In APPIA-GULP-PRODE 2002, Madrid (Spain)

A Configuration Framework
for
Distributed Logic Applications

Jesis Correas Fernandez
Francisco Bueno Carrillo

CLIP Group, Technical University of Madrid
Campus de Montegancedo
28660 Boadilla del Monte
Madrid - Spain

{jcorreas,bueno}@fi.upm.es

Abstract. This paper proposes a configuration framework to develop
and deploy large distributed logic applications. The proposal extends
the concept of “active modules” used in the Ciao Prolog development
system, isolating code from configuration and deployment issues. This
approach allows local development of distributed applications, disregard-
ing architectural and topological issues, and later configuration (and re-
configuration) of the application execution structure without changing
the source code. This paper also presents the design guidelines of the
proposed architectural structure of distributed applications that use this
framework.

Keywords: Logic Programming, Distributed Systems, Configuration
Languages.

1 Introduction

As computer systems are able to afford more complex problems, the interest in
the development of distributed applications grows, since the needs for compu-
tational resources are increasing continuously. In another scenario, the ubiquity
of network connected devices with growing processing power imposes the use of
this kind of applications, generalizing their use in almost any area. Nevertheless,
programming distributed systems is a rather complex task.

This paper proposes a configuration framework based on the module sys-
tem and distributed programming infrastructure developed on Ciao, a next-
generation logic programming development environment that includes a full-
featured module system that considers modular incremental compilation, global
analysis and language extensions, in addition to the functionalities the modu-
larization provides to the programmer [CHO0].

Our proposal is an extension of the “active modules” feature of Ciao
[CH95,CH96,CHO1]. An active module is just a module which will run as a sep-
arate process. Thus, an active module process acts as a server for the predicates
exported by the module. A module is declared to be active in the client module,
and is compiled in a special way to become “active”. It is then run separately.

Our aim is to separate the development part from the configuration part
of a distributed system, and centralise the configuration in a single point. In
this envisioned framework, the programmer does not need to take care about
which parts of the system will be executed remotely, or how to define compo-
nent interfaces. Once the system meets the functional requirements (or while
programming), different configurations can be tested with no changes in the
source code. Of course, after selecting a specific configuration, the source code
may be fine tuned in order to improve the remote components communication.
To accomplish these tasks, the configuration language must be expressive enough
to face possibly multiple configurations of a complex system.

Our target developer focuses first in the program that solves the problem
faced, and afterwards in configuring it so that it runs distributedly. If the appli-
cation components are distributed in nature, the programmer can simply map
them into modules of the program and continue the development. Our target
applications do not require dynamic redistribution or reasoning about its own
distributed execution. Thus, there is no provision in our framework for goal-level
distribution language constructs.

In the following section, we present the proposed structure of a distributed
application developed using our approach, and in the next section our configura-
tion language and its features. In section 4 implementation issues are discussed,
and section 5 shows several issues related to programming distributed applica-
tions. Finally, section 6 presents related work, and section 7 our conclusions and
future enhancements.

2 Distributed Application Architecture

The applications developed using our approach will work using standard archi-
tecture and protocols, based mainly on the use of name servers, that provide
component creation and handle physical addresses.

The whole distributed platform is composed of a number of networked com-
puters (nodes) on which a name server is running and listening on a commu-
nication port. These (node,name server) pairs are named places. Every name
server knows the locations of the others, to connect with them if an applica-
tion requests execution of an active module in any other node. For the moment,
we abstract away on how to set up this scenario (this is discussed in Section 4).
With this basic architecture in mind, we present in the following the actions that
are involved in the execution of a distributed application via the name server
network. These are represented in Figure 1 and are as follows:

1. When a distributed application starts, it connects with its local name server
to get the physical addresses of the name servers it needs for execution. To

P
NAME SERVER

NEW
SERVER
PROCESS

APPLICATION

source code
location

Fig. 1. Distributed application architecture

do this, it uses a predefined port number (that the programmer does not
need to know because is fixed and known by the local LP system on which
both application and name server are running) to communicate with the
name server.

2. The application requests the creation of server processes for its active mod-
ules to the corresponding (remote) name servers. The application attaches
to this request the location where the source code of the active module is
stored (this location must be accessible from any node that participates in
running the application).

3. Each name server then creates a new server process to accomplish the ap-
plication request.

4. The newly created server process loads dynamically the active module code
from the source code location, and prepares it to receive requests.

