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1 Introduction

Assertions are linguistic constructions which allow expressing properties of programs. We may be
interested in expressing many different kinds of properties as assertions may be used in different
contexts and for different purposes. Some contexts in which assertions have been used in the past
are:

Run-time checking In imperative programming, assertions have been traditionally used to ex-
press conditions about the program which should hold at run-time. A usual example is to
check that the value of a variable remains within a given range at a given program point. If
assertions are found not to hold a warning is given to the user. Note that in this context,
assertions express properties about the run-time behaviour of the program which should hold
if the program is correct (see [23] for an application to CLP).

Replacing the oracle In declarative debugging [20], the existence of an oracle (normally the
user) which is capable of answering questions about the intended behaviour of the program
is assumed. In this context assertions have been used in order to replace the oracle as much
as possible by allowing the user expressing properties which should hold if the program were
correct [9, 10, 1]. If it is possible to answer the questions posed by the declarative debugger
just by using the information given as assertions, then there is no need to ask the oracle (the
user). Note that here again, assertions are used to express properties which should hold for
the program.

Compile-time checking Another use of assertions is as a means of expressing properties about
the program which are checked at compile-time, usually by means of program analysis.
These properties should hold, i.e., otherwise a bug exists in the program. An example of
this are type declarations (e.g., [14, 21], functional languages, etc.), which have been shown
to be useful in debugging. Generally, and in order to be able to check these properties at
compile-time, the expressible properties are restricted to a statically decidable set.

Providing information to the optimizer Assertions have also been proposed as a means of
providing information to an optimizer in order to perform additional optimizations during
code generation (e.g., [21], which also implements checking). In this context, assertions do
not express properties which should hold for the program, but rather properties which do
hold for the program at hand. Note that if the program is not correct, the properties which
hold may not coincide with the properties which should hold.

General communication with the compiler In a setting where there is both a static inference
system, such as an abstract interpreter [7, 11], and an optimizer, assertions have also been
proposed as a means of providing additional information to the analyzer, which it can use
both to increase the precision of the information it infers and/or to perform additional
optimizations during code generation [24, 22, 17, 16]. An example are assertions which state
some (but not all) types in a type inferencing system [3]. Also, assertions can be used
to represent analysis output in source form and to communicate different modules of the
compiler which deal with analysis information [3]. In this context, assertions again do not
express properties which should hold for the program, but rather properties which do hold
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for the program at hand. Note that if the program is not correct, the properties which hold
may not coincide with the properties which should hold.

In this work we are interested in an assertion language which integrates all of the lines above.
Furthermore, in addition to these uses, the assertion language should serve other purposes. Al-
though not further discussed here, we would also like to generate documentation automatically
from the program source (in the “literate programming” style [8]) based in part on the information
present in the assertions. More details can be found in [8, 13].

Assertions can be classified according to many different orthogonal criteria. For example, even
though they are used for different purposes, the first three contexts above have in common that
assertions express properties which should hold (intended properties), while the last two ones refer
to properties which actually hold (actual properties) for the program. The study in [4] provides a
theoretical basis for the combination of tools which deal with intended and actual properties and
the assertion language we propose.

The aim of this document is to serve as a basis for the design of an assertion language which
suffices for the purpose of debugging in the context of constraint logic programming (CLP) [15]
languages, while remaining tractable. There is a clear trade-off between the expressive power of
the language of assertions and the difficulty of dealing with it. The assertion language proposed
is parametric w.r.t. the constraint domain and the particular CLP platform being used and thus
can be used for any of them. For example, an instance of the assertion language we propose has
been implemented in the CIAO system [12, 2]. Details can be found in [5].

The structure of this document is the following. Section 2 briefly discusses the kind of properties
expressible in the assertion language. A set of basic assertions is presented in Section 3 and
Section 4 presents a compound assertion which allows grouping basic assertions into one. Section 5
discusses the use of assertions for expressing properties of the actual program (as in the case of
expressing results of analysis). Finally, Appendix A presents an example implementation of some
auxiliary predicates for run-time checking.

