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Abstract

Several cost analyses of logic programs have been develebiett make it possible to automatically obtain lower
and upper bounds of runtime cost of computations. This imédion is very useful for a variety of purposes, including
granularity control for parallel execution, query optieimns in databases, and program transformation and sisthe
However, current techniques suffer a loss accuracy in sarite tgpresentative cases (i.e., some divide-and-conquer
programsa la QuickSort). This paper describes an alternative protslzilapproach which makes it possible to figure
out a function estimating program execution cost. Estiomstideduced in this fashion did not contradict correct upper
and lower bounds in all example cases tried out. At the same, tihe accuracy of the cost prediction in programs
where bound-based techniques were clearly overestimtitengeal cost was greatly improved and exact complexity
expressions could obtained both for average and for extoases. Additionally, one of the advantages of the proposed
method is that it needs only a few changes over previous sehiem

Keywords: Logic Programming, Cost Analysis, Complexity Analysisp@iam analysis, Resource Consumption
Estimation.

1 Introduction

Computation cost is, in general, some measure of resouttieh @ computation needs to consume in order to proceed
satistactorily. Usual cost measures are time, computatieps, memory spent, etc. In this work we will deal (in a
somewhat abstract fashion) with costs which increase nooizlly with the execution, exemplified by time / number
of computation steps. Information about the runtime costoshputations can be useful for a variety of applications.
For example, it is useful for task scheduling and granylaxdntrol (i.e., dynamic control of thread / process cragtio
in parallel execution [15, 5, 19, 12, 17, 14], program transfation, query optimization in databases [3], resource-
aware security in mobile code [10, 9], and to prove that ajanmgmeets strict time constraints in real-time systems [1].
In the context of logic programming, the work on cost estiorahas generally focused on upper [4] or lower [6]
bounds cost analysis. A significant shortcoming of the teples used to derive the cost estimation is their precision
loss in the presence of the frequent case of divide-andt@mmgrograms in which the sizes of the output arguments
of the “divide” part are not independent. In the familiar @uSort program (see Figure 1), for example, since either
of the outputs of theparti ti on/ 4 predicate are fed again as the input listg®or t / 2, the upper bound cost



analysis approach [4] works under the assumption that hdthuts carsimultaneousiye the whole input list, thereby
significantly overestimating the cost of the QuickSort peog (a more detailed account of why this is so can be found
in Section 2.3). On the other hand, for most of the applicetimentioned before, the average cost of a program is
more interesting, and appropriate, than the worst or best aghile those give raise to “safe” decisions, the cost bf no
performing, e.g., parallel execution when possible in ager might not be balanced by the occasions in which this is
done safely. Obviously, giving an acceptable definitionaMerage” requires defining a probability distribution oa th
possible inputs which matches the expected runtime camditiand this seems nontrivial — it is, at least, dependent
on the final environment. However, profiling techniques rhiggausable for estimating input distributions. For these
reasons, in this paper we propose a technique for prob#bitiase analysis that assume that the input distributions
have been previously set. We show how useful cost functiande obtained and we apply it to a representant of the
frequent case of divide-and-conquer programs. These gostibns yield the number of procedure calls (resolution
steps) as a function on the size of input data, although tbeldde adapted to express the cost using other metrics:
number of unifications, number of instructions executeevan execution time [16].

An analysis of combinatorial structures, addressing ttieraatic average-case complexity analysis of algorithms,
has been developed in [8], and it is heavily based on studyipg properties. We know of no other work which
estimates average cost functions for logic programs.

This paper is organized as follows: Section 2 introducesamslysis related with term size calculation. Section 3
presents the definition of probabilistic cost and an exaropits application. Section 4 discusses briefly the relation
ship between bounds and probabilistic cost and, finallyti@e& gives some conclusions and discusses some further
work.

