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Abstract. Finding useful sharing information between instances in obj-
ect-oriented programs has recently been the focus of much research.
The applications of such static analysis are multiple: by knowing which
variables definitely do not share in memory we can apply conventional
compiler optimizations, find coarse-grained parallelism opportunities, or,
more importantly, verify certain correctness aspects of programs even
in the absence of annotations. In this paper we introduce a framework
for deriving precise sharing information based on abstract interpreta-
tion for a Java-like language. Our analysis achieves precision in various
ways, including supporting multivariance, which allows separating differ-
ent contexts. We propose a combined Set Sharing + Nullity + Classes
domain which captures which instances do not share and which ones are
definitively null, and which uses the classes to refine the static informa-
tion when inheritance is present. The use of a set sharing abstraction
allows a more precise representation of the existing sharings and is cru-
cial in achieving precision during interprocedural analysis. Carrying the
domains in a combined way facilitates the interaction among them in the
presence of multivariance in the analysis. We show through examples and
experimentally that both the set sharing part of the domain as well as
the combined domain provide more accurate information than previous
work based on pair sharing domains, at reasonable cost.

1 Introduction

The technique of Abstract Interpretation [8] has allowed the development of so-
phisticated program analyses which are at the same time provably correct and
practical. The semantic approximations produced by such analyses have been
traditionally applied to high- and low-level optimizations during program compi-
lation, including program transformations. More recently, promising applications
of such semantic approximations have been demonstrated in the more general
context of program development, such as verification and static debugging.

Sharing analysis [14,20,26] aims to detect which variables do not share in
memory, i.e., do not point (transitively) to the same location. It can be viewed
as an abstraction of the graph-based representations of memory used by certain
classes of alias analyses (see, e.g., [31,5,13,15]). Obtaining a safe (over-) approx-
imation of which instances might share allows parallelizing segments of code,
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improving garbage collection, reordering execution, etc. Also, sharing informa-
tion can improve the precision of other analyses.

Nullity analysis is aimed at keeping track of null variables. This allows for
example verifying properties such as the absence of null-pointer exceptions at
compile time. In addition, by combining sharing and null information it is pos-
sible to obtain more precise descriptions of the state of the heap.

In type-safe, object-oriented languages class analysis [1,3,10,22], (sometimes
called type analysis) focuses on determining, in the presence of polymorphic calls,
which particular implementation of a given method will be executed at run-
time, i.e., what is the specific class of the called object in the hierarchy. Multiple
compilation optimizations benefit from having precise class descriptions: inlining,
dead code elimination, etc. In addition, class information may allow analyzing
only a subset of the classes in the hierarchy, which may result in additional
precision.

We propose a novel analysis which infers in a combined way set sharing, nul-
lity, and class information for a subset of Java that takes into account most of its
important features: inheritance, polymorphism, visibility of methods, etc. The
analysis is multivariant, based on the algorithm of [21], which allows separating
different contexts, thus increasing precision. The additional precision obtained
from context sensitivity has been shown to be important in practice in the anal-
ysis of object-oriented programs [30].

The objective of using a reduced cardinal product [9] of these three abstract
domains is to achieve a good balance between precision and performance, since
the information tracked by each component helps refine that of the others. While
in principle these three analyses could be run separately, because they interact
(we provide some examples of this), this would result in a loss of precision or
require an expensive iteration over the different analyses until an overall fix-
point is reached [6,9]. In addition note that since our analysis is multivariant,
and given the different nature of the properties being tracked, performing anal-
yses separately may result in different sets of abstract values (contexts) for each
analysis for each program point. This makes it difficult to relate which abstract
value of a given analysis corresponds to a given abstract value of another anal-
ysis at a given point. At the other end of things, we prefer for clarity and
simplicity reasons to develop directly this three-component domain and the op-
erations on it, rather than resorting to the development of a more unified domain
through (semi-)automatic (but complex) techniques [6,7]. The final objectives of
our analysis include verification, static debugging, and optimization.

The closest related work is that of [26] which develops a pair-sharing [27]
analysis for object-oriented languages and, in particular, Java. Our description
of the (set-)sharing part of our domain is in fact based on their elegant for-
malization. The fundamental difference is that we track set sharing instead of
pair sharing, which provides increased accuracy in many situations and can
be more appropriate for certain applications, such as detecting independence for
program parallelization. Also, our domain and abstract semantics track addition-
ally nullity and classes in a combined fashion which, as we have argued above, is
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prog ::= class decl∗

class decl ::= class k1 [extends k2] decl∗ meth decl∗

meth decl ::= vbty (tret|void) meth decl∗ com
vbty ::= public | private
com ::= v = expr | v.f = expr

| decl | skip
| return expr | com;com
| if v (== |! =) (null|w) com else com

decl ::= v:t
var lit ::= v | a
expr ::= null | new k | v.f | v.m(v1, . . . vn) | var lit

Fig. 1. Grammar for the language

particularly useful in the presence of multivariance. In addition, we deal directly
with a larger set of object features such as inheritance and visibility. Finally, we
have implemented our domains (as well as the pair sharing domain of [26]), in-
tegrated them in our multivariant analysis and verification framework [17], and
benchmarked the system. Our experimental results are encouraging in the sense
that they seem to support that our contributions improve the analysis precision
at reasonable cost.

