A Framework for Assertion-based Debugging
in Constraint Logic Programming

Germdn Puebla, Francisco Bueno, and Manuel Hermenegildo
Department of Computer Science
Technical University of Madrid (UPM)
{german,bueno,herme}@fi.upm.es
(Extended Abstract)

1 Introduction

As (constraint) logic programming (CLP) systems [22] ma-
ture and larger applications are built, an increased need
arises for advanced development and debugging environ-
ments. Such environments will likely comprise a variety of
tools ranging from declarative diagnosers to execution visu-
alizers (see, for example, [1] for a more comprehensive dis-
cussion of tools and possible debugging scenarios). In this
paper we concentrate our attention on the particular issue of
program validation and debugging via direct static and/or
dynamic checking of user-provided assertions.

We assume that a (partial) specification is available with
the program and written in terms of assertions [5, 4, 13, 14,
23, 25]. Classical examples of assertions are the type dec-
larations used in languages such as Goédel [21] or Mercury
[29] (and in functional languages). However, herein we are
interested in supporting a more general setting in which, on
one hand assertions can be of a more general nature, includ-
ing properties which are statically undecidable, and, on the
other, only a small number of assertions may be present in
the program, i.e., the assertions are optional. In particular,
we do not wish to limit the programming language or the
language of assertions unnecessarily in order to make the
assertions statically decidable.

Consequently, the proposed framework needs to deal
throughout with approzimations [6, 11, 20]. It is imperative
that such approximations be performed in a safe manner,
in the sense that if an “error” (more formally, a symptom)
is flagged, then it is indeed a violation of the specifications.
However, while the system can be complete with respect to
statically decidable properties (e.g., certain type systems), it
cannot be complete in general, in the sense that when stat-
ically undecidable properties are used in assertions, there
may be errors in the program with respect to such assertions
that are not detected at compile time. This is a tradeoff that
we accept in return for the greater flexibility. However, in
order to detect as many errors as possible, the framework
combines static (i.e., compile-time) and dynamic (i.e., run-
time) checking of assertions. In particular, run-time checks
will be generated for assertions which cannot be statically
determined to hold or not.

Our approach is strongly motivated by the availability of
powerful and mature static analyzers for (constraint) logic
programs (see, e.g., [5, 8, 16, 17, 24] and their references),
generally based on abstract interpretation [11]. These sys-
tems can statically infer a wide range of properties (from
types to determinacy or termination) accurately and ef-
ficiently, for realistic programs. Thus, we would like to

take advantage of standard program analysis tools, rather
than developing new abstract procedures, such as concrete
[4, 13, 14] or abstract [9, 10] diagnosers and debuggers, or
using traditional proof-based methods [2, 3, 12, 15, 30].

Figure 1 presents the general architecture of the type of
debugging environment that we propose. Hexagons rep-
resent the different tools involved and arrows indicate the
communication paths among such tools. Most of such
communication is performed in terms of assertions. More
details on the assertion language can be found in [25].

As mentioned before, we assume that a (partial) specifi-
cation of the intended meaning or behavior of the (possibly
partially developed) program (i.e., the user requirements) is
available and written in terms of assertions. Because these
assertions are to be checked we will refer to them as “check”
assertions.! All these assertions (and those which will be
mentioned later) are written in the same syntax, with a pre-
fix denoting their status (check, trust, ...). The program
analyzer generates an approximation of the actual seman-
tics of the program, expressed in the form of true assertions
(in the case of CLP programs standard analysis techniques
—e.g., [17, 16]- are used for this purpose). The comparator,
using the analyzer’s abstract operations, compares the user
requirements and the information generated by the analysis.
This process produces three different kinds of results, which
are in turn represented by three different kinds of assertions:

e Verified requirements (represented by checked asser-
tions).

e Requirements identified not to hold (represented by
false assertions). In this case an abstract symptom has
been found and diagnosis should start.

e None of the above, i.e., the analyzer/comparator pair
cannot prove that a requirement holds nor that it does
not hold (and some assertions remain in check status).
Run-time tests are then introduced to test the require-
ment (which may produce “concrete” symptoms dur-
ing program testing). Clearly, this may introduce sig-
nificant overhead and can be turned off after program
testing.

Given this overall design, in this work we concentrate on
formally defining a series of assertions and the notions of
correctness and errors of a program with respect to those

1The user may optionally provide additional information to the
analyzer by means of “entry” assertions (which describe the external
calls to a module) and “trust” assertions (which provide abstract in-
formation on a predicate that the analyzer can use even if it cannot
prove it) [5, 26].

IR A A |

Compar ator

fal se \D\lagnois ‘
(A &lm) \\T//
__________________ 1

RT-test
Annotator

Decl ar atlve\
[Abstract)

—_—_— —_— - — _- _- —_a

Figure 1: A Combined Framework for Program Development and Debugging

assertions. We then present techniques for static and dy-
namic checking of the assertions. More details on the use of
assertions and the framework from a user’s perspective can
be found in [18].

