
Sharing Stars

Francisco Bueno

December 10, 2004

We study here an alternative representation of the Sharing domain [2, 3]
which is more efficient at a low cost in loss of precision. In particular, we
define a new domain which is equivalent in precision but incorporates a
representation which can be more efficient for analysis.

1 Preliminaries

Let V be a set of variables of interest (e.g., the variables of a program). Let
Term denote the set of terms over V . Let ℘0(S) denote the proper powerset

of set S, i.e., ℘0(S) = ℘(S) \ {∅}.
A sharing group is a set of variables of interest: it represents the possible

sharing among its variables. Let SG = ℘0(V) be the set of all sharing
groups. A sharing set is a set of sharing groups. The Sharing domain is
SH = ℘(SG), the set of all sharing sets.

That a sharing group represents the possible sharing of its variables
means the following. Let a concrete substitution µ be approximated by a
Sharing abstract substitution µα ∈ SH, if all terms xµ for every x ∈ S ⊆ V

have at least one variable in common which does not occur in any term yµ

for any variable y 6∈ S then S ∈ µα. Note that it is possible sharing because
if S ∈ µα then there may or may not be common variables exclusive to
the terms xµ. However, the counterpart of sharing, i.e., independence, is
definite information, because if S 6∈ µα then there is no common variable
exclusive to the terms xµ.

For two sharing sets s1 ∈ SH, s2 ∈ SH, let s1 ×∪ s2 be their binary

union, i.e., the result of applying union to the two elements in each pair in
the cartesian product s1 × s2. Let also s∗1 be the star union of s1, i.e., its
closure under union.

Given terms s and t, and sharing set sh ∈ SH, we denote by sht the set
of sharing groups in sh which have non-empty intersection with the set of

1

variables of t. By extension, in shst st acts as a single term. Also, sht is the
complement of sht, i.e., sh \ sht.

Abstract unification for equation x = t, where x is a variable and t a
term, in a store represented by abstract substitution sh ∈ SH, is defined in
Sharing as [1]:1

amgu(x = t, sh) = shxt ∪ (sh∗

x ×∪sh∗

t)

2 Star Sets

We will call sh ∈ SH a star set when we use it to represent its own closure
under union. Let SS = SH denote the set of all star sets. A star set ss ∈ SS

represents the sharing set ss∗ ∈ SH. When a sharing set sh ∈ SH includes
the closure under union of some other sharing set ss, the representation
can be simplified by using ss as a star set. Thus, if sh = sh′ ∪ ss∗, then
we can use the pair (ss, sh′) to represent sh. Note that the overall sharing
represented does not change. Thus, we define SSH = {(ss, sh) | ss ∈
SS, sh ∈ SH} and interpret an element (ss, sh) ∈ SSH as the corresponding
element (ss∗ ∪ sh) ∈ SH.

The operations of binary and star union carry over straightforwardly
to star sets. The question is: do they convey any loss of precision? The
answer is: no. I.e., the result of a binary or star union operation over star
sets conveys the same sharing than the corresponding operation over the
closures of the star sets. This is not, however, the case for set union.

Lemma 1 Let ss1 ∈ SS, ss2 ∈ SS, then

ss∗1 = (ss∗1)
∗ (1)

(ss1 ×∪ss2)
∗ = ss∗1 ×∪ss∗2 (2)

Proof (1) holds trivially, since ∗ is a closure.

To show (2) we first show that (ss1 ×∪ ss2)
∗ ⊆ ss∗1 ×∪ ss∗2. Let

s ∈ (ss1 ×∪ss2)
∗, then there is {s1, . . . , sn} ⊆ (ss1 ×∪ss2), n ≥ 1,

such that s = ∪n
i=1si. So there are also {a1, . . . , an} ⊆ ss1 and

{b1, . . . , bn} ⊆ ss2 such that si = ai ∪ bi for each i = 1, . . . , n.
Therefore, (∪n

i=1ai) ∈ ss∗1 and (∪n
i=1bi) ∈ ss∗2; from which we

have (∪n
i=1ai)∪(∪n

i=1bi) ∈ (ss∗1 ×∪ss∗2). Since (∪n
i=1ai)∪(∪n

i=1bi) =
∪n

i=1(ai ∪ bi) = ∪n
i=1si = s, then s ∈ (ss∗1 ×∪ss∗2).

