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Abstract

The first logic programming languages, such as Prolog, used a fixed left-to-right atom scheduling
rule. Recent logic programming languages, however, usually provide more flexible scheduling in which
computation generally proceeds left-to-right but in which some calls are dynamically “delayed” until their
arguments are sufficiently instantiated to allow the call to run efficiently. Such languages include constraint
logic programming languages in which constraints which are “too hard” are delayed and concurrent
constraint languages in which delay on shared variables is used to provide asynchronous communication
between processes. We give a new framework for the global analysis of logic programming languages with
dynamic scheduling which is based on approximating the delayed atoms by a closure operator. We give
an example analysis for groundness based on this framework, and give the results of an implementation
which demonstrates the method is practical.

1 Introduction

The first logic programming languages, such as DEC-10 Prolog, used a fixed scheduling rule in which all
atoms in the goal were processed left-to-right. Unfortunately, this meant that programs written in a clean,
declarative style were often very inefficient, only terminated when certain inputs were fully instantiated or
“ground”, and (if negation was used) produced wrong results. For this reason, most “second-generation” logic
programming languages, provide more flexible scheduling in which computation generally proceeds left-to-
right but in which some calls are dynamically “delayed” until their arguments are sufficiently instantiated to
allow the call to run efficiently. Most constraint logic programming languages also employ dynamic scheduling.
If a constraint is “too hard” for the solver, it is delayed until it becomes simpler. For example, in CLP(R)
non-linear arithmetic constraints are delayed until they become linear.

Unfortunately, dynamic scheduling has a significant cost; literals, if affected by a delay declaration,
must be checked to see whether they should delay or not; upon variable binding, possibly delayed calls
must be awoken or put in a “pending” list, so that they are awoken before the next literal is executed;
also, few register allocation optimizations can be performed for delayed literals; finally, space needs to be
allocated for delayed literals until they are awoken [3]. Furthermore, global dataflow analyses used in the
compilation of traditional Prologs, such as mode analysis, are not correct with dynamic scheduling. This
means that compilers for languages with dynamic scheduling are currently unable to perform optimizations
which significantly improve execution speed of traditional Prologs [14, 20, 21]. Preliminary tests in [17] suggest
that global dataflow analysis information for logic languages with dynamic scheduling allows optimizations
which improve performance by an order of magnitude.

However, it is not simple to extend analyses for traditional Prolog and constraint logic programming lan-
guages to languages with dynamic scheduling, as in existing analyses the fixed scheduling is crucial to ensure
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correctness and termination. Here we develop a framework for the global dataflow analysis of (constraint)
logic languages with dynamic scheduling. To our knowledge this is the first practical framework for the anal-
ysis of this important class of languages. It provides the basis for optimizations which remove the overhead
of dynamic scheduling and promises to make the performance of logic languages with dynamic scheduling
competitive with traditional Prolog.

Our main results are threefold. First, we give an approximate denotational semantics for languages
with dynamic scheduling. This provides the semantic basis for our generic analysis. The key feature of
this semantics is that delayed atom sequences are approximated by a closure operator which details the
effect of the delayed atoms if the current constraint store is modified. Second, we give a generic global
dataflow analysis algorithm which is based on the denotational semantics. Correctness is formalized in terms
of abstract interpretation [7]. The analysis gives information about call arguments and the delayed calls,
as well as implicit information about possible call schedulings at runtime. The analysis is generic in the
sense that it has a parametric domain and various parametric functions. The parametric domain is the
descriptions chosen to approximate constraints. Different choices of descriptions and associated parametric
functions provide different information and give different accuracy. The parametric functions also allow the
analysis to be tailored to particular system or language dependent criteria for delaying and waking calls.
Implementation of the analysis is by means of a “memoization table” in which information about the “calls”
and their “answers” encountered in the derivations from a particular goal are iteratively computed. A
feature of the analysis which is crucial for its efficiency is that the closures (representing delayed atoms) are
evaluated lazily. In effect a closure is represented as a partial function. When computing a fixpoint closures
are treated as equal as long as they have the same values on the (partial) domain of interest. Third, we give
empirical results which show that the overhead of the method for programs without delay is minimal and the
performance on programs with delay is reasonable and considerably better than the only other comparable
approach [17].

Our work extends that of Marriott et. al. [17] which gives the first generic dataflow analysis for logic
programming languages with delay. In their analysis, sequences of delayed atoms are approximated by
multisets of atoms. The problem with this approach is that the multisets of delayed atoms have unbounded
size, and so to guarantee termination ad hoc widening steps were required. Thus the method is unable to
handle chained dependencies with any accuracy since the widening steps required lose too much accuracy.
The method is also forced to consider abstractions on very large sets of variables, this tends to make the
analysis very slow for even small programs when large number of atoms are delayed. This meant that the
analysis was imprecise and rather inefficient in practice. The current work removes these problems. The
empirical results demonstrate that our framework is an order of magnitude faster and more accurate.

Other related work is the global analysis of concurrent constraint programming languages [4, 5, 6, 10].
These languages differ from the languages considered here as they do not have a default left-to-right scheduling
but instead the compiler or interpreter is free to choose any scheduling. Thus, program analysis must be
correct for all schedulings. In our setting, knowledge of the default scheduling allows much more precise
analysis. Debray et al. [8] gives a global analysis for logic languages with dynamic scheduling which determines
parts of the program in which delay and wakeup can never occur. This allows the compilation of these parts
to be optimized. In order to do this, the analyser uses a very simple model of delay behaviour which does not
give accurate calling pattern information. Finally, Hanus [11, 12] gives analyses for improving the residuation
mechanism in functional logic programming languages, and determining when no non-linear constraints delay
in a constraint logic program. Both these analyses handles the delay and waking of constraints, but do not
extend to handle atoms which may spawn subcomputations which in turn have delayed atoms.

In the next section we give the operational semantics of logic languages with dynamic scheduling. In
Section 4 we give the denotational semantics. In Section 5 we give the generic analysis framework. Section 6
presents some performance results and in Section 7 we conclude. In an appendix we give an example analysis.



2 Operational Semantics

In this section we give some preliminary notation and an operational semantics for (constraint) logic programs
with dynamic scheduling.

