Sharing Stars

Francisco Bueno

December 10, 2004

We study here an alternative representation of the Sharing domain $[2,3]$ which is more efficient at a low cost in loss of precision. In particular, we define a new domain which is equivalent in precision but incorporates a representation which can be more efficient for analysis.

1 Preliminaries

Let V be a set of variables of interest (e.g., the variables of a program). Let Term denote the set of terms over V. Let $\wp^{0}(S)$ denote the proper powerset of set S, i.e., $\wp^{0}(S)=\wp(S) \backslash\{\emptyset\}$.

A sharing group is a set of variables of interest: it represents the possible sharing among its variables. Let $S G=\wp^{0}(V)$ be the set of all sharing groups. A sharing set is a set of sharing groups. The Sharing domain is $S H=\gamma(S G)$, the set of all sharing sets.

That a sharing group represents the possible sharing of its variables means the following. Let a concrete substitution μ be approximated by a Sharing abstract substitution $\mu^{\alpha} \in S H$, if all terms $x \mu$ for every $x \in S \subseteq V$ have at least one variable in common which does not occur in any term $y \mu$ for any variable $y \notin S$ then $S \in \mu^{\alpha}$. Note that it is possible sharing because if $S \in \mu^{\alpha}$ then there may or may not be common variables exclusive to the terms $x \mu$. However, the counterpart of sharing, i.e., independence, is definite information, because if $S \notin \mu^{\alpha}$ then there is no common variable exclusive to the terms $x \mu$.

For two sharing sets $s_{1} \in S H, s_{2} \in S H$, let $s_{1} \otimes s_{2}$ be their binary union, i.e., the result of applying union to the two elements in each pair in the cartesian product $s_{1} \times s_{2}$. Let also s_{1}^{*} be the star union of s_{1}, i.e., its closure under union.

Given terms s and t, and sharing set $s h \in S H$, we denote by $s h_{t}$ the set of sharing groups in $s h$ which have non-empty intersection with the set of
variables of t. By extension, in $s h_{s t} s t$ acts as a single term. Also, $\overline{s h_{t}}$ is the complement of $s h_{t}$, i.e., $s h \backslash s h_{t}$.

Abstract unification for equation $x=t$, where x is a variable and t a term, in a store represented by abstract substitution $s h \in S H$, is defined in Sharing as [1]: ${ }^{1}$

$$
\operatorname{amgu}(x=t, s h)=\overline{s h_{x t}} \cup\left(s h_{x}^{*} \forall s h_{t}^{*}\right)
$$

2 Star Sets

We will call $s h \in S H$ a star set when we use it to represent its own closure under union. Let $S S=S H$ denote the set of all star sets. A star set $s s \in S S$ represents the sharing set $s s^{*} \in S H$. When a sharing set $s h \in S H$ includes the closure under union of some other sharing set $s s$, the representation can be simplified by using $s s$ as a star set. Thus, if $s h=s h^{\prime} \cup s s^{*}$, then we can use the pair $\left(s s, s h^{\prime}\right)$ to represent $s h$. Note that the overall sharing represented does not change. Thus, we define $S S H=\{(s s, s h) \mid s s \in$ $S S, s h \in S H\}$ and interpret an element $(s s, s h) \in S S H$ as the corresponding element $\left(s s^{*} \cup s h\right) \in S H$.

The operations of binary and star union carry over straightforwardly to star sets. The question is: do they convey any loss of precision? The answer is: no. I.e., the result of a binary or star union operation over star sets conveys the same sharing than the corresponding operation over the closures of the star sets. This is not, however, the case for set union.

