
Sharing, Freeness, Linearity, Redundancy,

Widenings, and Cliques

Francisco Bueno, Jorge Navas, Manuel Hermenegildo

TR CLIP5/2005.0
April 19, 2005

We discuss here different variants of the Sharing abstract domain, in-
cluding the base domain that captures set-sharing, a variant to capture pair-
sharing, in which redundant sharing groups (w.r.t. the pair-sharing property)
can be eliminated, and an alternative representation based on cliques. The
original proposal for using cliques in the non-redundant version of the do-
main is reviewed, then extended to the base domain. Variants of all the
domains including freeness alone, and freeness together with linearity are
also studied.

1 Preliminaries

Let V be a set of variables of interest (e.g., the variables of a program).
Let ℘0(S) denote the proper powerset of set S, i.e., ℘0(S) = ℘(S) \ {∅}.
A sharing group is a set of variables of interest representing their possible
sharing. Let SG = ℘0(V) be the set of all sharing groups. A sharing set is
a set of sharing groups. The Sharing domain is SH = ℘(SG), the set of all
sharing sets.

Let F be a set of ranked1 functors of interest (e.g., the functors and
predicates of a program). Let Term be the set of terms constructed from
F and V . Let t̂ denote the set of variables of t ∈ Term. Let [t]x denote the
number of occurrences of x ∈ V within t ∈ Term. Let solve(t1 = t2) denote
the solved form of unification equation t1 = t2, t1 ∈ Term, t2 ∈ Term.

1That is, with a given arity.

1

1.1 Abstract Functions for Top-down Analysis

For abstract interpretation-based analysis in a top down framework there are
three domain-dependent abstract functions which are essential: call2entry,
exit2succ, and extend. The first two can be defined from the abstract
unification operation amgu. The third one, however, has to be defined
specifically for a given abstract domain.

Abstract unification Let an operation amgu(x = t, ASub) of abstract
unification for equation x = t, x ∈ V , t ∈ Term, and ASub an abstract
substitution (the domain of which contains variables t̂ ∪ {x}). Abstract
unification for equation t1 = t2, t1 ∈ Term, t2 ∈ Term, in the context of
abstract substitution ASub (the domain of which contains variables t̂1 ∪ t̂2)
is given by Amgu(solve(t1 = t2), ASub), where:

Amgu(Eq, ASub) =

{
ASub if Eq = ∅
Amgu(Eq′, amgu(x = t, ASub)) if Eq = Eq′ ∪ {x = t}

Abstract functions Functions call2entry and exit2succ can be defined
as follows.2 Note that, in call2entry, ASub is an abstract substitution with
domain the variables of Goal; the result is an abstract substitution with
domain the variables of Head. In exit2succ the domain of ASub is the
variables of Head, and that of the result the variables of Goal.

call2entry(ASub, Goal,Head) = unify(ASub, Head, Goal)
exit2succ(ASub, Goal,Head) = unify(ASub, Goal,Head)

where:

unify(ASub, t1, t2) =
project(t1, Amgu(solve(t1 = t2), augment(t1, ASub)))

whereas extend(ASub1, Goal, ASub2) has to be defined in a way such that
it yields a substitution for the success of Goal when it is called in a context
represented by substitution ASub1 on a set of variables which contains the
variables of Goal, given that in such context the success of Goal is already
represented by substitution ASub2 on the variables of Goal. The domain of
the resulting substitution is the same as the domain of ASub1.

Thus, the functions that need be defined to complete an analysis are
amgu, extend, project, and augment.

2But such definitions imply a possible loss of precision: see Section 2.3.

2

2 Sharing Domains

The Sharing domain was first presented in [?]. A complete set of abstract
functions was defined in [?] (see Appendix A). The presentation here follows
that of [?], since the notation used and the abstract unification operation
obtained are rather intuitive.

Related sharing Let t ∈ Term and sh ∈ SH, we denote by sht the
sharing in sh related to t, defined as:

sht = rel(t, sh) = {s | s ∈ sh, s ∩ t̂ 6= ∅}

i.e., the set of sets in sh which have non-empty intersection with the set of
variables of t. By extension, in shst st acts as a single term. Also, sht is the
complement of sht, i.e., sh \ sht.

Binary union Let sh1 ∈ SH, sh2 ∈ SH,

sh1 ×∪ sh2 = {s1 ∪ s2 | s1 ∈ sh1, s2 ∈ sh2}

i.e., the result of applying union to each pair in their cartesian product.

Star union Let sh ∈ SH,

sh∗ = {s1 ∪ s2 ∪ . . . ∪ sn | si ∈ sh, i = 1, . . . , n}

i.e., its closure under union.

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and sh ∈ SH, is defined as:3

amgu(x = t, sh) = shxt ∪ (sh∗x ×∪ sh∗t)

Abstract functions Let sh1 ∈ SH, sh2 ∈ SH, and g ∈ Term (a goal),

extend(sh1, g, sh2) = sh1g ∪ { s | s ∈ sh1
∗
g, (s ∩ ĝ) ∈ sh2 }

project(g, sh1) = {s ∩ ĝ | s ∈ sh1} \ {∅}
augment(g, sh2) = sh2 ∪ {{x} | x ∈ ĝ}

These functions were defined in [?] (although not all of them with that
name, and maybe some were already in Langen’s thesis). For all the domains
discussed below, functions project and augment are the natural extension
of the ones defined above.

3Note that sh∗t = (sht)
∗.

3

2.1 Sharing+Freeness

The presentation of this domain here follows that of [?]. The Sharing domain
is augmented with a new component which tracks the variables which are
free. The Sharing+Freeness domain is thus SHF = SH × V .

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and (sh, f) ∈ SHF , is given by amguf (x = t, (sh, f)) = (sh′, f ′),
where:4

sh′ =

shxt ∪ (shx ×∪ sht) if x ∈ f or t ∈ f

shxt ∪ (shx ×∪ sh∗t) if x 6∈ f, t 6∈ f, but t̂ ⊆ f and lin(t)
amgu(x = t, sh) otherwise

and lin(t) holds iff for all y ∈ t̂: [t]y = 1 and for all z ∈ t̂ such that y 6= z,
shy ∩ shz = ∅;

f ′ =

f if x ∈ f, t ∈ f
f \ (∪shx) if x ∈ f, t 6∈ f
f \ (∪sht) if x 6∈ f, t ∈ f
f \ (∪(shx ∪ sht)) if x 6∈ f, t 6∈ f

Note that, for implementation, the direct definition of lin(t) might be
rather expensive: shy has to be calculated for every y ∈ t̂ to check that each
pairwise intersection is empty. Instead, an equivalent condition, which is
more efficient, can be checked: for all s ∈ sht |s ∩ t̂| = 1.

Abstract functions Function extendf ((sh1, f1), g, (sh2, f2)) for this do-
main was defined in [?] as given by (sh′, f ′), where:

sh′ = extend(sh1, g, sh2)

f ′ = f2 ∪ {x | x ∈ (f1 \ ĝ), ((∪sh′x) ∩ ĝ) ⊆ f2}

Functions projectf and augmentf are defined as follows:

projectf (g, (sh, f)) = (project(g, sh), f ∩ ĝ)

augmentf (g, (sh, f)) = (augment(g, sh), f ∪ ĝ)
4Note that t is not necessarily a variable: t ∈ f means “t is a variable and is known to

be free”.

4

2.2 Sharing+Freeness+Linearity

The presentation of this domain here follows that of [?]. The Sharing+Freeness
domain is augmented with a new component which tracks the variables
which are linear. The Sharing+Freeness+Linearity domain is thus SHL =
SH × V × V .

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and (sh, f, l) ∈ SHL, is given by amgul(x = t, (sh, f, l)) =
(sh′, f ′, l′). Let alin(t) iff t̂ ⊆ l and lin(t). Then:

sh′ =

{
shxt ∪ sh′′ if x ∈ f or t ∈ f or alin(x) or alin(t)
amgu(x = t, sh) otherwise

sh′′ =

shx ×∪ sht if x ∈ f or t ∈ f
(shx ∪ (shx ×∪ sh∗xt))×∪
(sht ∪ (sht ×∪ sh∗xt)) if alin(x), alin(t)
sh∗x ×∪ sht if alin(x),¬alin(t)
shx ×∪ sh∗t if ¬alin(x), alin(t)

l′ = f ′ ∪

l \ (∪shx ∩ ∪sht) if alin(x), alin(t)
l \ (∪shx) if alin(x),¬alin(t)
l \ (∪sht) if ¬alin(x), alin(t)
l \ (∪(shx ∪ sht)) otherwise

and f ′ is as in amguf .

Under con-
structionAbstract functions The idea here is that, having linearity, the extend

function can be made more precise than without linearity. I think this
function has not ever been defined...

Let extendl((sh1, f1, l1), g, (sh2, f2, l2)) = (sh′, f ′, l′), where:

sh′ = sh1g ∪ ∪{ {s | s ∈ sh1g, s′ ⊆ s }∗ | s′ ∈ sh2, s′ 6⊆ l2 }
∪ { s | s ∈ sh1g, (s ∩ ĝ) ∈ sh2, (s ∩ ĝ) ⊆ l2 }

Note that the extend function for the original Sharing domain is equivalent
to the above expression without the subexpression s 6⊆ l2. This is precisely
the gain in precision that having linearity information provides.

Comment: Check what is the role of the variables in s \ ĝ: is it relevant
whether they are linear or not?

