
UNIVERSIDAD POLITÉCNICA DE

MADRID

FACULTAD DE INFORMÁTICA

Un Marco Unificado para
Análisis de Recursos y Tiempo

de Ejecución, Validación
Dinámica y Pruebas Unitarias

(A Unified Framework for Resource and

Execution Time Analysis, Run-Time

Checking and Unit-Testing)

Tesis Doctoral

Edison Fernando Mera Menéndez
Ingeniero Matemático

Homologado en España a
Licenciado en Matemáticas

Noviembre 2010

Departamento de Inteligencia Artificial

Facultad de Informática

Un Marco Unificado para Análisis de

Recursos y Tiempo de Ejecución,

Validación Dinámica y Pruebas

Unitarias

Candidato: Edison Fernando Mera Menéndez

Ingeniero Matemático

Escuela Politécnica Nacional, Ecuador

Homologado en España a

Licenciado en Matemáticas

Director: Pedro López Garćıa

Doctor en Informática

Licenciado en Informática

Universidad Politécnica de Madrid

Madrid, Noviembre 2010

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons,

543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

UNIVERSIDAD POLITECNICA DE MADRID

Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universi-

dad Politécnica de Madrid, el d́ıa. de. de 201. . .

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

Realizado el acto de defensa y lectura de la Tesis el d́ıa de.

de 201. . . en la Facultad de Informática.

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

A mi familia

Agradecimientos

Quiero dar las gracias especialmente a mi director de tesis, Pedro López, y

al director del Grupo de Investigación CLIP, Manuel Hermenegildo, quienes

siempre han créıdo en mı́ en los momento más cŕıticos del desarrollo de la

presente tesis, por todo el tiempo y recursos que siempre me han brindado

para llevar a buen término el desarrollo del presente trabajo, y sus oportunos

consejos tanto en el ámbito cient́ıfico y profesional, como en el personal. A

Francisco Bueno, quien fue la primera persona del grupo CLIP con la que

tuve contacto y a través de la cual me integré formalmente en el grupo. A

Daniel Cabeza, Manuel Carro y Germán Puebla, quienes sobre todo al inicio

de mis estudios tuvieron el tiempo y la paciencia para resolver mis dudas.

También a otros investigadores del grupo con quienes he compartido tiempo

y jornadas de trabajo, como son Elvira Albert, Puri Arenas, Samir Genaim,

Susana Muñoz, Damiano Zanardini, Jaime Lipton y Nik Swoboda.

Quisiera también mencionar a mis compañeros de doctorado, con algunos

de los cuales inicié mis estudios, y otros que se fueron incorporando poste-

riormente, quienes siempre me han brindado la ayuda y soporte necesario,

como son Pablo Chico, Jesús Correas, Jose Manuel Gómez, Dragan Ivanovic,

José Morales, Claudio Ochoa, Diana Ramı́rez, David Trallero, Teresa Trigo,

Claudio Vaucheret, Miguel Gómez-Zamalloa y en particular, a Jorge Navas,

quien fue coautor de uno de los art́ıculos publicados. A los miembros y ex-

miembros del personal administrativo y de soporte, Astrid Beascoa, Rosa

Padilla, Alberto Garćıa Pañoso y Juan Cespedes. En el tiempo que he esta-

do aqúı he tenido la oportunidad de conocer algunos investigadores externos,

como John Gallager, Maŕıa Garćıa de la Banda, Pawel Pietrzak y Peter J.

Stuckey. Pido disculpas si he dejado de mencionar a alguna persona, ya que

no dispongo de espacio suficiente para referirme a todos aquellos que de al-

guno u otro modo han influido en el desarrollo de la presente tesis.

Por último, quiero agradecer a mis padres que me han dado todo, incluso

lo que les haćıa falta para que yo pudiera llegar hasta aqúı.

Sinopsis
Hemos desarrollado un marco general para inferir automáticamente cotas

superiores e inferiores del uso que un programa lógico hace de los recursos

en general, dadas como funciones de los tamaños de los datos de entrada.

Este permite el tratamiento de recursos independientes de la plataforma (o

definidos por el usuario/dependientes de la aplicación), tales como los bits

enviados o recibidos por una aplicación a través de un socket, el número

de llamadas a un predicado, archivos que se dejan abiertos, accesos a una

base de datos, aśı como otros dependientes de la plataforma, como tiempo

de ejecución o consumo de enerǵıa. El trabajo incluye un análisis global

paramétrico respecto a los recursos y el tipo de aproximación (cotas superio-

res e inferiores). El usuario puede definir los parámetros del análisis para un

recurso mediante aserciones, aśı como asociar costes a las operaciones básicas

del programa que afectan el uso de dicho recurso. El análisis estático global

infiere el uso del recurso para todas las partes del programa. Las aserciones

pueden definirse a diferentes niveles de abstracción. Por ejemplo, pueden

asociar funciones del uso de recursos para diferentes tipos de programas a

nivel del código fuente y pueden describir también cómo se actualiza el valor

de dichos recursos en las cabezas de los predicados o en la preparación de

un literal en el cuerpo de dichos predicados. En este caso, el analizador usa

una función de coste definida en la aserción para actualizar el uso del recurso

mientras se analizan las cabezas de las cláusulas o los literales del cuerpo.

Para los recursos dependientes de la plataforma, como el tiempo de eje-

cución, realizamos una única vez por plataforma un perfilado que calcula los

parámetros asociados a operaciones básicas, a nivel de código fuente o byte-

code. Hemos aplicado el marco general a tiempo de ejecución de dos maneras

y experimentado con la información suministrada a nivel de fuente y de byte-

code. En el primer enfoque, el análisis estático devuelve un vector de recursos

independiente de la plataforma relacionado con las operaciones de bajo nivel

de la ejecución del programa. Dichas operaciones deben verse reflejadas en

el lenguaje de alto nivel. El perfilador calcula las constantes que aparecen

en las funciones de recursos de la plataforma dada. A continuación usamos

aserciones para definir el tiempo de ejecución como un recurso compuesto de

los recursos independientes de la plataforma y los resultados del perfilado. En

el segundo enfoque, en la etapa de perfilado se calculan las constantes y fun-

ciones que acotan el tiempo de ejecución de cada instrucción de la máquina

abstracta. A continuación, en la etapa de estimación de recursos se emplea

la información de dichos tiempos para inferir cotas del tiempo de ejecución

dependientes de la plataforma. También el resultado puede mejorarse intro-

duciendo aserciones a nivel de bytecode.

Además, dado que no podemos verificar todas las propiedades estática-

mente, presentamos un marco unificado para verificación estática, validación

dinámica (o en tiempo de ejecución) y pruebas unitarias. Hemos diseñado

métodos para compilar validaciones dinámicas de (parte de) las aserciones

que no pueden ser verificadas estáticamente. Las pruebas unitarias permiten

poner a prueba las validaciones dinámicas y (parte de) las pruebas verificadas

estáticamente se eliminan. Además de las propiedades relacionadas con re-

cursos, podemos tratar otras como la ausencia de fallo, el determinismo y las

de estado (o funcionales) como los tipos de los argumentos de entrada/salida.

Una contribución importante es que para todas las tareas hemos usa-

do un lenguaje de aserciones unificado, el cual permite definir recursos y

propiedades relacionadas y verificables con ayuda de los resultados del análi-

sis que es lo suficientemente poderoso, general y extensible como para expre-

sar una gran variedad de propiedades interesantes de los programas.

Entre las aplicaciones del presente trabajo tenemos la verificación del con-

sumo de recursos, depuración del rendimiento, certificación de propiedades

para código móvil, control de granularidad en computación paralela/dis-

tribuida y especialización de programas orientada por los recursos. El marco

para pruebas unitarias y en tiempo de ejecución se ha aplicado con éxito en

la validación de la adecuación al estándar ISO-Prolog y en la detección de

varios errores en el código fuente del sistema Ciao. El marco completo ha

sido integrado con éxito en el sistema Ciao/CiaoPP.

UNIVERSIDAD POLITÉCNICA DE

MADRID

FACULTAD DE INFORMÁTICA

A Unified Framework for
Resource and Execution Time
Analysis, Run-Time Checking

and Unit-Testing

PhD Thesis

Edison Fernando Mera Menéndez
November 2010

Artificial Intelligence Department

Computer Science School

A Unified Framework for Resource

and Execution Time Analysis,

Run-Time Checking and Unit-Testing

PhD Candidate: Edison Fernando Mera Menéndez

Mathematical Engineer

Escuela Politécnica Nacional, Ecuador

Convalidated in Spain to

Graduate in Mathematics

Advisor: Pedro López Garćıa

Doctor in Computer Science

Graduate in Computer Science

Universidad Politécnica de Madrid

Madrid, November 2010

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons,

543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

To my family

Acknowledgements

First of all, I want to express my gratitude to my thesis advisor, Pe-

dro López, and to the director of the CLIP Research Group, Manuel

Hermenegildo, who always have supported me, even in the hardest moments

of the development of this thesis, for all their time, energy and resources that

have allowed me to finish this thesis, and also for their good suggestions in

the scientific, professional and also personal field. I would also like to ex-

press my gratitude to Francisco Bueno, who was the first person of the CLIP

group that I met, and who introduced me formally as member of the group.

To Daniel Cabeza, Manuel Carro, and Germán Puebla, who mainly at the

beginning of my studies had the time and patience to solve my doubts. Also

to other researchers of the CLIP group who shared time with me: Elvira Al-

bert, Samir Genaim, Damiano Zanardini, Puri Arenas, Susana Muñoz, Jaime

Lipton and Nik Swoboda.

I would like to mention my doctoral fellows, some of them I started my

studies with, and others started its studies further, who always gave me

support and help when needed: Pablo Chico, Jesús Correas, Jose Manuel

Gómez, Dragan Ivanovic, José Morales, Claudio Ochoa, Diana Ramı́rez,

David Trallero, Teresa Trigo, Claudio Vaucheret, Miguel Gómez-Zamalloa

and in particular, Jorge Navas, who was coauthor in one of the published

papers. To the members and former members of the administrative and sup-

port staff, Astrid Beascoa, Rosa Padilla, Alberto Garćıa Pañoso and Juan

Cespedes.

During these years I have had the opportunity to meet many researchers

around the world such as Pawel Pietrzak, Maŕıa Garćıa de la Banda, Peter J.

Stuckey and John Gallager. My apologizes if I forget to mention any person,

since I do not have enough space here to thank all people who in one way or

another have influenced the development of this thesis.

Finally, thank you very much to my parents, who gave me everything,

even what they did not have to make me reach this point.

Abstract

We have developed a general framework for automatically inferring both

upper- and lower-bounds on the usage that a logic program makes of resources

in general. Such bounds are given as functions of input data sizes. Our ap-

proach gives support for platform-independent (or user-defined/application-

dependent) resources, such as bits sent or received by an application over

a socket, number of calls to a predicate, number of files left open, number

of accesses to a database, as well as platform-dependent resources, such as

execution time or energy. The framework includes a global analysis that is

parametric with respect to resources and the type of approximation (lower-

and upper-bounds). The user can define the parameters of the analysis for a

particular resource using assertions. It is also possible to associate basic cost

functions with elementary program operations that affect the usage of such

resource. Then, the global static analysis can infer the cost of all the proce-

dures in the program. The assertions can be defined at different abstraction

levels. For example, they can associate resource usage functions to different

program constructs at source code level, can also describe how predicates

update the value for those resources in the clause heads or in the preparation

of the execution of its body literals. In such a case, a cost function defined

in the assertion is used by the analyzer to update the resource usage when

the clause heads or the body literals are analyzed.

For platform-dependent resources (e.g., execution time) we perform a

one-time profiling phase that computes parameters associated to basic oper-

ations, at source or bytecode-level. We have applied the general framework

to execution time estimation in two ways and experimented with information

supplied at source and bytecode-levels. In the first approach, the compile-

time cost bounds analysis gives a vector of platform-independent resources

that corresponds to particular low-level operations related to program exe-

cution. Such operations must be reflected in the high-level language. The

profiling phase determines the values of the constants appearing in the re-

source usage functions, for a given platform. Then, we use assertions to

define the platform-dependent resource (execution time) as a composition

of the basic platform-independent resources and the values of the constants

resulting from the profiling phase. In the second approach, the one-time pro-

filing stage calculates constants and functions bounding the execution time

of each abstract machine instruction. Then, the compile-time resource usage

estimation phase uses the instruction timing information (which is platform-

dependent) to infer bounds on execution time. To improve precision, resource

usage assertions can also be given at bytecode level.

Furthermore, since not all properties can be verified statically, we have

developed a framework that unifies static verification, run-time checking and

unit testing. In that sense, we have designed methods for compiling run-time

checks for (parts of) assertions which cannot be verified at compile-time. Unit

tests also provide test cases for the run-time checks, and (parts of) unit tests

that can be verified at compile-time are eliminated. In addition to those

resource-related properties, we support other properties like non-failure, de-

terminism and state (or functional) properties like types of input/output

arguments on calls or successes.

A key contribution of this work is that we preserve the use of a unified

assertion language for all tasks. Such language is used to define resources

and resource-related properties that can be verified based on the results of

the analysis and is powerful, general and extensible enough to express a large

class of interesting properties.

Applications of this work include resource usage verification, performance

debugging, certification of resource usage properties in mobile code, resource

and granularity control in parallel/distributed computing and resource-

oriented specialization. The unit-testing and run-time checking framework

has been effectively applied to the validation of ISO Prolog compliance and to

the detection of different types of bugs in the Ciao source. The overall unified

framework has been successfully integrated in the Ciao/CiaoPP system.

Contents

Abstract iii

1 Introduction 1

2 General User Definable Resource Bound Analysis 15

2.1 Introduction . 15

2.1.1 Related Work . 16

2.2 Worked Example . 17

2.3 A Framework for Inference of Resource Usage 20

2.3.1 The Resource Assertion Language 22

2.3.2 Size Analysis . 25

2.3.3 Resource Usage Analysis 32

2.3.4 Defining the Parameters (Functions) of the Analysis . . 35

2.4 Experimental Results . 40

2.5 Chapter Conclusions . 46

3 Applying the Framework to Execution Time Estimation 49

3.1 Introduction . 49

3.2 Source Code-Based (High-Level) Model 52

3.2.1 Proposed Platform-Dependent Cost Models 54

3.2.2 Dealing with Builtins 59

3.2.3 Calibrating Constants via Profiling 61

3.2.4 Assessment of the Calibration of Constants 63

v

3.2.5 Assessment of the Prediction of Execution Times . . . 67

3.2.6 Applications . 70

3.2.7 Section Conclusions . 71

3.3 Bytecode-Based (Low-Level) Model 72

3.3.1 Mappings Between Program Segments and Bytecodes . 75

3.3.2 Modeling the Execution Time of Instructions 77

3.3.3 Estimating the Execution Time of Clauses and Predicates 79

3.3.4 Estimating Instruction Execution Times via Profiling . 80

3.3.5 Instruction Profiling 81

3.3.6 Measuring Time Accurately 82

3.3.7 Getting Instruction Execution Time 83

3.3.8 Dealing with Unbound Instructions 89

3.3.9 Experimental Results 89

3.3.10 Section Conclusions and Future Work 99

4 Unit-Testing, Run-Time and Compile-Time Checking 103

4.1 Introduction . 103

4.2 The Ciao Assertion Language 106

4.3 Run-Time Checking of Assertions 110

4.4 Defining Unit Tests . 116

4.5 Generating User-friendly Messages 121

4.6 Experimental Results . 124

4.7 Chapter Conclusions . 131

5 Conclusions and Future Work 133

vi

List of Figures

1.1 Resource Analysis. 8

2.1 A simple client application. 18

2.2 Syntax of the resource assertion language. 23

2.3 Size relation equations for exch buffer/3. 31

2.4 An application that merges the content of a set of files. 41

2.5 Insertion in a binary search tree 42

2.6 The Towers of Hanoi program using robotic arms 43

3.1 Source-Level/Platform-Independent Resource Analysis. 52

3.2 Source-Level/Platform-Dependent Resource Analysis. 53

3.3 Source-Level Resource Analysis. 54

3.4 Bytecode-Level/Platform-Dependent Resource Analysis. . . . 74

3.5 Bytecode-Level/Platform-Independent Resource Analysis. . . . 75

3.6 Bytecode-Level Resource Analysis. 76

3.7 A simple WAM emulation loop instrumented. 81

4.1 The Ciao unified assertion framework (CiaoPP’s verification/test-

ing architecture). 106

4.2 Syntax of the assertion language. 107

4.3 The transforming procedure definitions scheme for run-time

checking. 111

4.4 Translation schemes for different kinds of predicate assertions. 113

vii

4.5 Translation schemes for different kinds of program-point as-

sertions. 117

4.6 A quick-sort program with assertions. 124

viii

List of Tables

1.1 Impacts of the conferences of the publications. 12

1.2 Impacts of the publications. 12

1.3 Quality indexes of candidate’s papers. 12

2.1 Accuracy and efficiency in milliseconds of the analysis. 45

3.1 List of cost models being applied. 64

3.2 Values (in nanoseconds) for vector constants in several cost

models, sorted by S, the standard error of the model. 64

3.3 Calibration programs used to estimate the constants and the

estimation error. 65

3.4 Experiments on example programs. 68

3.5 Global comparative of the accuracy of cost models. 69

3.6 Sequences of bytecodes assigned to clause heads and body lit-

erals of the clauses C1 and C2 of predicate append by the

functions E(C, H) and E(C, L). 78

3.7 Programs used in order to get the execution time of the

execute instruction. 83

3.8 Programs used to get the execution time of the call and

proceed instructions. 85

3.9 Timing model for the WAM instructions. Cost of bytecodes

when they succeed. 93

ix

3.10 Timing model given by a linear function, for unify variable(X,Y)

when the arguments are lists of integers, and the instruction

does not fail. 93

3.11 Timing model for the WAM instructions. Cost of bytecodes

when they fail. 94

3.12 List of program examples used in the experimental assessment. 94

3.13 Observed and estimated execution time with cost functions,

Intel platform (microseconds). 95

3.14 Observed and estimated execution time with cost functions,

Nokia N810 platform (microseconds). 96

3.15 Observed and estimated execution time with cost functions,

Sparc platform (microseconds). 97

3.16 Comparison between the higher level models and the abstract

machine-based model, on the Intel platform. 98

4.1 Size increment of qsort with several configurations of run-

time checks. 125

4.2 Slowdown of qsort/2 with several configurations of run-time

checks. 125

4.3 Size (in kilobytes) of binary and object files using several in-

strumentation levels of run-time checks, for large benchmarks. 128

4.4 Summary of the first application of unit tests for ISO Prolog

compliance. 130

x

Chapter 1

Introduction

It is well recognized the importance of inferring information about the costs of

computations for a variety of applications. These costs are usually expressed

as execution steps and, sometimes, execution time or memory.

However, there are certain applications where it is interesting to be able

to infer the usage that a program does of a wide variety of resources, includ-

ing resources that are application-dependent, and thus, must be definable

by the user. Applications of this analysis includes (but are not limited to)

resource usage verification and debugging, certification of resource consump-

tion in mobile code, proof carrying code, resource/granularity control in par-

allel/distributed computing, or resource-oriented specialization. Examples

of interesting resources are bits sent or received by an application over a

socket, number of calls to a procedure, number of files left open, number of

accesses to a database, energy consumed, monetary units spent, disk space

used, etc. Thus, a challenge in cost analysis is to develop a general analysis

framework which is parametric to the type of resource inferred, and specially,

offers support for user-defined resources.

A particularly interesting resource is execution time. This can be easily

argued if we focus our attention on safety critical embedded and real-time

applications, which have become pervasive in areas of high economic impact,

like transportation, consumer electronics or mobile telephony. For example,

1

2 Chapter 1. Introduction

in control systems of automobiles, aircrafts and trains, or systems for highly

remote operation (satellite, space, etc.), the computation must be correctly

performed within its time constraints (and also with an adequate use of

resources). Thus, it is of crucial importance to ensure ahead of time, that

these constraints are met for all possible executions, which in turn depend on

the safe static estimation of execution time. Of course, this estimation must,

at the same time, be as accurate as possible because of cost effectiveness

reasons, or hardware requirements.

The problem of resource usage inference becomes more complex for exe-

cution time, and in general, for resources that are dependent on character-

istics of the platform where programs are executed. For example, the exe-

cution time is closely related to the number of execution steps (a platform-

independent feature), but also on platform characteristics such as type of

processor, clock frequency, cache behavior, etc. There are proposals to ob-

tain accurate estimates of the number of execution steps as a function of

input data size, however, it is not straightforward to turn such steps into ex-

ecution time. There are also works on worst case execution times (WCET),

in the context of high-level imperative programming languages. Although

the WCET approach takes into account the low level platform characteris-

tics mentioned above, it only provides numeric upper-bounds on execution

time (i.e., a constant numeric value, but not a function on input data sizes),

and often requires annotating loops manually to express an upper-bound on

the number of iterations. Thus, another challenge is to develop a safe and

accurate execution time analysis that brings together the best of these two

approaches, taking into account the low-level platform-dependent factors,

and the high-level estimation of the number of iterations as a function on

input data sizes.

Finally, one of the most promising applications of resource analysis is

the automatic verification of resource usage related properties. However, not

all the properties can be verified statically. Thus, some run-time checking

is needed. A way of performing (at least) an (incomplete) verification of

3

those properties, consists of generating unit-tests for the program. Such tests

express the input data, the expected output, the number of times that the

unit-tests should be repeated, as well as other commands or properties related

with the tests. Although there are several approaches for unit-testing, none

of them integrates compile-time verification, run-time checking and unit-

testing. This is also another challenge to be addressed.

State of the Art

Cost analysis has been studied for several declarative languages [9, 29, 21,

22, 23], in order to infer the complexity in terms of execution steps of a

given program. In the context of functional languages, there are systems like

ACE [40], which can automatically extract upper-bounds on execution steps

for a subset of functional programming. The system is based on program

transformation. The original program is transformed into a step-counting

version and then into a composition of a cost bound and a measure function.

Rosendahl defines in [61] another automatic upper-bound analysis based on

an abstract interpretation of a step-counting version. The analysis measures

both execution time and execution steps. However, size measures cannot au-

tomatically be inferred and the experimental section shows few details about

the practicality of the analysis. In [52], a complexity analysis is presented,

based in the abstract interpretation of a modified version that count the

number of execution steps.

In the context of logic programming, [22, 21] present a method for auto-

matically inferring functions which captures an upper-bound on the number

of resolution steps or reductions that a procedure will execute as a function

of the size of its input data. In [43, 41], the method of [22, 41] was fully

automated in the context of a practical compiler and in [23, 13, 41] a sim-

ilar approach was applied in order to also obtain lower-bounds, which are

specially relevant in parallel execution. This approach captures well the fact

that program execution cost in general depends on properties of the input

4 Chapter 1. Introduction

data (such as input data sizes), so that the inferred resource usage bounds

are given as functions on the size (or values) of input data.

Regarding the particular case where the resource to be inferred is ex-

ecution time, there are works on the so called worst case execution time

(WCET) in the context of imperative languages and for different application

domains, that have produced precise timing models (see, e.g., [68, 63, 7, 27]

and its references). In particular [38, 7] proposes a portable WCET analysis

for Java. It considers platform-independent features and takes advantage

of the abstract machine-based implementation of such a language. However

these and related methods do not infer cost functions of input data sizes

but rather absolute maximum execution times, and they generally require

the manual annotation of loops to express an upper-bound on the number

of iterations. Moreover, most of the approaches are highly tied to either a

particular language or architecture, and none of them estimate lower-bounds.

Moreover, none of the mentioned approaches provide a general analysis

framework which offers support for user-defined resources, such as number of

accesses to a database, number of SMS sent or monetary units spent, as well

as the traditional execution time or memory. This is an interesting challenge,

since, as already mentioned, for certain current applications, it is very useful

or necessary to infer the usage that a program does of a wide variety of

resources.

Regarding the run-time checking of assertions in logic programs, to our

knowledge, there is not too much work in this area. Previous work has

concentrated mostly on the static (i.e., compile-time) checking of properties

(which comprises static verification and static debugging [12, 33, 54, 55, 34]),

as well as on techniques for reducing at compile-time the number of checks

that have to be performed dynamically (i.e., at run-time): any assertions

present in the program are verified (or falsified) as much as possible during

the compilation phase, since compile-time checking is preferable to run-time

checking –always incomplete as a means of verification. However the ex-

istence in all practical programs of data only known at run-time and the

5

rich nature of the properties considered, make a certain degree of run-time

checking inevitable –a reasonable price to pay in return for property expres-

siveness.

Regarding unit-testing, there are previous works in this area, e.g., [8],

[69], or the framework included in SWI-Prolog [67], called plunit, which

also runs on SICStus Prolog and provides a portable testing framework. In

the SWI-Prolog unit-testing framework, unit-test specifications are written

in the same source code module or in a different file with the same name as

the module being tested, but the framework does not allow to write unit-test

specifications in the same module that contains the predicates being tested.

Finally, none of the above mentioned unit-testing frameworks smoothly in-

tegrate compile-time verification, run-time checking and unit-testing, unlike

our approach, in wich only test drivers need to be added because the exist-

ing run-time assertion checking machinery is used as a checker for the cases

defined by the unit tests.

Thesis Objectives

The overall objective of this thesis is the development of a general framework

for resource analysis, integrated with unit-testing, run-time checking and

static verification, and provide instantiations of the framework for execution

time estimation. In order to fulfil such an objective, the thesis will provide

solutions to the challenges previously mentioned, focusing on the following

tasks or sub-objectives:

1. Implementing and integrating all the developed techniques in an ad-

vanced program development environment, namely the CiaoPP/ Ciao

system, in order to assess their feasibility and practicality.

2. Defining a static general resource analysis which will be parametric

with respect to resources and type of approximation (lower- and upper-

bounds), and will be adaptable to any execution platform. It should

6 Chapter 1. Introduction

support a wide variety of resources, including user-defined resources

such as number of bits sent or received by an application over a socket,

number of calls to a predicate, or number of accesses to a database.

This will require the extension of the CiaoPP assertion language for

defining such resources and expressing related properties.

3. Using the framework for the particular case where the resource is ex-

ecution time. This will require defining cost models, which are pa-

rameterized with respect to the execution platform, and performing

an assessment of them regarding the trade-off between efficiency and

accuracy.

4. Developing a framework for run-time checking of properties that could

not have been verified at compile-time. The framework should be able

to deal with a wide range of properties, including resource usage related

properties.

5. Extending as little as possible the CiaoPP assertion language in order to

define unit-tests, developing a driver that allows running them (using

the run-time assertion checking machinery previously mentioned), and

integrating it into the CiaoPP static verification framework so that

those unit-tests that can be proven statically be eliminated.

6. Integrating unit-testing with run-time checking so that unit-tests can

provide test cases for run-time checks, and any existing assertions be

also checked during unit testing, even if they were not conceived as

tests.

Main Contributions

The results obtained in this Thesis have been published and presented in

international forums, most of them classified as first class conferences. Such

publications are co-authored with other researchers, and in all of them, the

7

contribution of the candidate has been relevant, as it is shown by the fact

that authors are sorted by its degree of contribution and the candidate is the

first author in almost all papers. The main contributions of this thesis are

enumerated here:

• Development of a general framework for automatically inferring both

upper- and lower-bounds on the usage that a logic program makes of

resources in general (see Figure 1.1). Such bounds are given as functions

of input data sizes. Examples of resources that can be analyzed by using

our framework are execution time, execution steps, memory, energy

consumption, as well as other user-defined resources, like the number

of bits sent or received by an application over a socket, number of

calls to a predicate, number of files left open, number of accesses to a

database, monetary units spent, disk space used, etc.

• The framework includes a global analysis which is parametric with

respect to resources and type of approximation (lower- and upper-

bounds). The user can define the parameters of the analysis for a

particular resource by means of assertions. This allows to associate ba-

sic cost functions with elementary operations of programs, expressing

how they affect the usage of a particular resource. The global static

analysis can then infer the resource usage of all the procedures in the

program. The description of this framework has been done in collabora-

tion with Jorge Navas and Manuel Hermenegildo, and published in the

23rd International Conference on Logic Programming (ICLP’07) [51].

• The assertions can be defined at different levels of abstraction (source

and bytecode). For example, they can associate resource usage func-

tions to different program constructs at the source code level. In par-

ticular, assertions can describe how predicates in general update the

value for those resources that are applicable to clause heads (such as

the number of arguments passed or resolution steps). In such a case,

a cost function defined in the assertion will be used by the analyzer in

order to update the resource usage when clause heads are analyzed. It

8 Chapter 1. Introduction

Source-Code Resource Usage
Functions

Automatic
One-time
Profiling

Assertions

Resource
Definitions

Bytecode

Platform

Virtual
Machine

Hardware

Bytecode
Assertions

Bytecode
Assertions

Platform-Independent and
Platform-Dependent
Resource Analysis

Platform-Dependent
Values

Figure 1.1: Resource Analysis.

is also possible to express how the preparation of the execution of body

literals updates a particular resource, as for example, the number of

unifications performed. Resource usage assertions can also be given at

the bytecode level.

• The approach gives support for platform-independent (e.g., application

dependent) resources, such as bits sent or received by an application

over a socket, number of calls to a predicate, number of files left open,

number of accesses to a database, as well as platform-dependent re-

sources, such as execution time or energy.

• The assertion language also gives support for defining compound re-

sources as a linear combination of other basic resources.

• For platform-dependent resources, the approach performs a one-time

9

profiling phase that computes platform-dependent parameters associ-

ated to basic program operations, at source or bytecode level.

• We have applied the general framework to execution time estimation

following two different approaches and experimented with resource us-

age information supplied at source and bytecode levels.

– In the first approach, the one-time profiling phase determines

the values of certain constants occurring in the resource usage

functions for a particular platform. These constants allow to

statically computing time bound functions for procedures and

to predict with a significant degree of accuracy the execution

times of such procedures in the given platform. For each pro-

cedure, the compile-time cost bounds analysis gives a vector of

platform-independent resources, each one corresponding to a par-

ticular low-level operation related to program execution, provided

that such operation can be observed in the high level language.