2 Cost Analysisof Logic Programs

In our approach, program costs are expressed as functiahe gizes of the input arguments, which yield estimations
of the number of execution steps required by the computalibis approach is similar to that of [4, 6], except that our
cost functions produce costs associated to a probabibtyiloiition instead of upper / lower bounds. Various metrics
can be used for the “size” of an input, such as list-lengtimisize, term-depth, integer-value, etc., depending en th
particular case. We assume that types, modes, and size megasa available, as a result of a previous automatic
analysis (e.g. using th@ aoPP system [11]) or by means of programmer-provided annotafiand are put to work
when analyzing term sizes and predicate costs. We assumthatghe cost unit is a resolution, i.e., a procedure call
(or, accordingly, the successful unification of a clausadhea

In order to obtain lower- and upper-bound approximationsost functionsCi aoPP first performs the following
analyses (all using abstract interpretation [13, 2] teghes):

e A mode (and sharing) analysis. This determines which argitsn@r parts of them) are inputs and which are
outputs for each procedure and procedure call, as well adeppendencies between any variables in the data
structures passed via these arguments. The use of modmatfon implies that each argument of a predicate
(denoted by its position in the head) is annotated as beirgyptinput” or “output”, depending on whether or
not it is bound to a ground term when the predicate is invdked.

e Atype analysis, which infers types for all program variablNote that type declarations are not compulsory in
the language, so the relevant type definitions may also lwelve inferred.

e A determinacy analysis. It needs the results of type and naoddysis, and it detects which procedures and
procedure calls are deterministic (i.e., they will yieldrgée solution).

e A non-failure analysis. This also requires results frometgmd mode analysis, and can detect procedures and
goals that can be guaranteed not to fall, i.e., to produceaat lone solution or not to terminate. Non-failure
analysis is necessary to estimate accurately lower bowsdi,is necessary to account for the possibility of
failure of a call to a procedure, leading to a trivial loweubd of 0.

¢ Inference of size metrics for relevant arguments (which wedetail in short). This is based on type informa-
tion.

INote that this is a restriction with respect to the more gdrese of Logic Programming, where data structures can be ffiptete”, i.e.,
partially instantiated.



gsort([].[]). partition([],_,[].[])-

gsort([XL],R :- partition([E R, C [E Leftl],Right) :-
partition(L, X, L1, L2), E<C !,
gsort (L2, R2), partition(R, C, Leftl, Ri ght).
gsort (L1, R1), partition([E R, C, Left,[E R ght1]) :-
append(RL, [ X] R2] , R). E >= C,

partition(R C, Left,Rightl).

append([]., X, X).
append([H X],Y,[H Z]) :- append(XY,Z2).

Figure 1: QuickSort in Prolog

We will sketch in what follows how the work done by (recurgickauses is determined once all the above informa-
tion is obtained. To this end, it is first necessary to estntia¢ size of output arguments in the procedure calls in the
body of the procedure. The size of output arguments in a groeecall depends, in general, on the size of the input
arguments in that call. For example, in the program in Fidiitee size of the output argumentagfpend/ 3 depends
on the size of its input arguments. Those input argumentsratern, the output arguments of the callsgwort / 2,
and so on. Therefore, for each output argument we construexaression which yields its size as a function of the
size of the input arguments. This is done by means of abstresodf procedure definitions (a data dependency graph)
built using all the information inferred previously. Thdléwing steps are then performed:

e Data dependency graphs are used to determine the relaageddivariable bindings at different program points.
e Size information is used to set up difference equationsessprting the computational cost of procedures.

e Abstractions (lower and upper bounds) of the solutions e$éhdifference equations are then obtained, which
provide lower and upper-bounds on procedure costs and diuticions relating the size of input and output
data.

We will use as driving example an implementation of QuickSsinown in Figure 1, which sorts a list of terrhs.
The first argument ofisor t / 2 is an input and the second is an output. The input argumergardfi ti on/ 4 are
the first and the second ones —a list and a humber, respectiVay output arguments @farti ti on/ 4 are the
third and fourth ones. For the predicatepend/ 3, the first and second arguments are inputs and the third angum
is an output.

2.1 Lower and Upper Bounds

We will very briefly describe the basics of automatic deduttf lower and upper bounds for the computational cost
of predicates. A more formal definition of a lower bound of tlst of a clause is given in [6]; similarly [4, 7] describe
the method used to derive cost upper bounds. We will use $reiition a claus€ which we assume is of the form

C = H:-By,...Bn (1)

We assume thaf' hasr input arguments, and we will representibyher-tuple denoting the sizes of these input
arguments. Let, (), ..., &.»(T) be the size(s) of the input argument(s) for each of the the litetals By, ..., B,
respectively. We assume that the program is determingstit therefore each body goal has at most one solution. We
will denote byCost(T) the cost of clausé€’ for an input of sizez.

