
Technical report CLIP-1/2017.0

Term Hiding and its Impact
on Run-time Check Simplification∗

Nataliia Stulova1,2 José F. Morales1 Manuel V. Hermenegildo1,2

1IMDEA Software Institute
{nataliia.stulova, josef.morales, manuel.hermenegildo}@imdea.org
2Universidad Politécnica de Madrid (UPM), Madrid, Spain

manuel.hermenegildo@upm.es

17 May 2017

Abstract

One of the most attractive features of untyped languages for program-
mers is the flexibility in term creation and manipulation. However, with
such power comes the responsibility of ensuring correctness of operations.
A solution is adding run-time checks to the program via assertions, but
this can introduce overheads that are in many cases impractical. While
such overheads can be greatly reduced with static analysis, the gains
depend strongly on the quality of the information inferred. Reusable
libraries, i.e., library modules that are pre-compiled independently of the
client, pose special challenges in this context.

We propose a relaxed form of atom-based module system (which
hides only a selected set of functor symbols but still provides a strict
mechanism to prevent breaking visibility rules across modules) that can
enrich significantly the shape information that can be inferred in reusable
modular programs. We also propose an improved run-time checking
approach that takes advantage of the proposed mechanisms to achieve

∗An extended abstract of this work is published as [1]

1

large reductions in overhead, closer to those of static languages even in
the reusable-library context. While the approach is general and system-
independent, we present it for concreteness in the context of the Ciao
assertion language and combined static/dynamic checking framework.
Our method maintains full expressiveness of the checks in this context.
Contrary to other approaches it does not introduce the need to switch the
language to (static) type systems, which is known to change the semantics
in languages like Prolog. We also study the approach experimentally and
evaluate the overhead reduction achieved in the run-time checks.

Keywords: Module Systems; Implementation; Run-time Checking; Assertion-
based Debugging and Validation; Static Analysis.

1 Introduction
Modular programming has become widely adopted due to the benefits it provides
in code reuse and structuring data flow between program components. A tightly
related concept is the principle of information hiding that allows concealing the
concrete implementation details behind a well-defined interface and thus allows
for cleaner abstractions. In different programming languages these concepts
are implemented in different ways, some examples being the encapsulation
mechanism of classes adopted in OOP and opaque data types. In the (constraint)
logic programming context, most mature language implementations incorporate
module systems, which are either predicate-based (where predicate symbol
visibility is controlled by the module import-export rules but functor symbols
are public) or atom-based (where both predicate and functor symbol visibility
is controlled by the module import-export rules).

In this work we propose a hybrid predicate-based module system that offers
an optional hiding mechanism for selected functor symbols. The proposed
module system is still strict in the sense that it disallows breaking predicate or
term visibility rules by bypassing the module interfaces. These features allow
programmers to restrict the visibility of some terms to the module where they
are defined thus both hiding the concrete implementation details from other
modules and providing guarantees that all data terms with such shapes may
only be constructed by the predicates of that particular module.

Our motivation comes from the reusable library scenario, i.e., the case of
analyzing, verifying, and compiling a library for general use, without access
to the client code or analysis information on it. This includes for example the
important case of servers accessed via remote procedure calls. One of the most
attractive features of untyped languages for programmers is the flexibility they
offer in term creation and manipulation. However, with such power comes the

2

responsibility of ensuring correctness in the manipulation of data, and this
is specially relevant when data can come from unknown clients. A popular
solution for ensuring safety is to enhance the language with optional assertions
that allow specifying correctness conditions both at the module boundaries and
internally to modules. These assertions can be checked dynamically by adding
run-time checks to the program, but this can also introduce overheads that are
in many cases impractical. Such overheads can be greatly reduced with static
analysis, but the gains then depend strongly on the quality of the analysis
information inferred. Unfortunately, in the reusable library setting shape/type
analyses are necessarily imprecise, since in this context the unknown clients can
fake data that is really intended to be internal to the library. Ensuring safety
then requires sanitizing input data with potentially expensive run-time checks.

In order to alleviate this problem, we present a technique that, using the
combination of term hiding and the strict visibility rules in the module system,
greatly improves static analysis by enhancing the inference of shape information.
We also demonstrate experimentally how, thanks to the term creation safety
guarantees provided by the module system, it is possible to reduce the run-time
overhead for the calls across module boundaries by several orders of magnitude.
The combination of these techniques and traditional static analysis brings
improvements in the number and size of checks that allow providing guarantees
and overheads that are similar to those of statically-typed approaches, but
without imposing on programs the restrictions of being well typed.

For concreteness, we use in this work the relevant parts of the Ciao sys-
tem [2]: the module system, the assertion language –which allows providing
optional program specifications with various kinds of information, such as
modes, (regular) types, or non-determinism–, and the verification framework,
that combines static and dynamic checking. However, our results are general
and can be applied to other languages.

2 Modular Programs with Hiding
This section provides preliminary concepts and introduces a simple definition
of modular logic programs with hiding of symbols. We start by recalling some
basic notation and the standard program semantics, following the formalization
of [3]. An atom A is a syntactic construction of the form f(t1, . . . , tn) where f is
a symbol of arity n and ti are terms. A constraint is a conjunction of expressions
built from predefined predicates (such as term equations or inequalities over the
reals) whose arguments are constructed using predefined functions (such as real
addition). A literal is either an atom or a constraint. Terms are inductively
defined as variable symbols or constructions of the form f(t1, . . . , tn) where

3

f is a symbol of arity n (n ≥ 0) and ti are terms. Note that we do not
distinguish between predicate and uninterpreted function symbols. Constants
are introduced as 0-ary symbols. A goal is a conjunction of literals. A clause
is defined as H ← B, where H is an atom and B is a goal. A definite program
is a finite set of clauses. We extend the simple notion of definite program to
modular program as follows:

Definition 1 (Modular Program). A modular program is a definite program
P together with a mapping mod(·) which assigns for each symbol f a unique
module symbol m. Let C be a clause H ← B, mod(C) , mod(H). Let A be an
atom1 or a term of the form f(. . .), then mod(A) , mod(f).