1Note that sh∗

t = (sht)
∗.

2

We now show that ss∗1 ×∪ss∗2 ⊆ (ss1 ×∪ss2)
∗. Let s ∈ (ss∗1 ×∪ss∗2),

then there are s1 ∈ ss∗1 and s2 ∈ ss∗2, such that s = s1 ∪ s2. So
there are also {a1, . . . , am} ⊆ ss1 and {b1, . . . , bn} ⊆ ss2, m ≥ 1,
n ≥ 1, such that s1 = ∪m

i=1ai and s2 = ∪n
i=1bi. Thus, for any

i = 1, . . . , m and j = 1, . . . , n, ai ∪ bj ∈ (ss1 ×∪ss2); which means
that ∪m

i=1
n
j=1

(ai ∪ bj) ∈ (ss1 ×∪ ss2)
∗. Since ∪m

i=1
n
j=1

(ai ∪ bj) =
(∪m

i=1ai) ∪ (∪n
i=1bi) = s1 ∪ s2 = s, then s ∈ (ss1 ×∪ss2)

∗.

Lemma 2 Let ss1 ∈ SS, ss2 ∈ SS, then

(ss1 ∪ ss2)
∗ ⊇ ss∗1 ∪ ss∗2 (3)

but not the other way around.

Proof Let s ∈ (ss∗1 ∪ ss∗2), then either s ∈ ss∗1 or s ∈ ss∗2
or both. Let, without loss of generality, s ∈ ss∗1. Then there
is {s1, . . . , sn} ⊆ ss1, n ≥ 1, such that s = ∪n

i=1si. Thus,
{s1, . . . , sn} ⊆ (ss1 ∪ ss2), and therefore ∪n

i=1si ∈ (ss1 ∪ ss2)
∗.

Since ∪n
i=1si = s, then s ∈ (ss1 ∪ ss2)

∗.

To see that the other direction does not hold in general, take2

ss1 = {vw} and ss2 = {xy}. We have ss∗1 = ss1 = {vw} and
ss∗2 = ss2 = {xy}, so that ss∗1 ∪ ss∗2 = {vw, xy}. However,
(ss1 ∪ ss2)

∗ = {vw, vwxy, xy}.

Note that property (2) above can be used to conveniently redefine amgu

to be used with star sets. To be able to do this we need to define the
counterpart of sht, the restriction of a sharing set sh on a term t, in an
adequate way: we should be able to guarantee at least correctness of the re-
defined amgu, if not precision. Note that to plainly carry over the restriction
operation to star sets is not correct:

Lemma 3 Let ss ∈ SS and t ∈ Term,

ss∗t ⊆ (ss∗)t (4)

but not the other way around.

Proof Let s ∈ ss∗t , then there is {s1, . . . , sn} ⊆ sst, n ≥ 1,
such that s = ∪n

i=1si. Thus, {s1, . . . , sn} ⊆ ss and3 si ∩ t 6= ∅ for

2To simplify notation, we denote a sharing group by the concatenation of its variables,
e.g., xyz is {x, y, z}.

3To simplify notation, we abuse term t to denote its own set of variables.

3

all i = 1, . . . , n. So (∪n
i=1si) ∈ ss∗ and (∪n

i=1si) ∩ t 6= ∅, which
means that (∪n

i=1si) ∈ (ss∗)t. Since ∪n
i=1si = s, then s ∈ (ss∗)t.

To see that the other direction does not hold in general, take
ss = {x, y} and t = x. We have sst = {x} = ss∗t . However,
ss∗ = {x, xy, y} and (ss∗)t = {x, xy}.

To solve the problem pointed above we define | : SS × Term → SS as
follows. For any ss ∈ SS and term t:

ss|t = sst ∪ (sst ×∪sst)

The operation lifts naturally to ss|rt for two terms r and t. We have that
the restriction ss|t of a star set ss does not lose precision w.r.t. the original
restriction operation of the sharing set corresponding to ss.

