Fuzzy Prolog:
A Simple General Implementation using CLP(R)

Claudio Vaucheret!, Sergio Guadarrama!, and Susana Mufioz?

! Departamento de Inteligencia Artificial
claudio@clip.dia.fi.upm.es
sguada@isys.fi.upm.es
? Departamento de Lenguajes, Sistemas de la Informacién
e Ingenierfa del Software
susana@fi.upm.es
Universidad Politécnica de Madrid
28660 Madrid, Spain

Abstract. We present a definition of a Fuzzy Prolog Language that
models interval-valued Fuzzy Logic, and subsumes former approaches
because it uses a truth value representation based on a union of inter-
vals of real numbers and it is defined using general operators that can
model different logics. We give the declarative and procedural semantics
for Fuzzy Logic programs. In addition, we present the implementation
of an interpreter for this language conceived using CLP(R). We have
incorporated uncertainty into a Prolog system in a simple way thanks
to this constraints system. The implementation is based on a syntactic
expansion of the source code during the Prolog compilation.

Keywords Fuzzy Prolog, Modeling Uncertainty, Logic Programming, Con-
straint Programming Application, Implementation of Fuzzy Prolog.

1 Introduction

The result of introducing Fuzzy Logic into Logic Programming has been the
development of several “Fuzzy Prolog” systems. These systems replace the in-
ference mechanism of Prolog with a fuzzy variant which is able to handle par-
tial truth. Most of these systems implement the fuzzy resolution introduced by
Lee in [Lee72], examples being the Prolog-Elf system [IK85], Fril Prolog system
[BMP95] and the F-Prolog language [LL90]. However, there was no common
method for fuzzifying Prolog as it has been noted in [SDM89]. Some of these
Fuzzy Prolog systems only consider the fuzziness of predicates whereas other
systems consider fuzzy facts or fuzzy rules. There is no agreement about which
fuzzy logic must be used. Most of them use min-max logic (for modeling the
conjunction and disjunction operations) but other systems just use Lukasiewicz
logic [KK94].

There is also an extension of constraint logic programming [BMR01], which
can model logics based on semiring structures. This framework can models the
min-max fuzzy logic that is the only one with semiring structure.

In this paper, we propose another approach that is more general in two
aspects:

1. A truth value will be a finite union of sub-intervals on [0,1]. An interval
is a particular case of union of one element, and a unique truth value is a
particular case of having an interval but with only one element.

2. A truth value will be propagated through the rules by means of an aggrega-
tion operator. The definition of aggregation operator is general. It subsumes
conjunctive operators (triangular norms as min, prod, etc), disjunctive op-
erators (triangular co-norms as max, sum, etc), average operators (averages
as arithmetic average, quasi-linear average, etc) and hybrid operators (com-
binations of previous operators).

We add uncertainty to a Prolog compiler using CLP(R) instead of imple-
menting a new fuzzy resolution as other fuzzy Prologs do. In this way, we use
the builting inference mechanism of Prolog, the constraints and their operations
provided by CLP(R) to handle the concept of partial truth. We represent in-
tervals as constraints over real numbers and aggregation operators as operations
with these constraints.

The goal of this paper is to show how introducing fuzzy reasoning in a Prolog
system can produce a powerful tool to solve complex uncertainty problems and
to present an implementation of a Fuzzy Prolog as a natural application of
CLP(R).

The rest of the paper is organized as follows. Section 2 describes the language
and the semantics of our fuzzy system. Section 3 gives details about the imple-
mentation using CLP(R). Finally, we conclude and discuss some future work
(Section 4).

2 Language and Semantics

In this section we present both the language and its semantics for our Fuzzy
Prolog system. Firstly we generalize the concept of truth value of a logic predicate
taking into account partial truth. Secondly we define aggegation operator to
propagate truth value. Later we present the syntax and the different semantics
of our fuzzy language, illustrating it with an example.

2.1 Truth value

Given a relevant universal set X, any arbitrary fuzzy set A is defined by a func-
tion A : X — [0,1] unlike the crisp set that would be defined by a function
A : X — {0,1}. This definition of fuzzy set is by far the most common in the
literature as well as in the various successful applications of the fuzzy set theory.