In [23,24], the authors use a distinctness domain in the context of an abstract
interpretation framework that resembles our sharing domain: if two variables
point to different abstract locations, they do not share at the concrete level.
Their approach is closer to shape analysis [25] than to sharing analysis, which
can be inferred from the former. Although information retrieved in this way
is generally more precise, it is also more computationally demanding and the
abstract operations are more difficult to design. We also support some language
constructs (e.g., visibility of methods) and provide detailed experimental results,
which are not provided in their work.

Most recent work [28,18,30] has focused on context-sensitive approaches to
the points-to problem for Java. These solutions are quite scalable, but flow-
insensitive and overly conservative. Therefore, a verification tool based on the
results of those algorithms may raise spurious warnings. In our case, we are able
to express sharing information in a safe manner, as invariants that all program
executions verify at the given program point.

2 Standard Semantics

The source language used is defined as a subset of Java which includes most of its
object-oriented (inheritance, polymorphism, object creation) and specific (e.g.,
access control) features, but at the same time simplifies the syntax, and does
not deal with interfaces, concurrency, packages, and static methods or variables.
Although we support primitive types in our semantics and implementation, they
will be omitted from the paper for simplicity.
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class Element {
int value;
Element next;}

class Vector {
Element first;

public void add(Element el) {
Vector v = new Vector();
el.next = null;
v.first = el;
append(v);

}
}

public void append(Vector v) {

if (this != v) {
Element e = first;
if (e == null)

first = v.first;
else {

while (e.next != null)
e = e.next;

e.next = v.first;
}

}
}

Fig. 2. Vector example

The rules for the grammar of this language are listed in Fig. 1. The skip
statement, not present in the Java standard specification [11], has the expected
semantics. Fig. 2 shows an example program in the supported language, an
alternative implementation for the java.util.Vector class of the JDK in which
vectors are represented as linked lists. Space constraints prevent us from showing
the full code here,1 although the figure does include the relevant parts.

2.1 Basic Notation

We first introduce some notation and auxiliary functions used in the rest of the
paper. By �→ we refer to total functions; for partial ones we use →. The powerset
of a set s is P(s); P+(s) is an abbreviation for P(s) \ {∅}. The dom function
returns all the elements for which a function is defined; for the codomain we
will use rng. A substitution f [k1 �→ v1, . . . , kn, �→ vn] is equivalent to f(k1) =
v1, . . . , f(kn) = vn. We will overload the operator for lists so that f [K �→ V ]
assigns f(ki) = vi, i = 1, . . . , m, assuming |K| = |V | = m. By f |−S we denote
removing S from dom(f). Conversely, f |S restricts dom(f) to S. For tuples
(f1, . . . , fm)|S = (f1|S , . . . , fm|S). Renaming in the set s of every variable in S

by the one in the same position in T (|S| = |T |) is written as s|TS . This operator
can also be applied for renaming single variables. We denote by B the set of
Booleans.

2.2 Program State and Sharing

With M we designate the set of all method names defined in the program. For
the set of distinct identifiers (variables and fields) we use V . We assume that V
also includes the elements this (instance where the current method is executed),

1 Full source code for the example can be found in
http://www.clip.dia.fi.upm.es/∼mario

http://www.clip.dia.fi.upm.es/~mario
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and res (for the return value of the method). In the same way, K represents
the program-defined classes. We do not allow import declarations but assume
as member of K the predefined class Object.

K forms a lattice implied by a subclass relation ↓: K → P(K) such that if
t2 ∈ ↓t1 then t2 ≤K t1. The semantics of the language implies ↓Object = K.
Given def : K × M �→ B, that determines whether a particular class provides
its own implementation for a method, the Boolean function redef : K × K ×
M �→ B checks if a class k1 redefines a method existing in the ancestor k2:
redef(k1, k2, m) = true iff ∃k s.t. def(k, m), k1 ≤K k<K k2.

Static types are accessed by means of a function π : V �→ K that maps variables
to their declared types. The purpose of an environment π is twofold: it indicates
the set of variables accessible at a given program point and stores their declared
types. Additionally, we will use the auxiliary functions F (k) (which maps the
fields of k ∈ K to their declared type), and typeπ(expr), which maps expressions
to types, according to π.