5

Functions projectl and augmentl are defined as follows:

projectl(g, (sh, f, l)) = (project(g, sh), f ∩ ĝ, l ∩ ĝ)

augmentl(g, (sh, f, l)) = (augment(g, sh), f ∪ ĝ, l ∪ ĝ)

2.3 Specific Abstract Functions for Unification

The abstract functions call2entry and exit2succ can be defined easily from
amgu, as we have seen. However, by defining such functions specifically for
each domain, precision can be improved in some cases. Function amgu has
the drawback that it is symmetric: all variables in the unification equations
are treated uniformly. Contrary to this, the equation Goal = Head which is
used during analysis is not symmetric. When using call2entry, the variables
of Head are known to be new, i.e., free and unaliased; when using exit2succ,
it is the variables of Goal that can be considered new (since they are not
in the domain of the exit abstract substitution). One can take advantage of
this fact and improve precision w.r.t. the definition of these two functions
based on amgu.

For the domains which already include freeness information, this is not
an issue, since the new variables in each case are taken care by function
unify (the variables correspond to t1 in the definition of unify). This
function calls augment, and both augmentf and augmentl include such
variables as free and unaliased. Thus, this information is already present
during Amgu. This is not the case, however, for the base Sharing domain.
One way to take advantage of the extra information is to define unify in
such a way that it uses amguf or amgul (which do exploit such information)
and provide them with the necessary information on the new variables. For
example, for the Sharing+Freeness domain, let Amguf the version of Amgu
which uses amguf (a similar construction could be done with amgul for
the Sharing+Freeness+Linearity domain); function unify can be defined
specifically for the Sharing domain, as follows:

unify(ASub, t1, t2) = project(t1, ASub′)

where:

(ASub′, F ree) = Amguf (solve(t1 = t2), augmentf (t1, (ASub, ∅)))

so that abstract functions augmentf and amguf for the Sharing+Freeness
domain are used, but the result “projected” onto the sharing component.

6

However, the use of amguf (or amgul) implies the overhead of carrying
around freeness information during abstract unification. This could be alle-
viated with the following alternative definition, specific for Sharing, to take
advantage of new variables in abstract unification:

unify(ASub, t1, t2) =
project(t1, Aunify(solve(t1 = t2), t̂1, augment(t1, ASub)))

Aunify(Eq, Lin,ASub) =

ASub if Eq = ∅
Aunify(Eq′, if Eq = Eq′ ∪ {x = t}

Lin \ ({x} ∪ t̂),
lamgu(x = t, Lin,ASub))

lamgu(x = t, Lin, sh) =

shxt ∪ (shx ×∪ sht) if x ∈ Lin or t ∈ Lin
shxt ∪ (shx ×∪ sh∗t) if x 6∈ Lin, t 6∈ Lin,

but t̂ ⊆ Lin and lin(t)
amgu(x = t, sh) otherwise

Example. Consider goal p(u, v, w) called with {uv, uw}, and
unification with clause head p(x, y, z). Analysis with Amgu
will yield {xy, xyz, xz}, whereas analysis with Aunify will yield
{xy, xz}.

Comment: Check applicability of this to bottom-up analyses.

The trade-offs involved in using this specific abstract unification function
or the one based on amguf (or even amgul) have never been investigated.

3 Non-Redundant Sharing Domains

The Sharing domains capture set-sharing: “whether there can be one or
more run-time variables shared between a set of program variables”. If
instead the property of interest is pair-sharing: “whether there can be one
or more run-time variables shared between two program variables”, then the
abstract operations can be simplified.

Note that any given sharing group with more than two variables, such as,
e.g., xyz, conveys the same information as the set of all pairs of its variables,
e.g., {xy, xz, yz}. Regarding pair-sharing, any of the two representations
have the same information: there can be shared run-time variables between
any pair of the program variables involved. Alternatively, one can say that if

7

{xy, xz, yz} is a subset of the abstract substitution, then the sharing group
xyz is redundant for pair-sharing information [?].

The Non-redundant version of Sharing is defined in [?]. The idea is to
eliminate or avoid the occurrence within a sharing set of sharing groups
which are redundant w.r.t. the pair-sharing that the sharing set represents.

Self binary union Let sh ∈ SH, its self-binary union is s×1 = s1 ×∪ s1.

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and sh ∈ SH, is defined as:5 v

amguρ(x = t, sh) = shxt ∪ (sh×x ×∪ sh×t)

i.e., substituting self-binary union for the star union.

Abstract functions Functions project and augment for the Sharing do-
main are also correct for this domain. An abstract function extendρ for the
non-redundant version of the Sharing domain has never been defined. How-
ever, the function for the original Sharing domain should serve. (Although
it can probably be improved on efficiency by using self-binary union instead
of star union).

3.1 Non-Redundant Sharing+Freeness

The inclusion of freeness into the Non-redundant Sharing domain is men-
tioned in [?]. However, no abstract functions seem to have been defined.
We present them here by modifying those of Sharing along the lines sug-
gested by the “non-redundancy” idea of [?]. Basically, star union is replaced
everywhere by self-binary union.

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and (sh, f) ∈ SHF , is given by (sh′, f ′), where:

sh′ =

shxt ∪ (shx ×∪ sht) if x ∈ f or t ∈ f

shxt ∪ (shx ×∪ sh×t) if x 6∈ f, t 6∈ f, but t̂ ⊆ f and lin(t)
amguρ(x = t, sh) otherwise

and f ′ is as in amguf .
5Note that sh×t = (sht)

×.

8

Abstract functions Functions projectf and augmentf are correct for
this domain. An extend abstract function for the non-redundant version of
the Sharing+Freeness domain has never been defined. However, the function
extendf for the original Sharing+Freeness domain should serve.

3.2 Non-Redundant Sharing+Freeness+Linearity

Under construction Under con-
struction

4 Non-Redundant Clique-Sharing Domains

This domain is defined in [?]. The idea is to eliminate or avoid the occurrence
within sharing sets of sharing groups which are the powerset of some set of
variables. Such sets of variables are called cliques and are carried along
within the sharing representation in a separate component.

The Clique-Sharing domain is SHw = {(cl, sh) | cl ∈ SH, sh ∈ SH}, i.e.,
the set of pairs of a clique set (a set of cliques) and a sharing set. Note that
clique sets are sharing sets, although they represent sharing in a different
manner than sharing sets. To distinguish them we will write cl ∈ CL and
sh ∈ SH for any pair (cl, sh) ∈ SHw.

Self binary union Let (cl, sh) ∈ SHw,

(cl, sh)× = cl× ∪ (cl×∪ sh)

is the extension of self-binary union to SHw.

Non-related sharing Let t ∈ Term and cl ∈ CL,

rel(t, cl) = { c \ t̂ | c ∈ cl } \ {∅}

For two terms s and t we will write rel(st, cl), using st as a single term.

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and (cl, sh) ∈ SHw is given by:

amguw(x = t, (cl, sh)) =
(rel(xt, cl)∪

((clx, shx)× ×∪ (clt, sht)×) ∪ ((clx, shx)× ×∪ sh×t) ∪ (sh×x ×∪ (clt, sht)×)
, shxt ∪ (sh×x ×∪ sh×t))

This abstract unification operation is defined after the one presented in
Definition 11 of [?], and is equivalent.

9

Abstract functions Abstract functions for this domain have never been
defined. However, the functions for the Clique-Sharing domain below should
serve.

4.1 Non-Redundant Clique-Sharing+Freeness

Under construction Under con-
struction

4.2 Non-Redundant Clique-Sharing+Freeness+Linearity

Under construction Under con-
struction

5 Clique-Sharing Domains

Abstract unification amguw is correct for the version of Sharing which is
non-redundant w.r.t. pair-sharing [?]. For the original Sharing domain, the
natural counterpart of amguw obtained by replacing self-binary union by
star union should serve. Correctness results for the operations on this do-
main are included in Appendix D.

Star union Let (cl, sh) ∈ SHw,

(cl, sh)∗ = cl∗ ∪ (cl∗ ×∪ sh∗)

Note that ∗ : SHw −→ CL is not an operator (its image is not SHw): it
operates on a pair of a clique set and a sharing set but returns a clique set,
not another pair.

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and (cl, sh) ∈ SHw is given by:

amgus(x = t, (cl, sh)) =
(rel(xt, cl)∪

((clx, shx)∗ ×∪ (clt, sht)∗) ∪ ((clx, shx)∗ ×∪ sh∗t) ∪ (sh∗x ×∪ (clt, sht)∗)
, shxt ∪ (sh∗x ×∪ sh∗t))

This abstract unification operation is defined after the one in the previous
section, replacing self-binary union by star union.

