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Abstract

Several cost analyses of logic programs have been developedwhich make it possible to automatically obtain lower
and upper bounds of runtime cost of computations. This information is very useful for a variety of purposes, including
granularity control for parallel execution, query optimizations in databases, and program transformation and synthesis.
However, current techniques suffer a loss accuracy in some quite representative cases (i.e., some divide-and-conquer
programs̀a la QuickSort). This paper describes an alternative probabilistic approach which makes it possible to figure
out a function estimating program execution cost. Estimations deduced in this fashion did not contradict correct upper
and lower bounds in all example cases tried out. At the same time, the accuracy of the cost prediction in programs
where bound-based techniques were clearly overestimatingthe real cost was greatly improved and exact complexity
expressions could obtained both for average and for extremecases. Additionally, one of the advantages of the proposed
method is that it needs only a few changes over previous schemes.

Keywords: Logic Programming, Cost Analysis, Complexity Analysis, Program analysis, Resource Consumption
Estimation.

1 Introduction

Computation cost is, in general, some measure of resources which a computation needs to consume in order to proceed
satistactorily. Usual cost measures are time, computationsteps, memory spent, etc. In this work we will deal (in a
somewhat abstract fashion) with costs which increase monotonically with the execution, exemplified by time / number
of computation steps. Information about the runtime cost ofcomputations can be useful for a variety of applications.
For example, it is useful for task scheduling and granularity control (i.e., dynamic control of thread / process creation)
in parallel execution [15, 5, 19, 12, 17, 14], program transformation, query optimization in databases [3], resource-
aware security in mobile code [10, 9], and to prove that a program meets strict time constraints in real-time systems [1].

In the context of logic programming, the work on cost estimation has generally focused on upper [4] or lower [6]
bounds cost analysis. A significant shortcoming of the techniques used to derive the cost estimation is their precision
loss in the presence of the frequent case of divide-and-conquer programs in which the sizes of the output arguments
of the “divide” part are not independent. In the familiar QuickSort program (see Figure 1), for example, since either
of the outputs of thepartition/4 predicate are fed again as the input list toqsort/2, the upper bound cost



analysis approach [4] works under the assumption that both outputs cansimultaneouslybe the whole input list, thereby
significantly overestimating the cost of the QuickSort program (a more detailed account of why this is so can be found
in Section 2.3). On the other hand, for most of the applications mentioned before, the average cost of a program is
more interesting, and appropriate, than the worst or best case: while those give raise to “safe” decisions, the cost of not
performing, e.g., parallel execution when possible in average, might not be balanced by the occasions in which this is
done safely. Obviously, giving an acceptable definition of “average” requires defining a probability distribution on the
possible inputs which matches the expected runtime conditions, and this seems nontrivial — it is, at least, dependent
on the final environment. However, profiling techniques might be usable for estimating input distributions. For these
reasons, in this paper we propose a technique for probabilistic case analysis that assume that the input distributions
have been previously set. We show how useful cost functions can be obtained and we apply it to a representant of the
frequent case of divide-and-conquer programs. These cost functions yield the number of procedure calls (resolution
steps) as a function on the size of input data, although they could be adapted to express the cost using other metrics:
number of unifications, number of instructions executed, oreven execution time [16].

An analysis of combinatorial structures, addressing the automatic average-case complexity analysis of algorithms,
has been developed in [8], and it is heavily based on studyingtype properties. We know of no other work which
estimates average cost functions for logic programs.

This paper is organized as follows: Section 2 introduces cost analysis related with term size calculation. Section 3
presents the definition of probabilistic cost and an exampleof its application. Section 4 discusses briefly the relation-
ship between bounds and probabilistic cost and, finally, Section 5 gives some conclusions and discusses some further
work.

