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Abstract. We present a definition of a Fuzzy Prolog Language that
models interval-valued Fuzzy logic, and subsumes other fuzzy prologs.
We give the declarative and procedural semantics for fuzzy logic pro-
grams. In addition, we give an implementation of an interpreter for this
language made using CLP(R). We have incorporated uncertainty into a
Prolog system in a simple way thanks to this constrains system. The im-
plementation is based on syntactic expansion of the source code running
on Prolog.
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1 Introduction

The result of introducing Fuzzy Logic into Logic Programming has been the
development of several “Fuzzy Prolog” systems. These systems replace the in-
ference mechanism of Prolog by a fuzzy variant which is able to handle partial
truth. Most of these systems implement the fuzzy resolution introduced by Lee in
[Lee72], examples are the Prolog-Elf system [IK85], FPROLOG system [BMP95]
and the f-prolog language [LL90]. However, there was no common way for fuzzify-
ing Prolog as it has been noted in [SDM89]. Some of these Fuzzy Prolog systems
only consider the fuzziness of predicates whereas other systems consider fuzzy
facts or fuzzy rules. There is no agreement about which fuzzy logic must be used.
Most of them use min-max logic (for modeling the conjunction and disjunction
operations) but other systems use Lukasiewicz logic [KK94]. In this paper, we
propose another approach that is more general in two aspects:

1. Truth value will be a sub-interval on [0, 1]. In fact, it could be a finite union of
sub-intervals as we will see below. Having a unique truth value is a particular
case modeled with a unitary interval.
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2. Truth value will be propagated through the rules by means of a set of aggre-
gation operators. The definition of an aggregation operator is a generalization
that subsumes conjunctive operators (triangular norms as min, prod, etc),
disjunctive operators (triangular co-norms as max, sum, etc), average oper-
ators (averages as arithmetic average, cuasi-linear average, etc) and hybrid
operators (combinations of previous operators).

We add uncertainty to a Prolog compiler using CLP(R) instead of imple-
menting a new fuzzy resolution as other fuzzy prologs. In this way, we use the
original inference mechanism of Prolog, and we use the constraints and its oper-
ations provided by CLP(R) to handle the concept of partial truth. We represent
intervals as constrains over real numbers and aggregation operators as operations
with constraints.

The goal of this paper is to show how the Prolog inference system combined
with Fuzzy Logic can produce a powerful tool to solve complex problems that
contains uncertainty, and to present an implementation of a Fuzzy Prolog like a
natural application of CLP(R)

The rest of the paper is organized as follows. Section 2 describes the syntax
and the multi-valued semantics of our fuzzy system. Section 3 gives details about
the implementation using CLP(R). Finally, we conclude and discuss some future
work (Section 4).

2 Syntax and Semantics

In this section we present both the language and its semantics for our Fuzzy
Prolog system. Firstly we generalize the concept of truth value of a predicate
considering partial truth. Secondly we present the syntax and the different se-
mantics and finally we illustrate the language with some examples.

2.1 Truth value

Given a relevant universal set X, any arbitrary fuzzy set A is defined by a
function A : X — [0,1] unlike the crisp set that is defined by a function
A : X — {0,1}. This definition of fuzzy set is by far the most common in
the literature as well as in the various successful applications of the fuzzy set
theory. However, several more general definitions of fuzzy sets have also been
proposed in the literature. The primary reason for generalizing ordinary fuzzy
sets is that their membership functions are often overly precise. They require to
assign a particular real number to each element of the universal set. However,
for some concepts and contexts, we may only be able to identify approximately
appropriate membership functions. An option is considering a membership func-
tion which does not assign to each element of the universal set one real number,
but an interval of real numbers. Fuzzy sets defined by membership functions
of this type are called interval-valued fuzzy sets [KY95,NWO00]. These sets are
defined formally by functions of the form A : X — £([0,1]). Where £([0, 1])
denotes the family of all closed intervals of real numbers in [0, 1].



In this paper we propose to generalize this to have membership functions
which assign to each element of the universal set one element of the Borel Algebra
over the interval [0,1]. These sets are defined by functions of the form A : X —
B([0,1]), where an element in B([0,1]) is a countable union of sub-intervals of
[0,1].

The truth value of a predicate will depend on the value of other predicates
which are in its definition. We use aggregation operators [Pra99] in order to
propagate the truth value by means of the fuzzy rules. Fuzzy sets aggregation is
made by the application of a numeric operator of the form f : [0,1]” — [0,1]. If it
verifies f(0,...,0) =0 and f(1,...,1) = 1, and in addition it is monotonic and
continuous, then it is called aggregation operator. Dubois, in [DP85], proposes a
classification of these operators with respect to their behavior in three groups:

1. Conjunctive Operators (less or equal to min), for example T-norms
2. Disjunctive Operators, (greater or equal to maz), for example T-conorms
3. Average Operators (between min and maz)

There is a need for a generalization of aggregation operator of numbers to
aggregation operator of intervals. Following the theorem proven by Nguyen and
Walker in [NWO0Q] to extend t-norms and t-conorms to intervals, we propose the
next definitions.