Typically, programs in their source form are organized into a set of modules,
each of them annotated with directives for declaring import and export lists
declaring the visibility of local symbols. We assume that by default no module
symbols are assigned to the symbols of a program in its source form. The
compiler and the run-time system, applying a set of visibility rules, compose an
expanded program as described in Def 1 from a set of program sources. Very
briefly,2 the expanded program from a module m produces a set of clauses such
that:

• Each C has the form H ← B where mod(H) = m

• For each atom A = f(. . .) in goal B, either mod(H) = m or mod(H) = n
with n an imported module in m and f exported from n.

As mentioned before, the main advantage of modular programming is that
it allows safe local reasoning on modules, since two different modules are not
allowed to contribute clauses to the same predicate.3 The concept of module
interface is instrumental in local reasoning as it allows to clearly mark the
module boundaries. In what follows we assume the following definition of
module interface:

Definition 2 (Module Interface). A module interface consists of its exported
predicates and a set of valid call substitutions for those predicates. As in

1In practice constraints are also located in modules. It is trivial to extend the formalization
to include this, we do not write it explicitly for simplicity.

2For the sake of clarity we do not include additional rules to support meta_predicates
or run-time module expansions. Again, these features can be added without altering the
results and have been left out for simplicity of exposition.

3In practice, an exception are multifile predicates. However, since they need to be
declared explicitly, local reasoning is still valid assuming conservative semantics (e.g., topmost
abstract values) for them.

4

Section 3, valid calls are described (and implemented) by disjunctions of con-
junctions of properties (rather than with possibly infinite sets).

Note that there are different approaches to the implementation of module
systems and its formalization. One possibility is to carry explicitly in the
formalization the module information by, e.g., making symbols be a pair. How-
ever, this requires significant changes in the semantics and the implementation
that are unnecessary in the expansion-based approach that we use. Also, this
approach reflects better what is actually done in the implementation, for the
same simplicity and efficiency reasons.

The default rules to determine the module of a symbol depend on the specific
dialect and system. Most systems use either a predicate- or an atom-based
module system. Informally, in predicate-based module systems all symbols
involved in terms are global and in atom-based module systems [4] all symbols
are local except for constants and those that are explicitly exported. The Ciao
module system [5] introduced a hide directive that declares a source symbol
as local and non-exported, but this notion was not formalized. The following
definition provides such a formalization:

Definition 3 (Predicate-based Module Systems with Hidden Symbols). For
each source term in m, each hidden symbol is mapped into an expanded term f
s.t. mod(f) = m and f cannot appear in any clause C except if mod(C) = m.
Each non-hidden symbol is mapped into an f s.t. mod(f) = usr, where usr is
a distinguished module name for global user terms and is implicitly imported
from any module.

We recall the classic operational semantics of non-modular definite programs,
given in terms of program derivations, which are sequences of reductions between
states. The definition of an atom A in a program, defn(A), is the set of variable
renamings of the program clauses s.t. each renaming has A as a head and has
distinct new local variables. We use :: to denote concatenation of sequences.
A state 〈G | θ〉 consists of a goal sequence G and a constraint store (or store
for short) θ. A query is a pair (L, θ), where L is a literal and θ a store, for
which the (constraint) logic programming system starts a computation from
state 〈L | θ〉. We denote by answers(Q) the set of answers to a query Q.

Definition 4 (Operational Semantics (Non-modular)). A state S = 〈L :: G | θ〉
where L is a literal can be reduced4 to a state S ′ as follows:

1. 〈L :: G | θ〉 〈G | θ ∧ L〉 if L is a constraint and θ ∧ L is satisfiable.
4Assuming, for simplicity, that the underlying constraint solver is complete.

5

2. 〈L :: G | θ〉 〈B :: G | θ〉 if L is an atom of the form f(t1, . . . , tn), for
some clause (L← B) ∈ defn(L).

We now provide the operational semantics of modular programs, which is
equivalent to the non-modular semantics but keeps track of the module that
originated each goal. To track calls across module boundaries we also introduce
the notion of clause end literal, a marker of the form ret(H) where H stands
for the head of the parent clause.

Definition 5 (Operational Semantics of Modular Programs). We redefine the
derivation semantics such that goal sequences are of the form (L,m) :: G where
L is a literal, and m is the module from which L was introduced. Then, a state
S = 〈L :: G | θ〉 can be reduced to a state S ′ as follows:

1. 〈(L,m) :: G | θ〉 〈G | θ∧L〉 if L is a constraint and θ∧L is satisfiable.

2. 〈(L,m) :: G | θ〉 〈(B1, n) :: . . . :: (Bk, n) :: (ret(L), n) :: G | θ〉 w.r.t.
some clause (L← B1, . . . , Bk) ∈ defn(L) where mod(L) = n.

3. 〈(L,m) :: G | θ〉 〈G | θ〉 if L is a clause return literal ret(_).

In order for reduction step 2 to succeed, the L literal should either be defined in
module m (and then n = m) or it should belong to the export list of module n
and be in the import list of module m.

3 Run-Time Checking of Modular Programs

Assertion Language. We assume that program specifications are provided
by means of assertions: linguistic constructions that allow expressing properties
of programs. For concreteness we will use the pred assertions of the Ciao
assertion language [6, 7, 2], following the formalization of [8, 3]. The main
intent behind the construction of a specification for a predicate using such pred
assertions is to define the set of all admissible preconditions for this predicate,
and for each such pre-condition in turn specify the respective post-condition.
These pre- and post-conditions are formulas containing literals corresponding
to predicates that are specially labeled as properties. Properties and the other
predicates composing the program are written in the same language. This
approach is motivated by the direct correspondence between the declarative
and operational semantics of constraint logic programs. In what follows we
refer to properties as prop literals. The same visibility rules apply to prop
literals as to any other program literals. A set of assertions for a predicate,
represented by atom L, is shown in the left part of Fig. 1. The Prei and Posti

6

:- pred L : Pre1 => Post1.
. . .
:- pred L : Pren => Postn.