Lower Bounds Let Cost/;’ (z) be a lower bound of clausg, i.e., Cost¢i! () < Costo(®). A non-trivial lower
bound for the clause cost is:

C’ostgff = +ZCostmf &:(T))

where~(Z) represents the cost of unification of the head and builtis {@sg..E < C) andk is the ordinal of the last
non-failing body goal (literals fromk 4+ 1 up tom are not reached in case géat 1 fails). If the clause” corresponds

2Note that we are using the naive version which uses compkitsitead of the more “Prologish”, difference-list basedoltappends lists
with complexityO(1). See [18] or any other good textbook on Prolog for more infoiomadn the matter.



to a non-failing predicate, thelh= m. A lower bound on the cosfostp(Z) of apredicate on an input of size: is
then given by:
Costp(T) > min{Costs! (T)|C is a clause defining’}

Upper Bounds The upper bound of a clause is defined as
Cost " (T) z)+ Z Costp? (¢:(T))

and an upper bound of the cost of a deterministic predicatdedaken as that of the more expensive clduse:
Costp(T) < max{Cost " (z)|C is a clause defining’}

The worst-case running time of an algorithm is an upper bamthe running time for any input. Even if some
analysis gives an upper bound which is clearly too high, tlistence of such an upper bound makes it possible to
deduce that the execution terminates, which is a quiteaatqwoperty.

2.2 Sizeand Cost Analysis

The definition of cost for clauses and predicates shown ipte@ous section assumed a cost function for every literal
in the body. When these literals call (directly or indirettlgcursively the predicate being defined, this cost has to be
worked out by solving a series of recurrence equations bas¢lde sizes of the input data.

In order to do that, it is necessary to determine which argusigave to be selected to pose those equations (which
needs mode analysis), which term measure is to be taken asidat(which additionally needs type analysis), and
actually solving the equations. These are issues whiclofadlide the scope of this paper. Here we will focus on how
these size relationships are set up; we will notwithstagndievote some efforts to solve the equations which come up
from our running example.

Let us consider a clause defined as in Equation (1) and leferst ®e output argument, whose size we want to
determine based on the sizes of the input arguntentsich we will call s(z). The size of this argument, as generated

by the claus&”, is given by an expressioﬁzg“)(s(f)) which is obtained by setting a series of equations of the form

$520(s(@)) = 52 (@) + 521 (s(27))

wherez’ is the form of the tuple in the recursive call and*) (z) is the difference in size between the output argument
in the initial and the recursive call —i.e., how much the rsote call has contributed to the size of the output argument
in positionk, at the expense of reducing the size of the input argumet# fegm s(7) to s(’).

For recursive clauses, the formulas above (simplified fr plaper; the reader is kindly referred to, e.g., [4] for
a more complete description) generate recurrence egsatibith must be solved in order to obtain the size of each
output position for each clause in terms of the size of thetiapguments in the head of the clause.

Example: Consider the clauses append/ 3 (Figure 1). Letz andy be the length of the input lists (i.e., the first
and second arguments). The size relations for this predarat

Szappend(ov y) = Yy
SZ(L])[)E’nd('T7 y) = 1+ SZappend(a7 -1, y)

The first equation is the boundary condition and represéstsize of the output list when recursion finishes. The
second equation represents the contribution to the sizeeobtitput list for every step taken in the input list. The
solution to this equation iSz.ppend(z,y) = = + .

Example: Consider the third clause pfarti ti on/ 4 (Figure 1). Letr andy be the first and second arguments
for that predicate, which can be automatically determinduktthe input ones. Lestz(?) (z,y) denote the size of

partition

thei-th output argumenti (€ {3, 4}) as a function of the size of the two input argumentndy. Using list length as

3For a non-deterministic predicate a trivial upper bound @dngl computed by adding the cost of every clause instead ofgake maximum.



a measure to determine the size relations for this clauseawevdte the following difference equations for the output
arguments (third and fourth):

3 3
SZ](J(l)Ttition(‘rv y) = SZ,(,,,LM“O” (x—1,9)
4 4
SZI(}G)T“”O”(x’ y) = SZI()G)’I‘t’ition (LL‘ - 17 y) +1

By doing the same for the rest of the clauses we obtain a setofience equations (one for each output argument)
plus a non-recurrent equation for the base clause(s). wsrions can be solved to approximate (either as an upper
or as a lower bound) the size of the output arguments. We géllssworked example in the next section.