However, several more general definitions of fuzzy sets have also been proposed
in the literature. The primary reason for generalizing ordinary fuzzy sets is that
their membership functions are often overly precise. They require the assign-
ment of a particular real number to each element of the universal set. However,
for some concepts and contexts, we may only be able to identify approximately
appropriate membership functions. An option is considering a membership func-
tion which does not assign to each element of the universal set one real number,
but an interval of real numbers. Fuzzy sets defined by membership functions of
this type are called interval-valued fuzzy sets [KY95,NWOQ0]. These sets are de-
fined formally by functions of the form A : X — £([0, 1]), where £([0,1]) denotes
the family of all closed intervals of real numbers in [0, 1].

In this paper we propose to generalize this definition to have membership
functions which assign to each element of the universal set one element of the
Borel Algebra over the interval [0, 1]. These sets are defined by functions of the
form A : X — B([0,1]), where an element in B([0,1]) is a countable union of
sub-intervals of [0, 1].

Youth Youth
CRISP

20 40 60 Age

Youth
INTERVAL VALUED FUZZY INTERVAL UNION VALUED FUZZY

I - 0 R
20 40 60 Age 20 40 60 Age

Fig. 1. Uncertainty level of a fuzzy predicate

These definitions of fuzzy sets entail different degrees of uncertainty. In Figure
1 we show the concept of youth with these different representations.

The level of uncertainty is increasing from the simple fuzzy function, where
every age has only one real number representing its youth, to one where an
interval represents, for example, the concept of youth of a group of people with
slightly different definitions of the borders of the function. However, if we ask
two different groups of people, for example people from two different continents,
we might obtain a representation like the last one. The truth value of youth
for 45 years has evolved from the value 0, to the value 0.5 in the simple fuzzy

definition, later to the interval [0.2,0.5] and finally to the union of intervals
[0.2,0.5]J[0.8,1].

There are many usual situations that can only be represented by this general
representation of truth value. Here we have two simple examples with their
representation in our fuzzy language:

— Example 1: My sons are 16 and 18 years old. My neighbour’s daughter, Jane,
has the same age as one of my sons but I do not remember which one. If
I consider the simple fuzzy definition of truth, then I can say that Jane is
young with a truth value V € ([0.8] |J [0.9]) # [0.85].

young(jane) :- [0.9] v [0.8].

— Example 2: New Laptop is a branch of computers with two laptop models
(VZX and VZY). Between 10% and a 12% of the computers model VZX fail
while only between 2% and 8% of the computers model VZY fail. If a client
buys a New Laptop computer, it will fail with a truth value V' € ([0.02, 0.08]
U [0.10, 0.12]).

fail(newLaptop) :- [0.02, 0.08] v [0.10, 0.12].

Where each truth value is a union of intervals. The intervals in the first
example represent the particular case of intervals consisting of only one element.

2.2 Aggregation Operators

The truth value of a predicate will depend on the value of other predicates which
are in its definition. We use aggregation operators [Pra99] in order to propagate
the truth value by means of the fuzzy rules. Fuzzy sets aggregation is done
using the application of a numeric operator of the form f : [0,1]" — [0,1]. If it
verifies f(0,...,0) =0 and f(1,...,1) = 1, and in addition it is monotonic and
continuous, then it is called aggregation operator. Dubois, in [DP85], proposes a
classification of these operators with respect to their behavior in three groups:

1. Congunctive Operators (less or equal to min), for example T-norms.
2. Disjunctive Operators, (greater or equal to max), for example T-conorms.
3. Average Operators (between min and maz).

There is a need for a generalizing aggregation operator of numbers to ag-
gregation operator of intervals if we deal with the second definition of fuzzy
sets. Following the theorem proven by Nguyen and Walker in [NW00] to extend
T-norms and T-conorms to intervals, we propose the next definition:

Definition 1 (interval-aggregation). Given an aggregation f : [0,1]" —
[0,1], an interval-aggregation F : £([0,1])™ — £([0,1]) is defined as follows:

F([zy, 21 o [o, 23]) = [f (21, s 2n), f(2F, - 23)]-

Actually, we work with union of intervals and propose the definition:

Definition 2 (union-aggregation). Given an interval-aggregation F : £([0,1])" —
£([0,1]) defined over intervals, a union-aggregation F : B([0,1])" — B([0,1]) s
defined over union of intervals as follows:

f(Bl,. .. ,Bn) = U{F(gl,...,gn) | & € B,}

In the presentation of the theory of possibility [Zad78], Zadeh considers that
fuzzy sets act as an elastic constraint on the values of a variable and fuzzy
inference as constraint propagation.

