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Abstract

Separating programs into modules is a well-known technique which has proven very useful
in program development and maintenance. Starting by introducing a number of possible
scenarios, in this paper we study different issues which appear when developing analysis and
specialization techniques for modular logic programming. We discuss a number of design
alternatives and their consequences for the different scenarios considered and describe where
applicable the decisions made in the Ciao system analyzer and specializer. In our discussion
we use the module system of Ciao Prolog. This is both for concreteness and because Ciao
Prolog is a second-generation Prolog system which has been designed with global analysis and
specialization in mind, and which has a strict module system. The aim of this work is not to
provide a theoretical basis on modular analysis and specialization, but rather to discuss some
interesting practical issues.

1 Introduction

Writing modular programs, i.e., programs which are made of components called modules, has
proven useful in practice for both program development and maintenance.! Program compilation,
analysis, and specialization have in common that they receive programs as input and they have to
handle them in some way or another. Performing these tasks on modular programs differs from
doing so on non-modular programs in several interesting ways. Our purpose is to study a number
of issues which appear when developing analysis and specialization techniques for modular logic
programming.

By strict module systems we refer to those in which a module can only communicate with other
modules via its interface. The interface of a module usually contains the names of the exported
predicates and the names of the imported modules. Other modules can only use predicates which
are among the ones exported by the considered module. Predicates which are not exported are
not visible outside the module.

For concreteness, we will concentrate on a particular, strict module system for Prolog [CH99a]:
the one used in Ciao Prolog [CLI97]. This module system is in fact quite similar to the module
systems of the most popular Prolog implementations. Thus, the discussion in the rest of the paper
should apply to such module systems, or, at least, to their subset which is strict.2 However, it
is useful in our discussion that some of the particular choices in the design of the Ciao module
system were made keeping the task of global analysis in mind.

This paper builds primarily on [BCHP96], in which many techniques were proposed for dealing
with “difficult” features of practical languages (in particular, full ISO Prolog) in the context of
analysis. Herein we concentrate on the issue of modular analysis, which was only sketched at the
end of [BCHP96]. We also extend the techniques to another application: specialization.

1.1 An Example of a Modular Program

Figure 1 shows the code of a module which implements the well-known quicksort algorithm. The
declaration :- module(qgsort, [gsort/2]). states that the module name is gsort and that it
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I Modularity is also one of the fundamental principles behind object oriented programming.

2However, as already argued in [BCHP96], we feel that a strict module system is beneficial not only for
global program analysis and specialization, but also in the more traditional activities of program development
and maintenance.



:— module(gsort, [gsort/2]).
:— use_module(lists, [append/3]1).

gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2), gsort(L1,R1), append(R1,[X|R2],R).

qsort([],[])-

partition([1,_,[0,[1).

partition([E|R],C, [E|Left1] ,Right):- E < C, !,partition(R,C,Leftl,Right).
partition([E|R],C,Left,[EIRight1]):- E >= C, partition(R,C,Left,Rightl).

Figure 1: A module for quicksort

exports the predicate gsort/2. The declaration :- use_module(lists, [append/3]) . indicates
that the module gsort imports the predicate append/3 from module lists, which is shown in
Figure 2. Last, the program has a third module, tests, which is the main one. It imports gsort
and checks that the results produced are sorted and of the right length. Module tests is shown
in Figure 3. The module declaration :- module(test, [test/1], [assertions]). has a third
argument, [assertions] which indicates that the module uses some extra syntax defined in the
library assertions which defines the required operators for writing entry and trust assertions
described later in the paper.

:— module(lists, [append/3,length/2]).

append([], L, L).
append([E|Es], L, [EIR]) :- append(Es, L, R).

length(L, N) :- var(N), !, llength(L, 0, N).
length(L, N) :- dlength(L, 0, N).

llength([1, I, I).
llength([_IL], IO, I) :- I1 is IO+1, llength(L, I1, I).

dlength([], I, I) :- !.
dlength([_IL], 10, I) :- IO<KI, Il is IO+1, dlength(L, I1, I).

Figure 2: A very simple lists module

The rest of the paper proceeds as follows: Section 2 describes a number of typical program
development scenarios and recalls how compilation of modular programs occurs in each of these
scenarios. Section 3 introduces some abstract interpretation concepts and notation used in the
rest of the paper. Sections 4 and 5 then discuss a number of design alternatives which can be
considered and the results which will be obtained when performing analysis and, respectively,
specialization of modular programs in each of the typical scenarios of Section 2.

2 Some Characteristic Scenarios

We start by introducing some notation. A program P is a finite set of modules {mq,...,my}.
By imports(m,m'), m # m' we indicate that some (or all) of the predicates exported by m' are
imported by m. Figure 4 presents a program P composed of six modules. Modules are represented
as boxes and imports(m,m') is represented as an arrow from m to m’. Though a program is
generally composed of several modules, there is a distinguished module which defines the entry
point to the program. By main(P) we refer to the main module in P. In our example main(P) = a.
Given a module m, by imported(m) we refer to the set of modules from which m imports some
predicates, i.e. imported(m) = {m' € P s.t. imports(m,m')}. Graphically, a module m' is in



:— module(test, [test/1], [assertions]).
:— entry test(X) : ground(X).

:— use_module(gsort) .

:— use_module(lists).

test(L):- length(L,Length), length(Result,Length),
gsort(L,Result), sorted(Result).

sorted([]).
sorted([_]).
sorted([X,Y|Z]):- X =<Y, sorted([YI|Z]).

Figure 3: A module for testing quicksort

imported(m) iff there is an arrow from m to m’. In our example, imported(a) = {b,c}. By
dependent(m) we refer to the set of modules on whose code m depends, i.e., dependent(m) =
{m' € P s.t. (imports(m,m') VvV Im" € P st. imports(m,m") Am' € dependent(m'))}. Note
that the definition of dependent is transitive, whereas that of imports is not. In our example,
dependent(a) = {b,¢c,d, e, f}. Note that there may be circular dependencies among modules. In
our example, e € dependent(d) and d € dependent(e).

