 2.87 3.44 1.95 1.81 1.29
gplan 39890 | 11303 | 2342 3.69 12.42 | 56.94 26.61 7.95 1.69
gsortapp 623 506 466 1.81 2.17 2.73 1.88 1.57 1.16
query 2296 919 277 2.23 7.14 | 20.32 19.79 8.43 3.11
rdtok 24176 | 3822 | 2363 1.66 6.96 | 10.06 9.64 2.90 1.95
read 176779 | 35760 | 22160 5.57 8.16 | 11.28 3.99 2.53 1.88
serialize 1496 | 1290 973 2.23 2.63 3.25 2.38 1.95 1.58
tak 139 120 113 1.31 1.75 1.77 1.40 1.18 1.10
warplan 41999 | 9436 | 5479 2.69 10.71 | 17.32 12.53 3.38 1.95
witt 19336 | 18606 | 2523 3.08 3.37 | 17.57 10.17 10.56 1.45
zebra 8580 | 2716 | 2480 4.87 15.32 | 16.44 2.56 0.81 0.76
Overall 6.64 2.13 1 6.15 13.74 | 28.36 5.69 3.18 1.57

Table 3.2: Incremental Addition Times

over DIg is small. Two overall speed-ups appear in the table for each algorithm.
The one in brackets represents the overall speed-up after eliminating the read
benchmark, because of the atypical results. The relative advantage of DI and
DI is inverted in this case. The peculiarity in read stems from the fact that the
dynamic call graph has many cycles with lengths that are as high as 13. However,
even when taking read out DI and DIy are both still somewhat better that DD
and PLAIL
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3.5.2 Analysis Times for the Incremental Case

Among the different types of incremental change identified in Chapter 2 the
one which is really relevant for experimentation is incremental addition. The
performance of the fixpoint algorithms in the other types of changes will be
directly related to the efficiency of the algorithms in the non-incremental case,
as no incremental update propagation is needed. Table 3.2 shows the analysis
times for the same benchmarks but, as in the experiment in Chapter 2, adding
the clauses one by one. I.e., the analysis was first run for the first clause only.
Then the next clause was added and the resulting program (re-)analyzed. This
process was repeated until the last clause of the program. The total time involved
in this process is given by DD, DIg, and DI. Columns SUpp, SUp;,, and SUp;
contain the speed-up obtained with respect to analyzing with the same algorithm
the program clause by clause but erasing the analysis graph between analyses.
Thus, it is a measure of the incrementality of each algorithm. An important speed-
up is observed in SUpp (as already noted in Chapter 2), but the incrementality
of DIy is twice as high, and that for DI in turn twice as high as that of DIg.

The last three columns in the table contain the slow-downs for clause by clause
incremental analysis with respect to the time taken by the same algorithm when
analyzing the file all at once. If we use the DD algorithm in an incremental
way, the overhead resulting from analyzing clause by clause is greatly reduced
with respect to the non-incremental case. However, the time required if we use
DI incrementally is only about 3/2 of the time required to analyze the program
all at once. There is even one case (the zebra benchmark) in which using the
DI algorithm clause by clause is somewhat faster than analyzing the program
all at once. However, we believe this is related to working set size and cache
memory effects, as the number of arc events processed in both cases (presented
in Table 3.3) is almost the same. In the Overall row we give the average analysis
times for each algorithm, taking as unit the time for analysis clause by clause
using the DI algorithm. At least for the benchmark programs DI is more than

twice as fast as DIg and more than 6 times faster than DD
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|Bench. | N| U| T|u/T| N/| U/ | UL | T, |UL/T) |
aiakl 50 | 19 69 | 0.28 52 8 76 | 136 0.56
ann 570 | 179 | 749 | 0.24 || 496 | 203 | 101 | 800 0.13
bid 191 | 14| 205 | 0.07 | 144 | 10| 165 | 319 0.52
boyer 248 | 70| 318 | 0.22 82| 34| 330 | 446 0.74
browse 41| 19 60 | 0.32 21 3 78 | 102 0.76
deriv 24 25 | 0.04 52 52 1.00
fib 14 17| 0.18 6 3 8 17 0.47
grammar 24 0 24 0 28 30 0.93
hanoiapp 21| 15 36 | 0.42 18| 11 26 55 0.47
mmatrix 10 9 19 | 047 2 3 14 19 0.74
occur 15 14 29 | 0.48 12 12 4 28 0.14
peephole | 255 | 170 | 425 | 0.40 || 180 | 23 | 440 | 643 0.68
progeom 41 9 50 | 0.18 38 9 3 50 0.06
gplan 384 | 41| 425 | 0.10| 205 | 31| 235 | 471 0.50
gsortapp 44 | 15 59 | 0.25 23 41 68 0.60
query 59 0 59 0 0 0 62 62 1.00
rdtok 332 | 33| 365 | 0.09| 145 | 24| 328 | 497 0.66
read 840 | 155 | 995 | 0.16 | 720 | 22 | 1398 | 2140 0.65
serialize 43 | 15 58 | 0.26 16 102 | 119 0.86
tak 27 5 32| 0.16 17 5 10 32 0.31
warplan 330 | 38| 368 | 0.10| 169 | 13| 362 | 544 0.67
witt 389 | 39| 428 | 0.09 || 352 | 36 44 | 432 0.10
zebra 51 2 53 | 0.04 28 2 24 54 0.44
Overall | 4003 | 865 | 4868 | 0.18 || 2728 | 457 | 3931 | 7116 0.45

Table 3.3: Number of arc Events Processed

the total number of arc events processed.
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3.5.3 Measuring C,(P, ¢): Number of Arc Events

Table 3.3 shows the number of arc events needed to analyze each benchmark pro-
gram in both the non-incremental and incremental case using the DI algorithm.
This is equivalent to counting the number of times the function process_arc
in the algorithm in Figure 3.1 is called (including any recursive calls) from (N)
process newcall, (U) process_update, and (UI) process_inc update. T is
7 is used for the incremental case.

The last row in the table shows the number of arc events of each type needed




to analyze all the benchmarks. The remaining two columns (U/T and UI;/Ty)
give respectively the ratio of the total arc events that were due to update events
in the non-incremental case and those due to the newly introduced clauses in
the incremental case. U/T gives an idea of how much analysis effort is due to
fixpoint computation for recursive calls. These figures show that using a good
analysis algorithm, less than 20% of the effort is due to iterations. UI;/T; gives
the ratio of the computation performed by process_inc_update (which may use
a more complex updating strategy). The ratio between the total number of arcs
computed in the incremental and non-incremental case explains the slow-down
associated to the analysis clause by clause. It is 7116 < 4868 =1.46 in number of
arc events processed and 1.57 in analysis times for the DI algorithm. The table
also seems to imply that, for the strategies used, counting arc events is a good

(and architecture independent) indicator of analysis time.

3.6 Chapter Conclusions

We have identified certain requirements that incremental analysis poses on the
fixpoint algorithm used in global analysis of logic programs. We have proposed the
class of SCC-preserving strategies, and shown that they meet incremental analysis
requirements and at the same time offer low event handling queue cost and a
small number of arc handling events. We have also presented sufficient a priori
conditions for characterizing such SCC-preserving strategies. We have proposed a
novel analysis algorithm embodying SCC-preserving strategies, and implemented
and evaluated experimentally two instantiations of this algorithm incorporating
newcall strategies of different complexity. The experimental results show that
our proposed algorithm improves significantly on previously proposed algorithms
for incremental analysis both in overall time and in incrementality, the instance
using the simplest newcall strategy showing the most advantage. Full incremental
addition, i.e., analyzing and reanalyzing while adding a file clause by clause, is less
than than 60% slower than analyzing the program as a whole. In non-incremental
analysis the differences between the two newcall strategies appear minimal, while
the simple newcall strategy is much more profitable for the incremental case.
In addition, even in the non-incremental case our incremental algorithm also

improves significantly over previously proposed incremental algorithms and even

65



also over the standard algorithms used in the PLAI system, which we believe is
representative of current state of the art analyzers for logic programs.
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Chapter 4

Analysis of Full Languages

Abstract interpretation-based data-flow analysis of logic programs is, at this
point, relatively well understood from the point of view of general frameworks
and abstract domains. On the other hand, comparatively little attention has been
given to the problems which arise when analysis of a full, practical dialect of the
Prolog language is attempted, and only few solutions to these problems have been
proposed to date. Existing proposals generally restrict in one way or another the
classes of programs which can be analyzed. This work attempts to fill this gap by
considering a full dialect of Prolog, essentially the recent ISO standard, pointing
out the problems that may arise in the analysis of such a dialect, and proposing a
combination of known and novel solutions that together allow the correct analysis

of arbitrary programs which use the full power of the language.

4.1 Introduction

As mentioned before, global program analysis, generally based on abstract in-
terpretation [CC77], is becoming a practical tool in logic program compilation.
However, most proposals to date have concentrated on general frameworks and
suitable abstract domains. On the other hand, comparatively little attention has
been given to the problems which arise when analysis of a full, practical language
is attempted. Such problems relate to dealing correctly with all builtins, in-
cluding meta-logical, extra-logical, and dynamic predicates (where the program
is modified during execution). Often, problems also arise because not all the

program code is accessible to the analysis, as is the case for some builtins (meta-
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calls), some predicates (multifile and/or dynamic), and some programs (multifile

or modular).

Implementors of the analyses obviously have to somehow deal with such
problems, and some of the implemented analyses provide solutions for some
problems. However, the few solutions which have been published to date
[VD92, Deb89b, HWD92, MH92, CRV94| generally restrict the use of builtin
predicates in one way or another (and thus the class of programs which can be
analyzed).

The work presented in this chapter attempts to fill this gap. We consider
the correct analysis of a full dialect of Prolog. For concreteness, we essentially
follow the recently accepted ISO standard [PRO94, DEDC96]. Our purpose is to
review the features of the language which pose problems to global analysis and
propose alternative solutions for dealing with these features. The most impor-
tant objective is obviously to achieve correctness, but also as much accuracy as
possible. Since arguably the main problem in static analysis is having dynamic
code, which is not available at compile-time, we first propose a general solution
for solving the problems associated with features such as dynamic predicates and
meta-predicates, and consider other alternative solutions. The proposed alter-
natives are a combination of known solutions when they are useful, and novel
solutions when the known ones are found lacking. The former are identified by

giving references.

One of the motivations of our approach is that we would like to accommodate
at the same time two types of users. First, the naive user, which would like
analysis to be as transparent as possible. Second, we would also like to cater
for the advanced user, which may like to guide the analysis in difficult places
in order to obtain better optimizations. Thus, for each feature, we will propose
solutions that require no user input, but we will also propose solutions that allow
the user to provide input to the analysis process. This requires a clear interface
to the analyzer at the program text level. Clearly, this need also arises when
expressing the information gathered by the different analyses supported. We
solve this by proposing an interface, in the form of assertions, which is useful not
only for two-way communication between the user and the compiler, but also for
the cooperation among different analysis tools and for connecting analyses with

other modules of the compiler. Assertions are syntactic constructions which allow
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expressing properties of programs. The assertions proposed in this chapter are
essentially a subset of the assertion language presented in Chapter 8. Thus, the
assertions in this chapter are expressed in such language.’

After necessary preliminaries in Section 4.2, we propose several novel general
solutions to deal with the analysis of dynamic programs in Section 4.3. A set of
program assertions which can help in this task is then proposed in Section 4.4. We
then revise our and previous solutions to deal with each of the language features
in Section 4.5, except for modules and multifile programs, which are discussed
in Section 4.6. There we propose a solution based on incremental analysis, and
another one based on our program assertions. We conclude with Section 4.7.

We argue that the proposed set of solutions is the first one to allow the correct
analysis of arbitrary programs which use the full power of the language without

input from the user (while at the same time allowing such input if so desired).

4.2 Preliminaries and Notation

For simplicity we will assume that the abstract interpretation based analysis is
constructed using the “Galois insertion” approach [CC77], in which an abstract
domain is used which has a lattice structure, with a partial order denoted by
C, and whose top value we will refer to by T, and its bottom value by L. We
will refer to the least upper bound (lub) and greatest lower bound (glb) opera-
tors in the lattice by LI and I, respectively. The abstract computation proceeds
using abstract counterparts of the concrete operations, the most relevant ones
being unification (mgu®) and composition (o%), which operate over abstract sub-
stitutions («). Abstract unification is however often also expressed as a function
unify® which computes the abstract mgu of two concrete terms in the presence
of a given abstract substitution.

Usually, a collecting semantics is used which attaches one or more (abstract)
substitutions to program points (such as, for example, the point just before or
just after the call of a given literal — the call and success substitutions for that
literal). A goal dependent analysis associates abstract success substitutions to
specific goals, in particular to call patterns, i.e. pairs of a goal and an abstract call

substitution which expresses how the goal is called. Depending on the granularity

Tt only slightly differs from the original notation in [BCHP96].
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of the analysis, one or more success substitutions can be computed for different
call patterns at the same program point. Goal independent analyses compute
abstract success substitutions for generic goals, regardless of the call substitution.

In general we will concentrate on top-down analyses, since they are at present
the ones most frequently used in optimizing compilers. However, we believe the
techniques proposed are equally applicable to bottom-up analyses. In the text,
we consider in general goal dependent analyses, but point out solutions for goal
independent analyses where appropriate (see, e.g., [GDL92, GGL94, CGBH94)).

The pairs of call and success patterns computed by the analysis, be it top-
down or bottom-up, goal dependent or independent, will be denoted by AOT*(P)
for a given program P. A most general goal pattern (or simply “goal pattern,”
hereafter) of a predicate is a normalized goal for that predicate, i.e. a goal whose
predicate symbol and arity are those of the predicate and where all arguments are
distinct variables. In goal dependent analyses, for every call pattern of the form
(goal_pattern, call _substitution) of a program P there are one or more associated
success substitutions which will be denoted hereafter by AOT*(P, call_pattern).
The same holds for goal independent analysis, where the call pattern is simply
reduced to the goal pattern. By program we refer to the entire program text that

the compiler has access to, including any directives and assertions.

4.3 Static Analysis of Dynamic Program Text

A main problem in statically analyzing logic programs is that not all of the code
that would actually be run is statically accessible to the analysis. This can occur
either because the particular calls occuring at some places are dynamically con-
structed, or because the code defining some predicates is dynamically modified.

The following problems appear:

1. How to compute success substitutions for the calls which are not known;

we call this the success substitution problem, and

2. How to determine calls and call substitutions which may appear from the

code which is not known; we call this the extra call pattern problem.

Consider the following program, to be analyzed with entry point goal. The

predicate p/2 is known to be dynamic, and may thus be modified at run-time.
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goal:- ..., X=a, ..., pX,Y),

:— dynamic p/2.
pX,Y):- qX,Y).

q(X,Y).
1(a,b).

Assume that the call pattern of the goal p(X,Y) in the analysis indicates that X is
ground and Y free. If we do not consider the possibility of run-time modifications
of the code, the success pattern for p(X,Y) is the same as the call pattern. Also,
since no calls exist to 1/2, its definition is dead code. Assume now that a clause
“p(X,Y):- 1(X,Y).” is asserted at run-time. The previous analysis information
is not correct for two reasons. First, the success pattern of p(X,Y) should now
indicate that Y may be ground (success substitution problem). Second, a call for
1/2 now occurs which has not been considered in the previous analysis (extra call
pattern problem).

The first problem is easier to solve: using appropriate topmost substitutions.
We call an abstract substitution « topmost w.r.t. a tuple (set) of variables & iff
vars(a) = & and for all other substitution o/ such that vars(o/) = Z, o/ C a. An
abstract substitution « referring to variables Z is said to be topmost of another
substitution o', referring to the same variables, iff & = o' o® o', where " is
the topmost substitution w.r.t. #. Therefore, for a given call substitution, the
topmost abstract substitution w.r.t. it is the most accurate approximation which
solves the success substitution problem. This is in contrast to roughly considering
T or just giving up in the analysis. Topmost substitutions are preferred, since
they are usually more accurate for some domains. For example, if a variable is
known to be ground in the call substitution, it will continue being ground in the
success substitution.

Note that this is in fact enough for goal independent analyses, for which
the second problem does not apply. However, for goal dependent analyses the
second problem needs to be solved in some way. This problem is caused by the
impossibility of statically computing the subtree underlying a given call, either
because this call is not known (it is statically undetermined), or because not all

of the code defining the predicate for that call is available. Therefore, since from
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these subtrees new calls (and new call patterns) can appear, which affect other
parts of the program, the whole analysis may not be correct.

There is a first straightforward solution to the extra call pattern problem. It
can be tackled by simply assuming that there are unknown call patterns, and thus
any of the predicates in the program may be called (either from the undetermined
call or from within its subtree). This means that analysis may still proceed but
topmost call patterns must be assumed for all predicates. This is similar to
performing a goal independent analysis and it may allow some optimizations, but
it will probably preclude others. However, if program multiple specialization (see
Chapter 5) is done, a non-optimized version of the program should exist (since
all the predicates in the program must be prepared to receive any input value),
but other optimized versions could be inferred.

Consider the previous example. To solve the success substitution problem we

can

(a) assume a topmost substitution w.r.t. X and Y, which will indicate that noth-

ing is known of these two variables; or

(b) assume the topmost substitution w.r.t. the call substitution, which will

indicate that nothing is known of Y, but still X is known to be ground.
To solve the extra call pattern problem we can

(a) assume new call patterns with topmost substitutions for all predicates in

the program, since the asserted clause is not known during analysis; or

(b) perform the transformation proposed below, which will isolate the problem

to predicate 1/2, which is the only one affected.

We propose a second complete solution which is general enough and very
elegant, with the only penalty of some cost in code size. The key idea is to
compile essentially two versions of the program — one that is a straightforward
compilation of the original program, and another that is analyzed assuming that
the only possible calls to each predicate are those that appear explicitly in the
program. This version will contain all the optimizations, which will be performed
ignoring the effect of the undetermined calls. Still, in the other version, any
optimizations possible with a goal independent analysis, or a topmost call pattern
goal dependent analysis, may be introduced. Calling from undetermined calls into
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the more optimized version of the program (which will possibly be unprepared for
the call patterns created by such calls) is avoided by making such calls call the less
optimized version of the program. This will take place automatically because the
terms that will be built at run-time will use the names of the original predicates.
When a predicate in the original program is called, it will also call predicates in
the original program. Therefore, the original predicate names are used for the
less optimized version, and predicates in the more optimized version are renamed
in an appropriate way (we will assume for simplicity that it is by using the
prefix “opt_”). Thus, correctness of a transformation such as the following is
guaranteed. Assume that call(X) is an undetermined call. If a clause such as
the first one appears in the program, the second one is added:

pC...) :=q(...), call(X), r(...).
opt_p(...) := opt_q(...), call(X), opt_r(...).

The top-level rewrites calls which have been declared as entry points to the
program so that the optimized version is accessed. Note that this also solves (if
needed) the general problem of answering queries that have not been declared
as entry points: they simply access the less optimized version of the program.
If the top-level does also check the call patterns, then it guarantees that only
the entry patterns used in the analysis will be executed. For the declared entry
patterns, execution will start in the optimized program and will move to the
original program to compute a resolution subtree each time an undetermined call
is executed. Upon return from the undetermined call, execution will go back to
the optimized program.

We shall see how this solution can be applied both to the case of meta-
predicates and to that of dynamic predicates, allowing full optimizations to be
performed in general to “dynamic” programs. The impact of the optimizations
performed in the renamed copy of the program will depend on the time that
execution stays in each of the versions. Therefore, the relative computational
load of undetermined calls w.r.t. the whole program will condition the benefits
of the optimizations achieved. The only drawback with this solution is that it
implies keeping two full copies of the program, although only in case there are
undetermined calls. In cases where code space is a pressing issue, the user should

be given the choice of turning this copying on and off.
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4.4 Program Assertions

Assertions are statements regarding a program that are introduced as part of
its code. Assertions refer to a given program point. We consider two general
classes of program points: points inside a clause (such as, for example, before
or after the execution of a given goal — the “goal level”) and points that refer
to a whole predicate (such as, for example, before entering or after exiting a
predicate — the “predicate level”). At all levels assertions describe properties of
the variables that appear in the program. We will call the descriptions of such
properties declarations. There are at least two ways of representing declarations
which we will call “property oriented” and “abstract domain oriented”. In a
property oriented assertion framework, there are declarations for each property a
given variable or set of variables may have. Examples of such declarations are:

mode (X, +) X is bound to a non-variable term
term(X,r(Y)) X is bound to term r(Y)
depth(X,r/1) X is bound to a term r(_)

The property oriented approach presents two advantages. On one hand, it is easily
extensible, provided one defines the semantics for the new properties one wants
to add. On the other hand, it is also independent from any abstract domain for
analysis. One only needs to define the semantics of each declaration, and, for each
abstract domain, a translation into the corresponding abstract substitutions. For
concreteness, and in order to avoid referring to any abstract domain in particular,
we propose to use such a framework.

An alternative solution is to define declarations in an abstract domain oriented
way. For example, for the sharing domain [JL88]:

sharing ([[X],[Y,Z]]) shows the sharing pattern among variables X,Y, Z

This is a simple enough solution but has the disadvantage that the meaning of
such domains is often difficult for users to understand. Also, the interface is
bound to change any time the domain changes. It has two other disadvantages.
The semantics and the translation functions mentioned above have to be defined
pairwise, i.e. one for each two different domains to be communicated. And, sec-
ondly, there can exist several (possibly overlapping) properties declared, one for

each different domain. In the property oriented approach, additional properties
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that several domains might take advantage of are declared only once. In any case,
both approaches are compatible via the syntactic scheme we propose.

4.4.1 Predicate Level: Entry Assertions

One class of predicate level assertions are entry assertions. They are specified
using a directive style syntax, as follows:

:- entry goal_pattern : declaration.

These assertions state that calls to that predicate with the given abstract call
substitution may exist at execution time. For example, the following assertion
states that there can be a call to predicate p/2 in which its two arguments are
ground:

:— entry p(X,Y) : (ground(X),ground(Y)).

Entry assertions and goal dependent analysis. A crucial property of entry
assertions, which makes them useful in goal dependent analyses, is that they must
be closed with respect to outside calls. No call patterns other than those specified
by the assertions in the program may occur from outside the program text. lL.e.,
the list of entry assertions includes all calls that may occur to a program, apart
from those which arise from the literals explicitly present in the program text.

Obviously this is not an issue in goal independent analyses.

Entry assertions and multiple program specialization. If analysis is mul-
tivariant it is often convenient to create different versions of a predicate, i.e., to
perform multiple specialization (see Chapter 5). This allows implementing differ-
ent optimizations in each version. Each one of these versions generally receives an
automatically generated unique name in the multiply specialized program. How-
ever, in order to keep the multiple specialization process transparent to the user,
whenever more than one version is generated for a predicate which is a declared
entry point of the program (and, thus, appears in an entry directive), the original
name of the predicate is reserved for the version that will be called upon program
query. If more than one entry assertion appears for a predicate and different
versions are used for different assertions, it is obviously not possible to assign to
all of them the original name of the predicate. There are two solutions to this.
The first one is to add a front end with the exported name and run-time tests
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to determine the version to use. However, this implies run-time overhead. As an
alternative we allow the entry directive to have one more argument, separated
by “;” which indicates the name to be used for the version corresponding to this
entry point. For example, given:

:— entry mmultiply(A,B,C) : ground([A,B]) ; mmultiply_ground.
:— entry mmultiply(A,B,C) : true ; mmultiply_any.

if these two entries originate different versions, they would be given different
names. If two or more versions such as those above are collapsed into one, this
one will get the name of any of the entry points and, in order to allow calls to
all the names given in the assertions, binary clauses will be added to provide the

other entry points to that same version.

4.4.2 Predicate Level: Trust Assertions

In addition to the more standard entry assertions we propose a different kind of
assertions at the predicate level, which take the following form:

:— trust pred goal_pattern : call_decl => success_declaration.

Declarations in trust assertions put in relation the call and the success patterns
of calls to the given predicate. These assertions can be read as follows: if a literal
that corresponds to goal_pattern is executed and call_decl holds for the associated
call substitution, then success_declaration holds for the associated success sub-
stitution. Thus, these assertions relate abstract call and success substitutions.
Note that call_decl can be empty (i.e., true). In this way, properties can be
stated that must always hold for the success substitution, no matter what the
call substitution is. This is useful also in goal independent analyses (and in this
case it is equivalent to the “omode” declaration of [HWD92]).

Let (p(Z), ) denote the call pattern and o/ the success substitution of a given
trust assertion of a program P. The semantics of trust implies that Vo, (o, C
a = AOT*(P,(p(Z),a.)) C o). lLe., for all call substitutions approximated
by that of the given call pattern, their success substitutions are approximated
by that of the assertion. For this reason, the compiler will “trust” them. This
justifies their consideration of “extra” information, and thus and in contrast to
entry assertions, the list of trust assertions of a program does not have to be

closed w.r.t. all possible call patterns occurring in the program.
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One of the main uses of trust assertions is in describing predicates that are
not present in the program text. For example, the following assertions describe
the behaviour of the predicate p/2 for two possible call patterns:

:— trust pred p(X,Y) : (ground(X),free(Y)) => (ground(X),ground(Y)).
:— trust pred p(X,Y) : (free(X),ground(Y)) => (free(X),ground(Y)).

This would allow performing the analysis even if the code for p/2 is not present.
In that case the corresponding success information in the assertion can be used
(“trusted”) as success substitution.

In addition, trust assertions can be used to improve the analysis when the
results of the analysis are imprecise. However, note that this does not save
analyzing the predicate for the corresponding call pattern, since the abstract
underlying subtree may contain call patterns that do not occur elsewhere in the
program.

If we analyze a call pattern for which a trust assertion exists, two abstract
success patterns will be available for it: that computed by the analysis (say )
and that given by the trust assertion (say o, for a call substitution «). As
both must be correct, the intersection of them (which may be more accurate
than any of them) must also be correct. The intersection among abstract sub-
stitutions (whose domain we have assumed has a lattice structure) is computed
with the glb operator, M. Therefore, AOT*(P, (p(Z), ) = a, M ¢, provided
that o, C «a. Since Vo,Vo! (as Mo’ C as A as Mo’ C ) correctness of the
analysis within the trust semantics is guaranteed, i.e. AOT*(P, (p(Z), a.)) C o
and AOT*(P, (p(Z), @) C «a,. However, if their informations are incompatible,
their intersection is empty, and a; Mo’ = L. This is an error (if a; # L and also
o' # 1), because the analysis information must be correct, and the same thing
is assumed for the trust information. The analysis should give up and warn the
user.

A similar scheme can be used to check the mutual consistency of assertions
provided by the user. The result of the glb operation between inconsistent asser-
tions will be L. Also, note that, in addition to improving the substitution at the
given point, the trusted information can be used to improve previous patterns
computed in the analysis. This might be done by “propagating” the information

backwards in the analysis process.
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4.4.3 Goal Level Assertions

Assertions at the goal level refer to the state of the variables of the clause just at
the point where the assertion appears: between two literals, after the head of a
clause or after the last literal of a clause.? We propose adding extra-literals which
enclose all necessary information referring to a given program point in a clause.
It takes the form:

., goaly, trust(declaration), goals,

where the information in the trust literal should be valid before calling goal,
and also after calling goal;, that is, at the success point for goal; and at the
call point of goaly. The information given by trust literals can refer to any of
the variables in the clause. The information is expressed using the same kind of
declarations as in the predicate level assertions. This allows a uniform format
for the declarations of properties in assertions at both the predicate and the goal
level. These assertions are related to predicate level trust assertions in the sense
that they give information that should be trusted by the compiler. Therefore,

they have similar uses and a similar treatment that them.

4.5 Dealing with Standard Prolog

In this section we discuss different solutions for analyzing the full standard Prolog
language. In order to do so we have divided the complete set of builtins offered

by the language in several classes.

4.5.1 Builtins as Abstract Functions

Many Prolog builtins can be dealt with efficiently and accurately during analysis
by means of functions which capture their semantics. Such functions provide an
(as accurate as possible) abstraction of every success substitution for any call to
the corresponding builtin. This applies also to goal independent analyses, with

minor modifications. It is interesting to note that the functions that describe

2Gimilar assertions can be used at other levels of granularity, from between head unifications
to even between low level instructions, but we will limit the discussion for concreteness to

goal-level program points.
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builtin predicates are very similar in spirit to trust assertions. This is not sur-
prising, if builtins are seen as Prolog predicates for which the code is not available.
Since most of the treatment of builtins is rather straightforward, the presentation
is very brief, concentrating on the more interesting cases of meta-predicates and
dynamic predicates. In order to avoid reference to any particular abstract domain
any functions described will be given in terms of simple minded trust assertions.
For the reader interested in the details, the source code for the PLAI analyzer
(available by ftp from clip.dia.fi.upm.es) contains detailed functions for all
Prolog builtins and for a large collection of well known abstract domains. For
a description of such functions for some builtins in a different domain see e.g.
[CF92].

Control flow predicates include true and repeat, which have a simple treat-
ment: identity can be used (i.e., they can be simply ignored). The abstraction of
fail and halt is L. For cut (!) it is also possible to use the identity function
(i.e., ignore it). This is certainly correct in that it only implies that more cases
than necessary will be computed in the analysis upon predicate exit, but may
result in some cases (specially if red cuts —those which modify the meaning of a
program-— are used) in a certain loss of accuracy. This can be addressed by using
a semantics which keeps track of sequences, rather than sets, of substitutions,
as shown in [CRV94]. Finally, exception handling can also be included in this
class. The methods used by the different Prolog dialects for this purpose have
been unified in the Prolog standard into two builtins: catch and throw. We
propose a method for dealing with this new mechanism: note that, since analy-
sis in general assumes that execution can fail at any point, literals of the form
catch(Goal,Catcher,Recovery) (where execution starts in Goal and backtracks
to Recovery if the exception described by Catcher occurs) can be safely approxi-
mated by the disjunction (Goal;Recovery), and simply analyzed as a meta-call.
The correctness of this transformation is based on the fact that no new control
paths can appear due to an exception, since those paths are a subset of the ones
considered by the analysis when it assumes that any goal may fail. The builtin
throw, which explicitly raises an exception, can then be approximated by directly

mapping it to failure, i.e. L.

The function corresponding to = is simply abstract unification. Specialized

versions of the full abstract unification function can be used for other builtins
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such as \=, functor, arg, univ (=..), and copy_term. Other term and string
manipulation builtins are relatively straightforward to implement. Arithmetic
builtins and base type tests such as is, >, @, integer, var, number, etc., usu-
ally also have a natural mapping in the abstract domain considered. In fact,
their incomplete implementation in Prolog is an invaluable source of information
for the analyzer upon their exit (which assumes that the predicate did not fail
— failure is of course always considered as an alternative). For example, their
mappings will include relations such as “:- trust pred is(X,Y) : true =>

[43

(ground (X) ,ground(Y)).” or “:- trust pred var(X) : true => free(X).”
On the contrary, ==, \==, and their arithmetic counterparts, are somewhat more
involved, and are implemented (in the same way as with the term manipulation
builtins above) by using specialized versions of the abstract unification function.

Output from the program does not directly pose any problem since the re-
lated predicates do not instantiate any variables or produce any other side effects
beyond modifying external streams, whose effect can only be seen during input
to the program. Thus, identity can again be used in this case. On the other
hand, the external input cannot be determined beforehand. The main problem
happens to be the success substitution problem. In the general case, analysis can
always proceed by simply assuming topmost success substitutions in the domain.

The treatment of directives is somewhat peculiar. The directive dynamic is
used to declare predicates which can be modified at run-time. Dynamic predicates
will be considered in detail below. The directive multifile specifies that the
definition of a predicate is not complete in the program. Multifile predicates can
therefore be treated as either dynamic or imported predicates — see Section 4.6.
The directives include and ensure_loaded must specify an accessible file, which
can be read in and analyzed together with the current program. The directive

initialization specifies new (concrete) entry points to the program.

4.5.2 Meta-Predicates

Meta-predicates are predicates which use other predicates as arguments. All user
defined meta-predicates are in this class but their treatment can be reduced to the
treatment of the meta-call builtins they use. Such meta-calls are literals which
call one of their arguments at run-time, converting at the time of the call a term

into a goal. Builtins in this class are not only call, but also bagof, findall,
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setof, negation by failure, and once (single solution). Calls to the solution
gathering builtins can be treated as normal (meta-)calls since most analyzers are
“collecting” in the sense that they always consider all solutions to predicates.
Negation by failure (\+) can be defined in terms of call and cut, and can be
dealt with by combining the treatment of cut with the treatment of meta-calls.
Single solution (once) can be dealt with in a similar way since it is equivalent to
“once(X) :- call(X), !'.”.

Since meta-call builtins convert a term into a goal, they can be difficult to
deal with if it is not possible to know at compile-time the exact nature of those
terms [Deb89b, HWD92|. In particular, the success substitution problem for the
meta-call appears, as well as the extra call pattern problem (within the code
defining the corresponding predicate, and for the possible calls which can occur
from such code). Both problems can be dealt with using the techniques in Section
4.3. First, topmost call patterns can be used for all predicates in the program,
second, and alternatively, the renaming transformation can also be applied. In
this case meta-calls that are fully determined either by declaration or as a result
of analysis, and incorporated into the program text will call the more optimized
version. Analysis will have taken into account the call patterns produced by such
calls since they they would have been entered and analyzed as normal calls. Le.,
the following transformation will take place:

., trust(term(X,p(Y¥))), call(X),... = ..., opt_p(Y),...
Meta-calls that are partially determined, such as, for example,
., trust(depth(X,p/1)), call(X), ...

are a special case. One solution is not to rename them. In that case they will
be treated as undetermined meta-calls. Alternatively, the solution in the second
item above can be used. It is necessary in this case to ensure that the optimized
program will be entered upon reaching a partially determined meta-call. This can
be done dynamically, using a special version of call/1 or by providing binary
predicates which transform the calls into new predicates which perform a mapping
of the original terms (known from the analysis) into the renamed ones. Using this
idea the example above may be transformed into a new literal and a new clause,
as follows:

.., opt_call(X),... opt_call(p(X)) :- opt_p(X).
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Undetermined meta-calls will not be renamed, and thus will call the original (less
optimized) code. This fulfills the correctness requirement, since these calls would
not have been analyzed, and therefore can not be allowed to call the optimized
code.

More precise solutions to both problems are possible if knowledge regarding
the terms to be converted is available at compile-time. Thus, following [Deb89b],

we can distinguish between:

e Completely determined meta-calls. These are calls in which the term (func-
tor and arguments) is given in the program text (this is often the case for
example in many uses of bagof, findall, setof, \+, and once), or can be
inferred via some kind of analysis, as proposed in [Deb89b]. In the latter
case they can even be incoporated into the program text before analysis.

These calls can be analyzed in a straightforward way.

e Partially determined meta-calls. The exact term cannot be statically found,
but at least its main functor can be determined by program analysis. Then,
since the predicate that will be called at run-time is known, it is sufficient
for analysis to enter only this predicate using the appropriate projection of

the current abstract call substitution on the variables involved in the call.
o Undetermined meta-calls.

The first two classes distinguish subclasses of the fully determined predicates
of [Deb89b], where certain interesting types of programs are characterized which
allow the static determination of this generally undecidable property. Relying
exclusively on program analysis, as in [Deb89b], has the disadvantage that it
restricts the class of programs which can be optimized to those which are fully
determined. Our previous solution solves the general case.