2.3 Lack of Tightnessin Some Upper Bounds

The above formulation can throw very inexact results in segiy simple cases. We will see that QuickSort is such
a case; in this example the size measure used for all predicatist length [4]. Consider thggsor t / 2 program in
Figure 1. We will develop and solve the size equations fas gibgram, and then we will use the solved forms to
derive a cost estimation for its upper bound.

The difference equations for the size relations of the dawdparti ti on/ 4 are as follows:

Szz(z?z)rtition(07 y) = 0

Szz(;i)rtition(xv y) = Széi)rmion (x—1,y)+1
Szz(vi)rtition(m7 y) = Sz;z(jl)rtition (x—1,9)
Szz(;i)rtition(ov y = 0

Széi)rtition(% y) = Sz;gil’tition (z—-1y)

S Z;S?rm'tion(w y) = 8 Z,(,i),,.tmon (r—1,9)+1

Since there are several recursive clauses which contriliffiéeently to the size of the output arguments and we are
trying to deduce an upper bound on the cost, we take into deretion the equations which produces the bigger cost.
In this case we will select the second clause for the thirdragnt and the third clause for the fourth argument. The
first clause, associated with the empty list in the inputdpoes the boundary condition of these difference equations
Note that the second argument does not contribute (at leastlg) to the size of the output argument. In what follows
we will omit it.

Although this particular set of equations is easy to soheill use a lemméfor a wider class of equations which
will be useful later.

Lemmal Let us suppose the next recurrence equation:

y(0) = C
y(@) = pyle—k) + f(x)
wherek is an arbitrary integer value such that< k < x, C'is a constantp is an integer such that > 0, and f (z)
is any function. The solution of this equation is:
21
y(z) = pfC+ > p' flo—ik)
=0

Proof: By induction onz. For x = 0 the result holds trivially because the sum is null for termig ec 0. Let us
assume that the Lemma holds for@ll: — k) such thaid < k£ < z. Then we have

z—k
7 —1

ye—k) = p T O+ > pfle—(i+1)k)

=0

“Note that we do not claim authorship of this lemma.



and we expand the corresponding equationsyar) as follows:

z—k
7 —1

y@) = pyle—k)+ @) =p(p T C+ Y. p fla— (i +1)k)+ f(z)
1=0

z—k x
’Lk 1 %71

= pEC+ > P fle—ik)+ f(x) =pF C+ > p' f(z—ik)

=1 1=0

O

Then, the solutions of the equations which express theioalatze forparti ti on/ 4, according to Lemma 1,

areSz;i)rtition(x, y)=2x and Sz (z,y) = =. We already saw in the previous section the solution of the si
equations for the predicatgpend/ 3. Forgsort / 2 we have the following equations:

partition

S22 .0 = 0
2 3 2 3 2 4
S22 (@) = 82 (82 (82D (@ = 1)), 14 828 (8240 (- 1))
= 528 (S22 @ —1),14 522 (1))

= 820 (x—1)+1+822 (z—1)
- 9 Széizm(x —1)+1

The size relation for the clauses g§ort/ 2, obtained by using Lemma 1, Széilrt(x,y) = 2% — 1. This
is clearly an overestimation which comes from a gross uppemd approximation of the output arguments of
partition/4.

We will now derive the cost equations. As we will use resalatsteps as the basis of our measure, we will need
the functions which relate input and output sizes. The cgsatons forparti ti on/ 4 are therefore:

Cpartition (0) = 1
Cpartition (.’L‘) = 1+ Cpartition (.’L’ - 1)

whose solution i€,.,4ition () = z+1. Analogously, the difference equations for the costpbend/ 3, considering
two input lists of larger andy respectively, are:

Oappend(07 y) =1
Cappend(x7 y) =1 + Cappend (.13 - 17 y)

and its solution i, ,pena (2, y) = z+1. Forgsor t / 2 we write (note that we are using a line per term corresponding
to body goals):

Cqsart (0) =1
Cqsort (iﬂ) = 1+
Cpa'r'tition(aj - 1) +
3
Oqsort(sz;(m)rtition(x -1)+
4
C‘]SO”'t(SZ;a)rtition(x -1)+
3 4
Cappend(Szasort(S2mptition @ = 1)y 1+ S2gsort (S2 e sition(® = 1))
= 14+24+2Cuor(r—1)+2"—1
z+ 2% +2Cgsort(x — 1)

We can solve this recurrence to obtéip,.(z) = (z + 3)2” — z — 2, which is, again, exponential. We have lost
accuracy and, while this is a correct upper bound (and makessible to deduce thgsor t / 2 always terminates),
is of little practical use for a number of other purposes, elgnio obtain a meaningful estimation of the runtime
needed to perform, e.g., granularity control of parall@aion.