5. The remote name servers return to the application the physical address of
the newly created server process, so it can start requesting goals.

6. Once the application has the physical address of the active module process,
requests to it the execution of goals. The active module server process ex-
ecutes them and returns the results (and possibly the application requests
backtracking to get more results). This action is repeated for each goal that
must be executed by the active module.

7. When the client side of the application terminates, the active module pro-
cesses terminate their execution accordingly.

The previous action list reflects a pure client/server relation between the
client part of an application and a server component (using intermediate name
servers). This scheme is a simplified version of the actual communication. The

mechanism may be more complicated if one active module calls predicates of
another active module, and the later calls back predicates of the former, cre-
ating a call cycle. The execution mechanism is not reduced to a client/server
communication. There are several complex problems that the implementation
has to deal with to build a generic architecture. They are discussed in Section 4.

3 Distributed Configuration Language

To describe complex distributed systems a expressive enough configuration lan-
guage is required. The basic elements we need to use are the following:

application(Name,Main,SourceAddr) defines the application name and a
source address (usually an URL or file system directory) where the appli-
cation code is accessible from all the nodes that will execute any applica-
tion component. Using a common place for every node avoids copying the
code, making the application maintenance easier (only one location must be
updated when a new version is deployed). Main declares the module that
contains the application starting code. This is the main module of the appli-
cation, which identifies the application itself. It is this object to which Name
refers as a logical name.

place(Place,ServerAddr) defines a place of execution: a name server address.
This is the link between the logical component architecture and the phys-
ical application deployment. The second argument reflects the name of a
networked system.

active_module(Module,Place,Mode) is used to associate an active module
to a place. When a predicate of Module is called (from any other module
of the application), the corresponding goal is executed in Place. The third
argument indicates whether the server process that executes Module will
share it with other applications (with Mode instantiated to public) or with
just other modules of this application (Mode instantiated to private). The
latter will create a different server process for each application that uses the
active module.

For managing complex applications, the configuration language should be
powerful enough to handle a variety of options, multiple configurations, flags,
and so on. In short, a complete language with a declarative look is desirable, since
the configuration problem is itself declarative: what one wants is a language to
declare the distributed structure of the application. The best solution for this is
then to use for configuration the same language than for programming. Thus,
we propose the above to be predicates, so that they can be used flexibly for
configuration files.

For example, let us suppose we have an application for querying a database
using a natural language interface. This app could be composed of (among oth-
ers) four major modules: a module that handles the dialogue with the user
(dlg_processor), a module for natural language processing (nl_processor),
another module to deal with the queries to the database (db_query_manager),

and a main module that performs initial tasks and starts the dialogue. A possible
implementation could be as follows:

:— module(nldi, [main/0]).

- use_module(dlg_processor,
[new_dialogue/1]).
main:-
...application setup...,
repeat,
new_user (User),
new_dialogue (User),
fail.

:— module(dlg_processor,
[new_dialogue/1]).
:— use_module(nl_processor,
[nl_process/2]).
- use_module(db_query_manager,
[db_query/2]).
new_dialogue(User) : -
repeat,
get_user_sentence(User,Sent),
nl_process(Sent,Semantics),
db_query (Semantics,Result),
conform_response (Result,Resp),
respond_user (User,Resp),
fail.

:— module(nl_processor,
[n1_process/2]).

nl_process(Sentence, Phrase):-

:— module(db_query_manager,
[db_query/2]) .

db_query(Sem,Result) : -
This code just takes account of the functionalities of the application, not

addressing any distribution related issues. In order to turn it into a distributed
app, we only need to use a configuration file. For instance:

:— use_package (ams) .

main(nondist).
main(local) :-

common (localhost,localhost) .
main(production) :-

common (natlang_node,database_node) .

common (NL.,DB) :-
place(NL,_),
place(DB,_),
application(nldi,nldi,"http://www.clip.dia.fi.upm.es/src"),
active_module(nl_processor,NL,shared),
active_module(db_query_manager ,DB,shared) .

This sample file contains three possible configurations of the previous appli-
cation (named nldi). Different configurations are represented as separate clauses
of main/1, which is the standard startup predicate of any Ciao Prolog program,
and the arguments of which are the parameters given to the invocation of the
program when run. The first clause just configures the app to be executed as a
non-distributed program (as if there were no configuration file). The configura-
tion named local prepares the application to be run in a distributed fashion,
but keeping the active modules in the local machine (this configuration may be
useful to test distributed components with no need of distributed infrastructure
at all). Finally, the “production” configuration sets up the code to be executed
in three different machines (the local machine will run the code of the local part
of the application, while n1_processor and db_query_manager will be executed
in natlang_node and database_node respectively).