There are other possible solutions to the general case. The first and simplest
one is to issue a warning if an undetermined meta-call is found and ask the user
to provide information regarding the meta-terms. This can be easily done via
program-point, trust assertions. For example, the following assertion:

., trust(( term(X,p(Y)) ; term(X,q(Z)) )), call(X), ...

states that the term called in the meta-call is either p(Y) or q(Z). Note also that

this is in some way similar to giving entry mode information for the p/1 and q/1
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predicates. This suggests another solution to the problem, which has been used
before in Aquarius [VD92], in MA3 [WHDS88], and in previous versions of the
PLAI analyzer [BGCH93]. The idea (cast in the terms of our discussion) is to
take the position that meta-calls are ezxternal calls. Then, since entry assertions
have to be closed with respect to external calls it is the user’s responsibility to
declare any entry points and patterns to predicates which can be “meta-called” via
entry assertions. Accuracy of the analysis will depend on that of the information
supplied by the user. These solutions have the disadvantage of putting the burden
on the user — something that we would like to avoid at least for naive users. Our
alternative solutions are completely transparent to the user.

4.5.3 Database Manipulation and Dynamic Predicates

Database manipulation builtins include assert, retract, abolish, and clause.
These builtins (with the exception of clause) affect the program itself by adding
to or removing clauses from it. Predicates that can be affected by such builtins
are called dynamic predicates and must usually be declared as such in modern
Prolog implementations (and this is also the case in the ISO standard).

The potential problems created by the use of the database manipulation
builtins are threefold:

e The extra call pattern problem appears again since the literals in the body of
the new clauses that are added dynamically can produce new and different

call patterns not considered during analysis.

e The success substitution problem also appears for literals which call dy-
namic predicates (“dynamic literals”). Even if abstract success substitu-
tions can be computed from any static definition of the predicate which

may be available at compile-time, it may change during program execution.

e There exists the additional problem of computing success substitutions for
the calls to the database manipulation builtins themselves. We call this the

database builtin success substitution problem.

Next we propose solutions to the three problems mentioned above. Note that
the builtin clause —which can be viewed as a special case of retract— does not
modify the database and thus clearly only has the third problem.
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Solving the extra call pattern problem. From the correctness point of view,
the extra call pattern problem only arises from the use of assert, but not from
the use of abolish or retract. These predicates do not introduce new clauses
in the program, and thus they do not introduce any new call patterns. This is
true even for “intelligent” analyses which can infer definite success or failure of
some goals, because these analyses must take retract into account to do so,
or otherwise would themselves not be correct in general. Therefore, retraction
is not a problem in our case. On the other hand, it is conceivable that more
accuracy could be obtained if these predicates were analyzed more precisely since
removing clauses may remove call patterns which in turn could make the analysis
more precise. We discuss this in the context of incremental analysis at the end of
the section. The discussion is general enough to subsume the above mentioned
intelligent analyses.

The assert predicate is much more problematic, since it can introduce new
clauses and through them new call patterns. The problem is compounded by the
fact that asserted clauses can call predicates which are not declared as dynamic,
and thus the effect is not confined to dynamic predicates. In any case, and
as pointed out in [Deb89b], not all uses of assert are equally damaging. To
distinguish these uses, we propose to divide dynamic predicates into the following

types:

e memo only facts which are logical consequences of the program itself are
asserted;

e data only facts are asserted, or, if clauses are asserted, they are never called

(i.e., only read with clause or retract);
e local _call the dynamic predicate only calls other dynamic predicates;
e global_call.

The first two classes correspond to the unit-assertive and green-assertive predi-
cates of [Deb89b], except that we have slightly extended the unit-assertive type
by also considering in this type arbitrary predicates which are asserted /retracted
but never called. Clauses used in this way can be seen as just recorded terms:
simply a set of facts for the predicate symbol :-/2.
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data predicates are guaranteed to produce no new call patterns and therefore
they are safe with respect to the extra call pattern problem.? This is also the case
for memo predicates since they only assert facts.* If all dynamic predicates are of
the local_call type, then the analysis of the static program is correct except for
the clauses defining the dynamic predicates themselves. Analysis can even ignore
the clauses defining such predicates. Optimizations can then be performed over
the program text except for those clauses, which in any case may not be such a big
loss since in some systems such clauses are not compiled, but rather interpreted.

While the classification mentioned above is useful, two problems remain. The
first one is how to detect that dynamic procedures are in the classes that are
easy to analyze (dynamic predicates in principle need to be assumed in the
global_call class). This can be done through analysis for certain programs,
as shown in [Deb89b], but, as in the case of meta-calls, this does not offer a
solution in all cases.

The general case in which global_call dynamic predicates appear in the
program is similar to that which appeared with undetermined meta-calls. In fact,
the calls that appear in the bodies of asserted clauses can be seen as undetermined
meta-calls, and similar solutions apply. Additionally, the static clauses of the
dynamic predicates themselves are subject to the same treatment as the rest of
the program, and therefore subject to full optimization. Clearly, this solution can

be combined with the previous ones when particular cases can be identified.

Solving the dynamic literal success substitution problem. If only
abolish and retract are used in the program, the abstract success substitu-
tions of the static clauses of the dynamic predicates are a safe approximation of
the run-time success substitutions. However, a loss of accuracy can occur, as the
abstract success substitution for the remaining clauses (if any) may be more par-
ticular. In the presence of assert, a correct (but possibly inaccurate) analysis is
obtained by using appropriate topmost abstract substitutions. Finally, note that

in the case of memo predicates (and for certain properties) this problem is avoided

3In fact, the builtins record and recorded provide the functionality of data predicates but
without the need for dynamic declarations and without affecting global analysis. However,

those builtins are now absent from the Prolog standard.
4Note however that certain analyses, and especially cost analyses which are affected by

program execution time, need to treat these predicates specially.
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since the success substitutions computed from the static program are correct.

Solving the database builtin success substitution problem. This prob-
lem does not affect assert and abolish since the success substitution for calls
to these builtins is the same as the call substitution. On the other hand, success
substitutions for retract (and clause) are more difficult to obtain. However,
appropriate topmost substitutions can always be safely used. In the special case
of dynamic predicates of the memo class, and if the term used as argument in the
call to retract or clause is at least partially determined, abstract counterparts
of the static clauses of the program can be used as approximations in order to

compute a more precise success substitution.

Dynamic analysis and optimization. There is still another, quite different
and interesting solution to the problem of dynamic predicates, which is based
on incremental global analysis as presented in Chapter 2. Note that in order
to implement assert some systems include a copy of the full compiler at run-
time. The idea would be to also include the (incremental) global analyzer and
the analysis information for the program, computed for the static part of the
program. The program is in principle optimized using this information but the
optimizer is also assumed to be incremental. After each non-trivial assertion or
retraction (some cases may be treated specially) the incremental global analysis
and optimizer are rerun and any affected parts of the program reanalyzed (and
reoptimized). This has the advantage of having fully optimized code at all times,
at the cost of increasing the cost of calls to database manipulation predicates
and of executable size. A system along these lines has been built by us for
a parallelizing compiler. The results presented in Chapter 2 show that such a

reanalysis can be made in a very small fraction of the normal compilation time.

4.6 Program Modules

The main problem with studying the impact of modularity in analysis (and the
reason we have left the issue until this section) is the lack of even a de-facto stan-
dard. There have been many proposals for module systems in logic programming

languages (see [BLM94]). For concreteness, we will focus on that proposed in

86



the new draft ISO standard [PRO95]. In this standard, the module interface is
static, i.e. each module in the program must declare the procedures it exports,?
and imports. The module directive is used for this.

As already pointed out in [HWD92| module directives provide the entry points
for the analysis of a module for free. Thus, as far as entry points are concerned,
only exported predicates need be considered. They can be analyzed using the sub-
stitutions declared in the entry assertions if available, and topmost otherwise.
The analysis of literals which call imported predicates requires new approaches,
some of which are discussed in the following paragraphs. One advantage of mod-
ules is that they help encapsulate the propagation of complex situations such as

with global_call dynamic predicates.

Compositional Analysis. Modular analyses based on compositional seman-
tics (such as, for example, that of [CDG93]) can be used to analyze programs
split in modules. Such analyses leave the abstract substitutions for the predicates
whose definitions are not available open, in the sense that some representation of
the literals and their interaction with the abstract substitution is incorporated as
a handle into the substitutions themselves. Once the corresponding module is an-
alyzed and the (abstract) semantics of such open predicates known, substitutions
can be composed via these handles. The main drawback of this interesting ap-
proach is that the result of the analysis is not definite if there are open predicates.
In principle, this would force some optimizations to be delayed until the final com-
posed semantics is known, which in general can only be done when the code for
all modules is available. Therefore, although analysis can be performed for each
module separately, optimizations (and thus, compilation) cannot in principle use

the global information.

Incremental Analysis. When analyzing a module, each call to a predicate
not declared in it is mapped to L. Each time analysis information is updated,
it is applied directly to the parts of the analysis where this information may be

5This is in contrast with other module systems used in some Prolog implementations that
allow entering the code in modules at arbitrary points other than those declared as exported.
This defeats the purpose of modules. We will not discuss such module systems since the
corresponding programs in general need to be treated as non modular programs from the point

of view of analysis.
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relevant. Incremental analysis as presented in Chapter 2 is conservative: it is
correct and optimal. By optimal we mean that if we put together in a single
module the code for all modules (with the necessary renaming to avoid name
clashes) and analyze it in the traditional way, we will obtain the same information.
However, incremental analysis, in a very similar way to the previous solution, is
only useful for optimization if the code for all modules is available, since the
information obtained for one isolated module is only partial. On the other hand,
if optimization is also made incremental, then this does present a solution to
the general problem: modules are optimized as much as possible assuming no
knowledge of the other modules. Optimizations will be correct with respect to the
partial information available at that time. Upon module composition incremental
reanalysis and reoptimization will make the composed optimized program always
correct.

Note that Prolog compilers are incremental in the sense that at any point in
time new clauses can be compiled into the program. Incremental analysis (aided
by incremental optimization) allows the combination of full interactive program

development with full global analysis based optimization.

Trust-Enhanced Module Interface. In [PRO95] imported predicates have
to be declared in the module importing them and such a module can only be
compiled if all the module interfaces for the predicates it imports are defined,
even if the actual code is not yet available. Note that the same happens for
most languages with modules (e.g., Modula). When such languages have some
kind of global analysis (e.g., type checking) the module interface also includes
suitable declarations. We propose to augment the module interface definition
so that it may include trust assertions for the exported predicates. Each call
to a predicate not defined in the module being analyzed but exported by some
module interface is in principle mapped to appropriate topmost substitutions.
But if in the module interface there are one or more trust assertions applicable
to the call pattern, such assertions will be used instead. Any call to a predicate
not defined in that module and not present in any of the module interfaces can
be safely mapped to L during analysis (this corresponds to mapping program
errors to failure — note that error can also be treated alternatively as a first class

element in the analysis). The advantages are that we do not need the code for
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other modules and also that we can perform optimizations using the (inaccurate)
analysis information obtained in this way.

Analysis using the trust-enhanced interface is correct, but it may be sub-
optimal. This can only be avoided if the programmer provides the most accu-
rate trust assertions. The disadvantage of this method is that it requires the
trust-enhanced interface for each module. However, the process of generating
these trust assertions can be automated. Whenever the module is analyzed,
the call/success patterns for each exported predicate in the module which are
obtained by the analysis are written out in the module interface as trust asser-
tions. From there, they will be seen by other modules during their analysis and
will improve their exported information. A global fixpoint can be reached in a
distributed way even if different modules are being developed by different pro-
grammers at different times and running the analysis only locally, provided that,
as required by the module system, the module interfaces (but not necessarily the

code) are always made visible to other modules.

Summary. In practice it may be useful to use a combination of incremental
analysis and the trust-enhanced module interface The trust-enhanced interface
can be used during the development phase to compile modules independently.
Once the actual code for all modules is present incremental analysis can be used
to analyze modules loading them one after the other. In this way we obtain the
best accuracy.

Multifile predicates (those defined over more than one file or module) also need
to be treated in a special way. They can be easily identified due to the multifile
declaration. They are similar to dynamic predicates (and also imported predi-
cates) in that if we analyze a file independently of others, some of the code of
a predicate is missing. We can treat such predicates as dynamic predicates and
assume topmost substitutions as their abstract success substitutions unless there
is a trust assertion for them. When the whole program composed of several
files is compiled, we can again use incremental analysis. At that point, clauses
for predicates are added to the analysis using incremental addition, presented in
Section 2.3 (regardless of whether these clauses belong to different files and/or
modules).

A case also worth discussing is that of libraries. Usually utility libraries pro-
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vide predicates with an intended use. The automatic generation of trust asser-
tions after analysis can be used for each library to provide information regarding
the exported predicates. This is done for different uses and the generated asser-
tions are stored in the library interface. With this scheme it is not necessary to
analyze a library predicate when it is used in different programs. Instead, it is
only analyzed once, and the information stored in the trust assertion is used
from then on. If new uses of the library predicates arise for a given program, the
library code can be reanalyzed and recompiled, keeping track of this new use for
future compilations. An alternative approach is to perform a goal independent
analysis of the library, coupled with a goal dependent analysis for the particular
call patterns used thereafter [CGBH94].

4.7 Chapter Conclusions

We have studied several ways in which optimizations based on static analysis can
be guaranteed correct for programs which use the full power of Prolog, including
modules. We have also introduced several types of program assertions that can
be used to both increase the accuracy and efficiency of the analysis and to express
its results. The proposed techniques offer different trade-offs between accuracy,
analysis cost, and user involvement. We argue that the presented combination
of known and novel techniques offers a comprehensive solution for the correct
analysis of arbitrary programs using the full power of the language.

90



Part 11

Program Specialization based on

Abstract Interpretation

91






Chapter 5

Abstract Multiple Specialization

Program specialization optimizes programs for known values of the input. It is of-
ten the case that the set of possible input values is unknown, or this set is infinite.
However, a form of specialization can still be performed in such cases by means of
abstract interpretation, specialization then being with respect to abstract values
(substitutions), rather than concrete ones. We study the multiple specialization
of logic programs based on abstract interpretation. This involves in principle,
and based on information from global analysis, generating several versions of a
program predicate for different uses of such predicate, optimizing these versions,
and, finally, producing a new, “multiply specialized” program. While multiple
specialization has received theoretical attention, it has not previously been in-
corporated in a compiler and its effects quantified. In this chapter such a study
is performed in the context of a parallelizing compiler. Abstract executability,
the main concept underlying the application of abstract specialization, is formal-
ized, and a novel approach to the design and implementation of the specialization
system is proposed. The resulting implementation techniques result in identical
specializations to those of the best previously proposed techniques but require
little or no modification of some existing abstract interpreters. Our results show
that, using the proposed techniques, the resulting “abstract multiple specializa-
tion” is indeed a relevant technique in practice. In particular, in the parallelizing
compiler application, a good number of run-time tests are eliminated and invari-
ants extracted automatically from loops, resulting generally in lower overheads

and in several cases in increased speedups.
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5.1 Introduction

Compilers often use static knowledge regarding invariants in the execution state
of the program in order to optimize the program for such particular cases [AU77].
Standard optimizations of this kind include dead-code elimination, constant prop-
agation, conditional reduction, code hoisting, etc. A good number of optimiza-
tions can be seen as special cases of partial evaluation [CD93, JGS93, DGT96].
The main objective of program specialization is to automatically overcome losses
in performance which are due to general purpose algorithms by specializing the
program for known values of the inputs. In the case of logic programs partial
evaluation takes the form of partial deduction [LS91, Kom92], which is closely
related to other techniques used in functional languages such as “driving” [Gr94].
Much work has been done in logic program partial deduction and specialization
of logic programs (see e.g. [GB90, GCS88, JLW90)).

It is often the case that the set of possible input values is unknown, or this
set is infinite. However, a form of specialization can still be performed in such
cases by means of abstract interpretation [CC77]. Specialization can then be per-
formed with respect to abstract values, rather than concrete ones. Such abstract
values are safe approximations in a “representation domain” of a set of concrete
values. Standard safety results imply that the set of concrete values represented
by an abstract value is a superset (or a subset, depending on the property being
abstracted and the optimizations to be performed) of the concrete values that
may appear at a certain program point in all possible program executions. Thus,
any optimization allowed in the superset (respectively, subset) will also be correct
for all the run-time values. The possible optimizations include again dead-code
elimination, (abstract) constant propagation, conditional reduction, code hoist-
ing, etc., which can again be viewed as a special case of a form of “abstract
partial evaluation.” Consider, for example, the following general purpose addi-
tion predicate which can be used when at least any two of its arguments are

integers:

plus(X,Y,Z) :-

int (X) ,int(Y),!,Z is X + Y.
plus(X,Y,Z):-

int(Y),int(Z),!,X is Z - Y.
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plus(X,Y,Z):-
int(X),int(Z),!,Y is Z - X.

If, for example, for all calls to this predicate in the program it is known from
global analysis that the first and second arguments are always integers, then the

program can be specialized as follows

plus(X,Y,Z):-
Z is X + Y.

which would clearly be more efficient because no tests are executed. The opti-
mization above is based on “abstractly executing” the tests, i.e. reducing predi-
cate calls to true, fail, or a set of primitives (typically, unifications) based on
the information available from abstract interpretation. The first contribution of
this chapter is to formalize the concept of abstract executability, first introduced
informally in [GH91], which is instrumental in the optimization process.

It is also often the case that a procedure has different uses within a program,
i.e. it is called from different places in the program with different (abstract) input
values. In principle, optimizations are then allowable only if the optimization
is applicable to all uses of the predicate. However, it is possible that in several
different uses the input values allow different and incompatible optimizations and
then none of them can take place. This can be overcome by means of “multi-
ple program specialization” [JLW90, GH91, Bru91, Win92| (the counterpart of
polyvariant specialization [Bul84]), where different versions of the predicate are
generated for each use, so that each one of them is optimized for the particular
subset of input values with which each version is to be used. For example, in
order to allow maximal optimization, different versions of the plus/3 predicate

should be generated for the following calls:
., plus(X1,Y1,Z1), plus(X2,Y2,Z2),

if, for example, X1, and Y1 are known to be bound to integers, but no information
is available on X2, Y2, and Z2.

While the technique outlined above is very interesting in principle, many prac-
tical issues arise, some of which have been addressed in different ways in previous
work [JLW90, GH91, Bru91, Win92]. One is the method used for selection of
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the appropriate version for each call at run-time. This can be done quite simply
by renaming calls and predicates. For example, for the situation in the example
above this would result in the following calls and additional version plus1/3 of

the plus/3 predicate:

., plus1i(X1,Y1,21), plus(X2,Y2,Z2),

plusi(X,Y,Z):-
Z is X + Y.

This approach has the potential problem that, in order to create a “path” from
the call to the specialized predicate, some intermediate predicates may have to
also be specialized even if no optimization is performed for them, with a resulting
additional increase in code size. Jacobs et al. [JLW90] propose instead the use of
simple run-time tests to discern the different possible call modes and determine
the appropriate version dynamically. This is attractive in that it avoids the
“spurious” specializations of the previous solutions (and thus reduces code size),
but is also dangerous as such run-time tests themselves imply a cost which may be
in unfavorable cases higher than the gains obtained due to multiple specialization.

Another problem, which will be discussed in more depth later, is that it is not
straightforward to decide the optimum number of versions for each predicate. In
general, the more versions generated, the more optimizations possible, but this
can lead to an unnecessarily large increase in program size.

Winsborough [Win92] presents an algorithm, based on the notion of minimal
function graphs [JM86], that solves the two problems outlined above. A new
abstract interpretation framework is introduced which is tightly coupled with the
specialization algorithm. The combination is proved to produce a program with
multiple versions of predicates that allow the maximum optimizations possible
while having the minimal number of versions for each predicate.

The body of work in the area and Winsborough’s fundamental results, both
briefly summarized above, and the fact that abstract interpretation is becoming
a practical tool in logic program compilation [HWD92, VD92, MH92, SCWY091,
BGH94b], suggests that it may be worthwhile to study whether multiple special-
ization could be useful in practice. However, little or no evidence on the practical-
ity of abstract interpretation driven multiple specialization in logic programs has
been provided previous to our work [PH95, PH97b]. The second contribution of
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this work is to fill this gap. Improvements for a few small, hand-coded examples
were reported in [MJMB89, VD92]. More recently, an implementation of mul-
tiple specialization has also been reported in [KMM*95 KMM*96], applied to
CLP(R). Given that the specialization algorithm used in that work is relatively
naive, the results are interesting in that they provide experimental evidence on
the relevance of multiple specialization even using a naive strategy. We report
on the implementation of multiple specialization in a parallelizing compiler for
Prolog which incorporates an abstract interpretation-based global analyzer. We
present a performance analysis of multiple specialization in this system, in which
a minimization of the number of versions is performed. We argue that our results
show that multiple specialization is indeed practical and useful in the applica-
tion, and also that such results shed some light on its possible practicality in

other applications.

Finally, we also propose a novel technique for the practical implementation of
multiple specialization. While the analysis framework used by Winsborough is in-
teresting in itself, several generic analysis engines, such as PLAI [MH92, MH90a]
and GAIA [CV94], which greatly facilitate construction of abstract interpreta-
tion analyzers, are available, well understood, and in comparatively wide use.
We believe that it is of practical interest to specify a method for multiple spe-
cialization which can be incorporated in a compiler using a minimally modified
existing generic analyzer. This was previously attempted in [GH91], where a sim-
ple program transformation technique which has no direct communication with
the abstract interpreter is proposed, as well as a simple mechanism for detect-
ing cases in which multiple specialization is profitable. However, this technique
is not capable of detecting all the possibilities for specialization or producing a
minimally specialized program. It also requires running the interpreter several
times after specialization, repeating the analysis—program transformation cycle
until a fixpoint is reached. The third contribution of the work presented in this
chapter is to propose an algorithm which achieves the same results as those of
Winsborough’s but with only a slight modification of a standard abstract inter-
preter and by assuming minimal communication with such interpreter (namely,
access to the memoization tables). Our algorithm can be seen as an implementa-
tion technique for Winsborough’s method in the context of standard analyzers.

Regarding the problem of version selection, our implementation uses predicate
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renaming to create paths from calls to specialized predicates. However, we argue
that our technique is equally valid in the context of run-time test based clause
selection.

The structure of this chapter is as follows. The notion of abstract executabil-
ity is formalized and discussed in Section 5.2. In Section 5.3 we propose a naive
implementation method for multiple specialization based on abstract interpreta-
tion. In Section 5.4 we then present an algorithm for minimizing the number of
versions and show that it terminates and is indeed minimal by reasoning over the
lattice of transformed programs. Then Section 5.5 presents the application where
multiple specialization will be applied: automatic parallelization. Section 5.6
shows the design of the abstract specializer and an example of a specialized pro-
gram. Section 5.7 presents the experimental results, which are then discussed in

Section 5.8. Finally, Section 5.9 concludes.

5.2 Abstract Execution

The concept of abstract executability was, to our knowledge, first introduced infor-
mally in [GH91]. It allows reducing at compile-time certain literals in a program
to the value true or false using information obtained with abstract interpretation.
That work also introduced some simple semantics-preserving program transfor-
mations and showed the potential of the technique, including elimination of in-
variants in loops. We introduce in the following an improved formalization of
abstract executability.

We start by introducing (recalling) some notation. A program is a sequence
of clauses. Clauses are of the form h :— b, where h is an atom and b is a possibly
empty conjunction of literals. As in previous chapters, clauses in the program are
written with a unique subscript attached to the head atom (the clause number),
and dual subscript (clause number, body position) attached to each literal in
the body atom e.g. Hy :— By 1, ..., By, where By ; is a subscripted literal. The
clause may also be referred to as clause k, the subscript of the head atom, and

each literal in the program is uniquely identified by its subscript k,i.! We will

'Our implementation supports essentially all the built-ins of ISO-Prolog, as presented in
Chapter 4. However, for simplicity we avoid their discussion except in cases where it may be
specially relevant. This includes for example programs which have if-then-else’s in the body of
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denote by Ax; the abstract call substitution for the literal Ly ; which is the abstract
substitution just before calling the literal Lj ;. The set of variables in a literal L
is represented as var(L). The restriction of the substitution 6 to the variables in
L is denoted 0|y,.

Operationally, each literal L in a program P can be viewed as a procedure call.
Each run-time invocation of the procedure call L will have a local environment e,
which stores the particular values of each variable in var(L) for that invocation.
We will write § € e(L) if 0 is a substitution such that the value of each variable

in var(L) is the same in the environment e and the substitution 6.

Definition 5.2.1 [Run-time Substitution Set] Given a literal L from a program

P we define the run-time substitution set of L in P as

RT(L,P) ={0|r : e is a run-time environment for L and 6 € e(L)}

RT(L, P) is not computable in general. The set of run-time environments for
a literal is not known at compile-time. However, it is sometimes possible to find
a set of bindings which will appear in any environment for L. These “invariants”
can be synthesized in a substitution 6, such that V6 € RT (L, P) 30, : L = LO,6,.
Note that it is always possible to find a trivial 8, = ¢, the empty substitution,
which corresponds to having no static knowledge of the run-time environment.
In this case, we can simply take 6; = 6 for any 6.

The substitutions 6, and 6, correspond to the so-called static and dynamic
values respectively in partial evaluation [JGS93]. As a result, we can specialize
L for the statically known data f,. Specialization is then usually performed by
unfolding LO,. If all the leaves in the SLD tree for Lf; are failing nodes and L6,
is pure (i.e., its execution does not produce side-effects), then the literal L can
be replaced by false. If all the leaves are failing nodes except for one which is a
success node and L#, is pure then L can be replaced by a set of unifications on
var(L#) which have the same effect as actually executing Lf6, in P. If such set

of unifications is empty, L can be replaced by true.

clauses, such as those generated by automatic parallelization, as will be seen in Section 5.5.2.
This construct poses no additional theoretical difficulties: the same effect (modulo perhaps
some run-time overhead) can be achieved using conjunctions of literals and the cut.
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The goal of abstract specialization is also to replace a literal by false, true
or a set of unifications, but rather than starting from RT'(L, P) it will use infor-
mation on RT (L, P) provided by abstract interpretation, i.e., the abstract call
substitution for L. For simplicity, we will restrict our discussion to replacing L

with false or true.

Definition 5.2.2 [Trivial Success Set] Given a literal L from a program P we
define the trivial success set of L in P as

0|1, : L succeeds exactly once in P .
. . if L is pure
TS(L,P)= with empty answer substitution (e)
0 otherwise

Definition 5.2.3 [Finite Failure Set] Given a literal L from a program P we
define the finite failure set of L in P as

FR(LP) = { {01, : L0 fails finitely in P} if L is pure

0 otherwise

Note that if two distinct literals Ly ; and L; ; are equal up to renaming then
the sets T'S(Ly,;, P) (resp. F'F(Ly;, P)) and TS(Ly;, P) (resp. FF(L;;, P)) will
also be equal up to renaming. However, there is no a priori relation between
RT(Ly;, P) and RT(L;, P).

Definition 5.2.4 [Elementary Literal Replacement| Elementary Literal Re-
placement (ER) of a literal L in a program P is defined as:

true  if RT(L,P) CTS(L,P)
ER(L,P) =< false if RT(L,P)C FF(L,P)
L otherwise

Note that given the definitions of T'S(L, P) and F F(L, P), any literal L which
is not dead code and produces some side-effect (i.e., L is not pure) will not be

affected by elementary literal replacement, i.e., ER(L, P) = L.
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Theorem 5.2.5 [Elementary Replacement| Let Prr be the program obtained
by replacing each literal Ly ; in P by ER(Ly;, P). P and Pgg produce the same

computed answers and side-effects.

The idea is to optimize a program by replacing the execution of Lf with the
execution of either the builtin predicate true or fa:l, which can be executed in
zero or constant time. Even though the above optimization may seem not very
widely applicable, for many builtin predicates such as those that check basic
types or meta-logical predicates that inspect the instantiation state of terms and
as we will see in Section 5.7, this optimization is indeed very relevant. However,
elementary replacement is not directly applicable because RT(L, P), T'S(L, P),
and F'F(L, P) are generally not known at specialization time.

Definition 5.2.6 [Abstract Trivial Success Set] Given an abstract domain D,

we define the abstract trivial success set of L in P as
TSW(L,P,Dy) ={\€ D, :v(\) CTS(L,P)}

Definition 5.2.7 [Abstract Finite Failure Set] Given an abstract domain D,
we define the abstract finite failure set of L in P as

FF,(L,P,D,) = {\ € D, : v(\) C FF(L, P)}

Note that by using the least upper bound operator (LI) of the abstract domain
D,, TS,(L,P,D,) and FF,(L, P, D,) could be represented by a single abstract
substitution (rather than a set of them), say Arg,(z,p,p.) = Urs.(L,p,p.)A and
AFF.(L,P,D.) = UFrr,(1,p,p,)A- However, this alternative approximation of the ac-
tual sets T'S(L, P) and FF(L, P) can introduce an important loss of accuracy for
some abstract domains because y(Ars,(r,p,0.)) 2 Urs,(z,p,p.) V(A), thus reducing

the optimizations achievable by abstract executability .

Definition 5.2.8 [Abstract Execution] Abstract Execution (AE) of L in P with
abstract call substitution A € D, is defined as:

true  if A€ TS,(L, P, D,)
AE(L,P,Dy,\) =4 false if A€ FF,(L,P,D,)
L otherwise
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If AE(L, P, D, \) = true (resp. false) we will say that L is abstractly executable
to true (resp. false). If AE(L, P, D,,\) = L then L is not abstractly executable.

Theorem 5.2.9 [Abstract Executability] Let let P4g be the program obtained
by replacing each literal Ly; in P by AE(Ly, P, Do, Ar;). P and Psp produce
the same computed answers and side-effects.

The advantage of abstract executability as given in Definition 5.2.8 over ele-
mentary replacement is that instead of using RT(L, P) which is not computable
in general, such sets are approximated by abstract substitutions which for appro-
priate abstract domains (and widening mechanisms) will be computable in finite

time.

Definition 5.2.10 [Optimal T'S,] An abstract trivial success set T'S, (L, P, D,)

is optimal iff

( U W)=18LP)

AT So(L,P,Dy)

Optimal abstract finite failure sets are defined similarly. One first possible dis-
advantage of abstract execution with respect to elementary replacement is due
to the loss of information associated to using an abstract domain instead of
the concrete domain. This is related to the expressive power of the abstract
domain, i.e. what kind of information it provides. If T'S,(L, P, D,) and/or
FF,(L, P,D,) are not optimal then there may exist literals in the program such
that RT'(L,P) C TS(L,P) or RT(L,P) C FF(L,P) and thus elementary re-
placement could in principle be applied but abstract execution cannot. In general,
domains will be optimal for some predicates but not all.

Another possible disadvantage is that even if the abstract domain is expressive
enough and both 7'S,(L, P, D,) and FF,(L, P, D,) are optimal, the computed
abstract substitutions may not be accurate enough to allow abstract execution.
Therefore, the choice of the domain should be first guided by the predicates
whose optimization is of interest so that T'S,(L, P, D,) and FF,(L,P,D,) are
as adequate as possible for them, and second by the accuracy of the abstract

substitutions it provides and its computational cost.
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Definition 5.2.11 [Maximal Subset] Let S be a set and let = be a partial order
over the elements of S. We define the mazimal subset of S with respect to C as

Mc(S)={seS:4s5'e€S(s#sANsCs)}

Abstract execution as given in Definition 5.2.8 is not applicable in general
because even though each A ; is computable by means of abstract interpreta-
tion, T'S, and F'F, are not computable in general. Additionally, if D,, is infinite,
TS, and F'F, may also be infinite. However, based on the observation that
if A\ € TS, then VX T X X € TS,, the conditions A\ € TS,(L,P,D,) and
A € FF,(L,P,D,) are equivalent to 3\ € Mc(T'So(L,P,D,)) : A T X and
N € M (FF,(L,P,D,)) : A C X respectively and thus can be replaced in Defi-
nition 5.2.8. Unlike T'S, and FF,, M-(TS,(L, P, D,)) and Mc(FF,(L, P, D,))
are finite for any D, with finite width. Additionally, they usually have one or

just a few elements for most practical domains.

Definition 5.2.12 [Base Form| The Base Form of a literal L which calls pred-
icate Pred of arity n (represented as L) is the literal Pred(X,...,X,) where
Xq,..., X, are distinct free variables.

As the number of literals in a program that call a given predicate is not
bounded and in order to reduce the number of TS, and F'F,, sets that need to be
computed to optimize a program, in what follows we will only consider one 7'S,
and F'F, per predicate which refers to its base form.

The function named call_to_entry, which is normally defined for each domain
in most abstract interpretation frameworks, will be used to relate an abstract
substitution over the variables of an arbitrary literal with the base form of the
literal. The format of this function is call to_entry(L1, L2, D,4, \). Given a literal
L1 and an abstract substitution A € D, over the variables in L1, this function
computes an abstract substitution over the variables in L2 which is the result of
unifying L1 and L2 both with respect to concrete and abstract substitutions.

Using the base form and call_to_entry the conditions A € T'S,(L, P, D,)
and A € FF,(L,P,D,) in Definition 5.2.8 can be replaced by
call to_entry(L, L, Dy, \) € TS(L,P,D,) and call to_entry(L,L, Dy, )\) €
FF,(L, P, D,) respectively. The transformed conditions are not equivalent, but
are sufficient. This means that correctness is guaranteed, but possibly some op-

timizations will be lost.
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5.2.1 Optimization of Calls to Builtin Predicates.

Even though abstract executability is applicable to any predicate, in what follows
we will concentrate on builtin predicates. This is because the semantics of builtin
predicates does not depend on the particular program in which they appear, i.e.,
VP, P' TS.(B,P,D,) = TS4(B,P',D,) = TS,(B,D,). As a result, we can
compute T'S,(B, D,) and FF,(B, D,) once and for all for each builtin predicate
B and they will be applicable to all literals that call the builtin predicate in any

program.

Definition 5.2.13 [Operational Abstract Execution of Builtins| Operational ab-
stract execution (OAEB) of a literal L with abstract call substitution A that calls
a builtin predicate B is defined as:

( if IN' € Aps(B, Da) :

true Z
call to_entry(L, B, Do, \) U X = X
if El)\l € AFF(B, Da) :

call to_entry(L, B, Dy, \) U)X = X
L otherwise

OAEB(L,Da; ) =4 rorc0

\

Ars(B,D,) and App(B,D,) are approximations of Mr(T'S.(B,D,)) and
Mc(FF,(B, D,)) respectively. This is because there is no automated method
that we are aware of to compute Mc(TS,(B,D,)) and Mc(FF,(B,D,)) for
each builtin predicate B. For soundness it is required that both Apg(B, D,) C
TS,(B,D,) and App(B,D,) C FF,(B,D,). We believe that a good knowl-
edge of D, allows finding safe approximations, and that in many cases it is easy
to find the best possible approximations Arg(B, D,) = Mg (TS.(B, D,)) and
Arr(B,D,) = Mc(FF,(B,D,)).

Additionally, the condition call_to_entry(L, B, D,, \) C X has been replaced
by the equivalent one call to_entry(L, B, Dy, \) LI X = ), where LI stands as
before for the least upper bound, which can generally be computed effectively.

Theorem 5.2.14 [Operational Abstract Executability of Builtins] Let P be a
program and let Ppagrp be the program obtained by replacing each literal Ly ; in
P by OAEB(Ly,, M) where )y ; is the abstract call substitution for Ly ;.

