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1 Introduction

In [HtCg93, HtCg94] we discussed several methodological aspects regarding the design and efficiency
of a class of future logic programming systems. In particular, we proposed a somewhat novel view
of concurrent logic programming systems, based on a particular definition of parallelism. We argued
that, under this view, a large number of the actual systems and models can be explained (and imple-
mented) through the application of only a few basic principles. They include determinism, non-failure,
independence (also referred to as stability), and task granularity. We also argued for a separation be-
tween those principles which have to do with the computation rule (i.e., to performing the least
work possible) and those directly related to parallelism (i.e., to performing such work in the smallest
amount of time by splitting it among several processors). Finally, and basing our discussion on the
convergence of concepts that this view brought, we sketched the design of the CIAO (Concurrent,
Independence-based And/Or parallel) system, a platform for the implementation of several source
languages and models based on a common, generic abstract machine and using an intermediate kernel
language.

The purpose of this paper is to report on recent progress in the design and implementation of the
CTAO system itself, with special emphasis on the capabilities of the compiler and the techniques used
for supporting such capabilities. CTAO is a multi-dialect compiler, run-time, and program development
system. It is based on a versatile kernel language which has extensive sequential, parallel, concurrent,
and distributed execution capabilities. The CIAO system is generic in the sense that the different
source-level languages are supported by compilation via source to source transformations into the ker-
nel language (which is also the native CIAO language). The system subsumes standard left-to-right
SLD resolution and the determinate-first principle (as in the Andorra model [SCWY90, dMSC93]).
The kernel language is directly supported by a comparatively simple abstract machine, mainly based
on the parallelism and concurrency capabilities of the PWAM/&-Prolog [Her86, HG91]. The analysis
and transformation techniques used in the compiler are based on novel semantic modeling of CLP
and CC program behavior and on the exploitation of fundamental optimization principles (indepen-
dence/stability and determinism), and techniques based on global analysis (program specialization
and abstract executability).

Given the characteristics mentioned above, CIAO can be used quite effectively for developing ap-
plications. However, one of its fundamental objectives is to be a tool for easily experimenting with and
evaluating language design issues, including program analysis and transformation methods and lower-
level implementation techniques. In particular, CIAO can be used to provide efficient implementations
of a range of LP, CLP, and CC programming languages, on sequential and multiprocessor machines.
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This is achieved thanks to a powerful compiler strongly based on program analysis and transforma-
tion. This compiler provides the required support for the different programming paradigms and their
optimization. The compilation process can be viewed as a translation process from the input lan-
guage to (kernel) CIAO. Some optimizations are already performed during this translation. However,
most optimizations are performed to the already translated code, via source to source transformation.
Therefore, most analysis phases are performed at the kernel language level, so that the same analyzer
can be used for several models. Optimizations include parallelization, reduction of concurrency and
synchronization, reordering of goals, code simplification, and specialization.

2 The CIAO Kernel Language

The CIAO kernel language can be seen as a superset of Prolog (and, having the capability to support
constraints, it also subsumes CLP), including the meta-programming and extra-logical facilities. The
versatility of this kernel language is mainly due to explicit control primitives. This makes it possible
to perform many control-related optimizations at the source level. Such explicit control is performed
via operators which include:

e Sequential Operator: “,/2”. Allows the sequential execution of the goals involved (as in the
traditional Prolog style).

o Parallel Operators: “&/2”, “&>/2", and “&</1”. These operators indicate points where paral-
lelism can be exploited. Their behavior is otherwise equivalent to that of the sequential operator.
During the parallel execution the communication of bindings is not guaranteed until the join,
i.e., until the parallel goals have finished. Therefore, no variable locking is needed and full
backtracking is implemented. More concretely:

— A &> H - Sends out goal A, to be executed potentially by another agent, returning in the
variable H a handle to the goal sent.

— H <& — “Joins” the results of the goal whose handle is H, or executes it locally if it has not
been executed yet. This will also be the point at which backtracking of the goal will be
performed during backwards execution.