Ci =

{
ci.calls(L,

∨n
j=1 Prej) i = 0

ci.success(L,Prei, Posti) i = 1..n

Figure 1: Correspondence between assertions and assertion conditions.

are conjunctions5 of prop literals that refer to the variables of L. Such a set
of assertions states that in any execution state 〈(L,m) :: G | θ〉 at least one
of the Prei conditions should hold, and that, given the (Prei, Posti) pair(s)
where Prei holds, then, if L succeeds, the corresponding Posti should hold
upon success.

Given a predicate represented by a normalized atom L and the corresponding
set of assertions for L,A(L) = {A1 . . . An}, withAi = “:- pred L : Prei =>
Posti.” such assertions are normalized into a set of assertion conditions for that
predicate, denoted as AC(L) = {C0, C1, . . . , Cn}, as shown in Fig. 1, right. The
ci are identifiers which are unique for each assertion condition. If there are no
assertions associated with L then the corresponding set of assertion conditions
is empty. The set of assertion conditions for a program is the union of the
assertion conditions for each of the predicates in the program. The calls(L, . . .)
conditions encode the checks that ensure that the calls to the predicate repre-
sented by the L literal are within those admissible by the set of assertions, and
we thus call them the calls assertion conditions. The success(L, Prei, Posti)
conditions encode the checks for compliance of the successes for particular sets
of calls, and we thus call them the success assertion conditions.

Semantics with Assertions and Modules. We now present the opera-
tional semantics with assertions for modular programs, which checks whether
assertion conditions hold or not while computing the derivations from a query
in a modular program. The identifiers of the assertion conditions (the ci) are
used to keep track of any violated assertion conditions. The extended program
state has the form 〈G | θ | E〉, where E denotes the set of identifiers for falsified
assertion conditions and |E| ≤ 1. We will write identifiers in negated form when
they appear in the error set. We also extend the clause return literal to the
form ret(H, C), where C is the set of identifiers ci of the assertion conditions
that should be checked at that derivation point. A literal L succeeds trivially
for θ in program P , denoted θ ⇒P L, iff ∃θ′ ∈ answers(L, θ) such that θ |= θ′.
This notion captures the checking of properties and we will thus often refer to

5In the general case Pre and Post can be DNF formulas of prop literals but we limit
them to conjunctions herein for simplicity of presentation.

7

this operation as “checking L in the context of θ.”

Definition 6 (Operational Semantics for Modular Programs with Assertions).
A state S = 〈(L,m) :: G | θ | ∅〉, where L is a literal introduced from a clause
in a module m, can be reduced to a state S ′, denoted S A S ′, as follows:

1. If L is a constraint then the new state is S ′ = 〈G′ | θ′ | ∅〉 where G′ and
θ′ are obtained in a same manner as in 〈(L,m) :: G | θ〉 〈G′ | θ′〉

2. If L is an atom and ∃(L← B1, . . . , Bk) ∈ defn(L), then the new state is
obtained as S ′ = 〈(B1, n) :: . . . :: (Bk, n) :: (ret(L, C), n) :: G | θ | E〉 where

E =

{
{c̄} if ∃ c.calls(L, Pre) ∈ AC(L) ∧ θ 6⇒P Pre
∅ otherwise

s.t. C = {ci | ci.success(L, Prei, Posti) ∈ AC(L) ∧ θ ⇒P Prei} and
mod(L) = n.

3. If L is a clause return literal ret(_, C), then S ′ = 〈G | θ | E〉 where

E =

{
{c̄} if ∃ c ∈ C s.t. c.success(L′,_, Post) ∈ AC(L′) ∧ θ 6⇒P Post
∅ otherwise

We will often refer to the operations in step 2 of this semantics as checking
the calls conditions and to those in step 3 as checking the success conditions.

These two theorems from [8] carry over to the modular case:6

Theorem 1 (Correctness and Completeness Under Assertion Checking). Let
P be the program, Q a set of all queries to it, and A the set of its assertions.
Let derivs(Q) denote the set of derivations for a program from the set of queries
in Q, and derivsA(Q) denote the set of derivations using the semantics with
assertions. Then for any tuple (P,Q,A) it holds that derivs(Q) = derivsA(Q)
after filtering out check and ret literals and error sets.

Theorem 2 (Run-time Error Detection). Let E(D) denote the error set of the
last state of a derivation D. For any annotated program (P,Q,A), C ∈ AC is
false iff ∃ D ∈ derivsA(Q) s.t. E(D) = {c̄} where c is the identifier of C.

6The proofs are trivial, and are not included for space reasons.

8

4 Shallow Run-Time Checking
Intuitively, shallow run-time checking is the usage of optimized –shallow–
properties for calls conditions during run-time checks, that exploit certain
characteristics of hidden symbols. These optimized, or shallow versions of
properties are weakened forms that are semantically equivalent to the original
ones in the context of the possible program executions, and are cheaper to
execute (e.g., requiring asymptotically fewer steps).

Note that hidden functor symbols are essential to reason compositionally
about the flow of data in a program composed of reusable libraries. This is
analogous to the reasoning about the semantics of the predicates in a module,
which requires the predicate symbols to be local.

In order to define formally shallow checking, as well as the algorithms to
compute shallow versions of properties, we will characterize all possible terms
that may exist outside a module m as its escaping terms, and introduce shallow
properties as the specialization of the definition of these properties w.r.t. these
escaping terms.

Escaping terms. We characterize all possible states outside a module m
by defining a property that describes the valid values of the constraint store.
Without hidden symbols, this property provides no information, since any
module can construct any term. With hidden symbols, this is no longer true.
We present some examples before introducing formally these concepts.
Example 1. Let point/1 be a hidden symbol in a module that exports a
single predicate p/1 that constructs a term point(1):

:- module(m1, [p/1]).
:- hide point/1.
p(A) :- A = point(B), B = 1.

There is no success substitution for p/1 where variables can be bound to some
point(_) more general than point(1). The same applies to any possible
substitution in any derivation in programs that are composed with this module.
Without hiding, this is impossible to ensure (without client knowledge) since
any module could define any point(_) terms.
Example 2. The following example leaks a point(_) term to module m2.
Thus escaping terms include point(_):

:- use_module(m2, [q/1]).
p(A) :- A = point(B), q(A), B = 1.

Example 3. The following example always passes a point(1) term (either by
calling module m2 or returning from m1).