Figure 4: An Example of a Modular Design

We now describe three typical scenarios which appear when dealing with modular programs
and which we find of particular practical interest. These scenarios will be used throughout the
rest of the paper. In these scenarios, we assume that the tool (be it the compiler, analyzer or
specializer), is processing a given module (e.g., the one in the current editor buffer). We refer to
this module as the current module. The different scenarios differ on whether, in addition to the
current module, the tool accesses only (some interface information of) the imported modules or
it may access all dependent modules, and also on whether the tool processes one module at any
point in time or processes several modules simultaneously as one.

2.1 Scenario 1: Dealing with a Single Module (and Related Interfaces)

In this scenario the tool performs its task on the current module without considering the code
in any other module. This is a fundamental scenario in modular programming because of its
important practical implications: being able to treat properly this situation allows the tool to
deal with incomplete programs. l.e., the current module can be processed even if the imported
modules are still incomplete or completely unavailable. This allows independent development of
different parts of the program, which can then perhaps be performed in parallel by different teams.
This can for example allow early detection of compile-time errors in the current module without
having to wait for the code of the dependent modules to be ready. Another reason why this
scenario is important is efficiency, in the sense of the time taken by the processing performed by
the tool: clearly, processing a module separately should be more efficient than processing the whole
program. However, less than optimal results (in terms of error detection, degree of optimization,



etc., depending on the particular tools) may be obtained. Thus, the objective in this scenario is
more correctness of the results, rather than optimality.

Because of its practical importance, in the case of compilation this scenario usually receives
a special name: separate compilation. As examples of this important practical case we consider
the compilation of individual “modules” by the Unix C compiler (cc) and also the Ciao Prolog
standalone compiler (ciaoc) [CH99b] 2 cc itself performs typically only separate compilation: it
isrun on a . c file and produces a . o file containing relocatable machine code. ciaoc also performs
separate compilation when the -c flag is used, compiling the module into a separate object (.po)
file containing (by default) WAM [AK91] bytecode.

Despite the considerations above, in practice tools typically require that at least some interface
information be available for the dependent modules in order to be able to do a sensible job on the
current module. One of our purposes is to try to identify which is the minimal amount of interface
information required by the different tools from the related modules to perform their task under
each scenario. Typically, in this scenario only information on the imported modules is required.
For example, in the case of ciaoc, the minimal amount of information needed to process a module
and obtain its compiled version is the names/arities of the predicates actually exported by the
imported modules. The compiler automatically extracts the interface definition from the source
file and stores it in a separate file: the .itf —interface— file. From that point on, and as long as
the source file is not modified, the .itf file will be used by the compiler any time the interface
part of the corresponding module is needed. Compiling a module requires only its code and the
interface files of the imported modules (i.e., the source of the imported modules is not necessary).
In the case of cc, the needed information is typically added explicitly to the current “module” (as
a result, a reduced amount of error checking can be made).*

2.2 Scenario 2: Dealing with Several Modules, One-at-a-Time

In this scenario we assume that the tool can access the code of, and process, all the modules
in program P. This scenario starts from a request to process a module m which is usually
main(P). However, due to the dependencies among modules, in order to process m all modules
in dependent(m) (often the rest of modules in the program) may also have to be accessed and
processed. Such processing is performed one module at a time, i.e., the tool loads and processes
the code of only one module at each step. Thus, in order to deal with this scenario, the tool
must be able to change contexts in order to deal with this loading and unloading of modules to
be processed. Also, in this scenario typically all modules in dependent(m) and not only those
in imported(m) must be processed. Furthermore, since we admit circular dependencies among
modules, in order to deal with this scenario the tool has to be able to deal with such circularities
correctly. Depending on the task to be performed by the tool, it may be required to process the
same module several times. In that case, care must be taken to avoid entering infinite loops and
processing terminates when a fized point is reached, i.e., when further iterations do not change the
results.

As examples, in a UNIX environment, this scenario is implemented using the make application.
This corresponds to writing a makefile (possibly aided by running the makedepend command)
followed by issuing a make command. I.e., based on the dependencies among modules it is de-
termined which modules have to be recompiled. The Ciao ciaoc compiler also automatically
performs this process, automatically determining the dependent modules of the current one and
follows the dependencies among modules deciding which modules require recompilation to .po
and finally linking the application, without requiring any input from the user.

3The Ciao compiler, itself part of the Ciao library, can be used both from the command line using the ciaoc
application, and from the familiar interactive toplevel shell. While in the discussion we will mention only ciaoc,
the descriptions given apply equally to the use of the compiler from the toplevel shell or as a library from another
program.

4In fairness, C is not really modular — we are using it as an example only because the related compilation tools
are very well known.



2.3 Scenario 3: Dealing with Several Modules Simultaneously as One

Though modularity is beneficial from the program development point of view, it usually does
not add fundamentally to the expressive power of a language. In fact, a monolithic program can
always be constructed which is equivalent to a modular one. The process of constructing such
program usually only amounts to renaming predicates in different modules in order to avoid name
clashes. Thus, an alternative to scenario 2 in order to deal with a modular program P, in the case
in which all the code is available, is to transform P into an equivalent monolithic program P’ and
then process P’ rather than P. We refer to this approach as scenario 3. Note that in practice it
suffices if the tool can deal with scenario 1 and one of scenario 2 or 3. Which of the latter is more
appropriate depends on the particular task the tool has to perform.

As in the case of scenario 2, this scenario usually starts with a request to process a module
m = main(P). Using again compilation as an example, this scenario corresponds to first per-
forming module name expansion, then concatenating the code of m with that of all the modules
in dependent(m) (often the whole program) and finally running the compiler on the result. This
mode is not really supported by cc/make nor by ciaoc (although it would be relatively easy to
build such a file by hand and run it through the compiler). One reason for this is that, as men-
tioned before, it is sufficient that a tool deal with scenario 2. Compilation based on scenario 3 can
be more efficient than that based on scenario 2 when a complete (correct) program is compiled
from scratch. However, this scenario is not incremental and any subsequent compilation after some
modification of the program is typically much more efficient following scenario 2. Furthermore,
consider that user programs very often use library predicates which reside in modules which are
typically pre-compiled. Scenario 2 allows avoiding compilation of library modules over and over
again.

