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Abstract. We informally discuss several issues related to the parallel
execution of logic programming systems and concurrent logic program-
ming systems, and their generalization to constraint programming. We
propose a new view of these systems, based on a particular definition
of parallelism. We argue that, under this view, a large number of the
actual systems and models can be explained through the application, at
different levels of granularity, of only a few basic principles: determinism,
non-failure, independence (also referred to as stability), granularity, etc.
Also, and based on the convergence of concepts that this view brings, we
sketch a model for the implementation of several parallel constraint logic
programming source languages and models based on a common, generic
abstract machine and an intermediate kernel language.

1 Introduction

We present an informal discussion on some methodological aspects regarding
the efficient parallel implementation of (concurrent) (constraint) logic program-
ming systems. These efforts represent our first steps towards the development
of what we call the CIAO (Concurrent, Independence-based And/Or parallel)
system — a platform which we expect will provide efficient implementations of a
series of non-deterministic, concurrent, constraint logic programming languages,
on sequential and multiprocessor machines. Because of broad-view nature of the
discussion, in the following a certain familiarity with constraint logic program-
ming and parallel logic programming theory. models, and actual systems such
as Muse [1], Aurora [24], &-Prolog [13], GHC [32], PNU-Prolog [26], DDAS [28],
Andorra-I [27], AKL [20], and the extended Andorra model [33] is assumed.

2 Separation of issues / Fundamental Principles

We begin our discussion with some very general observations regarding com-
putation rules, concurrency, parallelism, and independence. We believe these



observations to be instrumental in understanding our approach and its relation-
ship to others. A motivation for the discussions that follow is the fact that many
current proposals for parallel or concurrent logic programming languages and
models are actually “bundled packages”, in the sense that they offer a combined
solution affecting a number of issues such as choice of computation rule, con-
currency, exploitation of parallelism, etc. This is understandable since certainly
a practical model has to offer solutions for all the problems involved. However,
the bundled nature of (the description of) many models often makes it difficult
to compare them with each other. It is our view that, in order to be able to per-
form such comparisons, a “separation analysis” of such models, isolating their
fundamental principles in (at least) the coordinates proposed above must be
performed. In fact, we also believe that such un-bundling brings the additional
benefit of allowing the identification and study of the fundamental principles
involved in a system independent manner and the transference of the valuable
features of a system to another. In the following we present some ideas on how
we believe the separation analysis mentioned above might be approached.

2.1 Separating Control Rules and Parallelism

We start by discussing the separation of parallelism and computation rules in
logic programming systems. Of these two concepts, probably the best under-
stood from the formal point of view is that of computation rules. Assuming for
example an SLD resolution-based system the “computation rules” amount to a
“selection rule” and a “search rule.” The objective of such computation rules
in general is to minimize work, i.e. to reduce the total amount of resolutions
needed to obtain an answer. We believe it is useful, at least from the point of
view of analyzing systems, to make a strict distinction between parallelism is-
sues and computation-rule related issues. To this end, we define parallelism as
the simultaneous execution of a number of independent sequences of resolutions,
taken from those which would have to be performed in any case as determined by
the computation rules. We call each such sequence a thread of execution. Note
that as soon as there is an actual (i.e., run-time) dependency between two se-
quences, one has to wait for the other and therefore parallelism does not occur
for some time. Thus, such sequences contain several threads. Exploiting paral-
lelism means taking a fixed-size computation (determined by the computation
rules), splitting it into independent threads related by dependencies (building a
dependency graph), and assigning these segments to different agents. Both the
partitioning and the agent assignment can be performed statically or dynami-
cally. The objective of parallelism in this definition is simply to perform the same
amount of work in less time.