9

Algorithm 1 Escaping_Terms
1: function Escaping_Terms(M)
2: Def := usr(X)
3: for all L exported from M do
4: for all c.success(L,_, Post) ∈ AC(L) do
5: for all P ∈ LitNames(Post, vars(L)) do
6: Def := Def t P (X)

7: for all L imported from M do
8: for all c.calls(L, Pre) ∈ AC(L) do
9: for all P ∈ LitNames(Pre, vars(L)) do
10: Def := Def t P (X)

11: return (escm(X)← Def)
12: function LitNames(G,Args)
13: return set of P such that A ∈ Args and G = (. . . ∧ P (A) ∧ . . .)

p(A) :- A = point(B), B = 1, q(A).

Definition 7 (Escaping terms). Consider all states S in all derivations of any
program that imports a given module m. escm(X) (escaping terms w.r.t. m) is
the smallest property such that θ ⇒P escm(X), for each S = 〈(L, n) :: G | θ〉
with n 6= m, and variable X in the literal L.

Let us denote by θi each of the θ in the definition above, and by Varsi the
variables of L or H in ret(H). Then escm(X) ≡

∨
i

∨
V ∈Varsi(X = V ∧ θi).

Note that usr(X) entails escm(X), where usr(X) is the property that describes
all user terms.

Lemma 3 (Escaping at the boundaries). Consider all derivation steps S1 S2

where S1 = 〈(L1,m) :: _ | _〉 and S2 = 〈(L2, n) :: _ | θ〉 with n 6= m. That is,
the derivation steps when calling a predicate at n from m (if L1 is a literal)
or when returning from m to module n (if L1 is ret(_)). Let esc′m(X) be the
smallest property such that θ ⇒P esc′m(X) for each variable X in the literal L2,
and usr(X)⇒P esc′m(X). Then esc′m(X) ∧ usr(X) is equivalent to escm(X).

The lemma above states that it is enough to consider the states at the
module boundaries to compute escm(X). This and other proofs can be found
in A.

Algorithm 1 computes an over-approximation of the escm(X) property.
The algorithm has two parts. First, it loops over the exported predicates
in module m. For each exported predicate we use Post from the success

10

assertion conditions as a safe over-approximation of the constraints that can be
introduced during the execution of the predicate. We compute the union (t,
which is equivalent to ∨ but it may simplify the representation) of all properties
that restrict any variable argument in Post. The second part of the algorithm
performs the same operation on all the properties specified in the Pre of the
calls assertions conditions. This is a safe approximation of the constraints that
can be leaked to other modules called from m.

Note that the algorithm can use analysis information to detect more precise
calls to the imported predicates, as well as more precise successes of the
exported predicates, than those specified in the assertion conditions present in
the program.

Lemma 4 (Correctness of Escaping_Terms). The Escaping_Terms
algorithm computes a safe (over)approximation to escm(X) (when using the
operational semantics with assertions).

Shallow Properties. Shallow run-time checking consists in using shallow
versions of properties in the run-time checks for the calls across module bound-
aries. Despite this could be added directly to the operational semantics, we
will present it as a program transformation based on the generation of shallow
versions of the properties.
Example 4. Assume that the set of escaping terms of m contains point(1)
and it does not contain the more general point(_). Consider the prop-
erty intpoint(point(X)) :- int(X). Checking intpoint(A) at any program
point outside m must check first that A is instantiated to point(X) and that X
is instantiated to an integer (int(X)). However, the escaping terms show that
it is not possible for a variable to be bound to point(X) without X=1. Thus,
the latter check is redundant. We can compute the optimized – or shallow –
version of intpoint/1 in the context of all execution points external to m as
intpoint(point(_)).

Let Spec(L, Pre) generate a specialized version L′ of predicate L w.r.t.
calls given by Pre (see [9]). It holds that for all θ, θ ⇒P L iff θ ∧ Pre⇒P L

′.

Definition 8 (Shallow property). The shallow version of a property L(X) w.r.t.
module m is denoted as L(X)#, and computed as Spec(L(X), Q(X)), where
Q(X) is a (safe) approximation of the escaping terms ofm (Escaping_Terms(m)).

Algorithm 2 computes the optimized version of a module interface using
shallow checks. It first introduces wrappers for the exported predicates, i.e.,
predicates p(X) :- p’(X), renaming all internal occurrences of p by p’. Then

11

Algorithm 2 Shallow_Interface
1: function Shallow_Interface(M)
2: Let M ′ be M with wrappers for exported predicates
3: (to differentiate internal from external calls)
4: Let Q(X) := Escaping_Terms(M ′)
5: for all L exported from M do
6: for all c.calls(L, Pre) ∈ AC(L) do
7: Update AC(L) with c.calls(L, Pre#)

8: for all c.success(L, Pre, Post) ∈ AC(L) do
9: Update AC(L) with c.success(L, Pre#, Post)
10: return M ′

it computes an approximation Q(X) of the escaping terms of M . Finally,
it updates all Pre in calls and success assertion conditions, for all exported
predicates, with its shallow version Pre#. We compute the shallow version of
a conjunction of literals Pre =

∧
i Li as Pre# =

∧
i L

#
i .

Theorem 5 (Correctness of Shallow_Interface). Replacing a module
m in a larger program by its shallow version does not alter the operational
semantics.

Discussion about precision. The presence of any top properties in the
calls or success assertion conditions will propagate to the end in the Escap-
ing_Terms algorithm (see Algorithm 1). For a significant class of programs,
this is not a problem as soon as we can provide or infer precise assertions which
do not use this top element. Note that usr(X), since it has a void intersection
with any hidden term, does not represent a problem. For example, many
generic Prolog term manipulation predicates (e.g., functor/3) typically accept
a top element in their calls conditions. We restrict these predicates to work
only on usr (i.e., not hidden) symbols.7 More sophisticated solutions, that are
outside the scope of this paper include: producing monolithic libraries (creating
versions of the imported modules and using abstract interpretation to obtain
more precise assertion conditions); or disabling shallow checking (e.g., with
a dynamic flag) until the execution exits the context of m (which is correct
except for the case when terms are dynamically asserted).