2 Cost Analysis of Logic Programs

In our approach, program costs are expressed as functions onthe sizes of the input arguments, which yield estimations
of the number of execution steps required by the computation. This approach is similar to that of [4, 6], except that our
cost functions produce costs associated to a probability distribution instead of upper / lower bounds. Various metrics
can be used for the “size” of an input, such as list-length, term-size, term-depth, integer-value, etc., depending on the
particular case. We assume that types, modes, and size measures are available, as a result of a previous automatic
analysis (e.g. using theCiaoPP system [11]) or by means of programmer-provided annotations, and are put to work
when analyzing term sizes and predicate costs. We assume also that the cost unit is a resolution, i.e., a procedure call
(or, accordingly, the successful unification of a clause head).

In order to obtain lower- and upper-bound approximations ofcost functions,CiaoPP first performs the following
analyses (all using abstract interpretation [13, 2] techniques):

• A mode (and sharing) analysis. This determines which arguments (or parts of them) are inputs and which are
outputs for each procedure and procedure call, as well as thedependencies between any variables in the data
structures passed via these arguments. The use of mode information implies that each argument of a predicate
(denoted by its position in the head) is annotated as being purely “input” or “output”, depending on whether or
not it is bound to a ground term when the predicate is invoked.1

• A type analysis, which infers types for all program variables. Note that type declarations are not compulsory in
the language, so the relevant type definitions may also have to be inferred.

• A determinacy analysis. It needs the results of type and modeanalysis, and it detects which procedures and
procedure calls are deterministic (i.e., they will yield a single solution).

• A non-failure analysis. This also requires results from type and mode analysis, and can detect procedures and
goals that can be guaranteed not to fail, i.e., to produce at least one solution or not to terminate. Non-failure
analysis is necessary to estimate accurately lower bounds,as it is necessary to account for the possibility of
failure of a call to a procedure, leading to a trivial lower bound of 0.

• Inference of size metrics for relevant arguments (which we will detail in short). This is based on type informa-
tion.

1Note that this is a restriction with respect to the more general case of Logic Programming, where data structures can be “incomplete”, i.e.,
partially instantiated.



qsort([],[]).
qsort([X|L],R) :-

partition(L,X,L1,L2),
qsort(L2,R2),
qsort(L1,R1),
append(R1,[X|R2],R).

append([],X,X).
append([H|X],Y,[H|Z]) :- append(X,Y,Z).

partition([],_,[],[]).
partition([E|R],C,[E|Left1],Right) :-

E < C, !,
partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :-
E >= C,
partition(R,C,Left,Right1).

Figure 1: QuickSort in Prolog

We will sketch in what follows how the work done by (recursive) clauses is determined once all the above informa-
tion is obtained. To this end, it is first necessary to estimate the size of output arguments in the procedure calls in the
body of the procedure. The size of output arguments in a procedure call depends, in general, on the size of the input
arguments in that call. For example, in the program in Figure1, the size of the output argument ofappend/3 depends
on the size of its input arguments. Those input arguments are, in turn, the output arguments of the calls toqsort/2,
and so on. Therefore, for each output argument we construct an expression which yields its size as a function of the
size of the input arguments. This is done by means of abstractions of procedure definitions (a data dependency graph)
built using all the information inferred previously. The following steps are then performed:

• Data dependency graphs are used to determine the relative sizes of variable bindings at different program points.

• Size information is used to set up difference equations representing the computational cost of procedures.

• Abstractions (lower and upper bounds) of the solutions of these difference equations are then obtained, which
provide lower and upper-bounds on procedure costs and on thefunctions relating the size of input and output
data.

We will use as driving example an implementation of QuickSort, shown in Figure 1, which sorts a list of terms.2

The first argument ofqsort/2 is an input and the second is an output. The input arguments ofpartition/4 are
the first and the second ones —a list and a number, respectively. The output arguments ofpartition/4 are the
third and fourth ones. For the predicateappend/3, the first and second arguments are inputs and the third argument
is an output.