The description of the memory state is based on the formalization in [26,12].
We define a frame as any element of Frπ = {φ | φ ∈ dom(π) �→ Loc ∪ {null}},
where Loc = I

+ is the set of memory locations. A frame represents the first level
of indirection and maps variable names to locations except if they are null. The
set of all objects is Obj =

{
k � φ | k ∈ K, φ ∈ FrF (k)

}
. Locations and objects

are linked together through the memory Mem = {μ | μ ∈ Loc �→ Obj}. A new
object of class k is created as new(k) = k � φ where φ(f) = null ∀f ∈ F (k).
The object pointed to by v in the frame φ and memory μ can be retrieved via
the partial function obj(φ�μ, v) = μ(φ(v)). A valid heap configuration (concrete
state φ � μ) is any element of Σπ = {(φ � μ) | φ ∈ Frπ, μ ∈ Mem}. We will
sometimes refer to a pair (φ � μ) with δ.

The set of locations Rπ(φ � μ, v) reachable from v ∈ dom(π) in the particular
state φ � μ ∈ Σπ is calculated as Rπ(φ � μ, v) = ∪

{
Ri

π(φ � μ, v)
∣
∣ i ≥ 0

}
, the

base case being R0
π(φ � μ, v) = {(φ(v))|Loc} and the inductive one Ri+1

π (φ �
μ, v) = ∪

{
rng(μ(l).φ))|Loc | l ∈ Ri

π(φ � μ, v)
}
. Reachability is the basis of two

fundamental concepts: sharing and nullity. Distinct variables V = {v1, . . . , vn}
share in the actual memory configuration δ if there is at least one common
location in their reachability sets, i.e., shareπ(δ, V ) is true iff ∩n

i=1Rπ(δ, vi) 
= ∅.
A variable v ∈ dom(π) is null in state δ if Rπ(δ, v) = ∅. Nullity is checked by
means of nilπ : Σπ×dom(π) �→ B, defined as nilπ(φ�μ, v) = true iff φ(v) = null.

The run-time type of a variable in scope is returned by ψπ : Σπ×dom(π) �→ K,
which associates variables with their dynamic type, based on the information
contained in the heap state: ψπ(δ, v) = obj(δ, v).k if nilπ(δ, v) and ψπ(δ, v) =
π(v) otherwise. In a type-safe language like Java runtime types are congruent
with declared types, i.e., ψπ(δ, v) ≤K π(v) ∀v ∈ dom(π), ∀δ ∈ Σπ. Therefore,
a correct approximation of ψπ can always be derived from π. Note that at the
same program point we might have different run-time type states ψ1

π and ψ2
π

depending on the particular program path executed, but the static type state is
unique.
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Denotational (compositional) semantics of sequential Java has been the sub-
ject of previous work (e.g., [2]). In our case we define a simpler version of
that semantics for the subset defined in Sect. 2, described as transformations
in the frame-memory state. The descriptions are similar to [26]. Expression
functions EI

π�� : expr �→ (Σπ �→ Σπ′) define the meaning of Java expres-
sions, augmenting the actual scope π′ = π[res �→ typeπ(exp)] with the tem-
poral variable res. Command functions CI

π�� : com �→ (Σπ �→ Σπ) do the
same for commands; semantics of a method m defined in class k is returned
by the function I(k.m) : Σinput(k.m) → Σoutput(k.m). The definition of the re-
spective environments, given a declaration in class k as tret m(this : k, p1 :
t1 . . . pn : tn) com, is input(k.m) = {this �→ k, p1 �→ t1, . . . , pn �→ tn} and
output(k.m) = input(k.m)[out �→ tret].

Example 1. Assume that, in Figure 2, after entering in the method add of the
class Vector we have an initial state (φ0 � μ0) s.t. loc1 = φ0(el) 
= null. After
executing Vector v = new Vector() the state is (φ1 � μ1), with φ1(v) = loc2,
and μ1(loc2).φ(first) = null. The field assignment el.next = null results in
(φ2 � μ2), verifying μ2(loc1).φ(next) = null. In the third line, v.first = el
links loc1 and loc2 since now μ3(loc2).φ(first) = loc1. Now v and el share,
since their reachability sets intersect at least in {loc1}. Finally, assume that
append attaches v to the end of the current instance this resulting in a memory
layout (φ4 � μ4). Given loc3 = obj((φ4 � μ4)(this)).φ(first), it should hold that
μ4(. . . μ4(loc3).φ(next) . . .).φ(next) = loc2. Now this shares with v and therefore
with el, because loc1 is reachable from loc2.

3 Abstract Semantics

An abstract state σ ∈ Dπ in an environment π approximates the sharing, nullity,
and run-time type characteristics (as described in Sect. 2.2) of set of concrete
states in Σπ. Every abstract state combines three abstractions: a sharing set
sh ∈ DSπ, a nullity set nl ∈ DN π, and a type member τ ∈ DT π, i.e., Dπ =
DSπ × DN π × DT π.