2 Preliminaries and Notation

A constraint is essentially a conjunction of predefined pred-
icates (such as term equations or inequalities over the reals)
whose arguments are constructed using predefined functions
(such as real addition). We let 3w be constraint 6 re-
stricted to the variables W.

An atomn has the form p(t1,...,t,) where p is a predicate
symbol and the ¢; are terms. A literal is either an atom or
a primitive constraint. A goal is a finite sequence of literals.
A rule is of the form H:-B where H, the head, is an atom
with distinct variables as arguments and B, the body, is a
possibly empty finite sequence of literals. A constraint logic
program, or program, is a finite set of rules. The definition
of an atom A in program P, defnp(A), is the set of variable
renamings of rules in P such that each renaming has A as a
head and has distinct new local variables.

We assume that all rule heads are normalized, i.e., H is
of the form p(Xy,..., X,,) where Xi, ..., X,, are distinct free
variables. This is not restrictive since programs can always
be normalized.

The operational semantics of a program is in terms of
its “derivations” which are sequences of reductions between
“states”. A state (G | 6) consists of the current goal G' and
the current constraint store (or store for short) 6. A state
(L :: G16) where L is a literal can be reduced as follows:

1. If L is a primitive constraint and 6 A L is satisfiable, it
is reduced to (G 16 A L).

2. If L is an atom, it is reduced to (B :: G | §) for some
rule (L:-B) € defnp(L).

where :: denotes concatenation of sequences and we assume
for simplicity that the underlying constraint solver is com-
plete. A derivation from state S for program P is a sequence
of states So ~>p S1 ~p ... ~p S, where Sp is S and there is
a reduction from each S; to S;+1. Given a non-empty deriva-
tion D, we denote by curr_state(D) and curr_store(D) the
last state in the derivation, and the store in such last state,
respectively. E.g., if D is the derivation So ~p S, with

Sy = (G|) then curr_state(D) = S,, and curr_store(D) =
6. A queryis a pair (L,6) where L is a literal and 6 a store
for which the CLP systems starts a computation from state
(L16). The set of all derivations from Q for P is denoted
derivations(P, Q). We will denote sets of queries by Q. We
extend derivations to operate on sets of queries as follows:
derivations(P, Q) = UQEQ derivations(P, Q).

The observational behavior of a program is given by its
“answers” to queries. A finite derivation from a state S
for program P is finished if the last state in the derivation
cannot be reduced. A finished derivation from a state S
is successful if the last state has form (nil | 8), where nil
denotes the empty sequence. The constraint J,,,5(5)0 is an
answer to S. A finished derivation is failed if the last state
is not of the form (nil | 6).

3 Assertions

Assertions are linguistic constructions which allow express-
ing properties of programs. The properties can relate to
the program execution, particular derivations, or execution
states.

Definition 3.1 [Assertion] An assertion A for a program
P is a pair (appa,vala) s.t. both appa and vala are first-
order logic formulae and appa(D) and vala(curr_store(D))
are decidable for any derivation D for P.

As an intuition, the role of app4 is to indicate the exe-
cution states in which A is applicable. For the assertion to
hold, vala should take the value true for the corresponding
constraint store in every applicable state of A.

Note that this is a very open definition of assertions.
In the following we provide some more specific schemas for
assertions which correspond to the assertions traditionally
used: i.e., pre and post conditions. For each of these schemas
we provide the meaning of the logic formulae associated to
app and wval corresponding to the assertion. An example
program annotated with assertions of this kind is shown in
Figure 2, where two assertions A1 and A2 are provided in the
schema oriented syntax that we use herein, as well as in the
program oriented syntax of [25]. In the figure, A1 expresses
that if gqsort is called with its first argument being a list
then upon success (if it succeeds) its second argument is a
sorted list, and A2 expresses that partition is expected to
be called with its first argument a list. These assertions refer

:— success qsort(A,B)

: 1ist(A) => (1list(B), sorted(B)). % A1l

% Al: { success(gsort(A,B) , list(A) , (list(B) and sorted(B))) }

gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2), gsort(L1,R1),
append (R1, [X|R2] ,R).
gsort([1,[1).

:- calls partition(4,B,C,D)

: list(A).

% A2

% A2: { calls(partition(A,B,C,D) , list(4)) }

partition([1,B,[1,[1).

partition([E|R],C, [E|Left1] ,Right):- E < C, !,

partition(R,C,Leftl,Right).

partition([E|R],C,Left, [E|Right1]):- E >= C,

partition(R,C,Left,Right1).

sorted([]1).
sorted([_]).

sorted ([X,YIL]):- X =< Y, sorted([YIL]).

list([1).
list([_IL]):-
list(L).

Figure 2: An Example Program Annotated with Assertions

to particular execution states in derivations in which gsort
(resp. partition) are involved. We say that these assertions
are “evaluable” only in such states.

Definition 3.2 [Evaluation of an Assertion for a Deriva-
tion] Given an assertion A = (appa,vala) for program P,
the evaluation of A for a derivation D is solve(A, D, P) =

Vr : appa(r(D)) — vala(curr_store(r(D))).

where r is a variable renaming which relates the variable
names in A with the variables in a concrete derivation D.