A constraint logic program, or program, is a finite set of rules. A rule is of the form H < B where H,
the head, is an atom and B, the body, is a finite, non-empty sequence of literals. A literal is either an atom
or a primitive constraint. An atom has the form p(xi,...,xn) where p is a predicate symbol and the x;
are distinct variables. A primitive constraint is essentially a predefined predicate, such as term equations or
inequalities over the reals. Arguments to a primitive constraint are terms which may be constructed using
predefined functions such as real addition. The syntax given here is more restrictive than is usual, as this
will simplify the rest of the paper. However the restrictions are only syntactic, as we can always rewrite an
atom p(ty, ..., t,) with arbitrary terms as arguments into p(X1,...,Xn), X1 = t1,..., Xn = tn.

A constraint is a conjunction of primitive constraints. Constraints are treated modulo logical equivalence,
and are assumed to be closed under existential quantification and conjunction. Thus constraints can be
ordered by logical implication, that is § < 8" iff ' = 6. The greatest constraint is denoted by false. It is
the unsatisfiable constraint. The least constraint is denoted by true. It is the always satisfiable constraint.
We let 3y, @ denote the constraint 3V, 3V, --- V6 where variable set W = {Vy,...,V,}. We let §W0 be
constraint 6 restricted to the variables W. That is 30 is Jvars(o)\w 0 where function vars takes a syntactic
object and returns the set of (free) variables occurring in it.

A renaming is a bijective mapping between variables. We let Ren be the set of renamings, and naturally
extend renamings to mappings between atoms, rules, and constraints. Syntactic objects s and s’ are said to
be variants if there is a p € Ren such that p(s) = s’. The definition of an atom A in program P, defnp(A),
is the set of variants of rules in P such that each variant has A as a head and apart from the variables in A
has distinct new variables.

The operational semantics of a program is in terms of its “derivations” which are sequences of reductions
between “states” where a state (G, 8, D) consists of the current literal sequence or “goal” G, the current
constraint 8, and the current sequence of delayed atoms D. Literals in the goals are processed left-to-right.
There are two cases. If the literal is a constraint, and it is consistent with the current constraint, it is added
to it and delayed literals that are awoken by the addition are processed. The other case is when the literal
is an atom. If it is not sufficiently instantiated to be processed it is placed in the delayed atom sequence.
If the literal is not delayed, it is replaced by the body of a rule in its definition. Our definition makes use
of two parametric functions which are dependent on the systems or language being modeled. These are,
delay(A,#), which holds iff a call to atom A delays with the constraint 6, and awoken(D, ), which is the
subsequence of atoms in the sequence of delayed atoms D that are awoken by constraint 8. Note that the
order of the calls returned by awoken is system dependent.

More formally, A state (L : G, 8,D) can be reduced as follows:

1. If L is a primitive constraint and 6 A L is satisfiable, it is reduced to (D' :: G,0 A L,D \ D') where
D' = awoken(D, 60 A L).

2. If L is an atom and delay(L, ) holds, it is reduced to (G, 6,L : D).

3. If L is an atom and delay(L,8) does not hold, it is reduced to (B :: G,8,D) for some (L + B) €
defnp(L).

Note that :: denotes concatenation of sequences. A derivation from state S for program P is a sequence of
states Sg — S; — ... = Sy, where Sg is S and there is a reduction from each S; to Sy 1. A derivation from a
goal G for program P is a derivation from the state (G, true,nil) for P.

The observational behavior of a program is given by its “answers” to goals. A derivation from a goal G
for program P is successful if the last state has form (nil, #, D), that is the current goal is the empty goal.
The constraint glvars(G)B is an answer to S. As there is a non-deterministic choice of the rule in an atom’s
definition, there may be a number of answers generated from the initial state or goal. We denote the set



(path(X,Y), 61, nil) wheref;is Y =b
4
(edge(X,Z) : path(Z,Y), 6;, nil)
I
(path(Z,Y), b1, edge(X,Z))

(Z=Y, 6, edge(X,Z))
4

(edge(X,Z), 02, nil) where 2 is 01 ANZ=Y

(X=a,Z :lLb, 6>, nil)
(Z = b,U’93, nil) where f3is 92 A X = a
(nil, é{;, nil) where 04 is 63 A Z = b.

Figure 1: Example Derivation

of answers to a goal G for program P by ansp(G). In the case when no literals delay and the constraints
are term equations, this semantics is the same as the usual operational semantics of Prolog. Note that the
answers to a goal must always be satisfiable, from the definition it is impossible for false to be a valid answer.
As an example, consider the initial state (path(X,Y),Y = b,nil) and the program below. One of the

successful derivations is shown in Figure 1.

? — path(X,Y) when ground(Y)

path(X,Y) + X=Y

)

path(X,Y) <« edge(X,Z),path(Z,Y)
? — edge(X,Y) when ground(Y)
edge(a,b)

edge(b, c)

Following [17] we assume that the parametric functions delay and awoken satisfy the following four
conditions. The first ensures that there is a congruence between the conditions for delaying an atom and
waking it. The remaining conditions ensure that delay behaves reasonably: it should not take variable names
into account; it should only be concerned with the effect of # on the variables in A; and finally if an atom is
not delayed, adding more constraints should never cause it to delay.

(1) A € awoken(D,6) iff A € D and delay(A,#) does not hold.
(2) For any renaming p, delay(A, #) iff delay(p(A), p(8)).

(3) delay(A, 0) iff delay(A,3,,,5a)0)-

(4) If 6 < ¢’ and delay(A, ), then delay(A,8").

These conditions are crucial to the analysis we will develop, as they mean that literals behave as sets of
closure operators. The conditions are met in many existing systems and languages.

For simplicity we have ignored constraints which delay. These may be modeled in our setting by wrapping
them with atoms which can delay. For example delay of non-linear multiplication constraints X =Y % Z in
CLP(R) is captured by the rule

mult(X,Y,Z) < X =Y *Z.

where delay(mult(X,Y,Z),8) holds whenever 6 does not constrain Y or Z to be ground.

Actually the operational semantics does not exactly give the information a compiler requires for the
generation of efficient code. This is because we are primarily interested in removing unnecessary tests for
delaying and improving the code for constraint satisfaction. Therefore, we must obtain information about
the call patterns. That is, for each atom A appearing in the program we want to know whether the calls
to the atom initially delay, and when each call to A is eventually reduced, perhaps after being delayed, the



value of the current constraint restricted to the variables in A.