— A & B — Performs a parallel “fork” of the two goals involved and waits for the execution
of both to finish. This is the parallel conjunction operator used, for example, by the &-
Prolog parallelizing compiler [BGH94]. If no agents are idle, then the two goals may be
executed by the same agent and sequentially, i.e., one after the other. This primitive can
be implemented using the previous two:

A &B :-B & H, call(A), H <& .

An example of a simple parallel loop is:

process_list([]).
process_list([H|T]) :-
process(H) & process_list(T).

o Concurrency Operator: “&/1”. It allows concurrent programming in the style of CC languages
(also, the parallelism in such concurrent execution may be exploited if resources are available). In
particular, A & sends out the goal A to be executed potentially by another agent. No waiting for
its return is performed. Bindings in the variables of A (tells) will be seen by other agents sharing
such variables. Backtracking is limited to allow a relatively straightforward implementation. In
particular, in the current version of the CIAO system no “active shared binding” is allowed to
be undone via backtracking. An active shared binding is a binding to a variable that is shared
among active (i.e., non-finished) processes. Variable communication (and locking) is performed.

A certain level of encapsulation of search is often necessary in order to ensure that the conditions
above hold. This is done explicitly in the kernel language, but can be supported at a higher
level in the source languages using constructs such as the search operator of Oz [Smo94] or the
deep guard mechanism of AKL.



o Explicit And-Fairness Operator: “&&/1”. This operator is a “fair” version of the &/1 operator.
It explicitly requests the (efficient) association of computational resources (e.g., an operating
system thread) to a goal. In particular, if there is no idle agent A && , creates one to execute the
goal A. Fairness among concurrent threads is ensured. Note that this leaves open the possibility
of implementing a fair source language that compiles efficiently into this and the above operators
(perhaps via an analysis which can determine the program points where fairness is really needed
— to ensure, for example, termination).

o Explicit Synchronization: “wait/1”, “d_wait/1, and “ask/1’. These operators can be aug-
mented with some meta-tests on the variables (such as ground/1 or nonvar/1). More concretely:

— wait (X) — Suspends the execution until X is bound.
— d_wait (X) — Suspends the execution until X is deterministically bound.

— ask(C') — Suspends the execution until the constraint C' is satisfied. Whether this is a
primitive or compiles into the previous two primitives depends on how constraint solving
is implemented for the particular domain — see later.

A simple producer-consumer can be programmed as follows:
main(L) :- producer(10,L) & , consumer(L).

producer(0,T) :- !, T = [].
producer(N,T) :- N > 0, T = [N|Ns], N1 is N-1, producer(N1,Ns).

consumer (L) :- wait(L), consumer_body(L).

consumer_body([1).
consumer_body([H|T]) :- consumer(T).

With only one agent active the program above will first produce the whole list before consuming
it. If actual interleaving of the producer and consumer is desired, then “&&” can be used instead
of “&”.

e Explicit Placement Operator: an explicit placement operator (“@”) allows control of task place-
ment in distributed execution. This operator can be combined with any of the parallelism and
concurrency operators mentioned before. These and other primitives for controlling distributed
execution, and to implement the concept of active modules or active objects, are described in
[CH95]. Such capabilities can be used for example when accessing remote resources such as
knowledge bases. They can also be used for performance improvement through parallelism.

The kernel language described above is supported by a comparatively simple abstract machine.
The design of the abstract machine is based on the parallelism and concurrency capabilities of the
PWAM/&-Prolog abstract machine [Her86, HG91] and recent work on extending its capabilities and
efficiency [PGT95a, PGH95, PGT95b]. The abstract machine includes native support for attributed
variables [Hol92, Hui90, Neu90] which are used extensively in the implementation of constraint solvers
(as in other systems such as Eclipse [Eur93] and SICStus 3 [Swe95]) and in supporting communication
among concurrent tasks [HCC95]. While the current abstract machine supports only (“dependent” and
“independent”) and-parallelism, it is expected that combination with or-parallelism will be possible
by applying the techniques developed in [GC92, GHPC94, GSCYH91].