3.1 Assertion Schemas

Assertion Schemas are expressions which given a syntactic
object AS produce an assertion A = (appa,vals) by syn-
tactic manipulation only. In other words, assertion schemas
are syntactic sugar for writing certain kinds of assertions
which are used very often. Assertions described using the
given assertion schemas will be denoted as AS in order to
distinguish them from the actual assertion (i.e., a pair of
logic formulae) A = (appa,vala).

Calls Assertions: This assertion schema is used to
describe execution states of the possible calls to a predicate.
Given an expression AS = calls(p, Precond), we obtain an
assertion A whose appas and valas are defined as follows:
appcalls(p,Precond)(D) =
true if current_state(D) = (p :: G 1 §)
{ false otherwise

valcalls(p,Precond) (9) = Precond(avars(p)e)

Clearly, there is no way an assertion calls(p, Precond)
can be violated unless the next predicate to be executed,
i.e., the leftmost literal in the goal of the current state, is p.

Success Assertions: Success assertions are used in
order to express postconditions of predicates. These post-
conditions may be required to hold on success of the pred-
icate for any call to the predicate, i.e., the precondition is

true, or only for calls satisfying certain preconditions. Given
an expression AS = success(p, Pre, Post), we obtain an as-
sertion A whose appas and valas are defined as follows:
appsuccess(p,Pre,Post)(D) =
true if current_state(D) = (G | §) and
{ Ip:: G16') € D and Pre(Fyersp)d’)
false otherwise

valsuccess(p,Pre,Post)(9) = POSt(avars(p)e)

Note that, for a given assertion A and derivation D, sev-
eral states of the form (p:: G16') may exist in D. As a
result, the assertion A will have to be checked several times
with different renamings so that the variables of the asser-
tion are related to different states in D.

3.2 Assertions and Debugging

Assertions have often been used for performing debugging
with respect to partial correctness, i.e., to ensure that
the program does not produce unexpected results for valid
queries. The framework allows restricting correctness check-
ing to those queries which are “expected”. The set of valid
queries to the program are represented by Q. In this section
we provide several simple definitions which will be instru-
mental.

Definition 3.3 [Error Set] Given an assertion A, the error
set of A in a program P for a set of queries Q is E(A, P, Q) =
{D € derivations(P, Q)|-solve(A, D, P)}.

Definition 3.4 [False Assertion] An assertion A is false in
a program P for a set of queries Q iff E(A,P,Q) # 0

Definition 3.5 [Checked Assertion] An assertion A is
checked in a program P for a set of queries Q iff E(A, P, Q) =

The definitions of false and checked assertions are com-
plementary, thus, it is clear that given a program P and a
set of queries Q, any assertion A is either false or checked.
The goal of assertion checking is to determine whether each
assertion A is false or checked in P for Q. There are two

kinds of approaches to doing this. One is based on actually
trying all possible execution paths (derivations) for all pos-
sible queries. When it is not possible to try all derivations
an alternative is to explore a hopefully representative set of
them. This approach is explored in Section 4. The second
approach is to use global analysis techniques and is based
on computing safe approximations of the program behavior
statically. This approach is studied in Section 5.

Definition 3.6 [Partial Correctness] A program P is par-
tially correct w.r.t. a set of assertions A and a set of queries
Q iff VA € A A is checked in P for Q.

If all the assertions are checked, then the program is
partially correct. Thus, our framework is of use both for
validation and for detection of errors.

Finally, in addition to checked and false assertions, we
will also consider true assertions. True assertions differ from
checked in that true assertions hold of the program for any
set of queries Q.

Definition 3.7 [True Assertion] An assertion A is true in
program P iff VQ : E(A, P,Q) = 0.

Clearly, any assertion which is true in P is also checked
for any Q, but not vice-versa. Since true assertions hold
for any possible query they can be regarded as query-
independent properties of the program. Thus, true asser-
tions can be used to express analysis information, as al-
ready done, for example, in [5]. This information can then
be reused when analyzing the program for different queries.

4 Run-Time Checking of Assertions

The main idea behind run-time checking of assertions is,
given a program P, a set of queries Q, and a set of asser-
tions A, to directly apply Definitions 3.4 and 3.5 in order to
determine whether the assertions in A are checked or false.
It is not to be expected that Definition 3.5 can be used
to determine that an assertion is checked as this would re-
quire checking the derivations from all valid queries which
is in general an infinite set and thus checking would not
terminate. In this situation, and as mentioned before, an
alternative is to perform run-time checking for a hopefully
representative set of queries. Though this does not allow
fully validating the program in general, it allows detecting
many incorrectness problems.

An important observation is that in constraint logic
programming, and under suitable assumptions, it is pos-
sible to use the underlying logic inference system for check-
ing whether the given assertions (logic formulae) hold or
not. In order to be able to perform run-time checking
in this way, we require that Precond(f) of an assertion
calls(p, Precond), and Pre(f) and Post(f) of an assertion
success(p, Pre, Post) can be computed in the CLP system.
To this end, we restrict the admissible pre and post condi-
tions of assertions to those which can be expressed as CLP
programs. We argue that this is not too strong a restriction
given the high expressive power of CLP languages. Note
that the approach also implies that the program P must
contain the definitions for the pre and post conditions used
in assertions (Figure 2). We believe that this choice of a
language for writing conditions is in fact of practical inter-
est because it facilitates the job of programmers, which do
not need to learn a specification language in addition to the
CLP language.