Lemma 1 Let $s s_{1} \in S S, s s_{2} \in S S$, then

$$
\begin{gather*}
s s_{1}^{*}=\left(s s_{1}^{*}\right)^{*} \tag{1}\\
\left(s s_{1} \otimes s s_{2}\right)^{*}=s s_{1}^{*} \otimes s s_{2}^{*} \tag{2}
\end{gather*}
$$

Proof (1) holds trivially, since * is a closure.
To show (2) we first show that $\left(s s_{1} \otimes s s_{2}\right)^{*} \subseteq s s_{1}^{*} \otimes s s_{2}^{*}$. Let $s \in\left(s s_{1} \otimes s s_{2}\right)^{*}$, then there is $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq\left(s s_{1} \otimes s s_{2}\right), n \geq 1$, such that $s=\cup_{i=1}^{n} s_{i}$. So there are also $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq s s_{1}$ and $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq s s_{2}$ such that $s_{i}=a_{i} \cup b_{i}$ for each $i=1, \ldots, n$. Therefore, $\left(\cup_{i=1}^{n} a_{i}\right) \in s s_{1}^{*}$ and $\left(\cup_{i=1}^{n} b_{i}\right) \in s s_{2}^{*}$; from which we have $\left(\cup_{i=1}^{n} a_{i}\right) \cup\left(\cup_{i=1}^{n} b_{i}\right) \in\left(s s_{1}^{*} \Downarrow s s_{2}^{*}\right)$. Since $\left(\cup_{i=1}^{n} a_{i}\right) \cup\left(\cup_{i=1}^{n} b_{i}\right)=$ $\cup_{i=1}^{n}\left(a_{i} \cup b_{i}\right)=\cup_{i=1}^{n} s_{i}=s$, then $s \in\left(s s_{1}^{*} \Downarrow s s_{2}^{*}\right)$.

[^0]We now show that $s s_{1}^{*} \Downarrow s s_{2}^{*} \subseteq\left(s s_{1} ぬ s s_{2}\right)^{*}$. Let $s \in\left(s s_{1}^{*} \otimes s s_{2}^{*}\right)$, then there are $s_{1} \in s s_{1}^{*}$ and $s_{2} \in s s_{2}^{*}$, such that $s=s_{1} \cup s_{2}$. So there are also $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq s s_{1}$ and $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq s s_{2}, m \geq 1$, $n \geq 1$, such that $s_{1}=\cup_{i=1}^{m} a_{i}$ and $s_{2}=\cup_{i=1}^{n} b_{i}$. Thus, for any $i=1, \ldots, m$ and $j=1, \ldots, n, a_{i} \cup b_{j} \in\left(s s_{1} \Downarrow s s_{2}\right)$; which means that $\cup_{i=1}^{m}{ }_{j=1}^{n}\left(a_{i} \cup b_{j}\right) \in\left(s s_{1} \otimes s s_{2}\right)^{*}$. Since $\cup_{i=1}^{m} n=1{ }_{j=1}^{n}\left(a_{i} \cup b_{j}\right)=$ $\left(\cup_{i=1}^{m} a_{i}\right) \cup\left(\cup_{i=1}^{n} b_{i}\right)=s_{1} \cup s_{2}=s$, then $s \in\left(s s_{1} \not ⿴ s s_{2}\right)^{*}$.

Lemma 2 Let $s s_{1} \in S S$, $s s_{2} \in S S$, then

$$
\begin{equation*}
\left(s s_{1} \cup s s_{2}\right)^{*} \supseteq s s_{1}^{*} \cup s s_{2}^{*} \tag{3}
\end{equation*}
$$

but not the other way around.
Proof Let $s \in\left(s s_{1}^{*} \cup s s_{2}^{*}\right)$, then either $s \in s s_{1}^{*}$ or $s \in s s_{2}^{*}$ or both. Let, without loss of generality, $s \in s s_{1}^{*}$. Then there is $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq s s_{1}, n \geq 1$, such that $s=\cup_{i=1}^{n} s_{i}$. Thus, $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq\left(s s_{1} \cup s s_{2}\right)$, and therefore $\cup_{i=1}^{n} s_{i} \in\left(s s_{1} \cup s s_{2}\right)^{*}$. Since $\cup_{i=1}^{n} s_{i}=s$, then $s \in\left(s s_{1} \cup s s_{2}\right)^{*}$.
To see that the other direction does not hold in general, take ${ }^{2}$ $s s_{1}=\{v w\}$ and $s s_{2}=\{x y\}$. We have $s s_{1}^{*}=s s_{1}=\{v w\}$ and $s s_{2}^{*}=s s_{2}=\{x y\}$, so that $s s_{1}^{*} \cup s s_{2}^{*}=\{v w, x y\}$. However, $\left(s s_{1} \cup s s_{2}\right)^{*}=\{v w, v w x y, x y\}$.