10

Abstract functions Let g ∈ Term, (cl, sh) ∈ SHw. Functions projects

and augments are defined as follows:

projects(g, (cl, sh)) = (project(g, cl), project(g, sh))

augments(g, (cl, sh)) = (cl, augment(g, sh))

Function extends(Call, g, Prime) is defined as follows. Let Call =
(cl1, sh1) and Prime = (cl2, sh2). Let normalize be a function which nor-
malizes a pair (cl, sh) so that no powersets occur in sh (all are “transferred”
to cliques in cl). Let Prime be already normalized, and:

(cl′, sh′) = normalize(((cl1g, sh1g)∗, sh1
∗
g))

The following two functions lift the classical extend to the case of clique-
sets and sharing-sets occurring in the pairs of Call and Prime:

extsh(sh1, g, sh2) = sh1g ∪ { s | s ∈ sh′, (s ∩ g) ∈ sh2 }

extcl(cl1, g, cl2) = rel(ĝ, cl1) ∪ { (s′ ∩ s) ∪ (s′ \ ĝ) | s′ ∈ cl′, s ∈ cl2 }

The following two functions account for the cases of the clique-set of
Call and the sharing-set of Prime, and the other way around:

clsh(cl′, g, sh2) = { s | s ⊆ c ∈ cl′, (s ∩ g) ∈ sh2 }

shcl(sh′, g, cl2) = { s | s ∈ sh′, (s ∩ g) ⊆ c ∈ cl2 }

The function extend for Sharing-clique is thus:

extends((cl1, sh1), g, (cl2, sh2)) =
(extcl(cl1, g, cl2)
, extsh(sh1, g, sh2) ∪ clsh(cl′, g, sh2) ∪ shcl(sh′, g, cl2))

5.1 Clique-Sharing+Freeness

This domain has not been presented previously. The Clique-Sharing domain
is augmented with a new component which tracks the variables which are
free. The Clique-Sharing+Freeness domain is thus SHFw = SHw × V .
Correctness results for the operations on this domain are included in Ap-
pendix E.

11

Abstract unification Abstract unification for equation x = t, x ∈ V ,
t ∈ Term, and (clsh, f) ∈ SHFw, clsh = (cl, sh), is given by amgusf (x =
t, (clsh, f)) = (clsh′, f ′), where:

clsh′ =

amgusff (x = t, clsh) if x ∈ f or t ∈ f

amgusfl(x = t, clsh) if x 6∈ f, t 6∈ f but t̂ ⊆ f and lins(t)
amgus(x = t, clsh) otherwise

and lins(t) holds iff for all y ∈ t̂: [t]y = 1 and for all z ∈ t̂ such that y 6= z,
shy ∩ shz = ∅ and cly ∩ clz = ∅;

amgusff (x = t, (cl, sh)) = (rel(xt, cl)∪
((clx ∪ shx)×∪ clt) ∪ (clx ×∪ sht)

, shxt ∪ (shx ×∪ sht))

amgusfl(x = t, (cl, sh)) = (rel(xt, cl)∪
((clx ∪ shx)×∪ (clt, sht)∗) ∪ (clx ×∪ sh∗t)

, shxt ∪ (shx ×∪ sh∗t))

f ′ =

f if x ∈ f, t ∈ f
f \ (∪(shx ∪ clx)) if x ∈ f, t 6∈ f
f \ (∪(sht ∪ clt)) if x 6∈ f, t ∈ f
f \ (∪(shx ∪ clx ∪ sht ∪ clt) if x 6∈ f, t 6∈ f

Note again that checking emptyness of each pairwise intersection in the
definition of lins(t) (as in lin(t)) can be reduced to a more efficient equivalent
condition: for all s ∈ sht and all s ∈ clt, |s ∩ t̂| = 1.

Abstract functions Function extendsf for this domain is given by
extendsf ((clsh1, f1), g, (clsh2, f2)) = ((cl′, sh′), f ′), where:

(cl′, sh′) = extends(clsh1, g, clsh2)

f ′ = f2 ∪ {x | x ∈ (f1 \ ĝ), ((∪(sh′x ∪ cl′x)) ∩ ĝ) ⊆ f2}

Functions projectsf and augmentsf are defined as follows:

projectsf (g, (clsh, f)) = (projects(g, clsh), f ∩ ĝ)

augmentsf (g, (clsh, f)) = (augments(g, clsh), f ∪ ĝ)

12

5.2 Clique-Sharing+Freeness+Linearity

Under construction Under con-
struction

6 Detecting cliques

Obviously, to minimize the representation in SHw, it pays off to replace
any set S of sharing groups which is the proper powerset of some set of
variables C by including C as a clique. Once this is done, the set S can
be eliminated from the sharing set, since the presence of C in the clique
set makes S redundant. This is the normalization mentioned in Section 5
when defining extend for the Clique-Sharing domain, and denoted there by
a function normalize. In this section we present an algorithm for such a
normalization.

Given an element (cl, sh) ∈ SHw, sharing groups might occur in sh
which are already implicit in cl. Such groups are redundant with respect to
the sharing represented by the pair. We say that an element (cl, sh) ∈ SHw

is minimal if ↓∪cl∩sh = ∅. An algorithm for minimization is straightforward:
it should delete from sh all sharing groups which are a subset of an existing
clique in cl. But normalization goes a step further by “moving sharing”
from the sharing set of a pair to the clique set, thus forcing redundancy of
some sharing groups.

While normalizing, it turns out that powersets may exist which can be
obtained from sharing groups in the sharing set plus sharing groups implied
by existing cliques in the clique set. The representation can be minimized
further if such sharing groups are also “tranferred” to the clique set by
adding the adequate clique. We say that an element (cl, sh) ∈ SHw is
normalized if whenever there is an s ⊆ (↓∪cl ∪ sh) such that s =↓c for some
set c then s ∩ sh = ∅.

Our normalization algorithm is presented in Figure 1. It starts with an
element (cl, sh) ∈ SHw, which is already minimal, and obtains an equivalent
element (w.r.t. the sharing represented) which is normalized. First, the
number m is computed, which is the length of the longest possible clique.
Then the sharing set sh is traversed and candidate cliques of that length
obtained. Existing subsets of a candidate clique S are extracted from sh. If
there are 2i − 1 − [S] subsets of S in sh then S is a clique: it is added to
cl and its subsets deleted from sh. Note that the test is performed on the
number of existing subsets, and requires the computation of a number [S],
which is crucial for the correctness of the test.

The number [S] corresponds to the number of subsets of S which may

13

1. Let n = |sh|; if n < 3, stop.

2. Compute the maximum m such that
n ≥ 2m − 1.

3. Let i = m.

4. If i = 1, stop.

5. Let C = {s | s ∈ sh, |s| = i}.
6. If C = ∅ then decrement i and go to 4.

7. Take S ∈ C and delete it from C.

8. Let SS = {s | s ∈ sh, s ⊆ S}.
9. Compute [S].

10. If |SS| = 2i − 1− [S] then:

(a) Add S to cl (regularize cl).

(b) Subtract SS from sh.

11. Go to 6.

Figure 1: Algorithm for detecting cliques

not appear in sh because they are already represented in cl (i.e., they are
already subsets of an existing clique). In order to correctly compute this
number it is essential that the input to the algorithm is already minimal;
otherwise, redundant sharing groups might bias the calculation: the formula
below may count as not present in sh a (redundant) group which is in fact
present. The computation of [S] is as follows. Let I = {S∩C | C ∈ cl}\{∅}
and Ai = {∩A | A ⊆ I, |A| = i}. Then:

[S] =
∑

1≤i≤|I|
(−1)i−1

∑
A∈Ai

(2|A| − 1)

Note that the representation can be minimized further by eliminating
cliques which are redundant with other cliques. This is the regularization
mentioned in step 10 of the algorithm. We say that a clique set cl is regular
if there are no two cliques c1 ∈ cl, c2 ∈ cl, such that c1 ⊂ c2. This can be
tested while adding cliques in step 10 above.

Finally, there is a chance for further minimization by considering as
cliques candidate sets of variables such that not all of their subsets exist in
the given element of SHw. This opens up the possibility of using the above

14

algorithm as a widening. Note that the algorithm preserves precision, since
the sharing represented by the element of SHw input to the algorithm is the
same as that represented by the element which is output. However, we can
set up a threshold for the number of subsets of the candidate clique that need
be detected, and in this case the output element may in general represent
more sharing. This might, nonetheless, be worth for practical purposes. We
have experimented which such widenings by imposing thresholds which are a
percentage of the number of subsets to be detected. Given such a percentage
p, the test in step 10 above would check for |SS| + [S] ≥ (2i − 1)(p/100),
instead. The results of our experiments are reported in Appendix G.

15

A Abstract functions for Sharing

Function call2entry for the Sharing domain was defined in [?] as follows.

Let S ⊆ V , R ⊆ V × V , and R+ the symmetric and transitive closure of
relation R.6

partition(S, R) = {B | B ⊆ S, (x ∈ B & y ∈ B) ⇔ (x, y) ∈ R+}

Let t ∈ Term be of the form p(t1, . . . , tn), S ⊆ V , and sh ∈ SH,

pos(t, S) = {i | S ∩ t̂i 6= ∅}

P(t, sh) = {pos(t, S) | S ∈ sh}

Let g ∈ Term and h ∈ Term be a goal and the head of a clause for the same
predicate, such that they are unifiable, and sh ∈ SH an abstract substitution
for ĝ. The result of call2entry(sh, g, h) is an abstract substitution for ĥ given
by:

call2entry(sh, g, h) = {S | S ∈ β, pos(h, S) ∈ (P(g, sh))∗}

where:
β =

⋃
S∈P

℘∅(S)

P = partition(ĥ \G, DG)

DG = {(xi, xj) | xi ∈ S, xj ∈ S, S ∈ sh, i 6= j}∪{(x, y) | (x → S) ∈ Eq, y ∈ S}

G = {x | (x → ∅) ∈ Eq}

Eq = propagate(normalize(solve(g = h)) ∪ {x → ∅ | x ∈ (ĝ \ ∪sh)})

and:
normalize(E) = {x → t̂ | (x = t) ∈ E, x ∈ V, t ∈ Term}

propagate(E) =

{x → ∅} ∪ propagate(ground(E′, x))

if E = E′ ∪ {x → ∅}
E otherwise

ground(E, x) = {y → S \ {x} | (y → S) ∈ E, y 6= x} ∪
{y → ∅ | (x → S) ∈ E, y ∈ S}

6If R is understood as an undirected graph, then (x, y) ∈ R+ and (y, x) ∈ R+ iff there
is a path between x and y in R.