The execution time (i.e., the platform-dependent resource) of

the procedure is given as a function of input data sizes, and is

the linear combination of such platform-independent resources

with the vector of (platform-dependent) constants obtained in

the one-time profiling phase. We have made use of the facility

to define compound resources (previously commented) in order

to integrate this process smoothly with the general framework.

This work has been done in collaboration with Germán Puebla,

Manuel Carro, and Manuel Hermenegildo, and have been pre-

sented as a poster in the 22nd International Conference on Logic

Programming (ICLP’06) [48], in the 16th Workshop on Logic Pro-

gramming Environments (co-located with ICLP’06) [47], and pub-

lished in the Ninth International Symposium on Practical Aspects

of Declarative Languages (PADL’07) [49].

– In the second approach, applicable to logic programs running

on a bytecode-based abstract machine (in most cases the WAM

10 Chapter 1. Introduction

or a variant), we take advantage of the fact that abstract ma-

chines provide a certain separation between platform-dependent

and platform-independent concerns in compilation. Many of the

differences between architectures are encapsulated in the specific

abstract machine implementation and the bytecode is left largely

architecture independent. We apply a one-time profiling stage to

calculate constants and functions bounding the execution time of

each abstract machine instruction. The compile-time resource us-

age estimation phase uses the instruction timing information in or-

der to infer platform-dependent bounds on actual execution time,

given as functions of input data size. This work has been done in

collaboration with Manuel Carro and Manuel Hermenegildo, and

published in the 10th Int’l. ACM SIGPLAN Symposium on Prin-

ciples and Practice of Declarative Programming (PPDP’08) [45].

• We have developed a framework that unifies static verification, run-

time checking and unit testing. A key contribution is that we preserve

the use of a unified assertion language for all of these tasks. In this

sense, we have designed methods for compiling run-time checks for

(parts of) assertions which cannot be verified at compile-time. Unit

tests also provide test cases for the run-time checks. Finally, (parts of)

unit tests that can be verified at compile-time are eliminated. But this

is not limited to resource-related properties, because this task fall in

a more generic framework, which is the run-time checking of compu-

tational properties. For example, in addition to the resource related

properties, we can deal with properties like non-failure, determinism,

and the state (or functional) properties like types of input/output ar-

guments on call or success. This work has been done in collaboration

with Manuel Hermenegildo, and published in the 25th International

Conference on Logic Programming (ICLP’09) [46].

• All the developed methods and techniques, including the general re-

11

source usage analysis, its particularization to execution time estima-

tion, and the unified framework for run-time checking, static verifi-

cation and unit-testing have been implemented and integrated in the

Ciao/CiaoPP system. The experimental results are encouraging, in

particular the implementation has been effectively used for the verifi-

cation of ISO Prolog compliance and to the detection of different types

of bugs in the Ciao system source code.

Impact of the Conferences of the Publications

As shown in Table 1.1, publications are classified according to the follow-

ing ranking databases: the CORE∗ listings, the CiteSeer† impact listings

(see also the upgraded CiteSeerX‡ listing) and the CS Conference Rank-

ings§. Each of these databases (except CORE) maps venues to a number

between 0 and 1 (or 0 and 100%) which corresponds to the position of the

corresponding venue divided by the total number of ranked venues (the lower

the position the better). CORE classifies venues, instead, into four discrete

ranking categories: A+, A, B and C. In order to have a numerical figure with

which to compare to the other databases and be able to compute an average

value, we have mapped CORE’s A+ to top 10%, A to 33%, B to 66% and C

to 100%. We obtain an overall numerical ranking for each publication as the

average of all available rankings for the corresponding venue (some venues

do not appear in all ranking databases). Finally, publications are classified

according to this average. Publications with average ranking 0-33% are con-

sidered as first level, 33-66% are considered as second level and the rest

are considered as third level. In the table, we report the individual rankings

available for the corresponding venue, as well as the global average position,

in the form of a percentage.

∗ http://www.core.edu.au/
† http://citeseer.ist.psu.edu/impact.html
‡ http://citeseerx.ist.psu.edu/stats/venues
§ http://www.cs-conference-ranking.org/conferencerankings/alltopics.html

12 Chapter 1. Introduction

Ranking Database

Conference Citeseer CS Conf Average Level

or Workshop CORE Position Impact Rankings Position

ICLP [46, 48, 51] A 118/1221 (9%) 1.47 0.97 top 15% First

PADL [49] A 351/1221 (28%) 0.87 0.88 top 24% First

PPDP [45] B 421/1221 (34%) 0.75 - top 50% Second

WLPE [47] Satellite Workshop of ICLP (not ranked) Workshop

Table 1.1: Impacts of the conferences of the publications.

Publication Cites Per Year

ICLP’07[51] 32 10.67

PADL’07[49] 15 3.00

ICLP’09[46] 6 6.00

PPDP’08[45] 4 0.50

ICLP’06[48] 1 0.25

WLPE’06[47] 0 0.00

Table 1.2: Impacts of the publications.

Quality Indexes

Table 1.3 shows the Quality Indexes of the candidate, which were calculated

using the Publish or Perish tool ¶.

In addition to the various simple statistics (number of papers, number

of citations, and others), Publish or Perish calculates the following citation

¶ Harzing, A.W. (2009) *Publish or Perish, *version (2.8.3644), available at

www.harzing.com/pop.htm

Papers: 6 Cites/paper: 9.67 h-index: 4 AWCR: 40.28

Citations: 58 Cites/author: 14.2 g-index: 6 AW-index: 6.35

Years: 5 Papers/author: 1.43 hc-index: 4 AWCRpA: 10.12

Cites/year: 11.6 Authors/paper: 4.33 hI-index: 1 e-index: 6.40

hI,norm: 2 hm-index: 1.03

Table 1.3: Quality indexes of candidate’s papers.

13

metrics ‖:

h-index Hirsch’s h-index: Proposed by J.E. Hirsch in his paper An index to

quantify an individual’s scientific research output, arXiv:physics/0508025

v5 29 Sep 2005. It aims to provide a robust single-number metric of an

academic’s impact, combining quality with quantity.

g-index Egghe’s g-index: Proposed by Leo Egghe in his paper Theory and

practice of the g-index, Scientometrics, Vol. 69, No 1 (2006), pp. 131-

152. It aims to improve on the h-index by giving more weight to highly-

cited articles.

e-index Zhang’s e-index: Publish or Perish also calculates the e-index as pro-

posed by Chun-Ting Zhang in his paper The e-index, complementing

the h-index for excess citations, PLoS ONE, Vol 5, Issue 5 (May 2009),

e5429. The e-index is the (square root) of the surplus of citations in the

h-set beyond h2, i.e., beyond the theoretical minimum required to ob-

tain a h-index of ’h’. The aim of the e-index is to differentiate between

scientists with similar h-indices but different citation patterns.

hc-index Contemporary h-index: Proposed by Antonis Sidiropoulos, Dim-

itrios Katsaros, and Yannis Manolopoulos in their paper Generalized h-

index for disclosing latent facts in citation networks, arXiv:cs.DL/0607066

v1 13 Jul 2006. It aims to improve on the h-index by giving more weight

to recent articles, thus rewarding academics who maintain a steady level

of activity.

AWCR / AW-index Age-weighted citation rate (AWCR) and AW-

index: The AWCR measures the average number of citations to an

entire body of work, adjusted for the age of each individual paper. It

was inspired by Bihui Jin’s note The AR-index: complementing the

‖Taken from the Publish or Perish website

14 Chapter 1. Introduction

h-index, ISSI Newsletter, 2007, 3(1), p. 6. The Publish or Perish im-

plementation differs from Jin’s definition in that we sum over all papers

instead of only the h-core papers.

hI-index Individual h-index (original): The Individual h-index was pro-

posed by Pablo D. Batista, Monica G. Campiteli, Osame Kinouchi,

and Alexandre S. Martinez in their paper Is it possible to compare re-

searchers with different scientific interests?, Scientometrics, Vol 68, No.

1 (2006), pp. 179-189. It divides the standard h-index by the average

number of authors in the articles that contribute to the h-index, in

order to reduce the effects of co-authorship.

hI,norm Individual h-index (PoP variation): Publish or Perish also imple-

ments an alternative individual h-index that takes a different approach:

instead of dividing the total h-index, it first normalizes the number of

citations for each paper by dividing the number of citations by the

number of authors for that paper, then calculates the h-index of the

normalized citation counts. This approach is much more fine-grained

than Batista et al.’s; we believe that it more accurately accounts for

any co-authorship effects that might be present and that it is a bet-

ter approximation of the per-author impact, which is what the original

h-index set out to provide.

hm-index Multi-authored h-index: A further h-like index is due to Michael

Schreiber and first described in his paper To share the fame in a fair

way, hm modifies h for multi-authored manuscripts, New Journal of

Physics, Vol 10 (2008), 040201-1-8. Schreiber’s method uses fractional

paper counts instead of reduced citation counts to account for shared

authorship of papers, and then determines the multi-authored hm index

based on the resulting effective rank of the papers using undiluted

citation counts.

Chapter 2

General User Definable

Resource Bound Analysis

2.1 Introduction

In this chapter we propose an analyzer which allows automatically inferring

both upper- and lower-bounds on the usage that a logic program makes of

user-definable resources.

In our approach, a resource is a user-defined, application-dependent no-

tion which associates a basic resource usage function with elementary oper-

ations in the base language and/or to some predicates in libraries. In this

sense, each resource is essentially a user-defined counter. The user gives a

name (such as, e.g., bits received) to the counter and then defines via as-

sertions how each elementary operation in the program (e.g., unifications,

calls to builtins, external calls, etc.) increments or decrements that counter.

The use of resources obviously depends in practice on the sizes or values of

certain inputs to programs or predicates. Thus, in the assertions describing

elementary operations the counters may be incremented or decremented not

only by constants but also by amounts that are functions of input data sizes

or values. Correspondingly, the objective of our method is to statically de-

rive from these elementary assertions and the program text functions that

15

16 Chapter 2. General User Definable Resource Bound Analysis

yield upper- and lower-bounds on the amount of those resources that each of

the predicates in the program (and the program as a whole) will consume or

provide. The input to these functions will also be the sizes or value ranges

of the topmost input data to the program or predicate being analyzed.

2.1.1 Related Work

As mentioned before in Section 1, most previous work is specific to the anal-

ysis of execution steps. Debray et al. presents in [21, 22] a semi-automatic

analysis which infers upper-bounds on the number of execution steps. These

bounds are functions on the sizes or value ranges of input data. This seminal

work applies to a large class of logic programs and presents techniques in

order to deal with the generation of multiple solutions via backtracking. The

authors also show how other specific analyses could be developed, e.g., time or

memory. This approach was later fully automated and extended to inferring

upper- and lower-bounds on the number of execution steps (which is non-

trivial because of the possibility of failure) in [23, 36]. Our method builds on

this work but generalizes it in order to deal with a much more general class of

user-defined resources, allowing thus the coverage of an unlimited number of

analyses within a single implementation. Grobauer presents in [31] a method

for automatically extracting cost recurrences from first-order DML programs.

The main feature is the use of dependent types to describe a size measure

that abstracts from data to data size. In [52], and inspired by [5] and [44],

a complexity analysis is presented for Horn clauses, also fully automating

the necessary calculations. In [39], Igarashi et al. presents a method for

modeling problems such as memory management, lock primitive usage, etc.,

and a type-based method is proposed as solution to the inference problem.

In [64] a cost model is presented for inferring cost equations for recursive,

polymorphic, and higher-order functional programs. While it is claimed that

the approach can be modified in order to infer a reduced set of resources such

as execution time, execution steps, or memory, no details are given. Worst

case execution time (WCET) estimation has been studied for imperative

2.2. Worked Example 17

languages and for different application domains (see, e.g., [63, 7, 27] and

its references). However these and related methods again concentrate only

on execution time. Also, they do not infer resource usage functions of input

data sizes but rather absolute maximum execution times, and they generally

require the manual annotation of loop iteration bounds. In [16] a method

is presented for reserving resources before their actual use. However, the

programmer (or program optimizer) needs to annotate the program with

“acquire” and “consume” primitives, as well as provide loop invariants and

function pre and post-conditions. Interesting type-based related work has

also been performed in the GRAIL system [3], also oriented towards resource

analysis, but it has concentrated mainly on ensuring memory bounds.

In comparison with previous work our approach allows dealing with a

class of resources which is open, in the ample sense that such resources are

in fact defined by programmers using an assertion language, which we also

consider itself an important contribution of our work. Another important

contribution of our work because of its impact in the scalability and automa-

tion of the analysis is that our approach allows defining the resource usage

of external predicates, which can be used for modular composition. In ad-

dition, assertions also allow describing by hand the usage of any predicate

for which the automatic analysis infers a value that is not accurate enough,

and this can be used to prevent inaccuracies in the automatic inference from

propagating.

2.2 Worked Example

Consider a client application in Figure 2.1 that sends a data buffer through

a socket and receives another (possibly transformed) data buffer. In this

section, we will provide an overview of our approach through that program.

A resource is a user-defined, application dependent notion which asso-

ciates a basic cost function with some user-selected predicates in the pro-

gram. This is expressed by adding annotations using our assertion language

18 Chapter 2. General User Definable Resource Bound Analysis

:− pred c l i e n t (Opts , IBuf , OBuf)
: l i s t (gnd) ∗ l i s t (byte) ∗ var .

c l i e n t ([Host , Port] , IBuf , OBuf) :−
connect (Host , Port , Stream) ,
e x c h b u f f e r (IBuf , Stream , OBuf) ,
c l o s e (Stream) .

e x c h b u f f e r ([] , , []) .
e x c h b u f f e r ([B |Bs] , Id , [B0 |Bs0]) :−

exch byte (B, Id , B0) ,
e x c h b u f f e r (Bs , Id , Bs0) .

:− head cost (ub , b i t s r e c e i v e d , 0) .
:− l i t e ra l cost (ub , b i t s r e c e i v e d , 0) .

/∗ SOCKET LIBRARY ∗/

:− trust pred connect (Host , Port , S)
: atm ∗ num ∗ var
=> atm ∗ num ∗ atm
+ cost (ub , b i t s r e c e i v e d , 0) .

:− trust pred c l o s e (Stream)
: atm => atm
+ cost (ub , b i t s r e c e i v e d , 0) .

:− trust pred exch byte (B, Id , B0)
: byte ∗ atm ∗ var
=> byte ∗ atm ∗ byte .
+ cost (ub , b i t s r e c e i v e d , 8) .

Figure 2.1: A simple client application.

(Section 2.3.1) to the code. The objective of the analysis is to approximate

the usage that the program makes of the resource. In the example, assume

that we would like to obtain an upper-bound on the number of bits received

by the application that we will call bits received. We assume that the

program receives 8 bits each time that exch byte/3 is called. This fact is

reflected by the user by adding the assertion ’cost(ub,bits received,8)’

which will increment the counter associated with the upper-bound on the

number of bits received by 8. Similarly, we assume that open and close

socket connections (connect/3 and close/1) do not imply any exchange

of bits, as indicated by the ’cost(ub,bits received,0)’ assertion. In

addition, the types and modes of the socket operations must be given

to the analysis by other analyses or by user-provided assertions. In this

example, we assume that the analysis does not have access to the code

of the socket operations and hence, user annotations are required. For

now, we will skip the assertions ’:- head cost(ub,bits received,0)’ and

’:- literal cost(ub,bits received,0)’. The rest of this section de-

scribes the main steps applied by the analyzer to approximate the number

of bits received of the program depicted in Figure 2.1.

Step 1: Size metrics and mode inference. In the first step, the ap-

proach needs to infer for each argument in the program the notion of size

2.2. Worked Example 19

metrics. For instance, length of a list, depth of a term, size of a term, etc. In

addition, the analysis also needs to infer if each argument is input or output

in order to perform properly the size and resource usage analyses described

in Section 2.3.2, 2.3.3, and 2.3.4. Input/output and size metrics information

can be required by the language (typed language), given by the user (via

assertions), or, as in our implementation, inferred automatically via analy-

sis. In the example this information is asserted by the user in case of the

socket library and inferred from the language for the predicates client/3

and exch buffer/3.

Step 2: Inference of data dependencies and size relationships. In

the second step, the analysis yields argument dependency graphs for the

clauses within a strongly connected component, through a dataflow anal-

ysis. These graphs will be used for inferring size relationships for each literal

argument between the input and output head arguments of every clause. In

the example, assume the exch buffer/3 predicate. The analysis will infer

from the first clause that the size of the third argument is 0, i.e. empty list,

if the first argument is also an empty list. We denote this size relationship by

the equation Ψ3
exch buffer(0,) = 0. Note that the size of the third argument

does not depend on the second argument. We denote this by using the do not

care symbol ’ ’. Similarly, the analysis will infer from the second recursive

clause the following equation: Ψ3
exch buffer(x,) = Ψ3

exch buffer(x − 1,) + 1.

The recurrence equation system shown above must be approximated by a

recurrence solver in order to obtain a closed form solution. In this case, our

analysis yields the solution Ψ3
exch buffer(x,) = x, i.e. the size of the third

argument is proportional to the size of the first argument.

Step 3: Resource usage analysis. In this step, the analysis will use the

size metrics, modes, the data dependencies, and the size relationships inferred

in previous steps, and also the user-defined resource-related assertions in or-

der to infer a resource usage equation for each clause and further simplify

the resulting obtaining upper/lower bound closed form solutions. The re-

20 Chapter 2. General User Definable Resource Bound Analysis

source analysis will statically derive safe upper/lower bounds on the amount

of resources that each of the predicates consumes or provides. The result

given by our analysis for an upper-bound on the number of bits received

by exch buffer/3 is Cost(exch buffer, ub, bits received, 〈0, 〉) = 0 and

Cost(exch buffer, ub, bits received, 〈x, 〉) = 8 + Cost(exch buffer, ub, bits-

received, 〈x − 1, 〉). Again, this equation system is solved by a recurrence

solver, resulting in the closed form

Cost(exch buffer, ub, bits received, 〈x, 〉) = 8× x
Note that since we know from the user-defined assertions that connect/3

and close/1 do not receive any bits, then

Cost(client, ub, bits received, 〈 , n, 〉) = 8× n

2.3 A Framework for Inference of Resource

Usage

We can now describe our framework for inferring upper- and lower-bounds

on the usage that a program makes of a set of user-definable resources. Our

basic approach is as follows. Given a predicate call p, let Φ(p, r, n) denote

the exact units of resource r consumed or produced during the computation

of p for a vector of argument sizes n. An expression Cost(p,ap,r,n) is de-

termined (at compile-time) that approximates Φ(p, r, n) with approximation

ap. For assuring the correctness of our approach, we must always generate

resource usage bound functions such as Cost(p,ap,r,n) that hold the following

conditions:

• If the analysis computes an upper-bound approximation, i.e., ap = ub,

then:

Φ(p, r, n) ≤ Cost(p,ub,r,n) (2.1)

• Conversely, if the analysis computes a lower-bound ap = lb, then:

Cost(p,lb,r,n) ≤ Φ(p, r, n) (2.2)

2.3. A Framework for Inference of Resource Usage 21

Note that the analysis can always generate trivial upper- and lower-

bounds, ∞ and −∞, in those cases where it cannot infer resource equations

or find a closed form.

Certain program information such as, for example, input/output modes

and size metrics for predicate arguments is first automatically inferred by

other abstract interpretation-based analyzers and then provided as input to

the size and resource analysis. The techniques involved in inferring this infor-

mation are beyond the scope of this work —see, e.g., [36] and its references

for some examples. Based on this information, our analysis first finds bounds

on the size of input arguments to the calls in the body of the predicate being

analyzed, relative to the sizes of the input arguments to this predicate, using

the inferred metrics.

The size of an output argument in a predicate call depends in general on

the size of the input arguments in that call. For this reason, for each output

argument we infer an expression which yields its size as a function of the input

data sizes. Argument sizes are described in terms of size metrics. Typical size

metrics are the actual value of a number, the length of a list, the size (number

of constant and function symbols) of a term, etc. To this end, and using the

input-output argument information, data dependency graphs are used to

set up recurrence equations whose solution yields size relationships between

input and output arguments of predicate calls. This information regarding

argument sizes and other such as resource-related assertions are then used to

set up another set of recurrence equations whose solution provides resource

usage bound functions. Both the size and resource usage recurrence equations

must be solved by a recurrence equation solver. Although the operation of

such solvers is beyond the scope of the work our implementation does provide

a table-based solver which covers a reasonable set of recurrence equations

such as first-order and higher-order linear recurrence equations in one variable

with constant and polynomial coefficients,∗ divide and conquer recurrence

∗Note that it is always possible to reduce a system of linear recurrence equations to a

single linear recurrence equation in one variable.

22 Chapter 2. General User Definable Resource Bound Analysis

equations, etc. In addition, the system allows the use of external solvers

(such as, e.g. [4], Mathematica, Matlab, etc.). Note also that, since we are

computing upper/lower bounds, it suffices to compute upper/lower bounds

on the solution of a set of recurrence equations, rather than an exact solution.

This allows obtaining an approximate closed form when the exact solution is

not possible.

In further sections, we will describe each main component of our frame-

work. In Section 2.3.1 we will first present the assertion language proposed

for defining resources and annotating elementary operations. Section 2.3.2

shows how size relationships among program variables are determined, Sec-

tion 2.3.3 describes how the resource usage bound functions are inferred, and

finally, Section 2.3.4 shows how users can define resources using our assertion

language.

2.3.1 The Resource Assertion Language

We start by describing the assertion schema. This language is used for de-

scribing resources and providing other input to the resource analysis, and is

also the language in which the resource analysis produces its output. This

assertion language is used additionally to state resource-related specifica-

tions which can then be proved or disproved based on the results of analysis

following the scheme of [36] allowing finding bugs, verifying the program, etc.

The rules for the assertion language grammar are listed in Figure 2.2. In

this grammar, V ar corresponds to variables written in the syntax for vari-

ables of the underlying logic programming language (i.e., normally non-empty

strings of characters which start with a capital letter or underscore). Simi-

larly, Num is any valid number and Pred name any valid name for a predi-

cate in the underlying programming language, normally non-empty strings of

characters which start with a lower-case letter or are quoted. State prop cor-

responds to other state properties such as modes and types, and Comp prop

stands for any other valid computational property, see [36] and its references.

Predicates can be annotated with zero or more assertions. These as-

2.3. A Framework for Inference of Resource Usage 23

〈program assrt〉 ::= :- 〈status flag〉 〈pred assrt〉.
| :- head cost(〈approx〉,Res name,∆H).

| :- literal cost(〈approx〉,Res name,∆L).

〈status flag〉 ::= trust | check | true | checked | false | ε
〈pred assrt〉 ::= pred 〈pred desc〉 〈pre cond〉 〈post cond〉 〈comp cond〉.
〈pred desc〉 ::= Pred name | Pred name(〈args〉)
〈args〉 ::= Var | Var, 〈args〉
〈pre cond〉 ::= : 〈state props〉 | ε
〈post cond〉 ::= => 〈state props〉 | ε
〈comp cond〉 ::= + 〈comp props〉 | ε
〈state prop〉 ::= size(Var,〈approx〉,〈sz metric〉,〈arith expr〉) | State prop

〈state props〉 ::= 〈state prop〉 | 〈state prop〉, 〈state props〉
〈comp prop〉 ::= size metric(Var,〈sz metric〉) | 〈cost〉 | Comp prop

〈comp props〉 ::= 〈comp prop〉 | 〈comp prop〉, 〈comp props〉
〈cost〉 ::= cost(〈approx〉,Res name,〈arith expr〉)
〈approx〉 ::= ub | lb | oub | olb
〈sz metric〉 ::= value | length | term size | depth | void
〈arith expr〉 ::= − 〈arith expr〉 | 〈arith expr〉 ! | 〈quantifier〉 〈arith expr〉

| 〈arith expr〉 〈bin op〉 〈arith expr〉
| exp(〈arith expr〉,Num) | log(Num, 〈arith expr〉)
| Num | 〈sz metric〉(Var)

〈bin op〉 ::= + | - | * | /
〈quantifier〉 ::=

∑
|
∏

Figure 2.2: Syntax of the resource assertion language.

sertions can refer to properties of the execution states when the predicate

is called (calls), properties of the execution states when the predicate

terminates execution (success), and properties which refer to the whole

computation of the predicate, rather than the input-output behavior (comp,

which herein will be used only for resource-related properties). The asser-

tion schema also provides syntactic sugar which allows defining the calls,

success, and comp parts together in a more compact way via pred assertions.

For brevity, the 〈state props〉 fields can also be written using “star notation”

(see the examples). In addition, there may be a set of global head cost and

literal cost declarations, one for each resource and approximation direc-

tion. The Res name fields determine which resource the assertion refers to.

These Res names are user-provided identifiers which give a name to each

particular resource that needs to be tracked. Resources do not need to be

24 Chapter 2. General User Definable Resource Bound Analysis

declared in any other way –the set of resources that the system is aware of is

simply the set of such names that appear in assertions which are in the scope.

The 〈approx〉 fields state whether 〈arith expr〉 is providing an upper-bound

or a lower-bound (with oub meaning it is a “big O” expression, i.e., with only

the order information, and olb meaning it is an Ω asymptotic lower-bound).

The first and most fundamental use of assertions in our context is to de-

scribe how the execution of some predicates increments or decrements the

usage of the resources (counters) defined in the program. The purpose of

analysis is then to infer the resource usage of all predicates in the pro-

gram. The head cost(〈approx〉, Res name, ∆H) declarations are used to

describe how predicates in general update the value for those resources that

are applicable to predicate heads (such as counting the number of argu-

ments passed or total execution steps –see Section 2.3.3). The definition of

∆H : clause head × n → arith expr is provided by means of a user-defined

(or imported) predicate, written in the source language, that takes the head

itself and the size of its input arguments and will be called by the analyzer

when the clause head is analyzed. This code gets loaded into the compiler in

a similar way to, e.g., macro expansion code. The literal cost(〈approx〉,
Res name, ∆L) declarations describe how predicate bodies update the value

of certain resources which are applicable to body literals (such as, for exam-

ple, number of unifications). In this case, ∆L : body lit× ni → arith expr is

also user (or library) provided code which will be executed when the body

literals of different predicates are analyzed, note that such predicate will take

as input argument the literal itself and the sizes of the input arguments of

such i-th literal in the body of the clause being analyzed. The cost(〈approx〉,
Res name, 〈arith expr〉) comp-type properties are included in comp or pred

assertions and used to provide the actual resource usage bound functions for

each builtin or external (e.g., defined in another language) predicate used

in the program. Such assertions have different status. If an assertion has

been proved to be true it has a status true. Assertions can also be used to

provide information to the analyzer in order to increase its precision or to

2.3. A Framework for Inference of Resource Usage 25

describe predicates defined in other modules. These assertions have a trust

status. Assertions with a check status are the ones used to specify the in-

tended semantics of a predicate. Additionally, the system verifies whether

that intended semantics is consistent with results of the analysis. If it is

validated, assertions with checked status are used. However, if it has been

detected to be false then the system will use assertions with false status.

Otherwise, if our system cannot validate it statically because of the undecid-

ability of the property, the check status remains. As mentioned previously,

the aim of the analysis is to derive functions that describe the resource us-

age (as well as argument size relations) for the rest of the predicates in the

program. Note however that it is also possible to provide comp or pred as-

sertions for some of those predicates and this can also be used to guide the

analysis. In particular, the analysis will compute the most precise expres-

sion between the resource usage function provided by the assertion (〈cost〉)
and the resource usage function inferred by analysis. Additionally, size met-

rics (size metric(Var,〈sz metric〉)) information can be provided by users if

needed, but note that in practice size metrics can often be derived automat-

ically from the inferred types.

Assertions can also be used, via the pre cond and post cond fields, to de-

clare relationships between the data sizes of the inputs and outputs of predi-

cates, which are needed by our analysis, as will be described later. These as-

sertions are also used to label predicate arguments as input or output, as well

as to provide types or size (size(Var,〈approx〉,〈sz metric〉,〈arith expr〉)) in-

formation. In the same way as with the 〈cost〉 properties, for user-defined

predicates these other assertions can be provided by the user or inferred by

analysis. Again, analysis will compute the most precise of the two.

2.3.2 Size Analysis

We will give the intuition behind the data dependency-based method for

inferring bounds on the sizes of output arguments in the head of a predicate

as a function of the sizes of input arguments to the predicate. Besides this,

26 Chapter 2. General User Definable Resource Bound Analysis

as a result of the size analysis, we have bounds on the size of each input

argument to body literals in a clause as a function of the size of the input

arguments to the head of that clause. The size of the input arguments to

body literals will be used later to infer functions which give bounds on the

resource usage of body literals in terms of the sizes of the input arguments to

the head. We adopt the approach of Debray et al. [21, 22] for the inference

of upper-bounds on argument sizes and [23] for lower-bounds. For the sake

of brevity, we will only consider the inference of upper-bounds in this work,

and refer the reader to [23] for the inference of lower bounds.

The size of an input is defined in terms of metrics. By size metrics we

refer to a total function that, given a term, returns an arithmetic expression

or an undefined value ⊥, possibly in terms of other input argument sizes.

One of the difference with respect to Debray’s approach is that our analysis

is parametric on size metrics, which can be defined by the user through

size metric and size assertions. For concreteness, several size metrics are

defined in our system. We define here a size(〈sz metric〉, t) operation which

returns the size of a term t under the metric 〈sz metric〉 for those predefined

metrics:

• If size metrics is the integer value, then:

size(value, t) =


n if t is an integer n

	(size(value, t1), . . . , size(value, tn)) if t = 	(t1, . . . , tn)

⊥ otherwise.

where 	 is an evaluable arithmetic operator.

• If size metrics is the length of a list, then:

size(length, t) =


0 if t = []

1 + size(length, T) if t = [H | T]

⊥ otherwise.