In our approach, truth values and the result of aggregations will be repre-
sented by constraints. A constraint is a X'-formula where X is a signature that
contains the real numbers, the binary function symbols + and *, and the binary
predicate symbols =, < and <. If the constraint ¢ has solution in the domain of
real numbers in the interval [0, 1] then we say c is consistent, and we denote it
as solvable(c).

2.3 Fuzzy Language

The alphabet of our language consists of the following kinds of symbols: variables,
constants, function symbols and predicate symbols. A term is defined inductively
as follows:

1. A wvariable is a term.
2. A constant is a term.

3. if f is an n-ary function symbol and ti,...,t, are terms, then f(t1,...,t,)
is a term.
If p is an n-ary predicate symbol, and t1,...,t, are terms, then p(ty,...,t,)

is an atomic formula or, more simply an atom.
A fuzzy program is a finite set of fuzzy facts, and fuzzy clauses and we obtain
information from the program through fuzzy queries. They are defined below:

Definition 3 (fuzzy fact). If A is an atom,
A

is a fuzzy fact, where v, a truth value, is an element in B([0,1]) expressed as
constraints over the domain [0,1].

Definition 4 (fuzzy clause). Let A, By,..., B, be atoms,
A(—F Bl,...,Bn

is a fuzzy clause where F is an interval-aggregation operator of truth values in
B([0,1]) represented as constraints over the domain [0,1], where F induces a
union-aggregation as by definition 2.

Definition 5 (fuzzy query). A fuzzy query is o tuple
ve A?

where A is an atom, and v is a variable (possibly instantiated) that represents a
truth value in B([0,1]).

When we talk about constraints, we refer to expressions as: (v > 0.5 A v <
0.7) V (v>0.8 A v <0.9) to represent a truth value in [0.5,0.7] |J [0.8,0.9],
for example.

2.4 Least Model Semantics

The Herbrand Universe U is the set of all ground terms, which can be made up
of the constants and function symbols of the language, and the Herbrand Base
B is the set of all ground atoms which can be formed by using predicate symbols
(of the language) with ground terms (of the Herbrand Universe) as arguments.

Definition 6 (interpretation). An interpretation I consists of the following:

1. a subset By of the Herbrand Base,
2. a mapping Vi, to assign a truth value, in B([0,1]), to each element of By.

The Borel Algebra B([0,1]) is a complete lattice under Cpy, that denotes
Borel inclusion, and the Herbrand Base is a complete lattice under C, that
denotes set inclusion, therefore a set of all interpretations forms a complete
lattice under the relation C defined as follows.

Definition 7 (interval inclusion C;;). Given two intervals I = [a,b], I» =
[e,d] in £([0,1]), It Cyr L2 if and only if c < a and b < d.

Definition 8 (Borel inclusion Cpr). Given two unions of intervals U = I; U
o UIn, U =1 U...Uly in B([0,1]), U Cpr U' if and only if VI; € U
3, €U’ . I; Crr Ij wherei € 1..N, j € 1..M.

Definition 9 (interpretation inclusion C). I C I' if and only if B C By
and for all B € By, Vi(B) Cyr Vi/(B), where I = (Br,Vy), I' = (Bp,Vp:) are
interpretations.

Definition 10 (model). Given an interpretation I = (B, Vr)

— I is a model for a fuzzy fact A < v, if A C By and v Crr Vi(4).

— T is a model for a clause A < By, ..., B, when the following holds:
if B CBr,1<i<mn, andv =FVi(B1),...,Vi(By,)) then A C Br and
v Crr Vi(A), where F is the union aggregation obtained from F.

— I is a model of a fuzzy program, if it is a model for the facts and clauses
of the program.

The least model of a program P under the C ordering, denoted by Im(P), is
called the meaning of the program P.

2.5 FixedPoint Semantics

The fixedpoint semantics we present is based on a one-step consequence operator
Tp. The least fixedpoint | fp(Tp) = I (i.e. Tp(I) = I) is the declarative meaning
of the program P, so is equal to Im(P).

Let P be a fuzzy definite program and Bp the Herbrand base of P; then the
mapping Tp over interpretations is defined as follows:

Let I = (By, Vi) be a fuzzy interpretation, then Tp(I) =1', I' = (Bp, V)

Bp = {A € Bp | CO’I’Ld}
Vi (4) = v € B([0,1]) | Cond}

where

Cond = (A + v is a ground instance of a fact in P
and solvable(v))
or
(A +F Ay,..., A, is a ground instance of a clause in P,
{Ai,..., A} C By
and solvable(v),v = F(Vi(41),...,Vi(4y))).