The sharing abstract domain DSπ ={{v1, . . . , vn} | {v1, . . . , vn} ∈ P(dom(π)),
∩n

i=1Cπ(vi) 
= ∅} is constrained by a class reachability function which retrieves
those classes that are reachable from a particular variable: Cπ(v) = ∪{Ci

π(v) | i ≥
0}, given C0

π(v) =↓π(v) and Ci+1
π (v) = ∪{rng(F (k)) |k ∈ Ci

π(v)}. By using class
reachability, we avoid including in the sharing domain sets of variables which
cannot share in practice because of the language semantics. The partial order
≤DSπ

is set inclusion.
We define several operators over sharing sets, standard in the sharing litera-

ture [14,19]. The binary union � : DSπ × DSπ �→ DSπ, calculated as S1 �
S2 = {Sh1 ∪ Sh2 | Sh1 ∈ S1, Sh2 ∈ S2} and the closure under union ∗ : DSπ �→
DSπ operators, defined as S∗ = {∪SSh | SSh ∈ P+(S)}; we later filter their re-
sults using class reachability. The relevant sharing with respect to v is shv =
{s ∈ sh | v ∈ s}, which we overloaded for sets. Similarly, sh−v ={s ∈ sh | v /∈ s}.
The projection sh|V is equivalent to {S | S = S′ ∩ V, S′ ∈ sh}.
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SEI
π�null�(sh, nl, τ ) = (sh, nl′, τ ′)
nl′ = nl[res �→ null]
τ ′ = τ [res �→ ↓object]

SEI
π�new k�(sh, nl, τ ) = (sh′, nl′, τ ′)
sh′ = sh ∪ {{res}}
nl′ = nl[res �→ nnull]
τ ′ = τ [res �→ {κ}]

SEI
π�v�(sh, nl, τ ) = (sh′, nl′, τ ′)
sh′ = ({{res}} � shv) ∪ sh−v

nl′ = nl[res �→ nl(v)]
τ ′ = τ [res �→ τ (v)]

SEI
π�v.f�(sh, nl, τ ) =

{
⊥ if nl(v) = null
(sh′, nl′, τ ′) otherwise

sh′ = sh−v ∪
⋃

{P+(s|−v ∪ {res}) � {{v}} | s ∈ shv}
nl′ = nl[res �→ unk, v �→ nnull]
τ ′ = τ [res �→↓ F (π(v)(f))]

SEI
π�v.m(v1, . . . , vn)�(sh, nl, τ ) =

{
⊥ if nl(v) = null
σ′ otherwise

σ′ = SEI
π�call(v, m(v1, . . . , vn))�(sh, nl′, τ )

nl′ = nl[v �→ nnull]

Fig. 3. Abstract semantics for the expressions

The nullity domain is DN π = P(dom(π) �→ NV), where NV = {null, nnull,
unk}. The order ≤NV of the nullity values (null ≤NV unk, nnull ≤NV unk)
induces a partial order in DN π s.t. nl1 ≤DNπ

nl2 if nl1(v) ≤NV nl2(v) ∀v ∈
dom(π). Finally, the domain of types maps variables to sets of types congruent
with π: DT π= {(v, {t1, . . . , tn}) ∈ dom(π) �→ P(K) | {t1, . . . , tn} ⊆↓π(v)}.

We assume the standard framework of abstract interpretation as defined in [8]
in terms of Galois insertions. The concretization function γπ : Dπ �→ P(Σπ) is
γπ(sh, nl, τ) = {δ ∈ Σπ | ∀V ⊆ dom(π), shareπ(δ, V ) and �W, V ⊂ W ⊆ dom(π)
s.t. shareπ(δ, W ) ⇒ V ∈ sh, and Rπ(δ, v) = ∅ if nl(v) = null, and Rπ(δ, v) 
=

∅ if nl(v) = nnull, and ψπ(δ, v) ∈ τ(v) , ∀v ∈ dom(π)}.
The abstract semantics of expressions and commands is listed in Figs. 3 and

4. They correctly approximate the standard semantics, as proved in [16]. As
their concrete counterparts, they take an expression or command and map an
input state σ ∈ Dπ to an output state σ′ ∈ Dσ

π′ where π = π
′
in commands and

π
′
= π[res �→ typeπ(expr)] in expression expr. The semantics of a method call

is explained in Sect. 3.1. The use of set sharing (rather than pair sharing) in the
semantics prevents possible losses of precision, as shown in Example 2.