3 Abstract Interpretation

Program analysis aims at deriving at compile-time certain properties of the run-time behavior
of a program. Prior to presenting our proposals regarding analysis of modular programs, we
provide some background and notation on abstract interpretation [CC77] which is one of the most
successful techniques for static program analysis (and the one used throughout in the Ciao system).

We first recall some classical definitions in logic programming. An atom has the form p(t1, ..., t,,)
where p is a predicate symbol and the ¢; are terms. We often use t to denote a tuple of terms.
A clause is of the form H:-By,..., B, where H, the head, is an atom and By, ..., B,, the body,
is a possibly empty finite conjunction of atoms. A definite logic program, or program, is a finite
sequence of clauses.

In abstract interpretation, the execution of the program is “simulated” on an abstract domain
(D4) which is simpler than the actual, concrete domain (D). An abstract value is a finite represen-
tation of a, possibly infinite, set of actual values in the concrete domain (D). The set of all possible
abstract semantic values represents an abstract domain D, which is usually a complete lattice or
cpo which is ascending chain finite. However, for this study, abstract interpretation is restricted
to complete lattices over sets both for the concrete (2P, C) and abstract (D, C) domains.

Abstract values and sets of concrete values are related via a pair of monotonic mappings {(a, v):
abstraction o : 2P — D, and concretization v : D, — 2P such that

Vze2P: y(a(@)) Dz and Yy e Dy: a(y(y)) =y.

Note that in general C is induced by C and « (in such a way that VA, \' € D, : AC XN &
v(A) C 4(A")). Similarly, the operations of least upper bound (U) and greatest lower bound (1)
mimic those of 2P in some precise sense.

Example 3.1 [A domain for mode analysis] In all our examples we will use the following abstract
domain D, which captures mode information. An abstract substitution A over a set of variables
X ={Xi,...,X,} assigns to each variable X; a value v in the set {ground, var, any} where each



v represents an infinite set of terms. The fact that a variable X; is assigned an abstract value v
indicates that X; will be bound at run-time to some term belonging to v. ground is the set of all
terms without variables; var is the set of unbound variables (possibly aliased to other unbound
variables); and any is the set of all terms. The abstract domain is complemented by the abstract
substitutions | and T. As usual in abstract interpretation, L denotes the abstract substitution
such that y(L) = 0. The substitution T is such that 4(T) = D. In our domain, T corresponds to
assigning any to each variable in X.

3.1 A Notation for Abstract Substitutions

For the sake of readability, an abstract substitution A = {Xi/v1,..., Xn/vn} where each v;
€ {ground, var, any} is represented as the conjunction (v;(X1),...,vn(Xy)). For example,
{X1/ground, X2 /var, Xs/any} is represented as (ground(Xi),var(Xsz),any(X3)). In addition,
statements of the form any(X;) can be removed. Thus, the above substitution over {Xy, X, X3}
can be simply written as (ground(X;),var(Xs)). We will use this notation in the examples for
both entry and trust assertions which will be introduced below. Note however that the assertion
language used in Ciao [HPB99, PBH99] admits much more general properties in assertions which
are also independent from the abstract domain being used. However, we restrict ourselves to
abstract substitutions in assertions for simplicity of the presentation.

3.2 Goal-Dependent analysis

Goal-dependent analyses are characterized by generating information which is valid only for a
restricted set of calls to a predicate, as opposed to goal-independent analyses whose results are valid
for any call to the predicate. Goal-dependent analyses allow obtaining results which are specialized
(restricted) to a given context. As a result, they provide in general better (stronger) results than
goal-independent analyses. In addition, goal-dependent analyses provide information on both
the call and success states for each predicate, whereas goal-independent analysis only provide
information on success states of predicates. For these reasons, and since program specialization
greatly relies on information about call states to predicates, we will restrict the discussion to
goal-dependent analyses.

In order to improve the accuracy of goal-dependent analyses, some kind of description of the
initial calls to the program should be given.® With this aim, we will use entry declarations in
the spirit of [BCHP96]. Their role is to restrict the starting points of analysis to only those calls
which satisfy the assertion ‘:- entry Pred : Call ’. where Call is an abstract call substitution
for Pred in the notation introduced in Section 3.1.6 For example, the following assertion informs
the analyzer that at run-time all initial calls to the predicate gqsort/2 will have a term without
variables in the first argument position:

:- entry gqsort(A,B) : ground(4).

The possibly more accurate information generated by a goal-dependent analyzer using the above
assertion is valid for any execution of gsort/2 with the first argument being bound to a term with-
out variables, but may be incorrect for other executions. Goal dependent abstract interpretation
takes as input a program P and a set entries. This set contains pairs of the form (p, A) where p is
one of the top-level (exported) predicates and A is an abstract substitution in the abstract domain
D,, which represents a restriction of the run-time bindings of p. The set entries is obtained from
the entry declarations present for the program. For each declaration ‘:- entry Pred : Call’ a
pair (Pred, Call) is added to entries.

Goal-dependent abstract interpretation computes a set of triples Analysis(P, entries, Dy) =

{1, A[, AD), ..., (Pn, A5, A2) ). In each triple (p;, AS, Af), p; is an atom and A{ and A are, respec-

5Predicate calls which are not initial will be called internal.
6In practice, a more general language, which includes properties defined in the source language, is sup-
ported [HPB99].



tively, the abstract call and success substitutions.” Due to space limitations, and given that it is
now well understood, we do not describe here how we compute Analysis(P,entries, D,). More
details can be found in [Bru91, MH90, MH92, HPMS95, PH96].

Given Analysis(P,entries, Do) = {{p1, X, Af), ..., (Dn, A, A8)}, correctness of abstract in-
terpretation guarantees that the following propositions hold:

Proposition 3.2 [Correctness w.r.t. successes] The abstract success substitutions cover all the
concrete success substitutions which appear during execution, i.e., ¥i = 1.n V8, € y(X§) if p;0.
succeeds in P with computed answer 8, then 8, € v(A$).