Note that property (2) above can be used to conveniently redefine amgu to be used with star sets. To be able to do this we need to define the counterpart of $s h_{t}$, the restriction of a sharing set $s h$ on a term t, in an adequate way: we should be able to guarantee at least correctness of the redefined amgu, if not precision. Note that to plainly carry over the restriction operation to star sets is not correct:

Lemma 3 Let $s s \in S S$ and $t \in$ Term,

$$
\begin{equation*}
s s_{t}^{*} \subseteq\left(s s^{*}\right)_{t} \tag{4}
\end{equation*}
$$

but not the other way around.
Proof Let $s \in s s_{t}^{*}$, then there is $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq s s_{t}, n \geq 1$, such that $s=\cup_{i=1}^{n} s_{i}$. Thus, $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq s s$ and $^{3} s_{i} \cap t \neq \emptyset$ for

[^1]all $i=1, \ldots, n$ ．So $\left(\cup_{i=1}^{n} s_{i}\right) \in s s^{*}$ and $\left(\cup_{i=1}^{n} s_{i}\right) \cap t \neq \emptyset$ ，which means that $\left(\cup_{i=1}^{n} s_{i}\right) \in\left(s s^{*}\right)_{t}$ ．Since $\cup_{i=1}^{n} s_{i}=s$ ，then $s \in\left(s s^{*}\right)_{t}$ ．

To see that the other direction does not hold in general，take $s s=\{x, y\}$ and $t=x$ ．We have $s s_{t}=\{x\}=s s_{t}^{*}$ ．However， $s s^{*}=\{x, x y, y\}$ and $\left(s s^{*}\right)_{t}=\{x, x y\}$ ．

To solve the problem pointed above we define｜：SS×Term $\rightarrow S S$ as follows．For any $s s \in S S$ and term t ：

$$
\left.s s\right|_{t}=s s_{t} \cup\left(s s_{t} \forall \overline{s s_{t}}\right)
$$

The operation lifts naturally to $\left.s s\right|_{r t}$ for two terms r and t ．We have that the restriction $\left.s s\right|_{t}$ of a star set $s s$ does not lose precision w．r．t．the original restriction operation of the sharing set corresponding to ss．

Lemma 4 Let $s s \in S S$ and $t \in$ Term，

$$
\begin{gather*}
\left(\left.s s\right|_{t}\right)^{*}=\left(s s^{*}\right)_{t} \tag{5}\\
{\overline{s s_{t}}}^{*}=\overline{\left(s s^{*}\right)_{t}} \tag{6}
\end{gather*}
$$