This example also shows that every Prolog goal may be added to the con-
figuration file, making it quite powerful (e.g., using auxiliary predicates such as
common/2, library predicates, or even other Prolog modules).

The first line indicates that this source file uses the ams Prolog language
extension (“package” in Ciao), that brings the semantics of a configuration file.
It thus declares that this file is a configuration file for AMS (Active Module
Service). Operationally, this means that when this file (let it be config.pl) is
executed, the code of the application modules will be set up so as to guarantee
the selected configuration. The user can select the desired configuration calling:

config nondist or config local or config production

In this way (helped substantially by the language extension features of Ciao),
it is made possible that the configuration language be the programming language
itself. The configuration file is just a precompiler for the application, which is
run by the standard interpreter of the Ciao system.

4 TImplementation Issues

The proposed architecture and configuration features involve a number of issues
that will raise during implementation. The following sections include what we
understand that are the most important items to deal with.

4.1 Setting Up a Name Server Network

The architecture on which the configuration framework is based requires name
servers to perform many important operating tasks. In section 2 we have shown
the main actions name servers have to do when an application uses active mod-
ules. Although in the previous configuration language definition the name server
addresses are embedded in the configuration file of an application, address-
independent application code could be quite interesting: applications could be
configured with no physical network addresses; these addresses would be given
to the local name server, in order to establish dynamically the physical server
addresses of the application (the actual nodes in which it would be executed).
This feature requires the interconnection of the name servers that may be used
for executing an application, making up a name server network. This network is
also very important to enable public active modules, as mentioned in Section 4.5.

To build a name server network, every participant must know about the
others: their addresses and what services each member offers. This can be easily
made including a communication protocol between name servers. When starting
a new name server, an already existing name server address could be provided
to connect it to the existing name server network. This name server then sends
to the newly created name server the information it has about the network
structure. It sends also the new name server to the rest of the network.

This scheme is very useful for future enhancements of the framework. As
an example, a name server could offer a certification service (as a public active
module) that guarantees the active module code safety, either checking enclosed
certification information or analysing the active module code if it has not been
certified yet. When any name server receives an active module creation request,
checks its code safety using that certification service. Name servers can also share
interesting information about modules and applications, propagating it across
the network and enabling dynamic application reconfiguration, in response to
node and network load, system crashes, and so on. Name server network should
become an element of central interest in the operational part of this framework.

4.2 Setting Up the Application

The configuration code presented in Section 3 must be interpreted before the
application is compiled, behaving just like a precompiler, in order to prepare the
application modules that are declared to be active so that they are executed as
separate processes and communicate with the main application process.

The adopted solution is to create (for each active module) new code that
replaces the original module code. This new code only performs the communica-
tion between the caller module(s) and the active module process. This dummy
module contains the same exported predicates than the original module, but
they just call remotely the actual predicates residing in the active module. A
similar approach was taken when designing the active module extension of Ciao.

When compiled, the module(s) that call(s) an active module will be linked
with the dummy module instead of the original module. During execution, all
calls to active module predicates are redirected by this module to the process
that acts as the active module server. It is this dummy module which is in charge
of recording the process server address (returned by the name server that created
it) and redirect to it all calls to the exported predicates.

It is also a precompilation task to prepare things so that the application
is started as configured when run. To accomplish this, dummy modules contain
code for communicating with the local name server and requesting the activation
of the corresponding active module server process in the designated place. For
this purpose, initialization directives are used, so that the activation of the
processes occurs when the application is invoked. The active modules themselves
do not need any change to work in a separate process server, because the process
server already includes all the code to do the communication work.

And finally, the execution of the configuration file should also make a copy
of the active module source files in the public source code location given in
the application declaration. This location should be accessible from the nodes
where the active modules will actually run.