Definition 1 (F-aggregation). Given an f-aggregation f : [0,1]" — [0,1] an
F-interval-aggregation F : £([0,1])™ — £([0,1]) is defined as follows:

F([2h, af], o [oh, 23]) = [f (@, s 2h), F (2, s 2h)]

Definition 2 (F-aggregation). Given an F-aggregation F : £([0
defined over intervals, an F-aggregation F : B([0,1])" — B([0,1]
union of intervals as follows:

)™ = £€((0,1])
) defined over

‘7‘-(31,. .. ,Bn) = U{F(gl,...,gn) | & € B,}

In the presentation of the theory of possibility [Zad78], Zadeh considers that
fuzzy sets act as an elastic constraint on the values of a variable and fuzzy
inference as constraint propagation.

In our approach, truth values and the result of aggregations will be repre-
sented by constraints. A constraint is a X-formula where X' is a signature that
contains the real numbers, the binary function symbols + and %, and the binary
predicate symbols =, < and <. If the constraint ¢ has solution in the domain of
real numbers in the interval [0, 1] then we say c is consistent, and we denote it

as [0,1] E c.

2.2 The Language

The alphabet of our language consists of the following kinds of symbols: variables,
constants, function symbols and predicate symbols. A term is defined inductively
as follows:



1. A wariable is a term.
2. A constant is a term.

3. if f is an n-ary function symbol and ti,...,t, are terms, then f(t1,...,t,)
is a term.
If p is an n-ary predicate symbol, and t1,...,t, are terms, then p(t1,...,t,)

is an atomic formula or, more simply an atom.
A fuzzy program is a finite set of fuzzy facts, and fuzzy clauses. They are
defined below.

Definition 3 (fuzzy fact). If A is an atom,
A+

is a fuzzy fact, where v, a truth value, is an element in £([0,1]) expressed as
constraints over the domain [0,1].

Definition 4 (fuzzy clause). Let A, By,...,B, be atoms. A fuzzy clause is a
clause of the form
A(—F Bl,...,Bn

where F' is an aggregation operator of truth values represented as constraints
over the domain [0,1]. It is an f-aggregation which induces an F-aggregation as
by definition 1

Definition 5 (fuzzy query). A fuzzy query is o tuple
v A?

where A is an atom, and v is a variable (possibly instantiated) that represents a
truth value.

2.3 Semantics

The Herbrand Universe U is the set of all ground terms, which can be made up
of the constants and function symbols of the language, and the Herbrand Base
B is the set of all ground atoms which can be formed by using predicate symbols
(of the language) with ground terms (of the Herbrand Universe) as arguments.

Definition 6 (interpretation). An interpretation I consists of the following:

1. a subset By of the Herbrand Base,
2. a mapping Vi, which assigns a truth value to each element of Bj.

The Borel Algebra B([0,1]) is a complete lattice under interval inclusion and
the Herbrand Base is a complete lattice under set inclusion, therefore a set of
interpretations forms a complete lattice under the relation C defined as follows.

Definition 7 (relation C). I C I' if and only if By C Br and for all B € By,
Vi(B) C Vi (B).



Definition 8 (model). Given an interpretation I = (By, V7)
— I is a model for a fuzzy fact A < v, if A C By and v C V;(A).

— T is a model for a clause A < By, ..., B, when the following holds:
if B C By, 1 <i<mn, andv =FVi(By),...,Vi(By)) then A C By and
v g VI(A)

— I is a model of a fuzzy program, if it is a model for the facts and clauses
of the program.

The least model of a program P under the C ordering, denoted by Im(P), is
called the meaning of the program P.

2.4 FixedPoint Semantics

The fixedpoint semantics we present is based on a one-step consequence operator
Tp. The least fixedpoint I such that Tp(I) = I is the declarative meaning of the
program P and is equal to Im(P).

Let P a fuzzy definite program and Bp the Herbrand base of P, the mapping
Tp over interpretations is defined as follows:

Let I = (By,V;) be a fuzzy interpretation, then Tp(I) =1I', I' = (Bp, V)

Bp ={A € Bp: A+ vis a ground instance of a fact in P and [0,1] E v
or
A+p Ay,..., A, is a ground instance of a clause in P,
{Ai,..., A} C By
V= ‘7:(VI(A1)7 R VI(AH))a
and [0,1] &= v}

Vi (A) = U{v € B([0,1]) : A < v is a ground instance of a fact in P and [0,1] = v

or

A+p Ay, ..., A, is a ground instance of a clause in P,

{A1,...,A,} C By
v = .T(VI(Al), .. .,V[(An)),
and [0,1] &= v}

2.5 Operational Semantics

The procedural semantics is interpreted as a sequence of transitions between
different states of the system. We represent the state of a transition system
in a computation as a tuple (4,0,5) where A is the goal, o is a substitution
representing the instantiation of variables needed to get this state and S is a
constraint that represents the truth value of the goal at this state.