2 Dealing with the Multiple Objectives of Assertions

In an advanced environment for the development of CLP programs, different tools for program
debugging and development should co-exist. As the intention in this proposal is to have a language
of assertions which allows expressing any property which is of interest for any debugging (and
validation) tool, it is very hard to restrict beforehand the kind of properties which can appear in
assertions. Clearly, not all tools will be capable of dealing with all properties expressible in our
assertion language. Rather than having different assertion languages for each tool, we propose the
use of the same assertion language for all of them, since this will facilitate communication among
the different tools and enable easy reuse of information, i.e., once a property has been stated there
is no need to repeat it for the different tools. Each tool will only make use of the part of the
information given as assertions which the tool understands.

2.1 Compile-time Checking of Assertions

In the context of compile-time checking, a well known example of a language for expressing prop-
erties of programs are type systems, which have been proved to be very useful for compile-time
bug detection. Type systems allow providing high level description of program procedures. An
example of these descriptions may be

:- type gsort(list,list).

Which states that both arguments of the predicate gsort are of the type list. Usually, the
existence of a type checker is assumed and type declarations are checked at compile-time. Types
can also be checked at run-time for input data which is not available at compile-time. The
language for providing type declarations (the type system) is restricted in such a way that compile-
time checking of types is (quasi) decidable, i.e., if the program is correct w.r.t. the given type



declarations, the type checker will be (in most cases) able to prove it. If the program does not
pass the type check, it is rejected and compilation aborts. However, if the program passes the
type check, it is guaranteed that the program will not go wrong w.r.t. the given type declarations.
Unfortunately, the fact that type systems are expected to be decidable greatly restricts the kinds
of properties which are expressible in type declarations. Also, in many cases type declarations are
mandatory for all program procedures and we would like to have optional assertions which can be
incrementally added during debugging.

For other contexts which are not directly related to compile-time checking, such as replacing
the oracle in declarative debugging, run-time checking, providing information to the optimizer,
and general communication with the compiler, we may be interested in expressing properties which
do not fall into type systems, and which are possibly undecidable at compile-time. Example of
properties of interest which lay out of type systems are “The second argument of gsort is an
ordered list”, “If we execute gsort with the first argument being the list [2,1] on termination of
the execution the second argument should be [1,2]”, “If we call gsort with the first argument a
ground list and the second a variable, computation should be deterministic, not fail and terminate”.
Thus, since it is our objective that the assertion language be common for all the above contexts,
the resulting assertion language needs to be more general than type systems while at the same time
include them. In this we follow the spirit of [3, 6]. However, we do not discard the definition and
use of a decidable type system if so desired. Even though the properties given in assertions may
not be decidable in general, it is our view that assertions should be checked as much as possible
at compile-time via static analysis. The inference system should be able to make conservative
approximations in the cases in which precise information cannot be inferred (and some assertions
may remain unproven).

Note that if the properties allowed in assertions are not decidable the approach to the treatment
of “don’t know” when trying to statically prove a possibly undecidable assertion has to be weaker
than the one used for strong type systems. The case that the analysis is not capable either to
prove nor disprove that an assertion holds may be because we do not have an accurate enough
analysis available or simply because the assertion is not statically decidable.

2.2 Defining Executable Assertions

In both run-time checking and replacing the oracle, the properties in assertions need to be exe-
cutable. Thus, a property can be any of the following;:

¢ a built-in predicate or constraint. E.g. ground(X), X>5. Extra-logical properties may
also be used, such as var (X). However, for some tools not all built-in predicates may be
allowed.

e a user-defined expression in a restricted syntax. Such restricted syntax needs to
have a defined translation into (a subset of) the underlying CLP language. Usually such re-
stricted syntax ensures that any property expressible in it is statically decidable. An example
are user-defined types using regular types. E.g., intlist ::= [] | [integer|intlist].
which is equivalent to the program
intlist([]).
intlist ([X|T]):- integer(X), intlist(T).

e a user-defined program. Similar in concept to the one above but rather than in a restricted
syntax, the user can define his own properties using the full underlying CLP language. As a
result, the properties defined may not be statically decidable. As an example, consider defin-
ing the predicate sort (A,B) to check that a more involved algorithm such as gsort(4,B)
produces correct results.

e an expression including conjunctions, disjunctions, and/or negations of properties.!

1Except for the Comp_prop properties introduced in Section 3.4.