3 The CIAO Compiler

The CIAO compiler provides the required support for the different programming paradigms and their
optimization. As mentioned before, it is strongly based on program analysis and transformation. The
compilation process can be viewed as a translation process from the input language to (kernel) CIAQ.
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Figure 1: CIAO Compiler

The system is able to translate the input source, automatically extracting parallelism, compiling
synchronization, and optimizing the final program. Optimizations include simplifying the code to
avoid run-time tests and suspensions, and specializing predicates in order to generate much simpler
and efficient code in the back end.

This compilation process is depicted in Figure 1, which illustrates the inputs and outputs, as well
as the compilation options, which are selected via either menus or program flags. The compilation
process is structured into several steps. First, a module in a given input language is translated into
the kernel language. Then, analysis is performed if required to support the rest of the compilation
process. In some cases some degree of analysis may also be performed in the translation step to aid in
the translation. After analysis, the program is optionally annotated for parallel execution, simplified
and specialized.

The output can then be loaded for execution on the abstract machine. As an alternative, and
using the transformational approach, most of the capability of the system is also supported (with
sometimes somewhat lower efficiency) on any Prolog with delay declarations and attributed variables
(e.g., SICStus Prolog Version 3 [Swe95]). In that sense, the CIAO compiler can also be viewed as a
library package for Prolog systems with these capabilities.

The compiler steps and options are discussed in the following sections. Given the space limitations
the aim is to offer a general description and provide references for publications or technical reports
where the techniques used are described. An extended description of the capabilities of the compiler
can be found in the User’s Manual [Bue95].

3.1 Source Languages Supported and Transformations Performed

The compiler can deal with several languages and computation rules simultaneously and perform
several translations among them. Currently, there are three languages supported: the CIAQO kernel
language, languages based on the basic Andorra model, and basic CC languages. Also, for each of



these languages several constraint domains can be chosen. Currently, the system supports those of
Prolog, CLP(R), and CLP(Q).

The mode of the system can be changed by typing at the top level the commands ciao(Domain),
andorra(Domain), or cc(Domain), where the variable Domain has to be instantiated to either h, q, or
r, indicating the desired constraint domain, i.e. Herbrand, Q, or R, respectively. Programs read from
then on will be assumed to have the characteristics associated to the new mode:

e ciao(Domain): CIAO full syntax (backwards compatible with Prolog, plus the specific CIAO
primitives) language; left-to-right and (encapsulated) concurrency.

e andorra(Domain): Prolog language; computation rule based on the basic Andorra principle.

e cc(Domain): basic CC language; concurrent computation rule.

Alternatively, the mode can be directly included in the program. This is done in the module declara-
tion, which has one additional argument available for the specification of the mode.

Program transformations bridge the semantic gaps between the different programming paradigms
supported. The methods used for translating programs based on the (Basic) Andorra model to CIAQ
are described in [BDGH95]. The methods used for translating CC languages are an extension of those
of [DGBY4, Deb93] and are described in [BH95¢].

3.2 Analysis

The CIAO compiler includes both local and global analysis of programs. Local analysis of pro-
gram clauses is usually very simple but not accurate. Nonetheless, it is sometimes useful in some
optimizations, as in program parallelization [BGH94]. Global analysis is performed in the context
of abstract interpretation [CC77, Deb92, CC92]. The underlying framework of analysis is that of
PLAI [HWD92, MH90, MH92]. PLAI implements a generic (goal-dependent and goal-independent)
top-down driven abstract interpreter. The whole computation is domain-independent. This allows
plugging in different abstract domains, provided suitable interfacing functions are defined. PLAT also
incorporates incremental analysis [HMPS95] in order to deal with large programs and is capable of
analyzing full languages (in particular, full standard Prolog [BCHP96, CRH94]).