For simplicity, in the formalization (but not in the imple-
mentation) pre and post conditions are assumed to be liter-
als (rather than for example goals or disjunctions of goals).
Note, however, that this is not a restriction since given a
logic expression built using literals, conjunctions, and dis-
junctions, it is always possible to write a predicate whose
(declarative) semantics is equivalent to the such logic ex-
pression. Also, it is crucial to ensure that run-time checking
does not introduce non-termination into terminating pro-
grams. As a result, not all possible predicates which can
be written in a CLP language can be used as properties in
assertions:

Definition 4.1 [Test] A literal L is a test iff V6
derivations(P, (L, 6)) is finite.

Only tests are admissible as pre and post conditions in
assertions.

Definition 4.2 [Trivially Succeeds] A literal L trivially
succeeds for 6 in P, denoted § = p L, if 3 a successful deriva-
tion for (L | §) with answer 8’ s.t. Elmrs(Lﬁ' =46.

Theorem 4.3 [Checking of Tests] Let ¢ be a test defined
in a program P. t(6) holds iff 6 =p ¢.

Theorem 4.3 guarantees that checking of pre and post
conditions, which are required to be tests, is complete since
the set of derivations (search space) is finite.

4.1 A Program Transformation for Run-
Time Checking

‘We now present an program transformation technique which
given a program P, obtains another program P’ which
checks the assertions while running on a standard CLP sys-
tem.

The program transformation from P into P’ given a set
of assertions A is as follows. Let new(P,p) denote a function
which returns an atom of a new predicate symbol different
from all predicates defined in P with same arity and argu-
ments as p. Let renaming(A, p,p’) denote a function which
returns a set of assertions identical to A except for the as-
sertions referred to p which are now referred to p’, and let
renaming(P,p,p’) denote a function which returns a set of
rules identical to P except for the rules of predicate p which
are now referred to p’. We obtain P' = rtchecks(A, P),
where:

rtchecks(A, P) = { rtcheck;(A P) g j z })A} uA

where

A" = renaming(A",p,p’)

P’ = renaming(P,p,p') U{CL}

p' = new(P,p)

CL =

if A =calls(p,C)

p:-check(C, A), p'.
if A = success(p,C,S)

p:-(ts(C)->p’, check(S, A);p').

As usual, the construct (cond-> then ; else) is the Pro-
log if-then-else. The program above contains two undefined
predicates: check(C, A) and ts(C). check(C, A) must check
whether C holds or not and raise an error if it does not.
ts(C) must return true iff for the current constraint store
6, 8 =p C. As an example, for the particular case of

Prolog, check(C,A) can be defined as “check(C,A) :- (
ts(C) -> true ; error(A)).” where error(A) is a pred-
icate which informs about the false assertion A. ts(C)
can be defined as “ts(C) :- copy-term(C,C1), call(C1l),
variant (C,C1).”.

Theorem 4.4 [Program Transformation] Let P be a pro-
gram and A a set of assertions. Let P’ = rtchecks(A, P). If
during the execution of P’ for a query @ a literal error(A)
is executed then A is false and E(A, P, Q) # 0.

Theorem 4.4 guarantees correctness of the transformed
program, i.e., if the transformed program detects that an
assertion is false, it is actually false.

5 Compile-Time Checking

In this section we present some techniques which allow in
certain cases determining at compile-time the results of run-
time assertion checking. With this aim, we assume the exis-
tence of a global analyzer, typically based on abstract inter-
pretation [11] which is capable of computing at compile-time
certain characteristics of the run-time behavior of the pro-
gram. In particular, we consider the case in which the anal-
ysis provides safe approximations of the calling and success
patterns for predicates.

5.1 Abstract Interpretation

Abstract interpretation [11] is a technique for static program
analysis in which execution of the program is simulated on
an abstract domain (Do) which is simpler than the actual,
concrete domain (D). For this study, abstract interpreta-
tion is restricted to complete lattices over sets (i.e., power
domains, in general) both for the concrete (D, C) and ab-
stract (Do, C) domains. As usual, the concrete and abstract
domains are related via a pair of monotonic mappings ab-
straction o : D w— D,, and concretization v : Do — D, such
that

Vxe€D: v(a(x)) Dz and Yy € Do : a(y(y)) =y.

In general C is induced by C and a (in such a way that
VAN €Dy : AC XN & (A C (X)), and is not equal
to set inclusion. The operations of least upper bound and
greatest lower bound in the abstract domain are denoted LI
and M respectively. Also, as usual in abstract interpretation,
1 denotes the abstract substitution such that y(Ll) = 0,
whereas T denotes the most general abstract substitution,
ie, y(T)=D.