16

B Correctness Results for Basic Operations

For any set s, we will denote ↓s = ℘0(s). For a set of sets ss, we define
↓∪ss = ∪{↓s | s ∈ ss}.

Let c ⊆ V be a clique. Note that ↓ c denotes all the sharing that is
implicitely represented in c. The sharing represented by a clique set cl ∈ CL
is thus ↓∪cl. The sharing represented by an element (cl, sh) ∈ SHw is then
↓∪cl ∪ sh.

Lemma 1 Let s1 and s2 be sets:

(↓s1)∗ = ↓s1 (1)

Powerset and union do not commute:

↓(s1 ∪ s2) ⊇ ↓s1∪ ↓s2 (2)

but not the other way around.

Lemma 2 For every cl ∈ CL:

↓∪cl ⊇ cl∗ (3)

↓∪cl ⊇ ↓∪cl (4)

but not the other way around.

Proof (4) is immediate from (2).

For (3): for every s ∈ cl∗, there is {s1, . . . , sn} ⊆ cl, n ≥ 1, so
that s = (∪n

i=1si) 6= ∅. But (∪n
i=1si) ⊆ ∪cl, so that s ∈↓∪cl.

However, cl might not have singleton sets, which are thus not in
cl∗, but they are indeed subsets of ∪cl.

Star-union is correct and precise for clique sets (and can be avoided, replac-
ing it by set union):

Lemma 3 For every cl ∈ CL:7 vv

↓∪cl∗ = ↓∪cl (5)

↓∪cl∗ = (↓∪cl)∗ (6)
7Note that ↓∪cl∗ = ↓∪(cl∗).

17

Proof First note that:

∪ ↓∪cl = ∪cl∗ = ∪cl (7)

and, if cl 6= ∅:
∪cl ∈ cl∗ (8)

Thus, ↓∪ cl∗ ⊆ ↓ ∪cl, since, using (4) and (7), we have that:
↓∪cl∗ ⊆ ↓∪cl∗ = ↓∪cl.

Also, ↓∪cl ⊆ ↓∪cl∗. To see this, take s ∈ ↓∪cl, we also have that
(8) ∪cl ∈ cl∗ (if cl 6= ∅), so that, from the definition, s ∈ ↓∪cl∗.
If cl = ∅, the result follows directly.

Now, ↓∪cl∗ ⊆ (↓∪cl)∗. Take s ∈ ↓∪cl∗, so that s ∈ ↓C, C ∈ cl∗.
Then s ⊆ C and there are {s1, . . . , sn} ⊆ cl, n ≥ 1, such that
C = ∪n

i=1si. Then there is an I ⊆ {1, . . . , n}, I 6= ∅, such

that there are, for all j ∈ I, cj ⊆ sj , and s =
i∈I
∪ ci. Therefore,

for all i ∈ I, ci ∈ ↓si and si ∈ cl, so that ci ∈ ↓∪ cl. Thus,

(
i∈I
∪ ci) ∈ (↓∪cl)∗. Since s =

i∈I
∪ ci, then s ∈ (↓∪cl)∗.

Finally, using (4) with (18), then (1) and (5), we also have
(↓∪cl)∗ ⊆ (↓∪cl)∗ = ↓∪cl = ↓∪cl∗.

Binary union is correct (but not precise) for clique sets:

Proposition 1 For every cl1 ∈ CL, cl2 ∈ CL:

↓∪(cl1 ×∪ cl2) ⊇ ↓∪cl1 ×∪ ↓∪cl2 (9)

but not in general the other way around.

Proof If either cl1 = ∅ or cl2 = ∅ ther result is straightforward.
In other case, it is a direct corollary of Lemma 4.

Lemma 4 For every cl1 ∈ CL, cl2 ∈ CL, such that cl1 6= ∅ and cl2 6= ∅:

↓∪(cl1 ×∪ cl2) = ↓∪cl1 ∪ (↓∪cl1 ×∪ ↓∪cl2) ∪ ↓∪cl2 (10)

Proof Note that for every set of sets ss, s ∈ ↓∪ss iff there is a
c ∈ ss such that s ∈↓c. In other words, s ⊆ c ∈ ss and s 6= ∅.
We first prove that ↓∪(cl1 ×∪ cl2) ⊆ ↓∪cl1 ∪ (↓∪cl1 ×∪ ↓∪cl2) ∪ ↓∪cl2.
Take s ∈ ↓∪(cl1 ×∪ cl2). Then s 6= ∅ and s ⊆ c ∈ (cl1 ×∪ cl2). That

18

is, c = c1 ∪ c2, with ci ∈ cli, i = 1, 2. Therefore, either s ⊆ ci

for i = 1 or for i = 2 (or both), or s ∩ ci 6= ∅ for both i = 1 and
i = 2.

Consider first s ⊆ ci for some i = 1, 2. Then we have that
s ⊆ ci ∈ cli and s 6= ∅, so that s ∈ ↓∪cli. Consider now s∩ ci 6= ∅
for both i = 1, 2. Then s = s1 ∪ s2, si ⊆ ci, s ∩ si 6= ∅. Thus,
si ⊆ ci ∈ cli and si 6= ∅, so that si ∈ ↓∪ cli. Therefore, s ∈
(↓∪cl1 ×∪ ↓∪cl2). In any case, s ∈ ↓∪cl1 ∪ (↓∪cl1 ×∪ ↓∪cl2) ∪ ↓∪cl2.

We now prove that ↓∪cl1 ∪ (↓∪cl1 ×∪ ↓∪cl2) ∪ ↓∪cl2 ⊆ ↓∪(cl1 ×∪ cl2).
Take s ∈ ↓∪ cl1 ∪ (↓∪ cl1 ×∪ ↓∪ cl2) ∪ ↓∪ cl2. Then, either s ∈
(↓∪cl1 ×∪ ↓∪cl2) or s ∈ ↓∪cli for i = 1 or i = 2 (or both).

Consider first s ∈ (↓∪cl1 ×∪ ↓∪cl2). Then s = s1 ∪ s2, si ⊆ ↓∪cli, so
that si ⊆ ci ∈ cli, si 6= ∅. Thus, s1∪s2 = s ⊆ (c1∪c2) ∈ (cl1 ×∪cl2)
and s 6= ∅, so that s ∈ ↓∪(cl1 ×∪ cl2). Consider now s ∈ ↓∪cli for
i = 1 or i = 2. Then s ⊆ ci ∈ cli and s 6= ∅. Therefore,
s ⊆ (c1 ∪ c2) ∈ (cl1 ×∪ cl2), so that s ∈ ↓∪(cl1 ×∪ cl2).

Projection is correct for clique sets, but imprecise:

Lemma 5 For every cl ∈ CL and term t:

↓∪clt ⊇ (↓∪cl)t (11)

but not the other way around.

Proof Let s ∈ (↓∪cl)t. Then s ∩ t̂ 6= ∅ and there is C ∈ cl such
that s ∈ ↓C. Thus, s ⊆ C, so that C ∩ t̂ 6= ∅. Therefore, C ∈ clt,
but also s ∈ ↓C, so that s ∈ ↓∪clt.

To see that the other direction does not hold in general, take
cl = {xy} and t = x. We have ↓∪cl = {x, xy, y} and clt = cl =
{xy}, so that (↓∪cl)t = {x, xy} but ↓∪clt = {x, xy, y}.

19

C Optimized Unification for Clique-Sharing

Some basic results which are proved somewhere else:

Lemma 6 Let ss1, ss2, and ss3 be sets of sets:

(ss1 ×∪ ss2)∗ = ss∗1 ×∪ ss∗2 (12)

(ss1 ∪ ss2)∗ ⊇ ss∗1 ∪ ss∗2 (13)

(ss1 ∪ {∅})∗ = ss∗1 ∪ {∅} (14)

ss1 ×∪ (ss2 ∪ ss3) = (ss1 ×∪ ss2) ∪ (ss1 ×∪ ss3) (15)

If both ss1 6= ∅ and ss2 6= ∅ then:

∪(ss1 ×∪ ss2) = ∪(ss1 ∪ ss2) (16)

Computing (cl, sh)∗ can be reduced to simple union of sets:

Lemma 7 Given (cl, sh) ∈ SHw, we have that, if cl 6= ∅:

↓∪(cl, sh)∗ =↓∪(cl ∪ sh)

Proof We first prove the following auxiliary result:

(cl, sh)∗ = (cl×∪ (sh ∪ {∅}))∗ (17)

(cl, sh)∗ = cl∗ ∪ (cl∗ ×∪ sh∗) (15)= cl∗ ×∪ (sh∗ ∪ {∅})
(14)= cl∗ ×∪ (sh ∪ {∅})∗ (12)= (cl×∪ (sh ∪ {∅}))∗

Now, since cl 6= ∅ and also sh ∪ {∅} 6= ∅, we can apply (16), so
that:

↓∪(cl, sh)∗ (17)= ↓∪(cl×∪ (sh ∪ {∅}))∗ (5)= ↓∪(cl×∪ (sh ∪ {∅}))
(16)= ↓∪(cl ∪ sh ∪ {∅}) = ↓∪(cl ∪ sh)

Also, the basic expression for unification in sharing can be reduced, for clique
sets, to union of sets:

Lemma 8 Given cl1 ∈ CL, cl2 ∈ CL, we have that, if cl1 6= ∅ and cl2 6= ∅:

↓∪(cl∗1 ×∪ cl∗2) =↓∪(cl1 ∪ cl2)

20

Proof Note that (16) can be applied below because cl1 6= ∅
and cl2 6= ∅. Thus:

↓∪(cl∗1 ×∪ cl∗2)
(12)= ↓∪(cl1 ×∪ cl2)∗

(5)= ↓∪(cl1 ×∪ cl2)
(16)= ↓∪(cl1 ∪ cl2)

With this, we can redefine abstract unification without loss of precision (and
correctness) into an optimized operation amguo, which can be used in place
of amgus.

amguo(x = t, (cl, sh)) =

(cl , shxt ∪ (sh∗x ×∪ sh∗t)) if clx = clt = ∅
(rel(xt, cl) , shxt) if clx = shx = ∅

or clt = sht = ∅
(rel(xt, cl) ∪ {∪(clx ∪ clt ∪ shx ∪ sht)} , shxt)

otherwise

Theorem 1 Given x = t, x ∈ V , t ∈ Term, and (cl, sh) ∈ SHw. Let
amguo(x = t, (cl, sh)) = (cl′, sh′) and amgus(x = t, (cl, sh)) = (cl′′, sh′′).
Then:

↓∪cl′ ∪ sh′ = ↓∪cl′′ ∪ sh′′

Proof Let clsh = ((clx, shx)∗ ×∪(clt, sht)∗)∪((clx, shx)∗ ×∪sh∗t)∪
(sh∗x ×∪ (clt, sht)∗). Recall that:

cl′′ = rel(xt, cl) ∪ clsh and sh′′ = shxt ∪ (sh∗x ×∪ sh∗t)

For cl′ and sh′ we have three cases:

• clx = clt = ∅
Since clx = clt = ∅ then rel(xt, cl) = cl and (clx, shx)∗ =
(clt, sht)∗ = ∅, so that (clx, shx)∗ ×∪(clt, sht)∗ = (clx, shx)∗ ×∪sh∗t =
sh∗x ×∪ (clt, sht)∗ = ∅. Then clsh = ∅, so that cl′′ = cl. Thus,
what we have to prove is:

↓∪cl′ ∪ sh′ = ↓∪cl ∪ sh′′

vvwhich follows because, in this case, cl′ = cl and sh′ =
shxt ∪ (sh∗x ×∪ sh∗t) = sh′′.

• clx = shx = ∅ or clt = sht = ∅
Take clx = shx = ∅. Then also (clx, shx)∗ = shx

∗ = ∅.
Thus, we have (clx, shx)∗ ×∪ (clt, sht)∗ = (clx, shx)∗ ×∪ sh∗t =

21

sh∗x ×∪ (clt, sht)∗ = ∅, so that clsh = ∅. Also, sh∗x ×∪ sh∗t = ∅,
so that sh′′ = shxt. The same reasoning applies to the case
clt = sht = ∅. Thus, what we have to prove is:

↓∪cl′ ∪ sh′ = ↓∪rel(xt, cl) ∪ shxt

which follows because, in this case, cl′ = rel(xt, cl) and
sh′ = shxt.

• any other case
Let W = ∪(clx ∪ clt ∪ shx ∪ sht). We now have:

↓∪cl′′ = ↓∪(rel(xt, cl) ∪ clsh) = ↓∪rel(xt, cl) ∪ ↓∪clsh

↓∪cl′ = ↓∪(rel(xt, cl) ∪ {W}) = ↓∪rel(xt, cl) ∪ ↓∪{W}
= ↓∪rel(xt, cl)∪ ↓W

and sh′ = shxt, so that what we have to prove is:

↓∪rel(xt, cl)∪ ↓W∪shxt = ↓∪rel(xt, cl)∪ ↓∪clsh∪shxt∪(sh∗x ×∪sh∗t)

or, equivalently:

↓W = ↓∪clsh ∪ (sh∗x ×∪ sh∗t)

which follows because ↓W = ↓∪clsh and (sh∗x ×∪ sh∗t) ⊆ ↓W ,
which we proceed to prove.
First, note that sh∗x ×∪ sh∗t is a set of sets of variables from
∪(shx ∪ sht), and ∪(shx ∪ sht) ⊆ W . Therefore, sh∗x ×∪ sh∗t
is a subset of ↓W .
Second, we show that ↓W = ↓∪clsh. We proceed by cases.
The third case of amguo excludes the other two, so that
now we only have the following three possible cases:

– clx 6= ∅ and clt 6= ∅
– clx = ∅ (but shx 6= ∅) and clt 6= ∅
– clx 6= ∅ and clt = ∅ (but sht 6= ∅)

• clx 6= ∅, clt = ∅, sht 6= ∅
Since clt = ∅ also (clt, sht)∗ = ∅, so clsh = (clx, shx)∗ ×∪sh∗t .
Then, from (17), clsh = (clx ×∪ (shx ∪ {∅}))∗ ×∪ sh∗t . Since
clx 6= ∅, sht 6= ∅, and also shx ∪ {∅} 6= ∅, we can apply
Lemma 8 and equation (16), so that:

22

↓∪clsh
L.8= ↓∪((clx ×∪ (shx ∪ {∅})) ∪ sht)
= ↓(∪(clx ×∪ (shx ∪ {∅})) ∪ ∪sht)
(16)= ↓(∪clx ∪ ∪(shx ∪ {∅}) ∪ ∪sht)
= ↓∪(clx ∪ shx ∪ sht)

But, since clt = ∅, we have that W = ∪(clx ∪ shx ∪ sht), so
that ↓∪clsh =↓W .

• clx = ∅, clt 6= ∅, shx 6= ∅
This case is symmetric to the previous one.

• clx 6= ∅ and clt 6= ∅
Now we have to prove that:

↓W = ↓∪clsh
= ↓∪((clx, shx)∗ ×∪ (clt, sht)∗)

∪ ↓∪((clx, shx)∗ ×∪ sh∗t) ∪ ↓∪(sh∗x ×∪ (clt, sht)∗)

But, since ↓∪((clx, shx)∗ ×∪ sh∗t) is a set of sets of variables
from ∪(clx ∪ shx ∪ sht), and ∪(clx ∪ shx ∪ sht) ⊆ W , then
↓∪((clx, shx)∗ ×∪ sh∗t) is a subset of ↓W . The same happens

for ↓∪(sh∗x ×∪ (clt, sht)∗). Therefore, it suffices to prove that
↓W = ↓∪((clx, shx)∗ ×∪ (clt, sht)∗).
Since clx 6= ∅, clt 6= ∅, and also shx∪{∅} 6= ∅, sht∪{∅} 6= ∅,
Lemma 8 and equation (16) can be applied as follows:

↓∪((clx, shx)∗ ×∪ (clt, sht)∗)
(17)= ↓∪((clx ×∪ (shx ∪ {∅}))∗ ×∪ (clt ×∪ (sht ∪ {∅}))∗)
L.8= ↓∪((clx ×∪ (shx ∪ {∅})) ∪ (clt ×∪ (sht ∪ {∅})))
= ↓(∪(clx ×∪ (shx ∪ {∅})) ∪ ∪(clt ×∪ (sht ∪ {∅})))
(16)= ↓(∪(clx ∪ (shx ∪ {∅})) ∪ ∪(clt ∪ (sht ∪ {∅})))
= ↓∪(clx ∪ shx ∪ clt ∪ sht)
= ↓W

23

D Correctness Results for Clique-Sharing

Some basic results which are proved somewhere else:

Lemma 9 Let ss1, ss2, ss3, and ss4 be sets of sets. If ss1 ⊆ ss3 and
ss2 ⊆ ss4 then:

ss∗1 ⊆ ss∗3 (18)

ss1 ×∪ ss2 ⊆ ss3 ×∪ ss4 (19)

ss∗1 ×∪ ss∗2 ⊆ ss∗3 ×∪ ss∗4 (20)

The following result is supposedly (?) proved in [?]. The operation of non-
related sharing for clique sets is correct:

Lemma 10 Given cl ∈ CL, we have that:

↓∪rel(xt, cl) = (↓∪cl)xt

v The extension of star-union to SHw is correct but imprecise:

Lemma 11 Given (cl, sh) ∈ SHw, we have that:

↓∪(cl, sh)∗ ∪ sh∗ ⊇ (↓∪cl ∪ sh)∗

but not the other way around.

Proof First, we consider cl = ∅. In this case, ↓∪(cl, sh)∗ = ∅
and ↓∪cl = ∅, so that ↓∪(cl, sh)∗ ∪ sh∗ = sh∗ = (↓∪cl ∪ sh)∗.

If cl 6= ∅ then, by Lemma 7, ↓∪(cl, sh)∗ =↓∪(cl∪ sh). This is the
proper powerset of the set of variables ∪(cl∪sh), and therefore it
is a superset of any other set of sets of variables from ∪(cl∪ sh),
such as, for example, (↓∪cl ∪ sh)∗.