A modification of the PLATI framework capable of analyzing dynamically scheduled programs is
also provided in order to support the concurrent models. Note that, thanks to the transformational
approach, only two frameworks are used (one for simple, left-to-right execution and another for the
case when there are dynamically scheduled goals). The compiler automatically decides the framework
being used. This decision is based both in the language being analyzed and the presence of dynamically
scheduled goals in the program.

The CIAO analyzer incorporates the following domains, which are briefly explained below: Sh,
Sh+Fr, ASub, Sh+ASub, and Sh+Fr+ASub, which are used in logic programming, and Def, Fr, Fd,
which can be used either in logic or constraint logic programming, and LSign, which is more specific
to constraint logic programming.! Analysis of dynamically scheduled languages can be carried out
with the Sh+Fr and Def domains.

3.2.1 HERBRAND For the analysis of (classical) logic programs (over the Herbrand domain)
the CIAO compiler includes a number of traditional domains proposed in the literature for capturing
properties such as variable groundness, freeness, sharing, and linearity information. This includes the
set sharing Sh [JL89, MH89], set sharing and freeness Sh+Fr [MH91], and pair sharing ASub [Son86]
domains. Combinations of the Sh and Sh+Fr domains with ASub are also supported, resulting in
the Sh+ASub and Sh+Fr+ASub domains. The combination is done in such a way that the original
domains and operations of the analyzer over them are re-used, instead of redefining the domains for
the combination [CC79, CMB'95]. Two other domains, a modified version of Path sharing [KS95]
and Aeqns (abstract equations) [MSJB95] are currently being incorporated to the system.

1Some of these domains have been implemented by other users of the PLAI system, notably the K. U. Leuven,
Monash University, and the U. of Melbourne.



3.2.2 CONSTRAINT PROGRAMMING The abstract domain Def [GH93, Gar94] determines
whether program variables are definite, i.e. constrained to a unique value. In doing this it keeps
track of definite dependencies among variables. The abstract domain Fr [DJBC93, DJ94, Dum94]
determines which variables act as degrees of freedom with respect to the satisfiability of the constraint
store in which they occur. In doing this it keeps track of possible dependencies among variables. The
definite and possible dependencies are used to perform accurate definiteness and non-freeness propa-
gation, respectively, and are also useful in their own right to perform several program optimizations.
A combined domain Fd which infers both definiteness and freeness is also integrated.

A preliminary version of the domain LSign [MS94] is also supported. This domain is aimed at
inferring accurate information about possible interaction between linear arithmetic equalities and
inequalities. The key idea is to abstract the actual coefficients and constants in constraints by their
“sign”. A preliminary implementation of this domain shows very promising accuracy, although at a
cost in efficiency.

3.2.3 DyYNAMICALLY SCHEDULED PROGRAMS CIAO also includes a version of the PLAT frame-
work which is capable of accurately analyzing (constraint) programs with dynamic scheduling (e.g.,
including delay declarations [eA82, Car87]). Being able to analyze constraint languages with dynamic
scheduling also allows analyzing CC languages with angelic nondeterminism.? This is based on the
observation that most implementations of the concurrent paradigm can be viewed as a computation
which proceeds with a fixed, sequential scheduling rule but in which some goals suspend and their
execution is postponed until some condition wakes them. Initial studies showed that accurate analysis
in such programs is possible [MGH94], although this technique involves relatively large cost in analysis
time. The analysis integrated into the CIAO compiler uses a novel method which improves on the
previous one by increasing the efficiency without significant loss of accuracy [GMS95]. The approach
is based on approximating the delayed atoms by a closure operator.

A direct method for analysis of CC programs has also been developed and is currently being
integrated into the compiler. This method is an extension of previous work of Debray [DGB94, Deb93].
It is based on the observation that for certain properties, it is possible to extend existing analysis
technology for the underlying fixed computation rule in order to deal with such programs [BH95b]. In
particular, this idea has been applied using as starting point the original framework for the analysis
of sequential programs. The resulting analysis can deal with programs where concurrency is governed
by the Andorra model as well as standard CC models. The advantage with respect to the method
above is lower analysis time, in exchange for a certain loss of accuracy.