Goal dependent abstract interpretation takes as input
a program P, an abstract domain D,, and a description
Q. of the possible initial queries to the program given as a
set of abstract queries. An abstract query is a pair (p, A),
where p is a predicate symbol (denoting one of the exported
predicates) and X a restriction of the initial stores for p ex-
pressed as an abstract substitution A in the abstract do-
main D,. A set of abstract queries Q, represents a set
of queries, denoted v(Q,), which is defined as v(Q,) =
{(p,9)|(p,A) € Qa A6 € y(N)}. Such an abstract inter-
pretation computes a set of triples Analysis(P, Qq, Do) =
{{p1, A5, A1), ..., (Pn, Ans As) }. For each predicate p in a pro-
gram P we assume that the abstract interpretation based
analysis computes a tuple {p, A°, A®). If p is detected to be
dead code then A\ = 1. We now provide a couple of def-
initions which will be used below for stating correctness of
abstract interpretation.

Definition 5.1 [Calling Context] Consider a program P,
a predicate p and a set of queries Q. The calling con-
test of p for P and @ is C(p,P,Q) = { Jvarsp)f| 3D €
derivations(P, Q) with current_store(D) = (p:: G16) }.

Definition 5.2 [Success Context] Consider a program P,
a predicate p, a constraint store 6, and a set of queries
Q. The success context of p and 6 for P and Q is
S,0,P,Q) = { yarsw)t’| ID € derivations(P, Q) with
D=---~p{(pu:GlO)y~p - ~p (GlE)].

We can restrict the constraints in the calling and suc-
cess contexts to the variables in p since this does not af-
fect the behavior of calls and success assertions. Correct-
ness of abstract interpretation guarantees that (A°) D
C(p7 Pa 'Y(Qa)) and ’Y()‘s) 2 er»y(/\c) S(paaa P: ’Y(Qa)) In
order to ensure correctness of compile-time checking for a
set of queries @, the analyzer must be provided with a suit-
able Q, such that y(Q,)) 2 Q. In our implementation of
the framework, Q. is expressed by means of entry declara-
tions [25].

5.2 Exploiting Information from Abstract
Interpretation

Before presenting the actual sufficient conditions that we
propose for performing compile-time checking of assertions,
we present some definitions and results which will then be
instrumental.

Definition 5.3 [Trivial Success Set] Given a literal L and
a program P we define the trivial success set of L in P as
TS(L, P) = {3yars)f |0 =p L}

This definition is an adaptation of that presented in [27],
where analysis information is used to optimize automatically
parallelized programs.

Definition 5.4 [Abstract Trivial Success Subset] An ab-
stract substitution)\;S(L P) is an abstract trivial success sub-

set of L in P iff y(A7g; py) € TS(L, P).

Lemma 5.5 Let A be an abstract substitution and let

)\;5(L,P) be an abstract trivial success subset of L in P.

LAfAC Azgp py then VO € Y(A): 0=p L
2. if AN Azgp py # L then36 € YA):0=p L

Definition 5.6 [Abstract Trivial Success Superset] An ab-
stract substitution)\}'S(L,P) is an abstract trivial success su-
perset of L in P iff 'y()\;S(L py) 2 TS(L, P).

Lemma 5.7 Let A be an abstract substitution and let
ps be an abstract trivial success superset of L in P.

TS(L,P)
L if Xfg, py CAthen V6 : if § =p L then § € (N).
2. if AN AR y=-LthenV8ey(\): 6#Ap L

TS(L,P

In order to apply Lemmas 5.5 and 5.7 effectively, ac-
curate)\Z}'S(L P) and)\;S(L py are required. Finding a cor-
rect, and hopefully accurate)\,}'S(L p)y can simply be done

by analyzing the program with the set of abstract queries

9, = {(L, T)}. Since our analysis is goal-dependent, the
initial abstract substitution T is used in order to guaran-
tee that the information which will be obtained is valid for
any call to L. The result of analysis will contain a tuple of
the form (L, T, A°) and thus we can take)\}'S(L,P) =A%, as
correctness of the analysis guarantees that A® is a superset
approximation of T'S(L, P).

Unfortunately, obtaining a (non-trivial) correct A7 ¢ (L,P)
in an automatic way is not so easy, assuming that analysis
provides superset approximations. In [27], correct)\;S(,P)
for built-in predicates were computed by hand and provided
to the system as a table of “builtin abstract behaviors”.
This is possible because the semantics of built-ins is known
in advance and does not depend on P (also, computing by
hand is well justified in this case because, in general, code for
built-ins is not available since for efficiency they are often
written in a lower-level language —e.g., C— and analyzing
their definition is thus not straightforward).