3 Closure Based Semantics

In this section we give a closure based semantics for logic programs with delay. Latter we will use the
ideas in this semantics to give a slightly more complex semantics which is a suitable basis for the abstract
interpretation of languages with delay.

One important feature of a semantics for analysis is that it should be compositional: the meaning of a rule
body is the composition of the meaning of its constituent literals. The first, intuitive, idea for a compositional
semantic definition is that literals and goals take an environment consisting of the current constraint and
current sequence of delayed atoms and transform this into a new environment. However, the denotation of the
literals and goals needs to be a function from a set of environments into a set of environments. This is because,
due to non-determinism, a single environment may be transformed into a set of possible environments, and
because it is convenient for descriptions to describe sets of environments.

Using this idea, we can indeed develop a compositional semantics for logic programs with dynamic schedul-
ing (see [17]). Unfortunately, however this semantics is not a good basis for the analysis of such programs.
The problem is that the number of variables and number of delayed atoms in the environment is unbounded
and thus hard to finitely abstract. Consider the path program in the previous section. Execution of the goal

Y =c,path(X,Y)

will build up an unbounded collection of delayed edge atoms, involving an unbounded number of variables.

If we look carefully at this example, however, we realize that this problem is really an artifact. Consider
a finite set of variables W. If there are finite number of different descriptions for constraints over W then
there are a finite number of functions between these descriptions over W. It follows that, for a particular
atom A with variables W, the different effects the delayed atom sequences can have on the evaluation of A
are also finite in number. Thus, the problem is really caused by having an infinite number of different names
for a finite set of “functions”. For example the total groundness effect of the atom path(X,Y) is captured
by the function: if Y is ground, then so is X.

This leads to the idea of a semantics in which instead of carrying around the sequence of delayed atoms
we carry around its denotation restricted to the variables we are currently interested in. Unfortunately naive
application of this idea leads to problems, as the denotation will be a mapping from sets of environments
to sets of environments and an environment will be a constraint together with a denotation represemting
the delayed atoms. The recursion in these types makes such a denotation a very complex object, which is
expensive to compute.

A better approach is to capture the denotation of the delayed atoms as a set of closure operators over the
constraints. Marriott et al [16] has given a simple denotational semantics for logic programming languages
with delay based on sets of closure operators. Different operators correspond to different sequences of choices.
We revise this semantics here.

Definition. Let (X, <) be a poset and F be an operator on X.
e F is monotonic if for all x,x' € X, x < x' implies F(x) < F(x').
o F is idempotent if F =FoF.
o F is increasing if for all x € X, x < F(x).

e F is a closure operator if F is monotonic, idempotent, and increasing,.



The closure based semantics for a program P is the least fixpoint of the following eqquations:

BodyClos(nil) = {Idcies}

BodyClos(L : B) = Comb(LitClos(L), BodyClos(B))

LitClos(L) = if L is an atom then AtomClos(L) else ConClos(L)
ConClos(c) = {A0.OAc}

AtomClos(L) = AddDelay(A, AtomClosawake(A))
AtomClospawake(A) = Lub{RuleClos(A < B)|(A < B) € defnp(A)}
RuleClos(A + B) = Restrict(vars(A), BodyClos(B)).

Figure 2: Closure Based Semantics

We let e denote the composition operator for closure operators. It is defined by

(FeG)(x) =H{x'|x' =F(x') and x' = G(x') and x < x'}.

In the definition we are interested in closure operators over constraints: Clos C Con — Con. It will be
convenient to regard a closure operator & € Clos as having a fixed variable set it is defined over, denoted by
vars(k). We extend this naturally to sets of closure operators with the same associated variables. Thus we
will talk of the closure operators over a variable set W.

The definition makes use of several auxiliary functions on closure operators defined by:

Apply(K, ©) = {s(0)|x€K,0 €0}

AddDelay(A,K) = {)4.if delay(A,#) then 6 else x(8) | x € K}
Comb(K,K') = {kek'|keK,keK'}

Lub(K) - UK

Restrict(W,K) = {3y ok|keK}

as well as the constant function Idcies = A60.60. Apply(K, ©) applies each closure operator in K to each
constraint in ©; AddDelay(A,K) modifies each closure operator K so that if A delays for a constraint 4
then the closure returns 8 but behaves as before on constraints for which A does not delay; Comb(K, K')
composes each closure operator in K with each closure operator in K'; Lub(K) flattens a set of sets of closure
operators into a set of closure operators; Restrict(W, K) returns a closure operator with the same effect as
K on the variables in W but with its other variables hidden. The assumptions are that for Comb(K,K'),
vars(K') = vars(K), for Restrict(W,K), vars(K) D W.

The closure based semantics is given in Figure 2. The denotation of a body is computed by BodyClos(B).
It is the composition of the closure operators of each literal in B. The denotation of a literal is computed by
LitClos. If the literal is a primitive constraint ¢, then the denotation is just the closure operator which adds
c to the current constraint 6. If the literal is an atom, AtomClosa wake is used to compute the denotation
of the atom if it never delays, and AddDelay is used to modify the closures so that they model delay of
A appropriately. AtomClosawake combines the closures from each rule in the definition of the literal, first
restricting the closures to the variables in A.

Theorem 3.1 ([16])
Let B be a body and P € Prog. Then ansp(B) = Apply(BodyClos(B), {true}) \ {false}. ®
4 Hybrid Semantics for Analysis

In this section we develop a semantics for programs with dynamic scheduling which is a suitable basis for
program analysis. It is based on the closure semantics given in the last section. The reason that we do not use



The hybrid semantics for a program P is the least fixpoint of the following equations:

BodyHyb(nil, K) =K

BodyHyb(L : B,K) =BodyHyb(B, (LitHyb(L, K))

LitHyb(L, K) =if L is an atom then AtomHyb(L, K) else ConHyb(L, K)
ConHyb(c, K) =Add(c,K)

AtomHyb(L, K) =Let K' = Restrict(vars(A),K) in

Let K” = Lub{AtomHyb,,.(A, Awake(A,K')), AtomHyb,,,, (A, Delay(A,K"))
Comb(K, Extend(vars(K), K"))
AtomHyb,, (A, K) =Comb(K, Extend(vars(K), AtomClos(A)))
AtomHyb,_ . ..(A, K)=Lub{RuleHyb(R,K) | (R) € defnp(A)}
RuleHyb(A < B,K) =Restrict(vars(A), BodyHyb(B, Extend(vars(A < B), K)).