:- calls gsort(A,B) : list(4). % Al
:— success gsort(A,B) : list(A) => list(B). % A2
:— comp gsort(A,B) : (list(A),var(B)) + does_not_fail. 7% A3

gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2),
gsort(L1,R1),
append (R1, [X|R2] ,R).
gsort([1,[1).

:— calls partition(A,B,C,D) : list(A). % A4
:— success partition(A,B,C,D) : (list(A),ground(B)) => (1list(C),list(D)). % Ab

partition([],B,[1,[1).

partition([E|R],C, [E|Left1] ,Right) :-
E<C, !,
partition(R,C,Left1,Right).

partition([E|R],C,Left, [E|Right1]):-
E >=C,
partition(R,C,Left,Rightl).

Figure 1: Predicate assertions

Depending on the use we make of each assertion and the particular implementation of the
diagnosis tool we may restrict the set of properties treated by the particular tool. Properties
which are not allowed may still be present but they will simply be ignored by such tool. For
replacing the oracle we would like our executable specifications (assertions) to always terminate.
In the context of run-time checking, we require:

e that the execution of the code which performs the run-time checking does not introduce
non-termination into a terminating program.

e that the code for run-time tests does not modify the constraint store. This way we ensure
that run-time checking will not introduce incompleteness w.r.t. the original program, i.e., for
a given query, any instance of an answer in the original program must also be an instance
of an answer in the program with run-time tests.

3 Basic Predicate Assertions

Predicate assertions are used to express (operational) properties which concern all the invocations
of the given predicate during execution of the program. Predicate assertions for declarative prop-
erties may also be defined. For brevity, we do not discuss them here. Examples of assertions for
declarative properties can be found in [19]. We first illustrate the use of this kind of assertions
with an example. Figure 1 presents a CIAO program [2] which implements the quicksort algorithm
together with a series of predicate assertions which express properties which the user expects to
hold for the program.? Three assertions are given for predicate qsort/2 (A1, A2, and A3) and
two for predicate partition/4 (A4 and A5). The meaning of the assertions in this example is
explained in detail below.

2Both for convenience, i.e., so that the assertions concerning a predicate appear near its definition in the program
text, and for historical reasons, i.e., mode declarations in Prolog or entry and trust declarations in PLAI, we write
predicate assertions as directives. Depending on the tool different choices could be implemented, including for
example separate files or incremental addition of assertions in an interactive environment.



Many features may be expressed in predicate assertions. Different sorts of predicate assertions
are used for different features within the execution of the predicate.® Also, more than one basic
predicate assertion (of the same or different kinds) may be given for the same predicate. In such a
case, all of them should hold and composition of basic predicate assertions should be interpreted
as their conjunction.

In this section together with each kind of basic predicate assertion we will give a possible
translation scheme of assertions into code which will perform run-time checking and will issue a
warning message if any of the assertions does not hold. Given a predicate p(X1, . ..,Xn) for which
assertions have been given, the idea is to replace the definition of p(X1, ... ,Xn) so that whenever
p/n is executed the assertions for it are checked and the actual computation originally performed
by p/n is now performed by the new predicate p_int. Given the definition of a predicate p/n as

p(tll,...,t1n):- body_1.
p(tml,...,tmn) : - body_m.

it gets translated into:
p(X1,...,Xn):-
check_assertions_and_ezecute ‘‘p_int(X1,...,Xn)’’.

p-int(t11l,...,t1in):- body_1.
p-int(tml,...,tmn) :- body.m.

The definition of p_int corresponds to the definition of p/n in the original program and is
independent of the assertions given for p/n. The checks present in the new definition of predicate
p/n depend on the existing assertions for such predicate. In what follows, A(p/n) represents the
set of current assertions for predicate p/n.

3.1 Properties of Success States

They are probably one of the most common sorts of properties which we may be interested in
expressing about predicates. They are similar in nature to the postconditions used in program
verification. They can be expressed in our assertion language using the basic assertion ‘: - success
Pred => Postcond’. It should be interpreted as, “for any call of the form Pred which succeeds, on
success Postcond should also hold” . For example, we can use the following assertion in order to
require that the output of a procedure (gqsort) for sorting lists be a list:

:- success gsort(A,B) => 1list(B).