Example 2. In the add method (Fig. 2), assume that σ = ({{this, el} , {v}},
{this/nnull, el/nnull, v/nnull}) right before evaluating el in the third line (we
skip type information for simplicity). The expression el binds to res the location
of el, i.e., forces el and res to share. Since nl(el) 
= null the new sharing is sh′ =
({{res}}�shel)∪sh−el = ({{res}}�{{this, el}})∪{{v}} = {{res, this, el} , {v}}.
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SCI
π�v=expr�σ = ((sh′|−v)|vres, nl′|vres, τ

′′ |−res)
τ

′′
= τ ′[v �→ (τ ′(v) ∩ τ ′(res))]

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π�v.f=expr�σ = (sh

′′
, nl

′′
, τ ′)|−res

sh
′′

=

⎧
⎨

⎩

⊥ if nl′(v) = null
sh′ if nl′(res) = null
shy ∪ sh′

−{v,res} otherwise
nl

′′
= nl′[v �→ nnull]

shy = (
⋃

{P(s|−v ∪ {res}) � {{v}} | s ∈ sh′
v} ∪⋃

{P(s|−res ∪ {v}) � {{res}} | s ∈ sh′
res})∗

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π� if v==null com1

else com2

�σ =

⎧
⎨

⎩

σ′
1 if nl(v) = null

σ′
2 if nl(v) = nnull

σ1 
 σ2 if nl(v) = unk

σ′
i = SCI

π�comi�σ
σ1 = SCI

π�com1�(sh|−v, nl[v �→ null], τ [v �→↓π(v)])
σ2 = SCI

π�com2�(sh, nl[v �→ nnull], τ )

SCI
π� if v==w com1

else com2

�(sh, nl, τ ) =

⎧
⎨

⎩

σ′
1 if nl(v) = nl(w) = null

σ′
2 if sh|{v,w} = ∅

σ′
1 
 σ′

2 otherwise
σ′

i = SCI
π�comi�(sh, nl, τ )

SCI
π�com1;com2�σ = SCI

π�com2�(SCI
π�com1�σ)

Fig. 4. Abstract semantics for the commands

In the case of pair-sharing, the transfer function [26] for the same initial state
sh = {{this, el} , {v, v}} returns sh′

p = {{res, el}, {res, this} , {this, el} , {v, v}},
which translated to set sharing results in sh′′ = {{res, el}, {res, this} , {res, this,
el}, {this, el} , {v}}, a less precise representation (in terms of ≤DSπ) than sh′.

Example 3. Our multivariant analysis keeps two different call contexts for the
append method in the Vector class (Fig. 2). Their different sharing informa-
tion shows how sharing can improve nullity results. The first context corre-
sponds to external calls (invocation from other classes), because of the public
visibility of the method: σ1 = ({{this} , {this, v} , {v}}, {this/nnull, v/unk} ,
{this/ {vector} , v/ {vector}}). The second corresponds to an internal (within
the class) call, for which the analysis infers that this and v do not share:
σ2 = ({{this} , {v}}, {this/nnull, v/unk} , {this/ {vector} , v/ {vector}}). In-
side append, we avoid creating a circular list by checking that this 
= v. Only
then is the last element of this linked to the first one of v. We use com to rep-
resent the series of commands Element e = first; if (e==null)...else..
and bdy for the whole body of the method. Independently of whether the in-
put state is σ1 or σ2 our analysis infers that SCI

π�com�σ1 = SCI
π�com�σ2 =

({{this, v}}, {this/nnull, v/nnull}, {this/ {vector} , v/ {vector}}) = σ3. How-
ever, the more precise sharing information in σ2 results in a more precise analysis
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Algorithm 1. Extend operation
input : state before the call σ, result of analyzing the call σλ

and actual parameters A
output: resulting state σf

if σλ = ⊥ then
σf = ⊥

else
let σ = (sh, nl, τ ), and σλ = (shλ, nlλ, τλ), and AR = A ∪ {res}

star = (shA ∪ {{res}})∗

shext = {s | s ∈ star, s|AR ∈ shλ}
shf = shext ∪ sh−A

nlf = nl[res �→ nlλ(res)]
τf = τ [res �→ τλ(res)]
σf = (shf , nlf , τf )

end

of bdy, because of the guard (this!=v). In the case of the external calls,
SCI

π�bdy�σ1= SCI
π�com�σ1 � SCI

π�skip�σ1= σ1 �σ3 = σ1. When the entry state
is σ2, the semantics at the same program point is SCI

π�bdy�σ2= SCI
π�com�σ2

= σ3 < σ1. So while the internal call requires v 
= null to terminate, we cannot
infer the final nullity of that parameter in a public invocation, which might finish
even if v is null.