Figure 3: Hybrid Semantics

the semantics of the last section directly is that this semantics cannot give precise information about calling
patterns. The semantics does not encode a left to right default scheduling. This does not affect information
about answers, because answers are independent of scheduling, but does affect information about call patterns
which are not independent from scheduling.

The idea behind the semantic definitions given in this section is to represent a sequence of delayed atoms
by a set of closure operators, and to process non-delayed atoms using the standard left-to-right scheduling in
a similar manner to that used for analysis of traditional logic programs without delay. This means that in the
limit for non-delayed atoms, information about calling patterns is as precise as we wish. For delayed atoms,
however, we lose some information about their wakeup calling patterns, but we do achieve termination. We
now formalize this “hybrid” semantics.

At first it seems that we need to view a single environment as the current constraint plus a set of closure
operators which represent the denotation of the delayed atoms. In fact we can combine information about
the current constraint 6 with the closure operator & in the closure operator ' = A6".k(8 A 6'). We have that
k'(true) is 6, because § must be a fixpoint of k, and that x and ' behave identically for all contexts in which
they will be used, that is all contexts in which the current constraint implies §. This “trick” significantly
simplifies the semantic definition.

The hybrid definition makes use of the functions

Awake(A,K) = {ke€ K|~ delay(A,«x(true))}
Delay (A, K) = {k € K|delay(A, k(true))}
Add(c,K) = {(A0.k(@ AC))|keK}
Extend(W,K) = K.

Awake(A,K) returns the closure operators in K which represent environments in which the atom A is
awake; Delay (A, K) returns the closure operators in K which represent environments in which the atom
A is delayed; Add(c,K) returns the closure operators representing the environments obtained by adding
primitive constraint ¢ to each environment represented by a closure operator in K; Extend(W, K) returns a
closure operator whose domain is extended to the variables W. The assumptions are that for Extend(W, K),
vars(K) C'W.

The hybrid semantics is given in Figure 3.

The denotation of a rule, given by the function RuleHyb, is just the denotation of its body, defined
by BodyHyb, restricted to the variables in the head of the rule. The denotation of the body is just
the composition of the denotations of the component literals. The denotation of a literal L is given by
LitHyb depends on its type. If L is a primitive constraint then ConHyb uses Add to add it to the
current environments. On the other hand, if L is an atom then AtomHyb uses the auxiliary functions
Awake and Delay to split the set of environments into those environments in which L is not delayed and



those environments in which L is delayed. AtomHybg,,, adds the closure corresponding to L to the
environments in which L is delayed. AtomHyb,, ... gives the denotation of an awake atom by combining
the result for each rule defining L. First, the closure operators representing the current environments are
restricted, using Restrict, so that they do not constrain variables which are “irrelevant” to this call. Once
the denotation is found Comb adds back the information about the irrelevant variables. For our purposes
the ordering on g Clos is just the subset ordering.

Correctness of the semantics depends on correctness of the closure based semantics.

Theorem 4.1 (Correctness of Semantics)
Let B be a body and P € Prog. Then ansp(B) C Apply(BodyHyb(B, {Closi4}), {true})\ {false}. ®

The inclusion is not an equality because in AtomHyb the link between the calling continuation and the
return continuation is lost, and all calling continuations are combined with all return continuations. This is
the usual loss of precision occurring in abstract interpretation of standard Prolog.

5 Generic Analysis Framework

In this section, we investigate how the hybrid semantics given in the last section can be used as a basis for
program analysis. We formalize a program analysis as an abstract interpretation of the semantic equations.

In abstract interpretation [7] an analysis is formalized as a non-standard interpretation of the data types
and functions over those types. Correctness of the analysis with respect to the standard interpretation is
argued by providing an “approximation relation” which holds whenever an element in a non-standard domain
describes an element in the corresponding standard domain.

We define the approximation relation in terms of an abstraction function, o, which maps an element in
the standard domain Y to its “best” or most precise description and a concretization function, v, which maps
an element in the description domain X to the largest object it describes. Both the standard and description
domain should be complete lattices and alpha and ~ should be monotonic and adjoint where they are adjoint
ifforallx € X and forally € Y,

ay) <x x &y <y 7(x).

The notion of approximation is made precise as follows: x € X approzimates y € Y iff y < v(x). We
write this x oc y. For syntactic objects, such as literals and primitive constraints, S oc S’ iff S = §'. We
extend oc to function spaces as follows. Consider f : X; x -+ x X, > X' andg:Y; X --- x Y, > Y'. We
define f « g iff for all x; € Xy, ..., x, € X,, and for all y; € Yy, ..., yn € Yy, if y; & x; for i = 1,..,n then
f(xla Tty Xn) X g(yh "'ayn)'

In the analysis we will be interested in describing sets of closure operators and sets of constraints. We call
a description of p Clos a closure description and a description of p Con a constraint description. We shall
assume that both a constraint description 7 and a closure description § have an associated set of variables
vars(w) and vars(d), respectively, which are the variables of the descriptions and closures they describe.

One example of a constraint description we will make use of is the definiteness constraint description. The
description domain, denoted Def, is the definite Boolean functions [1]. The key idea in this description is to
use implication to capture groundness dependencies. The reading of the function x — y is: “if the program
variable x is (becomes) ground, so is (does) program variable y.” For example, the best description of the
constraint set {f(x,y) = f(a,g(u,v))} is x Ay < (uAv). The variables associated with this description are
{x,y,u,v}.

We can use the hybrid semantics of Figure 3 as the basis for a generic analysis. All that is required is to
replace p Clos and p Con by the closure and constraint description domain DClos and DCon say, and to



provide definitions for the auxiliary functions:

Apply’ : DClos x DCon — DCon Comb’ : DClos x DClos — DClos
Add’ : Prim x DClos — DClos Lub’ : pDClos — DClos
Awake’ : Lit x DClos — DClos Restrict’ : pVar x DClos — DClos
Delay’ : Lit x DClos — DClos Extend’ : g Var x DClos — DClos.

As long as these approximate the corresponding functions in the hybrid semantics then the analysis will be
correct. Different choices of description domain and auxiliary functions give rise to different analyses with
different accuracy and applicability.