Lemma 4 Let ss ∈ SS and t ∈ Term,

(ss|t)
∗ = (ss∗)t (5)

sst
∗ = (ss∗)t (6)

Proof First note that
(ss|t)

∗ = (sst ∪ (sst ×∪sst))
∗ ⊇ ss∗t ∪ (sst ×∪sst)

∗ = ss∗t ∪ (ss∗t ×∪sst
∗).

Now we prove that (ss|t)
∗ ⊇ (ss∗)t. Let s ∈ (ss∗)t, so that

s ∈ ss∗ and s ∩ t 6= ∅. Then there are {s1, . . . , sm} ⊆ ss, m ≥ 0,
and {t1, . . . , tn} ⊆ ss, n ≥ 1, such that s = (∪m

i=1si) ∪ (∪n
i=1ti),

si ∩ t = ∅ for all i = 1, . . . , m, and tj ∩ t 6= ∅ for all j = 1, . . . , n.

Consider m = 0. Then s = ∪n
i=1ti and {t1, . . . , tn} ⊆ sst. Thus,

∪n
i=1ti = s ∈ ss∗t , and therefore s ∈ (ss|t)

∗.

If m ≥ 1 we have {s1, . . . , sm} ⊆ sst and {t1, . . . , tn} ⊆ sst.
Therefore, (∪m

i=1si) ∈ sst
∗ and (∪n

i=1ti) ∈ ss∗t , so that, (∪m
i=1si)∪

(∪n
i=1ti) = s ∈ (ss∗t ×∪sst

∗). Thus, s ∈ (ss|t)
∗.

We now prove that (ss|t)
∗ ⊆ (ss∗)t. Let s ∈ (ss|t)

∗. Then there
are {t1, . . . , tm} ⊆ sst, m ≥ 0, and {r1, . . . , rn} ⊆ (sst ×∪ sst),
n ≥ 0, such that s = (∪m

i=1ti) ∪ (∪n
i=1ri), and not m = n = 0.

Then we have either {t1, . . . , tm} ⊆ ss, m ≥ 1, and ti ∩ t 6= ∅
for i = 1, . . . , m, or {tm+1, . . . , tm+n} ⊆ sst, {s1, . . . , sn} ⊆ sst,
n ≥ 1, such that rj = sj ∪ tm+j for j = 1, . . . , n, or both. In the
latter case, for all j = 1, . . . , n, tm+j∩t 6= ∅ and sj∩t = ∅. In any

4

case, ((∪m
i=1ti)∪(∪n

i=1(tm+i∪si)))∩t 6= ∅, so that s∩t 6= ∅. Also,
{s1, . . . , sn, t1, . . . , tm+n} ⊆ ss, so that s ∈ ss∗. Thus, s ∈ (ss∗)t.

To prove (6) we first prove sst
∗ ⊆ (ss∗)t. Let s ∈ sst

∗. Then
there is {s1, . . . , sn} ⊆ sst, n ≥ 1, such that s = ∪n

i=1si. There-
fore, {s1, . . . , sn} ⊆ ss and si ∩ t = ∅ for all i = 1, . . . , n, so that
∪n

i=1si = s ∈ ss∗ and s ∩ t = ∅. Thus, s ∈ (ss∗)t.

Finally, we prove (ss∗)t ⊆ sst
∗. Let s ∈ (ss∗)t. Then s ∈ ss∗

and s ∩ t = ∅. Therefore, there is {s1, . . . , sn} ⊆ ss, n ≥ 1,
such that s = ∪n

i=1si, and si ∩ t = ∅ for all i = 1, . . . , n. Thus,
{s1, . . . , sn} ⊆ sst, so that ∪n

i=1si = s ∈ sst
∗.

We can now define abstract unification for SS as follows. For equation
x = t, where x is a variable and t a term, and ss ∈ SS:

amgus(x = t, ss) = ssxt ∪ (ss|x ×∪ss|t)

Theorem 1 Let ss ∈ SS and equation x = t, where x ∈ V and t ∈ Term,

amgus(x = t, ss)∗ = amgu(x = t, ss∗) (7)

Proof We first show that

(ss∗)t = (ss∗)∗t (8)

Since ∗ is a closure, (ss∗)t ⊆ ((ss∗)t)
∗ = (ss∗)∗t . From (4),

(ss∗)∗t ⊆ ((ss∗)∗)t = (ss∗)t.