If VB Ars(B,D,) C TS4(B,D,) A Apr(B,D,) C FF,(B,D,) then Poapp is
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computable in finite time, and both P and Ppsgrp produce the same computed
answers and side-effects.

Example 5.2.15 Suppose we are interested in optimizing calls to the builtin
predicate ground/1 by reducing them to the value true. Then, T'S(ground(X;)) =
{{X1/g} where g is any term without variables }. Suppose also that we use the
abstract domain D, consisting of the five elements {bottom, int, float, free,
top}. These elements respectively correspond to the empty set of terms, the set
of all integers, the set of floating point numbers, the set of all unbound variables,
and the set of all terms. Then, the abstract version of T'S(ground(X,)), i.e.,
TSu(ground(Xy), Dy) = {int, float, bottom} is clearly not optimal (there are
many ground terms which are neither integers nor floating numbers). We can
take Apg(ground(X,), D,) = {int, float} = Mg ({int, float, bottom}). Consider
the following clause containing the literal ground(X):
p(X,Y) —q(Y), ground(X),r(X,Y).

Assume now that analysis has inferred the abstract substitution just before the
literal ground(X) to be {Y/free, X/int}. Then OAEB(ground(X), Dy, X/int)
= true (the literal can be replaced by true) because call_to_entry(ground(X),
ground(Xy), Dy, {X/int}) = {X1/int}, and X;/int U X, /int = X, /int.

If we were also interested in reducing literals that call ground/1 to false, the
most accurate App(ground(Xi),D,) = {free} = Mc(FF,(ground(X:),D,))
which again is not optimal.

5.3 Multiple Specialization using Abstract In-

terpretation

As mentioned before, traditional, goal-driven abstract interpreters for logic pro-
grams produce as a result a program analysis graph which can be viewed as a
finite representation of the (possibly infinite) set of (possibly infinite) and—or trees
explored by the concrete execution [Bru91]. Execution and-or trees which are in-
finite can be represented finitely through a “widening” [CC92| into a rational tree.
Also, the use of abstract values instead of concrete ones allows representing in-
finitely many concrete execution trees with a single abstract analysis graph. The

graph has two sorts of nodes: those belonging to rules (also called “and-nodes”)
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and those belonging to atoms (also called “or-nodes”).

In order to increase accuracy, analyzers usually perform a form of multiple
program specialization during the analysis. As a result, several nodes in the
and-or graph can correspond to a single program point (in the original, non-
specialized version of the program). Actual analyzers differ in the degree of
specialization supported and in the way such specialization is represented, but,
in general, most analyzers generate all possible versions since this allows the
most accurate analysis [Bru91, MH92, MH90a, CV94]. Normally, the results of
the analysis are simply “folded back” into the program: information from nodes
which correspond to the same points in the original program is combined using
the least upper bound operator. The main idea that we will exploit is to instead
use the implicit multiply specialized program explored by the analyzer not only to
improve analysis information, but also to generate a multiply specialized program
in which we have more accurate information for each version and specialize each

version accordingly.

Example 5.3.1 Consider the following example program, where the predicate
plus/3 is defined as before and go/2 is known to be always called with both

arguments bound to integers

go(A,B) :-
p(A,B,_ ), p(A,_,B).
p(X,Y,Z):-
plus(X,Y,2),
write(Z), write(’ is ),
write(X), write(’ + ?’), write(Y), nl.

Consider also the abstract domain D, of Example 5.2.15 consisting of the
five elements {bottom, int, float, free, top}. Figure 5.1 shows the analysis graph
for the example program. Clearly, as there are infinitely many integer values,
such graph represents an infinite number of concrete graphs. Circles are used to

represent calls to builtin predicates.

In order to perform multiple specialization given the information available at
the end of the analysis two problems remain: the first one is devising a method for

actually materializing the versions generated taking such information as a starting
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Figure 5.1: Example Analysis Graph

point and creating the paths connecting each version with its corresponding call
point(s). The second one is ensuring that not all possible versions are materialized
in the specialized program, but rather only the minimal number necessary to
perform all the optimizations which are possible. The first problem is addressed

in the remainder of this section and the second in Section 5.4.

5.3.1 Analyses with Explicit Construction of the And-Or
Graph

As mentioned before, some formulations of top-down abstract interpretation for

logic program, such as the original one in Bruynooghe’s seminal work [Bru91],

are based on explicitly building an abstract version of the resolution tree which
contains all possible specialized versions [MWBO90, JB92]. This has the advan-
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predicate | id | call success ancestors

go/2 1 | go(int, int) go(int,int) {(query,1)}
p/3 2 | p(int,int, free) p(int, int, int) {(go/2/1/1,1)}
p/3 4 | p(int, free,int) p(int, int, int) {(go0/2/1/2,1)}
plus/3 3 | plus(int,int, free) | plus(int,int,int) | {(p/3/1/1,2)}
plus/3 5 | plus(int, free,int) | plus(int,int,int) | {(p/3/1/1,4)}

Table 5.1: Analysis Memo Table for Example Program

tage that, while not directly represented in the abstract and—or graph, it is quite
straightforward to derive a fully specialized program (i.e. with all possible ver-
sions) from such graph and the original program. Essentially, a new version is gen-
erated for a predicate for each or—node present for that predicate in the abstract
graph. Thus, the fully specialized program includes a different, uniquely named
version of a predicate for each or-node corresponding to this predicate. Different
descendent and—nodes represent different calls in the bodies of the clauses of the
specialized predicates. Each call in each clause body in the specialized program is
replaced with a call to the unique predicate name corresponding to the successor
or-node in the graph for each predicate. We will refer to the program constructed
as explained above as the extended program. Note that if analysis terminates the
number of or-nodes in the graph for each predicate must be finite, and thus the
extended program will be finite.

The correctness of this multiply specialized program is given by the correct-
ness of the abstract interpretation procedure, as specialization is simply materi-
alizing the (implicit) specialized program from which the analysis has obtained

its information.

5.3.2 Tabulation-based Analyses

For efficiency reasons, most practical analyzers [Deb89a, HWD92, MH92, CV94,
MS89] do not explicitly build the analysis graph. Instead, a representation of
the information corresponding to each program point is kept in a “memo table.”
Entries in such memo tables typically contain matched pairs of call and success

patterns. In most systems some of the graph structure is lost and the data
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available after analysis (essentially, the memo table) is not quite sufficient for
connecting each version with its call point(s). For concreteness, we consider
here the case of PLAI [MH92, MH90a]. In the standard implementation of this
analyzer, the memo table essentially contains only entries which correspond to
or—nodes in the table. And-nodes are also computed and used, but they are not
stored. In the following we will refer to the table entries which correspond to or—
nodes as or—records. Each or-record contains the following information: predicate
to which the or-record belongs, call-pattern, abstract success substitution, and a
number identifying the or-record itself. This information needs to be augmented
with one more field which contains the ancestor information, i.e., the point(s)
in the multiply specialized program where this or-record (version) is used. By
a point we mean a literal within an or-record. It should be noted that the
traditional fixpoint algorithm in PLAI had to be modified slightly so that this
information is correctly stored, but this modification is straightforward. The
version to use in each call can then be determined by the ancestor information
and no run-time tests are needed to choose among versions. In the new fixpoint
algorithm based on the ideas presented in Chapter 3 recently integrated into
PLAI, such ancestor information is already stored in the or-records as it is needed
for guiding iterations and thus, in that case, no modification of the fixpoint

algorithm is needed at all.

Example 5.3.2 After analysis of the program in Example 5.3.1 the or-records
in the memo table for user-defined predicates are shown in Table 5.1.

The first field is the predicate to which the or-record belongs, the second
is the number that identifies the or-record, the third and fourth give the call-
success pair, and the fifth is the ancestor information. This is a list of pairs
(literal, or-record). A literal is identified using the following format: Predi-
cate/Arity/Clause/Literal. For example, go/2/1/2 stands for the second literal
in the first clause of predicate go/2. If programs are as defined in Section 5.2,
this format allows uniquely identifying a literal in a program. 2

Figure 5.2 represents the ancestor information for each or-record graphically.
For clarity, each or-record is represented by its identifier. It is clear that the
ancestor information can be interpreted as backward pointers in the analysis

2The number of clause x used in Section 5.2 is here replaced by Predicate/Arity/Clause.
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Figure 5.2: Ancestor Information for the Example

graph. These pointers can be followed to determine the version to use in the
multiply specialized program. The special literal query indicates the starting
point of the top-down analysis. PLAI admits any number of starting (entry)
points. They are identified by the second number of the pair (query,N).

Finally, the program in which every or-record is implemented in a different

version is given in Figure 5.3.

5.4 Minimizing the Number of Versions

The number of versions in the multiply specialized program introduced in Sec-
tion 5.3 does not depend on the possible optimizations but rather on the number
of versions generated during analysis. Even if no benefit is obtained, the program
may have more than one version of each predicate. In this section we address the
issue of finding the minimal program that allows the same set of optimizations
as the fully specialized one. In order to do that we collapse into the same version
those or-records that are equivalent.? In this way, the set of or-records for each
predicate is partitioned into equivalence classes. We now provide an informal
description of an algorithm for finding such a program, followed by a more formal
description and an algebraic interpretation of the algorithm. The section ends
with an example illustrating the execution of the algorithm.

3The equivalence relation will be presented more formally in Section 5.4.2.
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go(A,B) :-
p1(A,B, ), p2(A,_,B).

pl(X,Y,Z) :-

plusi(X,Y,Z),

write(Z), write(’ is ),

write(X), write(’ + ?’), write(Y), nl.
p2(X,Y,2) :-

plus2(X,Y,Z),

write(Z), write(’ is ’),

write(X), write(’ + ), write(Y), nl.

plusi(X,Y,Z) :-
Z is X+Y.

plus2(X,Y,Z) :-
Y is Z-X.

Figure 5.3: Extended Program for Example 5.3.1

5.4.1 Informal Description of the algorithm

As mentioned before, the purpose of this algorithm is to minimize the number
of versions needed of each predicate while maintaining all the possible optimiza-
tions. After analysis and prior to the execution of the minimizing algorithm, we
compute the optimizations that would be allowed in each version of the extended
program (i.e., the one which generates one version of a predicate for each or—
record). A simple but very inefficient way of doing this would be to implement
the extended program and let the optimizer run on this program and collect the
optimizations performed in each version. These optimizations are represented in
the algorithm as finite sets which are associated with the corresponding or-record.
The algorithm receives as input the set of table entries (or-records) computed dur-
ing analysis, augmented with the set of optimizations allowed in each or-record.
The output of the algorithm is a partition of the or-records for each predicate

into equivalence classes. This information together with the original program is
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enough to build the final program. For each predicate in the original program as
many copies are generated as equivalence classes exist for it. Each of these copies
(implementations) receives a unique name. Then, the predicate symbols of the
calls to predicates with multiple versions are replaced with the predicate symbols
of the corresponding version. This is done using the ancestor information. At the
same time, some optimizations can take place in each specialized version.

Not all the information in the or—records is necessary for this algorithm. It is
sufficient to use the identifier of the or-record, the ancestor information, and the
set of optimizations.

It is important to note that two or—records that allow the same set of op-
timizations cannot be blindly collapsed since they may use for the same literal
(program point) versions of predicates with different optimizations, and thus
these two or—records must be kept separate if all possible optimizations are to be
maintained. This is why the algorithm consists of two phases. In the first one all
the or—-records for the same predicate that allow the same set of optimizations are
joined in a single version. In the second phase those that use different versions
of a predicate for the same literal are split into different versions. Note that each
time versions are split it is possible that other versions may also need to be split.
This process goes on until no more splitting is needed (a fixpoint is reached). The
process always terminates as the number of versions for a predicate is bounded
by the number of times the predicate has been analyzed with a different call pat-
tern. Thus, in the worst case we will have as many versions for a predicate as
or-records have been generated for it by the analysis, i.e., we will not be able to
perform any minimization and we would get back the extended program.

5.4.2 Formalization of the algorithm

In this section some notation is first introduced and then the algorithm and the
operations involved are formalized based on such definitions. Also, some of the
definitions presented help in understanding the desirable properties multiply spe-
cialized programs should have, such as being minimal, of maximal optimization,
feasible, etc. At this point, we will not be concerned with termination, which will
be discussed in Section 5.4.3. In the following definitions a program is a set of
predicates, a predicate a set of versions, and a version a set of or-records. The

algorithm is independent of the kind of optimizations being performed. Thus, no
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definition of optimization is presented. Instead, it is left open for each partic-
ular implementation. However, this algorithm requires sets of optimizations for
different or-records to be comparable for equality. As an example, in our imple-
mentation an optimization is a pair (literal, value), where value is true or fail
(or a list of unifications), generated via abstract executability. The optimization

will be materialized in the final program using source to source transformations.

Definition 5.4.1 [Or-record] An or—record is a triple o = (N, P, S) where N is
a natural number that identifies the or-record, P is a set of pairs (literal, number

of or-record) and S a set of optimizations.

Definition 5.4.2 [Set of Or-records of a Predicate] The set of or-records of a
predicate Pred, denoted by Op,.q, is the set of all the or-records the analyzer has
generated for Pred.

Definition 5.4.3 [Version of a Predicate] Given a predicate Pred v is a version
of Pred if v C Opypeg.

Definition 5.4.4 [Well Defined Set of Versions| Let Op,eq be the set of or—
records of Pred and let Vpreq = {v;,i = 1,...,n} be the set of versions for Pred.

Vprea is a well defined set of versions if

n

U vi = Opreqg and v;[(Jv; =04 #j

i=1
i.e. Vpreq is a partition of Op;eq.

Definition 5.4.5 [Feasible Version]| A version v € Vp,eq is feasible if it does not
use two different versions for the same literal, i.e. if Vo;,0; € v Vliteral € Pred :

En}P'r'edl((El'Uk: € VPredlaol = <Nla Pla Sl) € Uk|(lite7'ala Nz) € Pl) A —k=m
(Fvm € Vprear3on, = (Ny, P, Sn) € v (literal, Nj) € P,))

Programs with versions that are not feasible cannot be implemented without run-
time tests to decide the version to use. Infeasible programs use for the same literal
sometimes a version and sometimes another. This sometimes must be determined

at run-time. A set of versions is feasible if all the versions in it are feasible.

113



Definition 5.4.6 [Equivalent Or-records] Two or-records o; = (N;, P, S;), 0, =
(Nj, P;, S;) € Opyea, are equivalent, denote by o; =, oj, if

S; = S; and {o0;,0;} is a feasible version.

Definition 5.4.7 [Minimal set of Versions| A set of versions Vp;q is minimal if
Vo;,0; € Opyed

0i =y 0j = 3V}, € Vpreq such that o;,0; € vy

Definition 5.4.8 [Version of Maximal Optimization] A version v is of mazimal

optimization if

VO,’ = <NiaPi;Si>,0j = <Nj,Pj,Sj> cv Sz = Sj

(all the or-records in the version allow the same optimizations). A set of versions

is of maximal optimization if all the versions in it are of maximal optimization.

Definition 5.4.9 [Optimal Set of versions]| A set of versions Vp,, for a predicate

Pred is optimal if it is minimal, of maximal optimization, and feasible, i.e. if
V0;,0; € Opyrea : 30k € Vprea(0i, 05 € V) & 0; =, 0,

We extend these definitions in the obvious way. For example, we say that a
program is minimal if the sets of versions for all the predicates in the program
are minimal.

According to these definitions, the program before multiple specialization is

well defined, feasible, and minimal, but not of maximal optimization in general.

Definition 5.4.10 [Programg] For each predicate Pred let Vp,eqa = {vilv; =
{0;}}. We call this program Programy
The extended program of Section 5.3 corresponds to Programy.

Theorem 5.4.11 Program, is feasible, of maximal optimization, and well de-
fined.

Definition 5.4.12 [Reunion of Versions| Given two versions v;,v; € Vpyeq the

reunion of v; and v;, denoted by v; @ vj, is
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v D v = {vilv;} if Yog, 0, € (v; Uv;) Sk = S
Z ! {vi,v;} otherwise

The new set of versions Vpyed! is Vprea — {vi, v} U(vi & v;).

Theorem 5.4.13 Let P’ by a program obtained from P by applying reunion
of versions. If P is well defined and of maximal optimization then P’ is also well

defined and of maximal optimization.

Definition 5.4.14 [Program;] Program; is the program obtained from
Programy by reunion of versions when no more reunions are possible (a fixpoint
is reached). Program; corresponds to the program in which the set of or—records
for each predicate is partitioned into equivalence classes using the equality of sets

of optimizations as equivalence relation.

Theorem 5.4.15 Program; is well defined, of maximal optimization, and min-

imal.

Note that from Programg to Program; we have gained minimality, but un-
fortunately, Program; will not be feasible in general. This is the purpose of phase
2 of the algorithm.

We now introduce the concept of restriction. It will be used during phase 2
to split versions that are not feasible. It allows expressing in a compact way the
fact that several or—records for the same predicate must be in different versions.
For example {{1},{2,3},{4}} can be interpreted as: or-record 1 must be in a
different version than 2, 3, and 4. Also or-records 2 and 3 cannot be in the same

version as 4 (2 and 3 can, however, be in the same version).

Definition 5.4.16 [Restriction] Given a set of or-records Op,eq, R is a restric-
tion over Op,qq if R is a partition of N and N' C Opyeq-

Definition 5.4.17 [Restriction from a Predicate to a Goal] Let Vpeq
{v1,v9,- <, v;, -+, v,} be a set versions of the predicate Pred, and let lit be a
literal of the program. The restriction from Pred to lit is

Riit,preda = {T1,72, 3 Ti, =+, Tn}
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where r; is {N| do = (N, P, S) € v; such that (lit, N) € P}*

Definition 5.4.18 [A Restriction Holds] A restriction R holds in a version v if

Voi,0 € vVry,m e R:NyerykAN;jernp= k=1

Definition 5.4.19 [Splitting of Versions by Restrictions] Given a version v and
a restriction R, the result of splitting v with respect to R is written v ® R and is

{v} if v holds the restriction R
VR = )
{v1,v9} otherwise

where v; = {0 = (N,P,S)| o € v AN € r;} and v = v — v;. The new set of
versions is Vprea! = Vprea — {v} U(v @ R).

Example 5.4.20 Consider the splitting of version {1,2,3,5} by restriction
{{1},{2,3,4},{5}}. {1,2,3,5} ® {{1},{2,3,4},{5}} = {{1},{2,3,5}}, but in
{2,3,5} the restriction does not hold yet. {2,3,5} ® {{1},{2,3,4},{5}} =
{{2,3},{5}}. Now the restriction holds. Thus, the initial version is split into

3 versions: {{1},{2,3},{5}}.

Theorem 5.4.21 Let P’ be a program obtained by applying splitting of versions
to a program P. If P is well defined, of maximal optimization, and minimal then

P’ is also well defined, of maximal optimization and minimal.

Definition 5.4.22 [Programy| Programy is the program obtained when all the

restrictions hold and no more splitting is needed, i.e., when a fixpoint is reached.

Theorem 5.4.23 [Multiple Specialization Algorithm| Programy is optimal and
well defined.

By Theorem 5.4.21 Programy is well defined, of maximal optimization, and
minimal. We can see that it is also feasible because otherwise there would be
a restriction that would not hold. This is in contradiction with the assumption
that phase 2 (splitting) has terminated.

4Note that r; may be 0.
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5.4.3 Structure of the Set of Programs and Termination

As shown above, given a multiply specialized program generated by the analyzer,
several different (but equivalent) programs may be obtained. They may differ in
size, optimizations, and even feasibility. In this section we discuss the structure
of this set of programs and the relations among its elements.

Since Programg is well defined, applying Theorems 5.4.13 and 5.4.21 we
can conclude that all the intermediate programs and the final program are well
defined. This means that ill-defined programs are not of interest to us and the
set, of well defined programs is closed under reunion and splitting of versions.
This set of well defined programs forms a complete lattice under the C operation
defined as follows. P C P’ iff V predicate Pred let Vpyeq (resp. V' preq) be the set
of versions for Pred in P (resp. P') Yv € Vpreq V' € Vi, oy st. v C V', i€, all the
versions in P are equal or more specific than the versions in P. The 1 element
of such a lattice will be given by the program with most specific versions. This
is the program with the greatest number of versions, i.e., the extended program
(Programg). The T element is the program with most general versions, i.e, the
one in which all the or-records that correspond to the same predicate are in the
same version. This program is the one with the minimum number of versions
and is the one obtained when no multiple specialization is done. The reunion
operation transforms a program P into another program P’ s.t. P C P’ (higher
in the lattice). Splitting transforms a P into P’ s.t. P’ C P (lower in the lattice).

Note that not all the programs in the lattice are feasible. As said before, a
program is not feasible when two or-records in the same version use at the same
program point or-records that are in different versions. This is the reason why
phase 2 of the algorithm is required. This phase ends as soon as a program is
reached that is feasible.

Although not formally stated, the two different operations used during the
multiple specialization algorithm (namely reunion and splitting) are operators
defined on this lattice since they receive a program as input and produce another
program as output. Phase 1 starts with L and repeatedly applies operator,
(reunion) moving up in the lattice until we reach a fixpoint. Since the lattice is
finite and operator; is monotonic the termination of phase 1 is guaranteed.

Phase 2 starts with the program that is a fixpoint of operator; (Program;)

and moves down in the lattice. During phase 2 using operators (splitting) we
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Pred | id | ancestors optimizations

go/2 | 1| {(query,1)} 0
o/3 | 2| {(eo/2/ /L) 0
p/3 | 4| {(g0/2/1/2,1)} 0
{(plus/3/3/2 fail),
plus/3 | 3| {(p/3/1/1,2)} | (plus/3/2/1,true),
(plus/3/1/2,true)}
{(plus/3/3/2,true),
plus/3 | 5| {(p/3/1/1,4)} | (plus/3/2/1,fail),
(plus/3/1/2,fail)}

Figure 5.4: Analysis Table with Optimizations for Example Program

move from an infeasible program to (a less) infeasible program, until we reach a
feasible program (which will be the fixpoint). operators is also monotonic and

thus phase 2 also terminates.

5.4.4 Example

We now apply the minimizing algorithm to the program in Example 5.3.1. As
was mentioned before, the algorithm also needs to know the set of possible op-
timizations in each or-record. We will add this information to the or-record
registers. We do not show the call-success values of or-records as they are not
needed anymore. Figure 5.4 shows the relevant part of the analysis memo table
for the example program, i.e. the or-records, which is the starting point for the
multiple specialization algorithm.

We will not go into the details of the set of optimizations, because, as men-
tioned before, the multiple specialization technique presented is independent of
the type of optimizations performed. In any case, the set of optimizations is
empty in the or-record for go/2 and in the two or-records for p/3. It has three
elements in the or-records for plus/3 that indicate the value that the test int
will take in execution and have been obtained by means of abstract executability.
The only thing to note for now is that the set of optimizations is different in these

two or-records for plus/3.
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Phase 1 starts with each or-record in a different version (Programg). We
represent each or-record only by its identifier:

Programy:
go/2 p/3 plus/3
{{13} | {{2}.{4}} | {{3}.{5}}

The two or-records for p/3 have the same optimizations (none) and can be

joined. At the end of phase 1 we are in the following situation:

Program;:
go/2 p/3 plus/3
{133 | {{24}3} | {{3}.{5}}

Now we execute phase 2. Ounly plus/3 can produce restrictions. The other

two predicates only have one version. The only restriction will be Ry/3/1/1ptus/3 =
{{2},{4}}. The intuition behind this restriction is that or-record number 2 must
be in a different version than or-record number 4. The restriction does not hold
and thus {2,4} ® {{2},{4}} = {{2},{4}}. Now we must check if this splitting
has introduced new restrictions. No new restriction appears because there is no
literal that belongs to the ancestor information of both or-record 2 and or—record
4. Thus, the result of the algorithm will be:

Programy:
go/2 p/3 plus/3
{{133 | {{23,{4}} | {{3}.{5}}

The program that the minimization algorithm indicates that should be built

coincides in this case with the extended program, which was already depicted in
Figure 5.3.

Figure 5.5 shows the lattice for the example program. The node marked with
a cross (B) is infeasible. That is why during phase 2 we move down in the lattice
and return to programy.

We can use Figure 5.5 to illustrate the definitions introduced in Section 5.4.2.
Nodes B and D are of maximal optimization. A and C are not because or-records
with different optimizations (3,5) are in the same version. Nodes A, C, and D are
feasible. B is not feasible because for the literal p/3/1/1 it uses both or-record
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phase 1
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(Program O = Programf)

Figure 5.5: Lattice for the Example Program

3 and 5 (we cannot decide at compile-time which one to use). All the nodes in
the lattice are minimal. A program is not minimal if two or-records that are
equivalent are in different versions. No two or-records are equivalent, thus all the

programs in the lattice are minimal.

5.5 The Application: Compile-Time Paral-

lelization

The final aim of parallelism is to achieve the maximum speed (effectiveness) while
computing the same solution (correctness) as the sequential execution. The two
main types of parallelism which can be exploited in logic programs are well known
[Con83, CCY4]|: or-parallelism and and-parallelism. And-parallelism refers to the
parallel execution of the goals in the body of a clause (or, more precisely, of the
goals in a resolvent). Several models have been proposed to take advantage of
such opportunities (see, for example, [CC94| and it references).

Guaranteeing correctness and efficiency in and-parallelism is complicated by
the fact that dependencies may exist among the goals to be executed in parallel,

due to the presence of shared variables at run—time. It turns out that when
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these dependencies are present, arbitrary exploitation of and—parallelism does not
guarantee efficiency. Furthermore, if certain impure predicates that are relatively
common in Prolog programs are used, even correctness cannot be guaranteed.

However, if only independent goals are executed in parallel, both correctness
and efficiency can be ensured [Con83, HR95|. Thus, the dependencies among the
different goals must be determined, and there is a related parallelization overhead
involved. It is vital that such overhead remain reasonable. Herein we follow
the approach proposed initially in [WHD88, HWD92] (see their references for
alternative approaches) which combines local analysis and run—time checking with
a data-flow analysis based on abstract interpretation [CC77]. This combination
of techniques has been shown to be quite useful in practice [WHD88, MJMB89,
VD90, Tay90, dMSC93|.

5.5.1 The Annotation Process and Run-time Tests

In the &-Prolog system, the automatic parallelization process is performed as
follows [BGH94a]. Firstly, if required by the user, the Prolog program is ana-
lyzed using one or more global analyzers. These analyzers are aimed at inferring
useful information for detecting independence. These analyses use the optimized
fixpoint algorithm presented in Chapter 3. Secondly, since side—effects cannot
be allowed to execute freely in parallel, the original program is analyzed using
the global analyzer described in [MH89a| which propagates the side—effect char-
acteristics of builtins determining the scope of side—effects. In the current im-
plementation, side-effecting literals are not parallelized. Finally, the annotators
perform a source-to-source transformation of the program in which each clause
is annotated with parallel expressions and conditions which encode the notion of
independence used. In doing this they use the information provided by the global
analyzers mentioned before.

The annotation process is divided into three subtasks. The first one is con-
cerned with identifying the dependencies between each two literals in a clause
and generating the conditions which ensure their independence. The second task
aims at simplifying such conditions by means of the information inferred by the
local or global analyzers. In other words, transforming the conditions into the
minimum number of tests which, when evaluated at run—time, ensure the inde-

pendence of the goals involved. Finally, the third task is concerned with the core
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:-module (mmatrix, [mmultiply/3]).

mmultiply([1,_,[1).
mmultiply ([VO|Rest], V1, [Result|Others]):-
multiply(V1,V0O,Result), mmultiply(Rest, V1, Others).

multiply ([1,_,[1).
multiply ([VO|Rest], V1, [Result]|Others]):-
vmul (VO,V1,Result), multiply(Rest, V1, Others).

vmul([1,[1,0).

vmul ([H1|T1], [H2|T2], Result):-
Product is H1*H2, vmul(T1,T2, Newresult),
Result is Product+Newresult.

Figure 5.6: mmatrix.pl

of the annotation process [BGH94a, MH90b|, namely the application of a par-
ticular strategy to obtain an optimal (under such a strategy) parallel expression

among all the possibilities detected in the previous step.

5.5.2 An Example: Matrix Multiplication

We illustrate the process of automatic program parallelization with an example.
Figure 5.6 shows the code of a Prolog program for matrix multiplication. The
declaration :-module (mmatrix, [mmultiply/3]) . is used by the (goal-oriented) an-
alyzer to determine that the only predicate which may appear in top-level queries
is mmatriz/3. No information is given about the arguments in calls to the predi-
cate mmatriz/3. This could be done using one or more entry declarations (Chap-
ter 4). If for example we want to specialize the program for the case in which the
first two arguments of mmatriz/3 are ground values and we inform the analyzer
about this, the program would be parallelized without the need for any run-time

tests. However, for the purposes of studying multiple specialization, we will con-

122



mmultiply([1,_,[1).
mmultiply([VO|Rest],V1, [Result|Others]) :-
(ground(V1),
indep([[VO,Rest], [VO,0thers], [Rest,Result], [Result,Others]]) ->
multiply(V1,V0,Result) & mmultiply(Rest,V1,0thers)
; multiply(V1,V0,Result), mmultiply(Rest,V1,0thers)).

multiply ([1,_,[1).
multiply ([VO|Rest], V1, [Result|Others]) :-
(ground(V1),
indep([[VO,Rest], [VO,0thers], [Rest,Result], [Result,Others]]) ->
vmul (VO,V1,Result) & multiply(Rest,V1,0thers)
; vmul (VO,V1,Result), multiply(Rest,V1,0thers)).

Figure 5.7: Parallel mmatrix

sider the case in which no information at all is provided by the user regarding
calling patterns, beyond the exported predicate information present in the mod-
ule declaration. In this case the analyzer must in principle assume no knowledge
regarding the instantiation state of the arguments at the module entry points.

Figure 5.7 contains the result of automatic parallelization under these assump-
tions. if-then-elses are written (cond -> then ; else),i.e., using standard
Prolog syntax. The & signs between goals indicate that they can be executed in
parallel. The predicate vmul/3 does not appear in Figure 5.7 because automatic
parallelization has not detected any profitable parallelism in it (due to granularity
control) and its code remains the same as in the original program.

It is clear from Figure 5.7 that a good number of run-time tests have been
introduced in the parallelization process. These tests are necessary to deter-
mine independence at run-time, given that nothing is known about the input
arguments. If the tests hold the parallel code is executed. Otherwise the origi-
nal sequential code is executed. As usual, ground(X) succeeds if X contains no
variables. indep(X,Y) succeeds if X and Y have no variables in common. For con-
ciseness and efficiency, a series of tests indep(X1,X2), ..., indep(Xn-1,Xn) is
written as indep([[X1,X2], ..., [Xn-1,Xnl]).
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Figure 5.8: Program Annotation and Abstract Multiple Specialization

Even though groundness and independence tests are executed by efficient
builtin predicates in the &-Prolog system, these tests may still cause considerable
overhead in run-time performance, to the point of not even knowing at first sight
if the parallelized program will offer speedup, i.e., if it will run faster than the
sequential one. Our purpose is to study whether multiple specialization can be

used to reduce the run-time test overhead and to increase speedups.

5.6 Multiple Specialization in the &-Prolog

Compiler

Figure 5.8 (picture on the left) presents the role of abstract multiple specialization
in the &-Prolog system. As stated in the previous section, automatic paralleliza-
tion may introduce run-time tests and conditionals if the information available
does not allow determining the dependence/independence of literals statically.
As mentioned before, it is this checking overhead that the multiple specializa-

tion which has been added to the &-Prolog compiler and is the subject of our
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performance study is aimed at reducing. Note that because of the way the par-
allelization process is performed, if the same abstract domain is used to provide
information to both the parallelization and specialization phases, none of the
run-time tests introduced is superfluous and thus none of them can be eliminated

by the specializer unless multiple specialization is performed.

Even though not depicted in Figure 5.8, analysis information is not directly
available at all program points after automatic parallelization, because the process
modifies certain parts of the program originally analyzed. However, the &-Prolog
system uses incremental analysis techniques to efficiently obtain updated analysis

information from the one generated for the original program (see Chapter 2).

Conceptually, the process of abstract multiple specialization is composed of
five steps, which are shown in Figure 5.8 (picture on the right). In the first step
(simplify) the program optimizations based on abstract execution are performed
whenever possible. This saves having to optimize the different versions of a
predicate when the optimization is applicable to all versions. Any optimization
that is common to all versions of a predicate is performed at this stage. The
output is a monovariant abstractly specialized program. This is also the final
program if multiple specialization is not performed. The remaining four steps are

related to multiple specialization.

In the second step (detect optimizations) information from the multi-variant
abstract interpretation is used to detect (but not to perform) the optimizations
allowed in each of the (possibly) multiple versions generated for each predicate
during analysis. Note that only one step of analysis is required in our system
in order to both compute the set of or-records for each predicate and the opti-
mizations allowed for each one of them. This is only possible if we can identify
the abstract substitutions for the different or-records at each program point. In
our analyzer this is done by just storing the or-record identifiers along with each
substitution generated by polyvariant analysis. Even though the addition of this
identifier to abstract substitutions may seem an overhead, they will be used as
detailed dependencies while computing the analysis graph. This will allow anal-
ysis to be more efficient, as studied in Chapter 3, i.e., to converge faster to a
fixpoint, and to be incremental (see Chapter 2).

Note that the source for the multiply specialized program has not been gener-
ated yet (this will be done in the fourth step, generate code) but rather the code
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generated in the first step is used, considering several abstract substitutions for
each program point instead of their least upper bound, as is done in the first step.
The output of this step is the set of literals that become abstractly executable
(and their value) in each version of a predicate due to multiple specialization.
Note that these literals are not abstractly executable without multiple specializa-
tion, otherwise the optimization would have already been performed in the first
step.

The third step (minimize) is concerned with reducing the size of the multiply
specialized program as much as possible, while maintaining all possible optimiza-
tions and without the need for introducing run-time tests to select among different
versions of a predicate. A detailed presentation of the algorithm used in this step
and its evaluation is the subject of [PH95].

In the fourth step (generate code) the source code of the minimal multiply
specialized program is generated. The result of the minimization algorithm in
the previous step indicates the number of implementations needed for each pred-
icate. Each of them receives a unique name. Also, literals must also be renamed

appropriately for a predicate with several implementations.

In the fifth step (optimize code), the particular optimizations associated with
each implementation of a predicate are performed. Other simple program opti-
mizations like eliminating literals in a clause to the right of a literal abstractly
executable to false, eliminating a literal which is abstractly executable to true
from the clause it belongs instead of introducing the builtin true/1, dead code
elimination, etc. are also performed in this step.

In the implementation, for the sake of efficiency, the first and second steps,
and the fourth and fifth are performed in one pass (this is marked in Figure 5.8
by dashed squares), thus reducing to two the number of passes through the source
code. The third step is not performed on source code but rather on a synthetic
representation of sets of optimizations and versions. The core of the multiple
specialization technique (steps minimize and generate code) is independent of the
actual optimizations being performed.