2.3. A Framework for Inference of Resource Usage 27

• If size metrics is the size of a term, then:

size(term size, t) =


1 if t is a constant

1 +
∑n

i=1 size(term size, ti) if t = f(t1, . . . , tn)

⊥ otherwise.

• If size metrics is the depth of a term, then:

size(depth, t) =


0 if t is a constant

1 + max{size(depth, ti)} if t = f(t1, . . . , tn)

⊥ otherwise.

Some examples:

size(length, [X, Y]) = 2,

size(length, [X|Y]) = ⊥,

size(value, 3 + 7) = 10,

size(term size, f(g(a), b) = 4, and

size(depth, f(2, f(3, nil, nil), nil) = 2.

Since our approach assumes the general case in which the input program is

not normalized, sometimes we need to establish size relationships as the size

difference between two terms. This relationship is provided by the function

diff(〈sz metric〉, t1, t2) operation, which returns an approximation of the size

difference between two terms t1 and t2 under the metric 〈sz metric〉. We

define it again for our predefined metrics:

• If size metrics is the integer value, then:

diff(value, t1, t2) =

{
0 if t1 ≡ t2
⊥ otherwise.

• If size metrics is the length of a list, then:

28 Chapter 2. General User Definable Resource Bound Analysis

diff(length, t1, t2) =


0 if t1 ≡ t2

diff(length, t, t2)− 1 if t1 = [|t] for some term t

⊥ otherwise.

• If size metrics is the size of a term, then:

diff(term size, t1, t2) =


0 if t1 ≡ t2

sz(t1(i))− size(term size, t1) if t1 = f(s1, . . . , sn)

si ≡ t2,∃i, 1 ≤ i ≤ n
⊥ otherwise.

where sz(t1(i)) is a symbolic expression that represents the size of the

i-th argument position of the t1 term.

• If size metrics is the depth of a term, then:

diff(depth, t1, t2) =


0 if t1 ≡ t2

max{diff(depth, si, t2)} − 1 if t1 = f(s1, . . . , sn)

⊥ otherwise.

Thus,

diff(length, [A,B|T], T) = −2,

diff(length, T, [H|T]) = ⊥,

diff(value, X,X) = 0,

diff(term value, X, f(X)) = ⊥, and

diff(depth, f(2, X, Y), X) = −1

A directed acyclic graph called argument dependency graph, G = (V,E),

is used to represent the data dependency between argument positions in a

clause body, and between them and those in the clause head. Nodes in V

denotes argument positions. There is an edge from a node n1 to a node n2,

2.3. A Framework for Inference of Resource Usage 29

(n1, n2) ∈ E if the variable bindings generated by n1 are used to construct

the term occurring at n2. The node n1 is said to be a predecessor of the node

n2. We will assume a predec function that takes an argument dependency

graph, a literal, and a parameter position and returns its nearest predecessor

in the graph.

Using the size and diff functions and the argument dependency graph for

every clause, the analysis will traverse each strongly-connected component

in reverse topological order in order to set up size relations for expressing

the size of each argument position in terms of the sizes of its predecessors for

every clause. Let sz(i) denote the size of the term occurring at an argument

position i. For convenience, we will omit the argument 〈sz metric〉 in the

size and diff functions in the rest of the chapter. Then, the size relationships

can be obtained as follows:

• Output arguments. Let l1, . . . , ln denote the input argument positions

of the literal L, I⊥ the set of integer numbers augmented with the spe-

cial symbol ⊥, denoting “undefined”, and let Ψk
p : I⊥ × . . .× I⊥ 7→ I⊥

be a function that represents the size of the k-th (output) argument

position of the predicate p of literal L in terms of the size of its input

argument positions. Assume that i is an output argument position in

a clause. Then the following size relation is set up:

sz(i) ≤ Ψi
p(sz(l1), . . . , sz(ln))

1. If L is recursive, then Ψi
p(sz(l1), . . . , sz(ln)) is a symbolic expres-

sion.

2. Otherwise, if L is non-recursive then the function Ψi
p has been

recursively computed, and thus we replace Ψi
p(sz(l1), . . . , sz(ln))

by the (explicit) expression resulting from the application of the

function Ψi
p to sz(l1), . . . , sz(ln).

• Input arguments. Assume now that i is an input argument position in

a body literal, and i′ the term occurring at an argument position i. Let

30 Chapter 2. General User Definable Resource Bound Analysis

predec(i) be the set of predecessors of i in the argument dependency

graph. We have the following possibilities:

1. Compute size(i′). If size(i′) 6= ⊥ then set up the size relation:

sz(i) ≤ size(i′).

2. If ∃r ∈ predec(i) such that the size metrics corresponding to r and

i are the same and d = diff(r, i) 6= ⊥, then set up the size relation:

sz(i) ≤ sz(r) + d.

3. If size(i′) can be expanded using the definition of the size function,

then expand size(i′) one step and recursively compute size(ti) for

the appropriate subterms ti of i′. If each of these recursive size

computations have a defined result, then use them to compute the

size relation for size(i′).

4. Otherwise, sz(i) = ⊥.

Size relations can be propagated to transform a size relation correspond-

ing to an input argument in a body literal or an output argument in the

clause head into a function in terms of the sizes of the input arguments of

the head. The basic idea here is to repeatedly substitute size relations for

body literals into size relations for head arguments. This is the purpose of the

normalization algorithm described in [21]. However, for recursive clauses, we

need to solve the symbolic expression due to recursive literals into an explicit

function first.

Example 2.3.1. Consider again the program described in Figure 2.1. We

will denote by pred name the name of a predicate, and by pred nameji the

i-th argument position in the j-th literal with predicate name pred name in

the body of a clause. If there is only one body literal with predicate name

pred name in the body of a clause then we omit the superscript j and write

simply pred namei. Let headi denote the i-th argument position in the clause

head.

2.3. A Framework for Inference of Resource Usage 31

Size relation equations for exch buffer/3:

sz(exch byte1) ≤ size(B) = 1

sz(exch byte2) ≤ sz(head2) + diff(Id, Id) = sz(head2)

sz(exch byte3) ≤ Ψ3
exch byte(sz(exch byte1), sz(exch byte2)) = 1

sz(exch buffer1) ≤ sz(head1) + diff([B|Bs], Bs) = sz(head1)− 1

sz(exch buffer2) ≤ sz(head2) + diff(Id, Id) = sz(head2)

sz(exch buffer3) ≤ Ψ3
exch buffer(sz(exch buffer1), sz(exch buffer2))

sz(head3) ≤ sz(exch buffer3) + 1

Normalized size relation equations

for the output argument of the head:

sz(head3) ≤ Ψ3
exch buffer(sz(exch buffer1), sz(exch buffer2)) + 1

≤ Ψ3
exch buffer(sz(head1)− 1, sz(head2)) + 1

Closed form for the output argument of the head:

Ψ3
exch buffer(0, y) = 0

Ψ3
exch buffer(x, y) = Ψ3

exch buffer(x− 1, y) + 1

Ψ3
exch buffer(x, y) = x

Figure 2.3: Size relation equations for exch buffer/3.

The Figure 2.3 shows all equations needed to establish the size of the out-

put arguments of the head. First, the system sets up the size relation for the

input/output arguments of the body literals. Then, the system sets up the

size relation for the output arguments of the head and obtains its normalized

form. Note that the code of exch byte/3 is not available. Therefore, the

analysis takes the size of its third argument from its type definition, assum-

ing that the size of the output argument is 1. Thus, the system establishes

the recurrence equation for the output argument (head3) in the head (since

it belongs to a recursive predicate). Then, it obtains the boundary condition

Ψ3
ex buf (0, y) = 0 from the non-recursive clause, and using it, obtains a closed

form function by calling the recurrence equation solver (variables x and y

represent sz(head1) and sz(head2) respectively).

32 Chapter 2. General User Definable Resource Bound Analysis

2.3.3 Resource Usage Analysis

In order to infer the resource usage functions all predicates in the program

are processed in a single traversal of the call graph in reverse topological

order. Consider such a predicate p defined by clauses C1, . . . , Cm. Assume

that n is a tuple such that each element corresponds to the size of an input

argument position to predicate p. Then, the resource usage expressed in

units of resource r with approximation ap of a call to p, for an input of size

n, can be expressed as:

Cost(p, ap, r, n) =
⊙

(ap)1≤k≤m{Costclause(Ck, p, ap, r, n)} (2.3)

where
⊙

(ap) is a function that takes an approximation identifier ap and

returns a function which applies over all Costclause(Ck, p, ap, r, n), for 1≤k≤m.

For example, if ap is the identifier for approximation “upper-bound” (ub),

then a possible conservative definition for
⊙

(ap) is the
∑

function. In

this case, and since the number of solutions generated by a predicate that

will be demanded is generally not known in advance, a conservative upper-

bound on the computational cost of a predicate is obtained by assuming

that all solutions are needed, and that all clauses are executed, thus the cost

of the predicate is assumed to be the sum of the costs of all of its clauses.

However, it is straightforward to take mutual exclusion into account, which is

inferred by CiaoPP [36, 42] and is available to our analysis, to obtain a more

precise estimate of the cost of a predicate, using the maximum of the costs of

mutually exclusive groups of clauses. If ap is the identifier for approximation

“lower-bounds” (lb), then
⊙

(ap) is the min function.

Let us see now how to compute the resource usage of clauses. Consider

a clause Ck of predicate p of the form Hk :− Lk1, . . . , L
k
l where Lki , 1 ≤ i ≤ l,

is a literal (either a predicate call, or an external or builtin predicate), and

Hk is the clause head. Because of backtracking, the number of times a literal

2.3. A Framework for Inference of Resource Usage 33

will be executed depends on the number of solutions of the previous literals.

Assume that ni is a tuple with the sizes of all the input arguments to literal

Lki , given as functions of the sizes of the input arguments to the clause head,

that is, ni = ψi(n). Note that these ni size relations have previously been

computed during size analysis for all input arguments to literals in the bodies

of all clauses. SolsLkj is the number of solutions literal Lkj can generate.

Then, Costclause(Ck, ap, r, n), the resource usage expressed in units of re-

source r with approximation ap of clause C of predicate p, is given by the

expression Costclause(Ck, ap, r, n) = solver(Cost(Ck, ap, r, n)). That is, it is ex-

pressed as the solved form function of the following expression which, in

general, for recursive clauses yields a recurrence equation:

Cost(Ck, ap, r, n) = δ(ap, r)(Hk, n) +
lim(ap,Ck)∑

i=1

(
∏
j≺i

SolsLkj (ψj(n)))(β(ap, r)(Lki , ψi(n)) + Costlit(L
k
i , ap, r, ψi(n)))

(2.4)

where lim(ap, Ck) is a function that takes an approximation identifier ap

and a clause Ck and returns the index of a literal in the clause body. For

example, if ap is the identifier for approximation “upper-bound” (ub), then

lim(ap, Ck) = l (the index of the last body literal). If ap is the identifier

for approximation “lower-bounds” (lb), then lim(ap, Ck) is the index for the

rightmost body literal that is guaranteed not to fail. δ(ap, r) is a function

that takes an approximation identifier ap and a resource identifier r and re-

turns a function ∆H : clause head × n → arith expr which takes a clause

head, its input data sizes and returns an arithmetic resource usage expres-

sion < arith expr > as defined in Figure 2.2. Thus, δ(ap, r)(Hk, n) represents

∆H(Hk, n). Note that in ∆H we can also take into account additional costs

in trying to reach a given clause Ck due to it will be tried only if clauses

C1, . . . , Ck−1 fail to yield a solution, or due to the indexing scheme used in

the language implementation. On the other hand, β(ap, r) is a function that

takes an approximation identifier ap and a resource identifier r and returns

a function ∆L : body lit× ni → arith expr which takes the i-th body literal,

34 Chapter 2. General User Definable Resource Bound Analysis

its input data sizes, and returns also an arithmetic resource usage expression

< arith expr >. In this case, β(ap, r)(Lki , ψi(n)) represents ∆L(Lki , ni). Sec-

tion 2.3.4 illustrates different definitions of the functions δ(ap, r) and β(ap, r)

in order to infer different resources. SolsLj is the number of solutions that

literal Lj can generate, where j ≺ i denotes that Lj precedes Lki in the lit-

eral dependency graph for the clause. The inference of upper-bounds on the

number of solutions given a literal is far from being trivial. We take the

approach of [21]. Finally, Costlit(L
k
i , ap, r, ψi(n)) is:

• If Lki is recursive (i.e., calls a predicate q which is in the strongly-

connected component of the call graph being analyzed), then the ex-

pression Costlit(L
k
i , ap, r, ψi(n)) is replaced by a symbolic expression

Cost(q, ap, r, ψi(n)).

• If Lki is not recursive, assume that it is a call to q (where q can be either

a predicate call, or an external or builtin predicate), then q has been

already analyzed, i.e., the (closed form) resource usage function for q

has been recursively computed as γ and Costlit(L
k
i , ap, r, ψi(n)) can be

expressed explicitly in terms of the function γ, and it is thus replaced

with γ(ψi(n)).

Note that in both cases, if there is a resource usage assertion for q,

’cost(ap,r,〈arith expr〉)’, then Costlit(L
k
i , ap, r, ψi(n)) is replaced by the

most precise, greatest lower-bound if ap = ub or least upper-bound if

ap = lb, between the arithmetic resource usage expression in closed form

and its closed form resource usage function inferred previously by the anal-

ysis, provided they are not incompatible, in which case an error is flagged.

It can be proved by induction on the number of literals in the body of clause

C that:

1. If clause C is not recursive, then expression (2.4) results in a closed

form function of the sizes of the input argument positions in the clause

head;

2.3. A Framework for Inference of Resource Usage 35

2. If clause C is simply recursive, then expression (2.4) results in a recur-

rence equation in terms of the sizes of the input argument positions in

the clause head;

3. If clause C is mutually recursive, then expression (2.4) results in a

recurrence equation which is part of a system of equations for mutually

recursive clauses in terms of the sizes of the input argument positions

in the clause head.

If these recurrence equations can be solved, including approximating

the solution in the direction of ap, then Cost(p, ap, r, n) can be expressed

in a closed form, which is a function of the sizes of the input argument

positions in the head of predicate p (and hence Costclause(C, ap, r, n) =

solver(Cost(p, ap, r, n))). Thus, after the strongly-connected component to

which p belongs in the call graph has been analyzed, we have that expres-

sion (2.3) results in a closed form function of the sizes of the input argument

positions in the clause head.

Finally, note that our analysis is parametrized by the functions δ(ap, r)

and β(ap, r) whose definitions can be given by means of assertions of type

head cost and literal cost respectively, as shown in Figure 2.2. These

functions make our analysis parametric with respect to any resource of in-

terest defined by users.

2.3.4 Defining the Parameters (Functions) of the Anal-

ysis

In this section we explain and illustrate with examples how the functions

that make our resource analysis parametric, namely, δ (which includes the

definition of ∆H), and β (which includes the definition of ∆L) are written in

practice in our system. Again, we assume that we are interested in computing

upper-bounds on the different resources.

Assume for example that the resource we want to measure is an upper-

bound on the number of resolution steps performed by a program. This is

36 Chapter 2. General User Definable Resource Bound Analysis

achieved by providing the following head cost assertion and definition of the

delta one/2 predicate:

:− head cost (ub , s teps , d e l t a one) .
d e l t a one (, 1) .

In order to simplify the process of defining interesting and useful ∆H and

∆L functions, our implementation provides a library with predicates that

perform syntactic operations on clauses, such as, for example, getting the

number of arguments in a clause head or body literal, get a clause head,

get a clause body, accessing an argument of a clause head or body literal,

getting the main functor and arity of a term in a certain position, etc. In this

context it is important to remember that the different ∆H and ∆L function

definitions perform syntactic matching on the program text.

Assume now that the resource we want to measure is the number of

argument passings that occur during clause head matching in a program (as

an approximation to the number of unifications performed by the program).

This is achieved by the following code:

de l ta num args (H,N) :− functor (H, ,N) .

As another example, if we are interested in decomposing arbitrary unifica-

tions performed while unifying a clause head with the literal being solved into

simpler steps, we can define a resource num unifs, and a head cost asser-

tion which counts the number of function symbols, constants, and variables

in each clause head as follows:

2.3. A Framework for Inference of Resource Usage 37

:− head cost (ub , num unifs ,
de l ta num un i f s) .

num fun vars (0 , H , 0) .
num fun vars (N,H, S) :−

N > 0 ,
arg (N,H, Arg) ,
n fun vars (Arg , S1) ,
N1 i s N−1,
num fun vars (N1 ,H, S2) ,
S i s S1 + S2 .

de l ta num un i f s (H, S) :−
functor (H, ,N) ,
num fun vars (N,H, S) .

n fun vars (Arg , 1) :−
var (Arg) .

n fun vars (Arg , 1) :−
atomic (Arg) .

n fun vars (Arg , S) :−
nonvar (Arg) ,
functor (Arg , , N) ,
num fun vars (N, Arg , S1) ,
S i s S1 + 1 .

If, in addition to the number of unifications performed while unifying a

clause head, we are also interested in the cost of term creation for the lit-

erals in the body of clauses, we can define a resource terms created, and

define literal cost assertion which keeps track of the number of function

symbols, and constants in body literals:

:− l i t e ra l cos t (ub ,
t e rms created ,
be ta t e rms c r ea t ed) .

be ta t e rms c r ea t ed (L , S) :−
functor (L , ,N) ,
num fun (N, L , S) .

num fun (0 , L , 0) .
num fun (N, L , S) :−

N > 0 ,
arg (N, L , Arg) ,
nfun (Arg , S1) ,
N1 i s N−1,
num fun (N1 , L , S2) ,
S i s S1 + S2 .

:− head cost (ub ,
t e rms created ,
d e l t a t e r m s c r e a t e d) .

d e l t a t e r m s c r e a t e d (L , 0) .

nfun (Arg , 0) :−
var (Arg) .

nfun (Arg , 1) :−
atomic (Arg) .

nfun (Arg , S) :−
nonvar (Arg) ,
functor (Arg , ,N) ,
num fun (N, Arg , S1) ,
S i s S1 + 1 .

Note that in this case we also define a head cost assertion which returns

0 for every clause head.

More interestingly, our implementation provides a library with predicates

that perform semantic checks of properties. These properties are inferred by

38 Chapter 2. General User Definable Resource Bound Analysis

the available analyzers. Some of the analyses are always performed as part of

the resource analysis, as mode and type analysis, and others are performed

on demand, depending on the properties that need to be checked in the ∆H

and ∆L function definitions or depending on the type of approximation to be

performed by the resource analysis.

Assume now that we want to differentiate the counting of unifications

where one of the terms being unified is a variable and thus behave as an

“assignment,” and the counting of full unifications, i.e., when both terms

being unified are not variables, and thus unification performs a “test” or

produces new terms, etc.

For this purpose, we can define a resource, as for example vo unif which

counts the number of variables in the clause head which correspond to “out-

put” argument positions through a head cost assertions. This describes a

component of the execution time that is directly proportional to the number

of cases where both a goal argument and the corresponding head argument

are variables. This should boil down to assignment (maybe with trailing).

This is achieved by the following code:

:− head cost (ub , vo un i f ,
d e l t a v o u n i f) .

d e l t a v o u n i f (H, S) :−
functor (H, ,N) ,
num vo unif (N, H, S) .

num vo unif (0 , H , 0) :− ! .
num vo unif (N,H, S) :−

arg (N,H, Arg) ,
f r e e (Arg) ,
! ,
nvo un i f (Arg , S1) ,
N1 i s N−1,
num vo unif (N1 , H, S2) ,
S i s S1 + S2 .

num vo unif (N,H, S) :−
N1 i s N−1,
num vo unif (N1 ,H, S) .

nvo un i f (Arg , 1) :−
var (Arg) .

nvo un i f (Arg , 0) :−
atomic (Arg) .

nvo un i f (Arg , S) :−
nonvar (Arg) ,
functor (Arg , , N) ,
num vo unif (N, Arg , S1) ,
S i s S1 + 1 .

Similarly, we could define resources for counting:

• The number of variables in the clause head which correspond to input

2.3. A Framework for Inference of Resource Usage 39

argument positions,

• the number of function symbols and constants in the clause head which

appear in output arguments, or

• the number of function symbols and constants in the clause head which

appear in input arguments.

Example 2.3.2. Consider the same program defined in Figure 2.1 and the

size relations computed in Example 2.3.1. We now show the corresponding

resource usage equations for each clause for the resource bits received, de-

noted by bits for brevity, inferred automatically by our system. Although

the functions δ(ap, r)(H, n) and β(ap, r)(Li, ni) take as arguments a clause

head H and a body literal Li respectively, in our examples we will only write

the predicate name of H and Li for the sake of simplicity. Since the pro-

gram is analyzed in a single traversal of the call graph in reverse topological

order, the system starts by analyzing the predicate exch buffer/3. Note

that the resource usage for external predicates (whose code is not available)

connect/3, exch byte/3 and close/1 is already given by “trust” assertions

which express that:

Cost(connect, ub, bits, 〈 , 〉) = 0

Cost(exch byt, ub, bits, 〈 , 〉) = 8

Cost(close, ub, bits, 〈 〉) = 0

For the recursive clause of exch buffer/3, the system sets up the follow-

ing recurrence equation, where n represents the length of the first argument

to this predicate (note that the system infers the “length” size metric for this

argument and that n > 0):

40 Chapter 2. General User Definable Resource Bound Analysis

Cost(exch buffer, ub, bits, 〈n, 〉) =

0︷ ︸︸ ︷
δ(ub, bits)(exch buffer) +

0︷ ︸︸ ︷
β(ub, bits)(exch byte) +

8︷ ︸︸ ︷
Cost(exch byte, ub, bits, 〈 , 〉) +

0︷ ︸︸ ︷
β(ub, bits)(exch buffer) +Cost(exch buffer, ub, bits, 〈n− 1, 〉)
= 8 + Cost(exch buffer, ub, bits, 〈n− 1, 〉)

For the non-recursive clause of exch buffer/3 the system infers:

Cost(exch buffer, ub, bits, 〈0, 〉) = 0

which can be used as boundary condition for solving the previous recurrence

equation, yielding the following closed form resource usage function:

Cost(exch buf, ub, bits, 〈n, 〉) = 8× n

Now, the client/3 predicate is analyzed, and the system sets up the

following expression for its only clause (where k is the length of the input

buffer, i.e., the second argument to this predicate):

Cost(client, ub, bits, 〈 , k〉) =

0︷ ︸︸ ︷
δ(ub, bits)(client) +

0︷ ︸︸ ︷
β(ub, bits)(connect) +

0︷ ︸︸ ︷
Cost(connect, ub, bits, 〈 , 〉) +

0︷ ︸︸ ︷
β(ub, bits)(exch buffer) +

8×k︷ ︸︸ ︷
Cost(exch buffer, ub, bits, 〈k, 〉) +

0︷ ︸︸ ︷
β(ub, bits)(close) +

0︷ ︸︸ ︷
Cost(close, ub, bits, 〈 〉) = 8× k

2.4 Experimental Results

To study the feasibility of the approach we have completed a prototype im-

plementation of the analyzer. It is written in the Ciao language and uses a

2.4. Experimental Results 41

:−pred merge /1 : l i s t (atm) .

merge (F i l e L i s t) :−
open (’ a l l f i l e s ’ , wr ite ,OS) ,
m e r g e f i l e s (F i l e L i s t ,OS) ,
c l o s e (OS) .

m e r g e f i l e s ([] , OS) .
m e r g e f i l e s ([F | Fs] ,OS):−

open (F , read , IS) ,
read (IS ,E) ,
wr i t e (OS,E) ,
c l o s e (IS) ,
m e r g e f i l e s (Fs ,OS) .

:−head cost (ub , l e f t open , 0) .
:− l i t e ra l cos t (ub , l e f t open , 0) .

:−head cost (lb , l e f t open , 0) .
:− l i t e ra l cos t (lb , l e f t open , 0) .

/∗ FILE LIBRARY ∗/

:−trust pred open (FileN , Mode ,
Stream) :

atm ∗ atm ∗ var =>
atm ∗ atm ∗ int
+ (cost (ub , l e f t open , 1) ,

cost (lb , l e f t open , 1) ,
not fa i l s) .

:−trust pred c l o s e (Stream) : int
+ (cost (ub , l e f t open ,−1) ,

cost (lb , l e f t open ,−1) ,
not fa i l s) .

:−trust pred read (Stream , Data) :
int ∗ var =>
int ∗ l i s t (atm)
+ (cost (ub , l e f t open , 0) ,

cost (lb , l e f t open , 0) ,
not fa i l s) .

:−trust pred wr i t e (Stream , Data) :
int ∗ l i s t (atm)
+ (cost (ub , l e f t open , 0) ,

cost (lb , l e f t open , 0) ,
not fa i l s) .

Figure 2.4: An application that merges the content of a set of files.

number of modules and facilities from CiaoPP, the Ciao preprocessor (includ-

ing difference equation processing). We have also written a Ciao language

extension (a “package” in Ciao terminology) which when loaded into a mod-

ule allows writing the resource-related assertions and declarations proposed

herein.† We have then used this prototype to analyze a set of representative

benchmarks which include definitions of resources using this language and

used the system to infer the resource usage bound functions.

First, we show the actual resource for which bounds are being inferred

by the analysis for a given benchmark together with a brief description. In

†The system also supports adding resource assertions specifying expected resource us-

ages which the implemented analyzer will then verify or falsify using the results of the

implemented analysis.

42 Chapter 2. General User Definable Resource Bound Analysis

:−entry i n s e r t /3 :
bst ∗ num ∗ var .

i n s e r t (n i l ,E, t r e e (E, n i l , n i l)) .
i n s e r t (t r e e (N, L ,R) ,E,

t r e e (N, L ,R)):−
N == E , ! .

i n s e r t (t r e e (N, L ,R) ,E,
t r e e (N,NL,R)):−

E < N, ! ,
i n s e r t (L ,E,NL) .

i n s e r t (t r e e (N, L ,R) ,E,
t r e e (N, L ,NR)):−

E > N,
i n s e r t (R,E,NR) .

:−regtype bst /1 .
bst (n i l) .
bst (t r e e (Node , Left , Rigth)):−
num(Node) ,
bst (Le f t) , bst (Rigth) .

:−head cost (ub , heap usage ,
heap usage func t i on) .

:− l i t e ra l cos t (ub , heap usage ,
heap usage func t i on) .

heap usage func t i on (L i t In fo ,
Cost):−

g e t l i t e r a l (L i t In fo , Head) ,
get modes (L i t In fo , Modes) ,
usage func (Modes , Head , 1 , 0 ,

Cost) .

usage func ([] , , , Cost , Cost) .
usage func ([in |Modes] , Head , Ind ,

Acc , Cost):−
NInd i s Ind + 1 ,
usage func (Modes , Head , NInd ,

Acc , Cost) .
usage func ([out |Modes] , Head , Ind ,

Acc , Cost):−
arg (Index , Head , Term) ,
term heap usage (Term , Cost) ,
NAcc i s Acc + Cost ,
NInd i s Ind + 1 ,
usage func (Modes , Head , NInd ,

NAcc , Cost) .

term heap usage (Term,4) :−
var (Term) , ! .

term heap usage (Term,4) :−
atm(Term) , ! .

term heap usage (Term ,N):−
functor (Term , F , A) ,
Term =. . [F |Ts] ,
term heap usage (Ts , N1) ,
N i s N1 + 4 .

term heap usage ([] , 0) .
term heap usage ([T |Ts] ,N):−

term heap usage (T, N1) ,
term heap usage (Ts , N2) ,
N i s N1 + N2 .

Figure 2.5: Insertion in a binary search tree

addition, we also show the size metric used for the relevant arguments. While

any of the resources defined in a given benchmark could then be used in any

of the others we show only the results for the most natural or interesting

resource for each one of them. We have tried to use a relatively wide range

of resources: number of bytes sent by an application, number of calls to a

particular predicate, robot arm movements, number of files left open in a

kernel code, number of accesses to a database, heap memory usage, etc. We

also cover a significant set of complexity functions such as constant, poly-

2.4. Experimental Results 43

:− pred hanoi (N,A,B,C) : num ∗ elem ∗ elem ∗ elem .
:− trust comp hanoi (N,A,B,C) + (size metric (A, void) ,

size metric (B, void) ,
size metric (C, void)) .

hanoi (1 ,A, ,C):−
move disk (A,C) ,
! .

hanoi (N,A,B,C) :−
N1 i s N − 1 ,
hanoi (N1 ,A,C,B) ,
move disk (A,C) ,
hanoi (N1 ,B,A,C) .

:− trust pred move disk (A,B) : elem ∗ elem
+ cost (ub , energy , 3) .

:− head cost (ub , energy , 0) .
:− l i t e ra l cos t (ub , energy , 0) .

Figure 2.6: The Towers of Hanoi program using robotic arms

nomial, and exponential using relevant data structures in Prolog programs

such as lists, trees, etc.

• bst is the program shown in Figure 2.5 and we measure the heap usage

in terms of number of bytes as a function on the depth of the input

argument.

• client is the program depicted in Figure 2.1 and we measure the num-

ber of bits received by the application as a function on the length of

the input argument.

• color map performs map coloring and we measure the number of unifi-

cations as a function that depends on the term size of one of the input

arguments.

• fib computes the Fibonacci function and infers the number of arith-

metic operations depending on the integer value of the input argument.

44 Chapter 2. General User Definable Resource Bound Analysis

• hanoi is the program shown in Figure 2.6 and we want to measure the

number of robot movements as a function that depends on the integer

value of the input argument.

• eight queen plays the 8-queens game and we measure the number of

queens movements as a function on the length of the input argument.

• eval polynom evaluates a polynomial function and we measure the

floating point unit time usage as a function on the length of the list of

coefficients.

• grammar represents a simple sentence parser and we measure the num-

ber of phrases generated by the parser as a function on the term size

of the input argument.

• insert stores is a database transaction that adds a new entry into

the STORE relation. We measure the number of updates as a function

on the relation size, i.e. number of records.

• merge is the same program illustrated in Figure 2.4 and we measure

the number of files left open as a function that depends on the length

of the list of files.