An important thing to note is that in contrast to other programming paradigms, in (C)LP,
calls to a predicate may either succeed or fail. The postcondition stated in a success assertion
only refer to successful executions.

A possible translation scheme of success assertions into run-time tests is: let S be the set

{Postcond s.t. ‘:= success p(X1,...,Xn) => Postcond € A(p/n)}. Then the translation is
p(X1,...,Xn):-

p-int(X1,...,Xn),

check(S).

Where the definition of predicate check is implementation dependent. For reference, a simple
implementation is given in Appendix A.1. In general it will check whether conditions given hold or
not. If they hold, computation will generally continue as usual. If they do not, usually a warning
will be given to the user.

3Not all properties of interest fit in predicate assertions. In [19] assertions related to program points (and literals)
are also introduced. They are not discussed here due to space limitations.



3.2 Restricting Assertions to a Subset of Calls

Sometimes we are interested in properties which refer not to all invocations of a predicate, but
rather to a subset of them. With this aim we allow the addition of preconditions (Precond) to
predicate assertions as follows: ‘Pred : Precond’. For example, success assertions can be restricted
and we obtain an assertion of the form ‘:- success Pred : Precond => Postcond’, which should
be interpreted as, “for any call of the form Pred for which Precond holds, if the call succeeds then
on success Postcond should also hold”. Note that ‘:- success Pred => Postcond’ is equivalent to
‘:— success Pred : true => Postcond’.

Assertions with a precondition are not required to hold for all calls to Pred, but only for those
of them which satisfy the precondition Precond. Thus, in a sense this is a way of weakening
predicate assertions. The following assertion (A2 in Figure 1) requires that if gsort is called with
a list in the first argument position and the call succeeds, then on success the second argument
position should also be a list.

:- success gsort(A,B) : list(A) => 1list(B).

The difference with respect to the success assertion of Section 3.1 is that B is only expected
to be a list on success of predicate qsort/2 if A was a list at the call.

A possible translation scheme for success assertions with a precondition is: let RS be the
set {(Precond, Postcond) s.t. ‘:- success p(X1,...,Xn) : Precond => Postcond € A(p/n)}.
Then the translation is
pX1,...,Xn):-

collect_valid postconds(RS,S),
p-int(X1,...,Xn),
check(S).

Where the predicate collect valid postconds/2 collects the postconditions of all pairs in
RS s.t. the precondition holds. Note that those assertions whose precondition does not hold are
directly discarded. A possible implementation of such predicate is given in Appendix A.2.

3.3 Properties of Call States

It is also possible to use assertions to describe properties about the calls for a predicate which may
appear at run-time. This is useful for at least two reasons. If we perform Goal-dependent analysis,
(a variation of) calls assertions may be used for improving analysis information (see Section 5.2).
They can also be used to check at run-time whether any of the calls for the predicate is not in the
expected set of calls (the “inadmissible” calls of [18]). An assertion of the kind ‘:- calls Pred :
Cond’ must be interpreted as “all calls of the form Pred should satisfy Cond’. An example of this
kind of assertion is (A1 in Figure 1):

:— calls gsort(A,B) : list(A).

It expresses that in all calls to predicate gsort the first argument should be a list.

A possible translation scheme of calls assertions into run-time tests is: let C' be the set
{Cond s.t. ‘:- calls p(X1,...,Xn): Cond € A(p/n)}. Then the translation is
p(X1,...,Xn):-

check(C),
p-int(X1,...,Xn).

3.4 Properties of the Computation

The predicate assertions previously presented in this section allow expressing properties about
the execution state both when the predicate is called and when it terminates its execution with
success. However, many other properties which refer to the computation of the predicate (rather
than the input-output behaviour) are not expressible. In particular, no property which refers to
(a sequence of) intermediate states in the computation of the predicate can be (easily) expressed



using calls and success predicate assertions only. Examples of properties of the computation
which we may be interested in are: non-failure, termination, determinacy, non-suspension, etc.
In our language this sort of properties are expressed by an assertion of the kind ‘:- comp Pred :
Precond + Comp-prop’, which is interpreted as “for any call of the form Pred for which Precond
holds, Comp-prop should also hold for the computation of Pred”. Again, the field ‘: Precond is
optional. As an example, the following assertion (A3 in Figure 1) requires that all calls to predicate
gsort with the first argument being a list and the second a variable do not fail.