The abstract specializer is parametric with respect to the abstract domain
used. Currently, the specializer can work with all the abstract domains im-
plemented in the analyzer in the &-Prolog system. In order to augment

the specializer to use the information provided by a new abstract domain
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Domain | T'S,(gr(X1)) | FF,(g9r(X1)) | TSa(ind(X1)) | FFa(ind(X1))
sharing O N O N
sh+fr O S ) S
asub O N O N

Table 5.2: Optimality of Different Domains

(Dy), correct Ars(B,D,)® and App(B, D,) sets must be provided to the an-
alyzer for each builtin predicate B whose optimization is of interest. Alterna-
tively, and for efficiency issues, the specializer allows replacing the conditions
in Definition 5.2. 5.2.13 with specialized ones because in I\ € Arg(B, D,) :
call_to_entry(L, B, Dy, A\) U X = )\ all values are known before specialization
time except for A which will be computed by analysis. I.e., conditions can be
partially evaluated with respect to D,, B and a set of X, as they are known in
advance.

Table 5.2 shows the accuracy of a number of abstract domains (sharing [JL92,
MH92]|, sharing+freeness (sh+fr) [MH91], and asub [Son86, CDY91]) present in
the &-Prolog system with respect to the run-time tests (i.e., ground/1, indep/1).
For the three of them the sets T'S, and F'F, are computable and we can take
Ars = Mc(TS.(B, D,)) and Apr = Mc(FF,(B,D,)). O stands for optimal,
S stands for approximate, and N stands for none, i.e. FF,(B,D,) = {L}. The
three of them are optimal for abstractly executing both types of tests to true.
However, only sharing+freeness (sh-+fr) allows abstractly executing these tests

to false, even though not in an optimal way.

Example 5.6.1 The resulting program after abstract multiple specialization is
performed is shown in Figure 5.9. The program generated in our implementation
is equivalent to the one presented except that internal names are used for special-
ized versions to avoid clashes with other user defined predicates. Two versions
have been generated for the predicate mmultiply/3 and four for the predicate
multiply/3. They all have unique names, and literals have been renamed appro-
priately to avoid having to use run-time tests for deciding the right version to

use. As in Figure 5.7, the predicate vmul/8 is not presented in the figure because

5See Section 5.2.
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mmultiply ([1,_,[]).
mmultiply ([VO|Rest],V1, [Result|Others]) :-
(ground(V1),
indep([[VO,Rest], [VO,0thers], [Rest,Result], [Result,Others]]) ->
multiply1(V1,V0,Result) & mmultiplyl(Rest,V1,0thers)
; multiply2(V1,V0,Result), mmultiply(Rest,V1,0thers)).
mmultiply1([1,_,[1).
mmultiply1([VO|Rest],V1, [Result|Others]) :-
(indep([[VO,Rest], [VO,0thers], [Rest,Result], [Result,Others]]) ->
multiply1(V1,V0,Result) & mmultiplyl(Rest,V1,0thers)
; multiply1(V1,V0,Result), mmultiplyl(Rest,V1,0thers)).

multiply1([1,_,[]1).
multiplyl([VO|Rest],V1, [Result|Others]) :-
(ground (V1), indep([[Result,Others]]) ->
vmul (VO,V1,Result) & multiply3(Rest,V1,0thers)
; vmul (VO,V1,Result), multiplyl(Rest,V1,0thers)).
multiply2([1,_,[]1).
multiply2([VO|Rest],V1, [Result|Others]) :-
(ground (V1) ,
indep([[VO,Rest], [VO,0thers], [Rest,Result], [Result,Others]]) ->
vmul(VO,V1,Result) & multiply4(Rest,V1,0thers)
; vmul(VO,V1,Result), multiply2(Rest,V1,0thers)).
multiply3([1,_,[]).
multiply3([VO|Rest],V1, [Result|Others]) :-
(indep([[Result,Others]]) ->
vmul(VO,V1,Result) & multiply3(Rest,V1,0thers)
; vmul(VO,V1,Result), multiply3(Rest,V1,0thers)).
multiply4([1,_,[1).
multiply4([VO|Rest],V1, [Result|Others]) :-
(indep([[VO,Rest], [VO,0thers], [Rest,Result], [Result,Others]]) ->
vmul (VO,V1,Result) & multiply4(Rest,V1,0thers)
; vmul (VO,V1,Result), multiply4(Rest,V1,0thers)).

Figure 5.9: Specialized mmatrix

its code is identical to the one in the original program in Figure 5.6 (and the par-

allelized program). Only one version has been generated for this predicate even

128



Figure 5.10: Call Graph of the Specialized Program

though multi-variant abstract interpretation generated eight different variants
for it. As no further optimization is possible by implementing several versions
of vmul/3, the minimization algorithm has collapsed all the different versions of

this predicate into one.

It is important to mention that abstract multiple specialization is able to au-
tomatically detect and extract some invariants in recursive loops: once a certain
run-time test has succeeded it does not need to be checked in the following recur-
sive calls [GH91]. Figure 5.10 shows the call graph of the specialized program of
Figure 5.9. mm stands for mmultiply and m for multiply. Edges are labeled with
the number of tests which are avoided in each call to the corresponding version
with respect to the non specialized program. For example, g+3i means that each
execution of this specialized version avoids a groundness and three independence
tests. It can be seen in the figure that once the groundness test in any of mm, m1,
or m2 succeeds, it is detected as an invariant, and the more optimized versions

mm1, m3, and m4 respectively will be used in all remaining iterations.

5.7 Experimental Results

In this section we present a series of experimental results. The primary aim of
these experiments is to assess whether performing abstract multiple specialization
for improving automatically parallelized programs is profitable or not. This as-
sessment will be realized by studying some of the cost/benefit tradeoffs involved

in multiple specialization, in terms of time and space. Even though the results
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have been obtained in the context of a particular implementation and type of
optimizations, we believe that it is possible to derive some conclusions from the
results regarding the cost and benefits of multiple specialization in general.

The benchmarks considered have been automatically parallelized using the
mel [MH90b| heuristic algorithm for the generation of parallel expressions and
the sharing + freeness abstract domain [MH91] to introduce as few run-time
tests as possible. Such combination of techniques has been experimentally shown
[BGH94b] to be capable of effectively parallelizing logic programs with quite rea-
sonable run-time overhead for checking independence, producing useful speedups
in parallel execution. However, in those experiments the availability of a reason-
able description of the instantiation state of the arguments of exported predicates

(i.e., predicates accessible from outside the module being analyzed) was assumed.

In the current set of experiments, as in the experiment for local change in
Chapter 2, we study what is a very unfavorable situation for automatic paral-
lelization: the case in which no information is provided to the analyzer regarding
the possible input values. This situation is interesting in that it appears when
modules written by naive users are compiled in isolation. In this case the analy-
sis has to be performed with only the entry points to the programs given in the
module declarations as input data regarding external call patterns. Since as a
result of this the analyzer will sometimes have incomplete information, a large
number of run-time tests will in some cases be included in the resulting programs,
which are then potential targets for multiple specialization. The relatively wide
set of benchmarks considered is the subset of the benchmarks used in Chapters 2
and 3 for (incremental) program analysis® which cannot be parallelized without
the need of run-time tests in the unfavorable case presented above. The other
benchmarks (fib, gsortapp, tak, and witt) are parallelized without run-time tests

even in this case and are therefore not studied in this work.

5.7.1 The Cost of Multiple Specialization

In order to assess the cost of specialization in terms of compilation time, Table 5.3

compares the analysis, parallelization, and specialization times for each bench-

6 And previously in [BGH94b] for automatic parallelization.
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Bench Ana | Par | ReA | Spec | Total | SD

aiakl 1.40 | 1.59| 0.36 | 0.06 3.41 | 1.14
ann 3.24 | 211 2.01| 0.90 8.26 | 1.54
bid 034 020 0.24| 0.23 1.00 | 1.88
boyer 097 027 037 | 0.32 1.94 | 1.56
browse 0.17 | 0.11 | 0.26 | 0.25 0.78 | 2.82
deriv 0.18| 0.20| 0.42| 0.13 0.93 | 2.46

hanoiapp | 0.28 | 0.22 | 0.14 | 0.04 0.69 | 1.37
mmatrix | 0.13 | 0.08 | 0.17 | 0.08 0.45 | 2.20

occur 0.12| 0.06 | 0.18 | 0.08 0.43 | 2.38
progeom | 0.09 | 0.06 | 0.03| 0.05 0.22 | 1.53
gplan 0.74 | 123 | 0.15| 0.46 2.58 | 1.31
query 0.04 | 0.04| 0.04| 0.06 0.19 | 2.26
read 726 239 | 0.02| 0.63| 10.31 | 1.07

serialize 0.26 | 0.18 | 0.03 | 0.06 0.52 | 1.19
warplan 1.21 | 021 0.11| 0.26 1.79 ] 1.26
zebra 227 1725 2.02| 0.06 | 21.59 | 1.11

Overall | 1.23

Table 5.3: Specialization and Parallelization Times (Using No Call Pattern Info)

mark. We argue that it is reasonable to compare these times as the programs
that accomplish those tasks are implemented using the same technology, are inte-
grated in the same system, they share many data structures, and work with the
same input program (or slightly modified versions of it). Times are in seconds
on a Sparc 1000. Ana is the time taken to analyze the original program, Par is
the parallelization time, ReA is the reanalysis time required to update analysis
information after parallelization in an incremental way, using the algorithm for
local change described in Chapter 2, and Spec is the multiple specialization time
which includes computing the possible optimizations in each version using the
notion of abstract executability, minimizing the number of versions, and materi-
alizing the new program in which the new versions are optimized (using source

to source transformations). The time required for automatic parallelization is
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Bench | Pr | Max | min | Ind | M(%) | m(%) | I(%) | Ratio
aiakl 9 4 0 0 44 0 0 1.44
ann 7 70 29 | 16 90 37 21 1.39
bid 22 39 9 4 177 40 18 1.97
boyer 27 o7 9 7 211 33 26 2.33
browse 9 19 15 7 211 166 78 1.17
deriv 5 5 5 1 100 100 20 1.00
hanoiapp 3 10 2 1 333 66 33 2.60
mmatrix 3 11 4 0 366 133 0 2.00
occur ) 15 7 3 300 140 60 1.67
progeom | 10 5 0 0 50 0 0 1.50
gplan 48 17 6 4 35 12 8 1.20
query 6 1 0 0 16 0 0 1.17
read 25 52 0 0 208 0 3.08
serialize 6 3 0 0 50 0 0 1.50
warplan 37 130 421 29 351 113 78 2.11
zebra 7 10 0 0 142 0 0 2.43
Overall 147 43 24 1.73

Relative Overall 208 80 33 1.72

Table 5.4: Number of Versions

the sum of Ana and Par. The cost of multiple specialization should be viewed
as ReA plus Spec as specialization requires analysis information to be up to
date. Total gives the total time required for the whole process. The last column,
SD is the slow-down introduced by multiple specialization in the parallelization
process and is computed as Total/(Ana+Par). Finally, Overall gives the slow-
down obtained by taking for each column the sum of times for all benchmarks.
The results can be interpreted as indicating that performing multiple specializa-
tion after parallelization slows down the compilation process over all benchmarks
approximately by a factor of 1.23.

It appears that the time required for multiple specialization, at least in this
application, is reasonable. However, a potentially greater concern in multiple spe-

cialization than compilation time can be the increase in program size. Table 5.4
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shows a series of measurements relevant to this issue. Pred is the number of
predicates in the original program. Max is the number of additional (versions
of) predicates that would be introduced if the minimization algorithm were not
applied (when adding it to Pred this is also the number of versions that the
analyzer implicitly uses internally during analysis). Min is the number of ad-
ditional versions if the minimization algorithm is applied. As mentioned before,
sometimes, in order to achieve an optimization some additional versions have to
be created just to create a “path” to another specialized version, i.e. to make
the program feasible (using the terminology of Section 5.2). The impact of this
is measured by Ind which represents the number of such “Indirect” versions in
the minimized program that have been included during phase 2 of the algorithm.
L.e., this is the number of versions which have the same set of optimizations as

an already existing version for that predicate.

We observe that for some benchmarks Min is 0. This means that multiple
specialization has not been able to optimize the benchmark any further. That is,
the final program equals the original program. However, note that if we did not
minimize the number of versions the program size would be increased even though
no additional optimization is achieved. M(%) is computed as 272 x 100. M(%)
and I(%) are computed similarly but replacing Max by Min and Ind in the
formula respectively. Finally Ratio is the relation between the sizes (in number of
predicates) of the multiply specialized programs with and without minimization.
The last rows of Table 5.4 show two different overall figures. The first is computed
considering all the benchmark programs and the second considering only the
programs in which the specialization method has obtained some optimization

(Min> 0).

According to the overall figures, the specialized program has 43% additional
versions with respect to the original program. However, this average greatly
depends on the number of possible optimization points in the original program
(in our case run-time tests) and cannot be taken as a general result. Of much
more relevance are the ratios between M(%) and N(%), and between I(%)
and M(%), which are in some ways independent of the number of possible op-
timizations in the program. This is supported by the relative independence of
the ratios from the benchmarks. The first ratio measures the effectiveness of the

minimization algorithm. This ratio is 3.41 or 2.6 using global or relative averages
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Bench Orig | Par | Spec | P/O | S/O |S/P

alakl 3317 | 4667 | 4386 | 1.41 | 1.32| 0.94
ann 43368 | 55402 | 66776 | 1.28 | 1.54 | 1.21
bid 10242 | 14159 | 17031 | 1.38 | 1.66 | 1.20

boyer 37340 | 38273 | 43030 | 1.02 | 1.15| 1.12
browse 3460 | 5977 | 11013 | 1.73 | 3.18 | 1.84
deriv 2747 | 5957 | 10299 | 2.17 | 3.75| 1.73
hanoiapp | 1115 | 2120 | 3014 | 1.90 | 2.70 | 1.42
mmatrix 1257 | 3048 | 5802 | 2.42 | 4.62| 1.90
occur 2093 | 3270 | 6377 | 1.56 | 3.05| 1.95
progeom | 3510 | 4334 | 4174 | 1.23 | 1.19| 0.96
gplan 35155 | 36679 | 38501 | 1.04 | 1.10 | 1.05
query 7313 | 8816 | 8563 | 1.21 | 1.17 | 0.97
read 23147 | 23718 | 23556 | 1.02 | 1.02 | 0.99
serialize 2994 | 3749 | 3622 | 1.25| 1.21 | 0.97
warplan | 22788 | 23047 | 19922 | 1.01 | 0.87 | 0.86
zebra 3645 | 4912 | 4842 | 1.35| 1.33| 0.99

Overall | 1.17 | 1.33 | 1.14
Relative Overall | 1.18 | 1.39 | 1.18

Table 5.5: Size of Programs

respectively. I.e., the minimizing algorithm is able to reduce to a third the num-
ber of additional versions needed by multiple specialization. The second ratio
represents how many of the additional versions are indirect. It is 56% or 41%
(Global or Relative). This means that half of the additional versions are due to
indirect optimizations. Another way to look at this result is as meaning that on
the average there is one intermediate, indirect predicate between an originating
call to an optimized, multiply specialized predicate and the actual predicate. It
seems that this can in many cases be an acceptable cost in return for no run-time

overhead in version selection.

Another pragmatic and very significant way of comparing the cost in program

size incurred by multiple specialization is by comparing the size of the compiled
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programs (in bytecode quick-load format) before and after multiple specializa-
tion. For reference, we also compare to the size of the byte code for the original
program. Table 5.5 presents the size in bytes of the original (Orig), parallelized
(Par), and specialized (Spec) programs in bytes for &-Prolog . P /O gives the
increase in size due to parallelization, and S/O the increase due to the compo-
sition of specialization and parallelization with respect to the original program.
S/P presents the cost in space incurred by multiple specialization alone. As in
Table 5.4, two cases have been considered for computing the overall space cost
of multiple specialization: Overall, in which all benchmarks are considered, and
Relative Overall in which only those benchmarks which benefit from multiple
specialization are considered. The results can be interpreted as indicating that,
in our system, multiple specialization increases program size by a ratio of 1.14 or
1.18 (relative). This increase is very similar to that introduced by parallelization
(1.17 — 1.18) in the set of benchmarks considered. Finally, when multiple spe-
cialization and parallelization are composed, the overall increase in program size
is around 1/3 even in the unfavorable case studied of not giving any information
to the analyzer regarding the instantiations of the input arguments of exported
predicates.

Note that the cost in program size for multiple specialization presented in
Table 5.5 is better than that presented in Table 5.4. There are several reasons
for this. First, the specializer performs some degree of dead-code elimination.
Second, abstract executability allows in many cases performing source to source
transformations which shorten the program, e.g., by simplifying a conditional,
eliminating one of the branches in an if-then—else, etc. Third, because the number
of additional versions is not necessarily a good estimate of program size as this

will greatly depend on the size of the predicates which are being replicated.

5.7.2 Benefits of Multiple Specialization

Having discussed the cost of multiple specialization in automatic parallelization
both in terms of time and space, we now measure experimentally the benefits
introduced by multiple specialization.

The addition of run-time tests and conditionals in parallelized programs will
introduce some overhead which can be seen as an additional amount of work to

be performed at run-time. On the other hand, this additional work will allow
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Bench Orig/Par | Orig/Spec | Par/Spec | Improv(%)
ann 0.68 0.69 1.01 4
bid 0.63 0.71 1.11 28
boyer 0.82 0.85 1.03 18
browse 0.64 53.54 84.03 —
brow_nf 0.86 0.89 1.04 27
deriv 0.19 0.21 1.11 12
hanoiapp 0.60 0.75 1.26 51
mmatrix 0.43 0.86 2.02 88
occur 0.84 1.01 1.21 107
gplan 0.97 0.99 1.02 70
warplan 1.00 1.00 1.00 —

Table 5.6: Sequential Performance

performing different tasks at the same time, i.e., in parallel. If several workers
(processors) are available, the overall execution time of the parallelized program
will hopefully be less than that of original program. Table 5.6 shows the slow-
downs with respect to the original program of the parallel (Par) and specialized
(Spec) programs. The main contribution of multiple specialization in program
parallelization will be in reducing the overhead of run-time tests and conditionals
further, i.e., by getting a high value for Orig/Spec. This value will be 1 when the
overhead of run-time tests has been completely eliminated and will not be much
higher than 1 if the original program was optimally written, i.e., by an experienced
programmer. Note that programs which are parallelized without any run-time
tests already have 1 as Orig/Par. Thus, they are not considered in Table 5.6 as
they contain no test which can be eliminated by multiple specialization.

The Par/Spec column provides the sequential speedup achieved due to mul-
tiple specialization. It is always greater than 1, i.e., no slow-downs are introduced.
Speedups range from a small 1.01 for ann to 2.02 for mmatrix.

In the case of browse, the original benchmark contains the clause:

p_match([P|Patterns],D) :-
(match(D,P), fail; true),
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p_match(Patterns, D).

where match (D,P) produces no side-effects. The specializer transforms this clause

into:

p_match([P|Patterns],D) :-
p_match(Patterns, D).

and all the work performed in the calls to match/2 is eliminated from the exe-
cution. In order to isolate the effects of multiple specialization from these opti-
mizations (which can be performed without generating different versions of the
predicate) we have studied instead a modified version of the benchmark, brow_nf,
which is obtained by removing the call to fail after match(D,P) in the original

benchmark and eliminating the clause
property([],_X,_Y) :- fail.

which is also eliminated automatically by the specializer.

Spec—Par
1—Par

100 and gives an idea of the degree to which multiple specialization in the &-

Finally, column Improv(%) is computed for each benchmark as

Prolog system has accomplished its primary task, i.e., eliminating the overhead
introduced by the run-time tests and conditionals as much as possible. Note that
this figure makes no sense for browse.pl as the improvement is much beyond the
overhead of run-time tests, and is thus not presented. This figure is not given for
warplan either since the overhead introduced by the run-time tests is insignificant.

Another interesting question is how the improvement in sequential execution
time, i.e., the reduction of total work to be performed, affects performance in
parallel execution, which is of course the ultimate objective of the parallelizing
compiler. With this aim we compare the execution speed of the original program
with the parallelized (P) and specialized (S) programs and show the results in
Table 5.7. The improvement in execution speed, P /S, is given by column I. This
is done for three different cases. In the first one five processors are available and
dedicated to the execution of the program. In the second, ten processors are used,
and in the third an unlimited number of processor can be used, i.e., it gives an
estimate of the best possible parallel performance. These three cases are distin-

guished by the subindex 5, 19 and ., respectively. Additionally, in the columns
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Bench | Ps| S;| I;| Py| Sw| Lo| Py Sup | I
ann 2.40 | 2.39 | 1.00 | 3.34 | 3.59 | 1.07 || 4.30s3 | 4.33s | 1.01
bid 1.13]1.27| 112 1.13 | 1.27 | 1.12 || 1.13¢ | 1.27¢ | 1.13
boyer | 0.82|0.85|1.04 | 0.82 | 0.85 | 1.04 | 0.82,| 0.85; | 1.03
brow.nf | 1.85 | 1.89 | 1.02 || 2.03 | 2.07 | 1.02 || 2.12y54 | 2.17130 | 1.02
deriv. | 0.79 | 0.86 | 1.09 || 1.20 | 1.24 | 1.03 || 1.36175 | 1.3816 | 1.02
hanoi | 0.89 | 1.18 | 1.33 | 0.89 | 1.18 | 1.33 || 0.823, | 1.104 | 1.33
mmat | 1.94 | 3.94 | 2.03 || 3.56 | 7.33 | 2.06 || 5.034; | 15.0156 | 2.98
occur | 3.96 | 4.75 | 1.20 || 6.34 | 8.84 | 1.39 || 9.8534 | 28.29,0s | 2.87
qplan | 1.311.35|1.03 | 1.31 | 1.35 | 1.03 | 1.31,| 1.35;|1.03
warplan | 1.07 | 1.07 | 1.00 || 1.07 | 1.07 | 1.00 || 1.075 | 1.07s | 1.00

Table 5.7: Parallel Performance

P, and 4,, an upper bound on the number of processor required to achieve
such optimal speed for each benchmark is given as a subindex. These speedup
figures have been obtained with the IDRA simulation tool [FCH92]. This tool
allows obtaining speedup results which have been shown to match closely the
actual speedups obtained in the &-Prolog system for the number of processors
available for comparison. It is also believed that the results obtained are good
approximations of the best possible parallel execution for larger numbers of pro-
cessors [FCH92]. This approach allows concentrating on the available parallelism,
without the limitations imposed by a fixed number of physical processors, a par-
ticular scheduling, bus bandwidth, etc. IDRA takes as input an execution trace
file generated from the execution of a parallelized program on one or more proces-
sors and the time taken by the sequential program, and computes the achievable
speedup for any number of processors. The trace files list the events occurred
during the execution of the parallel program, such as a parallel goal being started
or finished, and the times at which the events occurred. Since &-Prolog normally
generates all possible parallel tasks in a parallel program, regardless of the num-
ber of processors in the system, information is gathered for all possible goals that
would be executed in parallel. Using this data, IDRA builds a task dependency
graph whose edges are annotated with the exact execution times. The possible

actual execution graphs (which could be obtained if more processors were avail-
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able) are constructed from this data and their total execution times compared to
the sequential time, thus making quite accurate estimations of (ideal — in the

sense that some low level overheads are not taken into account) speedups.

5.8 Discussion

The experimental results presented in Section 5.7 allow us to conclude that, at
least in the application considered, abstract multiple specialization is a useful
technique: its costs are reasonable and the benefits of sufficient significance. Sum-
marizing the results in terms of compilation time, the additional time required for
specialization is about 1/4 of the parallelization time. Regarding the size of the
specialized program, it is about 1/6 larger than the parallelized one and about
1/3 larger than the original one. Regarding the actual benefits of multiple spe-
cialization in terms of speedup, it varies greatly from one benchmark to another.
Thus, it is not easy to give a factor which summarizes the achievable speedup,
but many programs do obtain useful speedups. Note also that if our primary aim
when performing multiple specialization is, as in the experiments, to reduce the
overhead introduced by independence run-time tests, in the relatively frequent
case in which automatic parallelization does not require the introduction of any
run-time test, specialization can be easily turned off and only applied to those
cases which are problematic to automatic parallelization.

If the particular optimizations being considered are appropriate, multiple spe-
cialization always generates programs which are, at least theoretically, more op-
timized than the original. This is confirmed by column Par/Spec of Table 5.6,
which for all benchmarks presents values greater than 1. Leaving the atypical
case of browse.pl aside, the results show that the sequential improvement is low
for some benchmarks (ann, gplan, warplan), significant in others (bid, hanoi,
occur), and very important in others (mmatrix). This program (Figure 5.6), is
a good candidate for parallelization and its execution time decreases nearly lin-
early with the number of processors. Note, however, that if the user provides
enough information regarding the input, this program would be parallelized in
the &-Prolog compiler without any run-time tests. However, if no information is
provided by the user (the case studied) many such tests are generated and perfor-

mance decreases. The reason for obtaining such improved speedups for mmatrix
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when multiple specialization is used is that it is a recursive program in which
specialization automatically detects and extracts an invariant, as explained in
Example 5.6.1.

Another important conclusion which the experiments seem to bear is that the
speedup achieved by multiple specialization generally increases with the number
of processors, thus making multiple specialization quite relevant in the context of
a parallelizing compiler. The reason for this is that, in general, specialization re-
duces the overhead of parallelization but does not deeply transform the structure
of tasks to be performed: the length of some tasks will be shortened due to the
elimination of run-time tests. This is the case for most benchmarks studied. The
main exception is deriv.pl, which is a program for symbolic differentiation and
also a good candidate for parallelization. However, the improvement obtained
with specialization is 1.11 for one processor and it decreases to a low 1.02 with
130 processors. This shows that not all programs with significant parallelism are
good candidates for specialization.

Another interesting case is occur.pl. It counts the number of occurrences
of an element in a list. Improvement in the sequential execution is 1.21. This
improvement increases with the number of processors. Additionally, the special-
ized program keeps on accelerating up to 108 processors while the non specialized

does not speed up after 34 processors.

5.9 Chapter Conclusions and Future Work

The topic of multiple specialization of logic programs has received considerable
theoretical attention and also many of the existing abstract interpreters imple-
ment different degrees of polyvariance for improving the accuracy of the analysis.
This is in contrast with the fact that most existing optimization systems which
use analysis information are monovariant. We have proposed a simple framework
capable of exploiting the multivariance performed during analysis in order to ob-
tain multiple specialization without the need for run-time tests in order to select
among different versions of a predicate. This framework is potentially capable of
generating an expanded version of the program which contains as many versions
of a predicate as calling patterns the analysis has considered for it. However, the

program is only expanded if such expansion allows further optimizations, thanks
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to the use of a minimizing algorithm. As in the case of [Win92|, the framework
we propose has the two important features of being minimal, i.e., eliminating any
of the versions implemented (by collapsing them into other versions) would imply
losing some of the optimizations allowed in the expanded program, and of maxi-
mal optimization, i.e., no more optimizations are possible by implementing more
of the versions generated by analysis. The multiple specialization framework we
propose is efficient, as shown by the experimental results, because the core of
the process, i.e., the minimization algorithm, does not require the expanded pro-
gram (programyg in the terminology of Section 5.2) to be materialized. Instead it
works with a synthetic representation of the program. To this end, each of the
individual analysis versions is annotated with the optimizations which could be
performed on it in the expanded program. It is only after minimization that the
program is materialized.

Another important feature of the framework we propose is that there is no
restriction on the nature of the optimizations considered and the multiple spe-
cialization algorithm is independent from it. However, we have also discussed a
relevant class of optimizations: those based on abstract executability, a concept
which we have formalized in this chapter. We refer to this combination of multiple
specialization and abstract executability as abstract multiple specialization.

We argue that our experimental results in the context of a parallelizing com-
piler are encouraging and show that multiple specialization has a reasonable cost
both in compilation time and final program size. Also, the results provide some
evidence that the resulting programs can show useful speedups in actual execu-
tion time and that thus multiple specialization is indeed a relevant technique in
practice.

It remains as future work to improve the presented multiple specialization
system in several directions. One of them would be the extension of the imple-
mentation in order to perform other kinds of optimizations both within program
parallelization and beyond this application. Obviously, the specialization system
should be augmented in order to be able to detect and materialize the new op-
timizations. Another direction would be to devise and experiment with different
minimization criteria: even though the programs generated by the specializer
are minimal to allow all possible optimizations, it would sometimes be useful to

obtain smaller programs even if some of the optimizations are lost.

141



142



Chapter 6

Towards Partial Evaluation based
on Generic Abstract

Interpretation

Information generated by generic abstract interpreters has long been used to per-
form program specialization. Additionally, and as we have seen in Chapter 5, if
the abstract interpreter generates a multivariant analysis, it is also possible to
perform multiple specialization by considering the global and—or tree generated
by analysis. Information about values of variables is propagated by simulat-
ing program execution and performing fixpoint computations for recursive calls.
In contrast, traditional specializers mainly use unfolding for propagating values
of variables. However, the program transformations induced by unfolding may
lead to important optimizations which are not directly achievable in the existing
frameworks for multiple specialization based on abstract interpretation. Our aim
in this chapter is to devise a specialization framework which extends that pre-
sented in Chapter 5 by integrating the better information propagation of abstract
interpretation with the powerful program transformations performed by partial
evaluation and which can be implemented with small modifications of existing
generic abstract interpreters. With this aim, we will relate the and—or graphs
used in abstract interpretation with traditional concepts in partial evaluation and
sketch how the sophisticated techniques for controlling partial evaluation which
are the result of an important amount of work can be adapted to the proposed

specialization framework.
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6.1 Introduction

Partial evaluation [JGS93, DGT96] specializes programs for known values of the
input. Partial evaluation of logic programs has received considerable attention
[Neu90, LS91, Sah93, Gal93, Leu97| and several algorithms parameterized by
different control strategies have been proposed which produce useful partial eval-
uations of programs. Regarding the correctness of such transformations, two con-
ditions, defined on the set of atoms to be partially evaluated, have been identified
which ensure correctness of the transformation: “closedness” and “independence”
[LS91].

From a practical point of view, effectiveness, that is, finding suitable con-
trol strategies which provide an appropriate level of specialization while ensuring
termination, is a crucial problem which has also received considerable attention.
Much work has been devoted to the study of such control strategies in the context
of “on-line” partial evaluation of logic programs [MG95, LD97, LM96]. Usually,
control is divided into components: “local control,” which controls the unfolding
for a given atom, and “global control,” which ensures that the set of atoms for

which a partial evaluation is to be computed remains finite.

In most of the practical program specialization algorithms, the above men-
tioned control strategies use, to a greater or lesser degree, information gener-
ated by static program analysis. One of the most widely used techniques for
static analysis is abstract interpretation [CC77, CC92]. Some of the relations be-
tween abstract interpretation and partial evaluation have been identified before
[GCS88, GHI1, Gal92, CK93, PH95, LS96]. However, the role of analysis is so
fundamental that it can be asked whether partial evaluation could be achieved di-
rectly by a generic abstract interpretation system such as [Bru91, MH92, CV94].
With this question in mind, we present a method for generating a specialized pro-
gram directly from the output (an and—or graph) of a generic abstract interpreter,
in particular the PLATI system [MH89b, MH90a, MH92]. We then explore two
main questions which arise. Firstly, how much specialization can be performed
by an abstract interpreter, compared to partial evaluation? Secondly, how do the
traditional problems of local and global control appear when placed in the setting
of generic abstract interpretation? We conclude that although further study is

needed, there seem to be some practical and conceptual advantages in using an
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abstract interpreter to perform program specialization.

6.2 Goal-Dependent Abstract Interpretation

Goal dependent abstract interpretation takes as input a program P, a predi-
cate symbol' p (denoting the exported predicate), and, optionally, a restriction
of the run-time bindings of p expressed as an abstract substitution A. Such
an abstract interpretation computes a set of triples Analysis(P,p, A\, D,) =
{{p1, X§, A5), .o, (Pny AS, A2)} such that Vi = 1.n VO, € y(X§) if p;f. succeeds
in P with computed answer 6, then 6; € y(A{). Additionally, Vp;6; that occurs
in the concrete computation of pf s.t # € y(\) where p is the exported predicate
and A the description of the initial calls of p 3(p;, A%, A7) € Analysis(P,p, A, Dy)
s.t. p; = p; and 6 € y(\$). This condition is related to the closedness condition
[LS91] usually required in partial evaluation. As usual, L denotes the abstract
substitution such that y(L) = (). A tuple (p;, A%, L) indicates that all calls to
predicate p; with substitution 6 € ’y()\§) either fail or loop, i.e., they do not pro-
duce any success substitutions. An analysis is said to be multivariant on calls
if more than one triple (p, \{, A7), ..., (p, A5, A) m > 0 with Af # A¢ for some
i, 7 may be computed for the same predicate.? If analysis is multivariant on suc-
cesses, the triples in Analysis(P,p, A, D,) will be of the form (p;, A¢, S7) where
Si ={A,,---, A} with j > 0. Different analyses may be defined with different
levels of multivariance [VDCM93]. However, unless the analysis is multivariant
on calls, little specialization may be expected in general. We will limit the dis-
cussion to analyses (such as the original analysis algorithm in PLAI and those
presented in Chapters 2 and 3) which are multivariant on calls but not on suc-
cesses, though multivariant successes can also be captured by certain abstract
domains, as will be discussed in Section 6.5. In our case, in order to compute
Analysis(P,p, A\, D,), an and—or graph is constructed which encodes dependen-
cies among the different triples. Note that when several success substitutions
have been computed for the same or—node, the different substitutions have to be
summarized in a more general one (possibly losing accuracy) before propagating

!Extending the framework to sets of predicate symbols is trivial.
2If n = 0 then the corresponding predicate is not needed for solving any goal in the considered

class (p, A) and is thus dead-code and may be eliminated.
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Figure 6.1: And-or analysis graph

this success information. This is done by means of the least upper bound (lub)
operator. Finiteness of the and—or graph (and thus termination of analysis) is
achieved by considering abstract domains with certain characteristics (such as
being finite, or of finite height, or without infinite ascending chains) or by the use
of a widening operator [CCTT].

Example 6.2.1 Consider the simple example program below taken from
[Leu97]. Figure 6.1 depicts a possible result of analysis for the goal p(A) with A
unrestricted using the concrete domain as abstract domain.

p(X):- qX), r(X).
qa) .
r(a).
r(b).

We do not describe here how to build analysis and-or graphs. Details can be
found in [Bru91, MH90a, MH92| and in Chapter 2. As mentioned in Section 2.2,
the graph has two sorts of nodes: those which correspond to atoms (called or-
nodes) and those which correspond to clauses (called and-nodes). Or-nodes are
triples (p;, A, Af). For clarity, in the figures the atom is superscripted with A°

to the left and A® to the right of the atom respectively. For example, the or—
node (p(A), {},{A/a}) is depicted in the figure as Up(A){4/%}. And-nodes are
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pairs (Id, Subs) where Id is a unique identifier for the node and Subs represents
the head unifications of the clause the node refers to. In the figures, they are
represented as triangles and the head unifications are depicted to their right.
Finally, squares are used to represent the empty (true) atom. Or-nodes have
arcs to and—nodes which represent the clauses with which the atom (possibly)
unifies. Clearly, if an or-node has no children, the atom will fail. And-nodes
have arcs to or—nodes for the corresponding predicate p and call pattern \¢. If a
node (p, A% _) is already in the tree it becomes a recursive call and \® is obtained

by means of a fixpoint computation. O

6.3 Code Generation from an And—Or Graph

The information in Analysis(P,p, A, D,) has long been used for program opti-
mization. As seen in Chapter 5, multiple specialization allows generating several
versions pi,...,p, n > 1 for a predicate p in P. Then, we have to decide which
of p1,...,p, is appropriate for each call to p. One possibility is to use run-time
tests to decide which version to use. If analysis is multivariant on calls but
not on successes, another possibility, as done in Chapter 5 and [Win92] is to
generate code from AO(P,p, A\, D,) instead of Analysis(P,p, A, D,). The arcs in
AO(P,p, A\, D,) allow determining which p; to use at each call. Then each version
of a predicate receives a unique name and calls are renamed appropriately.
After introducing some notation we present an algorithm which generates a
logic program from an analysis and-or graph. This idea was already exploited
in [Win92] and has been introduced in detail in Chapter 5. A program P is
a sequence of clauses of the form H :- B where H is an atom and B is a
possibly empty conjunction of atoms. The sequence of clauses in a program
which define a predicate p is denoted by def(p). We denote by or(AO) the set of
or-nodes in an and—or graph AO. Given a node N, children(N) is the sequence
of nodes Ny :: ... :: N, n > 0 such that there is an arc from N to N’ in AO iff
N'" = N; for some 7 and V7,5 = 0,...,n N; is to the left of N; in AO iff i < j.
Note that children(N) may be applied both to or— and and—nodes. We assume
the existence of an injective function pred which given AO(P, p, \, D,) returns a
unique predicate name for each or-node in the graph and pred({p(¢), A\, \*)) = p
iff (p(t), A, A°) is a root node in the graph (to ensure that top-level — exported —
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predicate names are maintained).