Proposition 3.3 [Correctness w.r.t. calls] The abstract call substitutions cover all the concrete
calls which appear during executions described by entries. I.e., for any concrete call ¢ originated
from an initial goal pf s.t. I(p, A) € entries with § € v(A) : I(p;, Aj, Aj) € Analysis(P, entries, Dy)
s.t. ¢ = p;0' and 0" € y(XS).

Proposition 3.3 is related to the closedness condition [LS91] required in partial deduction.

An analysis is said to be multivariant on calls if more than one triple (p, A{, A), ..., (p, AS, AZ%)
n > 0 with A7 # Aj for some 4, j may be computed for the same predicate. Different analyses
may be defined with different levels of multivariance [VDCM93]. However, unless the analysis is
multivariant on calls, little specialization may be expected in general. Thus, in what follows we
restrict ourselves to goal-dependent analyses which are multivariant on calls.

3.3 Aiding the Analysis

Yet another kind of assertions are introduced in [BCHP96] and are intended for use when additional
information is to be provided to the analyzer in order to improve its information. An example of
this kind of assertions is:

:- trust success gsort(A,B) : ground(A) => ground(B).

which states that upon success B is ground, provided that A was ground on call. It may be the
case that the analyzer cannot prove a trust assertion (for example because part of the program
is not available or because analysis is not powerful enough), but the analysis will “trust” such
assertions and use the information contained in them as if it had been inferred by analysis. Thus,
trust assertions can be used to analyze incomplete programs (for example, during development
of a program or module), by simply providing such an assertion for each predicate which is not
implemented. They can also be used to deal with code which is not reachable or understandable
by the analyzer, such as predicates written in another programming language. Finally, a trust
assertion for a predicate p may be used to improve the analysis information for the predicate p.
This will happen if the information contained in the assertion is better than that generated by
analysis. In that case it may also improve the analysis information of any other predicate p’ which
depends on p.

More formally, analysis with trust declarations takes as input, in addition to a program P and
a set entries, a set trusts which contains tuples of the form (p;, AS, )\j), where p; is an atom and
Aj and A are, respectively, abstract call and success substitutions in the abstract domain Dg. The
set trusts is obtained from the trust declarations present for the program. For each declaration
‘:- trust success Pred : Call => Success’ a tuple (Pred, Call, Success) is added to trusts, It
is straightforward to modify a goal-dependent analysis in order to perform analysis with trusts.®

Algorithm 3.4 [Analysis with trusts] Whenever analysis has to compute the success substitution
A% which corresponds to an atom p with call substitution A°, an improved success substitution

Af st 1 instead computed as follows:

7 Actually, the analyzers used in practice generate information not only at the predicate level, as stated here for
simplicity, but also at the clause literal level.
81n fact, the analyzer in the Ciao preprocessor (PLAT) performs analysis with trusts.



app-trusts(p, A°) = {(p, A5, A) € trustss.t. A° CAS}
if app_trusts(p, \¢) = ()
then compute A° as usual and Aj,.,,, = A°
else if p is defined in P
then compute A* as usual
else \* = topmost(A°©)
endif
dx}fmst = (A MA;MN...M0A8,) where app_trusts(p, A°) = {{(p, A{, A]), ..., (D, A5, A0}
endi

Note that if analysis is goal-dependent, the existence of trust assertions for a predicate does
not avoid analyzing the code of the corresponding code if it is available, as otherwise the internal
calls generated in this predicate could be ignored during analysis, resulting in incorrect analysis
information. Only after analysis of such a predicate may trust assertions be used to improve
the analysis information obtained. Note also that if the code of the predicate is not available,
the internal calls to predicates in the program that may appear during execution of the missing
predicate must have been declared in entry assertions for soundness of the analysis. Refer to
[BCHP96] for details.

The function topmost obtains the topmost success substitution of an abstract call substitution.
The notion of topmost substitution was already introduced in [BCHP96]. Informally, a topmost
substitution of an abstract call substitution keeps those properties which are downwards closed
whereas it loses those ones which are not. Note that taking T as the abstract success substitution
is always correct but often less accurate than using topmost substitutions. For example, if a
variable is known to be ground in the call substitution, it will continue being ground in the success
substitution and taking T as the success substitution would lose this information. However, the
fact that a variable is free on call does not guarantee that it will keep on being free on success.

4 Analysis of Modular Programs

In this section we discuss how we can perform goal-dependent analysis of modular programs using
abstract interpretation and trust declarations. We first study the problems when trying to obtain
correct and optimal analysis of an incomplete program. Then we consider the different scenarios
introduced in Section 2.

4.1 Problems with Analysis of Incomplete Programs

By an incomplete program we refer to a program whose code is not completely available to the
analyzer. There are several reasons why this may happen. One is dynamic code, i.e., code which is
not available until run-time. The problems which appear in analysis of dynamic code are already
studied in depth in [BCHP96]. Another typical situation in which analysis does not receive the
code of the whole program is when we analyze a module separately, as is done in scenarios 1 and
2. If our goal is to provide a correct but possibly inaccurate analysis, two problems appear, as
already stated in [BCHP96], which are:

The success substitution problem: in an incomplete program P there may be clauses of the
form H:-B,...,, B, such that the definition for the predicate p called in B;, i € {1,...,n}
is not (completely) available in P. When analysis encounters an abstract call A° for p,
analysis of P must include a tuple of the form (p, A°, A*). The substitution \° used has to
be such that correctness w.r.t. successes is preserved. Note that an incorrect A\* will also
produce incorrect substitutions for other predicates which depend on p.

The extra call pattern problem: the clauses missing in an incomplete program P may include
clauses of the form H:-By,...,B, where B;, i € {1,...,n} is a literal for a predicate p
defined in P. Analysis has to take into account such calls which are not visible in the code
available at analysis-time, in order to preserve correctness w.r.t. calls for predicate p.



Example 4.1 Consider separate analysis of module gsort in Figure 1. In order to start analysis
we need a set of entries for the module. The success substitution problem appears since we require
some abstract success substitution for predicate append/3. The extra call patterns problem may
also appear if the entries used are not general enough to include the call to gsort from the module
test.

However, if the goal is to obtain optimal analysis, i.e., one which is both correct and as accurate
as possible, then the problems we have to face are:

The extra call pattern problem: same as before.