To see that the other direction does not hold in general, take
cl = {xy} and sh = {yz}. We have that ↓∪(cl, sh)∗ =↓(xyz)
and ↓∪cl = {x, xy, y}. Thus, (↓∪cl ∪ sh)∗ = {x, xy, y, yz}∗ =
{x, xy, xyz, y, yz}, which is a proper subset of ↓(xyz).

Note Although imprecise in general, (cl, sh)∗ is in fact precise when cl = ∅
or sh = ∅. When cl = ∅ we have (cl, sh)∗ = ∅, what makes this oper-
ation unnecessary (which is precisely the observation behind the first and
second cases of amguo). When sh = ∅ we have ↓∪ (cl, sh)∗ = ↓∪ cl∗ and
(↓∪cl ∪ sh)∗ = (↓∪cl)∗, but ↓∪cl∗ = (↓∪cl)∗, from (6).

24

Abstract unification for Clique-Sharing is correct (but not precise):

Theorem 2 Let (cl, ss) ∈ SHw, sh ∈ SH, equation x = t, x ∈ V and
t ∈ Term, and amgus(x = t, (cl, ss)) = (clo, sso). If ↓∪cl ∪ ss ⊇ sh then:

↓∪clo ∪ sso ⊇ amgu(x = t, sh)

Proof We first prove the following instrumental results:

↓∪clt ∪ sst ⊇ sht (21)

since

↓∪cl ∪ ss ⊇ sh ⇒ (↓∪cl ∪ ss)t ⊇ sht ⇒ (↓∪cl)t ∪ sst ⊇ sht
(11)⇒ ↓∪clt ∪ sst ⊇ sht

Also:
(↓∪cl)xt ∪ ssxt ⊇ shxt (22)

since

↓∪cl ∪ ss ⊇ sh ⇒ (↓∪cl ∪ ss)xt ⊇ shxt ⇒ (↓∪cl)xt ∪ ssxt ⊇ shxt

From (21) we have ↓∪clt ∪ sst ⊇ sht and the same also for x:
↓∪clx ∪ ssx ⊇ shx. Thus, by (20),

(↓∪clx ∪ ssx)∗ ×∪ (↓∪clt ∪ sst)∗ ⊇ sh∗x ×∪ sh∗t (23)

By Lemma 10, ↓∪rel(xt, cl) = (↓∪cl)xt, and from (22),

↓∪rel(xt, cl) ∪ ssxt ⊇ shxt (24)

Now, recall that amgu(x = t, sh) = shxt ∪ (sh∗x ×∪ sh∗t). We
will use amguo instead of amgus, since by Theorem 1 they are
equivalent. So, we have three cases:

• clx = clt = ∅
In this case, clo = cl and sso = ssxt ∪ (ss∗x ×∪ ss∗t). So, what
we have to prove is:

↓∪cl ∪ ssxt ∪ (ss∗x ×∪ ss∗t) ⊇ shxt ∪ (sh∗x ×∪ sh∗t)

We first show that ss∗x ×∪ ss∗t ⊇ sh∗x ×∪ sh∗t . This follows
from (23), since clx = clt = ∅.
We now show that ↓∪cl∪ssxt ⊇ shxt. This follows from (22),
since (↓∪cl)xt ⊆ ↓∪cl.

25

• clx = ssx = ∅ or clt = sst = ∅
In this case, clo = rel(xt, cl) and sso = ssxt. Also, we have
that either ↓∪clx∪ssx = ∅ or ↓∪clt∪sst = ∅. Thus, from (21),
either shx = ∅ or sht = ∅. In any case, sh∗x ×∪ sh∗t = ∅. So,
what we have to prove is:

↓∪rel(xt, cl) ∪ ssxt ⊇ shxt

but this is precisely (24), proved above.

• any other case
Now we have clo = rel(xt, cl) ∪ {∪(clx ∪ clt ∪ ssx ∪ sst)}
and sso = ssxt. Let W = ∪(clx ∪ clt ∪ ssx ∪ sst). We
have that ↓∪(rel(xt, cl) ∪ {W}) = ↓∪rel(xt, cl) ∪ ↓∪{W} =
↓∪rel(xt, cl)∪ ↓W . So, what we have to prove is:

↓∪rel(xt, cl)∪ ↓W ∪ ssxt ⊇ shxt ∪ (sh∗x ×∪ sh∗t)

First, we have that ↓∪rel(xt, cl) ∪ ssxt ⊇ shxt (24).
Second, we show that ↓W ⊇ sh∗x ×∪ sh∗t . Let S = (↓∪clx ∪
ssx)∗ ×∪ (↓∪clt∪sst)∗; note that S is a set of sets of variables
from W , thus it is a subset of the proper powerset ↓W .
From (23) we have that S ⊇ sh∗x ×∪ sh∗t , so that ↓W ⊇
sh∗x ×∪ sh∗t .

The previous result holds even for the case in which ↓∪cl ∪ ss = sh. That
is, amgus is neccessarily imprecise.

Proposition 2 Let (cl, ss) ∈ SHw, sh ∈ SH, equation x = t, x ∈ V and
t ∈ Term, and amgus(x = t, (cl, ss)) = (clo, sso). If ↓∪cl ∪ ss = sh then:

↓∪clo ∪ sso ⊇ amgu(x = t, sh)

but not in general ↓∪clo ∪ sso = amgu(x = t, sh).

Proof The general statement is a direct corollary of Theorem 2.
To see that equality does not hold in general, take (cl, ss) =
({xy}, ∅) and sh = {x, xy, y}. We have ↓∪cl∪ ss = sh. Take also
t = y. Then (clo, sso) = ({xy}, ∅), so that ↓∪clo∪sso = {x, xy, y}.
But amgu(x = t, sh) = shxt ∪ (sh∗x ×∪ sh∗t) = {xy}, which is a
proper subset of ↓∪clo ∪ sso.

26

Note Loss of precision occurs only in the third case of amguo. If ↓∪cl∪ss =
sh then equations (22) and (24) can be shown to be equalities, so that equal-
ity can also be shown to hold for the second case of amguo. In the first case,
equations (21) and (23) turn also into equalities, so that equality also holds
for the first case of amguo. Only the third case is imprecise.

Function extend for Clique-Sharing is correct (but not precise):

Theorem 3 Let Call = (cl1, ss1) ∈ SHw and Prime = (cl2, ss2) ∈ SHw,
such that the conditions for the extend function hold, g ∈ Term, and
extends(Call, g, Prime) = (cl′, ss′). If ↓∪cl1∪ss1 ⊇ sh1 and ↓∪cl2∪ss2 ⊇ sh2

then:
↓∪cl′ ∪ ss′ ⊇ extend(sh1, g, sh2)

Proof Pending
proof

27

E Correctness Results for Clique-Sharing+Freeness

Some basic results which are proved somewhere else:

Lemma 12 Let ss1, ss2, ss3, and ss4 be sets of sets. If ss1 ⊇ ss3 and
ss2 ⊇ ss4 then:

∪ss1 ⊇ ∪ss3 (25)

ss1 ∪ ss2 ⊇ ss3 ∪ ss4 (26)

Abstract unification for Clique-Sharing+Freeness is correct (but not pre-
cise):

Theorem 4 Let ((cl, ss), f) ∈ SHFw, (sh, e) ∈ SHF , and equation x = t,
x ∈ V , t ∈ Term. Let also amgusf (x = t, ((cl, ss), f)) = ((clo, sso), fo) and
amguf (x = t, (sh, e)) = (sh′, f ′). If ↓∪cl ∪ ss ⊇ sh and f ⊆ e then:

↓∪clo ∪ sso ⊇ sh′ and fo ⊆ f ′

Proof First, we prove that ↓∪clo∪sso ⊇ sh′. From the definition
of amgusf we have three cases (plus two subcases of one of them):

• x ∈ f or t ∈ f

In this case, since f ⊆ e, we have x ∈ e or t ∈ e, so that
sh′ = shxt ∪ (shx ×∪ sht). Also, sso = ssxt ∪ (ssx ×∪ sst) and
clo = rel(xt, cl)∪ ((clx∪ssx)×∪ clt)∪ (clx ×∪sst). Thus, what
we have to prove is:

↓∪(rel(xt, cl) ∪ ((clx ∪ ssx)×∪ clt) ∪ (clx ×∪ sst))
∪ssxt ∪ (ssx ×∪ sst) ⊇ shxt ∪ (shx ×∪ sht)

that is:

↓∪rel(xt, cl) ∪ ↓∪((clx ∪ ssx)×∪ clt) ∪ ↓∪(clx ×∪ sst)
∪ssxt ∪ (ssx ×∪ sst) ⊇ shxt ∪ (shx ×∪ sht)

or, equivalently, since ↓∪rel(xt, cl) ∪ ssxt ⊇ shxt (24):

↓∪((clx ∪ ssx)×∪ clt) ∪ ↓∪(clx ×∪ sst) ∪ (ssx ×∪ sst) ⊇ shx ×∪ sht

This is proved in Lemma 13 below.