2.6 Operational Semantics

The procedural semantics is interpreted as a sequence of transitions between
different states of the system. We represent the state of a transition system
in a computation as a tuple (4,0,S5) where A is the goal, o is a substitution
representing the instantiation of variables needed to get to this state from the
initial one and S is a constraint that represents the truth value of the goal at
this state.

When computation starts, A is the initial goal, o = () and S is true (if there
are neither previous instantiations nor initial constraints). When we get to a
state where the first argument is empty then we have finished the computation
and the other two arguments represent the answer.

A transition in the transition system is defined as:

— (AUa,0,S) = (A8,0-60,S A g =)
if h « v is a fact of the program P, @ is the mgu of a and h, and pu, is the
truth variable for a, and solvable(S A p, = v).

- (AUa,0,5) - ((AUB)h,0-0,S Ac)
if h «p B is a rule of the program P, 6 is the mgu of a and h, ¢ is the
constraint that represents the truth value obtained applying the aggregator
F on the truth variables of B, and solvable(S A ¢).

— (AUa,0,5) > fail
if none of the above are applicable.

The success set SS(P) collects the answers to simple goals p(Z). It is defined
as follows:

SS(P) = (B,V)

where B = {p(Z)o|(p(Z), D, true) —* (#,0,5)} is the set of elements of the
herbrand Base that are instantiated and that have succeeded;

and V(p(Z)) = U{v|{p(Z), 0, true) —* (B,0,S),and v is the solution of S} is
the set of truth values of the elements of B that is the union (got by backtraking)
of truth values that are obtained from the set of constraints provided by the
program P while query p(Z) is computed.

Let’s see an example. Suppose we have the following program:

tall(john) < 0.7
swift(john) < [0.6,0.8]
good_player(X) +iuka tall(X), swift(X)

Here, we have two facts, tall(john) and swift(john) whose truth values are
the unitary interval [0.7,0.7] and the interval [0.6, 0.8], respectively, and a clause
for the good_player predicate whose aggregation operator is the Lukasiewicz T-
norm.

Consider the fuzzy goal

u good_player(X) ?
the first transition in the computation is

({(good_player(X)}, €, true) —
<{tall(X)7 Sw'ift(X)L € 0= maa?(O, Miall + Mswift — 1))

unifying the goal with the clause and adding the constraint corresponding to
Lukasiewicz T-norm. The next transition leads to the state:

<{S’U}th(X)}, {X = jOhTL}, n= max(oaﬂtall + Mswift —]-) A Mtall = 07)

after unifying tall(X) with tall(john) and adding the constraint regarding
the truth value of the fact. The computation ends with:

<{}a {X = jOh’l’L}, n= mam(O, Miall + Mswift —]-) A/"fta.ll =0.TA0.6 S Nswift/\
Mswift < 08)

As B = mam(O, Ptall + Mswift —]-) A Mtall = 0.7A 0.6 S Mswift A Mswift S 0.8
entails p € [0.3,0.5], the answer to the query good_player(X) is X = john with
truth value in the interval [0.3,0.5].

The three semantics are equivalent, i.e we have SS(P) = I fp(TP) = Im(P).

3 Implementation and Syntax

3.1 CLP(R)

Constraint Logic Programming [JL87] began as a natural merging of two declar-
ative paradigms: constraint solving and logic programming. This combination
helps make CLP programs both expressive and flexible, and in some cases, more
efficient than other kinds of logic programs. CLP(R) [JMSY92] has linear arith-
metic constraints and computes over the real numbers.

We decided to implement this interpreter as a syntactic extension of a CLP(R)
system. CLP(R) was incorporated as a library in the Ciao Prolog system?.

Ciao Prolog is a next-generation logic programming system which, among
other features, has been designed with modular incremental compilation in mind.
Its module system [CHOO] will permit having classical modules and fuzzy mod-
ules in the same program and it incorporates CLP(R).

Many Prolog systems have included the possibility of changing or expanding
the syntax of the source code. One way is using the op/3 builtin and another is
defining expansions of the source code by allowing the user to define a predicate
typically called term expansion/2. Ciao has redesigned these features so that
it is possible to define source translations and operators that are local to the
module or user file defining them. Another advantage of the module system of
Ciao is that it allows separating code that will be used at compilation time from
code which will be used at run-time.