Definition 6.3.1 [partial concretization] Given an abstract substitution A, a
substitution 6 is a partial concretization of A and is denoted 6 € part_conc()\) iff
Vo' € y(A) 30" s.t. 6" = 66".

part_conc(A) can be regarded as containing (part of) the definite information
about concrete bindings that the abstract substitution A captures. Note that dif-
ferent partial concretizations of an abstract substitution A with different accuracy
may be considered. For example if the abstract domain is a depth-k abstraction
and A = {X/f(f(Y))orX/f(a)}, a most accurate part_conc(A) is {X/f(Z)}.
Note also that VA € € part_cont()\) where € is the empty substitution.

Basically, the algorithm for code generation (Algorithm 6.3.2) given below
creates a different version for each different (abstract) call substitution A¢ to
the predicate p in the original program. This is easily done by associating a
version to each or—node. Note that if we always take the trivial substitution €
as part_conc(\) for any A (such as in Chapter 5) then such versions are identical
except that atoms in clause bodies are renamed to always call the appropriate
version.® The interest in doing the proposed multiple specialization is that the
new program may be subject to further optimizations which were not possible in
the original program. Additionally, in Algorithm 6.3.2 predicates whose success
substitution is L are directly defined as p(¢) : —fail, as it is known that they
produce no answers. Even if the success substitution for the predicate (or-node)
is not L, individual clauses for p whose success substitution is L (useless clauses)

are removed from the final program.

Algorithm 6.3.2 [Code Generation]
Given an analysis and—or graph AO(P,p, A\, D,) generated by analysis for a
program P and an atomic goal <— p with abstract substitution A € D, do:

e For each non-empty or-node N = (a(?), A%, \*) € or(AO(P,p, A\, D,)) gen-
erate a distinct predicate with name predy = pred({a(?), A%, A*)).

e Each predicate predy is defined by

— predy(t) = fail if NS = |

3The program obtained in this way is programg in the notation of Section 5.4.2.
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— (predy(t1) := 001 ... (predn(ty,) == b,)0, provided that

def(p) = p(ﬂ) i=bp ol p(%n) = by otherwise
e Let children(N) = (Idy,unifr) == ... (Idj,unif;) ... (Idy, unif,)
Let chzldren((ldz, U’I’Llf,>) = <a,’1 (fil), )\51, )\f1> D (aiki (fzk1)7 )\chl, )‘fk)

e Each body b is defined as

~ b = fail it A8, = L
— b; = (predil (Eil); e ,p’l”@d,'ki (zzkl))
where pred;; = pred({ai;(ti;), Af;, A;)) otherwise

e Each substitution 6; is defined as

—6;=c¢ if b = fail

- 0, = 0i1 “en 91-,% provided that
0:j € part_conc(Ay;) j =1...k otherwise

Note that in Algorithm 6.3.2 atoms are specialized w.r.t. answers rather
than calls as in traditional partial evaluation. This cannot be done for example
if the program contains calls to extra-logical predicates such as var/1. Other
more conservative algorithms can be used for such cases and for programs with
side-effects. Using Algorithm 6.3.2 it is sometimes possible to detect infinite
failures of predicates and replace predicate definitions and/or clause bodies by
fail, which is not possible in partial evaluation. Additionally, as mentioned
above, dead-code, i.e., clauses not used to solve the considered goal are removed.

Note that Algorithm 6.3.2 is an improvement over the code-generation phase
of Chapter 5 in that it allows applying non-trivial partial concretizations of the
abstract (success) substitutions. The program obtained by Algorithm 6.3.2 can
then be further optimized by applying the notion of abstract executability as
presented in Chapter 5.

Theorem 6.3.3 Let AO(P,p, \, D,) be an analysis and-or graph for a definite
program P and an atomic goal <— p with the abstract call substitution A € D,,.
Let P’ be the program obtained from AO(P,p, A\, D,) by Algorithm 6.3.2. Then
VO, s.t. 6. € v(\)
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i) pf, succeeds in P’ with computed answer 6, iff pf. succeeds in P with

computed answer 6,.
ii) if pf, finitely fails in P then pé, finitely fails in P’.

Thus, both computed answers and finite failures are preserved. However, the

specialized program may fail finitely while the original one loops (see 6.4.2).

6.4 And-Or Graphs Vs. SLD Trees

It is known [LS96] that the propagation of success information during partial
evaluation is not optimal compared to that potentially achievable by abstract

interpretation.

Example 6.4.1 Consider the program and goal of 6.2.1. The program ob-
tained by applying Algorithm 6.3.2 to the and—or graph in Figure 6.1 is:

pa):- q(a), r(a).
qa).
r(a).

Note that Algorithm 6.3.2 may perform some degree of specialization even if
no unfolding is performed. The information in AO(P, p, A, D,,) allows determining
that the call to r(X) will be performed with X=a and thus the second clause for r
can be eliminated. Such information can only be propagated in partial evaluation
by unfolding the atom q(X). O

Example 6.4.2 Consider again the goal and program of 6.2.1 to which a new
clause q(X) :- q(X). is added for predicate q. The and-or graph for the new
program is depicted in Figure 6.2. The program generated for this graph by
Algorithm 6.3.2 is the following:

p(a):- q(a), r(a).
qa).

q(a):- q(a).

r(a).
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Figure 6.2: Recursive And-or analysis graph

The fact that r(X) will only be called with X=a cannot be determined by any
finite unfolding rule. Note that the original program loops for the goal «+— p(b)

while the specialized one fails finitely. O

The two examples above show that and-or graphs allow a level of success
information propagation not possible in traditional partial evaluation, either be-
cause the unfolding rule is not aggressive enough ( 6.4.1) or because the required
unfolding would be infinite ( 6.4.2). This suggests the possible interest of inte-
grating full partial evaluation in an analysis/specialization framework based on
abstract interpretation.

In addition, the fact that such a framework can work uniformly with abstract
or concrete substitutions makes it more general than partial evaluation and may
allow performing optimizations not possible in the traditional approaches to par-
tial evaluation. For example, based on this idea, in Chapter 5, a framework for
“abstract specialization” has been presented in which abstract substitutions are
used to perform program optimizations. These optimizations use the notion of
“abstract executability,” which allows reducing calls to some (built-in) predicates
at compile-time to the values true or false, or to a set of unifications. Abstract
executability had already been introduced informally in [GH91]. An additional
pragmatic motivation for this work is the availability of off-the-shelf generic ab-
stract interpretation engines such as PLAI [MH92] or GAIA [CV94] which greatly
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facilitate the efficient implementation of analyses. The existence of such an ab-
stract interpreter in advanced optimizing compilers is very likely, and using the
analyzer itself to perform partial evaluation can result in a great simplification of

the architecture of the compiler.

6.5 Partial Evaluation using And—Or Graphs

We have established so far that for any abstract interpretation in the PLAI sys-
tem (even interpretations over very simple domains such as modes) we can get
some corresponding specialized source program with possibly multiple versions
by applying Algorithm 6.3.2. Correctness of abstract interpretation ensures that
the set of triples computed by analysis must cover all calls performed during ex-
ecution of any instance of the given initial goal (p, A). This condition is strongly
related to the closedness condition of partial evaluation [LS91]. Furthermore
there are well-understood conditions and methods for ensuring termination of an
abstract interpretation.

Thus, an important conceptual advantage of formalizing partial evaluation
in terms of abstract interpretation is that two of the main concerns of partial
evaluation algorithms — namely correctness and termination — are guaranteed by
the general principles of abstract interpretation. The other important concern
is the degree of specialization that is achieved, which is determined in partial
evaluation by the local and global control. We now examine how these control

issues appear in the setting of abstract interpretation.

6.5.1 Global Control in Abstract Interpretation

Effectiveness of specialization greatly depends on the set of atoms A =
{Ay, ..., A,} for which a specialized version is to be generated. In partial evalua-
tion, this mainly depends on the global control used. If we use the specialization
framework based on abstract interpretation, the number of specialized versions
depends on the number of or-nodes in the analysis graph. Assuming that the
level of multivariance of analysis is fixed (multivariant on calls but not on suc-
cesses) this is controlled by the choice of abstract domain and widening operators

(if any). The finer-grained the abstract domain is, the larger the set A will be.
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In conclusion, the role of so-called global control in partial evaluation is played
in abstract interpretation by our particular choice of abstract domain and widen-
ing operators (which are strictly required when the abstract domain contains
ascending chains which are infinite).

The specialization framework we propose is very general. Depending on the
kind of optimizations we are interested in performing, different domains should be
used and thus different sets A will be obtained. For example, if we are interested
in eliminating redundant groundness tests, our abstract domain could in principle
collapse the two atoms p(1) and p(2) into one p(ground) as from the point of view
of the optimization, whether p is called with the value 1 or 2 is not relevant.

While the main aim of global control is to ensure termination and not to
generate too many superfluous versions, it may often be the case that global
control (or the domain) does not collapse two versions in the hope that they will
lead to different optimizations. If this is not the case, a minimizing step may be
performed a posteriori on the and—or graph in order to produce a minimal number
of versions while maintaining all optimizations. This was proposed in [Win92],
implemented in [PH95] and also discussed in [LM95]. We intend to extend the
minimizing algorithm in [PH95] (also presented in Section 5.4) for the case of

optimizations based on unfolding.

6.5.2 Local Control in Abstract Interpretation

Local control in partial evaluation determines how each atom in A should be
unfolded. However, in traditional frameworks for abstract interpretation we usu-
ally have a choice for abstract domain and widening operators, but no choice
for local control is offered. This is because by default, in abstract interpretation
each or-node is related by just one (abstract) unfolding step to its children. This
corresponds to a trivial local control (unfolding rule) in partial evaluation.
Several possibilities exist in order to overcome the simplicity of the local con-

trol performed by abstract interpretation:

1. According to many authors, [Gal93, LM96] global control is much harder
than local control. Thus, subsequent unfolding of the specialized program
generated by Algorithm 6.3.2 can be done using traditional unfolding rules

to eliminate determinate calls or some non-recursive calls, for example. The
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and-or analysis graph may be of much help in order to detect such cases.

2. Use abstract domains which allow propagating enough information about
the success of an or—node so as to perform useful specialization on other
or-nodes (for example by allowing sets of abstract substitutions). The ad-
vantage of this method is that no modification of the abstract interpretation
framework is required. Also, as we will see in 6.5.1, it may allow special-
izations which are not possible by the methods proposed below.*

3. Another possibility is a simple modification to the algorithm for abstract
interpretation in order to accommodate an unfolding rule. In fact, unfolding
can be formalized as a transformation in an and—or graph. In this approach,
if the unfolding rule decides that an or-node should not be unfolded, then
it is treated as in the usual case. If the rule decides that the atom should
be further unfolded, the atom would be analyzed but the corresponding
or-node would not be added to the and—or graph. Then, some amount
of transformation which is equivalent to the unfolding step should be per-
formed in the analysis graph, and analysis would continue with the usual
algorithm. This approach would allow introducing the full power of par-
tial evaluation into our framework by a simple modification of the analysis

algorithm. The drawback is the need for the unfolding rule.

4. The last possibility is related to the first alternative in that analysis is per-
formed first with a trivial unfolding rule and once analysis has finished,
further unfolding may be performed if desired. However, rather than per-
forming unfolding without modifying the analysis graph as in the first ap-
proach, whenever an additional unfolding step is performed, the analysis
graph is modified accordingly, using the same graph transformation rules
mentioned in the previous approach. However, the difference with the pre-
vious approach is that there, unfolding is completely integrated in abstract
interpretation and the local control decisions are taken when performing
analysis. The advantages over the previous approach are that there is no
need to modify the analysis algorithm and that unfolding is performed once
the whole analysis graph has been computed. The benefits of the availabil-

ity of such better information for local control still have to be explored.

4Unless multivariance on successes is performed by the analysis framework.
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The disadvantage is that in order to achieve as accurate information as in
the previous approach it may be required to perform reanalysis in order
to propagate the improved information introduced due to the additional
unfolding steps, with the associated computational cost. This cost could

remain reasonable by the use of incremental analysis techniques such as
those presented in [HPMS95].

Example 6.5.1 Consider the following program and the goal <—r(X)

r(X) :- qX),pX).
qa).

q(f (X)) :- q(X).
p(a).

p(f(X)) :- p(X).
pgX)) - pX).

The third clause for p can be eliminated in the specialized program for <—r(X),
provided that the call substitution for p(X) contains the information that X=a or
X=f (Y). The abstract domain has to be precise enough to capture, in this case,
the set of principal functors of the answers.

Note that no partial evaluation algorithm based on unfolding will be able to
eliminate the third clause for p, since an atom of form p(X) will be produced,
no matter what local and global control is used®. Thus, simulating unfolding in
abstract interpretation (such as methods 1, 3, and 4 above do) will not achieve

this specialization either. An approach such as 2 is required. O

6.5.3 Abstract Domains and Widenings for Partial Eval-
uation
Once we have presented the relation between abstract domains and widening with

global control in partial evaluation, we will discuss desired features for performing

partial evaluation. Ideally, we would like that

e The domain can simulate the effect of unfolding, which is the means by

which bindings are propagated in partial evaluation. Our abstract domain

SConjunctive partial deduction [LSAW96] can solve this problem in a completely different
way.
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has to be capable of tracking such bindings. This suggests that domains

based on term structure are required.

e In addition, the domain needs to distinguish, in a single abstract substitu-
tion, several bindings resulting from different branches of computation in
order to achieve the approach 2 for local control. A term domain whose
least upper bound is based on the msg, for instance, will rapidly lose in-
formation about multiple answers since all substitutions are combined into

one binding.

Two classes of domain which have the above desirable features are:

e The domain of type-graphs [BJ92], [GdAW94], [HCC94]. Its drawback is

that inter-argument dependencies are lost.

e The domain of sets of depth-k substitutions with set union as the least
upper bound operator. However uniform depth bounds are usually either
too imprecise (if k is too small) or generate much redundancy if larger values

of k are chosen.

One way to eliminate the depth-bound & in the abstract domain it to depend
on a suitable widening operator which will guarantee that the set of or-nodes
remains finite. Many techniques have been developed for global control of par-
tial evaluation. Such techniques make use of data structures which are very
related to the and-or graph such as characteristic trees [GBI1], [Leu95] (related
to neighbourhoods [Tur88]), trace-terms [(GL96], and global trees [MG95], and com-
binations of them [LM96]. Thus, it seems possible to adapt these techniques to
the case of abstract interpretation and formalize them as widening operators.

6.6 Chapter Conclusions and Future Work

We have studied the integration of traditional partial evaluation into the special-
ization framework presented in Chapter 5 which is based on abstract interpre-
tation. Next we present the main conclusions which can be derived from such
study. As seen in Chapter 5, a specialized program can be associated with every

abstract interpretation. Abstract interpretation can be regarded as having the
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simple local control strategy of always performing one unfolding step. However,
useful specialization can be achieved if the global control is powerful enough.
The global control is closely related to the abstract domain which is used since
this determines the multivariance of the analysis. If the abstract domain is finite
(as is often the case), global control may simply be performed by the abstrac-
tion function of the abstract domain. However, if the abstract domain is infinite
(as is required for partial evaluation), global control has to be augmented with
some kind of widening operator in order to ensure termination. The strategies
for global control used in partial evaluation such as those based on characteristic
trees [Gallagher-Brynooghe] [LD97] and global trees [MG95] and combination of
both [LM96] seem to be applicable to abstract interpretation. More powerful
local unfolding strategies may be introduced in abstract interpretation, either
unfolding the specialized program derived from abstract interpretation, or by in-
corporating unfolding into the analysis algorithm. If the latter is implemented, it
can be proved that the set of atoms A pgr computed by partial evaluation is not
as good an approximation of the computation as the set of atoms A 4; computed
by abstract interpretation with the corresponding global and local control.

It remains as future work to experiment with the techniques presented in this
chapter. We plan to do so in the context of the PLAI system. Different abstract
domains and widening operators for global control should be implemented and
experimented with. Efficiency of the approach as well as quality of the specialized
programs should be compared to that of existing partial evaluators.

It would also be interesting to study the integration of abstract specialization
with recent extensions to traditional partial evaluation such as conjunctive partial

evaluation [LSdW96] of logic programs.
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Chapter 7

Optimization of Dynamic

Scheduling

Dynamic scheduling increases the expressive power of logic programming lan-
guages, but also introduces some overhead. In this chapter we present two classes
of program transformations designed to reduce this additional overhead, while
preserving the operational semantics of the original programs, modulo ordering
of literals woken at the same time. The first class of transformations simplifies
the delay conditions while the second class moves delayed literals later in the
rule body. Application of the program transformations can be automated using
information provided by compile-time analysis. We provide experimental results
obtained from an implementation of the proposed techniques using the CIAO
prototype compiler. Our results show that the techniques can lead to substantial

performance improvement.

7.1 Introduction

Most “second-generation” logic programming languages provide a flexible
scheduling in which computation generally proceeds left-to-right, but some calls
are dynamically “delayed” until their arguments are sufficiently instantiated. This
general form of scheduling, often referred to as dynamic scheduling, increases the
expressive power of (constraint) logic programs. Unfortunately, it also has a

significant time and space overhead.
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The main objective of this chapter is to develop and evaluate high-level op-
timization techniques for reducing this additional overhead, while preserving the
semantics of the original program. We introduce two different classes of transfor-
mations. The first class simplifies the delay conditions associated with a particular
literal. The second class of transformations reorders a delayed literal closer to
the point where it wakes up. Both classes of transformations essentially preserve
the search space and hence the operational behaviour of the original program.
The only caveat is that reordering may change the execution order of delayed
literals that are woken at exactly the same time. Note that this order is system

dependent and it is rare for programmers to rely on a particular ordering.

Using the CIAQO prototype compiler we have built a tool which automatically
optimizes logic programs with delay using the above transformations. Initial
experiments suggest that simplification of delay conditions is widely applicable
and can significantly speed up execution, while reordering is less applicable but

can also lead to substantial performance improvements.

The promise of optimization of delay conditions using high-level program
transformation was already illustrated in [MGH94]. However, optimization was
performed by hand and the particular transformation rules used were not de-
tailed. Other related work has concentrated on detecting non-suspension (e.g.,
[Han93]) or is restricted to the case of some particular delayed conditions (e.g.,
[Boy93]) usually found in functional languages, and the transformations applied
do not guarantee that there will be no performance loss. In [DGB96] program
segments in which no suspension occurs are identified in order to perform low-
level compiler optimizations. However, no suspension behaviour optimization or

reordering is performed.

7.2 Programs with Delay

A constraint is essentially a conjunction of predefined predicates, such as term
equations or inequalities over the reals, whose arguments are constructed using
predefined functions, such as real addition. We let 3y be constraint 6 restricted
to the variables V.
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7.2.1 Delay Declarations

In dynamically scheduled languages the execution of some literal can be delayed
until a particular delay condition holds. A delay condition, Cond, takes a con-
straint and returns true or false indicating if evaluation can proceed or should
be delayed. Typical primitive delay conditions are ground (X) which holds iff X is
constrained to a unique value, and nonvar (X) which holds iff X is constrained to
be a non-variable term. Delay conditions can be combined to allow more complex
delay behaviour. They can be conjoined, written (Cond;, Conds), or disjoined,
written (Condy; Condy).

We require a delay condition C'ond to satisfy three properties. First, it must
be downwards closed: for any two constraints 6,6 s.t. 8" — 6, if Cond holds
for A, then it also holds for #'. Second, it should not take variable names into
account: for any variable renaming p and any constraint 6, if C'ond holds for 6
then p(Cond) holds for p(6). Third, it should only take into account variables in
the condition: for any constraint 8, C'ond holds for # iff C'ond holds for évars((;ond)@
where vars returns the set of variables occurring in a syntactic object.

A delaying literal is of the form delay_until(Cond, L), where Cond is a delay
condition and L is a literal. Evaluation of L will be delayed until Cond holds
for the current constraint store. Delay information can be predicate-based and
literal-based. In the former, the delaying literal appears as a declaration before
the definition of the predicate, each instance of the predicate inheriting the delay
condition. In the latter, the delaying literal appears in the body of some clause
only affecting the literal L. It is straightforward to use predicate-based declara-
tions to imitate literal-based delay, and vice versa. For simplicity, we will restrict

ourselves to literal-based delay.

7.2.2 Operational Semantics

An atom has the form p(ti,...,t,) where p is a predicate symbol and the ¢; are
terms. A literal is either an atom, a delaying literal or a primitive constraint. A
goal is a finite, non-empty sequence of literals. A rule is of the form H :-B where
H | the head, is an atom with distinct variables as arguments and B, the body, is a
possibly empty finite sequence of literals. A constraint logic program, or program,

is a finite set of rules. The definition of an atom A in program P, defnp(A), is
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the set of variable renamings of rules in P such that each renaming has A as a
head and has distinct new local variables.

When formalizing applicability conditions for our transformations we will
be interested in annotated programs, in which information about run-time be-
haviour is collected at program points in the initial query and program. Program
points occur between literals and at the start and end of all bodies of all rules
of the program. For instance, the rule A:-Lq,..., L, has the program points
A:-OLQ, ..., oL, .

We are assuming that all rule heads are normalized, since this simplifies the
examples and corresponds to what is done in the analyzer. This is not restric-
tive since programs can always be normalized. However, so as to preserve the
behaviour of the original program under dynamic scheduling, the normalization
process must ensure that head unifications are performed simultaneously, that is,
grouped together in one primitive constraint. See for instance, the definition of
edge in the path program of Example 7.2.1.

The operational semantics of a program is in terms of its “derivations” which
are sequences of reductions between “states”. A state (4161 D) consists of the
current sequence of active literals A, the current constraint 6, and the current
sequence of delayed literals D. Our definition makes use of the parametric func-
tion awoken(D,#), which returns a sequence of the delayed literals (stripped of
their delaying condition) in D that are awoken by constraint . The order of the
literals returned by awoken is system dependent'. A state (L :: A161D) can be

reduced as follows:

1. If L is a primitive constraint and 6 A L is satisfiable, it is reduced to (D’ :
A10ANLID\D') where D' = awoken(D,0 A L).

2. If L is an atom, it is reduced to (B :: A1601 D) for some rule (L:-B) in the
definition of L.

3. If L is the delaying literal delay_until(Cy, Ly):

e If C;, holds for 6, it is reduced to (Ly, :: A161D).

e Otherwise, it is reduced to (A161D :: L).

!However, it is a brave programmer indeed who makes use of such a system dependent

feature when programming.
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where :: denotes concatenation of sequences and we assume for simplicity that the
underlying constraint solver is complete. A derivation from state S for program
P is a sequence of states Sy = S; = ... = S,, where Sy is S and there is a
reduction from each S; to S; 1. A derivation from a query @) for program P is a
derivation from the sequence.

The observational behaviour of a program is given by its “answers” to queries.
A finite derivation from a state S for program P is finished if the last state in the
derivation cannot be reduced. A finished derivation from a state S is successful
if the last state has form (nil 161 D). The constraint D A EIUMS(S)UMTS(D)H is an

answer to S.

Example 7.2.1 The following program finds a path between two nodes in a
directed graph.

path(X,Y):- X=Y.
path(X,Y):-
delay until(ground(Z) ,edge(X,Z)),
delay until (ground(Y) ,path(Z,Y)).
edge(X,Y) :- head(X,Y)=head(a,b).
edge (X,Y) :- head(X,Y)=head(b,c).

7.3 Simplification of Delay Conditions

Delay conditions may be evaluated each time a variable is touched. Simplifying
such conditions can then lead to significant performance improvement. Essen-
tially the behaviour of a delay condition is only relevant during the lifetime of
the delaying literal. Hence, we can replace one delay condition by another (more
efficient) condition if they are equivalent for all constraint stores that occur during
the lifetime of the delaying literal.

7.3.1 Lifetime of a Delaying Literal

The lifetime of a delaying literal can be broken into three stages: initial states
when it is first selected, waking states when it is woken, and delaying states
when it sits in the collection of delayed literals. Consider the delaying literal
DL = delay_until(Cond, L). The initial context for DL, written I(DL), is the
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set of constraints # occurring in states of the form (DL :: A1601D). The delaying
context for DL, denoted D(DL), is the set of constraints 6 occurring in states
of the form (A 1601 D), where DL € D. Finally, the waking context for DL,
W (DL), is the set of constraints 6 such that either there is a derivation of the
form --- = (DL :: A1§'1 D) = (L:: A1601D) = --- or there is a derivation
of the form --- = (A"10'1D') = (A101D) = --- where DL € D'\ D. We
can restrict the constraints in the initial, delaying and waking contexts to the

variables in DL since this does not affect the behaviour of the delay condition.

Example 7.3.1 Consider the successful derivation for query ?- Y = b,
delay until(ground(Y),path(X,Y)) and the program of Example 7.2.1. The

initial, waking and delaying contexts for each of the delaying literals are:

DL I(DL) W(DL) D(DL)
(a) delayuntil(ground(Y), path(X,Y)) | {Y =b} {Y =0b} {}
(b) delay.until(ground(Z),edge(X,Z)) | {true} {Z =0b} {true}
(c¢) delay until(ground(Y),path(Z,Y)) |{Y =06} {Y =0b} {}

7.3.2 Rules for Simplification of Delay Conditions

Given the contexts for a delaying literal, simplification can be then performed by

applying the following general rule:

SIMP-EQUIV: Replace a condition C, by a more efficient one C', when they are
equivalent in all contexts. If V8 € (I(DL) UW (DL)U D(DL)), C holds for 6 iff
C' holds for #, then we can rewrite C' with C’, denoted by C = C".

The following are special cases of this general rule which are particularly

amenable to automatic application.

CONTEXT-INDEP: The following rewriting rules of Boolean algebra can always be

exhaustively applied to obtain simpler delay conditions:
(Cond,true) = Cond 3. (Cond;true) = true

2. (true,Cond) = Cond 4. (true;Cond) = true
5. (Cond, false) = false 7. (Cond; false) = Cond
6. (false,Cond) = false 8. (false;Cond) = Cond

Their application will often be enabled by rules 9 and 10 below.

=

SIMP-TRUE: From downwards closure, delay conditions satisfied in all the initial

164



contexts, are also satisfied in all delaying and waking contexts. Thus:
9. IfVA € I(DL)Cond holds for & : Cond = true.

Finally, we can replace delay until(true, L) by L. Delaying literals (a)
and (c) in Example 7.3.1 can be simplified in this way.

SIMP-FALSE: From downwards closure, if a delay condition is false in all waking
contexts, it has been false throughout the life of a delaying literal:

10. If V8 € W(DL) Cond does not hold for § : Cond = false.

Example 7.3.2 Consider the following program, append3, which appends three
lists together and the query ?- append3(X,Y,Z, [a,b,c]).

append3(X,Y,Z,T) :- delay.-until((ground(X);ground(U)), append(X,Y,U)),
delay until((ground(U) ;ground(T)), append(U,Z,T)).
append (X,Y,Z) :-head(X,Y,Z) = head([1,V,V).
append(X,Y,Z) :-head(X,Y,Z) = head([A|X1],Y1,[A|Z1]),
delay until ((ground(X1);ground(Z1)) ,append(X1,Y1,Z1)).

All calls to append wake up with the first two arguments free and the last one
ground. Hence, we can use rule 10 followed by rule 8 to remove the first primitive
delay condition in all delaying literals. Also, the second delaying literal in append3
as well as the delaying literal in the recursive rule of append, never delay since
their third argument is ground in all initial contexts. Thus, using rule 9 the
delaying condition can be removed. The resulting program (with program point
annotations to be used later) is:

append3(X,Y,Z,T):- @ delayuntil(ground(U), append(X,Y,U)),
® append(U,Z,T). ©
append (X,Y,Z) :- @ head(X,Y,Z)=head([1,V,V).®
append(X,Y,Z) :- () head(X,Y,Z)=head([AIX1],Y1,[A]|Z1]),
® append(X1,Y1,Z1).0)

SIMP-CHOOSE: Sometimes, when the delay condition contains disjunctions it is

possible to use just part of the condition, discarding the rest:

11. if V8 € W(DL) Cond holds for § : (Cond;Cond') = Cond
12. ifV € W(DL) Cond holds for § : (Cond;Cond) = Cond
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If both rule 11 and 12 can be applied to a disjunction (Cond; Cond'), efficiency
considerations should be used to choose the best simplification.

SIMP-PRIM: Replace a primitive condition C, by a more efficient one C,, if they

are equivalent in all contexts:
13. If V6 € (W(DL)U D(DL)) C, holds for § iff C,, holds for 6 : C, = C,.

For example, consider the path program. In each of the delaying and waking
contexts for the delaying literal (b) the variable Z is either free or ground. Hence
we could replace the primitive wakeup condition ground(Z) by nonvar(Z), which

is cheaper, obtaining the same behaviour.

Theorem 7.3.3 Let DL = delay-until(Cond, L) be a delaying literal and
Cond' be a delay condition obtained from C'ond by the application of the rewriting
rules 1,...,13. Then:

Vo € (I(DL)U D(DL)UW (DL)) Cond holds for 6 iff Cond’ holds for 6

Thus, application of the rewriting rules will not change the operational be-

haviour of a program.

7.4 Reordering Delaying Literals

If a delaying literal is known to always delay at some point, it seems worthwhile to
try to move it to a later point. In particular, we would like to move the delaying
literal to a point where it must wake, thus removing the delay conditions. For
this work we restrict ourselves to the (seemingly simple) case of moving delaying

literals in the query or rule body in which they appear.

Example 7.4.1 Unfortunately, one has to be careful when moving delay-
ing literals to later points, since this does not always preserve the search
space of the program. Consider the following example program and the query
?7- delay_until(ground(Y),p(Y)), q(Y,Z).

q(Y,Z) :- Y=2, long_computation(Z).
q(Y,Z) :- Y=3, Z=b.
p(Y) :- Y=3.
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Since Y is initially free, delay until (ground(Y),p(Y)) delays. Hence, we might
consider moving it after the call to q. If we do, we can remove the delaying
condition obtaining the reordered query 7- q(Y,Z), p(Y). In the original query
p(Y) is awoken before the long_computation occurs, it immediately fails and the
second rule for q is tried. This succeeds waking p(Y), which also succeeds. In
the reordered query long_computation will be executed before p(Y) wakes up.

In the extreme case, it may not terminate.

Intuitively, reordering can only be performed if in the original program the

execution of q(Y,Z) is guaranteed to have finished by the time p(Y) is executed.

Example 7.4.2 Consider the simplified program of Example 7.3.2 and the
query ?- append3(X,Y,Z,[a,b,c]).

The literal DL = delay_until(ground(U), append(X,Y,U)) can be re-
ordered after append(U,Z,T), even though DL does not delay until the execution
of append(U,Z,T) is finished. This is because DL only wakes up at program point
(), i.e. at the end of the execution of append(U,Z,T). Hence, DL cannot affect
the execution of append(U,Z,T).

7.4.1 “Wakeups” and Program Points

We now formalize the transformation used in the above example. To reorder
correctly we need to know at which points in the program a delaying literal can
wake. We now define how to attach “wakeups” to program points. Consider the

derivation:
(L:: A101D)=(D":: A1OANLID\D")y=*(A16"1D")

where L is a primitive constraint, 8 A L is satisfiable and D' = awoken(D,0 A L).
In this derivation the delaying literals in D’ have awoken at the program point
immediately after the constraint L. However, the set of delaying literals that
wakeup in between L and the execution of A is D \ D”. This is, in general, a
superset of D', since the execution of D' may generate new constraints which
may in turn wake up other delaying literals in D \ D'. For the above derivation,
we then consider the set D \ D" as waking up at the program point after L.
We define the annotation of a program P for query () as the mapping from the
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program points of P to the union, for all possible derivations of @), of the sets of
waking up literals at that program point.

Example 7.4.3 In the program and query of Example 7.3.2, the wakeups at-
tached to program point () are {delay_until(ground(U), append(X,Y,U))}. The
rest of program points have no associated wakeups.

Example 7.4.4 To see why we have to add all the delaying literals that wake
up in between L and A consider the following program with query ?- g(X,Y).

g(X,Y) :- (@) delay-until(ground(X), p(X,Y,2)),®
delay_until(ground(Y), q(Y)), © r(X).@

r(X) :- © X=1.0

p(X,Y,Z) :- ® Y = 1,® long computation(Z) .

q(y) :- DY=2®

The annotated program points with associated wakeups are:

® {delay-until(ground(X),p(X,Y, Z)), delay_until(ground(Y),q(Y))}
® {delay-until(ground(Y),q(Y))}.

If we had annotated () with the set of literals immediately awoken by X=1, that
is D', we would only obtain the first delaying literal, delay_until (ground(X),
p(X,Y,2)). Thus, it would be hard to see that the second delaying literal wakes
up within r(X).

Information about the program points at which a delaying literal can be awo-
ken leads to a simple methodology for reordering a delaying literal. Before we
detail the transformation we need to define at which program points a delayed
literal can be awoken for reordering to be allowed. We first define the set of
program points for a particular goal at which delayed literals may be awoken
during the evaluation of the goal. The set of instantiating program points for a
goal @G®), denoted IPP(G), are:

{®} if G is a constraint
IPP(G) = IPP(L) if G = delay_until(Cond, L)

Ue:-Bicdesnyc) IPP(B;) if G is an atom

IPP(L"YUIPP(G) ifG=L,G
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Now we define the subset NIPP(G) of instantiating program points which
are non-final for a goal @G®). A delayed literal will not be allowed to move
across a goal if it wakes up at a non-final point:

0 if G is a constraint
NIPP(G) = NIPP(L) if G = delay_until(Cond, L)

Ue:-Bicdefn,c) NIPP(B;) if G is an atom

IPP(L')UNIPP(G) ifG="LG"

The set of final instantiating program points for goal @G®), denoted
FIPP(Q), is simply IPP(G) — NIPP(G). For example the instantiating pro-
gram points for ®append(U, Z,T).© in Example 7.4.2 are {(©), ® }. The final
instantiating program points for ®append(U, Z,T).(©) are { (©® }.

7.4.2 Rules for Reordering Delaying Literals

We can now define two transformation rules which provide sufficient condi-
tions for reordering a delaying literal across the body in which it appears,
while preserving the semantics of the program. Consider a rule of the form
H:-Ly,...,Liy DL, Liyo,...,L;j, Lj1,... L, where DL is a delaying literal.