In the case of user defined predicates, precomputing
)‘;5(,P) is not possible since their semantics is not known

in advance. However, the user can provide trust assertions
which provide this information. Also, since in this case the
code of the predicate is present, analysis of the definition
of L can also be applied and will be effective if analysis is
precise for L, i.e., y(A\®*) = UGE'y(/\C) S(p, 6, P, Q) rather than
y(A%*) D UOE'y(z\C) S(p, 6, P, Q). In this situation we can use
A® as (the best possible) Arg ; p.
ysis be precise for any arbitrary literal L is not realistic.
However, if the success set of L corresponds exactly to some
abstract substitution Az, i.e. T'S(L,P) = y(Ar), then anal-
ysis can often be precise enough to compute (L, A°, A°) with
A® = Ar. This implies that not all the tests the user could
write are checkable at compile-time, but only those of them
which coincide with some abstract substitution. This means
that if we only want to perform compile-time checking, then
it is best to use tests which are perfectly captured by the
abstract domain. An interesting situation in which this oc-
curs is the use of regular programs as type definitions (as in
Figure 2). There is a direct mapping from type definitions
(i.e., the abstract values in the domain) to regular programs
and vice-versa which allows accurately relating any abstract
value to any program defining a type (i.e., to any regular
program).

Requiring that the anal-

5.3 Checked Assertions

In this section we provide sufficient conditions for proving at
compile-time that an assertion is never violated. Detecting
checked assertions at compile-time is quite useful. First, if
all assertions are found to be checked, then the program
has been validated. Second, even if only some assertions are
found to be checked, performing run-time checking for those
assertions can be avoided, thus improving efficiency of the
program with run-time checks. Finally, knowing that some
assertions have been checked also allows the user to focus
debugging on the remaining assertions.

Theorem 5.8 [Checked Calls Assertion] Let P be a pro-
gram, calls(p, Precond) an assertion, Q a set of queries,
and let Q, be s.t. v(Q,) D Q. Assume that (p,A\°,\°) €
Analysis(P, Q,,Dy). If X° C)\;S(mendyp) then A is
checked in P for Q.

Theorem 5.8 states that there are two situations in which
a calls assertion is checked. Case 1 indicates that the predi-

cate P is never reached during execution, and thus the pre-
condition does not need to be tested. Case 2 indicates that
the precondition holds for all stores in the calling context.

Theorem 5.9 [Checked Success Assertion] Let P be a
program, success(p, Pre, Post) an assertion, Q a set of
queries, and let Q, be s.t. 7(Q,) 2 Q. Assume that
{p, \°, *) € Analysis(P, Q,,D,). If

1. A°n At

TS(Pre,p) = 4 OF

2. X E A’;S(Post,P)

then A is checked in P for Q.

Theorem 5.9 states that there are two situations in which
a success assertion is checked. Case 1 indicates that the pre-
condition is never satisfied, and thus the postcondition does
not need to be tested. Case 2 indicates that the postcondi-
tion holds for all stores in the success contexts, which is a
superset of the applicability set of the assertion.

5.4 TFalse Assertions

The aim of this section is to find sufficient conditions which
ensure statically that there is an erroneous derivation D €
derivations(P, Q), i.e., without having to actually compute
derivations(P, Q). Unfortunately, this is a bit trickier than
it may seem at first sight if analysis over-approximates com-
putation states, as is the usual case.

Theorem 5.10 [False Calls Assertion] Assuming the
premises of Theorem 5.8, if C(p,P,Q) # 0 and X° N
)\;S(Precond,P) = 1 then A is false in P for Q.

In order to prove that a calls assertion is false it is not
enough to prove that A;S(Precond p C X¢ as the contexts
which violate the assertion may not appear in the real exe-
cution but rather may have been introduced due to the loss
of accuracy of analysis w.r.t. the actual computation. Fur-

. c + . .
thermore, even if A\° and)\TS(Precond,P) are incompatible,

it may be the case that there are no calls for predicate P
in derivations(P, Q) (and analysis is not capable of detect-
ing so). This is why the condition C(p,P, Q) # 0 is also
required.

Theorem 5.11 [False Success Assertion] Assuming the
premises of Theorem 5.9, if

1. XM A’;’S(Pre P) 75 _|_, and
2. A° 1)‘;S(Post,P) =land 30 € y(A°N)‘;S(PT&P)) :
S(p,6,P,Q) # 0.

then A is false in P for Q.

Now again, A® is an over-approximation, and in particu-
lar it can approximate the empty set. This is why the extra
condition 3 6 € Y(A° M AL p,e py) + S(p,6,P,Q) # 0 is
required.

If an assertion A is false then the program is not correct
w.r.t. A. Detecting the mininal part of the program respon-
sible for the incorrectness, i.e., diagnosis of a static symptom
is an interesting problem. This is subject of on-going re-
search.

5.5 True Assertions

As with checked assertions, if an assertion is true then it is
guaranteed that it will raise any error. From the point of
view of assertion checking, the only difference between them
is that checked assertions may raise errors if the program
were used with a different set of queries.

Note that an assertion calls(p, Precond) can never be
found to be true, as the calling context of p depends on the
query. If we pose no restriction on the queries we can al-
ways find a calling state which violates the assertion, unless
Precond is a tautology.

Theorem 5.12 [True Success Assertion] Assuming the
premises of Theorem 5.9, if

+
1.)\TS(PTEJ,) C X¢, and

2.X t A;‘S(Pctst,P)

then A is true in P.

Condition 1 guarantees that A* describes any store which
is a descendent of a calling state of p which satisfied the
precondition. Condition 2 ensures that any store described
by A° satisfies the postcondition. Thus, any store in the
success context which originated from a calling state which
satisfied the precondition satisfies the postcondition.