We have written a library (or package in the Ciao Prolog terminology) called
fuzzy which implements the interpreter of our fuzzy Prolog language described
in section 2.

3.2 Syntax

Each fuzzy Prolog clause has an additional argument in the head which repre-
sents its truth value in terms of the truth values of the subgoals of the body of
the clause. A fact A <+ v is represented by a Fuzzy Prolog fact that describes
the range of values of v with a union of intervals (that can be only an interval
or even a real number in particular cases). The following examples illustrate the
concrete syntax of programs:

youth(45) « youth(45) :~

[0.2,0.5] U [0.8,1] [0.2,0.5] v [0.8,1].
tall(john) < 0.7 tall(john) :~ 0.7.
swift(john) tall(john) :~

[0.6,0.8] [0.6,0.8].
good_player(X) <—min good player(X) :~ min

tall(X), tall(X),

swift(X) swift(X).

! The Ciao system including our Fuzzy Prolog implementation can be downloaded
from http://www.clip.dia.fi.upm.es/Software/Ciao.

These clauses are expanded at compilation time to constrained clauses that
are managed by CLP(R) at run-time. Predicates . = ./2, . < ./2, . <= ./2,
.>./2 and . >=./2 are the Ciao CLP(R) operators for representing constraint
inequalities. For example the first fuzzy fact is expanded to these Prolog clauses
with constraints

youth(45,V):- V .>=. 0.2,
V .<. 0.5.

youth(45,V):- V .>=. 0.8,
vV .<. 1.

And the fuzzy clause
pX) :~ min qX),r(X).
is expanded to

pX,Vp) :- qX,Vq),r(X,Vr),
minim([Vq,Vr],Vp),
Vp .>=. 0, Vp .=<. 1.

The predicate minim/2 is included as run-time code by the library. Its func-
tion is adding constraints to the truth value variables in order to implement the
T-norm min.

minim([],_). min(X,Y,Z):- X .=<. Y, Z .=. X.
minim([X],X). min(X,Y,2):- X .>. Y, Z .=. Y .
minim([X,Y|Rest] ,Min) :-

min(X,Y,M),

minim([M|Rest] ,Min).

We have implemented several aggregation operators as prod, max,luka, etc.
in a similar way and any other operator can be added to the system without
any effort. The system is extensible by the user simply adding the code for new
aggregation operators to the library.

3.3 Syntax Sugar

Fuzzy predicates with piecewise linear continuous membership functions like
young/2 in Figure 2 can be written in a compact way:

young :# fuzzy_predicate([(0,1),(35,1),(45,0),(120,0)]).

This friendly syntax is translated to arithmetic constraints. We can even
define the predicate directly if we so prefer. The code expansion is the following:

It is possible to fuzzify crisp predicates. For example, to fuzzify p/2 it is only
necessary to write:

1 young(X,1):- X .>=. 0,
X .<. 35.
young (X, V) :- X .>=. 35,
X .<. 45,
10%V .=. 45-X.
0 . young(X,0) : - X .>=. 45,
10 30 50 X .=<. 120.

Fig. 2. Fuzzy predicate young/2

p_f :# fuzzy p/2.

and the program is expanded with a new fuzzy predicate p_f/3 (the last
argument is the truth value) with truth value equal to 0 if p/2 fails and 1
otherwise.

We also provide the possibility of having the predicate that is the fuzzy
negation of a fuzzy predicate. For this predicate p_f/3, we will define a new
fuzzy predicate called, for example, notp_f/3 with the following line:

notp_f :# fnot p_£/3.
that is expanded at compilation time as:

notp_f (X,Y,V) :-
P_f(XsY’Vp),
V.=.1- Vp.

3.4 Example

A simple example could be trying to measure the possibility that a couple of
values, obtained throwing two loaded dice, sum 5. Let us suppose we only know
that one die is loaded to obtain a small value and the other is loaded to obtain
a large value. We deal with the fuzzy concepts small and large (Figure 3):

small :# fuzzy_predicate([(1,1),(2,1),(3,0.7),(4,0.3),(5,0),(6,0)]1).
large :# fuzzy_predicate([(1,0),(2,0),(3,0.3),(4,0.7),(5,1),(6,1)]1).