• perm: performs a permutation of a list and we measure the number of

WAM instructions as a function on the input list length.

• power set generates the powerset of a list and we measure the number

of output elements as a function that depends on the input list length.

• qsort implements the quicksort algorithm and we measure the number

of lists parallelized as a function on the input list length.

• send files is a program that sends the content of a set of files through

a stream. We measure the number of bytes read as a function on the

input list length.

2.4. Experimental Results 45

Program Usage Function Exact Function Time

bst λx.20 · x+ 16 λx.20 · x+ 16 184

client λx.8 · x λx.8 · x 186

color map 104691 31686 176

eight queen 19173961 19173961 304

eval polynom λx.2.5x λx.2.5x 44

fib
λx.2.17 · 1.61x+

0.82 · (−0.61)x − 3

λx.2.17 · 1.61x+

0.82 · (−0.61)x − 3
116

grammar 24 16 227

hanoi λx.2x − 1 λx.2x − 1 100

insert stores λn,m.n+ k − 292

λn,m.n −
merge λx.x λx.x 180

perm
λx.46

∑x
i=1 ·

x!
(i−1)!

+

32
∑x

i=1 ·
x!
i!

+ 4 · x!
− 98

power set λx.1
2
· 2x+1 λx.1

2
· 2x+1 119

qsort λx.4 · 2x − 2x− 4 λx.2 · x2 144

send files λx, y.x · y λx, y.x · y 179

subst exp λx, y.2xy + 2y λx, y.x · y 153

zebra 30232844295713061 6869 292

Table 2.1: Accuracy and efficiency in milliseconds of the analysis.

• subst exp substitutes a list of variables in a mathematical expression.

We measure the number of replacements as a function on the list length

and also the term size of the input arguments.

• zebra is based on the classic zebra puzzle, and we measure the number

of resolution steps as a function on the term size of the input.

The results from the analysis of these benchmarks are shown in Table 2.1.

For brevity, we report only results for upper-bounds analysis. The column

46 Chapter 2. General User Definable Resource Bound Analysis

Usage Function shows the actual resource usage function (which depends on

the size of the input arguments) inferred by the analysis, given as a lambda

term. The column Exact Function shows the exact resource usage function,

given also as a lambda term. Finally, the column labeled Time shows the

resource analysis times in milliseconds, on a medium-loaded Pentium IV

Xeon 2.0Ghz with two processors, 4Gb of RAM memory, running Fedora

Core 5.0. Note that these times do not include other analyses such as types,

modes, etc.

2.5 Chapter Conclusions

We have presented a static analysis that infers upper- and lower-bounds on

the usage that a logic program makes of a quite general notion of user-

definable resources, and shown several useful applications. The inferred

bounds are in general functions of input data sizes. We have also pre-

sented the assertion language which is used to define such resources. The

analysis then derives the related (upper- and lower-bound) resource usage

functions for all predicates in the program. Our preliminary experimental

results are encouraging because they show that interesting resource bound

functions can be obtained automatically and in reasonable time, at least for

our benchmarks. While clearly further work is needed to assess scalability

we are cautiously hopeful in the sense that our approach allows defining via

assertions the resource usage of external predicates, which can then be used

for modular composition. These includes also predicates for which the code

is not available or which are written in a programming language that is not

supported by the analyzer. In addition, assertions also allow describing by

hand the usage of any predicate for which the automatic analysis infers a

value that is not accurate enough, and this can be used to prevent inac-

curacies in the automatic inference from propagating. Our expectation is

that the automatic analysis will be able to do the bulk of the work for large

applications, even if the cost of some specially complex predicates may still

2.5. Chapter Conclusions 47

need to be given by the user. In particular, for the examples in Table 2.1

all results where obtained automatically. Finally, we expect the applica-

tions of our analysis to be rather interesting, including resource consumption

verification and debugging (including for mobile code), resource control in

parallel/distributed computing, and resource-oriented specialization.

48 Chapter 2. General User Definable Resource Bound Analysis

Chapter 3

Applying the Framework to

Execution Time Estimation

3.1 Introduction

Predicting statically the running time of programs has many applications

ranging from task scheduling in parallel execution to proving the ability of

a program to meet strict time constraints in real-time systems. A starting

point in order to attack this problem is to infer the computational complex-

ity of such programs. This is one of the reasons why the development of

static analysis techniques for inferring cost-related properties of programs

has received considerable attention.

However, as mentioned previously, in most cases such cost properties

are expressed using platform-independent metrics (like number of reductions

or execution steps). Such platform-independent cost information has been

shown to be quite useful in various applications. This includes, for example,

scheduling parallel tasks [41, 43, 32]. In a typical scenario, these tasks will

be executed in a single parallel machine, where all processors are typically

identical. Therefore, the deduced number of reductions can actually be used

as a relative measure in order to compare to a first degree of approxima-

tion the amount of work under the tasks. However, in distributed execution

49

50 Chapter 3. Applying the Framework to Execution Time Estimation

and other mobile/pervasive computation scenarios, where different platforms

come into play with each platform having different computing power, it be-

comes necessary to express costs in metrics that can be later instantiated to

different architectures so that actual running time can be compared using

the same units. This applies also to heterogeneous parallel computing plat-

forms. Moreover, although the number of execution steps is a measure that

has the advantage of being platform independent, it is not straightforward

to translate such steps into execution time.

With this in mind, we define a framework for automatically inferring both

upper- and lower-bounds on execution times that are in general functions

that depend on input data sizes. The framework has been implemented as

part of the CiaoPP [36] system, and includes a global static analysis which is

an instantiation (to execution time estimation) of the general resource usage

analysis defined in Chapter 2. It also combines compile-time analysis with a

one-time, program-independent profiling stage of a given platform in order to

determine the values of certain parameters for that platform. These parame-

ters calibrate a cost model which, from then on, is able to compute statically

time bound functions for procedures and to predict with a significant degree

of accuracy the execution times of such procedures in that concrete platform.

We define several cost models for execution time estimation (parameterized

with respect to the execution platform), and perform an assessment of them

regarding the trade-off between accuracy and efficiency. Such models are

evaluated and the advantages and disadvantages of them shown.

In the following sections we present our framework showing two ap-

proaches for two kinds of cost models (high- and low-level cost models).

The first approach is described in Section 3.2, were we define several cost

models based on high-level (source) language characteristics in which we can

measure certain aspects that are platform-independent. Then, using profil-

ing techniques, we calibrate the platform-dependent parameters for a spe-

cific platform. Such models are evaluated in order to see the best trade-off

between simplicity and precision of the model. Although promising exper-

3.1. Introduction 51

imental results were obtained, the predicted execution times were not very

precise.

The second approach is defined in Section 3.3, where we define a low-

level cost model applicable to logic programs running on a bytecode-based

abstract machine. In this case, the one-time, program-independent profil-

ing stage calculates constants or functions bounding the execution time of

each abstract machine instruction. As expected, this model predicts more

precise execution times than the former ones based on high-level syntactic

characteristics of programs.

In addition to cost analysis, the implementation of profilers in declara-

tive languages has also been considered by various authors, with the aim of

helping to discover why a part of a program does not exhibit the expected per-

formance. Debray [20] showed the basic considerations to have in mind when

profiling Prolog programs: handling backtracking and failure. Ducassé [25]

designed and implemented a trace analyzer for Prolog which can be applied

to profiling. Sansom and Peyton Jones [62] focused on profiling of functional

languages using a semantic approach and highlighted the difficulty in profil-

ing such kind of languages. Jarvis and Morgan [59] showed how to profile

lazy functional programs. Brassel et al. [10] solved part of the difficulty in

profiling when considering special features in functional logic programs, like

sharing, laziness and non-determinism. We will use also profiling but, since

our aim is to predict performance, profiling will in our case be aimed at cali-

brating the values for some constants that appear in the cost functions, and

which will be instrumental to forecast execution times for a given platform

and cost model. Therefore we will not use profiling with just some fixed

input arguments, but with a set of programs and input arguments which we

hope will be representative enough to derive meaningful characteristics of an

execution platform.

52 Chapter 3. Applying the Framework to Execution Time Estimation

Source-Code Resource Usage
Functions

Assertions

Resource
Definitions

Platform-Independent
Resource Analysis

Figure 3.1: Source-Level/Platform-Independent Resource Analysis.

3.2 Source Code-Based (High-Level) Model

In this section we present a framework which combines static cost analysis

with profiling techniques in order to infer functions which yield upper- and

lower-bounds on execution times of program procedures [48, 47, 49]. This

framework is based on the analysis of high-level syntactic characteristics of

the program clause text such as sizes of terms in heads, sizes of terms in

bodies, or number of arguments. In this approach, platform-independent

cost functions are first inferred which are parameterized by certain constants

(see Figure 3.1). These constants aim at capturing the execution time of

certain low-level operations on each platform. For each execution platform,

the value of such constants is determined experimentally once and for all by

running a set of special-purpose synthetic benchmarks and measuring their

running times with a profiling toolkit that we have also developed. Once these

constants are determined, they are fed into the model with the objective of

predicting with a certain accuracy execution times (see Figure 3.2).

We have studied a relatively large number of cost models, involving differ-

ent sets of constants in order to explore experimentally which of the models

produces the most precise results, i.e., which parameters model and predict

3.2. Source Code-Based (High-Level) Model 53

Source-Code Resource Usage
Functions

Automatic
One-time
Profiling

Assertions

Resource
Definitions

Platform-Dependent
Resource Analysis

Platform-Dependent
Values

Figure 3.2: Source-Level/Platform-Dependent Resource Analysis.

best the actual execution times of procedures. In doing this we have taken

into account the trade-off between simplicity of the cost models (which im-

plies efficiency of the cost analysis and also simpler profiling) and the pre-

cision of their results. With this aim, we have started with a simple model

and explored several possible refinements.

Note that although we have developed the framework for execution time

estimation, it can also be applied to the estimation of other platform-

dependent and -independent resources, provided that the appropriated

source-level based resources are defined. Thus, what we are proposing is

a general approach (see Figure 3.3).

54 Chapter 3. Applying the Framework to Execution Time Estimation

Source-Code Resource Usage
Functions

Automatic
One-time
Profiling

Assertions

Resource
Definitions

Platform-Independent and
Platform-Dependent
Resource Analysis

Platform-Dependent
Values

Figure 3.3: Source-Level Resource Analysis.

3.2.1 Proposed Platform-Dependent Cost Models

In this section we describe how to particularize the general resource usage

expressions defined in Chapter 2 in order to estimate bounds on the execu-

tion time of clauses and predicates using platform-dependent cost models.

For simplicity, the discussion that follows is focused on the estimation of

upper-bounds on execution times. We refer the reader to [23] for details on

lower-bounds cost analysis. We also use the terms resource usage function

and cost function indistinctly. Thus, we instantiate the function δ(ap, r) ap-

pearing in expression (2.4), Section 2.3.3 (Chapter 2), to a function ∆H that

represents the time needed to resolve a given literal against the correspond-

ing clause head Hk, but also the cost associated with selecting alternatives,

the cost coming from setting up the body literals for execution, allocating

3.2. Source Code-Based (High-Level) Model 55

activation records, etc. In the following, we will still refer to ∆H as the clause

head cost function (but understanding that it now includes all these costs).

Similarly, we instantiate β(ap, r) appearing in the same expression (2.4) to

a function ∆L, representing the time needed to prepare the arguments just

before calling the given literal in the clause body. To simplify our discussion

we will assume that ∆L = 0, although in practice we use a function that

takes into account the mentioned costs. We will consider different defini-

tions for ∆H, each of them yielding a different cost model. These cost models

make use of a vector of platform-dependent constants, together with a vec-

tor of platform-independent resource usage metrics, each one corresponding

to a particular low-level operation related to program execution. Examples

of such low-level operations considered by the cost models are unifications

where one of the terms being unified is a variable and thus behave as an

“assignment,” or full unifications, i.e., when both terms being unified are not

variables, and thus unification performs a “test” or produces new terms, etc.

Thus, we generalize ∆H
Ω to be a function parameterized by the cost model,

so that:

∆H
Ω = time(Ω) (3.1)

where time(Ω) returns the time associated to a resolution step, including the

aforementioned additional overheads. The parameter Ω = (ω1, . . . , ωv) is a

vector denoting which characteristics we want to take into account: every

ωi looks at a different indicator (i.e., a platform-independent resource) of

the execution time. The family of cost models we will study assumes that

time(Ω) is defined as follows:

time(Ω) = time(ω1) + · · ·+ time(ωv), v > 0 (3.2)

where each time(ωi) contributes with the part of the execution time which

depends on the feature ωi. We also assume that:

time(ωi) = Kωi × I(ωi) (3.3)

56 Chapter 3. Applying the Framework to Execution Time Estimation

where Kωi is a platform-dependent constant and I(ωi) is a platform-

independent cost function. I.e., Kωi expresses the cost of each unit of I(ωi)

in terms of time. Equation (3.2) can be written in vector notation as

time(Ω) = KΩ • I(Ω) (3.4)

where KΩ = (Kω1 , . . . , Kωv) and I(Ω) = (I(ω1), . . . , I(ωv)) are vectors of

platform-dependent constants and of platform-independent cost functions,

respectively.

A cost model, of which we have tested several, is given by a particular

definition of the parameter Ω. Every cost model is defined by the program

characteristics taken into account by it. While a large number of indicators

can be used, we have identified some of them as specially interesting. We list

them below, giving a mnemonic to every ωi and explaining the meaning of

each I(ωi).

In what follows we will say that an argument of a literal is an output

argument if the term being passed by the calling literal is known to be a

variable at run-time, and an input argument if it is not a variable. Run-

time arguments can be classified as either input or output using well-known

techniques for mode analyses (in our case, those provided by CiaoPP).

I(steps) = 1 Every successful head traversal has a constant weight in the

execution. I.e., in equation (3.3), we have:

time(steps) = Ksteps

I(vounif) = the number of variables in the clause head which correspond

to “output” argument positions. This describes a component of the

execution time that is directly proportional to the number of cases

where both a goal argument and the corresponding head argument are

variables. This should boil down to assignment (maybe with trailing):

time(vounif) = Kvounif × I(vounif)

3.2. Source Code-Based (High-Level) Model 57

I(viunif) = the number of variables in the clause head which correspond

to “input” argument positions. This component corresponds to the

number of non-variable goal arguments which are unified with a variable

in the head. The unification for such arguments is also similar to an

assignment with a small, constant cost. We assume that the cost of

creating the input argument is constant. Given these assumptions:

time(viunif) = Kviunif × I(viunif)

I(gounif) = The number of function symbols and constants in the clause

head which appear in output arguments. We are capturing here the size

of the terms that are created when a variable in a goal is unified with

a non-variable in the clause head:

time(gounif) = Kgounif × I(gounif)

I(giunif) = The number of function symbols and constants in the clause

head which appear in input arguments. We assume that there is a

component of the execution time which depends on the number of ar-

guments in which neither the goal nor the clause head arguments are

variables. For each of these arguments, we take into account the num-

ber of symbols in the clause head:

time(giunif) = Kgiunif × I(giunif)

I(nargs) = arity(H) we are assuming that there is a component of the ex-

ecution time that depends on the number of arguments in the clause

head:

time(nargs) = Knargs × I(nargs) (3.5)

This component is obviously redundant with respect to the previous

ones, but we have included it as a statistical control: the experiments

58 Chapter 3. Applying the Framework to Execution Time Estimation

should show (and do show) that it is irrelevant when the others are

used.

Clearly, other components can be included (such as whether activation

records are created or not) but our objective is to see how far we can go with

the components outlined above.

Let Φ(p,time,n) denote the execution time of a call to predicate p for

an input of size n, and let Φ(p,timeΩ,n) be a function which estimates it

according to cost model Ω. We have that:

Φ(p,timeΩ,n) = KΩ • Φ(p,IΩ,n) (3.6)

where timeΩ is the resource identifier for the execution time estimated using

model Ω, i.e., using ∆H
Ω = time(Ω) as head cost function. KΩ and Φ(p,IΩ,n)

are vectors of the form:

KΩ = (Kω1 , . . . , Kωv),

Φ(p,IΩ,n) = (Φ(p,ω1,n), . . . ,Φ(p,ωv,n)),

where Φ(p,ωi,n) is the resource usage function that gives the platform-

independent resource identified as ωi, i.e., using ∆H
ωi

= I(ωi) as head cost

function.

Equation (3.6) gives the basis for computing values for constants Kωi via

profiling (as will be explained in Section 3.2.3). Also, it provides an approach

to obtain the cost of a procedure expressed in a platform-dependent resource

usage metric from another cost expressed in a platform-independent resource

usage metric. In this approach, the compile-time cost bounds analysis gives

a vector of platform-independent resources that corresponds to particular

low-level operations related to program execution (such operations must be

reflected in the high-level language.). The profiling phase determines the

values of the constants appearing in the resource usage functions, for a given

platform. Then, assertions are used to define the platform-dependent re-

source (execution time) as a composition of the basic platform-independent

3.2. Source Code-Based (High-Level) Model 59

resources and the values of the constants resulting from the profiling phase.

This is illustrated in Figure 3.2.

3.2.2 Dealing with Builtins

In this section we present our approach to the cost analysis of programs

which call builtins, or more generally, predicates whose code is not available

to the analyzer (external predicates). We will refer to all of them as builtins

for brevity. We assume that a cost function is available (expressed via trust

assertions [35]) for each such predicate. This cost function can be a constant

in simple cases but more generally it will be a function that depends on

sizes of the (input) arguments of the predicate. As an example, the cost of

arithmetic predicates (such as =:=/2, =\=/2, or >/2) is approximated by a

function that depends on the size (and types) of the arithmetic expressions

that will appear as arguments.

Note that this is a significant change with respect to the cost analysis

proposed in [21] since one of the simplifying assumptions made in that anal-

ysis was to not count calls to certain builtin as resolution steps (which meant

that they were simply ignored in the cost analysis). While such an assump-

tion made sense for inferring number of resolution steps, the assumption is

not realistic for estimating execution times, since the time involved in exe-

cuting such builtins is not negligible in general and thus has to be taken into

account.

We have modeled this by assuming that each builtin contributes with

a new component of the cost model to the execution time as expressed in

Equation (3.2). Then, a new time(ωi) is added for each builtin predicate b/n

as follows:

time(b/n) = Kb/n × I(b/n)

We now consider in more detail the case of arithmetic operators and dis-

cuss several possibilities. For the sake of accuracy, every arithmetic operator

can be dealt with separately: let �/n be an arithmetic operator. As usual,

60 Chapter 3. Applying the Framework to Execution Time Estimation

the execution time due to the total number of times that this operator is

evaluated is given by:

time(�/n) = K�/n × I(�/n)

where K�/n approximates the time taken by the evaluation of the arithmetic

operator�/n. I(�/n) could be the number of times that the arithmetic oper-

ator is evaluated. With these assumptions, Equation (3.6) (in Section 3.2.1)

also holds for programs that perform calls to builtin predicates, say, for ex-

ample, a builtin b/n, by introducing b/n and �/n as new cost components

of Ω.

Alternatively, I(�/n) can be a cost function defined as:

I(�/n) =
∑
a∈S

EvCost(�/n, a)

where S is the set of arithmetic expressions appearing in the clause body

which will be evaluated; and EvCost(�/n, a) represents the cost correspond-

ing to the operator �/n in the evaluation of the arithmetic term a, i.e.:

EvCost(�/n,A) =


0 if atomic(A) ∨ var(A)

1 +
n∑
i=1

EvCost(�/n,Ai) if A = �(A1, ..., An)

m∑
i=1

EvCost(�/n,Ai) if A = �̂(A1, ..., Am), �̂ 6= �

For simplicity we can make the assumption that the cost of evaluating

the arithmetic term t to which a variable appearing in A will be bound at

execution time is zero (i.e., to ignore the cost of evaluating t). This can be

a good approximation if in most cases t is a number and thus no evaluation

of a complex expression is needed for it. This is the case in our simple

benchmarks and our experimental results show good time predictions for

arithmetic builtin predicates using just the simple cost model. On the other

hand, a more refined cost model which assumes that cost is a function on

3.2. Source Code-Based (High-Level) Model 61

the size of t will be needed for programs which evaluate symbolic arithmetic

expressions.

Note that the simple models that we have discussed ignore the possible

optimizations that the compiler might perform. We can take into account

those performed by source-to-source transformation by placing our analyses

in the last stage of the front-end, but at some point the language the compiler

works with would be different enough as to require different considerations

in the cost model.

3.2.3 Calibrating Constants via Profiling

In order to compute values for the platform-dependent constants which ap-

pear in the different cost models proposed in Section 3.2.1, our calibration

schema takes advantage of the relationship between the platform-dependent

and -independent cost metrics expressed in Equation (3.6). In this sense, the

calibration of the constants appearing in KΩ is performed by solving systems

of linear equations (in which such constants are treated as variables).

Based on this expression, the calibration procedure consists of:

1. Using a selected set of calibration programs which aim at isolating

specific aspects that affect execution time in general cases. For these

calibration programs it holds that Φ(p, ωi, n), i.e., the function giving

the cost (in units of resource ωi) of predicate p for an input of size n, is

known for all 1 ≤ i ≤ v. This can be done by using any of the following

methods:

• The analyzers integrated in the CiaoPP system infer the exact cost

function, i.e., both upper- an lower-bounds are the same:

Cost(p,lb,ωi,n) = Cost(p,ub,ωi,n) = Φ(p,ωi,n)

• Φ(p,ωi,n) is computed by a profiler tool, or

• Φ(p,ωi,n) is supplied by the user together with the code of program

p (i.e., the cost function is not the result from any automatic

62 Chapter 3. Applying the Framework to Execution Time Estimation

analysis but rather p is well known and its cost function can be

supplied in a trust assertion).

2. For each benchmark p in this set, automatically generating a significant

amount m of input data for it. This can be achieved by associating with

each calibration program a data generation rule.

3. For each generated input data dj, computing a pair (Cpj , Tpj), 1≤j≤m,

where:

• Tpj is the j-th observed execution time of program p with this

generated input data.

• Cpj = Φ(p,IΩ,nj), where nj is the size of the j-th input data dj.

4. Using the set of pairs (Cpj , Tpj) to set up the equation:

Cpj •KΩ = Tpj (3.7)

where KΩ is considered a vector of variables.

5. Setting up the (overdetermined) system of equations resulting from

putting together all the Equations (3.7) corresponding to all the cali-

bration programs.

6. Solving the above system of equations using the least squares method

(see, e.g., [65]). A solution to this system gives values to the vector KΩ

and hence, to the constants Kωi which are the elements composing it.

7. Calculating the constants for builtins and arithmetic operators by per-

forming repeated tests in which only the builtin being tested is called,

accumulating the time, and dividing the accumulated time by the num-

ber of times the repeated test has been performed.

3.2. Source Code-Based (High-Level) Model 63

3.2.4 Assessment of the Calibration of Constants

We have assessed both the constant calibration process and the prediction of

execution times using the previously proposed cost models in two different

platforms:

• “intel” platform: Dell Optiplex, Pentium 4 (Hyper threading), 2GHz,

512MB RAM memory, Fedora Core 4 operating System with Kernel

2.6.

• “ppc” platform: Apple iMac, PowerPC G4 (1.1) 1.5GHz, 1GB RAM

memory, with Mac OS X 10.4.5 Tiger.

Equation (3.7) is, in general, overdetermined, and we plan to find an

approximation which is “best” in some sense, by using the least squares

method. We used the Householder transformation [37], which decomposes

the m×n matrix C = {Cpj} into the product of two matrices Q and U such

that C = Q • U , where Q is an orthonormal matrix (i.e., QT • Q = I, the

m × m identity matrix) and U an upper triangular m × n matrix. Then,

multiplying both sides of Equation (3.7) by QT and simplifying we can get:

U •K = QT • T = B

where, for clarity, we denote K = KΩ, T = Tpj and QT • T = B. We can

take advantage of the structure of U and define V as the first n rows of U , n

being the number of columns of C and b the first n rows of B, then K can

be estimated solving the following upper triangular system, where K̂ stands

for the estimate for K:

V • K̂ = QT • T = b

Since this method is being used to find an approximate solution, we define

the residual of the system as the value R = T − CK̂.

Let RSS = R • R be the residual square sum, and let MRSS = RSS
m−n

be the mean of residual square sum, where m and n are the number of rows

and columns of the matrix C respectively, and finally let S =
√
MRSS be

64 Chapter 3. Applying the Framework to Execution Time Estimation

Model Components

A steps nargs giunif gounif viunif vounif

B steps giunif gounif viunif vounif

C steps giunif gounif vounif

D steps

Table 3.1: List of cost models being applied.

Plat. Model S (µs) KΩ

intel A 6.2475 (21.27, 9.96, 10.30, 8.23, 6.46, 5.69)

B 9.3715 (26.56, 10.81, 8.60, 6.17, 6.39)

C 13.7277 (27.95, 11.09, 8.77, 7.40)

D 68.3088 108.90

ppc A 4.7167 (41.06, 5.21, 16.85, 15.14, 9.58, 9.92)

B 5.9676 (43.83, 17.12, 15.33, 9.43, 10.29)

C 16.4511 (45.95, 17.55, 15.59, 11.82)

D 116.0289 183.83

Table 3.2: Values (in nanoseconds) for vector constants in several cost mod-

els, sorted by S, the standard error of the model.

the estimation of the standard error of the model, S. In order to evaluate

experimentally which models generate the best approximation of the observed

time, we have compared the values of MRSS (or S) for several proposed

models.

Table 3.1 shows the considered models. Table 3.2 shows the estimated

values for the vector K using the calibration programs in Table 3.3, as well

as the standard error of the model, sorted from the best to the worst model.

Note that the estimation of K has to be done only once per platform. In

the case of the intel platform it took 15.62 seconds and in ppc 17.84 seconds,

repeating the experiment 250 times for each program.

3.2. Source Code-Based (High-Level) Model 65

Program Error (%)

Model A B C D

Environment creation 20 16 12 73

Predicates with no arguments 10 6 2 85

Traverse a list without last call optimization 20 20 11 80

Traverse a list with last call optimization 53 50 32 88

Program (unifying deep terms) for which I(giunif) is known 16 18 18 474

Program (unifying deep terms) for which I(gounif) is known 0 4 2 409

Program (unifying flat terms) for which I(giunif) is known 16 18 18 472

Program (unifying flat terms) for which I(gounif) is known 5 10 8 386

Program for which I(viunif) is known 9 11 36 735

Program for which I(vounif) is known 1 2 11 227

Unify two list element by element 34 29 20 26

Predicate with many arguments 17 16 9 159

Table 3.3: Calibration programs used to estimate the constants and the

estimation error.

Our approach has been tested on the programs used in the calibration

process itself for the considered models. Table 3.3 shows the error incurred

in when an observed value is compared against an estimated value using

the models in Table 3.1. It can be observed that the simpler models incur

in significant errors while the more complex ones are more accurate (un-

derstandable since these calibrators exercise just particular implementation

aspects and are thus expected to deviate from any “normal” behaviour).

In the same way that we approximate Φ(p, r, n), either by computing

the upper-bound [21] Cost(p,ub,r,n) defined in Equation (2.1) (Section 2.3,

Chapter 2), or the lower-bound [23] Cost(p,lb,r,n) defined in Equation (2.2),

we can also compute bounds on execution times as the confidence intervals

defined by our linear model:

66 Chapter 3. Applying the Framework to Execution Time Estimation

Cub = Cost(p,ub,IΩ,n)

Cost(p,ub,timeΩ,n) = KΩ • Cub + Zα/2
√

(Cub)T (V TV)−1(Cub)

Clb = Cost(p,lb,IΩ,n)

Cost(p,lb,timeΩ,n) = KΩ • Clb − Zα/2
√

(Clb)T (V TV)−1(Clb)

Where Zα/2 is the optimal dispersion value of 1− α level, assuming that

the estimated values follow a Gaussian distribution (in our case α = 0.001

and Zα/2 = Z0.0005 = 3.29). However, even considering that such expressions

are correct from the statistical point of view, they could define a very complex

algebraic expression. We give below other approximation, which is a bit less

accurate, but appropriate if we want simpler expressions.

Consider first the covariance matrix as E = S2(V TV)−1 = {Eij}. In

order to calculate the standard deviation of K̂, we use the E matrix, and

then, StdDev(Kωi) =
√
Eii. This expression allow us to compute bounds

for KΩ, including both lower-bounds K
lb

Ω and upper-bounds K
ub

Ω , and are

defined as follows:

StdDev(KΩ) = (StdDev(Kω1), . . . , StdDev(Kωv))

K
lb

Ω = KΩ − Zα/2 × StdDev(KΩ)

K
ub

Ω = KΩ + Zα/2 × StdDev(KΩ)

(3.8)

Then, we can compute the bounds for execution time as:

Cost(p,ub,timeΩ,n) ≈ K
ub

Ω • Cost(p,ub,IΩ,n) (3.9)

Cost(p,lb,timeΩ,n) ≈ K
lb

Ω • Cost(p,lb,IΩ,n) (3.10)

3.2. Source Code-Based (High-Level) Model 67

3.2.5 Assessment of the Prediction of Execution Times

We have tested the proposed cost models in a set of programs not used in

the calibration process in order to assess how well their execution time is

predicted, without performing any runtime profiling on them. We have per-

formed experiments with the 63 possible cost models resulting from selecting

one or more of the components described in Section 3.2.1. For space reasons

we only show the three most accurate cost models (according to a global ac-

curacy comparison that will be presented later) plus the steps model, which,

despite its simplicity, has a special interest, as we will also see later. Experi-

mental results are shown in Table 3.4, where the analyzers integrated in the

CiaoPP system infer the exact platform-independent cost function for all the

programs in that table, which means that the upper- and lower-bound are

the same, i.e., Cost(p,lb,ωi,n) = Cost(p,ub,ωi,n) = Φ(p,ωi,n).