3 Probabilistic Cost

In order to work around the overestimation which we have $egin, we will, instead of relying on an upper bound,
assign sizes to arguments in a way that depends on some pitgbadsignment which states a possibility of being
selected assigned to every clause.

3.1 Probabilistic Size Equations

We will set up the size equations for every clause as we had before. However, assuming determinism and non-
failure, we will work out a size expression per predicatechtries to take into account how every clause contributes
to the output arguments. Let us suppose a predi@atdich is defined by clauses’, ..., C,, and IetSz(CJi) (Z) be a
function on the size of the clause input arguments whichrmatthe size of the output argumejnt

Let P; be a distribution of probability which associates to evdayiseC; (except for the base ones) the likelihood
of being selected in a particular call. As usual we requigg th

> p=1 @)
j=1

A predicate-level equation foﬁ’zg“) (x) can then be stated as follows:

59 (@ Z Py 8200 (@ ©)

l.e., we assume that every clause contributes differeatllgd size of the output arguments. Similarly to the upper
and lower bounds, we define the probabilistic d@stktc () of a clauseC, as the sum of the costs associated to the
head of the clause plus the probabilistic cost associatddasich of the body literals:

m

Costo (T )+ Z CostB

whereg, is the size of thé-th argument given by the probabilistic method.

As we did before, we first determine the relative sizes of tlpuat arguments by setting up and solving a set of
difference equations. The main difference is that in thisecastead of selecting a single equation (c.f., clause) to
return an upper or lower bound, we will combine the effecthef different clauses in each output argument. We will
now apply this method to the QuickSort example in order tduata its application in a concrete case.

3.2 Probabilistic Analysis of QuickSort

Let us focus again on the Quicksort program (Figure 1). Ferpredicatepartiti on/ 4, let us assume that the
second clause can be selected with probahility < p < 1) and that the third clause is to be selected with probability
1 — p. The difference equations which express the sizes of the aimd fourth (output) arguments in terms of the first
and second arguments take into account now the probalsiigiaed to each clause. Therefore, the third argument
is contributed to with weighp by the second clause and with weidht- p by the third clause. The equations which
relate input and output sizes are:

3
S;()a)rtztwn(o y) =1
3 3 3
Sz()a)rtltwn (1’ y) = D [S;[()a)rtztwn( -1 y) + 1] + ( )Sz()a)rtztwn (J) - 1’ y)
= p+ Spartztzon( - 17 y)

4
Sz()a)rtztwn (0 y) =1
4 4 4
Sg()a)rtztwn (1‘ y) = ( ) [S;)a)rtztwn (I - 1’ y) + ] Sz()a)rtztwn (I - 1’ y)

4)
= p+ Sz()artztwn (J" - 15 y)



Note that the effect of the second argumenp&r titi on/ 4 is now somehow captured by the probability of
clause selection and it is not completely ignored as it wakénprevious scheme. The solutions to these equations,

using Lemma 1, aré‘g’l)mtm(x,y) =px andsﬁ)ﬂitim(%y) = (1 —p)x, forallz > 0. This is intuitively clear,
as the second clause (with probabilifyis the only one which contributes to the third argument, sindlarly with

the third clause and the fourth argument. It is importantdterihat the sizes of the output arguments (two lists) add
up to the size of the input list now — an invariant which is chgdrue and which was not met when we used an
upper bound of the size. We had already determined in se2tian exact size expression for the output argument of
append/ 3: ng;imd(x, y) = x + y. With that expression we can write the difference equatfonthe size relation

of the arguments afsor t / 2 as follows:

S&0) = 0
S @) = S e —1)+ 82 (1 —p)(a—1) +1

To help us in solving this recurrence equation we will prometaer lemma.
Lemma 2 Let us suppose the following recurrence equation:
y(0) = C
y(@) = he+d+yla(z—1)+y((1-a)(z-1))
forz > 0. C, h, andd are constantsh, d > 0, and« is a value such tha% < a < 1. Theny(z) is bounded by:
ylr) < (2" =1)d+h(kx -2 +k+1)+2FC
wherek = 1+1log1 ((1 — a)(xz — 1) + 1) is the depth of recursion. Furthermoreif> 0 theny(z) is O(z log x) for
allz>0.1fh=0,d > 0andC = 0 theny(z) = dz, forall z > 0.
Proof: By expanding the recurrent definition ¢fz:) we obtain:
y(@) = hx+d+yla(z—1))+y((1-a)(z—1))
= h(2z—1)+3d+y(a?(x —1) —a)
+ ylal-a)z-1) -1 -a)) +yla(l —a)(z-1) —a)
+ y(1-a)(@-1)-(1-a)

When we reach thk-th level of its expansion as a binary tree we arrive at an egpion as:

y(@) = h(kz—2"+k+1)+ (2" - 1)d
. 1-a* K 1—(1—a)*
+ Y@@ -1) - T——+ D+ Fy(l-a)f (e —1) - ———— +1)

There are, naturally2” terms in the leaves of the expansion. We will suppose thatthesion stops when the
evaluation of its first term is zero. Therefore we establish:

1—ak

oF(x—1) - —

+1=0

Note that assuming that any other term in the leaves is zdt@lso be valid, since it is used only to determine
the depth of the recursiotk, based on the input argument

k=1+logs((1-a)(x—1)+1)
and, from that, we derive an upper boundydf) by substituting the value éfin the expansion aj(x):
y(x) < hlkr -2 +k+1)+ (2" - 1)d+2*C
This result indicates, it > 0, that:
y(x) < hkx+(d+C—h)28+hk+1)—d

< (14 logy (1- a)(z 1) + 1)
logy 2

2d+C—h)((1—a)(z—1)+1)%5 >+ h(k+1) —d

+



Sincei < a < 1, then it follows thatog 1 2 < 1, and theny(z) < Kzlogz, with K a constant. Then(z) is

O(zlog z).
If h=0,d > 0,andC = 0 then the recurrence equation becomes:
y(0) = 0
y(x) = d+yla(z—1)) +y((1-a)(z—-1))

whose solution ig/(z) = dx for all z > 0, which can be proved easily by induction on for 2 = 0 the result
y(0) = 0 holds trivially. Let us assume than the result holds for samel. Then:

y(e) = d+ylalz—1)+y((1-a)(z-1))
= d+da(z—1)+d(1l—-a)(z—1)
= d+d(z—1)
dz

a

The solution to the size relation equations fmor t / 2, is, using the above Iemmé’(ffm( ) = z, which is a
much better approximation (in our case, exact) than the btared in Section 2.3. The equation for the probabilistic
cost ofgsort / 2 becomes now

Costgsort(0) = 1
Costgsort(z) = 14 Costpartition(® — 1) + Costgsort(p(x — 1))
+Costysort((1 — p)(x — 1)) + Costappena(p(z — 1))

We had already found in Section 2.3 an exact solution in sbfeem (and which are, therefore, correct also as
probabilistic cost) for the costs pfart i ti on/ 4 andappend/ 3:

COStpartition (I) = z+1
Costoppend(z) = x+1

After substituting them in the equation f6fost s, () we obtain:

Costgsort(0) = 1
Costgsort(z) = (p+ 1z +2—p+ Costysort(p(z — 1)) + Costysort((1 — p)(z — 1))

As per Lemma 2, fop = 0 andp = 1 we were able to obtain an exact solution. For other valugsiaé obtained
an approximation. We obtain, for some valueg ¢includingp = 1 andp = 0):

Costgsort(z) = £ +7E+2 forp =

Costgsort(z) = x? + 3xr+1 forp=1
Costysort(x) < (z+1)(1 4 2 logy(z + 1)) forp =3
Costgsort() < 52z +1)'832 — L 4 2(2 4+ 1) logg(2z + 1) forp =}
Costysort(z) < 23z + 1)z — 145z +1)log,(3z + 1) forp=1
Costysort(x) < T(Tx +1)5 — 2+ (a + 1) logg(Tx +1)  forp=1

In all cases, but in the extreme ones, we obtain complexdgmrofO(x log «). However the associated cost (i.e.,
the numerical value of the cost for a givehgrows larger as the input list is “more sorted”, approagtarcost which
is O(z?). The “average” case (fqr = %) gives an expected average cost.