3.1 Method Calls

The semantics of the expression call(v, m(v1, . . . , vn)) in state σ = (sh, nl, τ) is
calculated by implementing the top-down methodology described in [21]. We will
assume that the formal parameters follow the naming convention F in all the im-
plementations of the method; let A = {v, v1, . . . , vn} and F = dom(input(k.m))
be ordered lists. We first calculate the projection σp = σ|A and an entry state
σy = σp|FA. The abstract execution of the call takes place only in the set of classes
K = τ(v), resulting in an exit state σx =

⊔
{SCI

π�k′.m�σy |k′ = lookup(k, m), k ∈
K}, where lookup returns the body of k’s implementation of m, which can be
defined in k or inherited from one of its ancestors. The abstract execution of
the method in a subset K ⊆ ↓π(v) increases analysis precision and is the ul-
timate purpose of tracking run-time types in our abstraction. We now remove
the local variables σb = σx|F∪{out} and rename back to the scope of the caller:
σλ = σb|A∪{res}

F∪{out}; the final state σf is calculated as σf = extend(σ, σλ, A). The
extend : Dπ × Dπ × P(dom(π)) �→ Dπ function is described in Algorithm 1.

In Java references to objects are passed by value in a method call. Therefore,
they cannot be modified. However, the call might introduce new sharing between
actual parameters through assignments to their fields, given that the formal
parameters they correspond to have not been reassigned. We keep the original
information by copying all the formal parameters at the beginning of each call,
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as suggested in [23]. Those copies cannot be modified during the execution of
the call, so a meaningful correspondence can be established between A and F .

We can do better by realizing that analysis might refine the information about
the actual parameters within a method and propagating the new values discov-
ered back to σf . For example, in a method foo(Vector v){if v!=null skip
else throw null}, it is clear that we can only finish normally if nlx(v) = nnull,
but in the actual semantics we do not change the nullity value for the corre-
sponding argument in the call, which can only be more imprecise. Note that the
example is different from foo(Vector v){v = new Vector}, which also finishes
with nlx(v) = nnull. The distinction over whether new attributes are preserved
or not relies on keeping track of those variables which have been assigned inside
the method, and then applying the propagation only for the unset variables.

Example 4. Assume an extra snippet of code in the Vector class of the form if
(v2!=null) v1.append(v2) else com, which is analyzed in state σ = ({{v1} ,
{v2}}, {v1/nnull, v2/nnull}, {v1/ {vector} , v2/ {vector}}). Since we have nul-
lity information, it is possible to identify the block com as dead code. In con-
trast, sharing-only analyses can only tell if a variable is definitely null, but never
if it is definitely non-null. The call is analyzed as follows. Let A = {v1, v2}
and F = {this, v}, then σp = σ|A = σ and the entry state σy is σ|FA =
({{this} , {v}} , {this/nnull, v/nnull} , {this/ {vector} , v/ {vector}}). The only
class where append can be executed is Vector and results (see Example 3) in an
exit state for the formal parameters and the return variable σb = ({{this, v}} ,
{this/nnull, v/nnull, out/null}, {this/ {vector} , v/ {vector} , out/ {void}}),
which is further renamed to the scope of the caller obtaining σλ = ({{v1, v2}} ,
{v1/ nnull, v2/nnull, res/null}, {v1/ {vector} , v2/ {vector} , res/ {void}}).
Since the method returns a void type we can treat res as a primitive (null)
variable so σf = extend(σ, σλ, {v1, v2}) = ({{v1, v2}} , {v1/nnull, v2/nnull, res/
null}, {v1/ {vector} , v2/ {vector} , res/{void}}).

Example 5. The extend operation used during interprocedural analysis is a point
where there can be significant loss of precision and where set sharing shows its
strengths. For simplicity, we will describe the example only for the sharing com-
ponent; nullity and type information updates are trivial. Assume a scenario
where a call to append(v1,v2) in sharing state sh = {{v0, v1} , {v1} , {v2}} re-
sults in shλ = {{v1, v2}}. Let A and AR be the sets {v1, v2} and {v1, v2, res}
respectively. The extend operation proceeds as follows: first we calculate star
as (shA ∪ {{res}})∗ = (sh ∪ {{res}})∗ = ({{v0, v1} , {v1} , {v2} , {res}})∗ =
{{v0, v1} , {v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} , {v1} , {v1, v2} , {v1, v2, res} ,
{v1, res} , {v2} , {v2, res} , {res}}, from which we delete those elements whose
projection over AR is not included in shλ, obtaining shext = {{v0, v1, v2} ,
{v1, v2}}. The resulting sharing component is the union of that shext with
sh−A = ∅, so shf1 = shext = {{v0, v1, v2} , {v1, v2}}.

When the same sh and shλ are represented in their pair sharing versions
shp = {{v0, v1} , {vo, v0} , {v1, v1} , {v2, v2}} and shp

λ = {{v1, v2} , {v1, v1} , {v2,
v2}}, the extend operation in [26] introduces spurious sharings in shf because of
the lower precision of the pair-sharing representation. In this case, shp

f2 = (sh ∪
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shp
λ)∗A = {{v0, v1} , {v0, v2} , {v1, v2} , {v0, v0} , {v1, v1} , {v2, v1}}. This informa-

tion, expressed in terms of set sharing, results in shf2 = {{v0, v1} , {v0, v2} , {v0,
v1, v2}, {v1, v2} , {v0} , {v1} , {v2}}, which is much less precise that shf1.