The first three rows for each test program show the three more accurate

predictions along with the model used. The fourth row shows the prediction

obtained by the cost model steps, which assumes that the execution time is

directly proportional to the number of resolution steps performed. Note that

Φclause(C, steps, n) gives the number of resolution steps performed by clause

C. The row tagged as Obs. corresponds to the actual measured timings, and

the last row details the analysis time (roughly the same in all benchmarks,

and which includes mode, type, and cost analysis).

The first column is the program name, the second is the cost model Ω (=

vector of characteristics taken into account) and the third and fourth are the

timing estimations corresponding to the “intel” and “ppc” platforms. These

are computed by using the average value of the constant KΩ as estimated in

Table 3.2 with the formula:

EstimateP = KΩ • Φ(p,IΩ,n)

Deviations respect to the measured values are also shown between parenthesis

in the column EstimateP.

The observed execution times have been measured by running the pro-

68 Chapter 3. Applying the Framework to Execution Time Estimation

EstimateP

Prog. Model intel ppc

(µs) (%) (µs) (%)

evpol A 90 (44) 77 (23)

B 85 (38) 75 (26)

C 82 (35) 70 (33)

D 90 (45) 85 (13)

Obs. 58 97

Tca(s) 2.0 4.5

hanoi A 319 (31) 399 (4)

B 243 (3) 359 (7)

C 206 (14) 301 (25)

D 341 (38) 539 (34)

Obs. 235 384

Tca(s) 2.2 4.9

nrev A 131 (68) 179 (26)

B 101 (39) 164 (16)

C 83 (18) 135 (3)

D 144 (80) 244 (59)

Obs. 69 139

Tca(s) 2.0 4.7

EstimateP

Prog. Model intel ppc

(µs) (%) (µs) (%)

palind A 132 (18) 180 (5)

B 101 (9) 164 (5)

C 87 (24) 142 (19)

D 167 (43) 282 (52)

Obs. 110 172

Tca(s) 2.0 4.7

powset A 538 (59) 728 (17)

B 405 (28) 658 (7)

C 324 (5) 535 (14)

D 449 (38) 757 (21)

Obs. 308 615

Tca(s) 2.1 4.6

append A 50 (75) 69 (24)

B 39 (44) 63 (15)

C 31 (22) 51 (5)

D 55 (85) 92 (56)

Obs. 25 54

Tca(s) 1.9 4.4

Table 3.4: Experiments on example programs.

grams with input data of a fixed size. We generated randomly 10 input data

sets of such fixed size, and for each data set we run 5 times every program.

The observed execution time for such input size was computed as the average

of all runs.

Table 3.5 compares the overall accuracy of the four cost models already

shown in Table 3.4, for the two considered platforms. The last column

shows the global error and it is an indicator of the amount of deviation

of the execution times estimated by each cost model with respect to the

3.2. Source Code-Based (High-Level) Model 69

Platform Model Error (%)

A B C D

intel 53.17 31.06 21.48 58.45

ppc 18.72 14.66 19.44 43.04

Table 3.5: Global comparative of the accuracy of cost models.

observed values. As global error we take the square mean of the errors

in each example being considered in Table 3.4. By considering both plat-

forms in combination we can conclude that the more accurate cost model is

Ω = (steps, giunif, gounif, viunif, vounif). This cost model has an overall

error of 14.66 % in the ppc platform and 31.06 % in the intel platform. In the

latter architecture the model Ω = (steps, giunif, gounif, vounif) appears to

be the best. This is in line with the intuition that taking into account a com-

paratively large number of lower-level operations should improve accuracy.

However, such components should contribute significantly to the model in

order to avoid noise introduction. It is also interesting to see that includ-

ing nargs in the cost model does not further improve accuracy, as expected,

since nargs is not independent from the four components giunif, gounif, viu-

nif, vounif. In fact, including this component results in a less precise model

in both platforms, due to the noise introduced in the model. Also, the cost

model steps deserves special mention, since it is the simplest one and, at least

for the given examples, the error is smaller than we expected and better than

more complex cost models not shown in the tables.

The disparity in the accuracy for both platforms can be attributed to a

number of reasons, among them the difference in the internal architectures

(number of registers, orthogonality in their usage, etc.), which make predict-

ing execution characteristics in intel processors harder. The weight of some

constants can also differ from the calibration programs to the benchmarks

due to, e.g., the state of the internal processor pipelines and state of registers.

In our experience, the ppc architecture offers a more homogeneous behavior

performance-wise.

70 Chapter 3. Applying the Framework to Execution Time Estimation

Overall we believe that the results are encouraging in the sense that our

combined framework predicts with an acceptable degree of accuracy the exe-

cution times of programs and paves the way for even more accurate analyses

by including additional parameters.

3.2.6 Applications

The experimental results presented in Section 3.2.5 show that the proposed

framework can be relevant in practice for estimating platform dependent cost

metrics such as execution time. We believe that execution time estimates

can be very useful in several contexts. As already mentioned, in certain mo-

bile/pervasive computation scenarios different platforms come into play, with

each platform having different capabilities. More concretely, the execution

time estimates could be useful for performing resource/granularity control

in parallel/distributed computing. This belief is based on previous experi-

mental results, where it appeared from the sensitivity of the results observed

in such experiments, that while it is not essential to be absolutely precise

in inferring the best time estimates for a query, the number of reductions

by itself was too rough a measure and the current time estimation approach

could presumably improve on previous results.

One of the good features of our approach is that we can translate

platform-independent cost functions (which are the result of the analyzer)

into platform-dependent cost functions (using the relationship in expres-

sion (3.6)). A possible application for taking advantage of this feature is

mobile code safety and in particular Proof-Carrying Code (PCC), a general

approach in which the code supplier augments the program with a certificate

(or proof). Consider a scenario where the producer sends a certificate with

a platform-independent cost function (i.e., where the cost is expressed in a

platform-independent metric) together with a calibration program. The cal-

ibration program includes a fixed set of calibration benchmarks. Then, the

consumer runs (only once) the calibration program and computes the values

for the constants appearing in the cost functions. Using these constants, the

3.2. Source Code-Based (High-Level) Model 71

consumer can obtain platform-dependent cost functions [32].

Another application of the proposed approach is resource-oriented spe-

cialization. The proposed cost models, which include low-level factors for

CLP programs, are more refined cost models than previously proposed ones

and thus can be used to better guide the specialization process. The inferred

cost functions can be used to develop automatic program transformation

techniques which take into account the size of the resulting program, its run

time and memory usage, and other low-level implementation factors. In par-

ticular, they can be used for performing self-tuning specialization in order to

compare different specialized version according to their costs [19].

The use of a source-level characterization of the execution profile, which

undoubtedly carries some lack of accuracy with it, can be applied not only to

different architectures, but also to different compilation / execution schemes.

By identifying a rich enough cost model, and using the calibration programs

under a given execution model (and architecture), predictions about this

execution model / architecture can be made. The advantage lies in that

instrumenting the low-level representation used by the execution algorithm

(e.g., WAM code & emulator, C code / assembler, or interpreters or virtual

machines for other bytecode representations) is not needed: KΩ should get

instantiated to the cost (or an approximation thereof) of every identified

basic feature in the execution model under study.

3.2.7 Section Conclusions

We have developed a framework which allows estimating execution times of

procedures of a program in a given execution platform. The method pro-

posed combines compile-time (static) cost analysis with a one-time profiling

of the platform in order to determine the values of certain constants. These

constants calibrate a cost model from which time cost functions for a given

platform can be computed statically. The approach has been implemented

and integrated in the CiaoPP system. To the best of our knowledge, this is the

first combined framework for estimating statically and accurately execution

72 Chapter 3. Applying the Framework to Execution Time Estimation

time bounds based on static automatic inference of upper- and lower-bound

complexity functions plus experimental adjustment of constants. We have

performed an experimental assessment of this implementation for a wide

range of different candidate cost models and two execution platforms. The

results achieved show that the combined framework predicts the execution

times of programs with a reasonable degree of accuracy. We believe this is an

encouraging result, since using a one-time profiling for estimating execution

times of other, unrelated programs is clearly a challenging goal.

Also, we argue that the work presented in this section presents an in-

teresting trade-off between accuracy and simplicity of the approach. At the

same time, there is clearly room for improving precision by using more re-

fined cost models which take into account additional (lower level) factors. Of

course, these models would also be more difficult to handle since on one hand

they would require computing more constants and on the other hand they

may require taking into account factors which are not observable at source

level.

3.3 Bytecode-Based (Low-Level) Model

In this section we propose a new analysis framework which, in order to im-

prove the accuracy of the time predictions, on the one hand it takes into

account lower level factors and on the other hand, it makes the model richer

by directly taking into account the inherently variable cost of certain low-level

operations [45].

Regarding the choice of this lower level, rather than trying for example

to model directly the characteristics of the physical processor, as in WCET,

and given that most popular logic programming implementations are based

on variations of the Warren abstract machine (WAM) [66, 1], we chose to

model cost at the level of abstract machine instructions. Abstract machines

have been used as a basic implementation technique in several programming

paradigms (functional, logic, imperative, and object-oriented) [24] with the

3.3. Bytecode-Based (Low-Level) Model 73

advantage that they provide an intermediate layer that separates to a cer-

tain extent the many low-level details of real (hardware) machines from the

higher-level language, while at the same time making compilation easier.

This property can be used to facilitate the design of our framework.

Within this setting, we present a new framework for the static estimation

of execution times of programs. The basic ideas in our approach follow:

1. Measure the execution time of each of the instructions in a lower-level

LB (bytecode) language (or approximate it with a function if it de-

pends on the value of an argument) in some specific abstract machine

implementation when executed on a given processor / O.S.

2. Make the information regarding instruction execution time available to

the timing analyzer. This is, in our proposal, done by means of cost

assertions (written in a suitable assertion language) which are stored

in a module accessible to the compiler/analyzer.

3. Given a concrete program P written in the source language LH , compile

it into LB and record the relationship between P and its compiled

counterpart.

4. Automatically analyze program P , taking into account the instruction

execution time (determined in item 1 above) to infer a cost function

CP . This function is an expression which returns (bounds on) the

actual execution time of P for different input data sizes for the given

platform.

Points (1) and (2) are performed in a one-time profiling phase, indepen-

dent from program P , while the rest are performed once for each P in the

static (compile-time) cost analysis phase. We would like to point out that, in

general, the basic ideas underlying our work can be applied to any language

LH as long as (i) cost estimation can be derived for programs written in LH ,

(ii) the translation of LH to some other (usually lower-level) language LB

is accessible, and (iii) the execution time of the instructions in LB can be

74 Chapter 3. Applying the Framework to Execution Time Estimation

Source-Code Resource Usage
Functions

Automatic
One-time
Profiling

Assertions

Resource
Definitions

Bytecode

Platform

Virtual
Machine

Hardware

Bytecode
Assertions

Platform-Dependent
Resource Analysis

Figure 3.4: Bytecode-Level/Platform-Dependent Resource Analysis.

timed accurately enough. We will, however, focus herein on logic languages,

so that we assume LH to be a Prolog-like language and LB some variant of

the WAM bytecode.

The proposed framework is illustrated in Figure 3.4, and has been imple-

mented as part of the CiaoPP [36] system in such a way that any abstract

machine properly instrumented can be analyzed.

To the best of our knowledge, this is the first attempt at providing a

timing analysis producing upper- and lower-bound time functions based on

the cost of lower-level machine instructions.

Note that although the initial objective was to developed a framework

for execution time estimation, it can also be applied to the estimation of

platform-independent (bytecode related) resources, such as the number of

times the bytecodes are executed (as illustrated in Figure 3.5).

3.3. Bytecode-Based (Low-Level) Model 75

Source-Code Resource Usage
Functions

Assertions

Resource
Definitions

Bytecode

Bytecode
Assertions

Platform-Independent
Resource Analysis

Figure 3.5: Bytecode-Level/Platform-Independent Resource Analysis.

In fact, as a more general contribution of this thesis, we propose a frame-

work based on bytecode-level cost models which can be used to infer both,

platform-dependent and independent resources (see Figure 3.6).

3.3.1 Mappings Between Program Segments and Byte-

codes

Let OpSet = {b1, b2, . . . , bn} be the set of instructions of the abstract ma-

chine under consideration. We assume that each instruction is defined by

a numeric identifier and its arity, i.e., bi ≡ fi/ni, where fi is its identifier

and ni the arity. Each program is compiled into a sequence of expressions

of the form f(a1, a2, . . . , an) where f is the instruction name and the ai’s

are its arguments. For conciseness, we will use Ii to refer to such expres-

sions. The sequences of expressions into which a program is compiled are

generally encoded using bytecodes. In the following we will often refer to

sequences of abstract machine instructions or sequences of bytecodes simply

as “bytecodes.”

76 Chapter 3. Applying the Framework to Execution Time Estimation

Source-Code Resource Usage
Functions

Automatic
One-time
Profiling

Assertions

Resource
Definitions

Bytecode

Platform

Virtual
Machine

Hardware

Bytecode
Assertions

Bytecode
Assertions

Platform-Independent and
Platform-Dependent
Resource Analysis

Figure 3.6: Bytecode-Level Resource Analysis.

Let C be a clause H :- L1, . . . , Lm. Let E(C) be a function that returns the

sequence of bytecodes resulting from the compilation of clause C:

E(C) =< I1, I2, . . . , Ip >

Let E(C, H) be a function that maps the clause head H to the sequence of

bytecodes in E(C) starting from the beginning up to the first call/execute

instruction or to the end of the sequence E(C) if there are no more

call/execute instructions (i.e., to the end of the bytecode sequence re-

sulting from the compilation of clause C). Let E(C, Li) be the function that

maps literal Li of clause C to the sequence of bytecodes in E(C) which start

at the call bytecode instruction corresponding to this literal and up to the

next call/execute instruction or to the end of the sequence E(C) if there

are no more call/execute instructions. If] represents the concatenation

3.3. Bytecode-Based (Low-Level) Model 77

of sequences of bytecodes, then:

E(C) = E(C, H)
⊎

(
m⊎
i=1

E(C, Li))

Note that functions E(C, H) and E(C, Li) do not necessarily return the

bytecodes that one would normally associate to the clause head H and literal

Li respectively. Instead, the definition of those functions associates the in-

structions corresponding to argument preparation for a given call with the

(success of the) previous call (or head). This is to cater for the fact that,

in the context of backtracking, the WAM argument preparation occurs only

one time per call to a literal, even if such call is retried more times before

failing definitively. As a result, the cost of argument preparation for a given

call/execute instruction needs to be associated with the previous literal to

that call/execute, in order not to count it every time the call is retried.

Table 3.6 shows how predicate append/3 is compiled into bytecodes, and

identifies the result of calling the E(C, H) and E(C, Li) functions for each

clause head and body literal. H1 represents the head of the first clause (C1),

and H2 and L21 the head of the second (recursive) clause (C2) and the first

literal in such clause body (the only body literal).

3.3.2 Modeling the Execution Time of Instructions

We define a function t(I) (the timing model), which takes a bytecode instruc-

tion I and returns another function which estimates the execution time for

it depending on the input data sizes of the bytecode. This is similar to the

approach described in [6], where, however, t(I) was a constant.

In many cases we can assume that the time to execute a bytecode is

constant. However there are some instructions for which this does not hold

because their definitions involve loops. In many of these cases the timing

model consists of an initial constant time t0 plus another additional constant

time titer to cater for the cost of each iteration, and a simple linear model can

be used: t0 + n× titer. Consider for example the unify void n instruction,

78 Chapter 3. Applying the Framework to Execution Time Estimation

append([], X, X).

E(C1, H
1) append/3/1

try me else append/3/2

allocate

get constant([],A0)

get variable(V0,A1)

get value(V0,A2)

deallocate

proceed

append([X|Xs], Y, [X|Zs]) :-

E(C2, H
2) append/3/2

trust me

allocate

get variable(V0,A0)

set variable(V1)

set variable(V2)

set variable(V3)

get list(V1,V3)

set variable(V4)

unify variable(V2,V4)

unify variable(V0,V3)

set variable(V5,A1)

get variable(V6,A2)

set variable(V7)

set variable(V8)

get list(V1,V8)

set variable(V9)

unify variable(V7,V9)

unify variable(V6,V8)

put value(V2,A0)

put value(V5,A1)

put value(V7,A2)

deallocate

append(Xs, Y, Zs).

E(C2, L
2
1) execute append/3

Table 3.6: Sequences of bytecodes assigned to clause heads and body literals

of the clauses C1 and C2 of predicate append by the functions E(C, H) and

E(C, L).

which pushes n new unbound cells on the heap [1], and whose execution time

is a linear function on n. In some other cases instructions have different

execution times depending on the (fixed) values a given argument can take

from some finite set. In such cases, execution time is an arbitrary function

on the argument. Specific constants are assigned to each possible argument

value by means of profiling (Section 3.3.4).

Since the cost of a given instruction is different when it succeeds and when

it fails, we will have two costs for each instruction that can fail: one for the

success case and another for the failure case. Finally, and besides lower-level

3.3. Bytecode-Based (Low-Level) Model 79

factors such as cache behavior, there are some additional variable factors

(such as, e.g., the length of dereferencing chains) which may affect execution

times. These factors are in principle not impossible to cater for via a combi-

nation of static and dynamic analysis, but, given the additional complication

involved, we will ignore them herein and explore what kind of precision of

timing prediction can be achieved with this first level of approximation.

Another factor that we are not taking into account at this moment is

garbage collection (GC). GC makes programs run slower, which, at profiling

time, increases the (estimated) cost of every instruction. Therefore, turning

it off at profile time (which gives a smaller estimation of instruction cost) is

safe when finding out lower-bounds: if the program whose execution time is

to be predicted is run with GC turned on, then it would run slower w.r.t. an

execution with GC turned off (as it was when profiling), and the estimated

bounds will still be lower-bounds, albeit more conservative. An inverse rea-

soning applies to upper-bounds, and the technique herein presented is equally

valid. However, for the sake of simplicity, we have taken all the measurements

(both for profiling and executions to be predicted) with GC disconnected.

3.3.3 Estimating the Execution Time of Clauses and

Predicates

In this section we describe how to particularize the general resource usage

expressions defined in Chapter 2 in order to estimate bounds on the execution

time of predicates. For simplicity, the discussion that follows is focused on the

estimation of upper-bounds on execution times (as it was done in the previous

section). We also use the terms resource usage function and cost function

indistinctly. Thus, in order to estimate upper-bounds on execution time, we

particularize δ(ap, r)(Hk, n) in expression (2.4) of Section 2.3.3 (Chapter 2)

for the case when the resource r is execution time and the approximation ap

is ub as follows:

80 Chapter 3. Applying the Framework to Execution Time Estimation

δ(ap, r)(Hk, n) = γ(Hk, n) +
∑

I∈E(Ck,Hk)

t(I)(n)

which represents the execution time needed to resolve the head Hk of the

clause Ck with the literal being solved. γ(Hk, n) denotes the execution time

necessary to determine that clauses C1, . . . , Ck−1 will not yield a solution and

that Ck must be tried: the function γ obviously takes into account the type

and cost of the indexing scheme being used in the underlying implementation.

Similarly, we particularize β(ap, r)(Lki , ψi(n)) as follows:

β(ap, r)(Lki , ψi(n)) =
∑

I∈E(Ck,L
k
i)

t(I)(ni), i = 1, · · · ,m

which represents the time needed to prepare the call to literal Lki in the body

of the clause Ck, with E(Ck, L
k
i) and t(I) defined as in Sections 3.3.1 and 3.3.2

respectively.

Note that our approach allows defining via assertions the execution time

of external predicates, which can then be used for modular composition [51].

This includes also predicates for which the code is not available or which

are even written in a programming language that is not supported by the

analyzer. In addition, assertions also allow describing by hand the execu-

tion time of any predicate for which the automatic analysis infers a value

that is not accurate enough, and this can be used to prevent inaccuracies in

the automatic inference from propagating. The description of the assertion

language is summarized in Figure 4.2, and we refer the reader to [51] for

details.

3.3.4 Estimating Instruction Execution Times via Pro-

filing

In this section we will see how data regarding the expected execution time

of each instruction in the abstract machine (Section 3.3.2) can be accurately

measured in a realistic environment.

3.3. Bytecode-Based (Low-Level) Model 81

while (op != END) { /∗ WAM emulat ion loop ∗/
. . .
r e c o r d p r o f i l e i n f o (op) ;

/∗ op i s the current by tecode ∗/

switch (op) {
. . .

}
. . .
op = get next op () ;

}

Figure 3.7: A simple WAM emulation loop instrumented.

3.3.5 Instruction Profiling

Profiling aims at calculating a function t(I) for each bytecode instruction

I. An approach is to instrument the WAM implementation so that time

measures are taken and recorded at appropriate points in the execution [38].

In practice, a number of issues have to be taken into account in order to

obtain accurate enough measurements. These include the selection of the

places where the instrumentation code will be inserted, how to minimize the

effects of such instrumentation on the execution (not only execution time but

also, e.g., cache behavior), and how to work around the complex instruction

scheduling performed by modern processors, which may lead to large variance

in the results, especially since we aim at measuring very small fragments of

code.

A first approximation is to add profiling-related calls in designated parts

of the bytecode interpreter main loop. Figure 3.7 shows a piece of code

illustrating this. The operation record profile info(op) records the start

time for the bytecode op. The end time is processed when the next opcode

is fetched. The data for each bytecode is maintained in memory during

execution (and in raw form in order to impact execution as little as possible)

and later saved to an external file.

A benchmark-based analysis is also proposed in [38], which describes how

82 Chapter 3. Applying the Framework to Execution Time Estimation

the instrumented code can be reused effectively on various platforms without

modifying it, and how the execution time of a specific set of bytecodes can

be measured.

However, the methods mentioned above have drawbacks. For example,

the first one (instrumenting the main loop) depends on the existence of very

precise, non-intrusive, low-overhead timing operations which, unfortunately,

are not always available in all platforms. Portable O.S. calls, besides having

a typically high associated overhead, are in general not accurate enough for

our purposes. Even if a very fast timing operation is available (which is not

the case in platforms such as mobile and embedded devices), its introduction

may affect the behavior of the machine being analyzed if the abstract machine

loop is very optimized. For example, if the new code changes register and

variable allocation, program behavior will be affected in unforeseen ways.

We will, however, use an instrumented loop like that of Figure 3.7 to

count the number of bytecodes executed in a calibration step.

3.3.6 Measuring Time Accurately

In order to do portable time measurements in platforms where high resolution

timing is difficult or impossible to achieve, workarounds have to be used.

The approach that we have followed is based on using synthetic benchmarks

which on purpose repeatedly execute the instructions under estimation for a

large enough time, and later divide the total execution time by the number

of times the instructions were executed. A complication in this process is

that it is in general not possible to run a single instruction repeatedly within

the abstract machine, since the resulting sequence would not be legal and

may “break” the abstract machine, run out of memory, etc. In general, more

complex sequences of instructions must be constructed and repeated instead.

Therefore, the approach we have followed involves designing a set of legal

programs which cover all the bytecode instructions, relate the execution time

of these programs with the individual instruction execution times with a

system of equations, and solving such a system.

3.3. Bytecode-Based (Low-Level) Model 83

Programs Instructions Trace

c1 5 :- c1 5 0. 00 : execute 01 00 : execute 01

c1 5 0 :- c1 5 1. 01 : execute 02 01 : execute 02

c1 5 1 :- c1 5 2. 02 : execute 03 02 : execute 03

c1 5 2 :- c1 5 3. 03 : execute 04 03 : execute 04

c1 5 3 :- c1 5 4. 04 : execute 05 04 : execute 05

c1 5 4 :- c1 5 5. 05 : execute 06 05 : execute 06

c1 5 5. 06 : proceed 06 : proceed

c1 0 :- c1 0 0. 01 : execute 02 01 : execute 02

c1 0 0. 02 : proceed 02 : proceed

Table 3.7: Programs used in order to get the execution time of the execute

instruction.

3.3.7 Getting Instruction Execution Time

We now discuss how to set up calibration programs in order to get the cost

of bytecodes. In this section, and in order to simplify the discussion, we

deal with those bytecodes whose execution time is bound by a constant. In

the following section we extend our technique to manage instructions whose

execution time is unbound.

Let Ci, i = 0, 1, . . . , n be a set of synthetic calibration programs, each of

them returning the execution time of a block of code. Each Ci, which we will

refer to as calibrator, is generated in such a way that it repeats such block

a given number of times, say r. Let us assume, for example, that we want

to calibrate the WAM instruction “execute” when it does not fail and that

we want to repeat its execution 5 times (i.e., r = 5). Table 3.7 shows a set

of programs which can be used to calibrate this WAM instruction. Columns

Instructions and Trace show the WAM code as generated by the compiler

and the sequence of instructions executed when running the program starting

from the first clause respectively. In general, in our approach, rather than a

concrete program, calibrators are program generation templates which take

r as an input and return, e.g., the programs in Table 3.7 for that value

84 Chapter 3. Applying the Framework to Execution Time Estimation

of r. The actual calibration program includes an entry point which calls

the programs in Table 3.7 and returns the value of the execution time of

the execute instruction, subtracting the time spent in the entry calls (e.g.,

c1 5 for Table 3.7). In this case the calibration time is easy to compute

as the difference between the execution time of c1 5 and c1 0 divided by

r. The result of the calibration should ideally be invariant with respect to

r; in practice this is however not true due, among other factors, to timing

imprecision. Thus, r needs to be determined for each case: it has to be a

large enough value to ensure stability of the time measured by the calibrator

for the particular platform and the method used to measure time, but not

excessively large, as this would make calibration impractical.

In some cases we cannot isolate the behavior of only one bytecode. This

is specially the case in the calibrators of instructions which alter the pro-

gram flow, such as call, proceed, trust me, try me else, retry me else,

allocate, deallocate. It is also the case when measuring the cost of failure

for any of the instructions which can fail (generally the get and unify in-

structions). All these instructions need to be always executed together with

other bytecodes in order to make the calibration program legal. As a result,

and due to interactions between the costs of the different instructions, the

equations are not as easy to configure in all cases as the simple case for the

execute instruction above.

As a simple example, the calibrator that returns the cost of call and

the proceed instructions uses the programs in Table 3.8 (where we have

turned off the optimization of register / variable allocation in the compiler

for simplicity). In order to be able to separate the cost of call and proceed

an idea might be to find a calibrator that isolates the cost of proceed by itself

and subtract from the value given by the calibrator for call and proceed and

obtain the cost of call. However, that is in general not possible since in all

legal calibrators proceed and call must always appear combined with other

bytecodes. In general we need to set up a system of equations in which the

known values are the costs given by our calibrators and the unknown values

3.3. Bytecode-Based (Low-Level) Model 85

Programs Instructions Trace

c2 5 :- 00 : allocate 00 : allocate 06 : call 09

c 5, 01 : call 09 01 : call 09 09 : proceed

c 5, 02 : call 09 09 : proceed 07 : deallocate

c 5, 03 : call 09 02 : call 09 08 : execute 09

c 5, 04 : call 09 09 : proceed 09 : proceed

c 5, 05 : call 09 03 : call 09

c 5, 06 : call 09 09 : proceed

c 5. 07 : deallocate 04 : call 09

08 : execute 09 09 : proceed

05 : call 09

c 5. 09 : proceed 09 : proceed

c2 0 :- 00 : allocate 00 : allocate

c 0, 01 : call 04 01 : call 04

c 0. 02 : deallocate 04 : proceed

03 : execute 04 02 : deallocate

03 : execute 04

c 0. 04 : proceed 04 : proceed

Table 3.8: Programs used to get the execution time of the call and proceed

instructions.

are the costs of the individual bytecodes. Such equations can be configured

automatically, by executing the calibration programs in a special version of

the WAM with the bytecode dispatch loop instrumented as in Figure 3.7 so

that the profiler keeps an account of the executed bytecodes.

Let ci, 0≤i≤n, be the time calibrator Ci has returned, and let βj, 0≤j≤m,

m≥n, be the cost of a bytecode Bj, distinguishing between the case of

a fail or a success in the execution of such bytecode. In other words,

Bj∈I×{fail , success}, where I is the set of all possible bytecodes and fail

and success represent the failure or success of the execution of a bytecode.

86 Chapter 3. Applying the Framework to Execution Time Estimation

We can then set up the following system of equations:

c1 = a11β1 + a12β2 + · · ·+ a1mβm

c2 = a21β1 + a22β2 + · · ·+ a2mβm

. . .

cn = an1β1 + an2β2 + · · ·+ anmβm

(3.11)

which we can rewrite such using matrix notation:

C = AB (3.12)

where B = (βi) is the vector of execution times for the bytecodes. In order

to obtain B we ideally need to configure as many calibrators as bytecodes.

Finding a solution to this system of equations requires, in principle, inde-

pendence among the equations (i.e., there is no other linear independent

equation but those in expression (3.11)), and to have as many equations as

variables. However, that is not always possible due to dependencies between

the number of times a bytecode is executed. For example, in the WAM under

analysis, the following invariant holds:

Proposition 1. For any program, the number of times retry me else is

called plus the number of times trust me is called is equal to the number of

failures.

This holds since a failure always causes backtracking to the next choice

point, which always implies executing either a retry me else or a trust me

instruction. As the coefficients aij in the equation above are precisely the

number of times every bytecode is executed, it turns out that, for a given

execution, some coefficients are dependent on some other coefficients, there-

fore breaking the initial independence assumption: the system of equations

is underdetermined and it does not have a unique solution.

For this reason, since the coefficients aij where obtained by summarizing

legal programs (i.e., the calibrators), and they will be affected by the linear

dependency mentioned above, the undetermined system (3.12) will not have

3.3. Bytecode-Based (Low-Level) Model 87

a unique solution. However, note that when several bytecodes in a block

must be executed together (because of constraints in the WAM compilation

and execution scheme) knowing the execution time of each of them in iso-

lation is not needed: knowing the total execution time of the whole block

is enough. This intuitive idea can be formalized and generalized with the

following result:

Proposition 2. Given a set of n calibration programs Ci, that define n linear

independent equations with βi variables (corresponding to the m bytecodes,

with both success and failure cases included), if we have that for all programs

there exist m−n linear independent relationships between the number of byte-

codes that are always fulfilled, then the estimated execution time is invariant

with respect to the choice of any arbitrary element of the solution set of such

linear system.