We consider as an example a typical or-parallel system. Let us assume a
finite tree, with no cuts or side-effects, and that all solutions are required. In
a first approximation we could consider that the computation rules in such a
system are the same as in Prolog and thus the same tree is explored and the
number of resolution steps is the same. Exploiting (or-)parallelism then means
taking branches of the resolution tree (which have no dependencies, given the



assumptions) and giving them to different agents. The result is a performance
gain that is independent of any performance implications of the computation
rule. As is well known, however, if only (any) one solution is needed, then such a
system can behave quite differently from Prolog: if the leftmost solution (the one
Prolog would find) is deep in the tree, and there is another, shallower solution to
its right, the or-parallel system may find this other solution first. Furthermore,
it may do this after having explored a different portion of the tree which is
potentially smaller (although also potentially bigger). The interesting thing to
realize from our point of view is that part of the possible performance gain (which
sometimes produces “super-linear” speedups) comes in a fundamental way from
a change in the computation rule, rather than from parallel execution itself. It
is not due to the fact that several agents are operating but to the different way
in which the tree is being explored (“more breath-first”).

A similar phenomenon appears for example in independent and-parallel sys-
tems if they incorporate a certain amount of “intelligent failure”: computation
may be saved. We would like this to be seen as associated to a smarter computa-
tion rule that is taking advantage of the knowledge of the independence of some
goals rather than having really anything to do with the parallelism. In contrast,
also the possibility of performing additional work arises: unless non-failure can
be proved ahead of time, and-parallel systems necessarily need to be speculative
to a certain degree in order to obtain speedups. However such speculation can
in fact be controlled so that no slow down occurs [14].

Another interesting example to consider is the Andorra-I system. The basic
Andorra principle underlying this system states (informally) that deterministic
reductions are performed ahead of time and possibly in parallel. This principle
would be seen from our point of view as actually two principles, one related to the
computation rules and another to parallelism. From the computation rule point
of view the bottom line is that deterministic reductions are executed first. This
is potentially very useful in practice since it can result in a change (generally a
reduction, although the converse may also be true) of the number of resolutions
needed to find a solution. Once the computation rule is isolated the remaining
part of the rule is related to parallelism and can be seen simply as stating
that deterministic reductions can be executed in parallel. Thus, the “parallelism
part” of the basic Andorra principle, once isolated from the computation rule
part, brings a basic principle to parallelism: that of the general convenience of
parallel execution of deterministic threads.

We believe that the separation of computation rule and parallelism issues
mentioned above allows enlarging the applicability of the interesting principles
brought in by many current models.

! This can be observed for example by starting a Muse or an Aurora system with
several “workers” on a uniprocessor machine. In this experiment it is possible some-
times to obtain a performance gain w.r.t. a sequential Prolog system even though
there is no parallelism involved — just a coroutining computation rule, in this case
implemented by the multitasking operating system.



2.2 Abstracting Away the Granularity Level: Fundamental
Principles

Having argued for the separation of parallelism issues from those that are re-
lated to computation rules, we now concentrate on the fundamental principles
governing parallelism in the different models proposed. We argue that moving a
principle from one system to another can often be done quite easily if another
such “separation” is performed: isolating the principle itself from the level of
granularity at which it is applied. This means viewing the parallelizing princi-
ple involved as associated to a generic concept of thread, to be particularized
for each system, according to the fundamental unit of parallelism used in such
System.

As an example, and following these ideas, the fundamental principle of de-
terminism used in the basic Andorra model can be applied to the &-Prolog
system. The basic unit of parallelism considered when parallelizing programs in
the classical &-Prolog tools is the subtree corresponding to the complete reso-
lution of a given goal in the resolvent. If the basic Andorra principle is applied
at this level of granularity its implications are that deterministic subtrees can
and should be executed in parallel (even if they are “dependent” in the classical
sense). Moving the notions of determinism in the other direction, i.e. towards a
finer level of granularity, one can think of applying the principle at the level of
bindings, rather than clauses, which yields the concept of “binding determinism”
of PNU-Prolog [26].