The optimal success problem: this problem replaces the success substitution problem. This
new problem is harder to solve. It corresponds to, given a call A° for a predicate p not
defined in the program, not only to finding a success A®* which is correct, but also to finding
the best, i.e., the most accurate one among them, i.e., VA which is correct A* C Af.

The optimal calls problem: in modular programs, the code of a predicate p not defined in P
but defined in another module m' will eventually be available. As we will see below, one
way of computing the success substitutions for p is to analyze the module m'. Since analysis
is goal-dependent (and multivariant on calls), in order to have the most accurate possible
success substitutions A® for p also the most accurate possible call substitutions A° should be
considered.

Example 4.2 In analysis of predicate gsort, taking T as success substitution for append is triv-
ially guaranteed to be correct, however, such substitution is clearly not optimal. The optimal calls
problem requires that the predicate append is analyzed with call pattern : - entry append(A,B,C)
: (ground(A) ,ground(B)) . Analysis of append with T as call substitution would provide results
which are also correct but not optimal, since it does not allow concluding that C is also ground on
success.

4.2 Scenario 1: Analysis of a Single Module

In this scenario we aim at performing analysis of a single module, much in the spirit of separate
compilation. However, the kind of analysis we are interested in is global, i.e., the results of analysis
of one part (module) of the program may be used in other parts (modules) of the program. Thus,
there is seemingly a contradiction between global analysis, which in principle requires the code of
all of the program, and single module analysis.

Solving the Extra Call Patterns Problem Consider for example analysis of module gsort.
The first thing to note is that in order to start separate analysis of a module, we must provide
a set of entries which will be the starting point of goal-dependent analysis. Since all exported
predicates must be explicitly declared as such, and in order to pose the least possible burden on
the programmer, the module declaration can be used to automatically build an entry declaration
per exported predicate with T as call substitution. Since the module system used is strict, only
those predicates which are exported can be called from outside this module, and are in principle the
ones which should appear in the entries. In our case, the automatically generated set of entries is
entries = {{gsort(A, B),{A/any, B/any})}. Note that this already solves the extra call patterns
problem.® However, it is clear that such entries do not provide much information to the analyzer
and the user should be able to provide more accurate information on entries if so desired. This
is easy to do using additional entry declarations. In our example, we could add the declaration
:- entry gqsort(A,B) : ground(A). Note that such declaration should be general enough in
order to include all possible calls to the module from outside and do not incur in the extra call
patterns problem. For example, we may be tempted to also state var (B). However, it would be
incorrect since in the module test gsort is called with (ground(B) ,any(B)). The information in
the user-provided entry declarations replaces the one with T which is automatically generated.

9The extra call patterns problem could still appear if the module system were not strict.



Solving the Success Substitution Problem Another thing to note is that the module gsort
uses a predicate defined in another module (1ists). Thus, the success substitution problem
may appear. If we try to apply directly Analysis(gsort,entries, D,) with the set entries =
{(gsort(A, B),{A/ground, B/any})}, then the results obtained are no longer guaranteed to be
correct w.r.t. successes, since analysis returns the empty success substitution | for any pred-
icate which is not a builtin and whose definition is not included in module gsort regardless
of whether the undefined predicate is defined in some other module. Thus, rather than L we
have to use correct success substitutions for append. Again, there is a simple and automatic
(but possibly inaccurate) solution to this problem. Rather than using Analysis(P,entries, D)
we should use Analysiswith_trusts(P,entries, D,,trusts) where the set trusts contains a tu-
ple of the form (¢, T, T) for each predicate ¢ defined in the imported(P). This simple solution
is guaranteed to provide correct results. Since the code for append is not included in gsort,
Analysis with_trusts(gsort,entries, D, {{append, T, T)}) with the same entries as above will
return topmost substitutions for any call to imported predicates. Another situation in which we
can use more accurate information on imported predicates is when the imported module has al-
ready been analyzed. Suppose that the code for append is available, and that the module lists
has been analyzed with an entry substitution A¢™*"¥ which is applicable, i.e. A° T A*™"¥ and the
computed success substitution is A*“c¢, In that case, the computed A*““¢ can be taken as success
substitution for append. If the predicate-level results of the analysis are written as assertions, this
can simply be done by adding to the corresponding .asr file the assertions which correspond to
the exported predicates.'®

Once again, the automatic approaches may produce a considerable loss of precision. Thus,
the user should be able to provide more accurate information on the success substitutions of
predicates defined in other modules if so desired. For example, we can add to the 1ists module the
declaration :- trust success append(A,B,C) :(ground(A),ground(B)) => ground(C). Thus,
in order to analyze a module m in scenario 1, we should access imported(m) and collect the existing
trust declarations for the exported predicates. Such information can be stored in an auxiliary file,
much in the same way as with the interface file. In the case of the Ciao system, this information
is stored in a file with extension .asr. In fact, this information could be added to the .itf
file. However, they are kept in separate files because the low-level compiler does not need such
information and thus it would unnecessarily slow-down processing . itf files.

4.3 Scenario 2: Analysis of Several Modules, One-at-a-Time

In the previous section we have discussed several ways of performing correct analysis of separate
modules. However, in scenario 2 we are concerned not only with correctness but also with accuracy,
since as already mentioned in Section 2, scenarios 2 and 3 should provide equivalent results. It is
important to note that it cannot be guaranteed in general that the results obtained in scenario 1
are as accurate as those which could be obtained if all the code in the program were available to
analysis. There are two reasons for this inaccuracy. One is related to the possible inaccuracies of
the entries for other modules (the optimal calls problem) and the second to the possible inaccuracies
of the success information given in the trusts which correspond to such queries (the optimal success
problems). Note that for goal-dependent global analysis in order to obtain optimal solutions,
and thus solve the two problems mentioned above, two flows of information are required. One
propagates information about calls in a top-down fashion, i.e., from the callers to the callees,
whereas the other flow of information propagates information about successes in a bottom-up
fashion, i.e., from the callees to the callers. In scenario 2 we are allowed to analyze the code of
as many modules as needed, and as many times as required. Unfortunately, even if there are no
circular dependencies among modules, there is no fixed order for handling (analyzing) modules
which guarantees obtaining the best possible information in a fixed number of iterations. In fact,
a global fixed point has to be computed which may require analyzing a module an unbounded

10Such assertions are different in nature from the trust assertions added by the user. For a more detailed
discussion on this topic we relate the reader to [HPB99].
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number of times until analysis terminates. We refer to this fixed point as a distributed global fixed
point.