DOESNT-WAKE: We can reorder DL until immediately before L;,; if DL is def-
initely delayed before L;,, and it does not wake at any instantiating program

point in the conjunction of literals L; o, ..., L;.

FINAL-WAKE: We can reorder DL until immediately after L; if DL is definitely
delayed before L; 5 and it does not wake at any non-final (instantiating) program
point in the conjunction of literals L;;o, ..., L;. In addition if DL wakes up at a
final program point together with another delaying literal DL’, then DL wakes
only at final program points of the literal DL'.

Example 7.4.5 Consider the program and query of Example 7.4.4. The
literal delay until(ground(Y), q(Y¥)) only wakes up at () which is a fi-
nal program point for r(X). However, reordering such literals would result in
long computation(Z) being performed. This is why an additional condition is
introduced in the FINAL-WAKE rule. As delay_until(ground(X), p(X,Y,Z))
also wakes at program point (f) and delay_until (ground(Y), q(Y)) wakes up
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at @ which is a non-final program point within p(X,Y,Z), FINAL-WAKE is not ap-
plicable. We can however move delay_until (ground(X), p(X,Y,Z)) until after
the conjunction delay_until(ground(Y), q(Y)), r(X) using the FINAL-WAKE
rule, since it only wakes at (), a final program point of this conjunction. At this
point it is guaranteed to wake, the delay condition can be removed, and the op-
timized rule is g(X,Y) :- delay._until(ground(Y), q(Y)), r(X), p(X,Y,Z).

If we now annotate this program for the query ?- g(X,Y), the new annotations
would show that delay until(ground(Y), q(Y)) could be moved after r(X),
using the DOESNT-WAKE rule.

The reason why DOESNT-WAKE is correct is that since DL is not awoken
during evaluation of L;,..., L; it cannot affect the evaluation, and so can be
added later. The reason why FINAL-WAKE is correct is that since DL is the last
literal evaluated before returning from L;, we can equivalently evaluate it as the
first literal after returning from L.

Unfortunately, there is a subtle problem with this reasoning. The problem
is that both reordering rules may change the order in which literals are delayed,
and so may affect the system dependent order in which literal are returned by
awoken. This is only a problem in the case when more than one literal is awoken

at the same time.

Example 7.4.6 Consider the following program and query: ?- g(T)

g(T) :- delayuntil(ground(T),p(T)),

delay until(ground(T),q(T)), T = 1. @
p(T):- T = 2.
q(T) :- long_computation(Z).

At (@ both delaying literals wake. If awoken returns p(T) : :q(T), the query
quickly fails. There is no annotation in the body of q(T) which includes the delay-
ing literal for p(T), hence FINAL-WAKE is applicable for the literal. Hence, g(T)
:- delay_until(ground(T), q(T)), T =1, p(T). is a correct reordering. But
for this program the long_computation is executed.

However, note that behaviour of the transformed program is equivalent to

that of the original program if awoken had returned q(T) : :p(T) instead.
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Therefore we have the somewhat weaker correctness result for the reordering
rules, that the transformed program behaves equivalently to the original program
for some choice of the awoken function. However, as noted earlier it is rare for
programmers to rely on the system dependent ordering of awoken to prune the

program search space.

7.5 Automating the Optimization

We have built a prototype automatic transformation tool which works as fol-
lows. First, the original program is analyzed, and the program annotated with
the inferred information is given to the optimizer. Using this information, the
optimizer first simplifies delay conditions as much as possible and then reorders
those literals which are sure to delay. To reduce problems of the kind presented in
Example 7.4.6, whenever more than one literal is reordered to the same program
point and no information about waking order is available, the optimizer keeps the
relative order in which the reordered literals appeared in the original program.
In addition, reordering may enable further optimizations, as the initial contexts
in the new positions will in general be more instantiated than in the original
ones. Hence, another analysis—optimization iteration could be performed. In
some cases the current implementation can perform further optimizations with-
out re-analysis. Other optimizations traditionally used with fixed-scheduling con-
straint logic programs can also be performed after transformation. Currently we
perform dead code elimination and simplification of built-ins.

Different analysis frameworks have been recently developed for logic programs
with dynamic scheduling (e.g., [MGH94, DGB96, GMS95]). In our prototype we
use the approach of [GMS95]. However, simplification can be performed with
any analysis framework which, for a given analysis domain, approximates the
initial, delaying and waking contexts for each delaying literal. For reordering,
the analyzer needs to provide a description of the set of waking up literals at
each program point. For the traditional optimizations, the analyzer needs to also
provide a description of the constraints at each program point.

The experimental evaluation uses the information provided by three different

abstract domains. The Def domain? [GH93| approximates groundness informa-

2This domain is a variant of the Prop domain [MSJ94].
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tion. Thus, it can be used to infer the satisfiability of ground and nonvar tests.
The ShFr domain [MH91] approximates not only groundness but also sharing and
freeness information. Freeness information allows us to prove the unsatisfiabil-

3 complements ShFr with more

ity of ground and nonvar tests. The Aeq domain
complex modes like non-freeness, non-groundness and linearity. Non-freeness and
non-groundness allow more accurate information about the behaviour of nonvar
and ground tests. Linearity improves sharing and therefore the propagation of

the other properties.

7.6 Experimental Results

Four different sets of benchmarks have been used in our experiments. The first
set corresponds to those used in [MGH94, GMS95]. They are essentially new,
reversible versions of some standard symbolic programs. The original programs
used static scheduling and could only be run in one mode. In the new ver-
sions dynamic scheduling has been added to allow them to run both forwards
and backwards. This first set includes append3 (concatenates 3 lists), nrev (re-
verses a list in a naive way), permute (computes all permutations of a list), and
gsort (the quick-sort algorithm). The second set corresponds to standard math-
ematical benchmarks in which dynamic scheduling has been added to arithmetic
constraints so as to allow them to run both forwards and backwards. This set in-
cludes fac (factorial), fib (Fibonacci), and mortgage. The programs in the third
set are programs with dynamic scheduling resulting from the automatic trans-
lation of concurrent logic programs by the Qd-Janus system [Deb93]. Dynamic
scheduling is used to emulate the concurrency present in the original programs.
This set includes nand (a nand-gate circuit designer, written by E. Tick) and
transp (matrix transposer, written by V. Saraswat). The Qd-Janus compiler
already performs analysis and optimization of its input programs and aims to
produce code with little redundant concurrency. The Prolog code it produces is
competitive in performance with compilers specifically designed for concurrent
logic programs. The last set are NU-Prolog programs written by L. Naish which

exploit rather complex dynamic scheduling for different purposes, and which have

3This domain is a modification of that of Mulkers et al [MSJB95]. We have added more
complex modes but do not make full use of the equation modeling component.
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been translated into SICStus. This set includes nqueen (coroutining n-queens),
slowsort (a generate and test algorithm), interpl (simple interpreter for corou-

tining programs), and termcompare (term comparison).

| Benchmark | 1| Lit | DL

append3 3 3 3
nrev 4 3 3
permute 4 3 3
gsort 7 9 9
fac 8| 27 3
fib 6| 17 4
mortgage 81 29 5
nand 90 | 157 | 13
transp 112 | 180 | 20
nqueen 11 15| 11
slowsort 9 8

interpl 111 10

termcompare || 27 | 37| 26

Table 7.1: Benchmark Characteristics.

Table 7.1 provides information regarding the complexity of the benchmarks
used in our experiments. Cl is the number of clauses analyzed, Lit is the number
of literals, and DL is the number of delaying literals. Since programs have been
normalized the (usually high) number of term equations is not counted in Lit.
DL includes all calls to predicates affected by a delay declaration.

For the first two sets of benchmarks we will consider two different versions
of each program: in the first one ground conditions are used in the delaying
literals (-gr suffix), while in the second one nonvar conditions are used (.nv
suffix). Note, however, that in nrev and gsort nonvar conditions do not always
guarantee termination. Thus a mix of ground and nonvar conditions is used in
the “nv” version of these benchmarks. Different rows associated to the same
benchmarks indicate different queries. For the first two sets of benchmarks they
perform forward and backward execution.

The programs have been implemented using block (SICStus predicate-based
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Benchmark Analysis (sec) Transformation (msec)
Def | ShFr | Aeq || Def | ShFr | Aeq
append3_gr 0.0 0.0 0.0 7 7 10
0.1 0.1 0.2 13 20 10
append3_nv 0.0 0.0 0.0 7 10 7
0.1 0.2 0.4 20 20 20
nrev_gr 0.0 0.0 0.0 10 10 10
0.1 0.1 0.2 17 17 20
nrev_nv 0.0 0.0 0.0 10 10 10
0.4 0.1 0.2 30 10 17
permute_gr 0.0 0.0 0.0 10 10 7
0.3 0.5 0.2 17 23 13
permute_nv 0.0 0.0 0.0 7 10 10
0.4 2.8 5.8 20 57 50
gsort_gr 0.0 0.1 0.1 13 13 10
3.2 2.8 | 123 47 63 93
gsortnv 0.0 0.1 0.1 10 20 13
23.9 | 1517.3 00 243 | 2730 00
fac_gr 0.0 0.0 0.0 20 30 23
0.3 0.2 0.4 40 37 57
fac_nv 0.0 0.0 0.0 23 23 27
0.3 0.2 0.4 37 40 50
fib_gr 0.0 0.0 0.1 23 23 27
0.8 0.6 0.9 43 40 70
fib_nv 0.0 0.0 0.1 13 20 30
0.6 0.6 0.9 43 40 67
mortgage_gr 0.0 0.0 0.1 27 33 40
0.7 0.3 0.5 77 50 67
mortgage nv 0.0 0.0 0.1 33 30 40
0.5 0.3 0.5 57 50 70
nand 0.5 0.7 1.6 297 | 303 373
transp 168.5 | 1621.5 oo || 1087 | 1620 00
nqueen 0.0 0.1 0.1 30 40 40
2.6 3.7 7.5 77| 113 140
slowsort 0.0 0.0 0.1 23 33 23
0.3 0.5 1.2 33 43 43
interpl 0.9 3.0 2.0 37 50 37
termcompare 0.2 0.3 0.3 70 90 83
7.8 19.1 | 158.3 233 | 380 1393

Table 7.2: Efficiency Results
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delay) declarations whenever possible, i.e., when only nonvar tests were involved.
This is because they are the most efficient delay declarations in SICStus. Oth-
erwise, when/2 (SICStus literal-based delay) declarations were used. The only
exceptions are the programs in the third class where the compiler produces literal-

based freeze declarations.

Our first set of experiments evaluates the cost of the automatic transforma-
tion using our prototype compiler described in the previous section. Table 7.2
shows the analysis times in seconds for each of the abstract domains described
in the previous section as well as the time in milliseconds required to optimize
the programs using the information inferred. The times are for code run under
SICStus Prolog version 3.0 on a 55MHz SPARCstation 10 with 64 MBytes of
memory. An oo indicates that the analyzer ran out of memory because too many

calling patterns were produced in the analysis.

Analysis times are generally acceptable, except for three programs: gqsort_nv,
transp, and termcompare. Their times are slow because of their complex dy-
namic behaviour. However, it should be remembered that the analysis of logic
programs with dynamic scheduling is still in its infancy and that we are using a
prototype analyzer. As this technology improves, analysis time should markedly
decrease. Transformation times are very low — only when the amount of analysis

information is enormous does the time reach more than one second.

Our second experiment evaluates the effectiveness of the optimizations. Ta-
ble 7.3 shows the execution time in milliseconds for the original programs, and
the speed-up obtained by the automatically transformed programs using sim-
plification and then both simplification and reordering. We do this for each
abstract domain. Since the information provided by Def never allows reordering,
its column has been eliminated from Simp. 4+ Reord. A blank entry in the Sim-
plification column indicates that no delay condition was optimized, and a blank
entry in the Simp. + Reord column indicates no reordering was performed and
hence the speedup is the same as for simplification alone. A { indicates that no
delaying literals remain in the transformed program.

Our results demonstrate that both simplification and reordering can lead to
an order of magnitude performance improvement, and that they give reasonable
speedups in most benchmarks. The benchmarks nand, transp, interpl and

termcompare which did not exhibit any measurable speedup belong to the last
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Benchmark Orig Simplification Simp. + Reord
Def | ShFr |  Aeq ShFr | Aeq
append3_gr 339430 || 439.68 | 439.68 t | 439.68
7438 1.49 1.49 1.49 2.10 ¢
append3_nv 816 1.06 ¢ 1.06 1.06
3682 1.03 1.03 1.03
nrev_gr 342220 || 1368.88 t | 1368.88 1 | 1368.88
5864 5.55 5.55 5.55 68.19
nrev._nv 3682 1.03 1.03 1.03
1086 1.03 1.03 12.63 ¢
permute_gr 28082 11.13 ¢ 11.13 ¢ 11.13
1452 2.66 2.66 2.66 546
permute nv 2574 1.00 1.00 ¥ 1.00
836 1.02 1.02 1.02
gsort_gr 5908 173.76 | 173.76 T | 173.76
2138 2.31 2.31 2.31
gsort_nv 818 27.27 27.27 27.27
1320 1.00 — —
fac_gr 3268 1.54 f 1.54 ¢ 1.54
15322 2.62 2.62 2.62
facnv 2100 1.00 f 1.00 ¢ 1.00
1830 1.07 1.07 1.07
fib_gr 35784 61.06 61.06 61.06
37848 1.65 1.65 1.65
fib_nv 668 111 f 111 7§ 1.11
722 1.06 1.06 1.06
mortgage_gr 4202 6.55 6.59 ¢ 6.59
5138 1.66 2.52 2.52 53.52 t | 53.52
mortgage nv 646 1.03 ¢ 1.03 1.03
330 1.25 1.57 1.57 344 | 344 i
nand 464 1.00 1.00 1.00
transp 5609 1.00 1.00 — —
nqueen 27218 8.14 8.14 8.14
4684 1.39 1.39 1.39
slowsort 1466 8.52 8.52 8.52
3388 1.00 1.00 1.00
interpl 3160 1.00 1.00 1.00
termcompare 4418 1.14 1.14 1.14 1.33
4456 1.00 1.00 1.00 1.08

Table 7.3: Effectiveness Results
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two sets of benchmarks. It is perhaps not surprising that our optimizer found
programs in these classes difficult to improve since they were either produced by
a rather clever transformer which tries to avoid introducing delay where it is not
needed or hand-crafted by an expert in dynamic scheduling. Unsurprisingly, the
more sophisticated the analysis domain, the better the speed up. In particular

the extra precision of Aeq is required to gain the most benefit from reordering.

7.7 Chapter Conclusions

The experimental results obtained are promising. They show that the transfor-
mation techniques introduced in this chapter can be automated and lead to sig-
nificant performance improvement. This is important because dynamic schedul-
ing looks set to become increasingly prevalent in (constraint) logic programming
languages because of its importance in implementing constraint solvers and con-
trolling search as well as for implementing concurrency. We noted that the effect
of the transformation greatly depends on the implementation of the delay dec-
larations, and therefore on the target language. In particular, since groundness
is an expensive test its simplification gives great benefits. Lesser, although still
significant benefits can be obtained for other delay conditions. However this work
is only a first step. Many other techniques for the automatic transformation of

programs with dynamic scheduling remain to be investigated.
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Part 111

Program Debugging
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Chapter 8

An Assertion Language for

Debugging

Assertions allow expressing properties of programs. Several assertion languages
have been used in the past in different contexts related to program debugging.
In this chapter we propose a general language of assertions which should be
useful for the different tools to be used for validation and debugging of constraint
logic programs. There is clearly a trade-off between the expressive power of the
language of assertions and the difficulty of dealing with it. The assertion language
proposed is parametric w.r.t. the particular constraint domain, implementation,
and properties of interest being used in each different tool. The language proposed
is very general in that it poses few restrictions on the kind of properties which
may be expressed. This results in a very rich language. However, individual
tools will only use the parts of this language that are relevant to such tools.
We discuss the possibility of performing compile-time checking of assertions and
sketch a framework for automatic generation of programs which check assertions

at run-time.

8.1 Introduction

Assertions are linguistic constructions which allow expressing properties of pro-
grams. We may be interested in expressing many different kinds of properties

as assertions may be used in different contexts and for different purposes. Some
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contexts in which assertions have been used in the past are:

Run-time checking In imperative programming, assertions have been tradi-
tionally used to express conditions about the program which should hold at
run-time. A usual example is to check that the value of a variable remains
within a given range at a given program point. If assertions are found not to
hold a warning is given to the user. Note that in this context, assertions ex-
press properties about the run-time behaviour of the program which should

hold if the program is correct (see [Vet94] for an application to CLP).

Replacing the oracle In declarative debugging [Sha82], the existence of an or-
acle (normally the user) which is capable of answering questions about the
intended behaviour of the program is assumed. In this context assertions
have been used in order to replace the oracle as much as possible by allow-
ing the user expressing properties which should hold if the program were
correct [DNTM88, DNTM89, BDM97]. If it is possible to answer the ques-
tions posed by the declarative debugger just by using the information given
as assertions, then there is no need to ask the oracle (the user). Note that
here again, assertions are used to express properties which should hold for

the program.

Compile-time checking Another use of assertions is as a means of expressing
properties about the program which are checked at compile-time, usually
by means of program analysis. These properties should hold, i.e., otherwise
a bug exists in the program. An example of this are type declarations
(e.g., [HL94, SHCI6], functional languages, etc.), which have been shown
to be useful in debugging. Generally, and in order to be able to check these
properties at compile-time, the expressible properties are restricted to a

statically decidable set.

Providing information to the optimizer Assertions have also been pro-
posed as a means of providing information to an optimizer in order to
perform additional optimizations during code generation (e.g., [SHC96],
which also implements checking). In this context, assertions do not express
properties which should hold for the program, but rather properties which
do hold for the program at hand. Note that if the program is not correct, the
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properties which hold may not coincide with the properties which should
hold.

General communication with the compiler In a setting where there is both
a static inference system, such as an abstract interpreter [CC77, GHBT96],
and an optimizer, assertions have also been proposed as a means of provid-
ing additional information to the analyzer, which it can use both to increase
the precision of the information it infers and/or to perform additional op-
timizations during code generation [WHDS88, VD92, MS92, KMM*96]. An
example are assertions which state some (but not all) types in a type infer-
encing system [BCHP96]. Also, assertions can be used to represent analysis
output in source form and to communicate different modules of the compiler
which deal with analysis information (see chap:Analysis-Full-Lang). In this
context, assertions again do not express properties which should hold for
the program, but rather properties which do hold for the program at hand.
Note that if the program is not correct, the properties which hold may not
coincide with the properties which should hold.

In this work we are interested in an assertion language which integrates all of
the lines above. Furthermore, in addition to these uses, the assertion language
should serve other purposes. Although not further discussed here, we would also
like to generate documentation automatically from the program source (in the
“literate programming” style [D.84]) based in part on the information present in
the assertions. More details can be found in [D.84, HGI7].

Assertions can be classified according to many different orthogonal criteria.
For example, even though they are used for different purposes, the first three con-
texts above have in common that assertions express properties which should hold
(intended properties), while the last two ones refer to properties which actually
hold (actual properties) for the program.

The aim of this chapter is to serve as a basis for the design of an assertion
language which suffices for the purpose of debugging in the context of constraint
logic programming (CLP) [JM94] languages, while remaining tractable. There is
a clear trade-off between the expressive power of the language of assertions and
the difficulty of dealing with it. The assertion language proposed is parametric

w.r.t. the constraint domain and the particular CLP platform being used and thus
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can be used for any of them. For example, an instance of the assertion language
we propose has been implemented in the CIAO system [HBGP95, Bue95]. Details
can be found in [Gro97].

The structure of this chapter is the following. Section 8.2 briefly discusses the
kind of properties expressible in the assertion language. Section 8.3 presents two
kinds of assertions to be used for declarative properties of programs. Assertions
for operational properties are presented in Sections 8.4 through 8.6. Both Sec-
tions 8.4 and 8.5 deal with predicate assertions, i.e., used to express properties of
predicates. A set of basic assertions is presented in Section 8.4 and Section 8.5
presents a compound assertion which allows grouping basic predicate assertions
into one. Section 8.6 introduces program-point assertions. Finally, Section 8.7
discusses the use of assertions for expressing properties of the actual program (as
in the case of expressing results of analysis).

8.2 Dealing with the Multiple Objectives of As-

sertions

Errors [w—————
<—, A
Abstract Abstract
Synpt ons Di agnoser

Program
Concrete Concr et e
Synpt ons Di agnoser
—®| Speci fication

\ User >< Perform
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Figure 8.1: An Advanced Development and Debugging Environment

HH

In an advanced development and debugging environment for constraint logic pro-
grams, different tools should co-exist. Figure 8.1 gives an idea of the complexity
and intercommunication needs of the tools. A detailed description of a possible
set of such tools can be found in [ABB*97]. As the intention in this chapter
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is to have a language of assertions which allows expressing any property which
is of interest for any debugging (and validation) tool, it is very hard to restrict
beforehand the kind of properties which can appear in assertions. Clearly, not
all tools will be capable of dealing with all properties expressible in our asser-
tion language. Rather than having different assertion languages for each tool,
we propose the use of the same assertion language for all of them, since this will
facilitate communication among the different tools and enable easy reuse of in-
formation, i.e., once a property has been stated there is no need to repeat it for
the different tools. Each tool will only make use of the part of the information

given as assertions which the tool understands.

8.2.1 Compile-time Checking of Assertions

In the context of compile-time checking, a well known example of a language for
expressing properties of programs are type systems, which have been proved to be
very useful for compile-time bug detection. Type systems allow providing high
level description of program procedures. An example of these descriptions may
be

:— type gsort(list,list).

Which states that both arguments of the predicate qsort are of the type list.
Usually, the existence of a type checker is assumed and type declarations are
checked at compile-time. Types can also be checked at run-time for input data
which is not available at compile-time. The language for providing type declara-
tions (the type system) is restricted in such a way that compile-time checking of
types is (quasi) decidable, i.e., if the program is correct w.r.t. the given type dec-
larations, the type checker will be (in most cases) able to prove it. If the program
does not pass the type check, it is rejected and compilation aborts. However, if
the program passes the type check, it is guaranteed that the program will not
go wrong w.r.t. the given type declarations. Unfortunately, the fact that type
systems are expected to be decidable greatly restricts the kinds of properties
which are expressible in type declarations. Also, in many cases type declarations
are mandatory for all program procedures and we would like to have optional

assertions which can be incrementally added during debugging.
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For other contexts which are not directly related to compile-time checking,
such as replacing the oracle in declarative debugging, run-time checking, provid-
ing information to the optimizer, and general communication with the compiler,
we may be interested in expressing properties which do not fall into type systems,
and which are possibly undecidable at compile-time. Example of properties of
interest which lay out of type systems are “The second argument of gsort is an
ordered list”, “If we execute gsort with the first argument being the list [2,1]
on termination of the execution the second argument should be [1,2]”, “If we
call gsort with the first argument a ground list and the second a variable, com-
putation should be deterministic, not fail and terminate”. Thus, since it is our
objective that the assertion language be common for all the above contexts, the
resulting assertion language needs to be more general than type systems while
at the same time include them. In this we follow the spirit of [BCHP96, Cou97].
However, we do not discard the definition and use of a decidable type system if
so desired. Even though the properties given in assertions may not be decidable
in general, it is our view that assertions should be checked as much as possible
at compile-time via static analysis. The inference system should be able to make
conservative approximations in the cases in which precise information cannot be
inferred (and some assertions may remain unproven).

Note that if the properties allowed in assertions are not decidable the approach
to the treatment of “don’t know” when trying to statically prove a possibly unde-
cidable assertion has to be weaker than the one used for strong type systems. The
case that the analysis is not capable either to prove nor disprove that an assertion
holds may be because we do not have an accurate enough analysis available or
simply because the assertion is not statically decidable.

8.2.2 Defining Executable Assertions

In both run-time checking and replacing the oracle, the properties in assertions

need to be executable. Thus, a property can be any of the following:

e a built-in predicate or constraint. E.g. ground(X), X>5. Extra-logical
properties may also be used, such as var(X). However, for some tools not

all built-in predicates may be allowed.
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e a user-defined expression in a restricted syntax. Such restricted
syntax needs to have a defined translation into (a subset of) the underlying
CLP language. Usually such restricted syntax ensures that any property
expressible in it is statically decidable. An example are user-defined types
using regular types. E.g., intlist ::= [] | [integer|intlist]. which
is equivalent to the program
intlist([1).
intlist ([X|T]) :- integer(X), intlist(T).

e a user-defined program. Similar in concept to the one above but rather
than in a restricted syntax, the user can define his own properties using
the full underlying CLP language. As a result, the properties defined may
not be statically decidable. As an example, consider defining the predicate
sort(A,B) to check that a more involved algorithm such as qsort(A,B)

produces correct results.

e an expression including conjunctions, disjunctions, and/or negations

of properties.!

Depending on the use we make of each assertion and the particular imple-
mentation of the diagnosis tool we may restrict the set of properties treated by
the particular tool. Properties which are not allowed may still be present but
they will simply be ignored by such tool. For replacing the oracle we would like
our executable specifications (assertions) to always terminate. In the context of

run-time checking, we require:

e that the execution of the code which performs the run-time checking does

not introduce non-termination into a terminating program.

e that the code for run-time tests does not modify the constraint store. This
way we ensure that run-time checking will not introduce incompleteness
w.r.t. the original program, i.e., for a given query, any D-atom which is an
instance of an answer in the original program must also be an instance of

an answer in the program with run-time tests.

!Except for the Comp_prop properties introduced in Section 8.4.4.
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8.3 Assertions for Declarative Properties

Semantics associates a meaning to a given syntax (generally of a program). Foun-
dations and examples of program semantics will be presented in Section 9.2. By
now, it suffices to mention that one of the main features of Constraint Logic Pro-
gramming is the existence of a declarative semantics which allows concentrating
on what the program computes and not on how it should be computed. It is
desirable to exploit this feature by the use of declarative assertions as much as

possible. This is done for example in declarative debuggers.

As an example, consider the case of CLP(D), where D is the domain of
values. In classical logic programming D is the Herbrand Universe and in CLP(R)
D is the set of real numbers and of terms (for example lists) containing real
numbers. The declarative semantics in CLP (D) associates a D-model to each
program P which corresponds to the meaning of P, which is denoted [P]. [P]
is a set of D-atoms, where a D-atom is an expression p(ds,...,d,) with n > 0
where p is an n-ary predicate symbol and d; € D. [P] can be computed as
[P] = 1p(Tp) = U2, TH(D) where Tp is the immediate consequence operator.

Rather than stating properties of the whole [P] we find it more convenient to
be able to state properties of the individual predicates which are part of P. For
this we define the projection of [P] over a predicate p and we denote it [P], as
{p(X1,...,Xn) € [P]}, i.e., the set of D-atoms in the D-model of the program

which correspond to predicate p.

If the program is not correctly written, i.e., it contains bugs, [P] will not
correspond to our intention. We will denote by Z the intended D-model of the
program. Thus, our program will be correct and complete iff [P] = Z. Simi-
larly Z,, is defined as {p(X1,...,Xn) € I}, i.e., the set of D-atoms in Z which

correspond to predicate p.

Assertions for declarative properties allow expressing properties of Z,, for any
predicate p of P. These properties can be seen as (partial) specifications of the
program predicates. Ideally, it would be desirable to express for a predicate p
exactly Z, (an exact specification), but such specification is often approximated
for different reasons. Different kinds of approximations may be used (see Chap-
ter 9for details). In our language we will consider two kinds of assertions which

correspond respectively to superset (or correctness) approximations and subset
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(or completeness) approximations.

8.3.1 Superset (Correctness) Declarative Assertions

The most common kind of declarative assertion concerns correctness. A superset
assertion A, for a predicate p identifies a superset approximation of Z, , i.e.,
A, D Z,. In our assertion language they are written ‘:- inmodel Pred => Cond,
where Pred is a normalized D-atom p(x1,...,2,),n > 0and x4, . . ., T, are distinct
variable symbols (as in all the assertions presented in this chapter). It should be
interpreted as “any D-atom p(dy,...,d,) € [[P]]p should satisfy the property
Cond’. For example, the following assertion:

:— inmodel gsort(A,B) => list(B).

states that it is our intention that the result of ordering a list by means of the
predicate gsort should be a list.

Superset declarative assertions are used for correctness debugging. Consider
an assertion A, for predicate p. If 3z € [[P]]p s.t. x € A, then z is a symptom
which indicates that the program is not correct. For example, given the above
superset assertion if the D-atom gsort(a,a) € [P],,,,, as gsort(a,a) & A, then

our program is not correct.

8.3.2 Subset (Completeness) Declarative Assertions

We may also be interested in expressing that some (set of) D-atom(s) must
definitely be in the model of a predicate p. A subset assertion A, for a predicate p
identifies a subset approximation of Z,, , i.e., A, C Z,. In our assertion language
they are written ‘:— inmodel Pred <= Cond (note the reversed direction in the
arrow). They should be interpreted as “any D-atom p(ds, ..., d,) which satisfies
Cond should be in [P]”. For example, the following assertion where the symbol

== gstands for term identity:
:- inmodel gsort(A,B) <= (A == [2,1], B == [1,2]).

states that [1,2] is a correct ordering of the list [2,1]. Subset declarative

assertions are useful for completeness debugging. For example the above assertion
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can be used to conclude that our program is incomplete if gsort([2,1],[1,2]) &
[P] js0ps 1--, the existing code for gsort cannot be used to determine that one
(in this case the only) result of ordering [2,1] is [1,2].

Even though declarative assertions are very useful during debugging and we
should exploit them as much as possible, there are properties of programs which
lay out of the declarative semantics and which are of interest, for example, during
performance debugging. Thus, additional assertions are required for the case
of operational properties, i.e., those which refer to the way in which the actual
computation is performed and thus are only captured using operational semantics.
Indeed, the rest of assertions presented in this chapter are mainly related to

operational properties. Also, they are all superset approximations.

8.4 Basic Operational Predicate Assertions

Operational predicate assertions® are used to express (operational) properties
which concern all the invocations of the given predicate during execution of the
program. We first illustrate the use of this kind of assertions with an example.
Figure 8.2 presents a CIAO program [Bue95] which implements the quicksort
algorithm together with a series of predicate assertions which express properties
which the user expects to hold for the program.> Three assertions are given for
predicate qsort/2 (A1, A2, and A3) and two for predicate partition/4 (A4 and
A5). The meaning of the assertions in this example is explained in detail below.

Many features may be expressed in predicate assertions. Different sorts of
predicate assertions are used for different features within the execution of the
predicate. Also, more than one basic predicate assertion (of the same or different
kinds) may be given for the same predicate. In such a case, all of them should
hold and composition of basic predicate assertions should be interpreted as their

conjunction.

2In the remainder of this chapter we will often write “predicate assertions” when referring

to “operational predicate assertions”.
3Both for convenience, i.e., so that the assertions concerning a predicate appear near its

definition in the program text, and for historical reasons, i.e., mode declarations in Prolog or
entry and trust declarations in PLAI, we write predicate assertions as directives. Depending
on the tool different choices could be implemented, including for example separate files or
incremental addition of assertions in an interactive environment.
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:- calls gsort(A,B) : list(A).
:— success gsort(A,B) : 1list(A) => list(B).

:- comp gsort(A,B) : (list(A),var(B)) + does_not_fail.

gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort (L2,R2),
gsort (L1,R1),
append (R1, [X|R2],R).
gsort([1,[1).

:- calls partition(A,B,C,D) : list(A).
:— success partition(A,B,C,D)
(1ist (A) ,ground(B))
=> (1ist(C),list(D)).

partition([],B,[1,[]).

partition([E|R],C, [E|Left1] ,Right):-
E<C, !,
partition(R,C,Leftl,Right).

partition([E|R],C,Left, [E|Right1]):-
E >= C,
partition(R,C,Left,Right1).

Figure 8.2: Predicate assertions

In this section together with each kind of basic predicate assertion we will give
a possible translation scheme of assertions into code which will perform run-time
checking and will issue a warning message if any of the assertions does not hold.
Given a predicate p(X1,...,Xn) for which assertions have been given, the idea
is to replace the definition of p(X1,...,Xn) so that whenever p/n is executed

the assertions for it are checked and the actual computation originally performed
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by p/n is now performed by the new predicate p_int. Given the definition of a
predicate p/n as

p(til,...,tin):- body_1.

p(tmi,...,tmn) :- body_m.

it gets translated into:
p(X1,...,Xn):-

check_assertions_and_ezecute ‘‘p_int(X1,...,Xn)’’.
p-int(t11,...,tin):- body.-1.
p-int(tmi,...,tmn) :- body.m.

The definition of p_int corresponds to the definition of p/n in the original
program and is independent of the assertions given for p/n. The checks present
in the new definition of predicate p/n depend on the existing assertions for such
predicate. In what follows, A(p/n) represents the set of current assertions for

predicate p/n.

8.4.1 Properties of Success States

They are probably one of the most common sorts of properties which we may be
interested in expressing about predicates. They are similar in nature to the post-
conditions used in program verification. They can be expressed in our assertion
language using the basic assertion ‘:- success Pred => Postcond’. It should be
interpreted as, “for any call of the form Pred which succeeds, on success Postcond
should also hold” . For example, we can use the following assertion in order to

require that the output of a procedure (gsort) for sorting lists be a list:
:— success gsort(A,B) => list(B).

An important thing to note is that in contrast to other programming
paradigms, in (C)LP, calls to a predicate may either succeed or fail. The post-

condition stated in a success assertion only refer to successful executions.
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Success assertions are also relevant because declarative semantics always refers
to properties of success states. In fact, any declarative assertion ‘:~ inmodel Pred
=> Cond can also be interpreted as a success assertion ‘:- success Pred=> Cond
due to correctness of the operational semantics (but not vice versa due to possible
incompleteness of the operational semantics).

A possible translation scheme of success assertions into run-time tests is:
let S be the set {Postcond s.t. ‘:- success p(X1,...,Xn)=> Postcond €
A(p/n)}. Then the translation is
pX1,...,Xn):-

p-int(X1,...,Xn),
check(S) .

Where the definition of predicate check is implementation dependent. Next,
we give a possible implementation of such predicate. Our aim is not to provide
the best possible implementation of the auxiliary predicates for run-time checking
but rather to provide examples which show the feasibility of the implementation.
In general it will check whether conditions given hold or not. If they hold, com-
putation will generally continue as usual. If they do not, usually a warning will
be given to the user. As usual in CLP languages, sets are implemented by means
of lists.
check ([1).
check ([Cond|Conds]) : -

call(Cond),!,
check(Conds) .
check ([Cond|Conds]) :-
warning(Cond) ,
check(Conds) .
No implementation is presented for the warning predicate. In general it will

print a message informing about an assertion which does not hold.

8.4.2 Restricting Assertions to a Subset of Calls

Sometimes we are interested in properties which refer not to all invocations of a
predicate, but rather to a subset of them. With this aim we allow the addition of
preconditions (Precond) to predicate assertions as follows: ‘Pred : Precond’. For

example, success assertions can be restricted and we obtain an assertion of the
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form ‘:- success Pred : Precond => Postcond’, which should be interpreted as,
“for any call of the form Pred for which Precond holds, if the call succeeds then
on success Postcond should also hold”. Note that ‘:- success Pred => Postcond’
is equivalent to ‘:— success Pred : true => Postcond'.