When computation starts, the first argument of the first state is the goal and
the other arguments are the empty sustitution and the constraint of the query.
When we get a state where the first argument is empty then we have finished
the computation and the other two arguments represent the answer.

A transition in the transition system is defined as:



- (AUa,0,S) = (A8,0-60,S A g =)
if h + v is a fact of the program P, € is the mgu of a and h, and py, is the
truth variable for a, and [0,1] = S A p, =v
- (AUa,0,5) = ((AUB)#,0-6,S Ac)
if h «p B is a rule of the program P, 6 is the mgu of a and h, ¢ is the
constraint for aggregator F' on the truth variables for B, and [0,1] = S A ¢
- (AUa,0,S) — fail
if none of the above are applicable.

The success set SS(P) collects the answers to simple goals p(Z). It is defined
as follows:

SS(P) =(B,V) where B = {p(Z)c|(p(Z), €, true) —* (§,0,5)} and V(p(Z)) =
U{v[{p(Z), €, truey —=* (B, 0,S),and v is the solution of S}

The three semantics are equivalent, i.e we have SS(P) = lfp(TP) = Im(P).
2.6 Example

Suppose we have the following program

tall(john) < 0.8
swift(john) « 0.7
good_player(X) < iukq tall(X), swift(X)

Here, we have two facts, tall(john) and swift(john) whose truth values are
the unitary intervals [0.8,0.8] and [0.7,0.7] respectively and a clause for the
good_player predicate whose aggregation operator is the Lukasiewicz T-norm.

Consider the fuzzy goal

u < good_player(X) ?

the first transition in the computation is

({(good_player(X)}, €, true) —
({tall(X), swift(X)}, e, p = maz(0, pianr + fswife — 1))

unifying the goal with the clause and adding the constraint corresponding to
Lukasiewicz T-norm. The next transition leads to the state:

({swift(X)},{X = john}, p = max(0, panr + prswise — 1) A figar = 0.8)

after unifying tall(X) with tall(john) and adding the constraint regarding
the truth value of the fact. The computation ends with:

({}, {X = john}, p = maz(0, ot + pswift — 1) A pranr = 0.8 A pswize = 0.7)

As p = max(0, pranr + pswist — 1) A pranr = 0.8 A pswize = 0.7 entails p = 0.5,
the answer to the query good_player(X) is X = john with truth value 0.5.



3 Syntax and Implementation: CLP(R)

We decided to implement this interpreter as a syntactic extension of a CLP(R)
system. This syntactic expansion was incorporated as a library in the Ciao Pro-
log system!. Constraint Logic Programming [JL87] began as a natural merger of
two declarative paradigms: constraint solving and logic programming. This com-
bination helps make CLP programs both expressive and flexible, and in some
cases, more efficient than other kinds of logic programs. CLP(R) [JMSY92] has
linear arithmetic constraints and computes over the real numbers.

Ciao Prolog is a next-generation logic programming system which, among
other features, has been designed with modular incremental compilation in mind.
Its module system [CHO0] will allow to have classical modules and fuzzy modules
in the same program and it incorporates CLP(R).

Many Prolog systems have included the possibility of changing or expanding
the syntax of the source code. One way is using the op/3 builtin and another is
defining expansions of the source code by allowing the user to define a predicate
typically called term expansion/2. Ciao has redesigned these features so that
it is possible to define source translations and operators that are local to the
module or user file defining them. Another advantage of the module system of
Ciao is that it allows separating code that will be used at compilation time from
code which will be used at run-time.

We have written a library (or package in the Ciao Prolog terminology) called
fuzzy which implements the interpreter of our fuzzy prolog language described
in section 2.

Each fuzzy predicate has an additional argument which represents its truth
value. A fact A «+ v is represented by a Fuzzy Prolog fact whose last argument
stores the truth value v as a constraint over R. The following examples illustrate
the concrete syntax of programs:

tall(john) < [0.8,0.9] tall(john,M) :~
M .>=. 0.8,
M .=<. 0.9

good_player(X) < pmin tall(X),swift(X) good player(X,M) :~ min
tall(X,M1),
swift(X,M2).

These clauses are expanded at compilation time to constrained clauses that
are managed by CLP(R) at run-time. For example,

p&X,Mp) :~ min q(X,Mq),r(X,Mr).
is expanded to

P(X:MP) H q(X,Mq) ,r(X,Mr) s
minim([Mq,Mr],Mp),
Mp .>=.0,Mp .=<.1.
! The Ciao system including our Fuzzy Prolog implementation can be downloaded
from http://www.clip.dia.fi.upm.es/Software.