Solving the optimal calls problem: In scenario 1, entries have to be provided to each module
we want to analyze separately. They can be automatically generated and then be as general as
possible, or they can be given by the user, but in any case they are not guaranteed to be optimal.
In scenario 2, analysis is typically started from main(P). Analysis of each module m may generate
calls to other modules in imported(m). In order to solve the optimal calls problems for modules
other than main(P), the above mentioned calls should be collected and be the starting point of
analysis for the imported modules. This can be automatically obtained by adding to such modules
the entry declarations which correspond to the calls generated during analysis of other modules.

Solving the optimal success problem: Assume that we are analyzing a module m and we
reach a program point in which there is a call A° to a predicate p imported from another module
m'. Deciding which success substitution to use for p and A° corresponds to the optimal success
problem. If the module m' has already been analyzed with p and A°¢ as entry, and thus an optimal
success substitution exists, then it should be used. Otherwise, there are at least two possibilities
regarding how to proceed with the analysis of m:

1. Assume L as an accurate (but possibly incorrect) success substitution. Then we continue
the analysis of m until a fixed point for the module is reached.

2. Freeze analysis of m and start analysis of m' taking p and A¢ as entry. Once the analysis of
m' is finished, take as optimal success the one just computed.

Both approaches have pros and cons. Possibility 1 may be inefficient because the success
substitution L is very likely to be incorrect. Thus it may perform a lot of speculative work,
i.e., work which may end up being useless. Also, the analysis results of every module in the
program must be taken with care. Whenever the success substitution of an exported predicate
is updated, analysis of the modules which import such predicate also has to be updated. The
results of analysis are not guaranteed to be correct until a distributed fixed point is reached. The
inefficiency of possibility 1 is less dramatic when incremental analysis is used. In that case, the
previous analysis results for the module are used in order to compute the new local fixed point. For
this, the incremental addition algorithm of [HPMS95] can be used. This is not a great restriction
since incremental analysis algorithms can be as fast as non-incremental ones [PH96).

Possibility 2 has the advantage of not performing any speculative work as analysis does not
continue until an optimal success substitution is computed. However, care must be taken when
there are circular dependencies among modules, as we may end up in a deadlock or in an infinite
loop. Also, this possibility requires that the analysis engine be capable of freezing an analysis,
starting another one (which may in turn be frozen), and resuming computation of the old analysis
after that. Unfortunately, none of the existing analysis engines for logic programs that we are
aware of can be used directly in this way. This is because analysis engines are rather complex
systems which are specialized to obtain maximum efficiency in the particular case in which all the
program is available at analysis time.

Example 4.3 Consider analysis of the program composed by the modules test, gsort, and
lists using scenario 2 and starting with module test. Since imported(test) = {qsort,lists},
analysis of module test has to take into account previous analysis results for modules gsort and
lists. These are denoted trustsysor: and trustises respectively. Similarly, analysis for gsort has
to take into account the results of 1ists. Analysis of 1ists does not depend on any other module.

Figure 5 shows a possible sequence of analyses which can be performed and which lead to a
distributed fixed point. In the figure, ground is abbreviated to gr. Initially, both trusts;s,,+ and
trusty;s¢s are empty since no analysis has been performed yet. We denote with different numbers
the different analyses which are started in the process. The initial one is denoted 1 and corresponds
to the initial entry :- entry test(X) : ground(X).. Analysis of predicate test/1 processes in
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0 trustsiists = 0 Atrustsgsore = 0
1 Analysis-with_trusts(test, {(test(X), gr(X))}, trustsisis U trustsgsort) =
2 Analysis(lists, {(length(L,N), (gr(L), var(N)))})
{{length(L, N), (gr(L), var(N)), (gr(L), gr(N)}}
trustslyys, = {{length(L, N), (gr(L),var(N)), (gr(L), gr(N))}

1" Analysiswith_trusts(test, {{test(X), gr(X))}, trus tshstSUtrustsqsort) =?
3 Analysis(lists, {(length(L,N), (var(L ) r(N))}) =

{{tength(L, ]JVVM ) or 0, (D)

v

ar(L
trustsy,,, = trustsy,, {(length(L, N), (var(L), gr(N)), (any(L), gr(N)))}
1" Analysis-with_trusts(test, {{test(X), gr(X)) ,trustshstsUtrustsqsmt) =?
(9

4 Analysiswith_trusts(gsort, {(gsort(A, B), (gr(A),any(B)))}, trusts};_,.) =7
5  Analysis(lists, {(append(A, B, C), (g7(A), gr(B),any(C)))}) =

{(append(4, B, C), (gr(A), gr(B )any( )); (g7(A), gr(B), gr(C)))}

trusts);,. = trusts);,. U
{(append(4, B, C), (gr(A), gr(B), any(C)), (g7(A), gr(B), gr(C))) }
4" Analysis-with_trusts(qsort,{{gsort(A, B), (gr(A), any(B)))} trusts;’z'sts) =
{<QSO”(A B), (gr(A), any(B)), (gr(A), gr(B)))}
trustsg,o. = {(gsort(4, B), (gr(A), a (B)g gr(A),gr(B)))}

(
7
)},trusts’” Utrustsyson) =

lists

{(test(X), gr(X), gr(X))}
Figure 5: Analysis of the example in scenario 2

1" Analysis with_trusts(test, {(test(X), gr(X

the body of the clause of this predicate from left to right. The first literal is a call to length which
is defined in another module. Thus, analysis 1 cannot be completed yet and this is indicated in
the figure with a question mark. Then, the call pattern to length is taken as an entry for analysis
of module 1ists, which is denoted as analysis 2 in the figure. When analysis 2 is completed, the
set trustsysts is updated and analysis returns to the incomplete analysis 1. This is denoted by
1’ in the figure. Scenario 2 proceeds by triggering new analyses whenever new entries for other
modules are generated and by updating the trusts sets and revising incomplete analyses whenever
new success substitutions used in such analyses are generated. This process continues until a
distributed fixpoint is reached. Several control strategies can be used for guiding scenario 2 and
we are currently experimenting in the Ciao system with different ones. However, it is out of the
scope of this paper to provide a detailed discussion of such strategies.