Multi-library scenarios. Recall that properties can be exported and used in
assertions from other modules. The shallow version of properties in m are safe

7This can be implemented very efficiently with a simple bit check on the atom properties
and does not impact the execution.

12

Table 1: Benchmark metrics.

Name LOC Size (KB) Assertions # Hidden
AVL-tree 147 16.7 20 2

B-tree 240 22.1 18 3
Binary tree 58 8.3 6 2

Heap 139 15.1 12 3
RB-tree 678 121.8 20 4

to be used not only at the module boundaries but also in any other assertion
check outside m. Computing the shallow optimization can be performed per-
library, without strictly requiring intermodular analysis. However, in some
cases intermodular analysis may improve the precision of escaping terms and
allow more aggressive optimizations.

5 Experimental Results
We now study the effectiveness of the combination of term hiding and shallow
checking in the reusable library context, i.e., in libraries that use (some)
hidden terms in their data structures and offer an interface for clients to
access/manipulate such terms. We study the four assertion checking modes
of [3]: Unsafe (no assertions are checked), Client-Safe (checks are generated for
the assertions at the client-library boundary), Safe-RT (checks are generated
also for internal library assertions), and Safe-CT+RT (like RT, but analysis
information is used to clear as many checks as possible at compile-time). We use
the lightweight instrumentation scheme from [10] for generating the run-time
checks from the assertions. For eliminating the run-time checks via static
analysis we reuse the Ciao verification framework extension from [3]. We
concentrate in this work on shape analysis (regular types).

In our experiments each benchmark is composed of a library and a client/driver.
We have selected a set of Prolog libraries that implement tree-based data struc-
tures. Libraries B-tree and binary tree were taken from the Ciao sources;
libraries AVL-tree, RB-tree, and heap were adapted from YAP, adding similar
assertions to those of the Ciao libraries. Table 1 shows some statistics for
these libraries: number of lines of code (LOC), size of the object file (Size KB),
the number of assertions in the library specification considered (Assertions),
and the number of hidden functors per library (# Hidden). In order to focus
on the assertions of the library operations used in the benchmarks (where
by an operation we mean the set of predicates implementing it) we do not
count in the tables the assertions for library predicates not directly involved in

13

Table 2: Static analysis and checking time for benchmarks for the Safe-CT+RT
mode.

Benchmark Analysis time, ms Assertions
prep shfr prep eterms total checking, ms unchecked

AVL-tree 2 10 2 31 45 (2%) 59 (2%) 2/20
B-tree 3 9 3 38 53 (2%) 90 (3%) 3/18

Binary tree 1 9 1 14 25 (2%) 33 (2%) 2/6
Heap 2 7 2 24 35 (2%) 71 (4%) 2/12

RB-tree 13 11 14 35 73 (3%) 298 (10%) 3/20

those operations. Library assertions contain unmoded regular types (see the
appendices for a simple example). For each library we have created two drivers
(clients) resulting in two benchmarks per library:

• A benchmark that has constant (O(1)) time complexity for the library
operation and O(N) time complexity for the respective run-time check
(e.g., looking up the value stored at the root of a binary tree and checking
on each lookup that the input term is a binary tree).8 Here a significant
speedup can be expected when using shallow run-time checks, since the
checking time dominates execution time and the reduction due to shallow
checking should be more noticeable.

• A benchmark that has non-constant (O(log(N))) complexity of the library
operation and O(N) complexity of the respective run-time check (e.g.,
inserting an element in a binary tree and checking on each insertion that
the input term is a tree. Here a smaller speedup is expected when using
shallow run-time checking.

All experiments were run on a MacBook Pro with 2,6 GHz Intel Core i5
processor, 8GB RAM, and under the Mac OS X 10.12.3 operating system.

Static Analysis. Table 2 presents the detailed compile-time analysis and
checking times for the Safe-CT+RT mode. Numbers in parentheses indicate
the percentage of the total compilation time spent on analysis, which stays
reasonably low even in the most complicated case (13% for the RB-tree library).
Nevertheless, the analysis was able to discharge most of the assertions in our
benchmarks, leaving always only 2-3 assertions unchecked (i.e., that will need
run-time checks), for the predicates of the library operations being benchmarked.

8In the case of the heap library we used the size/2 operation since heap size is stored in
a term that wraps the root node of the heap tree.

14

����

����

����

���

���

���

���

��� ��� ��� ���

�
�
��
�
��
�
�
�
��
�
��

�
�
�

������������������������

���

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
�
��
�
��
�
�
�
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

Figure 2: Run times in different checking modes, AVL-tree library, O(log(N))
operation.

Run-time Checking. After the static preprocessing phase we have divided
our libraries into two groups:

• Libraries where the only unchecked assertions left are the ones for the
boundary calls (AVL-tree, heap, and binary tree).9

• Libraries with also some unchecked assertions for internal calls (B-tree
and RB-tree).

We present run time plots for one library of each group. Since the unchecked
assertions in the second group correspond to internal calls of the O(log(N))
operation benchmark, we only show here a set of plots of the O(1) operation
benchmark for one library, as these plots are very similar across all benchmarks.
The remaining plots can be found in C.

Fig. 2 illustrates the overhead reductions from using the shallow run-time
checks in the AVL-tree benchmark for the O(N) insert operation benchmark.
This is also the best case that can be achieved for this kind of operations, since
in the Safe-CT+RT mode all inner assertions are discharged statically. Fig. 3
shows the overhead reductions from using the shallow checks in the B-tree
benchmark for the O(N) insert operation benchmark. In contrast with the
previous case, here the overhead reductions achieved by employing shallow
checks are dominated by the total check cost. However, in both cases we can
observe that the use of shallow checks in the Client-Safe checking mode results
in constant run-time overhead, compared to the growing overhead in Unsafe

9Note that due to our reusable library scenario the analysis of the libraries is performed
without any knowledge of the client and thus the library interface checks must always remain.

15

����

����

����

���

���

���

���

��� ��� ��� ���

�
�
��
�
��
�
�
�
��
�
��

�
�
�

������������������������

���

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
�
��
�
��
�
�
�
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

Figure 3: Run times in different checking modes, B-tree library, O(log(N))
operation.