In fact, the converse can also be done: the underlying principles of &-Prolog
w.r.t. parallelism —basically its independence rules— can in fact be applied at
the granularity level of the Andorra model. The concept of independence in
the context of &-Prolog is defined informally as requiring that a part of the
execution “will not be affected” by another. Sufficient conditions —strict and
non-strict independence [14]- are then defined which are shown to ensure this
property. We argue that applying these concepts at the granularity level of the
Andorra model gives some new ways of understanding the model and some new
solutions for its parallelization. In order to do this it is quite convenient to look
at the basic operations in the light of David Warren’s extended Andorra model.?
The extended Andorra model brings in the first place the idea of presenting the
execution of logic programs as a series of simple, low level operations on and-or
trees. In addition to defining a lower level of granularity, the extended Andorra
model incorporates some principles which are related in part to parallelism and
in part to computation rule related issues such as the above mentioned basic
Andorra principle and the avoidance of re-computation of goals.

On the other hand the extended Andorra model also leaves several other
issues relatively more open. One example is that of when nondeterministic re-
ductions may take place in parallel. One answer for this important and relatively
open issue was given in the instantiation of the model in the AKL language. In
AKL the concept of “stability” is defined as follows: a configuration (partial

2 This is understandable, given that adding independent and-parallelism to the basic
Andorra model was one of the objectives in the development of its extended version.



resolvent) is said to be stable if it cannot be affected by other sibling configura-
tions. In that case the operational semantics of AKL allow the non-determinate
promotion to proceed. Note that the definition is, not surprisingly, equivalent to
that of independence, although applied at a different granularity level. Unfor-
tunately stability /independence is in general an undecidable property. However,
applying the work developed in the context of independent and-parallelism at
this level of granularity provides sufficient conditions for it. The usefulness of
this is underlined by the fact that the current version of AKL incorporates the
relatively simple notion of strict independence (i.e. the absence of variable shar-
ing) as its stability rule. However, the presentation above clearly marks the way
for incorporating more advanced concepts, such as non-strict independence, as
a sufficient condition for the independence/stability rule. As will be mentioned,
we are actively working on compile-time detection of non-strict independence,
which we believe will be instrumental in this context. Furthermore, and as we
will show, when adding constraint support to a system the traditional notions
of independence are no longer valid and both new definitions of independence
and sufficient conditions for it need to be developed. We believe that the view
proposed herein allows the direct application of general results concerning inde-
pendence in constraint systems to several realms, such as the extended Andorra
model and AKL.

Another way of moving the concept of independence to a finer level of gran-
ularity is to apply it at the binding level. This yields a rule which states that
dependent bindings of variables should wait for their leftmost occurrences to
complete (in the same way as subtrees wait for dependent subtrees to their left
to complete in the standard independent and-parallelism model), which is es-
sentially the underlying rule of the DDAS model [28]. In fact, one can imagine
applying the principle of non-strict independence at the level of bindings, which
would yield a “non-strict” version of DDAS which would not require dependent
bindings to wait for bindings to their left which are guaranteed to never occur,
or for bindings which are guaranteed to be compatible with them.

Recently, new concepts of independence have been proposed for constraint
logic programming [6], since the traditional concepts are not valid in this context.
It is our belief that these new concepts can also be applied at different granular-
ity levels and thus render “constraint correct” versions of models such as DDAS
(and also be used for defining sufficient conditions for stability in the context
of constraints other than Herbrand). In order to do this, we have recently pro-
posed a very fine grain, truly concurrent semantics for both CC-type languages
with atomic tell and CLP-type languages [2]. Applications of this semantics are
illustrated in [25].

With this view in mind we argue that, once thy are abstracted out from the
control rules, and from the granularity level at which they are applied, there exist
several common, fundamental principles which govern exploitation of parallelism.
Our discussion has revolved around:

— independence, which allows parallelism among non-deterministic threads,
provided they do not “affect” each other,



— determinacy, which allows parallelism among dependent threads.