Assertions with a precondition are not required to hold for all calls to Pred,
but only for those of them which satisfy the precondition Precond. Thus, in a
sense this is a way of weakening predicate assertions. The following assertion (A2
in Figure 8.2) requires that if gsort is called with a list in the first argument
position and the call succeeds, then on success the second argument position
should also be a list.

:— success gsort(A,B) : list(A) => list(B).

The difference with respect to the success assertion of Section 8.4.1 is that
B is only expected to be a list on success of predicate gsort/2 if A was a list at
the call.

A possible translation scheme for success assertions with a precondition is:

let RS be the set {(Precond, Postcond) s.t. ‘:- success p(X1,...,Xn)
Precond => Postcond' € A(p/n)}. Then the translation is
p(X1,...,Xn):-

collect_valid postconds(RS,S),
p-int(X1,...,Xn),
check(S).

Where the predicate collect_valid_postconds/2 collects the postconditions
of all pairs in RS s.t. the precondition holds. Note that those assertions whose
precondition does not hold are directly discarded. A possible implementation of
such predicate is given in below.
collect_valid_postconds([1,[]).
collect_valid_postconds([(Pre,Post) |Conds],PostConds) : -

call(Pre),!,

PostConds = [Post|PCs],

collect_valid postconds (Conds,PCs) .
collect_valid postconds([_|Conds] ,PostConds) : -

collect_valid_postconds(Conds,PostConds) .
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8.4.3 Properties of Call States

It is also possible to use assertions to describe properties about the calls for a
predicate which may appear at run-time. This is useful for at least two reasons.
If we perform Goal-dependent analysis, (a variation of) calls assertions may be
used for improving analysis information (see Section 8.7.2). They can also be
used to check at run-time whether any of the calls for the predicate is not in the
expected set of calls (the “inadmissible” calls of [Nai97]). An assertion of the
kind ‘:- calls Pred : Cond must be interpreted as “all calls of the form Pred
should satisfy Cond’. An example of this kind of assertion is (A1 in Figure 8.2):

:- calls gsort(A,B) : list(A).

It expresses that in all calls to predicate gqsort the first argument should be
a list.

A possible translation scheme of calls assertions into run-time tests is: let C
be the set {Cond s.t. ‘:- calls p(X1,..,Xn): Cond € A(p/n)}. Then the
translation is
p(X1,...,Xn):-

check(C),
p-int(X1,...,Xn).

8.4.4 Properties of the Computation

The predicate assertions previously presented in this section allow expressing
properties about the execution state both when the predicate is called and when it
terminates its execution with success. However, many other properties which refer
to the computation of the predicate (rather than the input-output behaviour)
are not expressible. In particular, no property which refers to (a sequence of)
intermediate states in the computation of the predicate can be (easily) expressed
using calls and success predicate assertions only. Examples of properties of
the computation which we may be interested in are: non-failure, termination,
determinacy, non-suspension, etc. In our language this sort of properties are
expressed by an assertion of the kind ‘:- comp Pred : Precond + Comp-prop’,
which is interpreted as “for any call of the form Pred for which Precond holds,

Comp-prop should also hold for the computation of Pred”. Again, the field ‘:
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Precond’ is optional. As an example, the following assertion (A3 in Figure 8.2)
requires that all calls to predicate gsort with the first argument being a list and
the second a variable do not fail.

:— comp gsort(A,B) : (list(A) , var(B)) + does_not_fail.

Run-time checking of comp assertions is more difficult than that of calls and
success assertions. Given a property of the computation Comp_prop with n pa-
rameters, it is required to define a predicate with the same name Comp_prop and
n—+1 arguments. The first argument of the predicate is the run-time instantiation
of the call to the predicate to which the comp assertions relates (i.e., gsort (A,B)
above) and the following n are the parameters of the property. Note that execu-
tion of the predicate and checking of the property are both performed (perhaps
simultaneously) by this predicate of arity n+ 1. For example, given the property
does not_fail (with 0 parameters) which should be interpreted as “execution
of the predicate either succeeds at least once or loops”, we can use the following
predicate does not_fail of arity 1 for run-time checking of such property:

does_not_fail(Goal):-
if(call(Goal),
true, %% then

warning(Goal)). %% else

In this simple case, implementation of the predicate is not very difficult using
the if/3 builtin predicate of SICStus prolog. However, it is not so simple to code
predicates which check other properties of the computation and me may need
programming meta-interpreters for it. Note however that when the properties
are difficult (or even impossible) to code, it may be possible to approximate
them. Care must be taken that we always stay on the safe side, i.e., the code for
run-time checking may be incomplete (it does not detect that an assertion does
not hold), but it must be correct (it only flags that an assertion does not hold if
the assertion actually does not hold).

A possible translation scheme of comp assertions into run-time tests
is: let RC be the set {(Prec,Comp_prop) s.t. ‘:= comp p(X1,...,Xn) :
Prec + Comp_prop € A(p/n)}. Then the translation is
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p(X1,...,Xn):-
collect_valid_postconds(RC,C),
add_arg(C,p-int(X1,...,Xn),C1),
(C1 ==1[ ->
call(p_int(X1,...,Xn)) %% then

call 1ist(C1)). %% else

call list([1).
call list([C|Cs]):— call(C), call 1list(Cs).

Where the predicate add_arg/3 adds the goal p_int(X1,...,Xn) as the first
argument to any property of the computation. A possible implementation is given
below.

add-arg([1,_,[1).
add_arg([C|Cs],Goal, [NC|NCs]) : -

C=..[Functor|Args],
NC=.. [Functor,Goal|Args],
add_arg(Cs,Goal,NCs) .

Note that both success and calls assertions are in a sense special cases of
comp assertions as properties of call and success states can also be formalized
as properties of the computation. For example consider the following predicates

which could be used for checking calls and success properties at run-time:

calls(Goal,Prop):- success (Goal,Prop) : -
(call(Prop) -> call(Goal),
true (call(Prop) ->
> true
warning (Prop)), ;
call(Goal). warning (Prop)) .

the assertion :- calls p(X) : ground(X) could be written :- comp p(X) +
calls(ground(X)). Thus, an assertion language with only the comp predicate
assertion would suffice. However, calls and success assertions appear very often

in program debugging and their treatment (at least for run-time checking) is much
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simpler than that of the very general comp assertion. Also, in our language of
assertions, while conjunction, disjunction, and negation are allowed for properties
of the call and success states, only conjunction (but not disjunction nor negation)
are allowed in Comp_prop properties (see Section 8.9 for details). As a result, it
is interesting to have a dedicated predicate assertion for them and only use comp
assertions when the property is not expressible as calls nor success assertions.

8.5 Grouping Basic Assertions: Compound As-

sertions

In this section we introduce another kind of predicate assertions which can be
used in addition to the basic ones introduced in Section 8.4, i.e., both basic and
compound assertions may be given for a program. The motivation of introduc-
ing compound assertions is twofold. On the one hand, usually when more than
one success (resp. comp) assertions are given for the same predicate, the set of
success (resp. comp) assertions are meant to cover all the different uses of the
predicate. Thus, the disjunction of the preconditions in all the success (resp.
comp assertions) can usually be seen as a description of the possible calls to the
predicate. Thus, it should be desirable that a calls assertion is automatically
generated for the set of assertions, rather than having to add it manually. Second,
a disadvantage of basic assertions as presented in Section 8.4 is that it is often
the case that in order to express a series of properties of a predicate, several basic
assertions need be written. For this reason and with the aim of making assertion
writing not too tedious a task, we propose the use of a compound predicate asser-
tion which can be used as syntactic sugar for the basic assertions. Each compound
assertion is translated into 1, 2, or even 3 basic predicate assertions, depending
on how many of the fields in the compound assertion are given. The syntax of

compound assertions follows. Optional fields are given in square brackets.

:= pred Pred [: Precond| [=> Postcond] [+ Comp-prop).

[4

A compound assertion ‘:- pred Pred : Precond => Postcond + Comp-prop’
should be interpreted as “for any call of the form Pred which satisfies Precond the
computation of the call should satisfy Comp-prop and if the predicate succeed

on success of the execution Postcond should also hold”. As usual, giving no
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precondition is equivalent to ‘pred Pred : {rue’. For example, the following
assertion indicates that whenever we call gsort with the first argument being
a list, the computation should terminate and if the computation succeeds, on

termination the second argument should also be a list.

:— pred gsort(A,B) : list(A) => list(B) + terminates.

Field Translation if given Otherwise
=> Postcond | success Pred : Precond => Postcond 0]
+ Comp-prop | comp Pred : Precond + Comp-prop )

Table 8.1: Transforming compound into basic assertions.

Compound assertions are easily distinguished from basic ones as they always
start with the keyword Pred, while the latter always start with one of the key-
words calls, success, or comp. Table 8.1 presents how a compound assertion
is translated into basic success and comp assertions. Generation of calls as-
sertions from compound assertions is more involved. If the set of compound
assertions for a predicate Predis {A;,...,A,} and let A; =Pred : C; [=> S;]

[+ Comp;], then the most accurate calls assertion which may be generated is
calls Pred : V], C;

If only one compound assertion ‘:- pred Pred [: Precond| [=> Postcond] [+
Comp-prop|’ is given for a predicate, then we can generate the assertion ‘:- calls
Pred : Precond’. 1f more than a compound assertion for our predicate is given, it
is not correct to generate a calls assertion for each compound assertion. Several
assertions for the same predicate are interpreted as their conjunction (according to
Section 8.4), and the correct composition, as discussed above, is their disjunction.

For example, given the two following compound assertions for predicate gsort:

:— pred gsort(A,B) : numlist(A) => numlist(B) + terminates.
:— pred gsort(A,B) : intlist(A) => intlist(B) + terminates.

The calls basic assertion which could should be generated is:
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:— calls pred gsort(A,B) : (numlist(A) ; intlist(A)).

Note that when compound assertions are used, calls assertions are always
implicitly generated. If we do not want the calls assertion to be generated (for
example because the set of assertions available does not cover all possible uses
of the predicate) basic success or comp assertions rather than compound (pred)

assertions should be used.

8.6 Program-Point Assertions

When considering operational semantics of a program, in addition to predicates,
we also have the notion of program-points. Thus, program-point assertions are
inherently operational. Programs are sequences of clauses. Clauses are of the
form H:-B, where B is a (possibly empty) conjunction of literals. A literal
is either a call to a predicate or a constraint. By program point we refer to
those places in a program in which a new literal may be added, i.e., before the
first literal of a clause (if any), between two literals, and after the last literal of
a clause. Program-point assertions are used to express properties which should
hold whenever a given program-point is reached during execution of the program.
For simplicity, we add assertions of this type to a program by adding a new literal
at the corresponding program-point. This literal is a call to the predicate check.

Consider the following clause ‘p(X) :- q(X,Y), r(Y).’ Imagine for example
that whenever the clause is reached by execution, after the successful execution
of the literal q(X,Y), X should be greater than Y and Y should be positive. This
can be expressed by replacing the previous clause by the following one in which

a program-point assertion has been added:

pX):- q(X,Y), check((X>Y,¥>=0)), r(Y).

8.6.1 Properties which May Appear in Program-Point

Assertions

Two different kinds of properties may appear inside a check program-point as-

sertion:

200



e state property: they should hold for the current execution state whenever
execution reaches the corresponding program-point. Whatever happens in
future computation states does not affect whether the assertion holds or

not.

e forward property: these properties may not be decidable at the execution
state which corresponds to the program point in which they appear. How-
ever, they may become decidable at a later state in the execution. Thus, in
a way, this kind of properties refer to all the continuation of the execution.

Forward properties are harder to deal with than state properties in that state
properties refer to a single computation state and forward properties possibly
refer to a sequence of states, which in the worst case may be all the sequences of
forward computations. For this reason, we only allow constraints and conjunction
of constraints to appear in forward properties. However, for state properties, we
can use any property defined as presented in Section 8.2.2, including user-defined

programs and expressions built using conjunctions, disjunction and negation.

Checking forward properties correspond to performing an entailment check.
If the property is entailed by the current store, then the assertion is true. If
the current store entails the negation of the property then the assertion is false.
As entailment is monotonic, if a forward property is true with a constraint store
S it will also be so in any state with a constraint store S’ reached in forward
computation as S’ — S. This property can be exploited when performing run-
time checking, as once an assertion is true, there is no need to check it again and

it can be discarded.

An additional difficulty posed by forward properties is that they may become
false (and thus a warning should be given) in an execution state which is not
related to the program point at which the assertion appears. Thus, it may not
be easy to identify which assertion with a forward property does not hold. For
this reason, we add to program-point assertions with forward properties the field
Action which stores a call to a procedure which is in charge of giving relevant
information to the user about the assertion which does not hold. Thus, the syntax
of forward properties is fwd(Cond, Action). This also allows easily identifying

forward conditions.
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8.6.2 Execution of Program-Point Assertions

An important difference between program-point assertions and predicate asser-
tions is that while the latter are not part of the program, program-point assertions
are, as they have been introduced as new literals in some program clauses. In or-
der to avoid program-point assertions from changing the answers of the program,

we assume that the predicate check/1 is defined as
check (_Prop) .

i.e., any call to check trivially succeeds. This definition is overridden by the
clause

check(Property) :- call(Property).

when run-time checking is being performed. Note that if Property is
fwd (Property,Action), i.e., a forward property, for the execution of Property
we need a definition of the predicate fwd/2. This definition is not given because
it is system dependent. It can be based on delay declarations such as when/2 or
on conditionals such as if_then else in CHIP.

Three cases are possible when a forward property is checked at run-time. If S
entails Cond then Cond is satisfied. C'ond is not satisfied if S entails the negation
of Cond. If S does not entail C'ond nor its negation, i.e., Cond is consistent, but
not implied by the constraint store S, then no conclusion about Cond is taken
in the current state and C'ond will be repeatedly checked in other computation
states reached in forward execution.

Note that entailment check may not be complete in a given implementation
of a CLP language. This means that in some cases where an assertion with a
forward property does not hold (and for example a warning should be given), the
system is not capable of detecting it. However, correctness of run-time checking

is not an issue. If a warning is produced then the assertion is definitely false.

8.6.3 Example of Forward Property

Consider the following program fragment for which run-time checking is being

performed:

202



p(X):-
check(fwd( (X > 0), format("X not greater than 0"))),
r(X).

r(X):-
X>1.

If we execute p(X) with X a finite domain variable whose domain is initially
{-3,-2,-1,0,1,2,3}, when execution reaches the literal check(...), the prop-
erty is not decidable yet. However, during the execution of r (X) the domain of X
becomes {2,3}. Now the property becomes decidable and the assertion holds.

8.7 Assertions in Program Analysis (Actual

Properties)

As opposed to all the assertions discussed in previous sections, which express ex-
pected properties of the program if it were correct (intended properties), as seen
in Chapter 4, during the process of program development, validation and debug-
ging we are often interested in expressing properties of the actual program at
hand (actual properties), which may or may not satisfy the requirements. Thus,
we have to distinguish between properties which we would like the final program
to satisfy and properties of the actual program at hand. This greatly facilitates
communicating different modules which use analysis information, reusing infor-
mation and communication to/from the user.

This is achieved by simply adding in front of the assertion a tag which clearly
identifies whether the property expressed by the assertion should hold in the final
program or it actually holds for the program at hand. Three different types of

tags are considered

check They are used to mark the corresponding assertion as expressing an ex-
pected property of the final program (intended property).

true They indicate that the property holds for the program at hand (actual
property).

trust The property holds for the program at hand (actual property). The dif-

ference with the above is that this information is given by the user and it
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:- entry gqsort(A,B) : numlist(A).
:- true pred gsort(A,B) : numlist(A)
=> (numlist(A) ,numlist(B)).

gsort ([X|L],R) :-
true((ground([L,X]),var([L1,L2,R1,R2]))),
partition(L,X,L1,L2),
true((ground([L,L1,12,X]),var([R1,R2]))),
gsort(L2,R2),
true((ground([L,L1,L2,R2,X]),var([R1]))),
gsort(L1,R1),
true(ground([L,L1,L2,R1,R2,X])),
append(R1, [X|R2],R),
true(ground([L,L1,L2,R,R1,R2,X])).

gsort([1,[1).

:- true pred partition(A,B,C,D)
(numlist (A) ,number (B),var([C,D]))
=> (numlist (A) ,number (B) ,numlist(C) ,numlist(D)).

partition([]1,B,[1,[]1).

partition([E|R],C, [E|Left1],Right) :-
true((ground([C,E,R]) ,var([Left1l,Right]))),
E<C, !,
true((ground([C,E,R]) ,var([Leftl,Right]))),
partition(R,C,Left1,Right),
true(ground([C,E,Left1,R,Right])).

partition([E|R],C,Left, [E|Right1]) :-
true((ground([C,E,R]) ,var([Left,Right1]))),
E>=C,
true((ground([C,E,R]) ,var([Left,Right1]))),
partition(R,C,Left,Rightl),
true(ground([C,E,Left,R,Right1])).

Figure 8.3: Analysis results expressed as assertions

may not be possible to infer it automatically.
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Note that all the assertions presented in Chapter 4 have the tag trust.* Note
also that the assertions presented previously in this chapter refer to intended prop-
erties. Thus, they should have the tag check. However, for pragmatic reasons,
the tag check is considered optional and if no tag is given, check is assumed by
default. For example the assertion :- check success p(X) : ground(X) can
also be written :- success p(X) : ground(X). Regarding the program-point
assertions introduced in Section 8.6, they already have the keyword check. When
we want to mark them as true or trust we simply replace check by the corre-
sponding tag (see Section 8.9 for syntactic details). Examples of program-point
true assertions can be seen in Figure 8.3.

Sometimes it is possible to compute (approximate) at compile-time properties
about the run-time behaviour of a program. This process is in general tedious
and automatic analysis techniques have long been used for this task. Assertions
can be used for expressing the results of analysis. In this context, the assertions
express properties which the program at hand satisfies.

Predicate and/or program-point assertions may be generated according to the
user’s choice. Figure 8.3 presents the same program as in Figure 8.2 but rather
than with check predicate assertions, with both predicate and program-point
true assertions which express analysis results. The results have been generated
by goal-dependent type analysis. The role of the entry assertion is discussed
in Section 8.7.2 below. Program-point assertions contain information for each
program point and are literals of the true/1 predicate. Regarding predicate
assertions, for conciseness compound rather than basic predicate assertions are
usually produced by the analyzer. They follow the structure of the compound
assertions of Section 8.5 and have the following syntax:

:= true pred Pred [: Precond] [=> Postcond| [+ Comp-prop.

8.7.1 Aiding the Analysis

Yet another kind of assertions have been introduced in Chapter 4 and are in-
tended for use when additional information is to be provided to the analyzer in

order to improve its information. There, compound assertions, as introduced in

“Except for entry assertions. The difference w.r.t. trust assertions is discussed in Sec-
tion 8.7.2.
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Section 8.5, are used. However, as mentioned above, the tag trust may be added
to any predicate assertion (including the basic ones). An example of this kind of

assertions is:
:— trust success qsort(A,B) : list(A) => list(B).

which states that upon success B is a list provided that A was a list on call. Note
that the assertion:

:— check success qsort(A,B) : list(A) => list(B).

(where the check tag is optional) states that under the same conditions, B should
be a list if the program were correct, while the trust assertion states that B is
indeed a list.

Though similar in nature to true assertions, as they both refer to properties
of the actual program, the main difference between them is that while true
assertions have been generated by analysis and are automatically provable from
the program at hand, trust assertions are often not provable (either because
part of the program is not available or because analysis is not powerful enough)
but the analysis is instructed to trust such assertions. When performing global
analysis, a trust assertion for a predicate p may improve the analysis information
for the predicate p if the information it contains is better than that generated by
analysis. In that case it may also improve the analysis information of any other
predicate p’ which depends on p, i.e., p’ calls p w.r.t. the analysis information
available if the trust assertion were ignored.

Note that if analysis is goal-dependent (see below), the existence of trust
assertions for a predicate does not avoid analyzing the code of the corresponding
code if it is available, as otherwise the internal calls generated in this predicate
could be ignored during analysis resulting in incorrect analysis information. Only
after analysis of such a predicate may trust assertions be used to improve the
analysis information obtained. Note also that if the code of the predicate is not
available, the internal calls to predicates in the program that may appear during
execution of the missing predicate must have been declared in entry assertions
for soundness of the analysis. Refer to Chapter 4 for details.

It is important to mention that even though trust assertions are trusted by

the analyzer to improve its information unless they are incompatible with the
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information generated by the analyzer (see Chapter 4), they may also be subject
to run-time checking. The translation scheme for assertions with the tag trust is
exactly the same as the one given in Sections 8.4 and 8.6 for assertions with the
tag check. This should be an option when translating a program into another
one with run-time tests, whether only check assertions or both check and trust
assertions should be checked at run-time.

8.7.2 Goal-Dependent analysis

Goal-dependent analyses are characterized by generating information which is
valid only for a restricted set of calls, rather than for any possible call to the
predicate, as opposed to goal-independent analyses whose results are valid for
any call to the predicate. As goal-dependent analyses allow obtaining results
which are specialized (restricted) to a given context, they provide in general better
(stronger) results than goal-independent analyses.

In order to improve the accuracy of goal-dependent analyses, some kind of
description of the initial calls to the program should be given® With this aim,
entry declarations have been introduced in Chapter 4. Their role is to restrict the
starting points of analysis to only those calls which satisfy the assertion ‘:- entry
Pred : Precond. For example, the following assertion informs the analyzer that
at run-time all initial calls to the predicate gsort/2 have a list of numbers in the

first argument position:
:— entry gsort(A,B) : numlist(A).

The possibly more accurate information generated by a goal-dependent an-
alyzer using the above assertion is valid for any execution of qsort/2 with the
first argument being a numeric list, but may be incorrect for other executions.

Both entry and trust assertions have in common that they are provided
by the user and are assumed to be true. Thus, we may tend to think that
the assertion ‘:- entry Pred : Precond is syntactic sugar for ‘:- trust calls
Pred : Precond’. However, there is a subtle difference between the two sorts of

4

assertions above. ‘:- entry Pred : Precond states that Precond holds (only) for

5Predicate calls which are not initial will be called internal.
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all the initial calls to Pred, while ‘:- trust calls Pred : Precond states that
Precond holds for all (both initial and internal) calls to Pred.

Thus, entry assertions allow providing more precise descriptions of initial
calls (as the properties expressed do not need to hold for the internal calls) and
also they are easier to provide by the user (which does not need to understand
the internal behaviour of the program). This is possible because goal-dependent
analysis is capable of automatically computing (approximating) a description of
all the internal calls. Consider for example the following program with an entry

assertion.

:— entry p(A) : ground(A).
p(a).
p(X):- p(Y).

If instead of the entry we had written ‘:- trust calls p(A) : ground(A)’
then such assertion would be incorrect. For example the execution of p(b) pro-
duces calls to p with the argument being a free variable.

entry assertions may also be checked at run-time. As mentioned in Sec-
tion 8.7.1, this should be an option of the compiler when introducing run-time
tests in the program. The translation scheme is analogous to that performed for
calls assertions but is only applied to initial calls to the program.

8.8 Compile-time Checking of Assertions

The traditional approach to the use of check assertions is to check them at run-
time. As we have seen in previous sections, there is a great similarity between
the check assertions and the analysis information, which can also be expressed
as assertions.

An idea is then to use global program analysis to anticipate the results of
run-time checking of assertions. Of course, not always the analysis information
allows determining whether a given check assertion holds at run-time or not. If
a check assertion is proved not to hold, then we have detected a symptom which
indicates that the program is not correct and should be diagnosed. An important
thing to mention is that this not only allows finding bugs, but also it is possible

to do it at compile-time, and without having to run the program. This may be
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very important in cases in which either there are not many test cases or running
the program may be very expensive.

If the assertion is proved to hold, then there is no need to check whether it
holds or not, with the associated improvement in run-time performance. Note
that if the analysis is goal-dependent it may be possible to ensure that a (set of)
calls assertion for a predicate hold. However, if the analysis is goal-independent
it is not possible in general.

Another reason why compile-time checking of assertions is important is the
existence of properties of the computation which are not checkable by means
of run-time tests, but which could be proved (or disproved) at compile-time by
program analysis. An example of this is the property terminates. Clearly, this
property is semi-decidable, but not decidable in general and it is not possible to
introduce simple run-time tests which give a warning if it does not hold.

For the case of success and comp assertions, they can be proved to hold both
with goal-independent and goal-dependent analysis. However, if the analysis is

goal-dependent, two sub-cases may be distinguished:

e Postcond (resp. Comp-prop) holds for any call which satisfies Precond, or

e Postcond (resp. Comp-prop) holds for any call which analysis has computed

(approximated) as possible during run-time and such call satisfies Precond.

The first case is less problematic and the check assertion may be directly
converted into a true assertion. In the second case it is not possible to transform
the check into a true assertion as the assertion holds in our context, i.e., for the
class of calls described by our entry assertion as seen in Section 8.7.2. However,
if we would like to analyze the program for a new entry assertion, it could not
be used in the same way as the true assertions generated by the analyzer, which

hold for any additional entry assertion.

8.9 Syntax of Assertions
In this section the grammar of the assertion language is presented for reference.

declarative-assert ::= :- inmodel pred approz state-prop-exp

approx = =
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predicate-assert

pred-assert

calls

SUuccess

pred

args

comp

state-prop-exp

comp-exp

eflag

literal-assert

flag

prog-point-assert

prog-point-cond

fwd-cond
feond

| <=

1= eflag pred-assert

= calls

| success

| comp

w= calls pred

| calls pred : state-prop-erp

'= success pred => state-prop-exp

| success pred : state-prop-exp => state-prop-exp

= pred-name

| Pred-name(args)

= Var

Var, args
| g

= comp pred + comp-exp

| comp pred : state-prop-exp + comp-exp

= State-prop-exp , state-prop-erp

| state-prop-exp ; state-prop-exrp
| \+(state-prop-ezp)
| State-prop

= comp-exp , comp-exp

| Comp-prop

= check

| true
| trust

| €

== flag ( Goal , comp-exp )
:= check

| true
| trust

flag C prog-point-cond )

1= state-prop-exp

| fwd-cond

= fwd( feond , Action )

== Constraint
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compound == eflag Pred precond postcond computation

precond = : state-prop-exp
| €

postcond = => state-prop-exp
| €

computation =+ comp-exp
| €

There are some non-terminals in the grammar which are not defined. This
is because they are constraint-domain and/or platform dependent. They can be
easily distinguished in the previous grammar because their name starts with a

capital letter:

Pred-name As we are interested in having an assertion language which looks
homogeneous with the CLP language used, we admit as Pred-name any
valid name for a predicate in the underlying CLP language. Usually, non-

empty strings of characters which start with a lower-case letter.

Var It corresponds to the syntax for variables in the CLP language. Usually,
non-empty strings of characters which start with a capital letter.

State-prop As seen in Section 8.2.2, as built-in predicates and user programs may
be used as State-prop, their syntax depends on the syntax of the language
and the set of built-ins of the system.

Comp-prop They correspond to the properties of predicate computation intro-
duced in Section 8.4.4.

Goal It corresponds to the syntax for goals in the CLP language. Usually, non-
empty strings of characters which start with a lower-case letter.

Constraint Their syntax depend on the language and the particular implemen-

tation.

Action Tt is a call to a given procedure which will handle assertions which do not

hold. Additionally they are assumed to succeed in finite time.
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8.10 Chapter Conclusions

Assertions allow expressing properties of programs. Many kinds of properties may
be expressed and assertions may be used in many different contexts. Thus, many
kinds of assertions exist. We have proposed an assertion language for constraint
logic programs which is general in that it can be used in many different contexts
and for different purposes and which is as uniform as possible. This allows com-
munication among the user and the different tools and facilitates the implementa-
tion of an integrated development and debugging environment in which different
tools co-exist. Also, the high-level nature of constraint logic programming allow
expressing properties in the underlying programming language. This may con-
tribute to encourage the programmer to actually write and use specifications as
this can be done in a language the programmer is familiar with.

In order to show the feasibility of run-time checking and to help clarify the
semantics of assertions, a scheme for run-time checking is presented which given a
program and a (partial) specification given in the proposed language of assertions
produces a new program which when run may detect that some assertions do not
hold. In such case a warning is given to the user. Diagnosis should then be
performed in order to detect and correct the error in the program.
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Chapter 9

The Role of Semantic
Approximations in Program

Debugging

During program development and debugging, several tools may be used which
deal with (approximations of the) program semantics in one way or the other.
Example of such tools are automatic validation tools, declarative debuggers, pro-
gram analyzers, etc. These tools also have in common that both the semantics
of the current program and the semantics of the program we aim at achieving
are often compared. In the work presented in this chapter we give a uniform
formulation of the “problems” which have to be dealt with in a wide set of such
tools. The formulation is very general and it is only assumed that the program
semantics used is in the class of fixpoint semantics. It is then studied the effect
of using approximations rather than the exact program semantics when solving
such problems. The case of using abstract interpretation in order to approximate
program semantics is studied in detail. Finally, we propose an advanced archi-
tecture of tools for program development and debugging capable of dealing with
approximations of program semantics. The (approximations) of program seman-
tics in such environment will be expressed using the assertion language proposed
in Chapter 8.
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9.1 Introduction

A central problem in program development is obtaining a program which satisfies
the user’s expectations. When considering a given program, a natural question
is then whether or not it fulfills expectations of some kind (requirements). To be
able to formulate this question, some formal or informal way of specifying such
requirements is needed. That is, a (formal or informal) program semantics is
needed, in which what the program computes and what it is required to compute

can be expressed.

It may then be possible either to wverify that the program satisfies the re-
quirement for every computation (in the considered class), or to show a specific
computation where the requirement is violated. The process of identifying the
part of the program responsible for the violation is referred to as diagnosis. The
program then needs to be modified to correct the error. Since the requirement
documentation is often not complete, the user’s requirements are often given as
approzimations, i.e., safe specifications of (parts of) the intended semantics of
the program. The process of debugging consists of the study of the program
semantics, observation of error symptoms, localization of program “errors” and
their correction until no symptom can be observed anymore and the program is

considered correct.

Semantic approximations have been used in program validation, in declarative
diagnosis, and in program analysis. This chapter gives a common view of these
techniques from the perspective of debugging. The objective is to explore possi-
ble uses of approximations for debugging purposes. The presentation is organized
as follows. First, some notions on program semantics are given in Section 9.2,
mainly by means of examples. Then, validation problems, diagnosis by proofs,
and declarative diagnosis are described in terms of set-theoretic relations in Sec-
tion 9.3. Next, the effect of using approximations rather than the exact sets for
the intended semantics is studied in Section 9.4. In Section 9.5 such relations on
set approximations are reformulated for the special case of abstract interpreta-
tion. Finally, Section 9.6 proposes an advanced architecture of tools for program
validation and debugging.

We keep the basic discussion quite general, in that we only impose some re-

strictions on the way the different semantics are formalized. We illustrate the
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general discussion by very simple examples referring to Constraint Logic Pro-
gramming (CLP) [JM94].

9.2 Actual and Intended Semantics

Semantics associate a meaning to a given syntax (generally of a program). A
particular semantics captures some features of the computations of a program
(sometimes called the “observables”) while hiding others. Different kinds of se-
mantics can be used depending of the features to be described.

In this chapter we restrict ourselves to the important class of semantics re-
ferred to as fizpoint semantics. In this approach a (monotonic) semantic operator
(which we refer to as Sp) is associated with each program P. This Sp function op-
erates on a semantic domain which is generally assumed to be a complete lattice
or, more generally, a chain complete partial order. The meaning of the program
(which we refer to as [P]) is defined as the least fixpoint of the Sp operator, i.e.,
[P] =lfp(Sp). A well-known result is that if Sp is continuous, the least fixpoint
is the limit of an iterative process involving at most w applications of Sp and
starting from the bottom element of the lattice.

Example 9.2.1 An example of a set-based, fixpoint semantics for (constraint)
logic programs is the traditional least model semantics [JM94], briefly discussed
in Section 8.3. The semantic objects in this case are so called D-atoms. A D-atom
is an expression p(ds, ..., d,) where p is an n-ary predicate symbol, di, ...,d, € D
and D is the domain of values. For example, in classical logic programming D
is the Herbrand universe; for CLP(R) D is the set of real numbers and of terms
(for example lists) containing real numbers!'.

The semantic operator for program P is Tp (the immediate consequence op-
erator) and [P] = lfp(Tr) = U2, Th(0). An important property is that [P] is
the least D-model of the program. Any ground instance? of a computed answer

1Usually it is assumed that D is given together with a fixed interpretation of the symbols
that can occur in constraints. For instance for CLP(R), + is interpreted as addition and > as
the “greater than” relation on reals.

2In CLP, by a ground instance of a constrained atom A ¢ ¢ we mean any D-atom Af such
that cf is true; here A is an atom, ¢ a constraint and 6 is a valuation assigning elements of D
to variables.
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(for an atomic query) is a member of [P].

For example, given the following CLP program, over the domain of integers:

sorted([]).
sorted([Y]).
sorted([H1,H2|T2]) :- H1 > H2, sorted([H2|T2).

we have that [P] = {sorted([])} U {sorted([X]) | X € D} U
{sorted([X1,...,Xn]) | n > 2, Xy > --- > X, }. So for instance [P] con-
tains sorted([7]), sorted([a]), sorted([[]]), sorted([2,1,0]) and does not contain
sorted([0, 2]), sorted([2,1, a]).

Example 9.2.2 Another example of a fixpoint semantics is the traditional
“call-answer operational semantics” for CLP programs (see, e.g., [GHBT96]).
The semantic objects in this case are pairs of constrained atoms. The pro-
gram is assumed to contain a query or “entry point”. [P] contains all the
call-answer pairs that appear during program execution for the given query
or entry point. For example, given the CLP program above and the query
“— X =[1,Y], sorted(X)”, and, assuming standard left-to-right, depth-first con-
trol, we have [P]] = {(sorted(X) < X = [1,Y],sorted(X) «+ X = [L,Y]A\Y <
1), (sorted(X) < X = [Y], sorted(X) <+ X = [Y])}.

Both program validation and diagnosis, to be discussed more precisely later,
compare the actual semantics of the program, i.e., [P], with an intended se-
mantics for the same program. This intended semantics embodies the user’s
requirements, i.e., it is an expression of the user’s expectations. The nature of
the requirements considered in validation and diagnosis is very wide. For ex-
ample, one can discuss declarative diagnosis/validation (when the requirements
concern the relation specified by the program), diagnosis/validation of dynamic
properties (when the requirements concern properties of the execution states),
performance diagnosis/validation (when the requirements concern the efficiency
of execution), etc. Thus, different kinds of user’s expectations require different
kinds of semantics in order to be able both to adequately express the require-
ments and to extract relevant meaning from the program to compare with the

requirements.
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Example 9.2.3 In CLP, requirements regarding characteristics of the computed
answers of a program can in general be expressed and checked using the least
D-model semantics of Example 9.2.1, whereas if the requirements also refer
to characteristics of the calls that occur during execution then the operational
semantics of Example 9.2.2 (using sets of pairs of constrained atoms) would need
to be used.

We focus here on the common case in which the actual semantics [P] of a
program corresponds to a set and the semantic domain is the lattice of sets with
ordering being set inclusion. A natural question is thus how the user’s intention
can be represented. For the time being, let us assume that Z belongs to the
same semantic domain used for [P]. The semantic object Z can be seen as the
corresponding semantics of an intended program. But this program does not exist
(neither as program, nor in mind) in general. Thus, usually there is no expression
of Z, but rather partial descriptions of it.