4.3 Running the Application

Starting from the guidelines shown in section 2, the main issue to face about
running a distributed application is to decide where the actual network addresses
are located. The previously defined distributed configuration language needs to
specify network addresses for source code location and execution nodes. This
approach have an important drawback: if the network changes for any reason,
or the application source code is moved to another network, the configuration
file will produce incorrect results. To solve this problem, the configuration file
can be split in two different files: one for configuring the application, but leaving
addresses uninstantiated (as place/2 calls in the previous example), and the
other to reflect the relation between places and addresses. The latter file must
be provided to the local name server, in order to update its application tables.
This improvement keeps the configuration information centralised in two files.
In addition, when the network structure changes the application does not need
to be recompiled, as the network structure is not embedded in it. Name server
handling of network addresses of its local applications is also interesting to enable
dynamic changes (for example, for load-balancing). Nevertheless, if the actual
addresses are stored in the name server, unique place and application names must
be provided to the name server for differentiating them from other applications.
A name space must be established.

Other important issue is that of separating different runs of the same applica-
tion. If the framework is not aware of this issue, stateful active module processes
will be shared between several runs of the same application, producing unpre-
dictable results. Our solution is that active modules are attached to a run of an
application: the initialization of the application execution starts up a (separate)
server for the active module. Servers are shared only if the user declares so, which
is done via the Mode in active_module/3. Thus, we extend modes to include
also shared, allowing to share a server with any run of the same application.

4.4 'What Does an Active Module Consist of?

Although the concept of active module has not been defined precisely, in the
previous sections we have considered that it is alike the concept of distributed
component in other contexts. However, the main difference with components
is that in this framework there are no special definitions for the component
interface: the interface of an active module is just the interface of the underlying
module.

This point of view implies an important pitfall to solve, not existing in other
approaches: deciding which code will be executed in the remote place, aside
from the active module code itself. That is, if the active module uses other
modules, deciding where to execute their code. If these modules are also defined
as active modules, they will be executed in the places specified in the distributed
configuration file. The problem arises when there is no explicit declaration on
where to execute the code of a module used by an active module. The solution
to this problem has several alternative approaches:

— The first approach is to execute the code in the same place that the caller
(active or not) module is executing. Although it could be a good solution,
local execution has an important drawback. If the called module is being
used by different active modules, or by the start up part of the application
(the “client” side) and an active module, a copy of the called module will be
created in each process space. If the called code contains state, different state
will be kept in different process spaces. This approach cannot be accepted
directly because may change the semantics of the application.

— Next alternative could be to convert automatically the called module in
an active module. This approach solves the problem found in the previous
approach. However, there is no information about which place the new active
module should be executed in. And, more important, the final application
structure will not reflect the intended structure specified in the configuration
file.

— The third approach is to perform a previous program analysis to detect how
the modules not explicitly declared as active modules can be distributed be-
tween the different components of the application. For example, if a module
is used only by an active module, that module could very well be loaded in
the process space of the active module instead of converting it into another
active module. This analysis should work on the module dependency graph

in order to detect useful subsets of modules that could successfully be loaded
locally in an active module process space.

— Next alternative consists in loading all the modules not declared explicitly as
active modules in the start up part of the application (the “client” side). If
an active module uses any other (non active) module, it will use the “client”
side as an active module in turn. The “client” side must then be loaded
from the begining of the application as an active module itself. This is the
most conservative approach because it supposes that the application will
run mostly in the local process, and only sporadicly it will need an active
module.

— Finally, a variation of the previous alternative can take advantage of the
structure of the low-level communication mechanism with active modules,
implementing a callback protocol. If a predicate of an active module is called,
and its execution makes a call to a predicate of another module (which is
not active, and thus its code is loaded in the caller module process space),
it can use the existing communication to call back the later predicate to the
caller module. The approach is the same as before, but in this case there is
no need of starting the “client” side of the application as an active module:
the existing communication is used in duplex form, allowing calls in both
directions, thus making the communication protocol more complex.

We are currently working towards the last solution. However, as future work
on this concern, another solution to this issue can be the evolution of the dis-
tributed configuration language to provide a framework for defining composi-
tional relations between modules, so structured components can be expressed. It
could be done simply as a generalization of the module system of the language.
Although such alternative is out of the scope of this proposal, it would be an
extremely powerful tool for large logic applications.

4.5 Public Active Modules: Towards Agents

Lastly, a quite interesting implementation issue is to provide public active mod-
ules, shared by any application that uses them. A public active module can
be started as a stand-alone application that publishes its interface in the name
server network. Each application that uses that active module just connects
with the already existing active module process server, instead of creating a new
process server for it.