Now we show that amgus(x = t, ss)∗ ⊇ amgu(x = t, ss∗):

amgus(x = t, ss)∗ = (ssxt ∪ (ss|x ×∪ss|t))
∗

⊇ ssxt
∗ ∪ (ss|x ×∪ss|t)

∗ by (3)
= ssxt

∗ ∪ ((ss|x)∗ ×∪(ss|t)
∗) by (2)

= (ss∗)xt ∪ ((ss∗)x ×∪(ss∗)t) by Lemma 4

= (ss∗)xt ∪ ((ss∗)∗x ×∪(ss∗)∗t) by (8)
= amgu(x = t, ss∗)

Finally, we show that amgus(x = t, ss)∗ ⊆ amgu(x = t, ss∗):
Let s ∈ amgus(x = t, ss)∗ = (ssxt ∪ (ss|x ×∪ss|t))

∗. Then there
are {a1, . . . , am} ⊆ ssxt, m ≥ 0, and {b1, . . . , bn} ⊆ (ss|x ×∪ss|t),
n ≥ 0, such that s = (∪m

i=1ai) ∪ (∪n
i=1bi), but not m = n = 0.

If n = 0 then s = (∪m
i=1ai), m ≥ 1, so that s ∈ ssxt

∗ = (ss∗)xt.
Let then n ≥ 1, whether m = 0 or m ≥ 1.

5

There are {c1, . . . , cn} ⊆ ss|x and {d1, . . . , dn} ⊆ ss|t such that
bi = ci ∪ di, for all i = 1, . . . , n. Then, for all i = 1, . . . , n, either
ci ∈ ssx or ci = ei ∪ fi, ei ∈ ssx, and fi ∈ ssx, or both. Let,
without loss of generality, ci = ei ∪ fi, with ei ∈ ssx, and either
fi = ∅ or fi ∈ ssx. The same reasoning can be applied to the
di ∈ ss|t, i = 1, . . . , n; so, let di = gi ∪ hi, with gi ∈ sst, and
either hi = ∅ or hi ∈ sst.

So, we have s = (∪m
i=1ai)∪(∪n

i=1((ei∪fi)∪(gi∪hi))), {e1, . . . , en} ⊆
ssx, {g1, . . . , gn} ⊆ sst, and, if they exist, {a1, . . . , am} ⊆ ssxt,
{f1, . . . , fn} ⊆ ssx, {h1, . . . , hn} ⊆ sst. Therefore, {a1, . . . , am,

e1, . . . , en, f1, . . . , fn, g1, . . . , gn, h1, . . . , hn} ⊆ ss and for all
i = 1, . . . , n, ei ∩ x 6= ∅ and gi ∩ t 6= ∅. Then s ∈ ss∗, s ∩ x 6= ∅,
and s∩t 6= ∅; so that s ∈ (ss∗)x = (ss∗)∗x and s ∈ (ss∗)t = (ss∗)∗t .
Thus, s ∈ ((ss∗)∗x ×∪(ss∗)∗t).

Hence, whether n = 0 or n ≥ 1, we have that s ∈ ((ss∗)xt ∪
((ss∗)∗x ×∪(ss∗)∗t)) = amgu(x = t, ss∗).

Note that the above theorem is saying that by using star sets for analysis,
instead of (closed) sharing sets, the analysis will not lose precision w.r.t. the
Sharing domain (if all sharing sets during analysis were closed under union,
obviously). Moreover, in the case of star sets there is no need for the costly
star union operation, therefore gaining in analysis efficiency.

3 The Star-Sharing Domain

Despite the above result, for a practical analysis, we will need to use both
star sets and sharing sets, i.e., we have to use the domain of pairs SSH. Here,
there is the problem of the simultaneous handling of star sets and sharing
sets. One issue is how to take into account the crossed effects between the
sharing set and the star set parts of a pair. Another issue is how to combine
new star sets arising from unification together with the star set of a given
pair. There is also the issue of the possible advantages in the representation
that transferring information from the sharing set part to the star set part
of a pair might give.