3.3 Parallelization

The information inferred during the analysis phase is used for independence detection, which is the
core of the parallelization process [BGH94, GBH95]. The compile-time parallelization module is
currently aimed at uncovering goal-level, restricted (i.e., fork and join), independent and-parallelism
(TIAP). Independence has the very desirable properties of correct and efficient execution w.r.t. standard
sequential execution of Prolog or CLP. In the context of LP, parallelization is performed based on the
well-understood concepts of strict and non-strict independence [HR95], using the information provided
by the abstract domains. While the notions of independence used in LP are not directly applicable to
CLP, specific definitions for CLP (and constraint programming with dynamic scheduling) have been
recently proposed [GHM93, Gar94] and they have been incorporated in the CIAO compiler in order to
parallelize CLP and CC programs [GHM95]. Additionally, the compiler has side-effect and granularity
analyzers (not depicted in Figure 1) which infer information which can yield the sequentialization of
goals (even when they are independent) based on efficiency or maintenance of observable behavior.

The actual automatic parallelization of the source program is performed in CIAO during compi-
lation of the program by the so called annotation algorithms. The algorithms currently implemented
are: mel, cdg, udg [Mut91, Bue94], and urlp [CH94]. To our knowledge, the CIAO system is the first
one to perform automatic compile-time (And-)parallelization of CLP programs [GBH95].

2This is a kind of nondeterminism which does not give rise to an arbitrary choice when applying a search rule.



3.4 Optimization

The CIAO compiler performs several forms of code optimization by means of source to source transfor-
mations. The information obtained during the analysis phase is not only useful in automatic program
parallelization, but also in this program specialization and simplification phase.

The CIAO compiler can optimize programs to different degrees, as indicated by the user. It can
just simplify the program, where simplification amounts to reducing literals and predicates which are
known to always succeed, fail, or lead to error. This can speed up the program at run-time, and also be
useful to detect errors at compile-time. It can also specialize the program using the versions generated
during analysis [PH95a]. This may involve generating different versions of a predicate for different
abstract call patterns, thus increasing the program size whenever this allows more optimizations. In
order to keep the size of the specialized program as reduced as possible, the number of versions of
each predicate is minimized attaining the same results as with Winsborough’s algorithm [Win92].

As well as handling sequential code, the optimization module of the CIAO compiler contains what
we believe is the first automatic optimizer for languages with dynamic scheduling [PH95b]. The
potential benefits of the optimization of this type of programs were already shown in [MGH94], but
they can now be obtained automatically. These kinds of optimizations include simplification and
elimination of suspension conditions and elimination of concurrency primitives (sequentialization).

3.5 Output

The back end of the compiler takes the result of the previous program transformations and gen-
erates a number of final output formats. Normally, the result of the compiler is intended for the
CIAQ/&-Prolog abstract machine. Output possibilities are then byte-code (“.ql”) files, stand-alone
executables, and incore compilation (when the compiler is running inside the system rather than as a
stand-alone application). As mentioned before, and as an alternative output, most of the capability
of the system can also be handled by any Prolog which supports delay declarations and attributed
variables. Alternatively, also AKL [JH91] can be used as a target, using the techniques described in
[BH95a].

Finally, it is possible to obtain the results of each of the intermediate compilation phases. This al-
lows visualizing and affecting the transformation, analysis, parallelization, and optimization processes.
Because of the source to source nature of the compiler, this output is always a (possibly annotated)
kernel CIAO program.

4 The Future: Work and Visions

We have briefly described the current status of the CIAO system. The current main objective of
the system is to be an experimentation and evaluation vehicle for programming constructs and opti-
mization and implementation techniques for the programming paradigms of LP, CLP, CC, and their
combinations. Current versions of the system are often available for experimentation (please contact
the authors; further information can be obtained from http://www.clip.dia.fi.upm.es/).