Proof : Let B be an arbitrary solution of C = AB. Let X be a vector

which represents the number of times each bytecode has been executed for

a given program. The estimated execution time is E = XTB, i.e., the sum

of the time for each bytecode multiplied by the number of times it has been

executed.

By linear algebra, and considering that each calibrator defines a linear

independent equation, we have that the range of A is n, and the kernel (or

nullspace) of A is given by the set of all λ such that Aλ = 0, a vector space

of dimension m − n (0 represents the null vector of dimension n). In other

words, we have that:

C = AB = AB + 0 = AB + Aλ = A(B + λ) (3.13)

Then, B + λ is a solution of Equation (3.12), and it is also a representative

of the solution set of such equation system. What we should prove now is

that XT (B + λ) = XTB, that is, canceling common terms and transposing

the equations:

λTX = 0 (3.14)

88 Chapter 3. Applying the Framework to Execution Time Estimation

On the other hand, we have a set of m− n = k linear dependencies between

the number of bytecodes executed of the form:

0 = v11x1 + v12x2 + · · ·+ v1mxm

0 = v21x1 + v22x2 + · · ·+ v2mxm

. . .

0 = vk1x1 + vk2x2 + · · ·+ vkmxm

Or, rewriting them using matrices:

0 = V X (3.15)

The result of multiplying an arbitrary vector d by V is a vector µT = (dV)

and for the equation above, it follows that µTX = 0.

But note that the rows of A were obtained executing a program that

meets the linear dependencies too, that is, µTAT = 0. Transposing, we have:

Aµ = 0 (3.16)

For this reason, we can see that as λ, µ is a member of the kernel of A, and

considering the uniqueness of the kernel of a matrix, and that µ is an element

of a space of dimension m − n, we can choose µ such that λ = µ, that is,

we can express λ as the product (dV)T , as result of basic theorems of linear

algebra. Therefore, we have that:

λTX = µTX = (dV)X = d(V X) = d(0) = 0 (3.17)

2

Then, the method we follow to select a representative solution B is simply

to complete the equation systems with m−n arbitrary equations in order to

make them become determined. Such equations should be selected in such a

way that the βi values be positive, for example, by setting the cost to 0 as

the time of the bytecodes that are faster, avoiding negative solutions.

3.3. Bytecode-Based (Low-Level) Model 89

3.3.8 Dealing with Unbound Instructions

We now consider the case of bytecode instructions whose execution time de-

pends on the specific values that certain parameters can take at run time. In

such cases the accuracy of our analysis can be increased by taking advantage

of static term-size analysis and the addition of cost-related assertions for such

instructions. Such assertions make it possible to introduce ad-hoc functions

giving the size of the input parameters of the bytecode.

In fact, our system is able to deal with several metrics (e.g., value, length,

size, depth, ...) as shown in [22, 21, 23], but for brevity, in the following

paragraphs we will describe an example unifying lists.

Let us take, the instruction unify variable(V, W) and let us assume

that we want to calculate an upper-bound for its execution time upon success

and for the case where the two arguments to unify are lists of numbers. We

assume that an upper-bound to the execution time is proportional to the

number of iterations necessary to scan the lists. The timing model for such

instruction is thus K1 +K2 ∗ length(V), because if the instruction succeeds,

the length of both V and W should be equal. The value of constants K1 and

K2 is calculated by setting up two benchmarks which unify lists of different

length l1 and l2. If the cost of unify variable for these two list lengths

is, respectively, B1 and B2, then we set up the following system of linear

equations:

B1 = K1 +K2 × l1
B2 = K1 +K2 × l2

(3.18)

Note that B1 and B2 can be added to the system of equations (3.12) to get

its values in one step, and later, we solve K1 and K2 in the system of linear

equations (3.18).

3.3.9 Experimental Results

In order to evaluate the techniques presented so far we need to choose a

concrete bytecode language and an implementation of its abstract machine

90 Chapter 3. Applying the Framework to Execution Time Estimation

to execute and profile with.

In 1983, David H. D. Warren designed an abstract machine for the ex-

ecution of Prolog consisting of a memory architecture and an instruction

set [66, 1]. This design became known as the Warren Abstract Machine

(WAM), currently is the de facto standard target for most publicly available

Prolog compilers, using the architecture suggested by Warren or a derivate

of it.

In order to evaluate the feasibility of the approach we have chosen a

relatively simple WAM design, which is quite close to the original WAM

definition. It is based on [14], but has been ported from Java to C/C++ to

achieve similar performance of other Prolog systems.

The use of a relatively simple abstract machine allows evaluating the tech-

nique while avoiding the many practical complications present in modern im-

plementations, such as having complex instructions resulting from merging

other, simpler ones, or specializations of instruction and argument combina-

tions. This of course does not preclude the application of our technique to

the more complex cases.

In our concrete abstract machine, we have considered 42 equations for

43 bytecodes, differentiating the success and failure cases. As we have seen

in Proposition 1, there exists a linear relationship between the number of

bytecodes that a program will call which can be stated as:

0 = x30 + x38 − x13 − x15 − x17 − x22 − x41

−x43 − x49 − x50 − x51 − x52 − x53

where the xi represent the number of times the bytecode tagged as βi has

been executed for any program being analyzed (see Tables 3.9 and 3.11).

By Proposition 2, we are free to select any arbitrary solution of the linear

system. The proposed solution has been found by setting arbitrarily the cost

of fail to zero. Then, our set of linear equations, discarding those whose

3.3. Bytecode-Based (Low-Level) Model 91

calibrators are composed only with one bytecode, is as follows:

0 = β13

c01 = β01 + β07

c07 = β07 + β24

c09 = β09 + β24

c11 = β01 + β11 + 2β28 + β30

c13 = β01 + β13 + β30

c15 = β15 + β38

c17 = β17 + β30

c19 = β19 + β33

c20 = β20 + β33 + β43

c22 = β01 + β22 + β23 + β30

c29 = β01 + β17 + β30

c34 = β01 + β23 + β30 + β35

c36 = β01 + 2β28 + β30 + β37

c37 = β17 + β38

c38 = β07 + β24 + β39

c40 = β01 + β23 + β30 + β41

c42 = β01 + 2β27 + β30 + β52

c43 = β01 + β27 + β28 + β30 + β49

c46 = β01 + 2β28 + β30 + β50

c49 = β01 + 2β19 + 2β27 + β30 + 2β31 + 2β33 + β51

c51 = β01 + 2β20 + β30 + 2β31 + β53

(3.19)

Solving this linear system we get:

β01 = c29 − c17

β07 = −c29 + c17 + c01

β09 = −c29 + c17 + c09 − c07 + c01

β11 = −2c27 − c13 + c11

β13 = 0

β15 = −c37 + c29 + c15 − c13

β17 = c29 − c13

β19 = c19 − c32

β20 = −c44 − c32 + c20

β22 = −c23 + c22 − c13

β24 = c29 − c17 + c07 − c01

β30 = −c29 + c17 + c13

β35 = c34 − c23 − c13

β37 = c36 − 2c27 − c13

β38 = c37 − c29 + c13

β39 = c38 − c07

β41 = c40 − c23 − c13

β49 = c43 − c27 − c26 − c13

β50 = c46 − 2c27 − c13

β51 = c49 − 2c30 − 2c26 − 2c19 − c13

β52 = c42 − 2c26 − c13

β53 = c51 + 2c44 + 2c32 − 2c30 − 2c20 − c13

(3.20)

The leftmost column of Tables 3.9 and 3.11 summarizes the calibration

data for the instructions of our WAM implementation. For brevity, we ac-

tually only show those being used in the examples tested, although we have

calibrated all of them. In the second column there is a tag that is the variable

name in the linear equations system.

In the examples we deal with a subset of Prolog which only has operations

on integers, atoms, lists, and terms. Likewise, we obviate issues like mod-

92 Chapter 3. Applying the Framework to Execution Time Estimation

ules or syntactic sugar which can be dealt with at the Prolog level. A few

additional built-in predicates are required to have a minimal functionality

including write/1, consult/1, etc. They are profiled separately and their

timing is given to the system through assertions. This is also a valid solution

in order to be able to analyze larger programs.

The experiments were made on the following representative platforms:

• UltraSparc-T1, 8 cores x 1GHz (4 threads per core), 8GB of RAM,

SunOS 5.10.

• Intel Core Duo 1.66GHz, 2GB of RAM, Ubuntu Linux 7.04.

• Nokia N810. 400MHz processor, 128MB of RAM, Internet Tablet OS,

Maemo Linux based OS2008 51.3

In order to reduce noise in the data because of spurious results, we have

repeated each experiment 20 times and present the lowest results. In the

calibration step 1000 repetitions were made (i.e., r = 1000). When possible,

the tests were performed with the machines in single-user mode, stopping

unnecessary processes. System tasks such as garbage collection, which, as

mentioned before, is not considered in our model at the moment, were turned

off.

Tables 3.9 and 3.11 show the timing model for this WAM and the archi-

tectures studied. In the benchmarks used the is/2 instruction is compiled

into basic operations over pairs of numbers. The table shows the corre-

sponding instructions named arith *. We also have separated the cost of

the instructions put constant, get constant when they are called for an

atom or an integer. Note however, that their cost is very similar in most

cases, but this will still help to reduce errors in the estimation. For the

unify variable instruction we have also included calibrations for several

cases depending on the type and size of the input arguments in order to

increase precision. In other cases, as mentioned in 3.3.8, the execution time

of this instruction is not bounded by any a-priori known constant. Since,

3.3. Bytecode-Based (Low-Level) Model 93

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

allocate β01 29 366 1055
arith add β02 29 489 1438
arith div β03 29 580 1541
arith mod β04 29 641 1553
arith mul β05 28 519 1468
arith sub β06 28 519 1438
call β07 11 183 261
cut β08 13 183 581
deallocate β09 7 305 142
execute β12 15 152 574
get level β18 28 213 1054
get list β19 20 275 763
get struct β20 52 642 1766
get value β21 43 488 1457
get variable β23 43 549 1658
proceed β24 17 61 699
set variable β33 29 213 850
trust me β38 29 336 973
try me else β39 30 457 1132
unequal β40 21 244 1021

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

get constant atom β14 38 518 1211
get constant int β16 28 396 1157
put a constant atom β25 20 122 594
put a constant int β26 20 122 506
put constant atom β27 37 274 1085
put constant int β28 37 274 997
put value β29 21 183 910
retry me else β30 33 336 999
set constant atom β31 26 213 861
set constant int β32 25 183 767
unify variable(nvar,var) β42 35 396 1309
unify variable(var,nvar) β43 35 397 1309
unify variable(int,int) β44 32 275 1179
unify variable(atm,atm) β46 44 427 1413
unify variable(

str(1),str(1))
β47 77 885 2560

unify variable(
list(1),list(1))

β45 96 1068 3291

unify variable(
list(100),list(100))

β48 4062 42511 217975

Table 3.9: Timing model for the WAM instructions. Cost of bytecodes when

they succeed.

Platform Timing Model (ns)

Intel 44 + 40.62 ∗ length(X)

N810 427 + 425.11 ∗ length(X)

Sparc 1413 + 2179.75 ∗ length(X)

Table 3.10: Timing model given by a linear function, for

unify variable(X,Y) when the arguments are lists of integers, and

the instruction does not fail.

as also shown in Section 3.3.8, in our implementation it is possible to use

functions instead of constants as timing model for a given instruction, in this

table we include in the calibrations two data points for the case when the

arguments are lists of integers, and for lists of size (length) 1 and 100 (β45

and β48 in Table 3.9). The value for an empty list is the same as for unifying

any two equal atoms, i.e., β46 in Table 3.9. Table 3.10 shows the resulting

94 Chapter 3. Applying the Framework to Execution Time Estimation

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

fail β13 0 0 0
get constant atomβ15 32 457 1256
get constant int β17 26 366 1169
get value β22 25 244 1106
unequal β41 11 61 651
unify variable β43 121 1065 3867

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

unify variable(const1,
const2), const1 6= const2 β49 41 154 697

unify variable(int,int) β50 122 1035 3830
unify variable(list(1),list(1))β51 338 3227 12229
unify variable(atm,atm) β52 127 1126 4282
unify variable(str(1),str(1)) β53 223 2381 9239

Table 3.11: Timing model for the WAM instructions. Cost of bytecodes

when they fail.

Program Data size

1 append(+A,+,-) x=length(A)=150
2 evalpol(+A,+X,-) x=length(A)=100
3 fib(+N,-) x=N=16
4 hanoi(+N,+,+,+,-) x=N=8
5 nreverse(+L,-) x=length(L)=83
6 palindro(+A,-) x=length(A)=9
7 powset(+A,-) x=length(A)=11

Program Data size

8 list diff(+L,+D,-) x=length(L)=65
y=length(D)=65

9 list inters(+L,+D,-) x=length(L)=65
y=length(D)=65

10 substitute(+A,+B,-) x=term size(A)=67
y=term size(B)=80

11 derive(+E,+,-) x=term size(E)=75

Table 3.12: List of program examples used in the experimental assessment.

timing model for unify variable using these values to fit our linear model

for this instruction.

Using the timing model shown in Tables 3.9, 3.10, and 3.11, we have

performed some experiments with a series of programs on the three platforms

(Intel, N810, and Sparc) in order to assess the accuracy of our technique for

estimating execution times. The results of these experiments are shown in

Tables 3.13 (Intel), 3.14 (N810), and 3.15 (Sparc).

Column Pr. No. lists the program identifiers, whose association with

the programs and the input data sizes used is shown in Table 3.12. Column

Cost App. indicates the type of approximation of the automatically inferred

cost functions which estimate execution times (as a function on input data

size): upper-bound (U), lower-bound (L), or exact (E). Such cost functions

are shown in column Cost Function for the three different platforms con-

sidered in our experiments. The variables x and y represent the sizes of the

3.3. Bytecode-Based (Low-Level) Model 95

Pr. Cost. Intel Est. Prf. Obs. D. Pr.D.

No. App. Cost Function (µs) (µs) (µs) (%) (%)

1 E 0.73x+ 0.21 110 110 113 -2.4 -2.4

2 E 0.69x+ 0.19 69 69 71 -2.3 -2.3

3 E 0.69 · 1.6x + 0.21(−0.62)x − 0.72 1525 1525 1576 -3.3 -3.3

4 E −0.0042 · 2x + 0.73x · 2x − 0.86 1501 1501 1589 -5.7 -5.7

5 E 0.37x2 + 0.49x+ 0.12 2569 2569 2638 -2.7 -2.7

6 E 0.36 · 2x + 0.37x · 2x − 0.24 1875 1875 2027 -7.8 -7.8

7 E 0.91 · 2x + 0.87x− 0.6 1868 1868 1931 -3.3 -3.3

8 L 0.66x+ 0.2 43 68 81 -67.2 -17.8

U 0.78xy + 1.7x+ 0.4 3414 3569 3640 -6.4 -2.0

9 L 0.83x+ 0.2 54 79 91 -54.6 -14.8

U 0.78xy + 1.7x+ 0.4 3414 3694 4011 -16.2 -8.2

10 L 2x 135 142 124 8.6 13.7

U 1.4xy + 1.4y + 6.1x+ 4.1 7922 2937 2858 120.6 2.7

11 L 2.9x 216 138 111 72.3 22.5

U 3x+ 3 226 216 162 34.0 29.5

Table 3.13: Observed and estimated execution time with cost functions, Intel

platform (microseconds).

input arguments to the programs which are relevant for the inference of the

cost functions. The type of approximation directly depends on the one used

by the resource analysis described in Section 2.3.3 and particularized in Sec-

tion 3.3.3 for estimating the number of executed instructions (as a function

on input data size). The value E means that the lower- and upper-bound

cost functions are the same, and thus, since the analysis is safe, this means

that the exact cost function was inferred. Using the cost functions shown in

column Cost Function, and in order to assess their accuracy, we have also

estimated execution times for particular input data for each program and

compared them with the observed execution times. These execution times

are shown in columns Est. and Obs. respectively. Column D. shows the

96 Chapter 3. Applying the Framework to Execution Time Estimation

Pr. Cost. N810 Est. Prf. Obs. D. Pr.D.

No. App. Cost Function (µs) (µs) (µs) (%) (%)

1 E 7.8x+ 2.7 1169 1169 1037 12.0 12.0

2 E 7.8x+ 2.7 786 786 641 20.6 20.6

3 E 8.3 · 1.6x + 2.5(−0.62)x − 8.4 18333 18333 14496 23.7 23.7

4 E 0.74 · 2x + 7.8x · 2x − 10 16095 16095 16144 -0.3 -0.3

5 E 3.9x2 + 5.7x+ 1.6 27247 27247 28381 -4.1 -4.1

6 E 4.4 · 2x + 3.9x · 2x − 2.9 20167 20167 20416 -1.2 -1.2

7 E 9.5 · 2x + 10x− 6 19517 19517 19653 -0.7 -0.7

8 L 7.3x+ 2.8 474 744 640 -30.4 15.1

U 8.2xy + 19x+ 5.5 35849 37162 29266 20.4 24.1

9 L 8.7x+ 2.8 569 839 732 -25.4 13.7

U 8.2xy + 19x+ 5.5 35849 38076 29907 18.2 24.4

10 L 21x 1399 1475 1068 27.3 32.9

U 15xy + 15y + 64x+ 43 85893 30375 25543 153.3 17.4

11 L 29x 2190 1423 854 108.7 53.3

U 30x+ 30 2306 2193 1342 56.8 51.1

Table 3.14: Observed and estimated execution time with cost functions,

Nokia N810 platform (microseconds).

relative harmonic difference ∗ between the estimated and the observed time.

The source of inaccuracies in the execution time estimations of our technique

come mainly from two sources: the timing model (which gives the execution

time estimation of bytecodes, as shown in Tables 3.9 and 3.11)) and the

static analysis (see Section 3.3.3, which estimates the number of times that

the bytecodes are executed, depending on the input data size). Since we

are interested in identifying the source(s) of inaccuracies, we have also in-

troduced the column Prf. It shows the result of estimating execution times

using the timing model and assuming that the static analysis was perfect

and obtained a function which provides the exact number of times that the

∗rel harmonic diff(x, y) = (x− y)(1/x+ 1/y)/2.

3.3. Bytecode-Based (Low-Level) Model 97

Pr. Cost. Sparc Est. Prf. Obs. D. Pr.D.

No. App. Cost Function (µs) (µs) (µs) (%) (%)

1 E 26x+ 7.4 3906 3906 4670 -18.0 -18.0

2 E 25x+ 7.1 2543 2543 2985 -16.1 -16.1

3 E 26 · 1.6x + 7.8(−0.62)x − 27 56828 56828 59120 -4.0 -4.0

4 E 1.2 · 2x + 26x · 2x − 33 53504 53504 63156 -16.7 -16.7

5 E 13x2 + 17x+ 4.3 90973 90973 109849 -19.0 -19.0

6 E 13 · 2x + 13x · 2x − 8.5 66400 66400 78980 -17.4 -17.4

7 E 32 · 2x + 32x− 22 66224 66224 78151 -16.6 -16.6

8 L 24x+ 7.1 1574 2458 2991 -68.7 -19.7

U 27xy + 62x+ 14 118269 123733 129951 -9.4 -4.9

9 L 30x+ 7.1 1940 2824 3394 -58.9 -18.5

U 27xy + 62x+ 14 118269 127378 133703 -12.3 -4.8

10 L 68x 4545 4821 4634 -1.9 4.0

U 48xy + 48y + 207x+ 140 277175 101779 111829 103.8 -9.4

11 L 95x 7104 4628 4038 59.6 13.7

U 98x+ 98 7454 7147 6081 20.5 16.2

Table 3.15: Observed and estimated execution time with cost functions,

Sparc platform (microseconds).

bytecodes are executed. This obviously represents the case in which all loss

of accuracy must be assigned to the timing model. The “perfect” cost model

is obtained from an actual execution by instrumenting the profiler so that it

records the number of times each instruction is executed for the application

and the particular input data. Column Pr.D. shows the relative harmonic

difference between Prf. and the observed execution time Obs.

The upper part of Tables 3.13, 3.14, and 3.15, up to the double line

corresponds to examples where an exact cost function for the number of

executed bytecodes was automatically inferred by the static analysis (note

that, as expected, the values Est. and Prf. are the same). We can see that

with an exact static analysis, the estimated execution times Est. are quite

98 Chapter 3. Applying the Framework to Execution Time Estimation

Model A B C D WAM based

Deviation (%) 51.17 31.06 21.48 58.45 4.72

Table 3.16: Comparison between the higher level models and the abstract

machine-based model, on the Intel platform.

precise, which in turn supports the accuracy of our timing model.

It is particularly interesting to compare these results with those which

were obtained using a variety of higher-level models in [49]. Table 3.16 pro-

vides the standard deviation of the four high-level models of [49] as well as

that of the abstract machine-based model presented in this section, for the

Intel platform and our set of benchmarks. It can be observed that the re-

sults obtained with the abstract machine-based model are more than five

times better on the same platform than those obtained using the higher-level

models.

With the abstract machine-based model, and for this type of programs

we believe that the remaining error comes simply from the accumulated loss

of accuracy of the bytecode instruction profiling and expect that making the

timing model more precise will increase precision even further.

The lower part of Tables 3.13, 3.14, and 3.15 shows programs for which

there is no unique value for Φ(p, time, n), where Φ(p, time, n) (as described

in 2.3) denotes the cost (in time units) of computing a call to program p

for an input of size n on a given platform. The reason is that for such

programs, the number of instructions executed does not only depend on the

input data sizes, but also depends on other characteristics of the input data

(e.g., their actual values). Thus, for a given data size, there are actual lower-

and upper-bounds for the cost of the program calls. For this reason, the two

observed execution times shown in column Obs. for each program have been

obtained by running the program with the input data, of the size specified in

Table 3.12, that yield the actual lower- and upper-bounds to the execution

times for such size. In this case, the static analysis infers approximations to

such actual lower- and upper-bound cost functions (L and U respectively).

3.3. Bytecode-Based (Low-Level) Model 99

These predictions are understandably much less accurate in these cases than

those in the first part of the table, but still reasonable. In any case, lower-

bounds and upper-bounds tend to be reasonably smaller or bigger than the

observed execution times respectively. In general, for the programs in the

lower part of the tables with big (absolute) values for D., the (absolute) value

for Pr.D. is reasonably small. This means that, in those cases, most of the

inaccuracy in the estimation of execution times (Est.) comes from the static

analysis, which does not approximate actual lower- and upper-bound cost

functions accurately enough, and that the timing model used for predicting

the execution time of bytecodes is reasonably precise. Thus, we believe that

using a better static analysis for inferring cost functions which take into

account other characteristics of the input data, besides their sizes, would

significantly improve the predictions. In any case, there is always a reasonable

slack in the precision of the estimations due to the timing measurements

and the timing model. In most cases the best approximation is given by

the combination of “upper approximation of cost execution” with “mean of

bytecode instruction execution time,” even if this combination still sometimes

produces inaccurate results for this class of programs. This is, in any case,

quite understandable since, to start with, no exact cost function was deduced

for them.

For nondeterministic programs involving significant search the predicted

and the actual execution times turn out to be very different. This is ul-

timately due to the lack of accuracy of the automatic cost analysis when

dealing with such programs, which point to an issue to be solved, i.e., that

of finding out reliably the number of solutions of a goal. We are not show-

ing any example of this kind, since they add little interesting information

regarding the pursue of accuracy.

3.3.10 Section Conclusions and Future Work

We have developed a framework for estimating upper- and lower-bounds on

the execution times of logic programs running on a bytecode-based abstract

100 Chapter 3. Applying the Framework to Execution Time Estimation

machine. We have shown that working at the abstract machine level allows

taking into account low-level issues without having to tailor the analysis for

each architecture and platform, and allows obtaining more accurate estimates

than with previous approaches, including comparatively accurate upper- and

lower-bound estimations of execution time.

Although the framework has been presented in the context of logic pro-

grams, we believe the technique can easily be applied to other languages.

This adaptation of the approach, while certainly not trivial, to some extent

would actually imply some simplification, since backtracking does not need

to be taken into account. For example, analyses have been recently developed

for Java bytecode [2] which infer the number of execution steps using similar

techniques to those used in logic programming [22, 21, 23]. Such analyses

could be adapted, following the techniques presented herein, to take into ac-

count the bytecode timing information and would then be able to estimate

actual execution time for Java programs. Appropriate cost models for Java

bytecode are already being developed in [60].

We believe that the more accurate execution time estimates that can be

obtained with our technique can be very useful in several contexts includ-

ing parallelism, compilation, real-time applications, pervasive systems, etc.

More concretely, increased timing precision can improve the effectiveness of

resource/granularity control in parallel/distributed computing. This belief is

based on previous experimental results, where it appeared that, even if im-

proved precision in timing estimates is not essential, it does yield increased

speedups. Also, the inferred cost functions can be used to develop automatic

program optimization techniques. For example, they can be used for per-

forming self-tuning specialization which compares statically the estimated

execution time of different specialized versions [18].

Given that our experimental results are encouraging with respect to ac-

tually being able to find more accurate upper- and lower-bounds to program

execution times, the approach may eventually also be used for verification

(or falsification) of timing constraints, as in, for example, real-time systems,

3.3. Bytecode-Based (Low-Level) Model 101

which was not possible in an accurate way with previous approaches. In fact,

our approach (which can be adapted to take also into account destructive as-

signment, as in [50]) can potentially be used to solve a common problem in

current WCET static analysis, where only constant WCET bounds (i.e., non

dependent on input data sizes) are inferred. These bounds are not always

appropriate since the WCET of a given program often depends on several

input parameters, and using an absolute bound, covering all possible situa-

tions (i.e., all possible values or sizes of input), produces only a very gross

over approximation [28]. Substituting the estimated costs of the bytecodes

by the actual worst-case costs of the instructions and using our approach,

the WCET is expressed as a cost function parameterized by the size or val-

ues of input arguments, providing tighter WCET approximations. On the

other hand, WCET work has produced more accurate (but, unfortunately,

non-freely available) timing models which take into account many low-level

parameters (such as cache behavior, pipeline state, etc.) which we have ab-

stracted away in our work. It is clear that a combination of both techniques

might be very useful in practice.

102 Chapter 3. Applying the Framework to Execution Time Estimation

Chapter 4

Unit-Testing, Run-Time and

Compile-Time Checking

4.1 Introduction

In this chapter we present an approach that unifies unit testing with run-time

verification within an overall framework that also comprises static verification

and static debugging [12, 33, 54, 55, 34]. This novel framework for program

development is aimed at finding bugs in programs or validating them with

respect to (partial) specifications given in terms of assertions (using the con-

cept of abstractions as over-/under-approximations of program semantics).

A novel and expressive language of assertions allows describing quite general

program properties [53, 56, 17, 11].

The previous work in this context cited above has concentrated mostly on

the static (i.e., compile-time) checking of such assertions as well as on tech-

niques for reducing at compile-time the number of checks that have to be

performed dynamically (i.e., at run time): any assertions present in the pro-

gram are verified (or falsified) to the extent possible during the compilation

phase, since compile-time checking is always preferable to run-time checking

–always incomplete as a means of verification. However the existence in all

practical programs of data only known at run-time and the rich nature of the

103

104 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

properties considered make a certain degree of run-time checking inevitable

–a reasonable price to pay in return for property expressiveness.

In this work we concentrate instead on the run-time portion of the model.

Our aim is to a) develop effective implementation techniques for run-time

checking that integrate seamlessly into our combined compile-time/run-time

framework and b), based on this, to also develop well-integrated facilities

for unit testing. To this end, we have first developed an implementation of

run-time checks, as an evolution of the approach sketched in [55], based on

transforming the program into a new one which preserves the semantics of

the original program and at the same time checks during its execution the

assertions. Such transformation allows checking preconditions and postcon-

ditions, including conditional postconditions, i.e., postconditions that must

hold only when certain preconditions hold. It also allows checking proper-

ties at arbitrary program points (i.e., in literal positions in clause bodies)

as well as certain computational properties (properties that are not specific

to a program point but rather to whole computations, such as, for example,

determinism, non-failure, or use of resources –steps, time, memory, etc.).

Our transformation also addresses to some extent one of the main draw-

backs of run-time checking (in addition to incompleteness): the overhead

introduced during execution of the program. The proposed transformation

reduces run-time overhead by avoiding meta-interpretation whenever possi-

ble and by using special features of the low-level language when appropriate.

Also, run-time checks can be compiled inline as opposed to calling a library,

saving (meta-)call overhead.

Another relevant issue addressed by our transformation is being able to

provide messages to the user which are as informative as possible when a

violation of the safety policy is found, i.e., when a run-time check fails. To this

end, the transformation saves appropriate information at source code level in

the transformed file. Depending on the level of code instrumentation selected,

increasingly more accurate information about the assertions is saved, and,

thus, presented, offering different trade-offs between information level and

4.1. Introduction 105

program size.

With respect to testing, we propose a minimal extension to the assertion

language in order to be able to define unit tests [26]. The resulting language

can express for example the input data for performing such unit tests, the

expected output, the number of times that the unit tests should be repeated,

etc. In contrast to previous work in this area (e.g., [8], [69], or the unit test

framework recently included in SWI-Prolog [67]), a key contribution of our

approach is that these unit tests blend in with the assertion language and

reuse the overall framework. In particular, as mentioned before, only test

drivers need to be added because the existing run-time assertion checking

machinery is used as a checker for the cases defined by the unit tests.

An advantage of our approach is that the unit test specifications can be

encapsulated in the same module that contains the predicates being tested, or

placed in a separate file containing the tests for the module or modules of the

application. This contrasts with, e.g., the plunit unit testing of SWI-Prolog,

where unit test specifications are written in the same source code module or

in a dedicated file with the same name as the module being tested.