28

• x 6∈ f , t 6∈ f , but t̂ ⊆ f and lins(t)
In this case, sso = ssxt ∪ (ssx ×∪ ss∗t) and clo = rel(xt, cl) ∪
((clx ∪ ssx)×∪ (clt, sst)∗) ∪ (clx ×∪ ss∗t), so that:

↓∪clo = ↓∪rel(xt, cl)∪ ↓∪((clx∪ssx)×∪(clt, sst)∗)∪ ↓∪(clx ×∪ss∗t)

Also, we may have that x ∈ e or t ∈ e or none. However,
t̂ ⊆ e, since t̂ ⊆ f and f ⊆ e. We also have that

lins(t) ⇒ lin(t)

To see this... Proof pend-
ingThus, we have now two cases: either (1) x ∈ e or t ∈ e, or

(2) x 6∈ e, t 6∈ e, but t̂ ⊆ e and lin(t). We proceed with
them.

• x 6∈ f , t 6∈ f , t̂ ⊆ f , lins(t), x 6∈ e, t 6∈ e, t̂ ⊆ e, lin(t)
Now, sh′ = shxt ∪ (shx ×∪ sh∗t), so that what we have to
prove is:

↓∪rel(xt, cl) ∪ ↓∪((clx ∪ ssx)×∪ (clt, sst)∗) ∪ ↓∪(clx ×∪ ss∗t)
∪ssxt ∪ (ssx ×∪ ss∗t) ⊇ shxt ∪ (shx ×∪ sh∗t)

or, equivalently, since ↓∪rel(xt, cl) ∪ ssxt ⊇ shxt (24):

↓∪((clx ∪ ssx)×∪ (clt, sst)∗) ∪ ↓∪(clx ×∪ ss∗t) ∪ (ssx ×∪ ss∗t)
⊇ shx ×∪ sh∗t

This is proved in Lemma 14 below.

• x 6∈ f , t 6∈ f , t̂ ⊆ f , lins(t), x ∈ e or t ∈ e

Now, sh′ = shxt ∪ (shx ×∪ sht), so that what we have to
prove is:

↓∪rel(xt, cl) ∪ ↓∪((clx ∪ ssx)×∪ (clt, sst)∗) ∪ ↓∪(clx ×∪ ss∗t)
∪ssxt ∪ (ssx ×∪ ss∗t) ⊇ shxt ∪ (shx ×∪ sht)

or, equivalently, since ↓∪rel(xt, cl) ∪ ssxt ⊇ shxt (24):

↓∪((clx ∪ ssx)×∪ (clt, sst)∗) ∪ ↓∪(clx ×∪ ss∗t) ∪ (ssx ×∪ ss∗t)
⊇ shx ×∪ sht

But this follows from the previous case, since sh∗t ⊇ sht and
thus, from (19), shx ×∪ sh∗t ⊇ shx ×∪ sht.

29

• any other case
We now have that sh′ = amgu(x = t, sh) and that (clo, sso) =
amgus(x = t, (cl, ss)). Thus, the result follows directly
from Theorem 2.

Now we prove that fo ⊆ f ′. From the definition of amgsf we
have four cases. Note that in every case fo ⊆ f . Also:

∪(clt ∪ sst) ⊇ ∪sht (27)

To see this, note that ∪(clt ∪ sst) = ∪(↓∪clt ∪ sst), since both
expressions are made of the same set of variables. But, from (21),
↓∪clt ∪ sst ⊇ sht, so that from (25) the result follows.

• x ∈ f and t ∈ f

In this case, since f ⊆ e, we have x ∈ e and t ∈ e, so that
f ′ = e. Also, fo = f . Thus, the result is straightforward.

• x /∈ f and t ∈ f

Now, we have t ∈ e, but either x ∈ e or x /∈ e. If x ∈ e,
we have f ′ = e. Thus, the result is straightforward, since
fo ⊆ f and f ⊆ e.
If x /∈ e, we have f ′ = e \ ∪sht. Also, fo = f \ ∪(sst ∪ clt),
so that what we have to prove is:

f \ ∪(sst ∪ clt) ⊆ e \ ∪sht

which holds because f ⊆ e, and ∪(sst ∪ clt) ⊇ ∪sht (27).

• x ∈ f and t /∈ f

This case is symmetric to the previous one, with x for t and
vice versa.

• x /∈ f and t /∈ f

In this case, fo = f \ ∪(clx ∪ clt ∪ ssx ∪ clx), but we may or
may not have x ∈ e and t ∈ e, so we have four more cases.

• x /∈ f , t /∈ f , x /∈ e, and t /∈ e

We now have f ′ = f \ ∪(shx ∪ sht). Thus what we have to
prove is:

f \ ∪(clx ∪ clt ∪ ssx ∪ sst) ⊆ e \ ∪(shx ∪ sht)

30

which holds because f ⊆ e and also, from (26):

∪(clx ∪ clt ∪ ssx ∪ sst) ⊇ ∪(shx ∪ sht)

since we have ∪(clt ∪ sst) ⊇ ∪sht (27) and the same for x:
∪(clx ∪ sst) ⊇ ∪shx.

• x /∈ f , t /∈ f , x ∈ e, and t /∈ e

In this case, f ′ = f \ ∪shx. The result then follows from
the previous case, since ∪shx ⊆ ∪(shx ∪ sht).

• x /∈ f , t /∈ f , x /∈ e, and t ∈ e

In this case, f ′ = f \ ∪sht. As before, the result follows
because ∪sht ⊆ ∪(shx ∪ sht).

• x /∈ f , t /∈ f , x ∈ e, and t ∈ e

Now, f ′ = e, and the result follows because fo ⊆ f and
f ⊆ e = f ′.

Lemma 13 Under the same conditions of Theorem 4:

↓∪((clx ∪ ssx)×∪ clt) ∪ ↓∪(clx ×∪ sst) ∪ (ssx ×∪ sst) ⊇ shx ×∪ sht

Proof We first prove the following instrumental result:

(↓∪clx ∪ ssx)×∪ (↓∪clt ∪ sst) ⊇ shx ×∪ sht (28)

From (21) we have ↓∪clt ∪ sst ⊇ sht and the same holds also for
x: ↓∪clx ∪ ssx ⊇ shx. Thus the result follows from (19).

To see that the main statement of the lemma holds, consider
that ↓∪ss ⊇ ss. Then:

↓∪((clx ∪ ssx)×∪ clt) ∪ ↓∪(clx ×∪ sst) ∪ (ssx ×∪ sst)
? (↓∪(clx ∪ ssx)×∪ ↓∪clt) ∪ (↓∪clx ×∪ ↓∪sst) ∪ (ssx ×∪ sst)
= ((↓∪clx ∪ ↓∪ssx)×∪ ↓∪clt) ∪ (↓∪clx ×∪ ↓∪sst) ∪ (ssx ×∪ sst)
(19)

⊇ ((↓∪clx ∪ ssx)×∪ ↓∪clt) ∪ (↓∪clx ×∪ sst) ∪ (ssx ×∪ sst)
(15)= ((↓∪clx ∪ ssx)×∪ ↓∪clt) ∪ ((↓∪clx ∪ ssx)×∪ sst)
(15)= (↓∪clx ∪ ssx)×∪ (↓∪clt ∪ sst)
(28)

⊇ shx ×∪ sht

Lemma 14 Under the same conditions of Theorem 4:

↓∪((clx ∪ ssx)×∪ (clt, sst)∗) ∪ ↓∪(clx ×∪ ss∗t) ∪ (ssx ×∪ ss∗t) ⊇ shx ×∪ sh∗t

31

Proof Proof pend-
ing↓∪((clx ∪ ssx)×∪ (clt, sst)∗) ∪ ↓∪(clx ×∪ ss∗t) ∪ (ssx ×∪ ss∗t)

= ↓∪((clx ∪ ssx)×∪ (cl∗t ∪ (cl∗t ×∪ ss∗t))) ∪ ↓∪(clx ×∪ ss∗t) ∪ (ssx ×∪ ss∗t)
? (↓∪(clx ∪ ssx)×∪ ↓∪(cl∗t ∪ (cl∗t ×∪ ss∗t))) ∪ (↓∪clx ×∪ ↓∪ss∗t) ∪ (ssx ×∪ ss∗t)
= ((↓∪clx ∪ ↓∪ssx)×∪ (↓∪cl∗t ∪ ↓∪(cl∗t ×∪ ss∗t))) ∪ (↓∪clx ×∪ ↓∪ss∗t) ∪ (ssx ×∪ ss∗t)
? ((↓∪clx ∪ ↓∪ssx)×∪ (↓∪cl∗t ∪ (↓∪cl∗t ×∪ ↓∪ss∗t))) ∪ (↓∪clx ×∪ ↓∪ss∗t) ∪ (ssx ×∪ ss∗t)

(19)

⊇ ((↓∪clx ∪ ssx)×∪ (↓∪cl∗t ∪ (↓∪cl∗t ×∪ ss∗t))) ∪ (↓∪clx ×∪ ss∗t) ∪ (ssx ×∪ ss∗t)
(15)= ((↓∪clx ∪ ssx)×∪ (↓∪cl∗t ∪ (↓∪cl∗t ×∪ ss∗t))) ∪ ((↓∪clx ∪ ssx)×∪ ss∗t)
(15)= (↓∪clx ∪ ssx)×∪ (↓∪cl∗t ∪ (↓∪cl∗t ×∪ ss∗t) ∪ ss∗t)
(19)

⊇ (↓∪clx ∪ ssx)×∪ (↓∪cl∗t ∪ ss∗t)
(21)+(19)

⊇ shx ×∪ (↓∪cl∗t ∪ ss∗t)
⊇? shx ×∪ sht

Function extend for Clique-Sharing+Freeness is correct (but not precise):