The problem with the discussion so far is that, in a sense, we have swept the issue of how to define
these parametric functions under the carpet. There has been large body of research devoted to abstract
interpretation based generic analysis of logic programs, and in particular to constraint descriptions. We now
show how we can leverage from this work.

Generic analysis frameworks for traditional Prolog are parametric in the choice of constraint description
DCon and usually require abstract operations

Add’; : Prim x DCon - DCon Comb;, : DCon x DCon — DCon
Restrict. : pVar x DCon — DCon Lub’; : pDCon — DCon
Extend] : pVar x DCon — DCon.

which must approximate the concrete operations

Addr(c,09) = {cAf|0€B} Combr(0,0') = {§A60|0€0,0 €0}
Restrictp(W,0) = {3,0]0€ 0} Lubr(©) = Uoe
Extendt(W,0) = 0.

Given that DCon is a constraint description we can induce a closure description from DCon. The
induced description domain is DCon — DCon and the induced abstraction function « is defined by

[1{6 € (DCon — DCon) |Vx € K.{ x k}.

We can also define many of our parametric relations over the induced closure operator descriptions from the
abstract operations over DCon. More precisely we can define

Apply’ (6, ) = 4(m)

Add'(c, ) = Comb'(A7.Add’(c,),d)

Lub’(D) = An.Lub.{é(7)]|d € D}

Restrict'(W,5) = Md.Restrict/.(W,d(Extend/(vars(d),d)))
Extend' (W,d) = Ad.Extend.(W,d§(Restricty(vars(d),d))).

The operations Awake’ and Delay’ can also be naturally defined in terms of simpler operations Awakel
and Delay’. on DCon:
Awake'(A,d) = Md.Awakel.(6(d))
Delay’(A,6) = Ad.Delay.(6(d))

where Awake!l.(d) must approximate each 8 € (y(d) N {§ € Con |~ delay(A,0)} and Delay/.(d) must
approximate each § € y(d) N {6 € Con | delay(A,§)}.

The most problematic operation to define in terms of operations over DCon is Comb’. The key to its
definition is the following lemma [18]:

Lemma 5.1 If F and F' are closure operators, then

1. For all ordinals a < 3, (FoF')® < (FoF')’ < (FeF')



2. For some ordinal o, F ¢ F' = (F o F')2.

This means that we can compute a closure by using “reexecution”. The problem is that the closure
descriptions d need not be extensive. This means that we must consider the “cycle points” of a function.
These are a straightforward generalization of the usual fix points. For this definition to work we make the
requirement that the set of constraint descriptions over a fixed set of variables is finite. This implies that the
number of induced closure descriptions over a fixed set of variables is also finite.

Let F : X — X be a possibly non-monotonic function on a finite set X. The cycle points of F for x € X,
denoted by cycle_points(F, x) is the set

{Fi(x)|3i,j > 0.Fi(x) = FiH(x)}.

Computing the cycle points of a function over a finite set is straightforward, just compute the sequence x,
F(x), F2(x), ... until a repeated element occurs. The cycle points are exactly the elements between the first
and second occurrence.

We can define Comb' in terms of Comb/. as follows:

Comb/’(4,4') = Ad.Alub/.cycle_points(C,d)

where C(d') = Comb/.(6(d"),d(d")). The reason we had to introduce cycle points is that the function C is
not necessarily monotonic. This arises because the ordering on constraint descriptions reflects the number of
constraints they describe, not the logical ordering on the constraints.

The denotational equations given by providing definitions for the auxiliary functions can be considered
as a definition of a class of program analyses. Read naively, the equations specify a highly redundant way
of computing certain mathematical objects. On the other hand, the denotational definitions can be given
a “call-by-need” reading in which the same partial result is not repeatedly recomputed and only computed
if it is needed for the final result. In the abstract interpretation of traditional Prolog programs to avoid
redundant computations, the result of invoking atom A in the context of environment e is recorded. Such
memoing can be implemented using function graphs. The function graph for a function f is the set of pairs
{(e — f(e)) | e € dom(f)} where dom(f) denotes the domain for f. Computation of a function graph is
done in a demand-driven fashion so that we only compute as much of it as is necessary in order to answer a
given query. This corresponds to the “minimal function graph” semantics used by Jones and Mycroft [15].
However, matters are complicated by the fact that we are performing a fixpoint computation and we must
iteratively compute the result by means of the function’s Kleene sequence. In our context the application
of this idea leads to two generic algorithms for the memoization based analysis of programs with dynamic
scheduling which extend the usual memoization based analysis for traditional Prolog.

In the first, and simplest, algorithm the analysis starts from a “call” and incrementally builds a memo-
ization table. This contains tuples of “calls” and their “answers” which are encountered in derivations from
the initial call. Calls are tuples of the form A :: # where A is an atom, and 7 a closure description restricted
to the variables in A. An answer to a call A :: 7 is of the form 7’ where 7’ is a closure description restricted
to the variables in A. To improve efficiency, the analysis needs only consider calls modulo variable renaming.
Entries in the memoization table are “canonical” and really represent equivalence classes of calls and answers.

As an example consider the analysis of the path program and call from Section 2 using the abstract
domain Def. Closure function f is represented by a definite boolean formulae, F, where f(d) = F A d. The
initial call path(X,Y) :: Y computes an answer closure X AY using the first rule. Evaluating the second
rule sets up a call to edge(X,Z) :: true. The answer description of edge(X,Z) :: true is calculated as
Z — X. The call to p(Z,Y) uses the current answer Z A'Y and computes new closure answer X A'Y for
p(X,Y) :: true. This is the same as the old answer so we have reached a fixpoint, the final memo table is

edge(X,Z) :: true—~ Z - X
path(X,Y): Y —»XAY.
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This first generic algorithm works quite well if it is not too expensive to compute the closure descriptions
of delayed atoms. This is true if the closure description domain is very simple (as in the above example), or
if only constraints can delay as in many CLP languages such as CLP(R). Unfortunately with this algorithm
it is difficult to provide calling pattern information for delayed atoms.