Both the run-time check generation and the unit testing approaches pro-

posed have been implemented within the CiaoPP/Ciao system. We provide

some experimental results which illustrate the implementation trade-offs in-

volved. As mentioned before, thanks to the CiaoPP/Ciao machinery only the

(parts of) assertions which cannot be verified at compile-time are converted

into run-time checks. Since in our approach unit tests are also assertions,

static analysis can also eliminate parts of or whole unit tests. At the same

time, the tight integration also allows using the unit test drivers to exercise

run-time checks corresponding to those parts of assertions that could not be

checked at compile-time, even if they were not conceived as tests. Figure 4.1

shows the resulting Ciao/CiaoPP’s unified framework.

106 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

Program

P

Assertions

(Iα):

:- test

:- check

...

Builtins/

Libraries

Static

Analysis

(Fixpoint)

Assertion

Normalizer

& Library

Interface

Analysis

Info

JP Kα

Comparator

(Including VC

generation)

RT-Check

Unit-Test

:- texec

:- check

:- false

:- checked

Possible

run-time error

Compile-time error

Verification warning

Verified

Certificate

(ACC)

(optimized)

code

Preprocessor

Figure 4.1: The Ciao unified assertion framework (CiaoPP’s verification/test-

ing architecture).

4.2 The Ciao Assertion Language

Assertions are linguistic constructions which allow expressing properties of

programs. In the Ciao assertion language, assertions are always instances

of some assertion schema. Such schemas allow talking about preconditions,

(conditional) postconditions, whole executions, program points, etc. Each

schema in turn contains one or two logic formulae which are (intuitively) used

to say things such as “X is a list of integers,” “Y is ground,” “p(X) does not

fail,” etc. In this approach the user has a high degree of freedom for defining

these logic formulae for the properties considered of interest. For space

considerations, we will focus on a subset of the Ciao assertion language. In

particular, although the language has assertions specifically designed for ex-

pressing properties related to the declarative semantics, in this work we will

focus on the operational semantics of programs, more specifically, in asser-

tions referring to execution states and computations (see [56, 11] for a detailed

description of the full language). Also, although the assertion language incor-

porates significant syntactic sugar, we will use only the (unfortunately more

verbose) raw forms. An execution state 〈G θ〉 consists of the current goal G

4.2. The Ciao Assertion Language 107

program-assert ::= :- predicate-assert . | prog-point-assert

predicate-assert ::= pred-assert | status pred-assert

| entry pred-cond | exit pred-cond

| texec pred-cond + exec-formula

pred-assert ::= calls pred-cond

| success pred-cond => state-formula

| comp pred-cond + comp-formula

pred-cond ::= Pred | Pred : state-formula

Pred ::= Pred-name(args)

args ::= Var | Var,args

state-formula ::= (state-formula , state-formula)

| (state-formula ; state-formula)

| compat(State-prop) | State-prop

comp-formula ::= (comp-formula , comp-formula)

| (comp-formula ; comp-formula)

| Comp-prop

exec-formula ::= (exec-formula , exec-formula) | Exec-prop

status ::= check | true | checked | trust | false
prog-point-assert ::= status(state-formula)

Figure 4.2: Syntax of the assertion language.

and the current constraint store θ which contains information on the values of

variables. The operational semantics is given in terms of derivations, which

are sequences of reductions between such execution states. By computation

we mean the (sorted) execution tree containing all possible derivations of a

goal from a calling state. Figure 4.2 shows the grammar of the raw form

assertion (sub)language (including the extensions for unit testing that will

be described later).

108 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

Predicate Assertions: They refer to properties of a particular predicate.

In the schemas below a concrete assertion will include concrete values in place

of the symbols Pred, Precond and Postcond. In all schemas Pred is a predicate

descriptor, i.e., a predicate symbol applied to distinct free variables, and

Precond and Postcond are logic formulas about execution states, that we call

state-formulae. An atomic state-formula is constructed with a state property

predicate (e.g., list(X) or X > 3) which expresses properties about (the

values) of variables. A state-formula can also be a conjunction or disjunction

of state-formulae. Standard (C)LP syntax is used, so that the comma should

be interpreted as conjunction (e.g., “(list(X), list(Y))”), and the

semicolon as disjunction (e.g., “(list(X) ; int(X))”).

• Describing success states:

:- success Pred [: Precond] => Postcond.

Interpretation: in any call to Pred, if Precond succeeds in the calling

state and the computation of the call succeeds, then Postcond should

also succeed in the success state.

Example 4.2.1. The following assertion expresses that for any call to

predicate qsort/2 with the first argument bound to a list of numbers,

if the call succeeds, then the second argument should also be bound to

a list of numbers:
:− success qso r t (A,B) : l i s t (A,num) => l i s t (B,num) .

2

If Precond is omitted, the assertion is equivalent to:

:- success Pred : true => Postcond.

and it is interpreted as “for any call to Pred which succeeds, Postcond

should succeed in the success state.”

• Describing admissible calls: :- calls Pred : Precond.

Interpretation: in all calls to Pred, the formula Precond should succeed

in the calling state.

4.2. The Ciao Assertion Language 109

Example 4.2.2. The following assertion expresses that in all calls to

predicate qsort/2, the first argument should be bound to a list of

numbers:

:− ca l l s qso r t (L ,R) : l i s t (L ,num) .

2

The set of all call assertions is considered closed in the sense that they

must cover all valid calls.

• Describing properties of the computation:

:- comp Pred [: Precond] + comp-formula.

Interpretation: for any call to Pred, if Precond succeeds in the calling

state, then comp-formula should also succeed for the computation of

Pred.

Example 4.2.3. Let the assertion:

:− comp qso r t (L ,R) : (l i s t (L ,num) , var (R)) + not fa i l s .

where the atom not fails is implicitly interpreted as

not fails(qsort(L,R)), i.e., it is as if it executed 〈qsort(L,R) θ〉
and checked that it does not fail. 2

In addition, other assertion schemas such as entry and exit assertions can

be used to refer to external calls to the module.∗

Program-Point Assertions: The program points considered are the

places in a program in which a new literal may be added, i.e., before the first

literal (if any) of a clause, between two literals, and after the last literal (if

any) of a clause. Program-point assertions are literals appearing at the corre-

sponding program point and which are of the form: check(state-formula).

∗Note that in CiaoPP the pred assertions of exported predicates can be used optionally

instead of entry and exit assertions to define the module interface.

110 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

where state-formula is a logic formula about execution states (see the gram-

mar in Figure 4.2). The resulting assertion should be interpreted as “when-

ever computation reaches a state originated at the program point in which

the assertion is, state-formula should succeed.”

Status: Independently of the schema used, each assertion has a flag (check,

trust, true, etc.), the assertion “status,” which determines whether the

assertion is to be checked, to be trusted, has already been proved correct

by analysis, etc. Again for simplicity we use only the check status herein

(which is assumed by default when no flag is present).

The Logic Formulae: We allow conjunctions and disjunctions in the for-

mulae, and choose to write them down, for simplicity, in the usual CLP

syntax. Thus, logic formulae about execution states can be:

• An atom of the form p(t1, . . . , tn) with n ≥ 0, where p/n is a property

predicate (e.g., list(X) or X > 3).

• An expression of the form (F1, F2) where F1 and F2 are logic formulae

about execution states and, as usual in CLP, the comma should be

interpreted as conjunction (e.g., “(list(X), list(Y))”).

• An expression of the form (F1; F2) where F1 and F2 are logic formulae

about execution states and, as usual in CLP, the semicolon should be

interpreted as disjunction (e.g., “(list(X) ; int(X))”).

4.3 Run-Time Checking of Assertions

In this section we first focus on run-time checking of predicate assertions,

and then we comment on the approach for program-point assertions, since

the later is much simpler than the former. Our run-time checking system

4.3. Run-Time Checking of Assertions 111

step one step two

p :-

entry-checks,

exit-preconditions-checks,

ext-comp-checks (p1),

exit-postconditions-checks.

% p renamed to p1

% within module

p1 :-

calls-checks,

success-preconditions-checks,

comp-checks (call stack(p2, locator)),

success-postconditions-checks.

p2 :- body0. . . .

p2 :- bodyn.

Figure 4.3: The transforming procedure definitions scheme for run-time

checking.

is composed of a set of transformations, to be performed by the preproces-

sor, and a library containing a number of primitives that the transformed

programs will call.

We start by discussing two possible approaches regarding the source-

to-source transformations to be performed in order to implement run-time

checking schemes. In the first kind of transformation, that we refer to as

“transforming calls,” the run-time checks are placed before and after any

call to predicates which are affected by assertions. In the second kind of

transformation, that we call “transforming procedure definitions,” the origi-

nal predicate is rewritten so that it performs the run-time checks itself, each

time it is called, and calls to it are left unchanged. Figure 4.3 illustrates

this approach for a predicate p. In this transformation the original predicate

p is renamed to p2 and a new definition of p, which performs the run-time

checks, is added by following two steps. “Step one” (first column of the fig-

ure) is used to add any run-time checks corresponding to, e.g., entry and

exit assertions before and after a call to a new predicate p1.

The objective of this first transformation is to separate external calls from

internal ones. Then p1 is defined so that it calls predicate p2 and performs

112 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

all run-time checks corresponding to each type of (kernel) predicate-level

assertions, i.e., calls, success, or comp in the right place. In this kind of

transformation, calls to p are left unchanged.

Clearly, each scheme has advantages and disadvantages, specially when

considering a program consisting of several modules. When transforming

calls, additional run-time checking code will be introduced in all modules

that call the predicate affected by a given assertion. This will likely re-

sult in a larger code size than in the transforming procedure definitions ap-

proach, since a program can easily see a large number of assertions from,

e.g., libraries. Also, if a given file containing an assertion is modified, all the

modules using it will have to be recompiled. The big advantage of the trans-

forming calls approach is that if no run-time assertion checking is required

in a given module, only that module needs to be recompiled, whereas in the

transforming procedure definitions approach all the modules containing pro-

cedures with run-time checks and which are used by the given module need

recompilation. Thus, for libraries, in the transforming calls approach only

one version of each file is compiled whereas in the transforming procedure

definitions approach typically two versions of the libraries are kept in the sys-

tem, one with run-time checks and the other one without. Both approaches

allow mixing modules with and without run-time checks. Another potential

advantage of the transforming calls approach is that it makes it easier for

certain kinds of analysis and specialization algorithms (specially those which

are not multivariant) to analyze and optimize programs annotated with run-

time checks. On the other hand, if the analysis and specialization system is

multivariant (as in the case of CiaoPP) this is less of an issue.

In view of all the advantages and disadvantages discussed above, we cur-

rently use the transforming procedure definitions approach.

Transforming Single Predicate Assertions: We first consider the case

where there is only one predicate assertion for a given predicate. We show

schemes for transforming assertions into run-time checks for each type of

4.3. Run-Time Checking of Assertions 113

Assertion: The definition of Pred is transformed into:

:- calls Pred : Cond. Pred :- rtcheck(Cond), Pred’.

Pred’ :-

:- success Pred : Precond => Postcond. Pred :- checkc(Precond,F), Pred’,

checkif(F,Postcond).

Pred’ :-

:- comp Pred + Comp. Pred :- check comp(Comp(G),G,Pred’).

Pred’ :-

:- comp Pred : Precond + Comp. Pred :- checkc(Precond,F),

checkif comp(F,Comp(G),G,Pred’).

Pred’ :-

Figure 4.4: Translation schemes for different kinds of predicate assertions.

(kernel) predicate assertion, i.e., calls, success, or comp. Other, higher-

level assertions (such as pred assertions) and all additional syntactic sugar

(such as modes or “star notation”) are translated by the compiler into the

kernel assertions before applying the transformation. These schemes express

what run-time library predicates are called and where such calls are placed.

Figure 4.4 shows the schemes, whereas the run-time library includes the

following predicates predicates: checkc, rtcheck, checkif, checkif comp,

check comp and call stack, (which can be used for both the transforming

calls and transforming procedure definitions approaches) and are described

below. †

checkc(C,F):

checks condition C and sets F to true or false depending on whether

it succeeds or not. Defined as:

(\+ C −> F = fa l se ; F = true) .

†The schemas for entry/exit assertions are the same as the corresponding to

calls/success assertions, and thus are not shown in the Figure.

114 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

rtcheck(C):

checks if condition C succeeds or not. If C fails, an exception is

raised. This can be understood simply as \+\+ C (so that bindings/-

constraints produced by the condition succeeding are removed –an en-

tailment check).

checkif(F,P):

postcondition P is checked iff F is true. If P fails, an exception is

raised. This can be defined as:

(F == true −> r t check (P) ; true) .

checkif comp(F,Comp(G),G,Pred′):

checks a computational property if F is true, for a given computational

property Comp(G), and a predicate Pred’ to be checked. For example,

if the property is not fails/1 and the predicate qsort(A,B), then

we call checkif comp(F,not fails(G),G,qsort2(A,B)). In turn,

Pred′ is used to pass the direct call to the predicate (i.e., qsort2(A,B)

in the example). If F is false then Pred′ is called, executing the

procedure directly. If F is true then G is unified with Pred′ and

Comp(Pred′) is called. This relies on the fact that comp properties are

written assuming that the goal to be called is passed as an argument

and that they take care of both running the procedure and checking

whether the computational property holds. Again, if the (in this case,

computational) property does not hold, an exception is raised. The

predicate checkif comp/4 can be defined as:

check i f comp (f a i l , , , Pred) :− ca l l (Pred) .
check i f comp (true , CompCall , Pred , Pred) :− ca l l (CompCall) .

check comp(Comp(G),G,Pred′):

a specialized version of checkif comp(true, Comp(G), G, Pred′),

where the first parameter is assumed to be true.

4.3. Run-Time Checking of Assertions 115

call stack(C, L):

adds the current source code locator L to the locator stack S allowing

to show the call stack on run-time errors. This can be understood as:

intercept (C, r t c e r r o r (S ,T) , send signal (r t c e r r o r ([L | S] ,T))) .

The previous library predicates are implemented in such a way that they

perform the checks without modifying the program state, introducing side

effects, errors, etc. In other words, if all run-time errors are intercepted, the

semantics of the program must be preserved.

Combining Several Predicate Assertions: We now consider the case

where there are several assertions for a given predicate. Translating several

calls or success assertions is relatively straightforward: the corresponding

rtcheck/1 and checkc/2 are placed before the call to Pred’, and any calls

to checkif/2 are gathered after it. In the case of calls assertions run-time

check exceptions for the unsatisfied assertions are thrown only if all such

checks fail.

Combining computational properties is somewhat more involved. First

we consider the case of a single comp assertion with several properties, such

as, e.g.:

:− comp qso r t (A,B) : (l i s t (A, int) ,var (B)) + (is det , not fa i l s) .

In this case the properties will simply be nested in the Comp field as follows:

prop1(prop2(... propN (Pred’) ...)) (the Pred’ field stays obviously the

same). For example, for the assertion above the Comp field will be

not fails(is det(qsort 1(A,B))). If the comp property has a precondi-

tion, it will be checked only once and then either the Comp field or Pred′

will be called.

The situation is more complex when several comp assertions have to be

combined. Consider for example the following two comp assertions:

:− comp qso r t (A,B) : (ground(A) , var (B)) + is det .
:− comp qso r t (A,B) : (l i s t (A, int) , var (B)) + not fa i l s .

116 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

Assuming that F1 and F2 are the flags resulting from checking the conditions

ground(A), var(B) and list(A,int), var(B) respectively, the composi-

tion of the two assertions above would be:

check i f comp (F2 , not fa i l s (G2) ,G2,
check i f comp (F1 , is det (G1) ,G1, qsor t2 (A,B))) .

After all the transformations explained above have been made, an invocation

of call stack/2 is instrumented in order to save the locator in the stack.

Finally, we give some intuitive ideas in order to relate Figures 4.3 and 4.4.

The composition of all the transformations described in Figure 4.4 applied

to assertions corresponding to external calls to predicate p in Figure 4.3 (e.g.

entry/exit assertions), gives the new definition of p. The Pred’ resulting

from the last transformation in Figure 4.4 will be predicate p1 in Figure 4.3.

Also, the Pred’ resulting from the last transformation in Figure 4.4 for calls,

success, and comp assertions (which affect to internal calls) will be predicate

p2 in Figure 4.3. In particular, comp-checks(call stack(p2, locator)) will be

the composition of all the transformations corresponding to comp assertions.

Program-Point Assertions: Figure 4.5 shows how clauses are trans-

formed in order to incorporate run-time checking of program-point assertions.

This is a comparatively simpler task than transforming predicate-level asser-

tions: the natural transformation is a similar one to the “transforming calls”

approach, but with the advantage that only one program point needs to be

transformed for each assertion. Also, only the rtcheck/1 and check comp/1

primitives are required; and in the case of computational properties their

definitions are called directly.

4.4 Defining Unit Tests

In order to define a unit test we have to express on one hand what to execute

and on the other hand what to check (at run-time). A key characteristic of

our approach is that we use the assertion language described in Section 4.2

4.4. Defining Unit Tests 117

Program-point assertion: The clause is transformed into:

Pred :−
. . . ,
check (Cond) ,
. . . .

Pred :−
. . . ,
r t check (Cond) ,
. . . .

Pred :−
. . . ,
check (CompProp(Goal)) ,
. . . .

Pred :−
. . . ,
check comp (CompProp(Goal)) ,
. . . .

Figure 4.5: Translation schemes for different kinds of program-point asser-

tions.

for expressing what to check. This way, the same properties that can be

expressed for static or run-time checking can also be checked in unit testing.

However, we have added a minimal number of elements to the assertion

language grammar for expressing what to execute. They appear underlined

in Figure 4.2. In particular, we have added a new assertion schema:

:- texec Pred [: Precond] [+Exec-Formula].

which states that we want to execute (as a test) a call to Pred with its

variables instantiated to values that satisfy Precond. Exec-Formula is a con-

junction of properties describing how to drive this execution. In our approach

many of the properties usable in Precond (e.g., types) can be run as value

generators for these variables, so that input data can be automatically gen-

erated for the unit tests (see the technique described in [30]). However, we

have defined some specific properties, such as random value generators that

follows a given distribution.

We now describe and illustrate with examples the new properties added to

the assertion language for describing test cases.

Example 4.4.1. The assertion:

:− texec append (A, B, C) : (A=[1 ,2] ,B=[3] ,var (C)) + times (5) .

118 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

expresses that a call to append/3 with the first and second arguments bound

to [1,2] and [3] respectively and the third one unbound should be executed

five times. 2

Example 4.4.2. We can define a unit test using the assertion in Exam-

ple 4.4.1 together with the following two assertions expressing what to check

at run-time:

:− check success append (A,B,C) : (A=[1 ,2] ,B=[3] ,var (C))=>C= [1 , 2 , 3] .
:− check comp append (A,B,C) : (A=[1 ,2] ,B=[3] ,var (C))+ not fa i l s .

The success assertion states that if a call to append/3 with the first and

second arguments bound to [1,2] and [3] respectively and the third one

unbound terminates with success, then the third argument should be bound

to [1,2,3]. The comp assertion says that such a call will not fail. 2

Example 4.4.3. Testing Multiple Solutions: Assume now that we want

to check all possible solutions to a call to append/3 with the first two argu-

ments uninstantiated. We can write the following assertion for this purpose:

:− test append (A,B,C) : (var (A) ,var (B) ,C=[1 , 2 , 3])
=> member ((A, B) , [([] , [1 , 2 , 3]) ,

([1] , [2 , 3]) ,
([1 , 2] , [3]) ,
([1 , 2 , 3] , [])]) + not fa i l s .

Note that the postcondition property is applied to all the solutions generated

by the predicate being tested.

2

The advantage of the integrated framework that we propose is that the

execution expressed by a texec assertion for unit testing can also be used

for checking parts of other assertions that could not have been checked at

compile-time and thus remain as run-time checks. This way, a single set

of run-time checking machinery is used for both run-time checks and unit

testing. In addition, static checking of assertions can safely avoid (possibly

parts of) unit test execution.

4.4. Defining Unit Tests 119

In order to simplify the process of writing tests we introduce another

predicate assertion schema, the test schema, which can be seen as syntactic

sugar for a set of predicate assertions, and has the form:

:- test Pred [: Precond] [=> Postcond] [+ Comp-Exec-Formula].

This assertion is interpreted as the combination of three assertions,‡ one

assertion expressing what to execute:

:- texec Pred [: Precond] [+ Exec-Formula].

and two assertions expressing what to check:

:- check success Pred [: Precond] [=> Postcond].

:- check comp Pred [: Precond] [+Comp-Formula].

For example, the assertion:

:− test append (A,B,C) : (A=[1 ,2] ,B=[3] ,var (C)) => C=[1 ,2 ,3]
+ (not fai ls , times (5)) .

is conceptually equivalent to the assertion in Example 4.4.1, together with

the two assertions in Example 4.4.2.

Regarding the atomic formulas appearing in Exec-Formula (Exec-prop in the

grammar) the following are examples of several predefined useful properties:

try sols(N): Expresses an upper-bound N on the number of solutions to be

checked. For example, the assertion:

:− texec append (A, B, C) : (A=X, B=Y, C=Z) + try sols (7) .

expresses that the call to append(X, Y, Z) should be executed to get

at most the first 7 solutions through backtracking.

times(N): Expresses that the execution should be repeated N times. This

increases the chances of test failure, for intermittent failures. For ex-

ample, while checking ISO prolog compliance, a test for the retract/1

predicate failed rarely, so that the test was modified adding the primi-

tive times/1:

‡In fact, a completeness assertion –using “<=”, see [56]– could also be generated.

120 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

:− test r e t r a c t t e s t 7 (A) + times (5 0) .
r e t r a c t t e s t 7 (A) :− retract ((foo (A) :− A, ca l l (A))) .

in order to repeat the test fifty times increasing the chance of failure.

exception(Excep): Expresses that a test execution should throw the ex-

ception Excep. For example, consider the predicate p/1 defined as

follows:
p(a) .
p (b) :− f a i l .
p (c) :− throw(e r r o r (c , ’ e r r o r c ’)) .

The following tests succeed:

:− test p(A) : (A = a) + not fa i l s .
:− test p(A) : (A = b) + f a i l s .
:− test p(A) : (A = c) + exception (e r r o r (c ,)) .

The first one states that the call p(a) should not fail, the second one

that p(b) should fail, and the third one that p(c) should raise an

exception. However, the following test reports an error, i.e., fails:

:− test p(A) : (A = c) + not fa i l s .

user output(String): Expresses that a predicate should write the string

String into the current output stream. For example, the following test

involving the library predicate display/ 1 succeeds:

:− test d i s p l a y (A) : (A = h e l l o) + user output (” h e l l o ”) .

However, the following tests report an error:

:− test d i s p l a y (A) : (A = h e l l o) + user output (” bye ”) .
:− test d i s p l a y (A) : (A = h e l l o) + user output (” h e l l o ! ”) .

Other properties are provided for example to express that a predicate should

write the string Str into the current error stream (user error(Str)), to

express a time-out T for a test execution (resource(ub, time, T)), or to

generate random input data with a given probability distribution (e.g., for

floating point numbers, including special cases like infinite, not-a-number or

zero with sign).

4.5. Generating User-friendly Messages 121

4.5 Generating User-friendly Messages

Whenever a run-time check fails, an exception is raised. An exception handler

will then catch the exception and report the error. However, with the trans-

formations presented so far little information can be provided to the user

beyond the precondition or postcondition that is producing the violation,

since this is the only parameter passed to most of the checking predicates.

Reporting simply that some condition failed is less informative than saying

where it did, to what assertion it corresponds, or what was the last call mode

of the predicate that violated it. In the case of a comp assertion the actual

call could also be printed.

In contrast, during compile-time checking, when an assertion is proved not

to hold, both the assertion and the program point where the assertion was

violated are reported, in a format designed so that the graphical program

development environment can locate these points in the source code and

highlight them automatically.

In order to also provide precise information when reporting violated as-

sertions when performing run-time checks, we have added an extra argument

to the checking predicates through which certain information is passed, such

as the location of the corresponding assertion(s) and the calling program

point in the source code. This information can then be passed to the ex-

ception handler when the exception occurs, which prints it in a format that

is compatible with that used when reporting compile-time checking errors.

Thus, run-time errors can also be easily traced back to the sources automat-

ically by the development environment. The transformation instruments the

transformed code to include the necessary information.

On the other hand, while having rich information available, when a run-

time check fails it is crucial to being able to locate bugs in programs, there is

a clear trade-off between the size of the program and the overhead introduced

in it and the quality of the messages issued. Different levels of information

may be appropriate for different contexts. For example, programs can be

compiled with a setting that implies lower overhead and, if an exception is

122 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

raised, the program can be recompiled with a higher level of instrumentation

and rerun until the exception is raised again, this time obtaining more precise

information for location of the error in the sources. Also, in systems that are

resource constrained, such as many pervasive and embedded systems, lower

levels of instrumentation would be appropriate and perhaps even load and

use of the pretty printer library can be avoided, since the error messages can

be interpreted in a different host.

The current implementation of the run-time check transformations offers

several optional levels of instrumentation. For brevity we report on two levels

in our experiments, explained below:

Low: information is saved to report the actual assertion being violated and

the property or properties that caused such violation.

High: in addition, predicates with assertions are further instrumented so

that when a run-time check fails a call stack dump is also shown up to

the exact program point where the violation occurs, showing for each

predicate the literal in its body that caused such violation.§

To illustrate these levels, consider the following assertion and property defi-

nitions, in addition to a definition of qsort/2 such as that of Figure 4.6:

:− success qso r t (A,B) => (ground(B) , s o r t e d n u m l i s t (B)) .
:− prop s o r t e d n u m l i s t /1 .
s o r t e d n u m l i s t ([]) .
s o r t e d n u m l i s t ([X]) :− num(X) .
s o r t e d n u m l i s t ([X,Y |Z]) :− num(X) ,num(Y) ,X=<Y,

s o r t e d n u m l i s t ([Y |Z]) .

which ensures that qsort/2 always returns a ground, sorted list. Assume

also that the program has been written in a buggy way (to be discovered

later). With low instrumentation level the output during execution would

be similar to:

§This can also be done at a lower level, via engine primitives, but we are interested

herein in measuring only the cost of source level transformations.

4.5. Generating User-friendly Messages 123

?- qsort([1,2],X).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

In *success*, unsatisfied property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.}

Two errors are reported for a single run-time check failure: the first er-

ror shows the actual assertion being violated and the second marks the first

clause of the predicate which violates the assertion. However, not enough

information is provided to be able to determine the literal in which the

predicate was called causing the violation. If we perform instead the trans-

formation with the high instrumentation level the output is:

?- call_rtc(qsort([3,1,2],B)).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

In *success*, unsatisfied property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.

ERROR: (lns 16-21) Check failed when invocation of

qsort:qsort([3,1,2],_1)

called qsort:qsort([1,2],_2) in its body.}

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([3,1,2],[3,2,1]).

In *success*, unsatisfied property:

sorted_num_list([3,2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.}

In this example we have used the call rtc/1 meta-predicate, which in-

tercepts the run-time error, shows the related message, and lets execution

continue as if the program where not being checked. With this new output it

is easier to locate the error. Looking at the call stack dump, we can see the

124 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

:− module (qsort , [q so r t / 2] , [a s s e r t i o n s , nat iveprops]) .

:− ca l l s qso r t (A,B) : l i s t (A,num) .
:− success qso r t (A,B) : l i s t (A,num) => l i s t (B,num) .
:− comp qso r t (A,B) : (l i s t (A,num) , var (B)) + not fa i l s .

q so r t ([X |L] ,R):− p a r t i t i o n (L ,X, L1 , L2) , q so r t (L2 , R2) , q so r t (L1 , R1) ,
append (R2 , [X |R1] ,R) .

q so r t ([] , []) .

:− ca l l s p a r t i t i o n (A,B,C,D) : (l i s t (A) , num(B)) .
:− success p a r t i t i o n (A,B,C,D) : (l i s t (A) , num(B)) => (l i s t (C) , l i s t (D)) .
:− comp p a r t i t i o n (A,B,C,D) : (l i s t (A) , num(B)) + (not fai ls , is det) .

p a r t i t i o n ([] , B , [] , []) .
p a r t i t i o n ([E |R] ,C , [E | Lef t1] , Right):− E < C, ! , p a r t i t i o n (R,C, Left1 , Right) .
p a r t i t i o n ([E |R] ,C, Left , [E | Right1]) :− p a r t i t i o n (R,C, Left , Right1) .

Figure 4.6: A quick-sort program with assertions.

list of predicates being checked up to the call of the buggy code. Note that

the first part of the assertion is not violated, since B is ground. However,

on success the output of qsort/2 is a sorted list but in reverse order, which

gives us a hint: inspecting the code, we realize that the arguments in the call

to append/3 are mistakenly swapped. The fixed version of qsort/2 follows:

qso r t ([X |L] ,R):− p a r t i t i o n (L ,X, L1 , L2) , q so r t (L2 , R2) , q so r t (L1 , R1) ,
append (R1 , [X |R2] ,R) .

q so r t ([] , []) .

The call stack dump was implemented by reusing the exception handling

mechanism which is native in Ciao. Each time an exception is cached in a

predicate with run-time checks enabled, a locator is added to the exception.

This way, a more informative message of the form “Failed when ... called

...” can be generated. However, such exception handling mechanism was

implemented using meta-calls, assert and retracts, causing a negative impact

in the benchmarks that use it.

4.6 Experimental Results

We now report on some experimental results from our implementation within

the Ciao/CiaoPP system of the testing and run-time checking approach pro-

4.6. Experimental Results 125

Qsort Low High

Obj Size: Inline Library Inline Library

7467 bytes M T MT M T MT M T MT M T MT

Entry 1.41 1.69 1.77 1.34 1.38 1.44 1.66 1.94 2.02 1.57 1.61 1.68

Exit 1.55 1.82 1.97 1.28 1.33 1.44 1.78 2.06 2.21 1.50 1.55 1.65

Comp* 1.67 1.89 1.93 5.46 5.49 5.54 2.05 2.28 2.31 5.64 5.68 5.73

E/E/C 2.32 2.67 2.88 5.88 5.95 6.11 2.88 3.23 3.44 6.25 6.31 6.48

Calls 1.42 1.64 1.75 1.32 1.33 1.43 1.62 1.84 1.95 1.50 1.51 1.61

Success 1.55 1.77 1.92 1.26 1.29 1.39 1.74 1.97 2.12 1.42 1.44 1.55

Comp 1.63 1.85 1.88 5.38 5.41 5.46 2.01 2.24 2.28 5.57 5.60 5.65

C/S/C 2.10 2.46 2.65 5.66 5.73 5.88 2.63 3.00 3.20 5.98 6.11 6.26

Table 4.1: Size increment of qsort with several configurations of run-time

checks.