The predicate minim/2 is included as run-time code by the library. Its func-
tion is adding constraints to the truth value variables in order to implement the
T-norm min.

minim([],_). min(X,Y,Z):- X .=<. Y , Z .=. X.
minim([X]1,X). min(X,Y,Z):- X .>. Y, Z .=. Y .
minim([X,Y|Rest] ,Min) :-

min(X,Y,M),

minim([M|Rest],Min).

We have implemented several aggregation operators as prod, max,luka, etc.
in a similar way and any other operator can be added to the system without
any effort. The system is extensible by the user simply adding the code for new
aggregation operators to the library.

Fuzzy predicates with piecewise linear continous membership functions like
young/2 in figure 1 are written by:

young :# fuzzy_predicate([(0,1),(35,1),(45,0),(120,0)]).

This friendly syntax is translated to arithmetic constraints. We can even
define the predicate directly if we prefer it. The translation is the following:

11 young(X,1) : - X .>=.0,
X .<. 35.
young (X,M) : - X .>=. 35,
X .<. 45,
10%M .=. 45-X.
0 o\ - young(X,0) : - X .>=. 45,
10 30 50 X .=<. 120.

Fig. 1. fuzzy predicate young/2

It is possible to fuzzify crisp predicates. For example to fuzzify p/2 it is only
necessary to write:

p_f :# fuzzy p/2

and the program is expanded with a new fuzzy predicate p_f /3 (the last ar-
gument is the truth value) with truth value equal to 0 if p/2 fail and 1 otherwise.

We provide too the possibility of having the predicate that is the fuzzy nega-
tion of a fuzzy predicate. For this predicate p_f/3 we will define a new fuzzy
predicate called for example notp_f /3 with the following line:

notp_f :# fnot p_£f/3
that is expanded at compilation time as:

notp_f (X,Y,M) :-
p_f(X,Y,Mp),
M .=.1- Mp.



3.1 Example

A simple example could be trying to measure which is the possibility that a
couple of values, obtained throwing two loaded dice, sum 5. Let us suppose we
only know that one die is loaded to obtain a small value and the other is loaded
to obtain a large value. small and large are fuzzy concepts and we represent
them by the following fuzzy predicates:

small :# fuzzy_predicate([(1,1),(2,1),(3,0.7),(4,0.3),(5,0),(6,0)1).
large :# fuzzy_predicate([(1,0),(2,0),(3,0.3),(4,0.7),(5,1),(6,1)]1).

In fuzzy prolog this problem can be represented using min-max logic or other
T-norm and T-conorm as prod and dprod as in the following two programs:

diel(X,M) :~ min diel(X,M) :~ prod
small(X,M). small(X,M).
die2(X,M) :~ min die2(X,M) :~ prod
large(X,M). large(X,M).
twodice(X,Y,M):~ min two_dice(X,Y,M):~ prod
diel(X,M1), diel(X,M1),
die2(Y,M2). die2(Y,M2).
sum(5,M) :~ max sum(5,M) :~ dprod
two_dice(4,1,M1), two_dice(4,1,M1),
two—dice(1,4:M2) > two_dice(l ,4,M2) )
two._dice(3,2,M3), two_dice(3,2,M3),
two_dice(2,3,M4). two_dice(2,3,M4).
?7- sum(5,M). ?7- sum(5,M).
.=.(M,0.7) ? .=.(M,0.79) 7
yes yes

two_dice(X,Y,M) represents the possibility that the first die gives X and at
the same time the second die gives Y. sum(5,M) aggregates the possibilities of
the four cases in which the two dice can sum 5.

4 Conclusions and Future work

The novelty of the Fuzzy Prolog presented is that it is implemented over Prolog
instead of implementing a new resolution system. This gives it a good potential
for efficiency, more simplicity and flexibility. For example aggregation operators
can be added with almost no effort. The way of doing this extension to Prolog
is interpreting fuzzy reasoning as a set of constraints [Zad78] and after that



translating fuzzy predicates into CLP(R) clauses. The rest of the computation
is resolved by the compiler.

Most of the other Fuzzy Prolog consider only one operator to get the truth
value of the fuzzy clauses. We have generalized all operators with the concept of
aggregation and this makes our Fuzzy Prolog subsume all the ways of resolution
of the others. Another advantage of our approach is that it can be implemented
with little effort over any other CLP(R) system.

Actually we are solving some semantic problems that arise when we try to
combine crisp and fuzzy logic in the same programming language and we hope
to present our result in this field soon.

We are also working now on the optimization of this system trying to improve
the possibility to obtain constructive answers at any case. Another direction to
continue with this work is to implant the expansion over other CLP(R) systems.
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