In the case that the closure description domain is a complex function and we have arbitrary delay, then
we can modify the algorithm to give our second generic algorithm as follows. The idea is that we also
evaluate the closure descriptions 7 lazily. The problem is that computing if two closure descriptions are the
same is an expensive test as we must compare their value over all elements of their domain. In the second
generic algorithm two functions are assumed to be the same as long as their behavior is not different on the
abstract constraints upon which the functions have been assessed. This means a function evaluation table
is used to store function evaluations and determine if two functions are “observationally equivalent”. It also
requires handling the case where two functions are assumed equivalent and later found to differ. In this
case computation based on the equivalence needs to be discarded. Note that if the analysis terminates with
two descriptions being “observationally equivalent” then the results of the analysis do not depend on the
functions they define actually being identical, but only that they are identical on the values computed, in
other words they must be “observationally equivalent”. An example of this algorithm’s operation is given in
the Appendix.

We note that as long as the underlying constraint description domain DCon only has a finite number
of descriptions for a given finite set of variables then both of our generic algorithms will terminate. This is
because there are only a finite number of functions that can be defined mapping DCon to DCon for a given
finite set of variables. In the case of the second algorithm eventually two closure descriptions must define the
same functions and hence be found to be “observationally equivalent”.

6 Experimental Evaluation

Examination of the example analysis in the appendix, may suggest that the analysis method is too expensive
to compute. The experimental evaluation presented in this section will show that our analysis method is
practical for real programs.

For efficiency the implementation describes a closure description f’ using a tuple (d,f) where d is a
constraint description from DCon which gives the known constraint information at that program point and
f : DCon — DCon describes the effect of the delayed atoms. More exactly, f' = Ax.f(Comb/.(d, x)). This
approach reduces the number of new functions needed to be defined and gives explicit information about the
current constraint description at each program point which is exactly the information required to compute the
calling patterns and answer patterns. The implementation ensures that the constraint description represents
all the information engendered by the function as well. That is, for each description (d,f) appearing as a
calling pattern or answer pattern f(d) = d. The result of each function evaluation is stored in an evaluation
table. Its purpose is two-fold, when the same evaluation is required its value is looked up in the table to avoid
recomputation, and when two functions are being compared to see if they are “observationally equivalent”,
the calls of interest are found in the evaluation table.

Many programs either have no delay or the delay is restricted to some area of the computation. In these
cases the closure description is of the form (d, f), where f is equivalent to the identity function on descriptions
idpcon- Our framework can be easely modified to take advantage of this by treating the function idpcon
specially: it is always the initial function description for the goal, and until an atom possibly delays it can
be used as the correct function description. We can also detect cases in which a description (d,f) only
describes situations in which atoms which have delayed, have all subsequently been awoken. In these cases,
the description can again be replaced by (d,idpcon). Note that using this modification, we can never assume
equivalence between (d,idpcon) and any other closure description. As we will see in the experiments, this
simple modification significantly improves the efficiency of the analysis.

Two different experiments have been performed. The first one evaluates the overhead introduced by
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Program || PLAI | MSets 1d Hyb

Ovh [ Fun | Val | Eq
aiakl 998 1.14 || 1.02 9.23 71 202 23
ann 4403 1.09 || 1.01 9.20 | 678 | 2365 | 235
bid 213 1.32 || 1.17 4.05 96 127 30
boyer 2515 1.14 || 0.98 6.46 | 388 872 | 204
browse 98 1.28 || 1.11 3.94 53 58 19
deriv 66 1.32 || 1.14 4.91 27 24 20
fib 15 1.24 || 1.18 3.70 8 9 3
grammar 86 1.29 || 1.11 341 18 35 1
hanoiapp 28 1.26 || 1.16 5.15 16 17 6
mmatrix 36 1.34 || 1.10 4.05 18 21 6
occur 40 1.29 || 1.15 4.38 20 25 6
peephole 1900 1.20 || 1.02 6.25 | 496 924 | 248
progeom 109 1.24 || 1.18 4.37 52 62 16
gplan 988 1.37 || 1.02 5.55 | 416 514 | 162
gsortapp 40 1.38 || 1.10 4.90 24 27 9
query 124 1.40 || 1.31 2.18 12 18 1
rdtok 714 1.45 || 1.10 7.97 | 303 621 | 159
read 715 1.41 || 1.04 4.80 | 273 282 | 135
serialize 684 1.14 || 0.98 || 10.77 68 241 23
tak 17 1.58 || 1.32 6.10 12 12 5
warplan 2536 1.29 || 1.08 || 39.77 | 942 | 4202 | 414
zebra 235 1.24 || 0.99 2.79 34 63 9

| | 1.29 [ 1.10 ]| 7.00 ] |

Table 1: Efficiency Results

our method when analyzing (parts of) programs in which no dynamic scheduling occurs. To evaluate such
overhead, we have compared four analysers which result from instantiating the following frameworks over
the Def abstract domain: the PLAI framework [19] (PLAI), the framework presented in [17] (MSets),
the second generic algorithm in which the closure descriptions are computed lazily (Hyb), and a modified
version of this algorithm which treats idpcon specially (Id). The reliability of the comparison is based on
the fact that all analysers have been implemented by suitably modifying the PLAI framework and adding
some domain dependent functions to the Def abstract domain, already implemented in PLAI.

We have selected a wide set of benchmarks which have been traditionally used in the evaluation of “static”
analyzers' and therefore do not contain suspension declarations. The results of the evaluation is shown in
Table 1. For each benchmark, the information shown is the following: analysis times? in milliseconds using
PLALI, overhead introduced by MSets, Id and Hyb. These overheads are computed computed by dividing
the analysis times by those obtained with PLAI. The remaining columns show, for Hyb, the number of
functions created (Fun), the total number of function evaluations (Val), and the total number of equivalences
assumed (Eq). Id does not create functions for these benchmarks. However, the numbers give an idea of
the complexity using Id on similar sized programs that do contain delay. No accuracy results are presented
since, as expected, the information inferred by all analysers is the same for “static” programs.