(i.e., no checks) mode (Fig. 2 and Fig. 3, right). Fig. 4 presents the overhead
reductions in run-time checking resulting from the use of the shallow checks
in the AVL-tree benchmark for the O(1) peek operation benchmark on the
root. As we can see, using shallow checks allows us to obtain constant overhead
on the boundary checks for such cheap operations in all execution modes but
Safe-RT. In summary, the shallow checking technique seems quite effective in
reducing the shape-related run-time checking overheads for the reusable-library
scenario.

6 Related Work
Modularity. The topic of modules and logic programming has received con-
siderable attention, dating back to [11, 12, 13] and resulting in standardization
attempts for ISO-Prolog [14]. Currently, most mature Prolog implementations
adopt some flavor of a module system, predicate-based in SWI [15], SICStus [16],
YAP [17], ECLiPSe [18], and atom-based in XSB [4]. The Ciao approach [5],
while theoretically compatible with that of XSB, has until now been closer to a
predicate-based module system. Some previous research in the comparative
advantages of atom-based module systems can be found in [19]. Our proposal
can be seen as a way to achieve the benefits of an atom-based module system
with a small effort in systems with predicate-based module systems.

Parallels with Static Typing. While traditionally Prolog is untyped, there
have been some proposals for integrating it with type systems, starting with
the work of [20]. Several typed Prolog-based systems have been proposed,
notable examples being Mercury [21], Gödel [22], and Visual Prolog [23]. An

16

����

����

����

���

��� ��� ��� ���

�
�
��
�
��
�
�
�
��
�
��

�
�
�

������������������������������

���������������������������������������

�������
���������
�����������

������

����

����

����

���

��� ��� ��� ���

�
�
��
�
��
�
�
�
��
�
��

�
�
�

������������������������������

��

�������
���������
�����������

������

Figure 4: Run times in different checking modes, AVL-tree library, O(1)
operation.

approach for combining typed and untyped Prolog modules has been proposed
in [24]. A conceptually similar approach in the world of functional programming
is embodied in gradual typing [25, 26]. The Ciao model offers an (earlier)
alternative (closer to soft typing [27]) based on abstract interpretation that is
arguably more general and flexible than the above (assertions can contain any
abstract property) –see [28] for a discussion of this topic.

Run-time Checking Optimization. Prohibitively high run-time overhead is
common in systems that combine static and dynamic checking [26]. The impact
of global static analysis in reducing in run-time checking overhead has been
studied in [3]. A complementary approach is improving the instrumentation of
the checks and combining it with run-time data caching [29, 10] or limiting the
points at which the tests are performed [30]. While these optimizations can
bring significant reductions in overhead, it still remains dependent on the size
of the terms that are being checked. We have shown herein that even in the
challenging context of calls across module boundaries it is sometimes possible
to achieve constant run-time overhead.

7 Conclusions
We have described a lightweight modification of a predicate-based module
system to support term hiding and explored the optimizations that can be
achieved with this technique in the context of combined compile-time/run-time
verification. We have studied the challenging case of reusable libraries, i.e.,
library modules that are pre-compiled independently of the client. We have
shown that with our approach the shape information that can be inferred

17

in such reusable modular programs can be enriched significantly and large
reductions in overhead can be achieved, closer to those of static languages
even in this reusable-library context. Our approach does not require switching
to a strongly-typed language, which is not natural in languages like Prolog.
An additional advantage of term hiding is that it is less intrusive than the
alternative atom-based approach (e.g., it requires few changes in Prolog libraries)
and thus we believe our approach can be easily incorporated into traditional,
predicate-based Prolog systems.

References
[1] N. Stulova, J. F. Morales, and M. V. Hermenegildo. Towards Run-time

Checks Simplification via Term Hiding (extended abstract). In Technical
Communications of the 33rd International Conference on Logic Program-
ming (ICLP 2017), August 2017.

[2] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1–2):219–252, January 2012.
http://arxiv.org/abs/1102.5497.

[3] N. Stulova, J. F. Morales, and M. V. Hermenegildo. Reducing the Over-
head of Assertion Run-time Checks via static analysis. In 18th Int’l.
ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’16), pages 90–103. ACM Press, September 2016.

[4] Terrance Swift and David Scott Warren. XSB: Extending Prolog with
Tabled Logic Programming. TPLP, 12(1-2):157–187, 2012.

[5] D. Cabeza and M. V. Hermenegildo. A New Module System for Prolog. In
International Conference CL 2000, volume 1861 of LNAI, pages 131–148.
Springer-Verlag, July 2000.

[6] M. V. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis,
Partial Specifications, and an Extensible Assertion Language for Program
Validation and Debugging. In The Logic Programming Paradigm: a
25–Year Perspective, pages 161–192. Springer-Verlag, 1999.

[7] G. Puebla, F. Bueno, and M. V. Hermenegildo. Combined Static and
Dynamic Assertion-Based Debugging of Constraint Logic Programs. In
Proc. of LOPSTR’99, LNCS 1817, pages 273–292. Springer-Verlag, March
2000.

18

[8] N. Stulova, J. F. Morales, and M. V. Hermenegildo. Assertion-based
Debugging of Higher-Order (C)LP Programs. In 16th Int’l. ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’14). ACM Press, September 2014.

[9] G. Puebla, E. Albert, and M. V. Hermenegildo. Abstract Interpretation
with Specialized Definitions. In SAS’06, number 4134 in LNCS, pages
107–126. Springer-Verlag, 2006.

[10] N. Stulova, J. F. Morales, and M. V. Hermenegildo. Practical Run-time
Checking via Unobtrusive Property Caching. Theory and Practice of Logic
Programming, 31st Int’l. Conference on Logic Programming (ICLP’15)
Special Issue, 15(04-05):726–741, September 2015.

[11] D.S. Warren and W. Chen. Formal semantics of a theory of modules.
Technical report 87/11, SUNY at Stony Brook, 1987.

[12] W. Chen. A theory of modules based on second-order logic. In Proc.
4th IEEE Internat. Symposium on Logic Programming, pages 24–33, San
Francisco, 1987.

[13] D. Miller. A logical analysis of modules in logic programming. Journal of
Logic Programming, pages 79–108, 1989.