Qsort Low High

Ex. Time: Inline Library Inline Library

675 µs M T MT M T MT M T MT M T MT

Entry 1.00 1.86 1.87 1.05 1.89 1.90 1.01 1.89 1.87 1.03 1.91 1.91

Exit 1.02 2.73 2.73 1.03 2.76 2.78 1.02 2.74 2.75 1.03 2.79 2.80

Comp* 1.01 1.87 1.87 1.02 1.93 1.92 1.02 1.88 1.90 1.05 1.91 1.92

E/E/C 1.01 3.60 3.60 1.04 3.67 3.68 1.02 3.62 3.65 1.05 3.69 3.69

Calls 3.52 165 162 76 243 321 42 207 205 135 301 382

Success 5.62 329 333 164 515 667 42 380 383 229 595 746

Comp 6.39 166 167 106 272 343 82 254 254 264 447 512

C/S/C 9.77 352 353 194 578 761 91 450 453 379 776 948

Table 4.2: Slowdown of qsort/2 with several configurations of run-time

checks.

posed. Both have been integrated fully into the development environment

allowing easy execution of tests and run-time checking of assertions present

126 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

in modules. The system is available in the latest Ciao betas (1.13.x) at

http://www.ciaohome.org. The experiments measure both program size

and time overhead due to run-time checks. We first used the qsort program

in Figure 4.6, with an input list of size 600 to run several experiments for

different settings:

• Library or inlined run-time checks: We have implemented the

transformation first as described in the previous sections, where the

check predicates are assumed to be in a library. The results are pro-

vided in the columns labeled Library. The ratios shown are with

respect to the execution time of the program with no run-time checks.

In addition, an alternative approach has been implemented in which

the definitions of the run-time check library predicates are actually in-

lined in the calling program. Such inlining was implemented using a

simple Ciao package [15] that transforms any call to the library in

to an inlined version of such call. Whether to perform this inlining is

a user option, so that it is possible to choose between both alterna-

tives. This inlining often achieves better performance and, although

intuitively one could expect that it increases the code size, there are

cases in which the code is reduced because such inlining is, in fact, a

restricted kind of partial evaluation that tries to solve as many unifi-

cations as possible at compilation time, and eventually, terms become

smaller after such optimization.

• Use of types or modes properties: since checking complex types,

such as in the list(int) check, which needs to traverse lists of integers

over and over again,¶ is more expensive than checking modes (which

in our case is handled through a call to the var/1 ISO Prolog builtin)

we have separated these cases in the experiments. In columns labeled

¶This overhead can be significantly reduced via multiple specialization [58, 57]. How-

ever, that optimization has not been applied in this case in order to measure the overhead

of fully checking the assertion.

4.6. Experimental Results 127

T and M only types or modes are checked respectively, whereas in

columns labeled MT both types and modes are checked.

• Low or high instrumentation: as defined in Section 4.5.

• Using several kinds of assertions: several combinations of different

kinds of assertions have been tested (first column).

Tables 4.1 and 4.2 present the overhead, in size and time respectively, for

the experiments expressed as a ratio w.r.t. the execution of the program with

run-time checks disabled. Execution was on a MacBook Pro, Intel Core 2

Duo at 2.4Ghz, 2GB of RAM, Ubuntu Linux 8.10 and Ciao version 1.13. The

columns in the tables present combinations of the configurations explained

above. The rows show results for different kinds of assertions. For comp

assertions we have that in Comp* the check is performed only at the entry

point of the module, but not for the internal calls that occur inside.

The results show that the high level of instrumentation is quite expensive

while the overhead implied by the low level is better, specially in the case of

inlining. This confirms our expectations. The high overhead implied by the

high level of instrumentation is due in part to the simplistic way in which

this type of instrumentation is implemented for these experiments. Note also

that the values of the Lib. column (library) are quite large when compared

with the ones of the Inl. column (inline) because the inline transformation

avoids metacalls.

Table 4.3 shows experimental results for larger programs, namely, the

Ciao, CiaoPP, and LPdoc systems (including the libraries they use), all of

which contain numerous assertions in their code. It shows the size (in kilo-

bytes) of binary and object files using several instrumentation levels of run-

time checks. The binary refers to the statically-linked executable of the main

module of such systems which corresponds to the command-line executable.

The object files include all the libraries used by such systems. Note that

in all cases the sizes of the files depend on the number of assertions instru-

mented for run-time checking. Interestingly, the impact of run-time checks

128 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

App Source Metrics Compiled Run-Time Checked (ratio)

Name Size Assertions Binary Low High

Lines Modules Object Inl. Lib. Inl. Lib.

Ciao S 4340 A 3230 B 2965 1.22 1.20 1.26 1.23

L 131392 M 634 O 16310 1.20 1.18 1.23 1.21

CiaoPP S 4831 A 1199 B 13026 1.20 1.19 1.22 1.21

L 152365 M 517 O 14562 1.19 1.18 1.21 1.20

LPdoc S 438 A 153 B 1929 1.09 1.06 1.13 1.07

L 12750 M 21 O 1167 1.12 1.07 1.14 1.08

Table 4.3: Size (in kilobytes) of binary and object files using several instru-

mentation levels of run-time checks, for large benchmarks.

on execution time in these much larger benchmarks is much smaller than

for qsort. For example, the overhead introduced in the execution of LPdoc,

which includes a good number of assertions in its source, is in practice below

the measurement noise level.

Regarding unit tests, in order to facilitate the execution of tests, the

unit testing framework has been integrated in the development environment

allowing easy execution of tests present in modules. The execution of the

tests is done as follows:

1. The user selects the module or the directory that contains the modules

with tests to be executed.

2. The assertions are read and each time a test is found, a method is added

to the main procedure of an auto generated program that invoques such

method. The goal of such method is to call the predicate being tested

in the way specified by the unit test commands.

3. The modules being tested are compiled with run-time checking enabled.

4. The main procedure that invoques the tests is called by the unit test

driver in a separate process, to prevent undesirable side effects or fail-

4.6. Experimental Results 129

ures if the program being checked aborts due to an unexpected error.

This program writes a log file containing the results of the execution

(such as, for example, exit or failure of the predicate, unhandled ex-

ceptions and so on), that is further analyzed by the unit test driver in

order to take actions depending on the observed behavior.

5. If a test causes the failure of the main program, the control is returned

to the driver, and the aborted test is recorded to be processed. After

that, the driver (optionally) tries to execute the remaining tests. This

process continues until all the tests are executed.

6. The generated log file is processed by the driver and, depending on the

verbosity level, different information about the execution is presented,

such as for example, the tests passed, failed, aborted and in each one

the cause of such behavior. At this point, the run-time check exceptions

saved in the log file are processed in order to show the related message.

We have added at the time of writing 220 unit tests to the Ciao/CiaoPP sys-

tem (in addition to the other traditional system tests which did not use the

unit test framework). These tests have been effective in detecting some errors

introduced in those modules during later code changes. The execution time

of such tests is approximately 90 seconds in the computer described before.

As we can see in Table 4.4, we also have applied the implemented frame-

work to the verification of ISO Prolog compliance of Ciao. We have coded

976 unit tests for this purpose. These allowed the detection of a large num-

ber of previously unknown limitations and errors: 262 issues related to non-

compliance with the standard, 90 related to missing predicates or function-

ality, and 39 related to bugs in the functionality. While a large number of

these were repetitions of a few individual errors they have been nevertheless

very useful. In fact, thanks to the collaboration of other Ciao/CiaoPP de-

velopers, only 84 (8.2%) of such tests fail at moment. These tests currently

run in under 15 seconds. This time is much less than the other tests for

Ciao because they are concentrated in only one file and the driver does not

130 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

Tests failed

i Incompatible format of syntax error exception. 10

i Incompatible format of type error exception. 9

i Incompatible format of permission error exception. 28

i Incompatible format of domain error exception. 2

i An error is expected, but ciao just fails. 138

i Ciao throws an error different than the one specified in the standard. 15

i The predicate in Ciao Fails, but in ISO, it should succeed. 22

i The execution of a predicate should raise an error, but it succeeds. 19

m Predicates with missing functionality. 24

i Ciao adds more information to a predicate (module expansion). 6

i More solutions than expected. 1

f Stream manipulation related errors. 14

f Unexpected abort of the test being executed. 14

i Non-ascii characters (not ISO, but SICSTUS-EDDBALI-like behavior). 7

f Aborted tests. 1

m Tests changed because currently several errors can not be handled 7

m Stream options unimplemented. 2

m Alias for streams unimplemented. 32

m Stream option eof action unimplemented. 12

m Stream option past end of stream unimplemented. 2

m Unimplemented options for close. 5

f Character handling related errors. 2

i Malformed body (negation of cut). 1

f Current output related. 1

i Predicate that succeeds. 1

m Failed test because time out() property is not implemented. 1

f Tests with side effects. 7

i Arity mismatch issues. 3

m Not relevant tests in Ciao, due to unimplemented arithmetic behavior. 5

i Incompatibilities. 262

m Missing predicates or functionality. 90

f Failures and errors. 39

Total number of failed tests. 391

Total number of executed tests. 976

Percentage of passed tests. 60 %

Table 4.4: Summary of the first application of unit tests for ISO Prolog

compliance.

need to scan all the source code. Note that in these experiments we are not

doing any compile-time checking, which would in fact eliminate many of the

unit tests.

4.7. Chapter Conclusions 131

4.7 Chapter Conclusions

We have described our design and implementation of a framework that unifies

unit testing and run-time verification (as well as static verification and static

debugging). A key contribution of our approach is that a unified assertion

language is used for all of these tasks. This has allowed us to propose and

implement unit testing via a minimal addition to the assertion language. We

have proposed methods for compiling run-time checks for (parts of) asser-

tions which cannot be verified at compile-time via program transformation.

This transformation allows checking preconditions and postconditions, in-

cluding conditional postconditions, properties at arbitrary program points,

and certain computational properties.

We have also proposed a minimal addition to the assertion language which

allows defining unit tests to be run in order to detect possible violations of

the (partial) specifications expressed by the assertions.

We have implemented the framework within the Ciao/CiaoPP system

and effectively applied it to the verification of ISO Prolog compliance and

to the detection of different types of bugs in the Ciao system source code.

Several experimental results have been presented to illustrate different trade-

offs among program size, running time, or levels of verbosity of the messages

shown to the user. The experimental results confirm our expectations re-

garding these trade-offs: run-time checks do not pose an excessive amount

of overhead when low levels of instrumentation are introduced and the calls

to library predicates are inlined, except with high levels of instrumentation

(e.g., gathering information on the call stack). However, this is due to the

simplistic way in which this type of instrumentation is implemented, which

can be optimized using lower-level primitives. For example, it prevents the

compiler from performing some classical optimizations like tail recursion.

The tests and run-time checks are proving quite useful in practice for

detecting bugs. However, we have identified some improvements that we

plan to perform as future work, as for example, to further extend the assertion

language with more primitives such as time out(T), which can be used to

132 Chapter 4. Unit-Testing, Run-Time and Compile-Time Checking

express that a test should finish in less than T milliseconds, user error(Str)

which expresses that a predicate should write the string Str into the current

error stream, or to add more properties for generating random input data

values with a given probability distribution.

We also plan to study how the multiple specialization present in CiaoPP can

further reduce run-time overhead. Finally, we are also working on an im-

proved and more compositional strategy to define computational properties.

Chapter 5

Conclusions and Future Work

We have developed a general framework for automatically inferring both

upper- and lower-bounds on the usage that a logic program makes of resources

in general. Such bounds are given as functions of input data sizes. Our ap-

proach gives support for platform-independent (or user-defined/application-

dependent) resources, as well as platform-dependent resources.

The framework includes a global analysis which is parametric with respect

to resources and type of approximation (lower- and upper-bounds). The user

can define the parameters of the analysis for a particular resource by means

of assertions.

We have applied the general framework to execution time estimation fol-

lowing two different approaches. The first approach performs the analysis

based in the information available at source-code level, while the second one

takes advantage of the information available at bytecode level and in the

abstract machine. We have experimented with resource usage information

supplied at source and bytecode levels. The experimental results were en-

couraging in both cases, obtaining execution time estimates with different

levels of accuracy/efficiency useful for a wide range of applications.

Since not all resource-related properties can be verified statically, and that

one of the most promising applications is the automatic verification of such

properties, we have developed a framework that unifies static verification,

133

134 Chapter 5. Conclusions and Future Work

run-time checking and unit testing. In addition to those resource-related

properties, we can process other properties like non-failure, determinism and

state (or functional) properties like types of input/output arguments on calls

or successes. The experimental evaluation of the framework is encouraging,

in particular it has been effectively used for the verification of ISO Prolog

compliance and in the detection of different types of bugs in the Ciao system

source code.

A key contribution of this work is that we preserve the use of a unified

assertion language for all tasks. Such language is used to define resources

and resource-related properties that can be verified based on the results of

the analysis and is powerful, general and extensible enough to express a large

class of interesting properties.

All the developed methods and techniques, including the general resource

usage analysis, its particularization to execution time estimation, and the

unified framework for run-time checking, static verification and unit-testing

have been implemented and integrated in the Ciao/CiaoPP system.

Applications of the work presented in this thesis include resource usage

verification, performance debugging, certification of resource usage properties

in mobile code, resource and granularity control in parallel/distributed com-

puting and resource-oriented specialization. All progress in such applications

represents, of course, an interesting source of future work.

Regarding run-time checking, an interesting source of improvement is the

usage of multiple specialization in order to reduce the run-time overhead

introduced by the instrumentation of the program when enabling run-time

checks.

Although this thesis has been presented in the context of logic programs,

we believe that almost all the techniques developed in it can easily be adapted

to other programming languages. This adaptation, while certainly not trivial,

to some extent would actually imply some simplification, since for example,

backtracking does not need to be taken into account.

Bibliography

[1] Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruc-

tion. MIT Press, 1991.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

Analysis of Java Bytecode. In Rocco De Nicola, editor, 16th European

Symposium on Programming, ESOP’07, volume 4421 of Lecture Notes

in Computer Science, pages 157–172. Springer, March 2007.

[3] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang

Loidl, and Alberto Momigliano. A program logic for resource verifica-

tion. In TPHOLs2004, volume 3223 of LNCS, pages 34–49, Heidelberg,

September 2004. Springer Verlag.

[4] R. Bagnara, A. Pescetti, A. Zaccagnini, E. Zaffanella, and

T. Zolo. Purrs: The Parma University’s Recurrence Relation Solver.

http://www.cs.unipr.it/purrs.

[5] D. Basin and H. Ganzinger. Complexity Analysis based on Ordered

Resolution. In 11th. IEEE Symposium on Logic in Computer Science,

1996.

[6] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-Level Analysis of

a Portable Java Byte Code WCET Analysis Framework. In Proc. 7th

International Conference on Real-Time Computing Systems and Appli-

cations, pages 39–48, Dec. 2000.

135

136 BIBLIOGRAPHY

[7] I. Bate, G. Bernat, and P. Puschner. Java Virtual-Machine Support for

Portable Worst-Case Execution-Time Analysis. In 5th IEEE Interna-

tional Symposium on Object-oriented Real-time Distributed Computing,

Washington, DC, USA, Apr. 2002.

[8] F. Belli and O. Jack. Implementation-based Analysis and Testing of

Prolog Programs. In ISSTA ’93: Proc. of the ACM SIGSOFT Int’l.

Symp. on Software Testing and Analysis, pages 70–80, New York, NY,

USA, 1993. ACM.

[9] R. Benzinger. Automated Higher-Order Complexity Analysis. Theoret-

ical Computer Science, 318(1-2), 2004.

[10] B. Brassel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-Time

Profiling of Functional Logic Programs. In Proc. of the Int’l. Symp.

on Logic-based Program Synthesis and Transformation (LOPSTR’04),

pages 182–197. Springer LNCS 3573, 2005.

[11] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa,

and G. Puebla-(Eds.). The Ciao System. Ref. Manual (v1.13). Techni-

cal report, School of Computer Science, T.U. of Madrid (UPM), 2009.

Available at http://www.ciaohome.org.

[12] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,

J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations

in Validation and Diagnosis of Constraint Logic Programs. In Proc. of

the 3rd. Int’l WS on Automated Debugging–AADEBUG, pages 155–170.

U. Linköping Press, May 1997.

[13] F. Bueno, P. López-Garćıa, and M. Hermenegildo. Multivariant Non-

Failure Analysis via Standard Abstract Interpretation. In 7th Inter-

national Symposium on Functional and Logic Programming (FLOPS

2004), number 2998 in LNCS, pages 100–116, Heidelberg, Germany,

April 2004. Springer-Verlag.

BIBLIOGRAPHY 137

[14] S. Buettcher. Warren’s Abstract Machine - A Java Implementation.

http://www.stefan.buettcher.org/cs/wam/index.html.

[15] D. Cabeza and M. Hermenegildo. A New Module System for Prolog.

In International Conference on Computational Logic, CL2000, number

1861 in LNAI, pages 131–148. Springer-Verlag, July 2000.

[16] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C.

Necula. Enforcing resource bounds via static verification of dynamic

checks. In European Symposium on Programming (ESOP), number 3444

in LNCS, pages 311–325. Springer-Verlag, 2005.

[17] The CLIP Group. Program Assertions. The Ciao System Documenta-

tion Series – TR CLIP4/97.1, Facultad de Informática, UPM, August

1997.

[18] S-J. Craig and M. Leuschel. Self-Tuning Resource Aware Specialisation

for Prolog. In 7th ACM SIGPLAN International Conference on Princi-

ples and Practice of Declarative Programming (PPDP’05). ACM Press,

2005.

[19] S.J. Craig and M. Leuschel. Self-Tuning Resource Aware Specialisation

for Prolog. In Proc. of PPDP’05, pages 23–34. ACM Press, 2005.

[20] S. K. Debray. Profiling Prolog Programs. Software Practice and Expe-

rience, 18(9):821–839, 1983.

[21] S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM

Transactions on Programming Languages and Systems, 15(5):826–875,

November 1993.

[22] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Anal-

ysis in Logic Programs. In Proc. of the 1990 ACM Conf. on Program-

ming Language Design and Implementation, pages 174–188. ACM Press,

June 1990.

138 BIBLIOGRAPHY

[23] S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower

Bound Cost Estimation for Logic Programs. In 1997 International Logic

Programming Symposium, pages 291–305. MIT Press, Cambridge, MA,

October 1997.

[24] S. Diehl, P. Hartel, and P. Sestoft. Abstract Machines for Program-

ming Language Implementation. Future Generation Computer Systems,

16(7):739–751, 2000.

[25] Mireille Ducassé. Opium: An extendable trace analyzer for prolog. J.

Log. Program., 39(1-3):177–223, 1999.

[26] N. S. Eickelmann and D. J. Richardson. An Evaluation of Software Test

Environment Architectures. In ICSE ’96: Proc. of the Int’l. Conf. on

Software Engineering, pages 353–364. IEEE Computer Society, 1996.

[27] Jochen Eisinger, Ilia Polian, Bernd Becker, Alexander Metzner, Stephan

Thesing, and Reinhard Wilhelm. Automatic identification of timing

anomalies for cycle-accurate worst-case execution time analysis. In Pro-

ceedings of IEEE Workshop on Design & Diagnostics of Electronic Cir-

cuits & Systems (DDECS), pages 15–20. IEEE Computer Society, April

2006.

[28] A. Ermedahl, J. Gustafsson, and B. Lisper. Experiences from Indus-

trial WCET Analysis Case Studies. In Reinhard Wilhelm, editor, Proc.

Fifth International Workshop on Worst-Case Execution Time (WCET)

Analysis, Palma de Mallorca, July 2005.

[29] G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-

Order Language. In Proceedings of the ACM SIGPLAN 2002 Work-

shop on Partial Evaluation and Semantics-Based Program Manipulation,

pages 75–88. ACM Press, 2002.

[30] M. Gómez-Zamalloa, E. Albert, and G. Puebla. On the Generation of

Test Data for Prolog by Partial Evaluation. In Workshop on Logic-based

BIBLIOGRAPHY 139

methods in Programming Environments (WLPE’08), pages 26–43, 2008.

Report number: WLPE/2008/06.

[31] Bernd Grobauer. Cost recurrences for DML programs. In International

Conference on Functional Programming, pages 253–264, 2001.

[32] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstrac-

tion Carrying Code and Resource-Awareness. In PPDP. ACM Press,

2005.

[33] M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis,

Partial Specifications, and an Extensible Assertion Language for Pro-

gram Validation and Debugging. In The Logic Programming Paradigm:

a 25–Year Perspective, pages 161–192. Springer-Verlag, 1999.

[34] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Inte-

grated Program Debugging, Verification, and Optimization Using Ab-

stract Interpretation (and The Ciao System Preprocessor). Science of

Comp. Progr., 58(1–2), 2005.

[35] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated

Program Debugging, Verification, and Optimization Using Abstract In-

terpretation (and The Ciao System Preprocessor). Science of Computer

Programming, 58(1–2), 2005.

[36] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated

Program Debugging, Verification, and Optimization Using Abstract In-

terpretation (and The Ciao System Preprocessor). Science of Computer

Programming, 58(1–2), 2005.

[37] Alston S. Householder. Unitary Triangularization of a Non-

symmetric Matrix. Journal ACM, 5(4):339–342, October 1958.

DOI:10.1145/320941.320947.

140 BIBLIOGRAPHY

[38] E. Yu-Shing Hu, A. J. Wellings, and G. Bernat. Deriving Java Virtual

Machine Timing Models for Portable Worst-Case Execution Time Anal-

ysis. In On The Move to Meaningful Internet Systems 2003: OTM 2003

Workshops, volume 2889 of LNCS, pages 411–424. Springer, October

2003.

[39] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In

Symposium on Principles of Programming Languages, pages 331–342,

2002.

[40] D. Le Metayer. ACE: An Automatic Complexity Evaluator. ACM

Transactions on Programming Languages and Systems, 10(2), 1988.

[41] P. López-Garćıa. Non-failure Analysis and Granularity Control in Paral-

lel Execution of Logic Programs. PhD thesis, Universidad Politécnica de

Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del Monte,

Madrid-Spain, June 2000.

[42] P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis

for Logic Programs Using Mode and Type Information. In Proceedings

of the 14th International Symposium on Logic-based Program Synthesis

and Transformation (LOPSTR’04), number 3573 in LNCS, pages 19–35.

Springer-Verlag, August 2005.

[43] P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A Methodology

for Granularity Based Control of Parallelism in Logic Programs. J. of

Symbolic Computation, Special Issue on Parallel Symbolic Computation,

21:715–734, 1996.

[44] David A. McAllester. On the complexity analysis of static analyses. In

Static Analysis Symposium, pages 312–329, 1999.

[45] E. Mera, P. López-Garćıa, M. Carro, and M. Hermenegildo. Towards

Execution Time Estimation in Abstract Machine-Based Languages. In

10th Int’l. ACM SIGPLAN Symposium on Principles and Practice of

BIBLIOGRAPHY 141

Declarative Programming (PPDP’08), pages 174–184. ACM Press, July

2008.

[46] E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Soft-

ware Testing and Run-Time Checking in an Assertion Verification

Framework. In 25th International Conference on Logic Programming

(ICLP’09), number 5649 in LNCS, pages 281–295. Springer-Verlag, July

2009.

[47] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo.

Towards Execution Time Estimation for Logic Programs via Static Anal-

ysis and Profiling. In S. Mu noz and W. Vanhoof, editors, 16th Work-

shop on Logic Programming Environments, pages 45–60. University of

Namur, Institut d’Informatique, August 2006.

[48] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo.

Using Combined Static Analysis and Profiling for Logic Program Execu-

tion Time Estimation. In 22nd International Conference on Logic Pro-

gramming (ICLP’06), number 4079 in LNCS, pages 431–432. Springer-

Verlag, August 2006.

[49] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo.

Combining Static Analysis and Profiling for Estimating Execution

Times. In Ninth International Symposium on Practical Aspects of

Declarative Languages (PADL’07), number 4354 in LNCS, pages 140–

154. Springer-Verlag, January 2007.

[50] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Re-

source Usage Bounds Analysis for Java Bytecode. In Proceedings of the

Workshop on Bytecode Semantics, Verification, Analysis and Transfor-

mation (BYTECODE’09), volume 253 of Electronic Notes in Theoretical

Computer Science, pages 6–86. Elsevier - North Holland, March 2009.

[51] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-

Definable Resource Bounds Analysis for Logic Programs. In 23rd In-

142 BIBLIOGRAPHY

ternational Conference on Logic Programming (ICLP’07), volume 4670

of Lecture Notes in Computer Science. Springer, 2007.

[52] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Automatic

complexity analysis. In European Symposium on Programming, pages

243–261, 2002.

[53] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for

Debugging of Constraint Logic Programs. In ILPS’97 WS on Tools and

Environments for (C)LP, October 1997. ftp://clip.dia.fi.upm.es-

/pub/papers/assert lang tr discipldeliv.ps.gz.

[54] G. Puebla, F. Bueno, and M. Hermenegildo. A Framework for Assertion-

based Debugging in Constraint Logic Programming. In Logic-based

Program Synthesis and Transformation (LOPSTR’99), Venezia, Italy,

September 1999.

[55] G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor

for Program Validation and Debugging. In Analysis and Visualization

Tools for Constraint Programming, number 1870 in LNCS, pages 63–

107. Springer-Verlag, September 2000.

[56] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language

for Constraint Logic Programs. In Analysis and Visualization Tools for

Constraint Programming, number 1870 in LNCS, pages 23–61. Springer-

Verlag, 2000.

[57] G. Puebla and M. Hermenegildo. Implementation of Multiple Special-

ization in Logic Programs. In Proc. ACM SIGPLAN Symposium on

Partial Evaluation and Semantics Based Program Manipulation, pages

77–87. ACM Press, June 1995.

[58] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization

and its Application to Program Parallelization. JLP, 41(2&3):279–316,

November 1999.

BIBLIOGRAPHY 143

[59] S. A. Jarvis R. G. Morgan. Profiling large-scale lazy functional programs.

Journal of Functional Programing, 8(3):201–237, May 1998.

[60] G. Román-Dı́ez and G. Puebla. Java Bytecode Timing Cost Mod-

els. Technical Report CLIP12/2007.0, Technical University of Madrid,

School of Computer Science, UPM, December 2007.

[61] M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Confer-

ence on Functional Programming Languages and Computer Architecture

(FPCA’89). ACM Press, 1989.

[62] Patrick M. Sansom and Simon L. Peyton Jones. Formally Based Pro-

filing for Higher-Order Functional Languages. ACM Transactions on

Programming Languages and Systems, 19(2):334–385, March 1997.

[63] Lothar Thiele and Reinhard Wilhelm. Design for time-predictability. In

Perspectives Workshop: Design of Systems with Predictable Behaviour,

16.-19. November 2003, volume 03471 of Dagstuhl Seminar Proceedings.

IBFI, Schloss Dagstuhl, Germany, 2004.

[64] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recur-

sive, Polymorphic and Higher-Order Functional Programs. In Proceed-

ings of the International Workshop on Implementation of Functional

Languages, volume 3145 of Lecture Notes in Computer Science, pages

86–101. Springer-Verlag, September 2003.

[65] D. Wackerly, W. Mendenhall, and R. Scheaffer. Mathematical Statistics

With Applications 5th Edition. P W S Publishers, 1995.

[66] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report

309, Artificial Intelligence Center, SRI International, 333 Ravenswood

Ave, Menlo Park CA 94025, 1983.

[67] J. Wielemaker. SWI Prolog Unit Tests.

http://www.swi-prolog.org/pldoc/package/plunit.html.

144 BIBLIOGRAPHY

[68] Reinhard Wilhelm. Timing Analysis and Timing Predictability. In

Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.

de Roever, editors, Formal Methods for Components and Objects, Third

International Symposium (FMCO), volume 3657 of LNCS, Revised Lec-

tures, pages 317–323. Springer, 2004.

[69] L. Zhao, T. Gu, J. Qian, and G. Cai. Test Frame Updating in CPM

Testing of Prolog Programs. Software Quality Control, 16(2):277–298,

2008.

	Abstract
	Introduction
	General User Definable Resource Bound Analysis
	Introduction
	Related Work

	Worked Example
	A Framework for Inference of Resource Usage
	The Resource Assertion Language
	Size Analysis
	Resource Usage Analysis
	Defining the Parameters (Functions) of the Analysis

	Experimental Results
	Chapter Conclusions

	Applying the Framework to Execution Time Estimation
	Introduction
	Source Code-Based (High-Level) Model
	Proposed Platform-Dependent Cost Models
	Dealing with Builtins
	Calibrating Constants via Profiling
	Assessment of the Calibration of Constants
	Assessment of the Prediction of Execution Times
	Applications
	Section Conclusions

	Bytecode-Based (Low-Level) Model
	Mappings Between Program Segments and Bytecodes
	Modeling the Execution Time of Instructions
	Estimating the Execution Time of Clauses and Predicates
	Estimating Instruction Execution Times via Profiling
	Instruction Profiling
	Measuring Time Accurately
	Getting Instruction Execution Time
	Dealing with Unbound Instructions
	Experimental Results
	Section Conclusions and Future Work

	Unit-Testing, Run-Time and Compile-Time Checking
	Introduction
	The Ciao Assertion Language
	Run-Time Checking of Assertions
	Defining Unit Tests
	Generating User-friendly Messages
	Experimental Results
	Chapter Conclusions

	Conclusions and Future Work