5.6 Equivalent Assertions

It may be the case that some assertions are not detected
as checked or false at compile-time. However, it is possible
some that part of the assertion can be replaced at compile
time by a simpler one, i.e., one which can be checked more
efficiently.

Definition 5.13 [Equivalent Assertions] Two assertions
A, A" are equivalent in program P for a set of queries O iff
E(A,P,Q) = E(A, P, Q).

If A and A’ are equivalent but A’ is simpler then obvi-
ously A’ should be used instead for run-time checking. Gen-
erating equivalent Compile-time simplification of assertions
can be done using techniques such as abstract specialization
(see, e.g., [28, 27]). However, space limitations prevent us
from discussing further this interesting issue.

6 Implementation

We have implemented the schema of Figure 1 as a generic
framework. This genericity means that different instances
of the tools involved in the schema for different CLP di-
alects can be generated in a straightforward way. Currently,
two different experimental debugging environments have
been developed using the proposed framework: ciaopp [18],
the CIAO system preprocessor, developed by UPM, and
chipre [7], an assertion-based type inferencing and check-
ing tool also developed at UPM in collaboration with Pawel
Pietrzak from the U. of Linkdping. The analysis used is
an adaptation to CLP(fd) of the regular approximation ap-
proach of [16]. chipre has been interfaced by Cosytec with
the CHIP system (adding a graphical user interface) and is
currently under industrial evaluation.

CIAO? is a next-generation, GNU-licensed Prolog sys-
tem. The language subsumes standard ISO-Prolog and is

2The CIAO system and related tools are available from
http://www.clip.dia.fi.upm.es/Software.

specifically designed to be very extensible and to support
modular program analysis, debugging, and optimization.
CIAOQ is based on the &-Prolog/SICStus concurrent Prolog
engine.

ciaopp, the CIAO precompiler, can perform a number
tasks, including: (a) Inference of properties of program pred-
icates and literals, including types (using [16]), modes and
other variable instantiation properties (using the CLP ver-
sion of the PLAT abstract interpreter [17]) , non-failure, de-
terminacy, bounds on computational cost, bounds on sizes
of terms in the program, etc. (b) Static debugging including
checking how programs call system libraries and also the as-
sertions present in other modules used by the program. (c)
Several kinds of source to source program transformations
such as specialization, parallelization, inclusion of run-time
tests, etc.

Information generated by analysis, assertions in sys-
tem libraries, and any assertions optionally included in
user programs are all written in the CIAO assertion lan-
guage [26, 25], of which in this work we have only addressed
a subset, due to space limitations. The assertion language
is also used by an automatic documentation generator [19]
for LP/CLP programs based on program assertions and
machine-readable comments. Generates manuals in many
formats including postscript, pdf, info, HTML, etc.

Acknowledgments

This work has been supported in part by ESPRIT project
DiSCiPl and CICYT project ELLA. The authors would also
like to thank Jan Matuszynski, Wlodek Drabent and Pierre
Deransart for many interesting discussions on assertions and
to Pawel Pietrzak for adapting John Gallagher’s type anal-
ysis for CLP(FD).

References

[1] A. Aggoun, F. Benhamou, F. Bueno, M. Carro, P. Deransart,
W. Drabent, G. Ferrand, F. Goualard, M. Hermenegildo,
C. Lai, J.Lloyd, J. Maluszynski, G. Puebla, and A. Tessier.
CP Debugging Tools: Clarification of Functionalities and
Selection of the Tools. Technical Report D.WP1.1.M1.1-2,
DISCIPL Project, June 1997.

[2] K. R. Apt and E. Marchiori. Reasoning about Prolog pro-
grams: from modes through types to assertions. Formal
Aspects of Computing, 6(6):743-765, 1994.

[3] K. R. Apt and D. Pedreschi. Reasoning about termination
of pure PROLOG programs. Information and Computation,
1(106):109-157, 1993.

[4] J. Boye, W. Drabent, and J. Matuszynski. Declarative
diagnosis of constraint programs: an assertion-based ap-
proach. In Proc. of the 3rd. Int’l Workshop on Automated
Debugging-AADEBUG’97, pages 123-141, Linkoping, Swe-
den, May 1997. U. of Linkoping Press.

[5] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla.
Global Analysis of Standard Prolog Programs. In European
Symposium on Programming, number 1058 in LNCS, pages
108-124, Sweden, April 1996. Springer-Verlag.

[6] F. Bueno, P. Deransart, W. Drabent, G. Ferrand,
M. Hermenegildo, J. Maluszynski, and G. Puebla. On the
Role of Semantic Approximations in Validation and Diagno-
sis of Constraint Logic Programs. In Proc. of the 3rd. Int’l
Workshop on Automated Debugging-AADEBUG’97, pages
155-170, Linkoping, Sweden, May 1997. U. of Linkoping
Press.