2.1 Lower and Upper Bounds

We will very briefly describe the basics of automatic deduction of lower and upper bounds for the computational cost
of predicates. A more formal definition of a lower bound of thecost of a clause is given in [6]; similarly [4, 7] describe
the method used to derive cost upper bounds. We will use in this section a clauseC which we assume is of the form

C ≡ H : −B1, ..., Bm (1)

We assume thatC hasr input arguments, and we will represent byx ther-tuple denoting the sizes of these input
arguments. Letφ1(x), ..., φm(x) be the size(s) of the input argument(s) for each of the the body literalsB1, ..., Bm

respectively. We assume that the program is deterministic,and therefore each body goal has at most one solution. We
will denote byCostC(x) the cost of clauseC for an input of sizex.

Lower Bounds Let Cost
inf
C (x) be a lower bound of clauseC, i.e.,Cost

inf
C (x) ≤ CostC(x). A non-trivial lower

bound for the clause cost is:

Cost
inf
C (x) = γ(x) +

k∑

i=1

Cost
inf
Bi

(φi(x))

whereγ(x) represents the cost of unification of the head and builtin tests (e.g.,E < C) andk is the ordinal of the last
non-failing body goal (literals fromk+1 up tom are not reached in case goalk+1 fails). If the clauseC corresponds

2Note that we are using the naive version which uses complete list instead of the more “Prologish”, difference-list based which appends lists
with complexityO(1). See [18] or any other good textbook on Prolog for more information on the matter.



to a non-failing predicate, thenk = m. A lower bound on the costCostP (x) of a predicate on an input of sizen is
then given by:

CostP (x) ≥ min{Cost
inf
C (x)|C is a clause definingP}

Upper Bounds The upper bound of a clause is defined as

Cost
sup
C (x) = γ(x) +

m∑

i=1

Cost
sup
Bi

(φi(x))

and an upper bound of the cost of a deterministic predicate can be taken as that of the more expensive clause:3

CostP (x) ≤ max{Cost
sup
C (x)|C is a clause definingP}

The worst-case running time of an algorithm is an upper boundon the running time for any input. Even if some
analysis gives an upper bound which is clearly too high, the existence of such an upper bound makes it possible to
deduce that the execution terminates, which is a quite relevant property.

2.2 Size and Cost Analysis

The definition of cost for clauses and predicates shown in theprevious section assumed a cost function for every literal
in the body. When these literals call (directly or indirectly) recursively the predicate being defined, this cost has to be
worked out by solving a series of recurrence equations basedon the sizes of the input data.

In order to do that, it is necessary to determine which arguments have to be selected to pose those equations (which
needs mode analysis), which term measure is to be taken as data size (which additionally needs type analysis), and
actually solving the equations. These are issues which falloutside the scope of this paper. Here we will focus on how
these size relationships are set up; we will notwithstanding devote some efforts to solve the equations which come up
from our running example.

Let us consider a clause defined as in Equation (1) and let us select one output argumentxk whose size we want to
determine based on the sizes of the input argumentsx which we will calls(x). The size of this argument, as generated
by the clauseC, is given by an expressionSz(k)C (s(x)) which is obtained by setting a series of equations of the form

Sz
(k)
C (s(x)) = sz(k)(x) + Sz

(k)
C (s(x′))

wherex′ is the form of the tuple in the recursive call andsz(k)(x) is the difference in size between the output argument
in the initial and the recursive call — i.e., how much the recursive call has contributed to the size of the output argument
in positionk, at the expense of reducing the size of the input argument tuple froms(x) to s(x′).

For recursive clauses, the formulas above (simplified for this paper; the reader is kindly referred to, e.g., [4] for
a more complete description) generate recurrence equations which must be solved in order to obtain the size of each
output position for each clause in terms of the size of the input arguments in the head of the clause.

Example: Consider the clauses ofappend/3 (Figure 1). Letx andy be the length of the input lists (i.e., the first
and second arguments). The size relations for this predicate are:

Szappend(0, y) = y

Szappend(x, y) = 1 + Szappend(x− 1, y)

The first equation is the boundary condition and represents the size of the output list when recursion finishes. The
second equation represents the contribution to the size of the output list for every step taken in the input list. The
solution to this equation isSzappend(x, y) = x+ y.