4 Experimental Results

In our analyzer the abstract semantics presented in the previous section is evalu-
ated by a highly optimized fixpoint algorithm, based on that of [21]. The algorithm
traverses the program dependency graph, dynamically computing the strongly-
connected components and keeping detailed dependencies on which parts of the
graph need to be recomputed when some abstract value changes during the anal-
ysis of iterative code (loops and recursions). This reduces the number of steps and
iterations required to reach the fixpoint, which is specially important since the al-
gorithm implements multivariance, i.e., it keeps different abstract values at each
program point for every calling context, and it computes (a superset of) all the
calling contexts that occur in the program. The dependencies kept also allow re-
lating these values along execution paths (this is particularly useful for example
during error diagnosis or for program specialization).

We now provide some precision and cost results obtained from the imple-
mentation in the framework described in [17] of our set-sharing, nullity, and
class (SSNlTau) analysis. In order to be able to provide a comparison with the
closest previous work, we also implemented the pair sharing (PS) analysis pro-
posed in [26]. We have extended the operations described in [26], enabling them
to handle some additional cases required by our benchmark programs such as
primitive variables, visibility of methods, etc. Also, to allow direct comparison,
we implemented a version of our SSNlTau analysis, which is referred to simply
as SS, that tracks set sharing using only declared type information and does not
utilize the (non-)nullity component. In order to study the influence of tracking
run-time types we have implemented a version of our analysis with set sharing
and (non-)nullity, but again using only the static types, which we will refer to
as SSNl. In these versions without dynamic type inference only declared types
can affect τ and thus the dynamic typing information that can be propagated
from initializations, assignments, or correspondence between arguments and for-
mal parameters on method calls is not used. Note however that the version that
includes tracking of dynamic typing can of course only improve analysis results
in the presence of polymorphism in the program: the results should be identical
(except perhaps for the analysis time) in the rest of the cases. The polymorphic
programs are marked with an asterisk in the tables.

The benchmarks used have been adapted from previous literature on either
abstract interpretation for Java or points-to analysis [26,24,23,29]. We added
two different versions of the Vector example of Fig. 2. Our experimental results
are summarized in Tables 5, 6, and 7.

The first column (#tp) in Tables 5 and 6 shows the total number of program
points (commands or expressions) for each program. Column #rp then pro-
vides, for each analysis, the total number of reachable program points, i.e., the
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PS SS
#tp #rp #up #σ t #rp #up #σ t %Δt

dyndisp (*) 71 68 3 114 30 68 3 114 29 -2
clone 41 38 3 42 52 38 3 50 81 55
dfs 102 98 4 103 68 98 4 108 68 0
passau (*) 167 164 3 296 97 164 3 304 120 23
qsort 185 142 43 182 125 142 43 204 165 32
integerqsort 191 148 43 159 110 148 43 197 122 10
pollet01 (*) 154 126 28 276 196 126 28 423 256 30
zipvector (*) 272 269 3 513 388 269 3 712 1029 164
cleanness (*) 314 277 37 360 233 277 37 385 504 116

overall 1497 1330 167 2045 1299 1330 167 2497 2374 82.75

Fig. 5. Analysis times, number of program points, and number of abstract states

SSNl SSNlTau
#tp #rp #up #σ t %Δt #rp #up #σ t %Δt

dyndisp (*) 71 61 10 103 53 77 61 10 77 20 -33
clone 41 31 10 34 100 92 31 10 34 90 74
dfs 102 91 11 91 129 89 91 11 91 181 166
passau (*) 167 157 10 288 117 18 157 10 270 114 17
qsort 185 142 43 196 283 125 142 43 196 275 119
integerqsort 191 148 43 202 228 107 148 43 202 356 224
pollet01 (*) 154 119 35 364 388 98 98 56 296 264 35
zipvector (*) 272 269 3 791 530 36 245 27 676 921 136
cleanness (*) 314 276 38 383 276 38 266 48 385 413 77

overall 1497 1294 203 2452 2104 61.97 1239 258 2227 2634 102.77

Fig. 6. Analysis times, number of program points, and number of abstract states

number of program points that the analysis explores, while #up represents the
(#tp − #rp) points that are not analyzed because the analysis determines that
they are unreachable. It can be observed that tracking (non-)nullity (Nl) reduces
the number of reachable program points (and increases conversely the number
of unreachable points) because certain parts of the code can be discarded as
dead code (and not analyzed) when variables are known to be non-null. Track-
ing dynamic types (Tau) also reduces the number of reachable points, but, as
expected, only for (some of) the programs that are polymorphic. This is due
to the fact that the class analysis allows considering fewer implementations of
methods, but obviously only in the presence of polymorphism.