For example, a natural language processor could start in a network node
publishing its interface in the local name server. When an application needs the
use of a natural language processor, it simply declares this as another module in
the program, with the corresponding interface. The programmer does not care
at all about whether this will be distributed or not. Transparently to the pro-
grammer, when the application is executed, it requests to its local name server
the service of natural language processing. The name server then provides it the
address of the public active module (received from the name server network), in-
stead of creating a new natural language processor process. The goals for natural

language processing will be executed in the existing process space, thus taking
advantage of such a complex process, without any burden on the programmer.

This could be the first stage in the implementation of a public agent that
broadcasts its services on the network. The application that uses such service
only needs to know the application program interface of the public agent. In a
more sophisticated approach, application and agent could use a standard lan-
guage for communicating agents. In any case, a key issue in public agents of
this kind is the specification of a global naming scheme that allows to address
univocally each of the possible distributed agents.

5 Programming distributed applications

Existing distributed application development systems allow building distributed
apps specifying in the client code the modules to be used remotely, specifying
the location of those servers, compiling the components properly, and registering
and starting the component servers before the client application starts execution.
This approach can be very useful in applications that involve a small number
of components and in which the client and the server are clearly separated.
However, as the complexity of the applications to be built grows the problems
that have to be faced up (and that are not directly related to the programming
task itself) spend a considerable part of the development effort. The main pitfalls
are discussed in the following.

First, when a distributed application or prototype is being developed, the
source code of the client modules must reflect the distributed nature of the
system. This fact has two consequences: first, the general structure of the dis-
tributed system has to be set before the programming phase begins, since later
architectural changes generally convey a very expensive reprogramming effort;
and second, this implies the need of an at least minimally configured distributed
application to do the tests of the developed components as they are programmed.
Although minor changes in the code can be made to test parts of component
code without the need of distributed configuration, this technique does not re-
flect the behaviour that the actual system will have and may be error prone.
From the programmer point of view, a distributed development framework is
desirable in which the applications can be programmed locally, testing as soon
as possible the functional requirements of the application, and then configuring
externally the deployment of components that compose the application.

Second, the nature of the component is usually embedded in the component
code itself. On the contrary, we think that the development of a component
should be completely independent of its nature; that is, whether it will be a piece
of software executed locally, or it will work within a remote component server.
This independence with respect to usage is also a programmer’s need to develop
distributed applications appropriately. Current development frameworks divide
the interaction between components in “clients” and “servers” in a classical
perspective. It should be interesting to consider “requesters” and “providers”
in a cooperative programming model, in a way that requesters can be in turn

providers of their own providers. This approach gives a more flexible framework.
In addition, this independence allows a given module to act as a normal module
when used in an application, and as an active remote module when used in
another application.

The third problem that can arise when programming distributed applications
in-the-large concerns the specification of the system topology: how the compo-
nents are distributed, and how every component knows the physical addresses
in the network of other components it needs to do the job. Currently a number
of methods are available, several of them embedding the structure into the code.
But when developing a complex application or prototype, the deployment struc-
ture may also be complex, and changes in the topology may be usual during
the development phase (changing the network nodes where components will re-
side, grouping several components in a single node —and possibly merging them
in a single component— or even splitting one component in several distributed
pieces). A key factor in the flexibility of a distributed development framework
is the ability to change the structure of the application with no traumatic re-
configuration effort. A step forward concerning this problem is to centralise the
topological configuration in a single point of the application.

Once the development phase has been completed and the topology of the
application has been set, running complex applications may arise other kind of
problems: how a distributed application can be easily set up. That is, component
servers must be started in the proper systems and connected to the correct port
numbers, and then the application itself must be started and everything must
be checked to work smoothly.

Last, there are several other issues concerning complex application devel-
opment that have to be taken into account, such as security and certification,
isolation of several applications in a single node, and so on. These issues are out
of the scope of this proposal, but we have to take them in mind when designing
a distributed development framework.

The previous points reflect the problems that may arise when program-
ming in-the-large, but also provide the key to solve them. During the prototyp-
ing/programming phase, the most important item to consider is the flexibility
and independence from the final structure of the distributed system. The pro-
totype/application should be developed disregarding the physical structure of
the final system, and reflecting only the logical interaction between the modules
that will compose the system. We talk here about modules instead of components
because a component implies an external interface and a usually complex frame-
work; as we have said before, during the development it is common to realize
that a component should be built in a different way that it was initially designed.
If we consider initially only modules —using the programming language notion
of 'module’-, the only thing to do is just to reconfigure the component informa-
tion. The best solution to provide this functionality is to make the underlying
structure of the distributed system completely transparent to the programmer:
the specification of active modules and locations must be detailed externally to
the source code.