Example 9.2.4 If the program of Example 9.2.1 is intended to compute all
integer lists that are sorted, the programmer can approximate this intention with:

T, = {sorted([X]) | X is an integer}

Zy = {sorted(L) | L is an integer list}

Obviously, Z; represents a subset of the programmer’s intention, since it repre-
sents only sorted integer lists of length one. Similarly, 75 represents a superset

of the programmer’s intention; it does not require that the lists are sorted.

9.3 Validation and Diagnosis in a Set Theoretic

Framework

This section summarizes well-known notions related to program validation (see,
e.g., [Der93, DM93]), diagnosis by proof, and declarative diagnosis [Sha82, Fer87].
The problems found in these disciplines are summarized and discussed in a set
theoretic framework for clarity. They can also be formulated in a lattice theoretic

setting, but the set theoretic presentation simplifies the discussion.
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9.3.1 Validation

Validation aims at proving certain properties of a program which are formally de-
fined as relationships between a specification Z and the actual program semantics
[P]. Table 9.1 lists validation problems in a set theoretic formulation.

Property Definition
P is partially correct w.r.t. Z | [P]CZT
P is complete w.r.t. Z Z C [P]
P is incorrect w.r.t. 7 [PlZZ
P is incomplete w.r.t. T Z Z[P]

Table 9.1: Set theoretic formulation of validation problems

Note that we do not assume that Z is unique. We simply denote specifi-
cations as Z, but it can very well be the case that different specifications are
given for verifying different properties. In particular, when dealing with partial
correctness, Z describes a property which should be satisfied by all elements of
the semantics [P]. In other words, Z corresponds to expected properties of all
results or all behaviours of the program (depending of the kind of semantics).
When dealing with completeness Z characterizes a set of elements which should
be in the semantics [P], i.e., Z describes some expected results or behaviours of
P. Proving incorrectness and incompleteness is also of interest, as it indicates
that the program does not satisfy the specifications and diagnosis of incorrectness

or incompleteness should be performed.

9.3.2 Diagnosis by Proof

The existing proof methods for correctness and completenes are usually based on
some kind of induction. Table 9.2 presents well-known sufficient conditions which
can be used for program verification and diagnosis.

In the table (*) stands for an additional requirement. The sufficient condition
for completeness of P w.r.t. Z, requires not only co-inductiveness of Z for P but
also that Sp has a unique fixpoint. This last condition holds for a large class of

programs (e.g., the acceptable programs in [AP93]).
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Property Definition Implies

Z inductive for P Sp(Z)CT P partially correct w.r.t. 7
Z co-inductive for P Z C Sp(2) P complete* w.r.t. Z

7 not inductive for P Sp(Z) — I # 0
T not co-inductive for P | Z — Sp(Z) # 0

Table 9.2: Set theoretic formulation of diagnosis by proof problems

Failures in proving the conditions may possibly indicate that the program has
an error. An incorrectness error is a part of the program that is the reason for
Sp(Z) — I # (. An incompleteness error is a part of the program that is the
reason for Z — Sp(Z) # (. The operator Sp in any kind of semantics is defined
in terms of the constructs of the program P. Thus, it makes it possible to define
precisely what is meant by the informal statement “is the reason”. For CLP
programs, an incorrectness error is a program clause and an incompleteness error
is a program procedure (a set of the clauses defining a certain predicate symbol).

If the program is incorrect or incomplete, then it includes a corresponding
error. One can try to make a proof that Z is inductive (or co-inductive) w.r.t.
the program. For an incorrect or incomplete program some constructs will be
identified where the corresponding conditions cannot be proved. These constructs
are possible error locations. As the conditions presented in Table 9.2 are not
necessary, a fragment of the program localized as erroneous may or may not
correspond to a bug in the program.

Example 9.3.1 We show two examples for which a proof of partial correctness
is impossible. In both cases the specification is not inductive for the program.
In the first case the program is incorrect w.r.t. the specification. In the second,
the program is correct but a correctness error is detected because of a too weak
specification. The operator Sp is the immediate consequence operator Tp for
logic programs.

Consider the program P from Example 9.2.1 and the specification Z, from
Example 9.2.4 (so the arguments of sorted are required to be integer lists). An

attempted correctness proof fails, Z5 is not inductive w.r.t. P, the reason is the
clause sorted(X) < X = [Y], as sorted(|a]) € Sp(I2) and sorted([a]) & Z,. This
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clause is also the reason that the program is not partially correct w.r.t. Z,.

Consider the following CLP program (), over the domain of integers. It is
basically the program from Example 9.2.1 in which the new predicate order/2
has been added.

sorted([]).

sorted([Y]) (- Y > Z.

sorted([H1,H2|T2]) :- order(H1,H2), sorted([H2|T2]).
order(X,Y) :-X>1Y.

Assume that a partial specification requires the argument of sorted/1 to be a list
of integers. Nothing is required about predicate order/2. This means that, in
our set-theoretical setting, Z contains all the D-atoms of the form order(X,Y)
(X,Y € D) and all the atoms of the form sorted(L), where L is a list of integers.
Notice that @ is correct w.r.t. Z. However, Z is not inductive w.r.t. @ (as Sg(Z)
contains for instance sorted([a,1])). The second clause is the reason. Strength-
ening the specification for order/2 is necessary to obtain a correctness proof. We
add a requirement that both arguments of order/2 are integers and obtain Z',

which is inductive w.r.t. Q).

Note that the situation of weak correctness requirements presented above is
equivalent to having an incomplete but correct program which presents a correct-
ness error using conditions of Table 9.2 (or vice versa). However, the experience
with type checking of logic programs (see, e.g., [AM94, HL94] ) shows that failure
in proving local validation conditions for a clause is often a good indication that

the clause is erroneous.

9.3.3 Declarative Diagnosis

In contrast to diagnosis by proof, the declarative diagnosis concerns the case when
a particular (test) computation does not satisfy a requirement.

We learn that a program P is incorrect (i.e., not partially correct w.r.t. 7)
when we find out that it produces a result x such that x € Z. Such a result z
is called an incorrectness symptom. Similarly, a program P is incomplete when
it does not produce some expected result, in other words when there exists some

x C T such that z € [P]. Such z is called an incompleteness symptom.
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Example 9.3.2 In the program of Example 9.2.1 with the specifications of
Example 9.2.4, note that sorted([a]) € [P] but sorted([a]) & Z,. Therefore,
such an atom is an incorrectness symptom w.r.t. Z,. If in that program the first
clause was missing then sorted([]) € I; would be an incompleteness symptom
w.r.t. Zy, since, without that clause, sorted([]) ¢ [P]-

Briefly, declarative diagnosis starts with a symptom of incorrectness (resp.
insufficiency) and aims at localizing an erroneous fragment of the program. A
declarative diagnoser localizes an error by comparing elements of the actual se-
mantics involved in computation of the symptom at hand with user’s expecta-
tions. The diagnoser will re-explore computations of symptoms obtained w.r.t. Z,
and identify errors related to such symptoms, i.e., parts of the program which ex-
plain why Sp(Z) € Z (resp. T  Sp(Z)). The erroneous fragment of the program
localized in that way depends on the nature of Sp.

Example 9.3.3 Consider (constraint) logic programming and its logical seman-
tics. So Z and [P] are interpretations over some domain. In the case of incor-
rectness, if there exists an z s.t. © € Sp(Z) and x ¢ Z then there exists a clause
H « B of the program P which is not valid in Z (for some valuation, H is false
and B is true). It can be proved that an incorrectness diagnoser finds such a er-
roneous clause for any incorrectness symptom. In the program of Example 9.2.1,
with Z, as in Example 9.2.4, we have:

Tp(Zo) = {sorted([])}U
{sorted([X]) | X € D} U
{sorted([X,Y|L]) | X,Yare integers, X > Y, [Y|L] is an integer list }

in which sorted([a]) is included. The clause responsible for this symptom is the
second one in the program.

In the case of incompleteness, if there exists an y s.t. y € Z and y & Sp(Z)
then for each clause H < B of P if y is a value of H under some valuation v (an
instance of H) then v(B) is false in Z. So the erroneous fragment found in this

case is a set of clauses (which begin with the same predicate symbol).

In the process of diagnosing, the actual semantics of the program [P] is

compared with the user’s expectations Z. This is achieved by asking queries
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about elements of both [P] and Z to an oracle. In practice the oracle is usually
the programmer, although an executable specification may also be used (we will
come back to this issue later).

Three families of queries are considered: one used in incorrectness error search
and two used in incompleteness error search. A wuniversal query asks whether a
given subset @ of [P] is correct w.r.t. Z (i.e. whether @ C Z). In the case of
CLP, where 7 is a set of D-atoms, @) is usually the set of ground instances of a

given constrained atom. An example universal query is:
Is sorted([X,1]) + X > 2 correct?

The answer is YES, assuming that Z = {sorted(L) | L is a sorted integer list}.
Under the same assumption, the answer to the wuniversal query about
sorted([X,1]) «+ X > 01is NO.

An ezistential query asks whether a given set (@ has an element in Z (i.e.
whether Q NZ # 0). If Q is the set of ground instances of a constrained atom
A+ C, then QNZ # () is equivalent to satisfiability of the formula C A A in the
interpretation Z. Here is an example existential query (in which the constraint

C' is empty):
Is sorted([X,Y]) satisfiable?

A covering query asks if a given set ) contains all the elements of a given
set @) that are in Z (so it asks whether @ NZ C @'). It is a generalization of an
existential query (when @' = @)). An example:

Do {sorted([2,1]), sorted([3,1])} cover all correct instances of
sorted([X,1]) + X<47?

Table 9.3 shows for all possible pairs of query/answer used in a declarative

diagnoser the corresponding problem in a set theoretic setting.

9.4 Approximating the Intended Semantics

Using the exact intended semantics for automatic validation and diagnosis is
in general not realistic, since the exact semantics can be only partially known,

infinite, too expensive to compute, etc. In this section we consider the debugging
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Query Answer | Definition ‘
Universal yes QRQCT

no QLI
Existential yes QNI #(

no QNI =1
Covering yes (RNI)CqQ

o | QN0 ZQ

Table 9.3: Set theoretic formulation of problems in a declarative diagnoser

process in terms of approrimations of the intended semantics. Approximations of
the actual program semantics will be considered in the following sections.

An over-approximation of a value A (a “superset” if the semantic domain
consist of sets), denoted AT, satisfies A C AT. Similarly, two other types of
approximation are frequently considered, under- (or “subset”) approximation,
denoted A=, A~ C A, and “existential” approximation, denoted A', A'N A # (.
In what follows, a prime symbol will used to distinguish an approximation A’
from the exact value A.

Notice that if A7 and A are over-approximations of A then also A7 N A7 is
an over-approximation of A. Moreover, it is a better approximation than either
Al or AF. A similar property holds for under-approximations w.r.t. U. However,

existential approximations do not enjoy this property.

Example 9.4.1 Consider the CLP program given in Example 9.2.1, and its
specification in Example 9.2.4. We have that Z; is an under-approximation of
the intended semantics Z, and Z, is an over-approximation of it. Therefore, 7,
(resp. Z) is a specification of kind Z~ (resp. ZT), and used in proving properties
w.r.t. Z. A different thing is that while trying to prove properties w.r.t. Z; (resp.
T,) we may try to use also approximations of the form Z| (resp. Z; ) or Z; (resp.
7).

If we approximate Z, when dealing with partial correctness, approximations
of the type Z* should be used, as [P] € Z* = [P] € Z, i.e., the program
is definitely incorrect w.r.t. Z. When dealing with completeness, we should use
approximations of either type I~ or Z' as both Z~ ¢ [P] and Z' N [P] = @
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imply that Z Z [P] i.e., the program is definitely not complete w.r.t. Z. respec-
tively. However, no interesting conclusion can be drawn if either Z~ or Z' are
used for correctness or Z1 is used for completeness. We now discuss the use of

approximations in program diagnosis.

9.4.1 Replacing the Oracle in Declarative Diagnosis

As seen in Section 9.3.3, in declarative diagnosis the existence of an oracle is
assumed and the user is repeatedly asked questions about the intended semantics
of the program. An idea is then to provide the system with (an approximation of)
the intended semantics which can be used to automatically answer some of the
oracle queries. When no sufficient conditions for a given query are satisfied, then
the query cannot be answered automatically and the answer has to be provided
by the user.

It is very seldom the case that there exists a formal specification Z which
completely describes the user’s intention. Even less realistic is to expect that
there exists such an executable specification. However, it is feasible to have
formal/executable specifications which are approximations Z*, Z~ or T' of the
intended semantics. Such approximate specifications for declarative debugging
of logic programs were introduced in [DNTM89], where four kinds of approxima-
tions were used. In our terminology those approximations were Z~, (7 ), 7' and
T+ or, equivalently, (Z)~ (where S denotes the complement of set S). That pa-
per reported on experiments performed with a prototype implementation which
was used to automate the answering of queries (except covering queries). User’s
answers are stored as an executable partial specification, which can then be used
if the query is repeated. Actually, in many cases it is also possible to answer other
queries. Table 9.4 presents a series of sufficient conditions which can be used by
a declarative diagnoser to automatically answer some of the questions and avoid

asking the user.

Example 9.4.2 Assume the query {sorted([a])} C Z posed during incorrectness
diagnosis. An approximation Z* containing all the atoms of the form sorted(V)
where V' is an integer list (such as Zy of Example 9.2.4) is sufficient to obtain a

negative answer.
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Name Property Sufficient condition

Universal QCT QCI
QZT QZI, or
QNIT=0AQ#0D
Existential | QNZ =0 QNI =10

QNI #0 | QNI #0,or QCI ,orZT'CQ

Table 9.4: Sufficient conditions for oracle queries

9.5 Approximating the Actual Semantics

The methods of program analysis allow computing approximations of the ac-
tual semantics [P], thus automate validation of programs w.r.t. a priori chosen
properties.

The idea of using abstract interpretation for validation and diagnosis is not
new. Its use for debugging of imperative programs has been studied by Bourdon-
cle [Bou93], and for debugging of logic programs by Comini et al. [CLMV96b].
Both approaches focus on some specific semantics and specific programming lan-
guages. It has also been used in abstract assertion checking proposed in Chap-
ter 4. This section outlines the use of abstract interpretation for verification and
diagnosis in a general setting of arbitrary fixpoint (set) semantics. For the time
being, we assume that specifications are written as Z,, (i.e., the abstract domain is
used as the language to write specifications). Thus, we discuss proving properties

w.r.t. I, and only approximations of the actual model are considered.

9.5.1 Abstract Interpretation

In this section we recall the framework of abstract interpretation, already in-
troduced in previous chapters and give a somewhat more detailed description of
some additional properties which will be used in this chapter. An abstract seman-
tic object is a finite representation of a, possibly infinite, set of actual semantic
objects in the concrete domain (D). The set of all possible abstract semantic val-
ues represents an abstract domain (D,,) which is usually a complete lattice or cpo

which is ascending chain finite. However, for this study, abstract interpretation is
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restricted to complete lattices over sets both for the concrete (D, C) and abstract
(D, C) domains. As usual, the concrete and abstract domains are related via a
pair of monotonic mappings («a, v): abstraction oo : D — D,, and concretization
v : Dy D, such that

Ve e D: y(a(r)) Dz and Vy € D,: a(y(y)) =y. (9.1)

Note that in general C is induced by C and « (in such a way that VA, \' €
D, : AXC XN & v()) C (X)), and is not equal to set inclusion. In an abuse
of notation, however, we will usually write C both for the concrete and abstract
domain. Similarly, the operations of least upper bound (U) and greatest lower
bound (M) mimic those of D in some precise sense. Again, in an abuse of notation,

we will use U and N, respectively (although they are in general not equal).

By monotonicity, the mappings « and « (denoted f in what follows) satisfy:

rCy = f(x) Cfy) (9-2)

We will also assume in some cases the following properties for o and 7:

f@Nnfly)=0= zny=0 and f(zNy)=f@)Nfly). (9.3)

The abstract domain D,, is usually constructed with the objective of comput-
ing approximations of the semantics of a given program. Thus, all operations in
the abstract domain also have to abstract their concrete counterparts. In partic-
ular, if the semantic operator Sp can be decomposed in lower level operations,
and their abstract counterparts are locally correct w.r.t. them, then an abstract
semantic operator S% can be defined which is correct w.r.t. Sp. This means that
v(S%(a(x)) is an approximation of Sp(z) in D, and consequently, y(Ifp(S%))
is an approximation of [P]. We will denote {fp(S%) as [P],. The following

relations hold:

Ve € D: v(Sp(a(x)) D Sp(z) (9.4)
v([P],) 2 [P] equivalently [P], 2 a([P]). (9.5)
An abstract operator S§ is said to be precise, if instead it satisfies that

Y([P],) = [P] equivalently [P], = o([P]). (9.6)
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Note that the construction presented allows obtaining over-approximations of
[P]. When (9.1) holds, the construction is termed a Galois insertion. If C is used
in (9.1) instead of O, we obtain a dual construction, termed a reversed Galois
insertion. The dual relations of (9.4) and (9.5) also hold in this case.

In practice, the abstract domains should be sufficiently simple to allow effec-
tive computation of semantic approximations of programs. For example, Her-
brand interpretations of some alphabet may be mapped into an abstract domain
where each element represents a typing of predicates in some type system. For a
given program P the abstract operator S% would allow then to compute a typing
of the predicates in the least Herbrand model of P.

Example 9.5.1 A simple example of abstract interpretation in logic program-
ming can be constructed as follows. The concrete semantics (least Herbrand
model) of a program P is [P] = [fp(Tp). So the concrete domain is D = p(Bp)
(where Bp is the Herbrand base of the program).

We consider over-approximating the set of “succeeding predicates”, i.e those
whose predicate symbols appear in [P]. A possible abstraction is as follows.
The abstract domain is D, = p(B%), where B% is the set of predicate symbols
of P. Let pred(A) denote the predicate symbol for an atom A. We define the

abstraction function:
a:D — D, such that a(l) = {pred(A) | A€ I}.
The concretization function is defined as:
v : Dy — D such that (I,) = {A € Bp | pred(A) € 1,}.

For example,

a({p(a,b),p(c,d),q(a),r(a)}) = {p/2,9/1,7/1}
v({r/2,4/1}) = {p(a, a), p(a,b),p(a,c),...,q(a),q(d),...}.

Note that (Dg,7,D,a) is a Galois insertion. The abstract semantic operator
T§ : D, — D, is defined as:

Tp(1,) = {pred(A) | 3(A<By,...,B,) € PVYie€ [l,n]: pred(B;) € 1,}.

Since D, is finite and T% is monotonic, the analysis (applying T8 repeatedly
until fixpoint, starting from (}) will terminate in a finite number of steps n and

[P], = T8 1tn approximates [P]. For example, for the following program P,
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p&X,Y) - qX), r(Y).

t(X) - 1(X).
m(X) :- s(X).
q(a). q(b).

r(a). r(c). r(X).

we have B = {p/2,q/1,7/1,s/1,t/1,1/1,m/1}, and:

Tp(0) = {q/1,7/1} Tp({q/1,7/1}) = {q/1,7/1,p/2}
Tp({q/1,7/1,p/2}) = {q/1,7/1,p/2}

So Tg12 =Tg13 ={q/1,7/1,p/2} = [P],

9.5.2 Abstract Diagnosis

The technique of abstract diagnosis [CLMV96b, CLMV96a] is based on the use
of observables which correspond roughly to the abstraction functions « used in
abstract interpretation with some additional properties. Observables (in a similar
way to semantics) allow extracting the properties of interest from the execution
of a goal, while hiding details which are not relevant. The intended semantics
with respect to the observable « is denoted Z, and is assumed to be an exact
description.

Abstract diagnosis searches for incorrectness and incompleteness errors as de-
fined in Section 9.3.2, using the sufficient conditions given in Table 9.2. The
semantic operator Sp is replaced by S, in a similar way to abstract interpre-
tation. However, and unlike abstract interpretation, no fixpoint computation is
needed and [fp(S%) is not computed.

Two different kind of observables are considered in [CLMV96a). Complete
observables provide stronger results but are often not practical because the speci-
fication of the intended semantics Z, is infinite and diagnosis would not terminate.
Such complete observables correspond to the precise abstract operators of Sec-
tion 9.5.1. The second kind of observables considered in [CLMV96a] are called
approzimate observables and their corresponding operator S§ is correct but not

precise (as is usually the case in abstract interpretation).
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9.5.3 Validation using Abstract Interpretation

Abstract diagnosis localizes suspected program constructs following the diagnosis
by proof principle. The proof attempt may succeed in which case the program
satisfies the requirement Z (expressed as Z,), and abstract diagnosis works as
validation.

An alternative way of validation is to compute abstract approximations [P],
of the actual semantics of the program [P] and then use the definitions given
in Table 9.1 instead of the sufficient conditions of Table 9.2 (on which abstract
diagnosis is based). This is reasonable if one considers that usually program
analyses are performed in any case to use the information inferred for optimizing
the code of the program.

For now, we assume that the program specification is given as a semantic value
T, € D,. Comparison between actual and intended semantics of the program
should be done in the same domain. Thus, for comparison we need in principle
a([P]). However, using abstract interpretation, we can compute instead [P],,
which is an approximation of «a([P]), and can be compared with Z,. We will
use the notation [P] . to represent that [P], D a([P]). [P],- indicates that
[P], € «([P]). Table 9.5 gives sufficient conditions for correctness and com-

pleteness w.r.t. Z, which can be used when [P] is approximated.

Property Definition Sufficient condition
P is partially correct w.r.t. Z, | a([P]) C Z, [P],+ CZa
P is complete w.r.t. Z, Zo C o([P]) Z, < [P],-
P is incorrect w.r.t. Z, a([P]) € Za [P], & Za,or
[Plys N Za = OAP], #0
P is incomplete w.r.t. Z, Zo Z o([P]) Zo L [P+

Table 9.5: Validation problems using approximations

The following conclusions can be drawn from Table 9.5. Analyses which use
a Galois insertion (at,~7), and thus over-approximate the actual semantics (i.e.,
those denoted as [P]+) are specially suited for proving partial correctness and
incompleteness with respect to the abstract specification Z,. It will also be some-

times possible to prove incorrectness in the extreme case in which the semantics
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inferred by the program is incompatible with the abstract specification, i.e., when
[P],+ NZs = 0. Note that it will only be possible to prove completeness if the
abstraction is precise. According to Table 9.5 only [P] - can be used with this
end, and in the case we are discussing [P] . holds. Thus, the only possibility is
that the abstraction is precise.

On the other hand, if a reversed Galois insertion is used (a~,7~), and then
analysis under-approximates the actual semantics (the case denoted [P],-), it
will be possible to prove completeness and incorrectness. Partial correctness and
incompleteness can only be proved if the analysis is precise.

Note that the results obtained for direct Galois insertions (a™,~") are in
essence equivalent to the ones presented for abstract diagnosis [CLMV96a] for ap-
proximate observables. In the case of precise abstractions, also completeness may
be derivable, and this corresponds to the complete observables of [CLMV96a].

Example 9.5.2 If the abstract interpretation tells that in [P] + the type of a
predicate p with just one argument position is intlist and the user has declared
it in Z, as list, then under some natural assumptions about ordering in the
abstract domain we conclude that [P]_+ C Z,, i.e., the program is correct w.r.t.
the declared Z,, (or more precisely w.r.t. v(Z,)). However, the program may still

be incorrect w.r.t. the precise intention Z, which is not given by the declaration.

Example 9.5.3 Assume now that [P] . ¢ Z,. We cannot conclude that P is
correct w.r.t. Z,. We cannot conclude the contrary either. For example if the
abstract interpretation tells that the type of the predicate p with one argument
position is list while the user declares it as intlist then P may still be correct
w.r.t. the declaration. This can be due to the loss of accuracy introduced by the
abstraction. In any case it may be desirable to localize a fragment of the program
responsible for this discrepancy. A more careful inspection would then be needed
to check whether the fragment is erroneous w.r.t. the declaration, or not.

If analysis information allow us to conclude that the program is incorrect
or incomplete w.r.t. Z,, an (abstract) symptom has been found which ensures
that the program does not satisfy the requirement. Thus, a diagnosis should be
performed to locate the program construct responsible for the symptom. We are
studying the possibility of using for that purpose the conditions in Table 9.2, in
a similar way as done in abstract diagnosis [CLMV96b].
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9.6 Towards an Integrated Validation and Diag-

nosis Environment

In the previous sections we have addressed the problem of validation and diag-
nosis of a program with respect to incomplete requirements. We have hopefully
contributed to clarifying how known verification and debugging techniques can
be combined to support the process of program development, specially in the case
in which approximations are used. This final section discusses the design of an
environment integrating validation and diagnosis tools making an extensive use

of semantic approximations.

9.6.1 Some Practical Aspects of the Debugging Process

An important aspect of debugging is that in practice the process of program con-
struction is often iterative, and the iterations update incrementally not only the
program but also the requirements. This is related to the observation that user’s
expectations concerning a program are rarely fully described. At each stage of
development we have a (possibly empty collection of) subset approximation(s) Z~
of the intended semantics and a (possibly empty collection of) superset approx-
imations® Z* which together represent the specification. The program in hand
should be complete w.r.t. Z~ and partially correct w.r.t. Z*. In the previous
sections we mentioned some well-known proof methods used for checking that.
If the proof fails, the failure points to some fragments of the program, which

may possibly be erroneous. The failure may be due to:
1. an error in the program causing violation of the specification in hand,
2. the specification is too weak, or
3. incompleteness of the prover.

Note that if an error exists then it can only be due to the fragments identified.
The user should inspect them in order to identify the reason of failure. If the

user identifies that the reason is an error then the program has to be corrected.

3The other kinds of approximations may also be present but, for simplicity, we will consider
these two in this discussion.
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If, on the other hand, the user does not identify an error then alternatively it
may be possible to strengthen the specification in such a way that a proof can be
achieved.*

If the proof succeeds we may:
1. stop the development process, or
2. update the specification.

In particular, the latter is needed if the behaviour of the program w.r.t. the
first specification is not acceptable and the user wants to clarify why.

Note that even if the proof succeeds, as specifications may be partial, some
bugs may still be hidden in the program. For example, if the techniques pre-
sented in Section 9.5 are used, some bugs may not be captured by the abstract
semantics. Thus, if during testing or execution of the program some unexpected
behaviour is found, diagnosis should start for it. The well-known technique of
declarative diagnosis is then applicable, which, as we have seen, can also rely on
approximations of the intended semantics.

9.6.2 Which tools are needed

We believe that an integrated environment incorporating the techniques described
so far (as well as other techniques, such as procedural debugging and visualization,
which are beyond the scope of the work presented in this chapter) can be of
great help in speeding up the code development process. In this section we
propose some tools to be included in the environment. Figure 8.1 presented a
possible arquitecture of tools for such an environment. The intention is to detect
bugs as early as possible, i.e., during compilation or even editing. This can
only be achieved by (semi-) automatic analysis of the (not necessarily completely
developed) program in the presence of some (approximate) specifications. An
example of such techniques is type checking, which proved to be useful for that
purpose. Our approach puts a framework for working with properties that may
be more general than classical type systems.

The common integrating concept for the tools proposed is the notion of se-

mantic approximation which is involved in

4An example of weak specification is given in Example 9.3.1.

232



describing user’s intentions,
e program analysis,

e comparing the results of program analysis with the user’s intentions,

verification,
e debugging.

Semantic approximations will be expressed by means of assertions, for example
using the assertion language proposed in Chapter 8. The fundamental technique
mentioned in this context is that of abstract interpretation which allows automatic
synthesis of semantic approximations, for abstract verification and for abstract
debugging.

To support the above mentioned activities we may need the following tools:

e A program analyzer: it takes the program and the selected abstract do-
main(s) and generates an approximation of the actual semantics of the
program. In the case of CLP programs standard analysis techniques can be

used for this purpose.

e An assertion translator: if the language for assertions is the underlying
programming language or an abstract domain different from that used in-
ternally by the tool, this translator is in charge of transforming the intended
semantics into the abstract domain to be used by the analyzer. An intel-
ligent translation scheme would be able to select the best among a set of
abstract domains depending on the requirements expressed by the user in
the intended model.

e A comparator: it would compare the user requirements and the information

generated by the analysis. It can produce three different results:

— The requirement is verified.

— The requirement does not hold. An abstract symptom has been found

and diagnosis should start.
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— None of the above. We cannot prove that the requirement holds nor
that it does not hold. Run-time tests could be introduced which would
make sure that the requirements hold. Clearly, this introduces an im-

portant overhead and could be turned on only during program testing.

e A diagnoser based on abstraction: the diagnoser tries to localize the pro-
gram construct responsible for the abstract symptom. It would use algo-
rithms based on the sufficient conditions of Table 9.2. Thus it will locate
possible error sources.

e A declarative (concrete) diagnoser: it would be used once all abstract symp-
toms have been diagnosed and eliminated from the program in order to
underpin all subsequent bugs in the program which appear during program
testing and execution. As in Section 9.4.1, the program would store ap-
proximations of the intended semantics to avoid asking the user whenever

the question can be solved using such approximations.

Partial prototypes of the component tools are mentioned above are currently
being developed. For example, the assertion language of Chapter 8 together
with an analyzer, and a comparator has been incorporated in the CIAO system
which works on the domains of moded types, definiteness, freeness, and grounding

dependencies for CLP programs.

9.7 Chapter Conclusions

We have seen how approximations can be used in program diagnosis and valida-
tion. First, different techniques have been recalled and the properties which they
aim at proving have been formulated in a set-theoretic setting. Then we have
seen some cases in which it is still possible to prove properties when approxima-
tions of the exact values are used. Then we have presented examples of existing
and future tools which use approximations of program semantics and can perform

verification and/or diagnosis tasks.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

This thesis has presented several novel techniques for the analysis, optimization,
and debugging of (constraint) logic programs. believe that many of the results
presented are also applicable to other other high level programming languages,
and, in general, to declarative languages. Most of the proposed techniques have
been implemented in the CIAO and &-Prolog systems and evaluated experimen-

tally. Some of the fundamental conclusions which may be derived this work are:

e It is possible to perform static program analysis in an incremental way with-
out loss of accuracy and with important efficiency improvements. A generic
analysis algorithm has been formalized which is parametric with respect to
the analysis strategy used. The possible modifications to a program have
been classified and in each case one or several algorithms for performing the
related incremental analysis have been given. Such algorithms are expressed

in terms of the generic algorithm mentioned above.

e Taking the generic analysis algorithm as a starting point, we have identified
a class of analysis strategies which are especially efficient. We have shown
experimentally that these strategies are very appropriate for the incremental
case and that even for the non-incremental case they are as good or even

better than the strategies used in non-incremental analyzers.
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e It is possible to analyze the full ISO Prolog language. We have developed a
series of analysis techniques which together with other existing ones can be
used to analyze programs with all the impure features of real-life languages

such as Prolog.

e Multiple specialization is not hard to implement and allows obtaining rele-
vant performance improvements. We have developed a framework for mul-
tiple specialization based on abstract interpretation which is as powerful
as the best of the frameworks proposed previously, but with the advan-
tage of requiring only small modifications to existing abstract interpreters.
The optimizations performed by this specializer are based on the notion of
abstract executability, which has been formalized in this work. Abstract
multiple specialization has been implemented and integrated in a compiler
for the first time and its effect quantified. The experimental results show

that it is an effective technique.

e There is a strong relationship between partial evaluation and abstract inter-
pretation, and their integration may improve the results of both. We have
clarified for the first time the relation between such techniques. We have
proposed an algorithm to obtain specialized programs directly from analysis
information and which allows optimizations which are not achievable by tra-
ditional partial evaluation. We have also identified the modifications which
are required in the abstract interpretation framework in order to obtain all

the specializations which partial evaluation is capable of performing.

e The cost of dynamic scheduling can be reduced using specialization tech-
niques which use information obtained by static analysis. We have per-
formed a study which has led us to identify a series of techniques for pro-
gram transformation which allow reducing the cost of dynamic scheduling
without modifying the operational semantics of the program. This is impor-
tant in order to avoid obtaining optimized programs which are less efficient

than the original one.

e It is possible to extend (constraint) logic languages with a uniform set of
assertions which are useful in a large number of debugging and compilation

tools. We have designed an assertion language which allows communicat-

236



ing properties and requirements of the program between the user and the
different tools which may exist in an advanced program development envi-
ronment. We have provided a scheme for the run-time checking of assertions
and we have also studied the possibility of compile-time checking of asser-

tions by the use of static analysis (abstract interpretation).

e It is possible to perform mixed debugging between compile- and run-time
in (constraint) logic languages by means of analysis based on approxima-
tions. We have identified in a systematic way a set of sufficient conditions
which allow obtaining conclusions about some relevant questions for pro-
gram validation and debugging, such as the correctness and completeness
of a program, when both the requirements (for example due to incomplete
specifications) and the information available about the program (for exam-

ple, that obtained by static program analysis) are approximated.

10.2 Future Work

Even though most of the compilation techniques presented in this work have
been implemented in the CIAO and &-Prolog systems, and experiments have
been conducted which show their relevance in practice, it would be interesting
to evaluate their applicability in other contexts and their effectiveness for other
sets of programs. Simultaneously, some of the techniques presented would benefit
from the study of other related techniques.

In spite of having pointed out possible avenues for future work in each chapter,

we summarize here the most important ones. Concretely,

e It remains as future work to study and implement a compiler in which
not only analysis, but other (all) compilation phases, such as, for example,

optimization, are performed incrementally.

e Even though the analysis algorithms presented in Chapter 3 are very effi-
cient, it could be interesting to experiment with different analysis strate-
gies within the efficient class of those which preserve the strongly connected

components of the analysis graph.
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e Regarding the analysis of full languages, some of the different existing alter-
natives could be compared experimentally. For example, the importance of
providing additional information when analysis is not capable of generating

accurate information could be explored.

e The multiple specialization framework presented in Chapter 5 is capable
of minimizing the number of versions in the specialized program and thus
it avoids versions which do not allow further optimization. However, the
final program will have as many versions as necessary in order to obtain
all possible optimizations. It would be interesting to experiment with other
strategies which allow collapsing versions when the benefit achieved by keep-
ing them separate does not pay off with respect to the increase in size of

the specialized program.

e For the integration of partial evaluation in the specialization framework
presented in Chapter 5 it would be interesting to experiment with different
abstract domains and local control strategies. Also, even though the pro-
posed integration allows performing optimizations which are not achievable
by traditional partial evaluation, it would be interesting to perform an ex-
perimental comparison of the efficiency of the proposed specializer with that
of the existing partial evaluators for the cases in which partial evaluation
suffices.

e The optimization of dynamic scheduling has produced very promising ex-
perimental results. It remains as future work to search for transformation
strategies with somewhat weaker preconditions. That way, they would be
applicable in some cases in which the proposed techniques are not, even
though it would be possible to reduce the cost of dynamic scheduling for
them.

e The proposed assertion language has been implemented in CIAO. However,
it would be interesting to experiment with it in other environments and with
other tools for the development of (constraint) logic programs. This could
be useful in order to determine whether the assertion language is expressive

enough and whether its complexity is acceptable.
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e Finally, the theoretical study in Chapter 9 is of relevance in order to deter-
mine under which circumstances it is possible to obtain conclusions about
questions such as program correctness. It would be interesting to evalu-
ate experimentally how often it is possible to prove each of the sufficient
conditions proposed in the real-life program development and debugging

process.
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