The results show that both MSet and Id involve a reasonable small overhead (30% and 10%, respectively),
when analysing programs which do not delay. The performance of Hyb is clearly worse than the other

LA complete description of this benchmarks can be found, for example, in [2].
2SICStus 2.1, compactcode, SPARCstation 10, one processor.
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Program MSets 1d Hyb
<1 ] <2 Time | Fun | Val | Eq || Time | Fun | Val | Eq
simple 45 1 70 72 4 11 0 148 17 35 5
path 226 t 378 t 61 6 7 1 93 16 21 4
append3 27 23 1 0 0 84 11 12 3
181 84 4 6 1 254 24 39 | 10
nrev 28 26 1 0 0 89 12 13 4
160 93 4 6 1 330 38 44 | 15
permute 32 32 1 0 0 109 12 14 4
2601 1 46196 t 805 23 37 8 795 31 50 | 11
gsort 67 62 1 0 0 249 28 33 9
5300 T | 314117 ¢ 1754 85 | 206 | 41 1476 | 119 | 174 | 58
mortgage 69 60 1 0 0 1189 66 91 | 19
555 4024 482 28 34 | 17 770 45 64 | 13
fib 6884 T | 439857 1 397 24 44 6 660 37 53 8
5098 1 72945 1 832 56 | 105 | 26 1946 | 102 | 172 | 34

Table 2: Efficiency for programs with dynamic scheduling

methods.

The second experiment compares MSets, Hyb and Id when analyzing programs with dynamic scheduling.
The first benchmark is that presented in the Appendix. The second is the path program analyzed for the
example goal. The next four are those used in the evaluation of the framework presented in [17]. The final
two are the well-known CLP programs mortgage and fibbonacci, modified so that arithmetic delays until it
can be computed by local propagation. All these benchmarks have two obvious modes of operation forwards
and backwards declarations, and thus the benchmarks have been analyzed for both kinds of queries. The
information shown in Table 2 is similar to that shown in the previous table. We give two different analysis
times for MSets, where the size of the multiset description is restricted to < 1 and < 2, respectively. When
these analyses are identical, only the first time is given. Both Id and Hyb are completely accurate on these
benchmarks. Examples where MSets loses accuracy are marked with a f.

Examining the results, it is clear that whenever no suspension occurs (the first call for app3, nrev,
permute, gsort and mortgage) the analysis for all methods, even Hyb, is reasonable fast. Id is always
faster than MSets, except for simple using multiset size < 1. In this case the analysis perform by MSets
is simpler because it loses all accuracy and reaches the fixpoint earlier. Id is almost always faster than Hyb,
the exception being gsort in the case it delays. In this cases Id requires more function evaluations due to
the restriction which prevents assuming equivalences with Idpcon-

MSets suffers in comparison to the other methods when delay occurs, there are three reasons for this.
First MSets must carry around larger descriptions, because they involve the variables of the delayed atoms,
second MSets cannot perform lub operations when atoms are delayed and hence has to treat each answer
separately. These problems lead to the explosion in analysis times when the size of the multiset is increased.
Finally, when there are unbounded length chains of delayed atoms, as in path, the second goal for each
of permute, gsort, mortgage and both goals for fib, it is forced to lose substantial information. In the
experiment we have considered sizes of one and two, however in practice a larger bound would usually be
required to capture a reasonable number of cases where the number of delayed atoms is bounded. In the
benchmarks simple is the only case where the number of delayed atoms is bounded and greater than one.
In this case greater accuracy was achieved by increasing the bound. We can conclude that MSets is not
practical for non-trivial programs.

An interesting observation is that no invalid equivalence assumptions were made during the analysis of
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any benchmark. This is due to the fact that for an equivalence to be assumed we require the first component
of the abstractions (the constraint descriptions) to be identical. As a result, a difference will only appear
whenever re-evaluating the functions for a more concrete value than the associated constraint description
produce different answers. This can only be due to the awakening of a delayed atom in one of the functions
or, more rarely, due to the fact that we are using an underlying abstract domain where re-execution may
sometimes improve accuracy.

7 Conclusion

We have given a generic framework for the analysis of constraint logic programming languages in which atoms
and constraints can delay. An empirical evaluation of a groundness analyzer based on our framework has
demonstrated the practicality of the framework. To our knowledge it is the first practical framework for
analyzing logic programming languages with delay. Information given by analyses based on our framework
promise to improve the execution of logic languages with delay by an order of magnitude [17].

Our framework is also useful for the analysis of concurrent constraint languages. The difference between
these languages and the languages we have considered are that they use a committed choice non-determinism
when choosing which rule to reduce an atom with, and they have no fixed underlying scheduling rule. However,
one of the most promising methods for the implementation of concurrent languages is to compile them into
logic languages with delay [9]. Our analysis method can, of course, be used to optimize the resulting code.

The main use of our analysis framework is to give information about calling patterns. For atoms which
do not delay, even in the presence of delayed atoms which may be awoken, the framework gives very precise
information. For atoms which have delayed, however, the information is less precise. This is because the
delayed atoms are bundled into a single closure which is continuously being reevaluated. Thus for the delayed
atoms, our framework has the imprecision inherent in any reexecution based analysis [18]. We are currently
investigating methods to improve this.
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Appendix — A Worked Example

In this Appendix we give an example of the closure based analysis of a simple program. The description is a
somewhat simplified version of what takes place in the implementation.
Consider the analysis of the following program for the goal q(X,Y,Z):

X, Y, 2) :- %p(X, Y, D', p(Z, X, ?, X = 1%,
?7- p(X, Y, Z) when ground(X).
p(X, Y, Z) :- %X = 75,

This program has been chosen to illustrate the use of the evaluation table and how approximate closures
capture delayed atoms. We consider a groundness analysis using the Def domain.

Since there are initially no delayed atoms the function defining the closure description is just f; which is
defined to be the identity function with domain the Def descriptions of the variables {X,Y,Z}. The calling
pattern to q(X,Y,Z) is therefore

a(X,Y,Z) :: (true,fp)

Ensuring that all DCon information is available requires computing fy(true) = true.

The description at point 0 is again (true,fy). The first call to p(X,Y,Z) has the same information. We
need to decide if the call is possibly delayed or not. As true describes all constraints, we do not know if the
call delays or not, so we must consider both cases and “lub” the resulting answers together.