Changing the structure of a distributed system may then be a simpler task,
and a very interesting feature of a development framework is the ability to try
different system topologies for selecting the one that best fits the requirements
of the final system. In this case, complex systems can be reconfigured easily if
the physical structure is centralised in a single point: a distributed configuration
file.

Finally, to start a complex system, the preferable option is to use name
servers that do the job dynamically. The component servers can be then started
in a generic way. This solution also centralises other important tasks such as
security control and analysis, load balancing, and possibly other tasks related to
the concept of agency, such as code security analysis.

6 Related Work

From low-level system calls highly dependent of the operating system to high-
level “encapsulated” languages, there are a lot of proposals for developing dis-
tributed systems, some of them focusing on the system independence, as OSF
DCE and CORBA, while others specifically designed for a language or operat-
ing system, as Java RMI or Microsoft DCOM. Other approaches include the use
of specific programming languages that model more appropriately the problems
involved in distributed programming.

At a higher level, there are frameworks that hide the complexities of distribu-
tion providing a programming environment which abstracts the actual network
structure. Among them are ActorSpaces [AC93], and Sun JavaSpaces [Mic00],
both more or less based on the Linda framework [JR89,CG89]. GNATDIST
[YKP96] follows another completely different approach that in certain sense is
similar to ours: it defines a configuration language very close to the program-
ming language, in this case Ada. In the LP systems context, Jinni [Tar99] is
an interesting scripting tool that provides a software architecture and logic pro-
gramming extensions, centered in agents and in enabling computation mobility.
Also a distributed version of Oz has been developed [SHS97]. Oz is a concur-
rent multi-paradigm programming language of which the distributed version
provides a different semantics to the same language, in order to offer distribu-
tion transparency. In addition, it provides fault-tolerance capabilities. Finally,
DRL [MDT97a] is a distributed real-time logic language that has inspired a lan-
guage independent logic-based coordination model [MDT97b]. In this case, the
distribution is explicitly made in the source code. The coordination model can
be used for other non-logic languages such as Smalltalk or C. This is achieved
using source to source compilers that translate the extended syntax to the target
language.

Most of the former approaches implicitly constrain in one way or another
the programming language or the programming task. Some of the language or
system-independent approaches limit the expressive power of the language in
constraining to the programming paradigm of the distributed framework (this
is the case of CORBA with object orientation). Also, many approaches, even if

language-independent, require the use of explicit constructs in the code of the
program to deal with distribution (this is the case of Linda, Jinni, and DRL).
The development of the program has to be done with the distributed nature of
the application in mind.

We argue that this is not interesting, and moreover it is an innecessary burden
on the programmer, when the distribution of the execution is independent of the
problem solved by the application. In these cases, it is already too complex to
program the solution to the problem to have to take care of distribution, in
addition. Our proposal aims at simplifying development in these cases.

Our proposal follows the approach of, for example, GNATDIST [YKP96] and
Occam [May87], in that there is a clear distinction between the configuration
and the application parts of a software system, with different languages, al-
though possibly similar. This similarity of languages is often only syntactic, but
in our case we do use the same language (with additional —predefined— library
predicates), thanks to the extensibility of Ciao.

In the LP community, comparable proposals are those of Jinni, Oz (Mozart),
and DRL. The Jinni approach hides the complexity of network communication
between places, and provides a way to move computation from one place to an-
other, enabling a very powerful mobile agent platform. However, remote execu-
tion and mobility concepts (represented with operations as set_host/1 move/0,
here/0, and there/0) are visible to the programmer and are embedded in the
code, whereas our focus is centered in hiding the distributed structure of the ap-
plication itself. Distributed Oz has been designed extending the basic operations
of the Oz language to provide a distributed semantics to the language constructs
already existing in the centralised Oz version, although participant nodes must
be declared on source code, due to the lack of a separated configuration language
to declare the application network structure. Lastly, DRL also focuses on eze-
cution units, named grains, that can be called on separate processors, and the
communication mechanism is based on logic channels to simulate a global shared
address space. In our approach, the execution units are the program modules,
which allows us to avoid the explicit distribution constructs that in DRL pro-
grams have to incorporate. In all these cases, the distinguishing aspect of our
proposal is not the code distribution transparency but the separation between
programming and configuration. Obviously, our approach does not take into ac-
count many issues that both Jinni and Oz do, because their and our objectives
are different.