We could use amgu for the sharing set part and amgus for the star set
part. However, we have to address the previous issues. We first define an
abstract unification in SSH where we simply use set union for combining
star sets. For equation x = t, x ∈ V , t ∈ Term, and (ss, sh) ∈ SSH:

amguδ(x = t, (ss, sh)) = (ssxt ∪ ((ss|x ∪ shx) ×∪(ss|t ∪ sht)), shxt)

6

Note that we address the previously mentioned concerns by accumulating
results as much as possible in the star set part of the pair, where star union
is not required, seeking thus for efficiency. This can be better seen from
the following equivalence, which holds because of distributivity of binary set
union w.r.t. set union (ref. (12) below):

(ss|x ∪ shx) ×∪(ss|t ∪ sht)
=

(ss|x ×∪ss|t) ∪ (ss|x ×∪sht) ∪ (shx ×∪ss|t) ∪ (shx ×∪sht)
(9)

Lemma 5 Let sh1 ∈ SH, sh2 ∈ SH, sh3 ∈ SH, and t ∈ Term, then:

(sh1 ∪ sh2)t = sh1t ∪ sh2t (10)

(sh1 ∪ sh2)t = sh1t ∪ sh2t (11)

sh1 ×∪ (sh2 ∪ sh3) = (sh1 ×∪sh2) ∪ (sh1 ×∪sh3) (12)

(sh∗

1 ∪ sh2)
∗ = (sh1 ∪ sh2)

∗ (13)

Proof All four results are straightforward to show.

In (9) one can see that amguδ incorporates a term that accounts for
the unification within the star set part of the initial pair, another term that
accounts for the sharing set part (which is “transferred” to the star set part),
and two other terms for the crossed effects between both parts. Abstract
unification amguδ is correct (but imprecise!):

Theorem 2 Let (ss, sh) ∈ SSH and equation x = t, where x ∈ V and

t ∈ Term, and amguδ(x = t, (ss, sh)) = (ssδ, shδ),

ss∗δ ∪ shδ ⊇ amgu(x = t, ss∗ ∪ sh) (14)

but not the other way around.

Proof First note that

ssxt
∗ ∪ shxt = (ss∗ ∪ sh)xt (15)

since ssxt
∗∪ shxt = (ss∗)xt ∪ shxt = (ss∗ ∪ sh)xt by (6) and (11),

respectively.

Also, note that:

(ss|t ∪ sht)
∗ = (ss∗ ∪ sh)∗t (16)

7

since (ss|t∪sht)
∗ = ((ss|t)

∗∪sht)
∗ = ((ss∗)t∪sht)

∗ = (ss∗∪sh)∗t
by (13), (5), and (10), respectively.

Now we can write:

ss∗δ ∪ shδ

= (ssxt ∪ ((ss|x ∪ shx) ×∪(ss|t ∪ sht)))
∗ ∪ shxt

⊇ ssxt
∗ ∪ ((ss|x ∪ shx) ×∪(ss|t ∪ sht))

∗ ∪ shxt by (3)
= ssxt

∗ ∪ ((ss|x ∪ shx)∗ ×∪(ss|t ∪ sht)
∗) ∪ shxt by (2)

= ssxt
∗ ∪ ((ss∗ ∪ sh)∗x ×∪(ss∗ ∪ sh)∗t) ∪ shxt by (16)

= ssxt
∗ ∪ shxt ∪ ((ss∗ ∪ sh)∗x ×∪(ss∗ ∪ sh)∗t)

= (ss∗ ∪ sh)xt ∪ ((ss∗ ∪ sh)∗x ×∪(ss∗ ∪ sh)∗t) by (15)
= amgu(x = t, ss∗ ∪ sh)

To see that it is not always the case that ss∗δ ∪ shδ ⊆ amgu(x =
t, ss∗ ∪ sh) take ss = {w} and sh = {x, y} with t = y. We have
that ss|x = ss|t = shxt = ∅, so that:

ss∗δ ∪ shδ = (ssxt ∪ (shx ×∪sht))
∗

amgu(x = t, ss∗ ∪ sh) = ssxt
∗ ∪ ((ss∗ ∪ sh)∗x ×∪(ss∗ ∪ sh)∗t)

We also have that ss∗ = ss = ssxt = ssxt
∗ = {w}, ssh =

ss∗ ∪ sh = {w, x, y}, sshx = shx = {x} = ssh∗

x, ssht = sht =
{y} = ssh∗

t , and ssh∗

x ×∪ssh∗

t = shx ×∪sht = {xy}. Thus, we have
ss∗δ∪shδ = {w, xy}∗ = {w, wxy, xy} but amgu(x = t, ss∗∪sh) =
{w} ∪ {xy} = {w, xy}.