Example: Consider the third clause ofpartition/4 (Figure 1). Letx andy be the first and second arguments
for that predicate, which can be automatically determined to be the input ones. LetSz(i)partition(x, y) denote the size of
thei-th output argument (i ∈ {3, 4}) as a function of the size of the two input argumentsx andy. Using list length as

3For a non-deterministic predicate a trivial upper bound could be computed by adding the cost of every clause instead of taking the maximum.



a measure to determine the size relations for this clause we can write the following difference equations for the output
arguments (third and fourth):

Sz
(3)
partition(x, y) = Sz

(3)
partition(x− 1, y)

Sz
(4)
partition(x, y) = Sz

(4)
partition(x− 1, y) + 1

By doing the same for the rest of the clauses we obtain a set of recurrence equations (one for each output argument)
plus a non-recurrent equation for the base clause(s). Theseequations can be solved to approximate (either as an upper
or as a lower bound) the size of the output arguments. We will see a worked example in the next section.

2.3 Lack of Tightness in Some Upper Bounds

The above formulation can throw very inexact results in seemingly simple cases. We will see that QuickSort is such
a case; in this example the size measure used for all predicates is list length [4]. Consider theqsort/2 program in
Figure 1. We will develop and solve the size equations for this program, and then we will use the solved forms to
derive a cost estimation for its upper bound.

The difference equations for the size relations of the clauses ofpartition/4 are as follows:

Sz
(3)
partition(0, y) = 0

Sz
(3)
partition(x, y) = Sz

(3)
partition(x− 1, y) + 1

Sz
(3)
partition(x, y) = Sz

(3)
partition(x− 1, y)

Sz
(4)
partition(0, y) = 0

Sz
(4)
partition(x, y) = Sz

(4)
partition(x− 1, y)

Sz
(4)
partition(x, y) = Sz

(4)
partition(x− 1, y) + 1

Since there are several recursive clauses which contributedifferently to the size of the output arguments and we are
trying to deduce an upper bound on the cost, we take into consideration the equations which produces the bigger cost.
In this case we will select the second clause for the third argument and the third clause for the fourth argument. The
first clause, associated with the empty list in the input, produces the boundary condition of these difference equations.
Note that the second argument does not contribute (at least directly) to the size of the output argument. In what follows
we will omit it.

Although this particular set of equations is easy to solve, we will use a lemma4 for a wider class of equations which
will be useful later.

Lemma 1 Let us suppose the next recurrence equation:

y(0) = C

y(x) = p y(x− k) + f(x)

wherek is an arbitrary integer value such that0 < k < x, C is a constant,p is an integer such thatp > 0, andf(x)
is any function. The solution of this equation is:

y(x) = p
x
k C +

x
k
−1∑

i=0

pi f(x− ik)

Proof: By induction onx. For x = 0 the result holds trivially because the sum is null for terms of i < 0. Let us
assume that the Lemma holds for ally(x− k) such that0 < k < x. Then we have

y(x− k) = p
x−k
k C +

x−k
k

−1∑

i=0

pi f(x− (i+ 1)k)

4Note that we do not claim authorship of this lemma.



and we expand the corresponding equations fory(x) as follows:

y(x) = p y(x− k) + f(x) = p ( p
x−k
k C +

x−k
k

−1∑

i=0

pi f(x− (i+ 1)k)) + f(x)

= p
x
k C +

x−k
k

−1∑

i=1

pi f(x− ik) + f(x) = p
x
k C +

x
k
−1∑

i=0

pi f(x− ik)

2

Then, the solutions of the equations which express the relation size forpartition/4, according to Lemma 1,
areSz(3)partition(x, y) = x andSz(4)partition(x, y) = x. We already saw in the previous section the solution of the size
equations for the predicateappend/3. Forqsort/2 we have the following equations:

Sz
(2)
qsort(0) = 0

Sz
(2)
qsort(x) = Sz

(3)
append(Sz

(2)
qsort(Sz

(3)
partition(x− 1)), 1 + Sz

(2)
qsort(Sz

(4)
partition(x− 1)))

= Sz
(3)
append(Sz

(2)
qsort(x− 1), 1 + Sz

(2)
qsort(x− 1))

= Sz
(2)
qsort(x− 1) + 1 + Sz

(2)
qsort(x− 1)

= 2 Sz
(2)
qsort(x− 1) + 1

The size relation for the clauses ofqsort/2, obtained by using Lemma 1, isSz(2)qsort(x, y) = 2x − 1. This
is clearly an overestimation which comes from a gross upper bound approximation of the output arguments of
partition/4.

We will now derive the cost equations. As we will use resolution steps as the basis of our measure, we will need
the functions which relate input and output sizes. The cost equations forpartition/4 are therefore:

Cpartition(0) = 1

Cpartition(x) = 1 + Cpartition(x− 1)

whose solution isCpartition(x) = x+1. Analogously, the difference equations for the cost ofappend/3, considering
two input lists of largex andy respectively, are:

Cappend(0, y) = 1

Cappend(x, y) = 1 + Cappend(x− 1, y)

and its solution isCappend(x, y) = x+1. Forqsort/2we write (note that we are using a line per term corresponding
to body goals):

Cqsort(0) = 1

Cqsort(x) = 1 +

Cpartition(x− 1) +

Cqsort(Sz
(3)
partition(x− 1)) +

Cqsort(Sz
(4)
partition(x− 1)) +

Cappend(Szqsort(Sz
(3)
partition(x− 1)), 1 + Szqsort(Sz

(4)
partition(x− 1)))

= 1 + x+ 2Cqsort(x− 1) + 2x − 1

= x+ 2x + 2Cqsort(x− 1)

We can solve this recurrence to obtainCqsort(x) = (x+ 3)2x − x− 2, which is, again, exponential. We have lost
accuracy and, while this is a correct upper bound (and makes it possible to deduce thatqsort/2 always terminates),
is of little practical use for a number of other purposes, namely to obtain a meaningful estimation of the runtime
needed to perform, e.g., granularity control of parallel execution.



3 Probabilistic Cost

In order to work around the overestimation which we have justseen, we will, instead of relying on an upper bound,
assign sizes to arguments in a way that depends on some probability assignment which states a possibility of being
selected assigned to every clause.

3.1 Probabilistic Size Equations

We will set up the size equations for every clause as we had done before. However, assuming determinism and non-
failure, we will work out a size expression per predicate which tries to take into account how every clause contributes
to the output arguments. Let us suppose a predicateQ which is defined byn clausesC1, ..., Cn, and letSz(j)Ci

(x) be a
function on the size of the clause input arguments which returns the size of the output argumentj.

LetPi be a distribution of probability which associates to every clauseCi (except for the base ones) the likelihood
of being selected in a particular call. As usual we require that

n∑

j=1

Pj = 1 (2)

A predicate-level equation forSz(k)Q (x) can then be stated as follows:

Sz
(k)
Q (x) =

n∑

j=1

Pj Sz
(k)
Cj

(x) (3)

I.e., we assume that every clause contributes differently to the size of the output arguments. Similarly to the upper
and lower bounds, we define the probabilistic costCostC(x) of a clauseC, as the sum of the costs associated to the
head of the clause plus the probabilistic cost associated with each of the body literals:

CostC(x) = γ(x) +

m∑

i=1

CostBi
(φi(x))

whereφi is the size of thei-th argument given by the probabilistic method.
As we did before, we first determine the relative sizes of the output arguments by setting up and solving a set of

difference equations. The main difference is that in this case instead of selecting a single equation (c.f., clause) to
return an upper or lower bound, we will combine the effect of the different clauses in each output argument. We will
now apply this method to the QuickSort example in order to evaluate its application in a concrete case.