:- comp gsort(A,B) : (list(A) , var(B)) + does_not_fail.

Run-time checking of comp assertions is more difficult than that of calls and success asser-
tions. Given a property of the computation Comp_prop with n parameters, it is required to define
a predicate with the samen name Comp_prop and n + 1 arguments. The first argument of the
predicate is the run-time instantiation of the call to the predicate to which the comp assertions
relates (i.e., gsort (4,B) above) and the following n are the parameters of the property. Note that
execution of the predicate and checking of the property are both performed (perhaps simultane-
ously) by this predicate of arity n + 1. For example, given the property does not_fail (with 0
parameters) which should be interpreted as “execution of the predicate either succeeds at least
once or loops”, we can use the following predicate does not_fail of arity 1 for run-time checking
of such property:

does_not_fail(Goal):-
if (call(Goal),
true, %% then
warning(Goal)). %% else

In this simple case, implementation of the predicate is not very difficult using the if/3 builtin
predicate of SICStus prolog. However, it is not so simple to code predicates which check other
properties of the computation and me may need programming meta-interpreters for it. Note
however that when the properties are difficult (or even impossible) to code, it may be possible to
approximate them. Care must be taken that we always stay on the safe side, i.e., the code for
run-time checking may be incomplete (it does not detect that an assertion does not hold), but it
must be correct (it only flags that an assertion does not hold if the assertion actually does not
hold).

A possible translation scheme of comp assertions into run-time tests is: let RC be the set
{(Prec,Comp_prop) s.t. ‘:= comp p(X1,...,Xn): Prec+ Compprop € A(p/n)}. Then the
translation is

pX1,...,Xn):-
collect_valid postconds(RC,C),
add_arg(C,p-int(X1,...,Xn),C1),
(C1==1[1 ->
call(p-int(X1,...,Xn)) %% then

calllist(C1)). %% else

call_list([]).
call_list([C|Cs]):- call(C), call_ list(Cs).

Where the predicate add_arg/3 adds the goal p_int (X1, ...,Xn) as the first argument to any
property of the computation. A possible implementation is given in Appendix A.3.

Note that both success and calls assertions are in a sense special cases of comp assertions as
properties of call and success states can also be formalized as properties of the computation. For
example consider the following predicates which could be used for checking calls and success
properties at run-time:



calls(Goal,Prop):- success(Goal,Prop) : -

(call(Prop) -> call(Goal),
true (call(Prop) ->
5 true
warning (Prop)), ;
call(Goal). warning(Prop)) .

the assertion : - calls p(X) : ground(X) could be written : = comp p(X) + calls(ground(X)).
Thus, an assertion language with only the comp predicate assertion would suffice. However, calls
and success assertions appear very often in program debugging and their treatment (at least
for run-time checking) is much simpler than that of the very general comp assertion. Also, in
our language of assertions, while conjunction, disjunction, and negation are allowed for properties
of the call and success states, only conjuntion (but not disjunction nor negation) are allowed in
Comp_prop properties As a result, it is interesting to have a dedicated predicate assertion for them
and only use comp assertions when the property is not expressible as calls nor success assertions.

4 Grouping Basic Assertions: Compound Assertions

In this section we introduce another kind of predicate assertions which can be used in addition
to the basic ones introduced in Section 3, i.e., both basic and compound assertions may be given
for a program. The motivation of introducing compound assertions is twofold. On the one hand,
usually when more than one success (resp. comp) assertions are given for the same predicate, the
set of success (resp. comp) assertions are meant to cover all the different uses of the predicate.
Thus, the disjunction of the preconditions in all the success (resp. comp assertions) can usually
be seen as a description of the possible calls to the predicate. Thus, it should be desirable that a
calls assertion is automatically generated for the set of assertions, rather than having to add it
manually. Second, a disadvantage of basic assertions as presented in Section 3 is that it is often
the case that in order to express a series of properties of a predicate, several basic assertions need
be written. For this reason and with the aim of making assertion writing not too tedious a task,
we propose the use of a compound predicate assertion which can be used as syntactic sugar for
the basic assertions. Each compound assertion is translated into 1, 2, or even 3 basic predicate
assertions, depending on how many of the fields in the compound assertion are given. The syntax
of compound assertions follows. Optional fields are given in square brackets.