Since our framework is multivariant and thus tracks many different contexts at
each program point, at the end of analysis there may be more than one abstract
state associated with each program point. Thus, the number of abstract states
inferred is typically larger than the number of reachable program points. Column
#σ provides the total number of these abstract states inferred by the analysis.
The level of multivariance is the ratio #σ/#rp. It can be observed that the simple
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PS SS
#sh %sh #sh %sh

dyndisp (*) 640 60.37 435 73.07
clone 174 53.10 151 60.16
dfs 1573 96.46 1109 97.51
passau (*) 5828 94.56 3492 96.74
qsort 1481 67.41 1082 76.34
integerqsort 2413 66.47 1874 75.65
pollet01 (*) 793 89.81 1043 91.81
zipvector (*) 6161 68.71 5064 80.28
cleanness (*) 1300 63.63 1189 70.61

overall 20363 73.39 15439 80.24

Fig. 7. Sharing precision results

set sharing analysis (SS) creates more abstract states for the same number of
reachable points. In general, such a larger number for #σ tends to indicate more
precise results (as we will see later). On the other hand, the fact that addition
of Nl and Tau reduces the number of reachable program points interacts with
precision to obtain the final #σ value, so that while there may be an increase in
the number of abstract states because of increased precision, on the other hand
there may be a decrease because more program points are detected as dead code
by the analysis. Thus, the #σ values for SSNl and SSNlTau in some cases
actually decrease with respect to those of PS and SS.

The t column in Tables 5 and 6 provides the running times for the different
analyses, in milliseconds, on a Pentium M 1.73Ghz, 1Gb of RAM, running Fedora
Core 4.0, and averaging several runs after eliminating the best and worst values.
The %Δt columns show the percentage variation in the analysis time with respect
to the reference pair-sharing (PS) analysis, calculated as Δdom%t = 100∗(tdom−
tPS)/tPS . The more complex analyses tend to take longer times, while in any
case remaining reasonable. However, sometimes more complex analyses actually
take less time, again because the increased precision and the ensuing dead code
detection reduces the amount of program that must be analyzed.

Table 7 shows precision results in terms of sharing, concentrating on the SP
and SS domains, which allow direct comparison. A more usage-oriented way of
measuring precision would be to study the effect of the increased precision in
an application that is known to be sensitive to sharing information, such as, for
example, program parallelization [4]. On the other hand this also complicates
matters in the sense that then many other factors come into play (such as, for
example, the level of intrinsic parallelism in the benchmarks and the paralleliza-
tion algorithms) so that it is then also harder to observe the precision of the
analysis itself. Such a client-level comparison is beyond the scope of this paper,
and we concentrate here instead on measuring sharing precision directly.

Following [6], and in order to be able to compare precision directly in terms
of sharing, column #sh provides the sum over all abstract states in all reachable
program points of the cardinality of the sharing sets calculated by the analysis.
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For the case of pair sharing, we converted the pairs into their equivalent set
representation (as in [6]) for comparison. Since the results are always correct,
a smaller number of sharing sets indicates more precision (recall that � is the
power set). This is of course assuming σ is constant, which as we have seen is not
the case for all of our analyses. On the other hand, if we compare PS and SS,
we see that SS has consistently more abstract states than PS and consistently
lower numbers of sharing sets, and the trend is thus clear that it indeed brings
in more precision. The only apparent exception is pollet01 but we can see that
the number of sharing sets is similar for a significantly larger number of abstract
states.

An arguably better metric for measuring the relative precision of sharing is
the ratio %Max = 100∗ (1−#sh/(2#vo −1)) which gives #sh as a percentage of
its maximum possible value, where #vo is the total number of object variables
in all the states. The results are given in column %sh. In this metric 0% means
all abstract states are � (i.e., contain no useful information) and 100% means all
variables in all abstract states are detected not to share. Thus, larger values in
this column indicate more precision, since analysis has been able to infer smaller
sharing sets. This relative measure shows an average improvement of 7% for SS
over PS.

5 Conclusions

We have proposed an analysis based on abstract interpretation for deriving pre-
cise sharing information for a Java-like language. Our analysis is multivariant,
which allows separating different contexts, and combines Set Sharing, Nullity,
and Classes: the domain captures which instances definitely do not share or are
definitively null, and uses the classes to refine the static information when in-
heritance is present. We have implemented the analysis, as well as previously
proposed analyses based on Pair Sharing, and obtained encouraging results: for
all the examples the set sharing domains (even without combining with Nullity
or Classes) offer more precision than the pair sharing counterparts while the
increase in analysis times appears reasonable. In fact the additional precision
(also when combined with nullity and classes) brings in some cases analysis time
reductions. This seems to support that our contributions bring more precision
at reasonable cost.
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