Note that the above theorem implies a loss of precision which is due
to the fact that set union and closure under union do not commute, as
Lemma 2 shows. We can remedy this by avoiding the use of set union,
accumulating the different star sets that appear during unification into a set
of them, instead of merging them with set union. Thus, we define for each
sss ∈ ℘(SS), sss′ ∈ ℘(SS), t ∈ Term:

sss|t = {ss|t | ss ∈ sss} and sss|t = {sst | ss ∈ sss}

The definitions lift naturally to sss|rt and sss|rt for two terms r and
t. For a set of star sets, the sharing that it represents corresponds to the
sharing set obtained as the union of the sharing sets represented by each
of the star sets. I.e., the sharing represented by sss ∈ ℘(SS) is ∗∪ sss =
∪{ss∗ | ss ∈ sss}. We will make use of these operations over sets of star
sets and their following properties:

8

Lemma 6 Let sss ∈ ℘(SS) and t ∈ Term,

∗∪sss|t = (∗∪sss)t (17)

∗∪sss|t = (∗∪sss)t (18)

Proof Using (5) and (10) we have that:

∗∪sss|t = ∪{(ss|t)
∗ | ss ∈ sss} = ∪{(ss∗)t | ss ∈ sss} = (∗∪sss)t

Using (6) and (11) we have that:

∗∪sss|t = ∪{ss|t
∗

| ss ∈ sss} = ∪{(ss∗)t | ss ∈ sss} = (∗∪sss)t

The Star-Sharing domain is

S3H = {(sss, sh) | sss ∈ ℘(SS), sh ∈ SH}

and abstract unification in the domain is given, for equation x = t, where x

is a variable and t a term, and (sss, sh) ∈ S3H, by:

amguω(x = t, (sss, sh)) = (sss|xt ∪ {(∪sss|x ∪ shx) ×∪(∪sss|t ∪ sht)}, shxt)

Note that the sharing that an element (sss, sh) ∈ S3H represents corre-
sponds to the sharing set obtained as the union of the sharing represented
by sss and that represented by sh. I.e., the sharing represented by (sss, sh)
is ∗∪sss ∪ sh.

Theorem 3 Let (sss, sh) ∈ S3H and equation x = t, where x ∈ V and

t ∈ Term, and amguω(x = t, (sss, sh)) = (sssω, shω),

∗∪sssω ∪ shω = amgu(x = t, ∗∪sss ∪ sh) (19)

Proof First note that:

∗∪sss|xt ∪ shxt = (∗∪sss ∪ sh)xt (20)

since ∗∪sss|xt ∪ shxt = (∗∪sss)xt ∪ shxt = (∗∪sss ∪ sh)xt by (18)
and (11), respectively.

Also, note that:

(∪sss|t ∪ sht)
∗ = (∗∪sss ∪ sh)∗t (21)

9

since (∪sss|t ∪ sht)
∗ = (∗∪ sss|t ∪ sht)

∗ = ((∗∪ sss)t ∪ sht)
∗ =

(∗∪sss ∪ sh)∗t by (13), (17), and (10), respectively.

Now we can write:

∗∪sssω ∪ shω

= ∗∪(sss|xt ∪ {(∪sss|x ∪ shx) ×∪(∪sss|t ∪ sht)}) ∪ shxt

= ∗∪sss|xt ∪ ((∪sss|x ∪ shx) ×∪(∪sss|t ∪ sht))
∗ ∪ shxt

= ∗∪sss|xt ∪ shxt ∪ ((∪sss|x ∪ shx) ×∪(∪sss|t ∪ sht))
∗

= (∗∪sss ∪ sh)xt ∪ ((∪sss|x ∪ shx) ×∪(∪sss|t ∪ sht))
∗ by (20)

= (∗∪sss ∪ sh)xt ∪ ((∪sss|x ∪ shx)∗ ×∪(∪sss|t ∪ sht)
∗) by (2)

= (∗∪sss ∪ sh)xt ∪ ((∗∪sss ∪ sh)∗x ×∪(∗∪sss ∪ sh)∗t) by (21)
= amgu(x = t, ∗∪sss ∪ sh)

Thus, analysis with the Star-Sharing domain is as precise as analysis
with the original Sharing domain. However, because of the absence of the
costly star union operation in abstract unification, it is expected to be more
efficient.