First consider the case when the call p(X,Y,Z) :: (true, fy) does not delay. In this case we can include
the extra information that, because the call did not delay, X is ground in the function describing the calling
pattern. Thus at point 4 we have the description (X, fy) which includes the information that X is ground.
We need to evaluate fo(X) = X to ensure the Def information in the new calling pattern is complete. At
point 5 we derive description (XAZ, f;). Because we want answer information to be accurate, we must ensure
that nothing was awoken by the additional information. Hence we evaluate fo(X AZ) = X AZ. We now have
successfully computed an answer for p and we add an entry to the answer table

p(X,Y,Z) = (XafO) = (X/\ ZafO)‘

The second case is when the call p(X,Y,Z) :: (true, fy) delays. For an arbitrary description domain the
function, f;, describing the result of delaying p(X,Y,Z) is of the form:

fi(d) = if (d — ground(X)) then f,(d)
elseif (d - —ground(X)) then d
else f,(d A ground(X)) U (d A not_ground (X))

The function involves three cases: in the first the abstraction implies that p(X,Y, Z) is definitely not delayed.
In this case the result is given by f,(d) which is a function that is defined to be the result of calling p with
description (d,Id*>Y>Z). The second case is when the atom definitely delays. For the Def abstract domain
this information is never available so the case can be omitted, but it is useful in other domains such as
definite freeness. The third case is where it cannot be determined by the abstraction d whether the atom
wakes up or not, the result is the lub of the results for waking up (with added information from the wakeup)
and delay (with added information from the delay). The above definition corresponds to that used by the
implementation, which is parametric in domain. The definition of f; specialized to Def we will use for the
purposes of this explanation is:

fi(d) = if (d — X) then f,(d) else d.

Function f; represents AtomClos(p(X,Y,Z)). The overall behavior of the call p(X,Y,Z) :: (true,fp)
is the lub of the above two possibilities — delay or not delay. We have to be careful since this lub must be
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over the functions that the descriptions represent. fa(d) = fi(d) U (X AZ A fp(X A Z A d). Determining
f;(true) = true involves computing f; (true) and hence looking up the already computed value for fo (X AZ).
This causes us to add another entry to the memo table:

p(X,Y,Z) :: (true, fy) — (true, f3).

Combining the result of the call to p(X, Y, Z) :: f, with the description at point 0, we obtain a description
(true, f5) at program point 1 where f; is defined to be Comb’ f; f, For the Def abstract domain Combf, is
just conjunction and the function C d = Comb/. (f d) (f' d) is monotonic. Thus C has a single cycle point
which is its least fixpoint and so f3 is defined to be lfp(Ad.fo(d) A f2(d)).

Determining the calling pattern for the second call to p we build a renaming version of f3, that is

f4(d) = P4f3(P21d) P4 = {Z = X7X = YaY = Z}

Note that in the actual implementation this is avoided, we include it here for ease of explanation. The calling
pattern is therefore (true,f;). To ensure accuracy of the constraint description information we computed
f;(true) = true, which requires computing f3(true). In turn, this involves looking up f>(true) and fy(true).
Since fy(true) = true and fy(true) = true the fixpoint is reached and the evaluation of f3(true) halts.

Examining the new calling pattern (true,f;) we “conjecture” that fo and f; are equivalent functions in
order to use the answer table entry. To test if the conjecture is valid, we check they are “observationally
equivalent” for all evaluations so far made for fy and f4, that is true, X and X AZ. They agree for true, but
we must calculate £4(X) and (X AZ). Computing f4(X A Z) = X A Z involves computing f3(ZAY), fo(Z A
Y),£2(ZAY) and f;(Z AY). Similarly computing f4(X) = X involves computing f3(Z), £, (Z), £2(Z), 1 (Z).
The answers agree with f(XAZ) and f5(X). But computing them involved new function calls to fy. Therefore
we must determine the values for £4(Z AY) and £4(Z) to see if the “observational equivalence” continues to
hold.

Computing £4(ZAY) involves computing f3(XAY), fo(XAY),£(XAY) and f; (X AY) The last involves
computing f,(XAY). This invokes a call to p(X,Y, Z) with description (XAY, fy). The resulting description
at point 5, (X AY A Z, 1), produces an answer table entry

p(X,Y,Z) : (XAY,f) = (XAYAZ)

and involves calculating fo(X A'Y A Z) to ensure the most precise constraint description information is
determined. The result is fi(X AY) = X AY AZ. In the continuing calculation of f3(X AY) we need to
then evaluate f2(X AY AZ) and f; (X A'Y AZ) which again sets up a new call to p(XAY AZ,{), resulting
in in answer table entry

p(X,Y,Z) : (XAYAZ )~ (XAYAZ,f)

The final result £4(ZAY) = X AY A Z does not agree with fy hence the conjecture is wrong — they are not
the same function.

Thus we must consider the call p(X,Y,Z) :: (true,f;) as a new call. The answer if p delays is just fj.
If p wakes then the description at point 4 is (X, f;) and the answer is (X A Z,f;). Obtaining the answer
involves looking up f4(X) and £4(X A Z) to ensure the calling pattern and answer pattern information about
the constraint description is precise. Let fg(d) = fi(d) U (X AZA£4(XAZ AQ)), computing fg(true) = true
involves looking up fi (true) and £1(X A Z). The new answer table entries are

p(X7Y7Z) = (X7f4) = (X A Z7f4)
p(X,Y,Z) :: (true,f;) — (true, f3)

Renaming the result of the call to p(Z,X,Y) back to the original variables is achieved using the function

f,(d) = p;fs(pad) ps={Z—>X, XY, Y = Z}
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The result at point 2 is (true, fg) where function fg = Ifp(A d.f;(d)Af;(d)). Adding the constraint information
we obtain description (X, fg) at point 3. In order to place an entry in the table for q(X,Y,Z) we need to
determine fg(X). This involves calculating f3(X), f5(X), fi (X) and £,(X). The last looks up the answer table
to find f5(X) = X A Z. Continuing the computation of f3(X) involves fo(X A Z), 1 (X A Z) and £,(X A Z).
This sets up a new call to p eventually giving rise to the answer table entry

p(X,Y,Z) s (XAZ,£) — (XAZ,f)

Calculation of fg(X) continues with £7(X), f5(Y), f1 (Y). The next iteration in the calculation of fz(X) involves
determining f3(X A Z) and £;(X A Z). Computing f3(X A Z) involves looking up £2(X A Z). £7(X A Z) is
calculated using f5(X AY), (X AY AZ),£3(X AY A Z) and looking up £5(X AY AZ). Calculation of the
next iteration of f3(X) continues with (X AY AZ) and fs(X AY A Z). The result is (X AY A Z,fg) as
expected. The final answer table entry is

a(X,Y,Z) :: (true,fo) = (XAY AZ,f3)

The answer information is as accurate as possible with the Def domain, while we can determine the calling
pattern information (that p(X,Y,Z) is called with X ground) from the memoization table. Using Id we
would detect that fg could be replaced by Idper.
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