3.2 Probabilistic Analysis of QuickSort

Let us focus again on the Quicksort program (Figure 1). For the predicatepartition/4, let us assume that the
second clause can be selected with probabilityp (0 ≤ p ≤ 1) and that the third clause is to be selected with probability
1− p. The difference equations which express the sizes of the third and fourth (output) arguments in terms of the first
and second arguments take into account now the probability assigned to each clause. Therefore, the third argument
is contributed to with weightp by the second clause and with weight1 − p by the third clause. The equations which
relate input and output sizes are:

S
(3)
partition(0, y) = 1

S
(3)
partition(x, y) = p [S

(3)
partition(x− 1, y) + 1] + (1− p)S

(3)
partition(x− 1, y)

= p+ S
(3)
partition(x− 1, y)

S
(4)
partition(0, y) = 1

S
(4)
partition(x, y) = (1− p) [S

(4)
partition(x− 1, y) + 1] + pS

(4)
partition(x− 1, y)

= 1− p+ S
(4)
partition(x− 1, y)



Note that the effect of the second argument topartition/4 is now somehow captured by the probability of
clause selection and it is not completely ignored as it was inthe previous scheme. The solutions to these equations,
using Lemma 1, areS(3)

partition(x, y) = p x andS(4)
partition(x, y) = (1 − p)x, for all x ≥ 0. This is intuitively clear,

as the second clause (with probabilityp) is the only one which contributes to the third argument, andsimilarly with
the third clause and the fourth argument. It is important to note that the sizes of the output arguments (two lists) add
up to the size of the input list now — an invariant which is clearly true and which was not met when we used an
upper bound of the size. We had already determined in section2.3 an exact size expression for the output argument of
append/3: S(3)

append(x, y) = x + y. With that expression we can write the difference equationsfor the size relation
of the arguments ofqsort/2 as follows:

S
(2)
qsort(0) = 0

S
(2)
qsort(x) = S

(2)
qsort(p(x− 1)) + S

(2)
qsort((1− p)(x− 1)) + 1

To help us in solving this recurrence equation we will prove another lemma.

Lemma 2 Let us suppose the following recurrence equation:

y(0) = C

y(x) = hx+ d+ y(α(x− 1)) + y((1− α)(x− 1))

for x ≥ 0. C, h, andd are constants,h, d ≥ 0, andα is a value such that12 ≤ α < 1. Theny(x) is bounded by:

y(x) ≤ (2k − 1)d+ h(kx− 2k + k + 1) + 2kC

wherek = 1+ log 1

α
((1−α)(x− 1) + 1) is the depth of recursion. Furthermore, ifh > 0 theny(x) isO(x log x) for

all x > 0. If h = 0, d > 0 andC = 0 theny(x) = dx, for all x > 0.

Proof: By expanding the recurrent definition ofy(x) we obtain:

y(x) = hx+ d+ y(α(x− 1)) + y((1− α)(x− 1))

= h(2x− 1) + 3d+ y(α2(x− 1)− α)

+ y(α(1− α)(x− 1)− (1− α)) + y(α(1− α)(x− 1)− α)

+ y((1− α)2(x− 1)− (1− α))

When we reach thek-th level of its expansion as a binary tree we arrive at an expression as:

y(x) = h(kx− 2k + k + 1) + (2k − 1)d

+ y(αk(x− 1)−
1− αk

1− α
+ 1) + . . .+ y((1− α)k(x− 1)−

1− (1− α)k

α
+ 1)

There are, naturally,2k terms in the leaves of the expansion. We will suppose that therecursion stops when the
evaluation of its first term is zero. Therefore we establish:

αk(x− 1)−
1− αk

1− α
+ 1 = 0

Note that assuming that any other term in the leaves is zero will also be valid, since it is used only to determine
the depth of the recursion,k, based on the input argumentx:

k = 1 + log 1

α
((1− α)(x− 1) + 1)

and, from that, we derive an upper bound ofy(x) by substituting the value ofk in the expansion ofy(x):

y(x) ≤ h(kx− 2k + k + 1) + (2k − 1)d+ 2kC

This result indicates, ifh > 0, that:

y(x) ≤ hkx+ (d+ C − h)2k + h(k + 1)− d

≤ hx(1 + log 1

α
((1− α)(x− 1) + 1))

+ 2(d+ C − h)((1− α)(x− 1) + 1)
log 1

α
2
+ h(k + 1)− d



Since1
2 ≤ α < 1, then it follows thatlog 1

α
2 ≤ 1, and theny(x) ≤ Kx log x, with K a constant. Theny(x) is

O(x log x).
If h = 0, d > 0, andC = 0 then the recurrence equation becomes:

y(0) = 0

y(x) = d+ y(α(x− 1)) + y((1− α)(x− 1))

whose solution isy(x) = dx for all x > 0, which can be proved easily by induction onx: for x = 0 the result
y(0) = 0 holds trivially. Let us assume than the result holds for somex− 1. Then:

y(x) = d+ y(α(x− 1)) + y((1− α)(x− 1))

= d+ dα(x− 1) + d(1− α)(x− 1)

= d+ d(x− 1)

= dx

2

The solution to the size relation equations forqsort/2, is, using the above lemma,S(2)
qsort(x) = x, which is a

much better approximation (in our case, exact) than the one obtained in Section 2.3. The equation for the probabilistic
cost ofqsort/2 becomes now

Costqsort(0) = 1

Costqsort(x) = 1 + Costpartition(x− 1) + Costqsort(p(x− 1))

+Costqsort((1− p)(x− 1)) + Costappend(p(x− 1))

We had already found in Section 2.3 an exact solution in solved form (and which are, therefore, correct also as
probabilistic cost) for the costs ofpartition/4 andappend/3:

Costpartition(x) = x+ 1

Costappend(x) = x+ 1

After substituting them in the equation forCostqsort(x) we obtain:

Costqsort(0) = 1

Costqsort(x) = (p+ 1)x+ 2− p+ Costqsort(p(x− 1)) + Costqsort((1− p)(x− 1))

As per Lemma 2, forp = 0 andp = 1 we were able to obtain an exact solution. For other values ofp we obtained
an approximation. We obtain, for some values ofp (includingp = 1 andp = 0):

Costqsort(x) =
x2+7x+2

2 for p = 0
Costqsort(x) = x2 + 3x+ 1 for p = 1

Costqsort(x) ≤ (x+ 1)(1 + 3
2 log2(x+ 1)) for p = 1

2

Costqsort(x) ≤
4
3 (2x+ 1)log3

2 − 1
3 + 4

3 (x+ 1) log3(2x+ 1) for p = 1
3

Costqsort(x) ≤
3
2 (3x+ 1)

1

2 − 1
2 + 5

4 (x+ 1) log4(3x+ 1) for p = 1
4

Costqsort(x) ≤
7
4 (7x+ 1)

1

3 − 3
4 + 9

8 (x+ 1) log8(7x+ 1) for p = 1
8

In all cases, but in the extreme ones, we obtain complexity orders ofO(x log x). However the associated cost (i.e.,
the numerical value of the cost for a givenx) grows larger as the input list is “more sorted”, approaching a cost which
is O(x2). The “average” case (forp = 1

2 ) gives an expected average cost.