[14] ISO. PROLOG. ISO/IEC DIS 13211-2 — Part 2: Modules, 2000.

[15] J. Wielemaker. The SWI-Prolog User’s Manual 5.9.9, 2010.

[16] Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista,
Sweden. SICStus Prolog User’s Manual, 4.1.1 edition, December 2009.

[17] Vítor Santos Costa, Luís Damas, and Ricardo Rocha. The YAP
Prolog System. Theory and Practice of Logic Programming, 2011.
http://arxiv.org/abs/1102.3896v1.

[18] Cisco Systems. ECLIPSE User Manual, 2006.

[19] Rémy Haemmerlé and François Fages. Modules for Prolog Revisited. In
Sandro Etalle and Miroslaw Truszczynski, editors, ICLP, volume 4079 of
Lecture Notes in Computer Science, pages 41–55. Springer, 2006.

[20] A. Mycroft and R.A. O’Keefe. A Polymorphic Type System for Prolog.
Artificial Intelligence, 23:295–307, 1984.

19

[21] Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of
Mercury: an Efficient Purely Declarative Logic Programming Language.
Journal of Logic Programming, 29(1–3):17–64, October 1996.

[22] P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press,
1994.

[23] Prolog Development Center. Visual Prolog.

[24] Tom Schrijvers, Vítor Santos Costa, Jan Wielemaker, and Bart Demoen.
Towards Typed Prolog. In Enrico Pontelli and María M. García de la
Banda, editors, International Conference on Logic Programming, number
5366 in LNCS, pages 693–697. Springer Verlag, December 2008.

[25] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages.
In In Scheme and Functional Programming Workshop, pages 81–92, 2006.

[26] A. Takikawa, D. Feltey, B. Greenman, M.S. New, J. Vitek, and M. Felleisen.
Is sound gradual typing dead? In POPL 2016, pages 456–468, January
2016.

[27] Robert Cartwright and Mike Fagan. Soft Typing. In Programming Lan-
guage Design and Implementation (PLDI 1991), pages 278–292. SIGPLAN,
ACM, 1991.

[28] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales,
and G. Puebla. The Ciao Approach to the Dynamic vs. Static Language
Dilemma. In Proc. Int’l. WS on Scripts to Programs, STOP’11. ACM,
2011.

[29] E. Koukoutos and V. Kuncak. Checking Data Structure Properties Orders
of Magnitude Faster. In Runtime Verification, volume 8734 of LNCS,
pages 263–268. Springer, 2014.

[30] E. Mera, P. López-García, and M. V. Hermenegildo. Integrating Software
Testing and Run-Time Checking in an Assertion Verification Framework.
In 25th Int’l. Conference on Logic Programming (ICLP’09), volume 5649
of LNCS, pages 281–295. Springer-Verlag, July 2009.

20

A Main Proofs

A.1 Proof of Lemma 3
Proof. Let escm(X) ≡

∨
i

∨
V ∈Varsi(X = V ∧θi) and esc′m(X) ≡

∨
i

∨
V ∈Vars′i(X =

V ∧ θ′i). From the definitions, it can be seen that the set of all θ′i (at the bound-
aries, before and after m) is a subset of all θi (outside m). The rest of the
θi correspond to states not preceded by a literal from m. For such states∨

V ∈Varsi(X = V ∧ θi) must be: 1) covered by usr(X) (and thus esc′m(X)); or
2) contain some X = f(. . .) with f hidden in m. Since f cannot appear in
literals from n 6= m then it must have come from some θb ∧ θo, where θb is some
ancestor at the boundaries (already covered), θo is a conjunction of constraints
introduced outside m (with cannot contain f), and thus it is more specific and
also covered by esc′m(X)).

A.2 Proof of Lemma 4
Proof. Let Q(X) = Escaping_Terms(m), we will show that Q(X) over-
approximates escm(X). Since escm(X) is equivalent to esc′m(X) (Lemma 3), it
is enough to consider the derivation steps at the boundaries. That is, S1 S2

where S1 = 〈(L1,m) :: _ | _〉 and S2 = 〈(L2, n) :: _ | θ〉 with n 6= m. If L1

is a literal (not ret(_)) then it corresponds to the case of calling an imported
predicate. The operational semantics ensure that θ ⇒P Pre and thus Q(X)
over-approximates this case. If L2 is ret(_) then it corresponds to the case of
returning from m. The operational semantics ensure that θ ⇒P Post and thus
Q(X) also over-approximates this case.

A.3 Proof of Theorem 5
Proof. By definition, the transformation only affects the checks for Pre =
(
∧

i Li(Xi)) conjunctions in assertion conditions of exported predicates in m.
These checks correspond to the derivation steps S1 S2 where S1 = 〈(_, n) ::
G | θ〉 and S2 = 〈(_,m) :: G | _〉 with n 6= m. Let Q(X) be obtained

21

from Escaping_Terms(m). The shallow version Pre# = (
∧

i Li(Xi))
=

(
∧

i Spec(Li(Xi), Q(Xi))) (Definition 8). By Definition 7 it holds that θ ⇒P

(
∧

i escm(Xi)). By Lemma 4 it holds that θ ⇒P (
∧

iQ(Xi)). By correctness of
Spec, since θ entails each Q(Xi), then the full and specialized versions of Li

can be interchanged.

22

B Example: Computation of Escaping Terms
and Shallow Checks
(Code from the binary tree Library)

The code excerpt below below contains the declarations for hiding locally the
binary tree library functors, the exported insert/3 predicate, its assertion,
and the definitions of the regular types used in this assertion:

:- hide(empty/0).
:- hide(tree/3).

:- regtype val_key/1.
val_key(X) :- int(X).

:- regtype val_tree/1.
val_tree(empty).
val_tree(tree(LC,X,RC)) :- val_tree(LC), val_key(X), val_tree(RC).

:- pred insert(K,T0,T1) : val_key(K), val_tree(T0), term(T1)
=> val_key(K), val_tree(T0), val_tree(T1).

insert(X,empty,tree(empty,X,empty)).
insert(X,tree(LC,X,RC),tree(LC,X,RC)).
insert(X,tree(LC,Y,RC),tree(LC_p,Y,RC)) :- X < Y,insert(X,LC,LC_p).
insert(X,tree(LC,Y,RC),tree(LC,Y,RC_p)) :- X > Y,insert(X,RC,RC_p).