Probability of selection | Execution time (ms) | Predicted steps | steps/ms.
0 12506| 50035001.000 4000.880
1/8 64 422573.466| 6602.703
1/4 50 279132.163| 5582.640
1/3 45 241090.314| 5357.556
1/2 48 209338.781| 4361.208
1 24879| 100030001.000 4020.660

Table 1: Comparison between predicted and experimentadrpegince

3.3 An Experimental Assessment

Table 1 shows some results of several experiments @sthrt / 2. They were performed on a Pentium Mobile
1.7 GHz, with the clock speed set to its maximum (to avoid skdwe to automatic CPU frequency adjustments),
and running Linux with kernel 2.6.15. The measurements wi@re by sorting a 10000-element list. Standard
protections against spurious interference were taken ¢aehe and memory warming-up, computer isolation and low
load, averaging benchmark results, etc.).

The first column shows the probabilifyof selecting the clauses pfarti ti on/ 4. We made sure that this is
actually the probability that each clauseparti ti on/ 4 is chosen in each test by carefully working out a set of
inputs which precisely select each of the clauses an apgpteptumber of timesp = 1 andp = 0 correspond,
obviously, to an input list sorted in either increasing ocr@@sing order. The second column in the Table shows the
running time for each case of input data. The third colummshihe predicted steps using cost equations obtained
using a probabilistic approach, and the fourth column shibwgatio between predicted steps and actual time. This
last column makes it possible to determine quickly whetherd is a (strong) correlation between the predicted time
and the time obtained experimentally.

From that table we can see that the prediction makes a rdalsogaess. The runs where the input list is not
sorted are notably faster than the other executions, as®dgealespite this, the prediction stays within a reasanabl
error for those cases. It has to be taken into account thathdosake of simplicity, we have left out several execution
details (such as cost of builtins, cost of shallow backtiragketc.), which makes the model less accurate than pessibl
Additionally, the solution of lemma 2 is, at this moment,yoapproximate. This adds up to the lack of a more refined
model and can account for the discrepancy between the peddiad the expected execution time.

We expect that more precise predictions can be made with a rafined cost model (taking into account specific
costs for builtins, head unifications which are made onlyially and do not succeed finally because they fail at some
point in the middle of unifying the arguments, etc.).

4 Relation with Upper and Lower Bounds

Itis trivial to determine that the probabilistic cost liesttyeen the lower and upper bounds, as it should be indeed. The
key observation is that the probabilistic cost is in our M@lénear combination (Equation (3)) of the contributions
of individual clauses with a restriction (Equation (2)) txe tvalues of the coefficients. When lower and upper bounds
are used, they boil down to giving one clause all the avalalgight. If we try to select a set of weights (abiding by
the restrictions on their values) which give the greatestf(r, lowest) possible value to the cost expressions, we wil
find that we will precisely end up with the same selection ¢éswas the upper (resp., lower) bounds.

5 Conclusions and Further Work

This paper presents an idea and sketches a technique wipiidsgprobabilities to the estimation of the computational
cost of logic programs. It is based on a modification of presip existing techniques to deduce lower and upper
bounds for their cost. Probabilities express the likelthtimat a given clause is selected over the others, and should
ultimately represent the conditions in some running emrirent.

By applying this technique we obtain recurrence relatioh&tvcontain the expected distribution of the recursive
clauses as parameters. The results of this approach alltevapproximate the cost (in terms of resolution steps) of
deterministic logic programs. When a general solution wikiebps the probability assignment as parameter can be
found, we obtain an expression for the computational coshatf predicate or program. For the cases in which this
has not (yet) been possible, the recurrence relation capdmadized for some selected values of the probabilities,



which simplifies the equations and makes solving them edsiéis case special attention has to be paid to values of
probabilities which would correspond to singular pointshia solved form.

In the case of our running example, QuickSort, we obtain anege (i.e., assuming that the input list is not sorted)
case complexity 0O(n logn), beingn the length of the input list. When we assume that the inputdisbrted we
obtain a complexity 0O (n?). Both these results improve upon the upper bound previaigbined for this predicate,
which was exponential.

As for future work, we intend to refine the model to take into@mt more execution characteristics, find a tighter
relationship between the solutions given by the probdllimodel with the classicaD(-) approximation and with
other measures of complexity, investigate further in theital solution of the kind of recurrence equations that t
probabilistic method generates, and progress towardsutoenatic implementation of this analysis and the solution
of the difference equations generated.
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