Probability of selection Execution time (ms) Predicted steps steps/ms.
0 12506 50035001.000 4000.880

1/8 64 422573.466 6602.703
1/4 50 279132.163 5582.640
1/3 45 241090.314 5357.556
1/2 48 209338.781 4361.208
1 24879 100030001.000 4020.660

Table 1: Comparison between predicted and experimental performance

3.3 An Experimental Assessment

Table 1 shows some results of several experiments withqsort/2. They were performed on a Pentium Mobile
1.7 GHz, with the clock speed set to its maximum (to avoid skews due to automatic CPU frequency adjustments),
and running Linux with kernel 2.6.15. The measurements weredone by sorting a 10000-element list. Standard
protections against spurious interference were taken (i.e., cache and memory warming-up, computer isolation and low
load, averaging benchmark results, etc.).

The first column shows the probabilityp of selecting the clauses ofpartition/4. We made sure that this is
actually the probability that each clause inpartition/4 is chosen in each test by carefully working out a set of
inputs which precisely select each of the clauses an appropriate number of times.p = 1 andp = 0 correspond,
obviously, to an input list sorted in either increasing or decreasing order. The second column in the Table shows the
running time for each case of input data. The third column shows the predicted steps using cost equations obtained
using a probabilistic approach, and the fourth column showsthe ratio between predicted steps and actual time. This
last column makes it possible to determine quickly whether there is a (strong) correlation between the predicted time
and the time obtained experimentally.

From that table we can see that the prediction makes a reasonable guess. The runs where the input list is not
sorted are notably faster than the other executions, as expected; despite this, the prediction stays within a reasonable
error for those cases. It has to be taken into account that, for the sake of simplicity, we have left out several execution
details (such as cost of builtins, cost of shallow backtracking, etc.), which makes the model less accurate than possible.
Additionally, the solution of lemma 2 is, at this moment, only approximate. This adds up to the lack of a more refined
model and can account for the discrepancy between the predicted and the expected execution time.

We expect that more precise predictions can be made with a more refined cost model (taking into account specific
costs for builtins, head unifications which are made only partially and do not succeed finally because they fail at some
point in the middle of unifying the arguments, etc.).

4 Relation with Upper and Lower Bounds

It is trivial to determine that the probabilistic cost lies between the lower and upper bounds, as it should be indeed. The
key observation is that the probabilistic cost is in our model a linear combination (Equation (3)) of the contributions
of individual clauses with a restriction (Equation (2)) on the values of the coefficients. When lower and upper bounds
are used, they boil down to giving one clause all the available weight. If we try to select a set of weights (abiding by
the restrictions on their values) which give the greatest (resp., lowest) possible value to the cost expressions, we will
find that we will precisely end up with the same selection of rules as the upper (resp., lower) bounds.

5 Conclusions and Further Work

This paper presents an idea and sketches a technique which applies probabilities to the estimation of the computational
cost of logic programs. It is based on a modification of previously existing techniques to deduce lower and upper
bounds for their cost. Probabilities express the likelihood that a given clause is selected over the others, and should
ultimately represent the conditions in some running environment.

By applying this technique we obtain recurrence relations which contain the expected distribution of the recursive
clauses as parameters. The results of this approach allow usto approximate the cost (in terms of resolution steps) of
deterministic logic programs. When a general solution whichkeeps the probability assignment as parameter can be
found, we obtain an expression for the computational cost ofthat predicate or program. For the cases in which this
has not (yet) been possible, the recurrence relation can be specialized for some selected values of the probabilities,



which simplifies the equations and makes solving them easier. In this case special attention has to be paid to values of
probabilities which would correspond to singular points inthe solved form.

In the case of our running example, QuickSort, we obtain an average (i.e., assuming that the input list is not sorted)
case complexity ofO(n log n), beingn the length of the input list. When we assume that the input listis sorted we
obtain a complexity ofO(n2). Both these results improve upon the upper bound previouslyobtained for this predicate,
which was exponential.

As for future work, we intend to refine the model to take into account more execution characteristics, find a tighter
relationship between the solutions given by the probabilistic model with the classicalO(·) approximation and with
other measures of complexity, investigate further in the analytical solution of the kind of recurrence equations that the
probabilistic method generates, and progress towards the automatic implementation of this analysis and the solution
of the difference equations generated.
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