The system has already shown itself useful in illustrating the power (or lack thereof) of a number
of analysis and optimization techniques (see the referenced papers for details). We are continuing to
improve the system. Additionally, we are developing pilot applications with the system which should
provide valuable feedback regarding its capabilities.

Much work remains to be done in several areas. We are planning on including support for program-
ming in the functional style, both in terms of syntax (in order to allow nesting of calls via a designated
output argument in relations) and of improved support for meta-programming (higher-order), both
at the source language level and also at the implementation level. Again, functions will simply be
compiled into the kernel language.

While the CTAO system illustrates that analysis and optimization of concurrent programs is pos-
sible, much work remains in improving the efficiency and accuracy of the analysis and in improving
the performance gains obtained with the resulting optimizations.



As mentioned in Section 3.3, the automatic parallelization currently performed in the CTAO system
is at the goal level. However, it is possible to parallelize at finer granularity levels, thus obtaining
greater degrees of parallelism. The concept of local independence [MRB194, BHMR94] can be used for
this purpose. Although some promising progress has been made in this direction [HCC95], it remains
as future work to implement a system fully capable of efficiently exploiting this very fine grained level
of parallelism.

Granularity control is a very important issue in both parallelization of sequential programs and
sequentialization of concurrent ones. As mentioned in Section 3.3, the CIAO compiler already has
some granularity control capabilities [DLH90, KS90, LHD94, DLHL94, LH95], but much work also
remains to be done in this important area.

While our work in detection of parallelism in the CIAO compiler concentrates on compile-time
detection of parallelism, run-time detection also needs to be explored. Significant progress has been
made in this area by models and systems such as DDAS [She92], Andorra-I, and AKL.

Finally, there remains the issue of what is the ideal, future source language for LP/CLP/CC. Much
promising work has been done in this direction in the design of languages such as ALF, AKL, CCP,
CLP, CORAL, Escher, Goedel, LDL, LIFE, LambdaProlog, Lolli, Lygon, Mercury, NAIL, NuProlog,
Oz, XSB, etc. In some ways, the kernel CIAO language also offers a (simplistic, but effective) solution
to the problem, which is backwards compatible with Prolog and CLP. On the other hand, the overall
CIAO design in some ways sidesteps this issue by attempting to support several languages (including
those that combine several paradigms). This allows concentrating on the implementation issues and
developing basic techniques for analysis and optimization that, in the belief that the underlying
principles are quite common to the approaches being explored, will hopefully be applicable to future
languages.

Regarding the underlying principles mentioned above, we propose to use the following two guide-
lines, which we have tried to follow in our design [HtCg94]: (1) separating computation rules on one
hand, and optimizations of program execution, on the other, and (2) incorporating, in an orthogo-
nal way, as many of both as possible in a single computational framework. Computation rules may
include SLD resolution, best/breadth-first search, the determinate-first principle, etc. Optimizations
may include parallel execution, reduction of synchronization, reordering of goals, code simplification,
etc. Another crucial point to our approach is separating the issues concerning concepts such as com-
putation, parallelism, concurrency, and optimization principles, from the granularity level at which
such concepts are applied (e.g., a parallelization principle, such as independence or determinacy, can
be applied at several levels, such as the goal level or the binding level).

In the belief that there is much in common at the abstract machine level among many of the LP,
CLP, and CC models that we may be looking after integrating, we also argue that the support for
multiple models and paradigms can be implemented via compilation into a simple kernel language,
requiring a comparatively simple, generic abstract machine. Also, in the belief that many distributed
applications are a good target for computational logic systems, we propose to include extensive dis-
tributed execution capabilities. We also argue that it is useful for the kernel language supporting
all this machinery to use explicit control. Explicit control makes it possible to easily reason about
the computational characteristics of the program and to perform many optimizations at the (kernel)
source level. Compile-time analyses of the kernel language can then be implemented at the back-
end. This, plus extensive compile-time optimization, may very probably make it feasible to obtain
competitive performance for our languages.
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