:= pred Pred [: Precond] [=> Postcond] [+ Comp-prop].

A compound assertion ‘:- pred Pred : Precond => Postcond + Comp-prop’ should be inter-
preted as “for any call of the form Pred which satisfies Precond the computation of the call should
satisfy Comp-prop and if the predicate succeed on success of the execution Postcond should also
hold”. As usual, giving no precondition is equivalent to ‘pred Pred : true’. For example, the
following assertion indicates that whenever we call qsort with the first argument being a list,
the computation should terminate and if the computation succeeds, on termination the second
argument should also be a list.

:- pred gsort(A,B) : list(A) => 1list(B) + terminates.

Field Translation if given Otherwise
=> Postcond | success Pred : Precond => Postcond 0
+ Comp-prop comp Pred : Precond + Comp-prop (0]

Table 1: Transforming compound into basic assertions.

Compound assertions are easily distinguished from basic ones as they always start with the
keyword Pred, while the latter always start with one of the keywords calls, success, or comp.
Table 1 presents how a compound assertion is translated into basic success and comp assertions.



Generation of calls assertions from compound assertions is more involved. If the set of compound
assertions for a predicate Pred is {A1,...,A,} and let A; = Pred : C; [=> S;]1 [+ Comp;],
then the most accurate calls assertion which may be generated is

calls Pred : Vi_; C;

If only one compound assertion ‘:- pred Pred [: Precond] [=> Postcond] [+ Comp-prop]’ is
given for a predicate, then we can generate the assertion ‘:- calls Pred : Precond’. If more than
a compound assertion for our predicate is given, it is not correct to generate a calls assertion
for each compound assertion. Several assertions for the same predicate are interpreted as their
conjunction (according to Section 3), and the correct composition, as discussed above, is their
disjunction. For example, given the two following compound assertions for predicate qsort:

:- pred gsort(A,B) : numlist(A) => numlist(B) + terminates.
:- pred gsort(A,B) : intlist(A) => intlist(B) + terminates.

The calls basic assertion which could should be generated is:
:- calls pred gqsort(A,B) : (numlist(A) ; intlist(A)).

Note that when compound assertions are used, calls assertions are always implicitly generated.
If we do not want the calls assertion to be generated (for example because the set of assertions
available does not cover all possible uses of the predicate) basic success or comp assertions rather
than compound (pred) assertions should be used.

5 Assertions in Program Analysis (Actual Properties)

As opposed to all the assertions discussed in previous sections, which express expected properties
of the program if it were correct (intended properties), during the process of program validation
and debugging we are often interested in expressing properties of the actual program at hand
(actual properties), which may or may not satisfy the requirements. Thus, we have to distinguish
between properties which we would like the final program to satisfy and properties of the actual
program at hand. This greatly facilitates communicating different modules which use analysis
information, reusing information and communication to/from the user.

This is achieved by simply adding in front of the assertion a tag which clearly identifies whether
the property expressed by the assertion should hold in the final program or it actually holds for
the program at hand. Three different types of tags are considered

check They are used to mark the corresponding assertion as expressing an expected property of
the final program (intended property).

true They indicate that the property holds for the program at hand (actual property).

trust The property holds for the program at hand (actual property). The difference with the
above is that this information is given by the user and it may not be possible to infer it
automatically.

Note that all the assertions presented in the previous sections refer to intended properties.
Thus, they should have the tag check. However, for pragmatic reasons, the tag check is con-
sidered optional and if no tag is given, check is assumed by default. For example the assertion
:— check success p(X) : ground(X) can also be written :- success p(X) : ground(X).

Sometimes it is possible to compute (approximate) at compile-time properties about the run-
time behaviour of a program. This process is in general tedious and automatic analysis techniques
have long been used for this task. Assertions can be used for expressing the results of analysis. In
this context, the assertions express properties which the program at hand satisfies.