7 Conclusions and Future Work

We have proposed a framework and configuration language to express the dis-
tributed nature of large logic applications. Our proposal includes a number of fea-
tures with multiple enhancements from previous implementations. First of all, it
proposes the complete separation between application code and distribution con-
figuration code. This allows system reconfiguration with minimum effort. Next,
the application code is kept unmodified, and then can be tested and executed

either locally or in a distributed way with no program code changes. Also, the
distributed configuration language is not yet another language to learn. A config-
uration file is just a Prolog program with a minimal additional library. From the
architectural point of view, a distributed application is a set of processes running
on different nodes logically interconnected by name server processes that create
and manage the application processes.

This innovative application configuration implies several implementation is-
sues such as program transformation, analysis of automatic module distribution
when distributed locations are not explicitly declared, and public active modules
for sharing computational resources and providing a base for agent programming.

We are currently developing the proposal, and further enhancements may be
necessary in the process. However, we can now identify a number of areas that
may be extended in future work. First, it should be interesting to enhance the dis-
tributed configuration language with compositional component definition. The
distributed architecture provides multiple working areas. First of all is to provide
a security system to this distributed architecture. The use of a name server to
create every active module provides a very powerful tool to add security capa-
bilities to the proposed architecture. This single point of active module creation
enables many other interesting enhancements. For example, a load-balancing
system may be implemented, since name server processes communicate in the
so called name server network. Name servers can also be extended to provide
agency features and other agent capabilities (mobility, language independence,
and so on).

References

[AC93] Gul Agha and C. J. Callsen. Actorspace: An open distributed programming
paradigm. In Proceedings 4th ACM Conference on Principles and Practice
of Parallel Programming, ACM SIGPLAN Notices, pages 23-32, 1993.

[CG89] N. Carriero and D. Gelernter. Linda in context, 1989.

[CH95] D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint
Execution in the CIAO System. In Proc. of the 1995 COMPULOG-
NET Workshop on Parallelism and Implementation Technologies, Utrecht,
NL, September 1995. U. Utrecht / T.U. Madrid. Available from
http://www.clip.dia.fi.upm.es/.

[CH96] D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent
Constraint Execution in the CIAO System. In Proc. of the AGP’96
Joint conference on Declarative Programming, pages 67-78, San Sebas-
tian, Spain, July 1996. U. of the Basque Country. Available from
http://www.clip.dia.fi.upm.es/.

[CHO0] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In
International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 131-148. Springer-Verlag, July 2000.

[CHO1] D. Cabeza and M. Hermenegildo. Distributed WWW Programming us-
ing (Ciao-)Prolog and the PiLLoW Library. Theory and Practice of Logic
Programming, 1(3):251-282, May 2001.

[JR89] K. K. Jensen and G. E. Riksted. Linda, a distributed programming
paradigm. Master’s thesis, Department of Mathematics & Computer Sci-
ence, University of Aalborg, Denmark, June 1989.

[May87] D. May. Occam 2, Langage definition. Prentice Hall, 1987.

[MDT97a] B. Rubio M. Diaz and J. M. Troya. Drl: A distributed real-time logic
language. Computer Languages, 23(2-4):87-120, 1997.

[MDT97b] B. Rubio M. Diaz and J. M. Troya. A logic-based coordination model.
In Workshop on Logic-Based Composition of Software, July 1997. ICLP
Post-Conference Workshop.

[Mic00] Sun Microsystems. Javaspaces service specification, October 2000.

[SHS97] P. Van Roy S. Haridi and . Smolka. An overview of the design of Distributed
Oz. In Proceedings of the Second International Symposium on Parallel Sym-
bolic Computation (PASCO ’97), pages 176-187, Maui, Hawaii, USA, July
1997. ACM Press.

[Tar99] Paul Tarau. Jinni: Intelligent Mobile Agent Programming at the Intersection
of Java and Prolog. In PAAM’9. The Practical Applications Company, 1999.

[YKP96] L.NanaY.Kermarrec and L. Pautet. GNATDIST: A configuration language
for distributed ada 95 applications. In TRI-Ada, pages 63-72, 1996.