Reducing Memory Consumption: In both of the possibilities seen above, analysis has to
switch contexts from one module to another, either once a fixed point has been reached or even in
an intermediate state (in possibility 2). Thus, in the worst case the analyzer may end up with the
analyses of all modules in the program stored in memory at the same time. Clearly this situation
is similar to that of scenario 3 and the system may run out of memory. If we want to reduce
the amount of memory required by analysis, rather than keeping in memory the analysis for all
modules seen up to now, we may decide to store some or all of the analysis for modules other
than the current one in disk and restore the state of analysis when analysis returns to a module
stored in disk. The more incremental the analysis algorithm is, the more difficult it is to be able
to dump and restore the current state of the analysis of a module. For example, in possibility
1, if incremental analysis is not used, there is no point in dumping to disk the state of analysis,
since when analysis of that module has to be resumed it has to be started from scratch anyway.
Dumping analysis information for possibility 1 and incremental analysis is not too hard to do. In
fact, this is implemented in the Ciao system. However, for the case of possibility 2 we still do
not (yet) support dumping and restoring an analysis which is not in a fixed point state since this
requires resuming analysis for the exact intermediate analysis situation in which the analysis was
frozen.

Which of the above mentioned alternatives is best needs experimentation, which is currently
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being carried out by our group and we hope to report on shortly.

4.4 Scenario 3: Analysis of Several Modules Simultaneously as One

This scenario poses no theoretical difficulties to analysis since the traditional algorithms used for
non-modular programs can be applied. Unlike in the case of compilation, at first sight scenario
2 does not seem very appropriate for analysis, since on one hand it is complicated to implement,
and on the other hand we may have to swap modules many times, and this seems to favor scenario
3 in terms of time-efficiency.

However, though scenario 3 seems preferable in principle, there are a couple of considerations
which should also be taken into account when choosing between scenario 2 and 3. One is that if
the program being analyzed is large, global analysis using scenario 3 may run out of memory. In
that situation, one-at-a-time analysis is preferable, as the memory required to analyze modules
separately is less than that required for analyzing the whole program at once. Thus, one-at-a-time
analysis may turn some programs which analysis cannot handle into tractable ones in return of a
somewhat increased analysis time. The second consideration is that scenario 2 can avoid repeated
reanalysis of modules, much in the same way as in separate compilation. If neither the code for
a module nor the code of the modules the module depends on has changed and the module has
already been analyzed for the call pattern of interest, then scenario 2 can avoid recomputation for
such call pattern.

5 Specialization of Modular Programs

Program Specialization [JGS93, Gal93, Leu97] aims at optimizing programs by specializing the
code to particular cases. Though much of the discussion we present could apply to other kinds
of specialization, we will focus on abstract multiple specialization [JLW90, GH91, Bru91, Win92,
PH95, KMM 196, PH99] which directly uses the results of global analysis in order to optimize the
program introducing multivariant specialization if required.

Example 5.1 Consider the length predicate in Figure 2. This is a good example of a reversible
predicate which can be used in several modes. For example, in the module test in Figure 3, there
are two different calls to the predicate length, which use such predicate in different ways. In the
first call, the length of a list is computed and in the second one a list (skeleton) of a fixed length is
constructed. This generality forces the code of 1ength to consider two cases depending on whether
the second argument N, i.e., the length of the list is fixed or not. If IV is not fixed, i.e., NV is a
variable, then the predicate 11ength is used. If N is fixed, the predicate dlength is used. Thus,
if analysis information allows determining that the second argument will be a variable (resp. non
variable) at run-time, a call to length can be replaced by a call to 1length (resp. dlength).

In this section we discuss different issues which appear when considering (abstract) special-
ization of programs split into modules. We assume that the program has already been analyzed
according to the scenarios and algorithms presented in Section 4.

An important feature of the multiple specialization algorithm in [PH95, PH99] is that it allows
minimizing the number of versions implemented in the final program. For this, there is a flow
of information among modules which propagates information bottom-up and corresponds to the
potential optimizations which are possible in different versions of a predicate (if they were mate-
rialized). This information is required in order to minimize the number of versions without losing
opportunities for specialization.

As in the case of analysis we may need to perform iterations until reaching a distributed fixed
point. However, and unlike in the case of analysis, for programs without circular dependencies
among modules there is a processing order of the modules which guarantees obtaining the best
solution possible while only processing each module once.
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5.1 Scenario 1: Specialization of a Single Module

In this scenario we should be able to perform specialization of a particular module m without
having to specialize other ones. As usual in scenario 1, some information on the imported modules
could be required. In this case, the minimal information from each module m' in imported(m)
corresponds to knowing the names of the specialized versions which have already been generated for
the predicates exported by m' and also the conditions which guarantee that their usage is correct
in a particular call. As is the case with analysis results, we propose to provide the information
about specialized versions in each module m' by means of (novel) assertions. Such information
can be written in the .asr file for m’ or in a separate file if so desired. For example, the following
assertion:

:- true pred length(L,N) : var(N) + equiv(llength(L,0,N)).

states that a call to length with the second argument being a variable can be optimized by replac-
ing the call by a call to 11length. These assertions contain information which in fact corresponds
to the abstract ezecutability tables'' used in [PH99]. Thus, adapting the abstract specializer to un-
derstanding the information in these assertions is not a difficult task and is the subject of ongoing
work.

Note that in this scenario, we can decide on a modular basis on which parts of the program
we want to perform multivariant specialization, and on which other ones we are only interested in
monovariant specialization!? or even no optimization, for example in order not to reduce readability
of the code. Thus, in the case of specialization, scenario 1 is also very relevant as it allows a much
more fine-grained control on the effect of multiple specialization.