Theorem 5 Let Call = ((cl1, ss1), e1) ∈ SHFw and Prime = ((cl2, ss2), e2) ∈
SHFw, such that the conditions for the extend function hold, g ∈ Term,
extendsf (Call, g, Prime) = ((cl′, ss′), e′), and extendf ((sh1, f1), g, (sh2, f2)) =
(sh′, f ′). If ↓∪cl1 ∪ ss1 ⊇ sh1, e1 ⊆ f1, ↓∪cl2 ∪ ss2 ⊇ sh2, and e2 ⊆ f2 then:

↓∪cl′ ∪ ss′ ⊇ sh′ and e′ ⊆ f ′

Proof Pending
proof

32

F Precision and Efficiency Results for the Clique-
Sharing Domains

We have measured experimentally the relative efficiency and precision ob-
tained with the inclusion of cliques in the Sharing and Sharing+Freeness
domains. We measure absolute precision of a sharing set by the number of
its sharing groups relative to the number of sharing groups in the worst-case
for the set of variables in its domain. The number of sharing groups in the
worst-case sharing for n variables is given by 2n − 1. Thus, precision of
sh ∈ SH is given by |sh|/(2n− 1). This is a number in [0, 1] such that sh is
more precise the closer its precision is to 0. For (cl, sh) ∈ SHw precision is
| ↓∪cl ∪ sh|/(2n − 1).

Our results are shown in tables 1 for Sharing and 2 for Sharing+Freeness.
Columns time show analysis times in milliseconds. on a medium-loaded
Pentium IV Xeon 2.0Ghz with two processors, 4Gb of RAM memory, run-
ning Fedora Core 2.0, and averaging several runs after eliminating the best
and worst values. Ciao version 1.11#326 and CiaoPP 1.0#2292 were used.
Columns labeled precision show the number of sharing groups in the infor-
mation inferred and, between parenthesis, the number of sharing groups for
the worst-case sharing. Since our analyses infer information at all program
points (before and after calling each clause body atom), and several variants
for each program point, we show the accumulated number of sharing groups
in all variants for all program points, instead of the absolute precision.

In both tables, first the numbers for the original domain are shown, then
the numbers for the clique-domain. The columns ∆% and ∆# show the
relative comparison of the clique-domain to the original domain for time
and for precision, respectively. Given TP the (total) number of sharing
groups for the clique-domain, R the (total) number of sharing groups for the
original domain and W1 and W2 the (total) number of sharing groups in
the worst-case sharing in each case, respectively, the precision is computed
as 100 ∗ (R/W2 − TP/W1). This number (∆#) shows the variation in
units of precision measured in percentage, so that we can talk of “points” of
precision gained (if positive) or lost (if negative) by the clique-domain. For
efficiency, given TP the number for the clique-domain and R the number
for the original domain, the relation (∆%) is computed as 100∗ (1−TP/R),
showing the percentage of improvement for the clique-domain, if positive,
or of how worse it goes, if negative, over the original domain.

Benchmarks are divided into three groups. The first group, append
through serialize, is a set of simple programs, used as a testbed for an anal-

33

Sharing Clique-Sharing
time precision time ∆% precision ∆#

append 11.99 29 (60) 12.49 -4.17 44 (60) -25
deriv 33.99 27 (546) 36.99 -8.82 27 (546) 0
mmatrix 11.99 14 (694) 13.99 -16.68 14 (694) 0
qsort 31.49 30 (1716) 34.99 -11.11 30 (1716) 0
query 17.49 35 (501) 18.99 -8.57 35 (501) 0
serialize 547.51 1734 (10531) 132.18 75.85 2443 (10531) -6.72
aiakl 54.49 145 (13238) 61.99 -13.76 145 (13238) 0
boyer 937.52 1688 (4631) 463.92 50.51 2005 (4631) -6.83
browse 36.49 69 (776) 41.49 -13.70 69 (776) 0
prolog read 566.71 1080 (408755) 628.90 -10.97 1080 (408755) 0
rdtok 450.59 1350 (11513) 482.67 -7.11 1370 (11513) -0.16
warplan 3457.27 4202 (26306) 1566.56 54.68 5989 (19006) -15.53
zebra 44.66 280 (671088746) 56.49 -26.48 280 (671088746) 0
ann - - 1220.21 - 19658 (314825) -
peephole 1702.07 2210 (12148) 748.88 56 3329 (12845) -7.71
qplan - - 2175.91 - 420519 (3827610) -
witt 556.41 858 (4545564) 603.90 -8.53 858 (4545564) 0

Table 1: Precision and Time-efficiency for Sharing

ysis: they have only direct recursion and make a straightforward use of
unification (basically, for input/output of arguments). The second group,
aiakl through zebra, are more involved: they make use of mutual recur-
sion and of elaborated aliasing between arguments to some extent; some of
them are parts of “real” programs (aiakl is part of an analyzer of the AKL
language; prolog read and rdtok are parsers of Prolog). The benchmarks
in the third group are all (parts of) “real” programs: ann is the &-prolog
parallelizer, peephole is the peep-hole optimizer of the SB-Prolog compiler,
qplan is the core of the Chat-80 application, and witt is a conceptual clus-
tering application. Of each group we only show a reduced number of the
benchmarks actually used: those which are more representative.

In order to understand the results shown in the above tables it is im-
portant to note an existing synergy between normalization, efficiency, and
precision. If normalization causes no change in the sharing representation
(i.e., sharing groups are not moved to cliques), usually because powersets
do not really occur during analysis, then the clique part is empty. Analy-
sis is the same as without cliques, but with the extra overhead due to the
use of the normalization process. Then precision is the same but the time
spent in analyzing the program is a little longer. This also occurs often if
the use of normalization is kept to a minimum: only for correctness (in our
implementation, normalization is required for correctness at least for the

34

Sharing+Freeness Clique-Sharing+Freeness
time precision time ∆% precision ∆#

append 7.5 7 (30) 8.24 -9.8 7 (30) 0
deriv 21 21 (546) 23.32 -11 21 (546) 0
mmatrix 8 12 (694) 9 -12.5 12 (694) 0
qsort 20 30 (1716) 31 -3.33 30 (1716) 0
query 11 22 (501) 12 -9.1 22 (501) 0
serialize 57.32 545 (5264) 46.5 18.87 736 (5264) -3.63
aiakl 34 145 (13238) 38.6 -13.52 145 (13238) 0
boyer 380.74 1739 (5036) 259.56 31.82 2082 (5036) -6.81
browse 24 69 (776) 26 -8.33 69 (776) 0
prolog read 351.94 1050 (408634) 453.43 -28.83 1050 (408634) 0
rdtok 360.44 1047 (11513) 315.95 12.34 1061 (11513) -0.12
warplan 2001 2436 (19644) 1601.35 20 6959 (23274) -17.5
zebra 25.66 280 (671088746) 30.32 -18.16 280 (671088746) 0
ann 1703.5 7811 (401220) 1907.9 -12 14439 (394830) - 1.71
peephole 957.65 1475 (9941) 791.28 17.37 2861 (12788) -7.44
qplan - - - - -
witt 722.14 813 (4545594) 780.68 -8.1 813 (4545594) 0

Table 2: Precision and Time-efficiency for Sharing+Freeness

extend function and other functions used for comparing abstract substitu-
tions). This should not be surprising, since the fact that powersets occur
during analysis at a given time does not necessarily mean that they keep
on occurring afterwards: they can disappear because of groundness or other
precision improvements during subsequent analysis (of, e.g., builtins).

When the normalization process is used more often (like for example
at every call to call2entry and extend, as we have done), then more often
sharing groups are moved to cliques. Thus, the use of the operations that
compute on clique sets produces efficiency gains, and also precision losses,
as it was expected. However, precision losses are not high. Finally, if nor-
malization is used too often, then the analysis process suffers from a heavy
overhead, causing such a penalty in efficiency that it makes the analysis
intractable. Therefore it is very clear that a thorough tuning of the use of
the normalization process is crucial to lead analysis to good results in terms
of both precision and efficiency.

However, there are always programs the analysis of which does not pro-
duce cliques. This shows in some of the benchmarks (like all of the first
group but serialize and some of the second one such as aikl, browse, pro-
log read, and zebra). In this case, as it was expected, precision is maintained
but there is a small loss of efficiency (around 10% or little higher) due to
the commented extra overhead.

35

On the other hand, for those benchmarks which do generate cliques (like
serialize, boyer, warplan, and peephole) the gain in efficiency is very high
(around 50% or higher), at the cost of a small precision loss (of around 10
precision points). As usual, efficiency and precision correlate inversely: if
precision increases then efficiency decreases and vice versa. An special case
is that of append (and, to some extent, rdtok), since precision losses are not
coupled with efficiency gains. The reason is that for these benchmarks there
are extra success substitutions (which, in fact, do not convey extra precision,
but the other way around) that make the analysis to run longer. The effects
are maintained with the addition of freeness, although the efficiency gains
are lower. The reason is that the function amgusf is less efficient than
amgus (but more precise). Overall, however, the trade between precision
and efficiency is beneficial. Moreover, the more compact representation of
the clique-domains allows to analyze benchmarks (ann and qplan) which ran
out of memory with the standard representation. talk about

use of
memory is
pending

36

G Precision and Efficiency Results when using Nor-
malization as a Widening

37