We believe there are other such fundamental principles, among which we would
like to mention non-failure, which allows avoiding speculativeness, and gran-
ularity, or thread size, which allows guaranteeing speedup in the presence of
overheads. Space limitations prevent us from elaborating on these.

2.3 Parallelism vs. Concurrency

Similarly to the separations mentioned above (parallelism vs. computation rule
and principles vs. granularity level of their application) we also believe in a
separation of “concurrency” from both parallelism and computation rules. We
believe that concurrency is most useful when explicitly controlled by the user
and in that sense it should in some ways also be separate from the implicit com-
putation rules, although this is more of a source language semantics choice. This
is in contrast with parallelism, which ideally should be transparent to the user,
and with smart computation rules of which the user should be aware, in the
sense of being able to derive an upper bound on the amount of computation in-
volved in running a program for a given query using that rule. Space limitations
prevent us from elaborating more on this topic or that of the separation between
concurrency and parallelism. However, an example of an application of the lat-
ter can be seen in schedule analysis, where the maximal essential components
of concurrency are isolated and sequenced to allow the most efficient possible
execution of the concurrent program by one agent [21]. Schedule analysis is, after
all, an application of the concept of dependence (or, conversely, independence)
at a certain level of granularity in order to “unparallelize” a program, and is
thus based on the same principles as automatic parallelization.

Furthermore, we believe that there are actually at least two forms of con-
currency based on whether or not there is a notion of a “computing agent”
attached to the concurrent task. In other words, whether there is a notion of
“computational gas” or “fairness” attached to each such task. The first form of
concurrency is traditionally referred to as “coroutining”. This is the concurrency
obtained explicitly with Prolog’s “freeze” (and, also, through &-Prolog’s “&”),
and implicitly in Godel [15] or in Andorra-I [27] through the basic Andorra prin-
ciple. The second one is associated with the explicit creation of an actual process
and is generally not present in concurrent logic programming systems. The dif-
ferences between these two forms of concurrency can easily been seen through
an example: imagine a procedure “cube(X)” that opens a window in a display
and shows a cube which rotates X times. Assume “&” to be the concurrent
operator. Now consider the concurrent conjunction “cube(5) & cube(5)”. Note
that the two tasks are independent and thus need no synchronization. Thus, in
the case of a coroutining interpretation of “&” one possible execution would be
to execute the two calls sequentially. But it may be that what the programmer
actually means is that two windows should be opened (more or less) at the same
time and the cubes should rotate (more or less) simultaneously, in which case
the second type of concurrency is meant. In any case, the two interpretations
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are clearly different. In the CTAO system we propose to support both forms of
concurrency through different user-level primitives (“&” and “&&” — for more
details, please see [12]).

3 Towards General-Purpose Implementations

We believe that the points regarding the separation of issues and fundamental
principles sketched in the previous sections at the same time explain and are
supported by the recent trend towards convergence in the analysis and imple-
mentation techniques of systems that are in principle very different, such as
the various parallel implementations of Prolog on one hand (see, for example,
[13, 24, 27]) and the implementations of the various committed choice languages



on the other (see, for example, [5, 10, 19, 31, 32]). The former are based on
schemes for parallelizing a sequential language; they tend to be stack-based, in
the sense that (virtual) processors allocate environments on a stack and execute
computations “locally” as far as possible until there is no more work to do, at
which point they “steal” work from a busy processor. The latter, by contrast,
are based on concurrent languages with dataflow synchronization; they tend to
be heap-based, in the sense that environments are generally allocated on a heap,
and there is (at least conceptually) a shared queue of active tasks.