Scenario 1 also fits very well with the idea of having a set of precooked specialized versions of
predicates. This can easily be achieved by starting analysis from a set of entries which we consider
of particular interest and which we believe will give rise to useful optimizations. Then we only
have to perform automatic multiple specialization using scenario 1. Note that in order to obtain
maximal benefits of the set of precooked specialized versions, the conditions on their applicability
should be as weak as possible while remaining correct. Note that though the specialization process
is fully automatic, finding the starting set of entries which are of interest from the multiple special-
ization point of view is not automatic at this stage and is a topic of future research. A particular
case in which precooked specialized versions make a lot of sense are libraries. Most modern Prolog
systems have a large set of predicates which are already implemented in Prolog but which are not
predefined in the language. Users can use them provided they include the corresponding library
in their programs. Scenario 1 then avoids re-analyzing and re-specializing such libraries over and
over again.

Example 5.2 We can analyze the example library module lists for the entries:

:- entry length(L,N) : var(N).
:- entry length(L,N) : ground(N).

and using the analysis information obtain the following equivalences:

:- true pred length(L,N) : var(N) + equiv(llength(L,0,N)).
:— true pred length(L,N) : ground(N) + equiv(dlength(L,0,N)).

The code of the 1ists module remains the same in this case after specialization. The only change
is that the predicates 1length and dlength must also be exported.

If we now analyze the module test with entry :- entry test(X) : ground(X). we can
specialize the code of predicate test to:

test(L):- 1llength(L,0,Length), dlength(Result,0,Length),
gsort(L,Result), sorted(Result).

11 They contain conditions under which builtin predicates can be reduced to true, false or a set of unifications.
12Though multivariant specialization is in principle more powerful than monovariant specialization, it may also
significantly increase code size.
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5.2 Scenario 2: Specialization of Several Modules, One-at-a-Time

This scenario is expected to produce the same results as scenario 3. Since in scenario 3 the analysis
information is optimal, and since specialization is based on the results of analysis, scenario 2 can
only be performed if the analysis information available is optimal. Thus it does not make much
sense to use scenario 2 for specialization if analysis used scenario 1.

In order to present how to perform specialization in scenario 2 we will consider two cases. The
simple one is when there are no circular dependencies among modules. In that case, we should use
the dependency graph among modules and start performing the minimization algorithm on the leaf
nodes of the graph (which is in this case a tree). Since leaf modules do not depend on other ones,
they can be treated as self-contained programs and the usual algorithm applies. Then we have to
consider the specialized versions which have been generated for the exported predicates. We take
as the condition to be able to use such specialized version that the call substitution corresponds
to the call substitution which is associated to the specialized version. For each such specialized
version, an equiv assertion is generated and written out on the interface part of the module, for
example on the .asr file. The minimization algorithm should not be performed on a module until
all the imported ones are already specialized. Specialization of a module m which is not a leaf
requires taking into account the interface of the imported modules as well as the code of m. In
order to annotate the possible optimizations which are directly applicable to each call substitution
to a predicate in m, in addition to looking at the abstract executability table, which applies to
builtin predicates, we also have to see whether the information in the call allows replacing a call
to a predicate p defined in another module m' by a specialized version of p. Conceptually, this is
equivalent to considering a dynamic abstract executability table in the sense that it is extended
as specialization proceeds. In the case of specialization of self-contained programs, it suffices to
consider a fixed (static) abstract executability table.

The second, and more complicated case corresponds to having circular dependencies among
modules. In such case, we must still process the modules in a bottom-up fashion, however the
strongly connected components (SCCs) of the dependency graph should be processed together and
we may have to process modules in the same SCC several times until a fixed point is reached, i.e.,
no more specialized versions are generated.

5.3 Scenario 3: Specialization of Several Modules Simultaneously as One

Once again, scenario 3 does not pose theoretical difficulties to program specialization. We have
seen in the previous section that specialization according to scenario 2 achieves the same results
as those which would be obtained in scenario 3. Then, the main question is which of scenario 2 or
3 is preferable in general. Unlike for the case of analysis, in which an approach based on scenario 2
is usually less efficient in time that one based on scenario 3, in the case of specialization, scenario
2 does not add extra difficulties nor inefficiencies to program specialization. In fact, though it
may be argued that some adaptation has to be performed on the specializer in order to deal
with scenario 2, it is also true that it may significantly reduce the distance between the two
fixpoints which are obtained during the reunion and splitting phases [PH99] of the minimization
algorithm. In particular, scenario 2 may avoid collapsing into the same version of a predicate
different calls which will end up being in different implementations, since keeping them separate
allows optimizing other predicates called by them.

Example 5.3 Consider the program composed of the modules main and p below and the 1lists
module already seen in Figure 3.

:— module(main, [main/1]).
:— entry main(L) : ground(L).
main(L):- p(L), p(L1).

1= module(p, [p/1]) .
p(L):- ..., length(L,N),

15



We do not show all the code in module p since we are only interested in showing a typical
situation which occurs in abstract multiple specialization: it is possible to use the specialized
versions of a predicate (length in this case) but in order to do that we have to also generate
specialized versions of some intermediate predicate (p in the example). In this case, analysis
would generate two versions of predicate p, one for its argument being ground and another one for
var. If we use scenario 3, both versions of p are collapsed into one during the reunion phase of the
algorithm since the optimizations allowed in their code is the same for both (no optimizations).
However, such versions are separated during the splitting phase since they are required in order to
create a path from the different calls to p in the body of predicate main to the specialized versions
of length. The modules main and p after specialization are shown below.

:— module(main, [main/1]).
:— entry main(L) : ground(L).
main(L) :- p1(L), p2(L1).
:- module(p, [p1/1,p2/11).
pl(L):- ..., dlength(L,0,N),
p2(L):- ..., llength(L,0,N),

However, using scenario 2, the order in which modules are specialized (bottom-up) is: lists,
p, and main. After specializing 1lists, two optimized versions for length are generated and the
corresponding equivalence assertions added to the module. These assertions are now part of the
abstract executability table. When specialization reaches module p, the two versions of predicate
p are not collapsed during the reunion phase since in their code different optimizations are possible
(using 1length in one version and dlength in the other).
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