The assertion conditions for the insert/3 predicate are:

c0.calls(insert(K,T0, T1), val_key(K), val_tree(T0), term(T1))
c1.success(insert(K,T0, T1), (val_key(K), val_tree(T0), term(T1)),

(val_key(K), val_tree(T0), val_tree(T1)))

Denoting the module that contains the library source code as bt, the set of
escaping terms computed by Algorithm 1 can be represented as the following
regular type:

escbt(bt:empty).
escbt(bt:tree(L,K,R)) :- val_tree(L), val_key(K), val_tree(R).
escbt(X) :- usr(X).

where usr(_) is a property that denotes user terms. The explicit module
qualification bt : is used only to clarify that empty/0 and tree/3 are local to
module bt and not user functors. The resulting shallow interface produced by
Algorithm 2 is:

23

:- regtype val_key/1.
val_key(X) :- int(X).

:- regtype val_tree/1.
val_tree(empty).
val_tree(tree(LC,X,RC)) :- val_tree(LC), val_key(X), val_tree(RC).

:- pred insert(K,T0,T1) : val_key(K), val_tree#(T0), term(T1).
=> val_key(K), val_tree(T0), val_tree(T1).

insert(K,T0,T1) :- insert’(K,T0,T1).

:- pred insert’(K,T0,T1) : val_key(K), val_tree(T0), term(T1)
=> val_key(K), val_tree(T0), val_tree(T1).

... clauses of insert’/3 ...

where the val_tree# property can be materialized as:

val_tree#(empty).
val_tree#(tree(_,_,_)).

The run-time checks instrumentation then can use the shallow val_tree#/1
property in the checks for the calls across module boundaries and the original
val_tree/1 property for the calls inside the bt module.

24

C Additional Plots

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

���

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

Figure 5: Run times for the AVL-tree benchmark in different execution modes,
O(log(N)) operation + O(N) check complexity

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

���������������������������������������

�������
���������
�����������

������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

��

�������
���������
�����������

������

Figure 6: Run times for the AVL-tree benchmark in different execution modes,
O(1) operation + O(N) check complexity

25

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

��������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�������������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�����������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

���������������������������������

����
�������

Figure 7: Run times for the AVL-tree benchmark per execution mode, O(log(N)) operation + O(N) check
complexity

26

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

�����������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

���������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

�������������������������������

����
�������

Figure 8: Run times for the AVL-tree benchmark per execution mode, O(1) operation + O(N) check complexity

27

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

���

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

Figure 9: Run times for the 2-3-4 B-tree benchmark in different execution
modes, O(log(N)) operation + O(N) check complexity

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

���

�������
���������
�����������

������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

��

�������
���������
�����������

������

Figure 10: Run times for the 2-3-4 B-tree benchmark in different execution
modes, O(1) operation + O(N) check complexity

28

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

������������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

���

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

���������������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�������������������������������������

����
�������

Figure 11: Run times for the 2-3-4 B-tree benchmark per execution mode, O(log(N)) operation + O(N) check
complexity

29

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

����������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

���������������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

�������������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

�����������������������������������

����
�������

Figure 12: Run times for the 2-3-4 B-tree benchmark per execution mode, O(1) operation + O(N) check
complexity

30

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

���

�������
���������
�����������

������

Figure 13: Run times for the binary tree benchmark in different execution
modes, O(log(N)) operation + O(N) check complexity

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

��

�������
���������
�����������

������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

���

�������
���������
�����������

������

Figure 14: Run times for the binary tree benchmark in different execution
modes, O(1) operation + O(N) check complexity

31

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�����������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

��

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

��������������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

������������������������������������

����
�������

Figure 15: Run times for the binary tree benchmark per execution mode, O(log(N)) operation + O(N) check
complexity

32

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

���������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

��������������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

������������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

����������������������������������

����
�������

Figure 16: Run times for the binary tree benchmark per execution mode, O(1) operation + O(N) check
complexity

33

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

�������������������������������������

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

Figure 17: Run times for the min-heap benchmark in different execution modes,
O(log(N)) operation + O(N) check complexity

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

���������������������������������

�����������������������������������

�������
���������
�����������

������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

���������������������������������

��������������������������������������

�������
���������
�����������

������

Figure 18: Run times for the min-heap benchmark in different execution modes,
O(1) operation + O(N) check complexity

34

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

����������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

���������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�����������������������������

����
�������

Figure 19: Run times for the min-heap benchmark per execution mode, O(log(N)) operation + O(N) check
complexity

35

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

���������������������������������

��������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

���������������������������������

�������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

���������������������������������

�����������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

���������������������������������

���������������������������

����
�������

Figure 20: Run times for the min-heap benchmark per execution mode, O(1) operation + O(N) check complexity

36

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

��

�������
���������
�����������

������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

���

�������
���������
�����������

������

Figure 21: Run times for the RB-tree benchmark in different execution modes,
O(log(N)) operation + O(N) check complexity

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

��������������������������������������

�������
���������
�����������

������

����

����

����

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������������

���

�������
���������
�����������

������

Figure 22: Run times for the RB-tree benchmark in different execution modes,
O(1) operation + O(N) check complexity

37

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

�������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

������������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

����������������������������������

����
�������

����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������

��������������������������������

����
�������

Figure 23: Run times for the RB-tree benchmark per execution mode, O(log(N)) operation + O(N) check
complexity

38

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

�����������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

����������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

��������������������������������

����
�������

����

����

����

���

��� ��� ��� ���

�
��
��
��
�
��
��
�
��

�
�
�

������������������������������

������������������������������

����
�������

Figure 24: Run times for the RB-tree benchmark per execution mode, O(1) operation + O(N) check complexity

39

	Introduction
	Modular Programs with Hiding
	Run-Time Checking of Modular Programs
	Shallow Run-Time Checking
	Experimental Results
	Related Work
	Conclusions
	Main Proofs
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 5

	 Example: Computation of Escaping Terms and Shallow Checks (Code from the binary tree Library)
	Additional Plots