References

[1] P. M. Hill, R. Bagnara, and E. Zaffanella. Soundness, idempotence and
commutativity of set-sharing. Theory and Practice of Logic Program-

ming, 2(2):155–201, 2002.

[2] D. Jacobs and A. Langen. Static Analysis of Logic Programs for In-
dependent And-Parallelism. Journal of Logic Programming, 13(2 and
3):291–314, July 1992.

[3] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Vari-
able Dependency Using Abstract Interpretation. Journal of Logic Pro-

gramming, 13(2/3):315–347, July 1992.

10

A Sets of Star Sets

We can define abstract unification for sets of star sets as follows. For equa-
tion x = t, where x is a variable and t a term, and sss ∈ ℘(SS):

amguss(x = t, sss) = sss|xt ∪ (sss|x +∪sss|t)

and it is also correct and precise:

Theorem 4 Let sss ∈ ℘(SS) and equation x = t, x ∈ V , t ∈ Term,

∗∪amguss(x = t, sss) = amgu(x = t, ∗∪sss) (22)

Proof Under construction...

This was thought to remedy the probable loss of precision of amgus by
simply accumulating star sets in a set of them instead of merging them with
set union. However, it seems that amgs is not only correct but also precise,
so amguss is not necessary.

The following is an alternative proof of (16).

Lemma 7

(ss|t ∪ sht)
∗ ⊇ (ss∗ ∪ sh)∗t (23)

Proof To prove this, let s ∈ (ss∗ ∪ sh)∗t . From (10), (ss∗ ∪
sh)∗t = ((ss∗)t ∪ sht)

∗, so s ∈ ((ss∗)t ∪ sht)
∗. Then there are

{a1, . . . , am} ⊆ (ss∗)t, m ≥ 0, and {b1, . . . , bn} ⊆ sht, n ≥ 0,
such that s = (∪m

i=1ai) ∪ (∪n
i=1bi), but not m = n = 0.

If m = 0 then s = (∪n
i=1bi), n ≥ 1, so that s ∈ sh∗

t ⊆ ((ss|t)
∗ ∪

sh∗

t) ⊆ (ss|t ∪ sht)
∗. So, let m ≥ 1, whether n = 0 or n ≥ 1.

For all i = 1, . . . , m: ai ∈ ss∗ and ai ∩ t 6= ∅; then there are
{ci1, . . . , cip} ⊆ ss, p ≥ 1, and {di1, . . . , diq} ⊆ ss, q ≥ 0, such
that for all j = 1, . . . , p, cij∩t 6= ∅, for all k = 1, . . . , q, dik∩t = ∅,
and ai = (∪p

l=1
cil) ∪ (∪q

l=1
dil). Then cij ∈ sst, j = 1, . . . , p, and

dik ∈ sst, k = 1, . . . , q, if they exist.

For any given i ∈ {1, . . . , m}, all j = 1, . . . , p, and k = 1, . . . , q:
If q ≥ 1 then (cij ∪ dik) ∈ (sst ×∪ sst) ⊆ ss|t; if q = 0 then we
can write cij ∪ dik = cij ∈ sst ⊆ ss|t. Let, then, without loss of
generality, (cij ∪ dik) ∈ ss|t. Thus, (cij ∪ dik) ∈ (ss|t ∪ sht).

Since bi ∈ sht, for all i = 1, . . . , n, then also bi ∈ (ss|t ∪ sht).
Thus, (∪m

i=1∪
p
j=1

q

k=1
(cij ∪ dik)) ∪ (∪n

i=1bi) = s ∈ (ss|t ∪ sht)
∗.

Hence, whether m = 0 or m ≥ 1, s ∈ (ss|t ∪ sht)
∗.

11