The aforementioned convergence can be observed in that, on one hand, driven
by the demonstrated utility of delay primitives in sequential Prolog systems
(e.g., the freeze and block declarations of Sicstus Prolog [4], when declara-
tions of NU-Prolog [29], etc.), parallel Prolog systems have been incorporating
capabilities to deal with user-defined suspension and coroutining behaviors—
for example, &-Prolog allows programmer-supplied wait-declarations, which can
be used to express arbitrary control dependencies. In sequential Prolog systems
with delay primitives, delayed goals are typically represented via heap-allocated
“suspension records,” and such goals are awakened when the variables they are
suspended on get bindings [3]. Parallel Prolog systems inherit this architecture,
leading to implementations where individual tasks are stack-oriented, together
with support for heap-allocated suspensions and dataflow synchronization. On
the other hand, driven by a growing consensus that some form of “sequential-
ization” is necessary to reduce the overhead of managing fine-grained parallel
tasks on stock hardware (see, for example, [9, 30, 22, 11]), implementors of com-
mitted choice languages are investigating the use of compile-time analyses to
coalesce fine-grained tasks into coarser-grained sequential threads that can be
implemented more efficiently. This, again, leads to implementations where in-
dividual sequential threads execute in a stack-oriented manner, but where sets
of such threads are represented via heap-allocated activation records that em-
ploy dataflow synchronization. Interestingly, and conversely, in the context of
parallel Prolog systems, there is also a growing body of work trying to address
the problem of automatic parallelizing compilers often “parallelizing too much”
which appears if the target architecture is not capable of supporting fine grain
parallelism. Figure 1 illustrates this.

This convergence of trends both at the compiler and the run-time system
levels is exciting: it suggests that we are beginning to understand the essen-
tial implementation issues for these languages, and that from an implementor’s
perspective these languages are not as fundamentally different as was originally
believed. It also opens up the possibility of having a general purpose kernel
language and abstract machine to serve as a compilation target for a variety
of user-level languages. As mentioned before this is precisely one of the objec-
tives of the CIAO system. Encouraging initial results in this direction have been
demonstrated in the sequential context by the QD-Janus system [8] of S. Debray
and his group. QD-Janus, which compiles down to Sicstus Prolog and uses the
delay primitives of the Prolog system to implement dataflow synchronization,
turns out to be more than three times faster, on the average, than Kliger’s cus-



tomized implementation of FCP(:) [23] and requires two orders of magnitude
less heap memory [7]. We believe that this point will also extend to parallel
systems: as noted above, the &-Prolog system already supports stack-oriented
parallel execution together with arbitrary control dependencies, suspension, and
dataflow synchronization via user-supplied wait-declarations, all characteristics
that CIAO inherits. This suggests that, with some enhancements, the depen-
dence graphs and wait-declarations of &-Prolog/CIAQ, can serve as a common
intermediate language, and its runtime system can act as an appropriate common
low-level implementation, for a variety of parallel logic programming implemen-
tations.

Along these lines, in [12] we have recently proposed a method for providing
user-level access to such a generic implementation, based on the use of attributed
variables [18, 3]. Incorporating the possibility of attaching attributes to variables
in a logic programming system has been shown to allow the addition of general
constraint solving capabilities to it [16, 17]. This approach is very attractive in
that by adding a few primitives any logic programming system can be turned
into a generic constraint logic programming system in which constraint solving
can be user defined, and at source level — an extreme example of the “glass
box” approach. In [12] we propose applying the concept of attributed variables
to provide the same “glass box” flavor in a generic parallel/concurrent (con-
straint) logic programming system. We argue that a system which implements
attributed variables and a few additional primitives (such as those present in
&-Prolog/CIAO) can be easily customized at source level to implement many
of the languages and execution models of parallelism and concurrency currently
proposed, in both shared memory and distributed systems. We do not mean to
suggest that the performance of such a system will be optimal for all possible
logic programming languages: our claim is rather that it will provide a way to
researchers in the community implement their languages with considerably less
effort than has been possible to date, and yet attain reasonably good perfor-
mance. We are currently exploring these points in collaboration with S. Debray,
F. Rossi, and U. Montanari, by using the CTAO system as a generic implemen-
tation platform.
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