Predicate and/or program-point assertions may be generated according to the user’s choice.
Figure 2 presents the same program as in Figure 1 but rather than with check predicate assertions,



:- entry gqsort(A,B) : numlist(A).
:- true pred gsort(A,B) : numlist(A) => (numlist(A),numlist(B)).

gsort ([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2),
gsort(L1,R1),
append(R1, [X|R2],R).
gsort ([1,[1).

:- true pred partition(4,B,C,D) : (numlist(A),number(B),var([C,D])) =>
(numlist (A) ,number(B) ,numlist(C) ,numlist(D)).

partition([],B,[]1,[]).

partition([E|R],C, [E|Left1] ,Right) :-
E<C, !,
partition(R,C,Leftl,Right).

partition([E|R],C,Left, [E|Rightl]) :-
E>=C,
partition(R,C,Left,Rightl).

Figure 2: Analysis results expressed as assertions

with both predicate and program-point true assertions which express analysis results. The results
have been generated by goal-dependent type analysis. The role of the entry assertion is discussed
in Section 5.2 below. Program-point assertions contain information for each program point and are
literals of the true/1 predicate. Regarding predicate assertions, for conciseness compound rather
than basic predicate assertions are usually produced by the analyzer. They follow the structure
of the compound assertions of Section 4 and have the following syntax:

:- true pred Pred [: Precond] [=> Postcond] [+ Comp-prop).

5.1 Aiding the Analysis

Yet another kind of assertions are introduced in [3] and are intended for use when additional
information is to be provided to the analyzer in order to improve its information. There, compound
assertions, as introduced in Section 4, are used. However, as mentioned above, the tag trust
may be added to any predicate assertion (including the basic ones). An example of this kind of
assertions is:

:- trust success gsort(A,B) : list(A) => 1list(B).
which states that upon success B is a list provided that A was a list on call. Note that the assertion:
:- check success gsort(A,B) : list(A) => 1list(B).

(where the check tag is optional) states that under the same conditions, B should be a list if the
program were correct, while the trust assertion states that B is indeed a list.

Though similar in nature to true assertions, as they both refer to properties of the actual
program, the main difference between them is that while true assertions have been generated by
analysis and are automatically provable from the program at hand, trust assertions are often not
provable (either because part of the program is not available or because analysis is not powerful
enough) but the analysis is instructed to trust such assertions. When performing global analysis,
a trust assertion for a predicate p may improve the analysis information for the predicate p if the
information it contains is better than that generated by analysis. In that case it may also improve
the analysis information of any other predicate p' which depends on p, i.e., p' calls p w.r.t. the
analysis information available if the trust assertion were ignored.
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Note that if analysis is goal-dependent (see below), the existence of trust assertions for a
predicate does not avoid analyzing the code of the corresponding code if it is available, as otherwise
the internal calls generated in this predicate could be ignored during analysis resulting in incorrect
analysis information. Only after analysis of such a predicate may trust assertions be used to
improve the analysis information obtained. Note also that if the code of the predicate is not
available, the internal calls to predicates in the program that may appear during execution of the
missing predicate must have been declared in entry assertions for soundness of the analysis. Refer
to [3] for details.

It is important to mention that even though trust assertions are trusted by the analyzer
to improve its information unless they are incompatible with the information generated by the
analyzer (see [3]), they may also be subject to run-time checking. The translation scheme for
assertions with the tag trust is exactly the same as the one given in Section 3 for assertions with
the tag check. This should be an option when translating a program into another one with run-
time tests, whether only check assertions or both check and trust assertions should be checked
at run-time.

5.2 Goal-Dependent analysis

Goal-dependent analyses are characterized by generating information which is valid only for a
restricted set of calls, rather than for any possible call to the predicate, as opposed to goal-
independent analyses whose results are valid for any call to the predicate. As goal-dependent
analyses allow obtaining results which are specialized (restricted) to a given context, they provide
in general better (stronger) results than goal-independent analyses.

In order to improve the accuracy of goal-dependent analyses, some kind of description of the
initial calls to the program should be given* With this aim, entry declarations where used in
[3]. Their role is to restrict the starting points of analysis to only those calls which satisfy the
assertion ‘:- entry Pred : Precond’. For example, the following assertion informs the analyzer
that at run-time all initial calls to the predicate gsort/2 have a list of numbers in the first
argument position:

:- entry gqsort(A,B) : numlist(A).