In fuzzy Prolog, this problem can be represented using min-max logic or
other T-norm and T-conorm as prod and dprod. With our fuzzy Prolog we can
use any of them as, in the following two programs:

small large

Fig. 3. Fuzzy predicates small/2 and large/2

diel(X) :~ min diel(X) :~ prod
small(X). small(X).
die2(X) :~ min die2(X) :~ prod
large(X). large(X).
twodice(X,Y):~ min two_dice(X,Y):~ prod
diel(X), diel(X),
die2(Y). die2(Y).
sum(5) :~ max sum(5) :~ dprod
two_dice(4,1), two_dice(4,1),
two—dice(1,4) }) tWO_diCe(l ,4) 3
two_dice(3,2), two_dice(3,2),
two_dice(2,3). two_dice(2,3).
?7- sum(5,V). ?- sum(5,V).
Vv .=. 0.77 V .=. 0.79 7
yes yes

two_dice(X,Y) represents the possibility that the first die gives X and at
the same time the second die gives Y. The predicate sum(5) aggregates the
possibilities of the four cases in which the two dice can sum 5. To consult the
truth value of a goal we are going to use an additional argument, i.e. sum(5,V).
Other syntax is to use another predicate truth(Goal,V) to obtain the truth
value V of a goal Goal. In this case, it is equivalent to truth(sum(5),V). In the
consults of our example we can observe the different provided answers for each
aggregation operator.

4 Conclusions and Future work

The novelty of the Fuzzy Prolog presented is that it is implemented over Prolog
instead of implementing a new resolution system. This gives it a good potential
for efficiency, more simplicity and flexibility. For example aggregation operators
can be added with almost no effort. This extension to Prolog is realized by inter-
preting fuzzy reasoning as a set of constraints [Zad78], and after that translating
fuzzy predicates into CLP(R) clauses. The rest of the computation is resolved
by the compiler.

Most of the other Fuzzy Prolog considers only one operator to get the truth
value of the fuzzy clauses. We have generalized all operators through the con-
cept of aggregation and this makes our Fuzzy Prolog subsume all the means of
resolution of the others. Another advantage of our approach is that it can be
implemented with little effort over any other CLP(R) system.

Presently we are working in several related issues:

— Solving any semantic problems that arise when we try to combine crisp and
fuzzy logic in the same programming language.

— Obtaining constructive answers to any kind of goal.

— Implementing the expansion over other CLP(R) systems.

Acknowledgement

The authors would like to thank the suggestions of Enric Trillas and Francisco
Bueno in improving the content and the ideas behind the paper.

References

[BMP95] J. F. Baldwin, T.P. Martin, and B.W. Pilsworth. Fril: Fuzzy and Evidential
Reasoning in Artificial Intelligence. John Wiley & Sons, 1995.

[BMRO1] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based
constraint logic programming: syntax and semantics. In ACM TOPLAS,
volume 23, pages 1-29, 2001.

[CHO0] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In
International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 131-148. Springer-Verlag, July 2000.

[DP85] D. Dubois and H. Prade. A review of fuzzy set aggregation connectives.
Information Sciences, 36:85-121, 1985.

[IK85] Mitsuru Ishizuka and Naoki Kanai. Prolog-ELF incorporating fuzzy logic.
In IJCAT 9, volume 2, pages 701-703, 1985.
[JL87] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Symp.
Principles of Programming Languages, pages 111-119. ACM, 1987.
[JMSY92] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The clp(V) language
and system. ACM Transactions on Programming Languages and Systems,
14(3):339-395, 1992.

[KK94] Frank Klawonn and Rudolf Kruse. A Lukasiewicz logic based Prolog. Math-
ware & Soft Computing, 1(1):5-29, 1994.

[KY95] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, 1995.

[Lee72] R.C.T. Lee. Fuzzy logic and the resolution principle. Journal of the Associ-
ation for Computing Machinery, 19(1):119-129, 1972.

[LL90] Deyi Li and Dongbo Liu. A Fuzzy Prolog Database System. John Wiley &
Sons, New York, 1990.

[NW00] H. T. Nguyen and E. A. Walker. A first Course in Fuzzy Logic. Chapman
& Hall/Crc, 2000.

[Pra99] A. Pradera. A contribution to the study of information aggregation in a fuzzy
environment. PhD thesis, Technical University of Madrid, 1999.

[SDM89] Z. Shen, L. Ding, and M. Mukaidono. Fuzzy resolution principle. In Proc.
of 18th International Symposium on Multiple-valued Logic, volume 5, 1989.

[Zad78] L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and
systems, 1(1):3-28, 1978.