[7] F. Bueno, P. Lépez, G. Puebla, M. Hermenegildo, and
P. Pietrzak. The CHIP Assertion Preprocessor. Technical

Report CLIP1/99.1, Technical University of Madrid (UPM),
Facultad de Informética, 28660 Boadilla del Monte, Madrid,
Spain, March 1999. Also as deliverable of the ESPRIT
project DISCIPL.

B. Le Charlier and P. Van Hentenryck. Experimental Eval-
uation of a Generic Abstract Interpretation Algorithm for
Prolog. ACM Transactions on Programming Languages and
Systems, 16(1):35-101, 1994.

M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Prov-
ing properties of logic programs by abstract diagnosis. In
M. Dams, editor, Analysis and Verification of Multiple-
Agent Languages, 5th LOMAPS Workshop, number 1192 in
Lecture Notes in Computer Science, pages 22-50. Springer-
Verlag, 1996.

M. Comini, G. Levi, and G. Vitiello. Abstract debugging of
logic programs. In L. Fribourg and F. Turini, editors, Proc.
Logic Program Synthesis and Transformation and Metapro-
gramming in Logic 1994, volume 883 of Lecture Notes in
Computer Science, pages 440-450, Berlin, 1994. Springer-
Verlag.

P. Cousot and R. Cousot. Abstract Interpretation: a Uni-
fied Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints. In Fourth ACM
Symposium on Principles of Programming Languages, pages
238-252, 1977.

P. Deransart. Proof methods of declarative properties of
definite programs. Theoretical Computer Science, 118:99—
166, 1993.

W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The
Use of Assertions in Algorithmic Debugging. In Proceedings
of the Intl. Conf. on Fifth Generation Computer Systems,
pages 573-581, 1988.

W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Al-
gorithmic debugging with assertions. In H. Abramson and
M.H.Rogers, editors, Meta-programming in Logic Program-
ming, pages 501-522. MIT Press, 1989.

G. Ferrand. Error diagnosis in logic programming. J. Logic
Programming, 4:177-198, 1987.

J.P. Gallagher and D.A. de Waal. Fast and precise regu-
lar approximations of logic programs. In Pascal Van Hen-
tenryck, editor, Proceedings of the Eleventh International
Conference on Logic Programming, pages 599—613. The MIT
Press, 1994.

M. Garcfa de la Banda, M. Hermenegildo, M. Bruynooghe,
V. Dumortier, G. Janssens, and W. Simoens. Global Anal-
ysis of Constraint Logic Programs. ACM Transactions on
Programming Languages and Systems, 18(5):564—615, 1996.

M. Hermenegildo, G. Puebla, and F. Bueno. Using Global
Analysis, Partial Specifications, and an Extensible Assertion
Language for Program Validation and Debugging. In K. R.
Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors,
The Logic Programming Paradigm: a 25—-Year Perspective,
pages 161-192. Springer-Verlag, July 1999.

M. Hermenegildo and The CLIP Group. An Automatic Doc-
umentation Generator for (C)LP — Reference Manual. The
CIAO System Documentation Series — TR CLIP5/97.1, Fac-
ultad de Informatica, UPM, August 1997.

M. Hermenegildo and The CLIP Group. Programming with
Global Analysis. In Proceedings of ILPS’97, pages 49-52,
Cambridge, MA, October 1997. MIT Press. (abstract of in-
vited talk).

P. Hill and J. Lloyd. The Goedel Programming Language.
MIT Press, Cambridge MA, 1994.

J. Jaffar and M.J. Maher. Constraint Logic Programming:
A Survey. Journal of Logic Programming, 19/20:503-581,
1994.

[23] D. Le Métayer. Proving properties of programs defined over

recursive data structures. In ACM Symposium on Par-
tial Ewvaluation and Semantics-Based Program Manipula-
tion, pages 88-99, 1995.

K. Muthukumar and M. Hermenegildo. Compile-time
Derivation of Variable Dependency Using Abstract Inter-
pretation. Journal of Logic Programming, 13(2/3):315-347,
July 1992.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion
Language for Debugging of Constraint Logic Programs. In
Proceedings of the ILPS’97 Workshop on Tools and Environ-
ments for (Constraint) Logic Programming, October 1997.

G. Puebla, F. Bueno, and M. Hermenegildo. An Asser-
tion Language for Debugging of Constraint Logic Programs.
Technical Report CLIP2/97.1, Facultad de Informitica,
UPM, July 1997.

G. Puebla and M. Hermenegildo. Abstract Specialization
and its Application to Program Parallelization. In J. Gal-
lagher, editor, VI International Workshop on Logic Program
Synthesis and Transformation, number 1207 in LNCS, pages
169-186. Springer-Verlag, 1997.

G. Puebla and M. Hermenegildo. Abstract Multiple Spe-
cialization and its Application to Program Parallelization.
Journal of Logic Programming. Special Issue on Synthesis,
Transformation and Analysis of Logic Programs, 1999. In
press.

7. Somogyi, F. Henderson, and T. Conway. The execution
algorithm of Mercury: an efficient purely declarative logic
programming language. JLP, 29(1-3), October 1996.

E. Vetillard. Utilisation de Declarations en Programmation
Logique avec Constraintes. PhD thesis, U. of Aix-Marseilles
11, 1994.