The possibly more accurate information generated by a goal-dependent analyzer using the
above assertion is valid for any execution of gsort/2 with the first argument being a numeric list,
but may be incorrect for other executions.

Both entry and trust assertions have in common that they are provided by the user and are
assumed to be true. Thus, we may tend to think that the assertion ‘:- entry Pred : Precond
is syntactic sugar for ‘:- trust calls Pred : Precond. However, there is a subtle difference
between the two sorts of assertions above. ‘:- entry Pred : Precond states that Precond holds
(only) for all the initial calls to Pred, while ‘:- trust calls Pred : Precond states that Precond
holds for all (both initial and internal) calls to Pred.

Thus, entry assertions allow providing more precise descriptions of initial calls (as the prop-
erties expressed do not need to hold for the internal calls) and also they are easier to provide
by the user (which does not need to understand the internal behaviour of the program). This is
possible because goal-dependent analysis is capable of automatically computing (approximating)
a description of all the internal calls. Consider for example the following program with an entry
assertion.

:— entry p(A) : ground(A).

pa).
p(X):- p(V).
If instead of the entry we had written ‘:- trust calls p(A) : ground(A)’ then such asser-

tion would be incorrect. For example the execution of p(b) produces calls to p with the argument
being a free variable.

4Predicate calls which are not initial will be called internal.
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entry assertions may also be checked at run-time. As mentioned in Section 5.1, this should
be an option of the compiler when introducing run-time tests in the program. The translation
scheme is analogous to that performed for calls assertions but is only applied to initial calls to
the program.

6 Syntactic Sugar for Assertions

For clarity of the presentation, the assertion language in this paper aims at having a simple syntax.
This syntax may force the user to write rather long assertions. This may discourage the user to
write assertions at all. Also, the user most of the time writes assertions of just a few kinds. With
the aim of making assertion writing not too tedious a process, syntactic sugar may be used which
allows writing “short” assertions which are automatically translated into the assertion language
presented in the previous sections.

We next give a couple of examples of syntactic sugar which are used in the implementation of
the assertion language in CTAO [12]. More details can be found in [13]. The first example is the
assertion

:- pred s/2 : var * any => numlist * ground + mno_fail
; "Not a very useful predicate.".

which is syntactic sugar for
:- pred s(A,B) : var(A) => (numlist(A), ground(B)) + mno_fail

where the last field is just a comment which will be used for automatic documentation as described
in [13]. This notation avoids having to use variables with distinct names to identify the argument
positions of the predicate. Also, the following assertion contains a “mode-like” syntax

:- pred t(+integer,-numlist,?K,@L) => ground(K) + no_fail.
which is syntactic sugar for

:- pred t(4,B,K,L)
: (nonground (4) ,integer (A) ,var(B))
=> (ground(A) ,integer (A) ,nonvar(B) ,numlist (B) ,ground(K))
+ (no_fail,not_further_instantiated(L)).

not_further_instantiated(X) is a property of the computation which holds if the term X is
identical before and after the execution of the corresponding predicate.
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A Auxiliary Predicates for Run-Time Checking

The aim of this section is not to provide the best possible implementation of the auxiliary pred-
icates for run-time checking but rather to provide examples which show the feasibility of the
implementation. In fact, implementation of such predicates is fairly straightforward. As usual in
CLP languages, sets are implemented by means of lists.

A.1 The check predicate

check([]).
check([Cond|Conds]) : -
call(Cond),!,
check(Conds) .
check([Cond|Conds]) : -
warning (Cond) ,
check(Conds) .
No implementation is presented for the warning predicate. In general it will print a message
informing about an assertion which does not hold.

A.2 The collect_valid_postconds Predicate

collect_valid postconds([],[]).

collect_valid postconds([(Pre,Post)|Conds],PostConds) :-
call(Pre),!,
PostConds = [Post|PCs],
collect_valid postconds(Conds,PCs) .

collect_valid postconds([_|Conds],PostConds):-
collect_valid postconds(Conds,PostConds) .

A.3 The add_arg Predicate

add_arg([],-,[1).
add_arg([C|Cs],Goal, [NC|NCs]) :-
C=..[Functor|Args],
NC=. . [Functor,Goal|Args],
add_arg(Cs,Goal,NCs).
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