Proof First note that
$\left(\left.s s\right|_{t}\right)^{*}=\left(s s_{t} \cup\left(s s_{t} 凶 \overline{s s_{t}}\right)\right)^{*} \supseteq s s_{t}^{*} \cup\left(s s_{t} 凶 \overline{s s_{t}}\right)^{*}=s s_{t}^{*} \cup\left(s s_{t}^{*} \otimes \overline{s s}^{*}\right)$ ．
Now we prove that $\left(\left.s s\right|_{t}\right)^{*} \supseteq\left(s s^{*}\right)_{t}$ ．Let $s \in\left(s s^{*}\right)_{t}$ ，so that $s \in s s^{*}$ and $s \cap t \neq \emptyset$ ．Then there are $\left\{s_{1}, \ldots, s_{m}\right\} \subseteq s s, m \geq 0$ ， and $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq s s, n \geq 1$ ，such that $s=\left(\cup_{i=1}^{m} s_{i}\right) \cup\left(\cup_{i=1}^{n} t_{i}\right)$ ， $s_{i} \cap t=\emptyset$ for all $i=1, \ldots, m$ ，and $t_{j} \cap t \neq \emptyset$ for all $j=1, \ldots, n$ ．
Consider $m=0$ ．Then $s=\cup_{i=1}^{n} t_{i}$ and $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq s s_{t}$ ．Thus， $\cup_{i=1}^{n} t_{i}=s \in s s_{t}^{*}$ ，and therefore $s \in\left(\left.s s\right|_{t}\right)^{*}$ ．
If $m \geq 1$ we have $\left\{s_{1}, \ldots, s_{m}\right\} \subseteq \overline{s s_{t}}$ and $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq s s_{t}$ ． Therefore，$\left(\cup_{i=1}^{m} s_{i}\right) \in \overline{s s_{t}}{ }^{*}$ and $\left(\cup_{i=1}^{n} t_{i}\right) \in s s_{t}^{*}$ ，so that，$\left(\cup_{i=1}^{m} s_{i}\right) \cup$ $\left(\cup_{i=1}^{n} t_{i}\right)=s \in\left(s s_{t}^{*} \not 凶 \overline{s s t}^{*}\right)$ ．Thus，$s \in\left(\left.s s\right|_{t}\right)^{*}$ ．
We now prove that $\left(\left.s s\right|_{t}\right)^{*} \subseteq\left(s s^{*}\right)_{t}$ ．Let $s \in\left(\left.s s\right|_{t}\right)^{*}$ ．Then there are $\left\{t_{1}, \ldots, t_{m}\right\} \subseteq s s_{t}, m \geq 0$ ，and $\left\{r_{1}, \ldots, r_{n}\right\} \subseteq\left(s s_{t} \otimes \overline{s s_{t}}\right)$ ， $n \geq 0$ ，such that $s=\left(\cup_{i=1}^{m} t_{i}\right) \cup\left(\cup_{i=1}^{n} r_{i}\right)$ ，and not $m=n=0$ ． Then we have either $\left\{t_{1}, \ldots, t_{m}\right\} \subseteq s s, m \geq 1$ ，and $t_{i} \cap t \neq \emptyset$ for $i=1, \ldots, m$ ，or $\left\{t_{m+1}, \ldots, t_{m+n}\right\} \subseteq s s_{t},\left\{s_{1}, \ldots, s_{n}\right\} \subseteq \overline{s s_{t}}$ ， $n \geq 1$ ，such that $r_{j}=s_{j} \cup t_{m+j}$ for $j=1, \ldots, n$ ，or both．In the latter case，for all $j=1, \ldots, n, t_{m+j} \cap t \neq \emptyset$ and $s_{j} \cap t=\emptyset$ ．In any
case, $\left(\left(\cup_{i=1}^{m} t_{i}\right) \cup\left(\cup_{i=1}^{n}\left(t_{m+i} \cup s_{i}\right)\right)\right) \cap t \neq \emptyset$, so that $s \cap t \neq \emptyset$. Also, $\left\{s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m+n}\right\} \subseteq s s$, so that $s \in s s^{*}$. Thus, $s \in\left(s s^{*}\right)_{t}$.
To prove (6) we first prove $\overline{s s_{t}}{ }^{*} \subseteq \overline{\left(s s^{*}\right)_{t}}$. Let $s \in{\overline{s s_{t}}}^{*}$. Then there is $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq \overline{s s_{t}}, n \geq 1$, such that $s=\cup_{i=1}^{n} s_{i}$. Therefore, $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq s s$ and $s_{i} \cap t=\emptyset$ for all $i=1, \ldots, n$, so that $\cup_{i=1}^{n} s_{i}=s \in s s^{*}$ and $s \cap t=\emptyset$. Thus, $s \in \overline{\left(s s^{*}\right)_{t}}$.
Finally, we prove $\overline{\left(s s^{*}\right)_{t}} \subseteq{\overline{s s_{t}}}^{*}$. Let $s \in \overline{\left(s s^{*}\right)_{t}}$. Then $s \in s s^{*}$ and $s \cap t=\emptyset$. Therefore, there is $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq s s, n \geq 1$, such that $s=\cup_{i=1}^{n} s_{i}$, and $s_{i} \cap t=\emptyset$ for all $i=1, \ldots, n$. Thus, $\left\{s_{1}, \ldots, s_{n}\right\} \subseteq \overline{s s_{t}}$, so that $\cup_{i=1}^{n} s_{i}=s \in{\overline{s s_{t}}}^{*}$.

We can now define abstract unification for $S S$ as follows. For equation $x=t$, where x is a variable and t a term, and $s s \in S S$:

$$
a m g u^{s}(x=t, s s)=\overline{s s_{x t}} \cup\left(\left.\left.s s\right|_{x} \boxtimes s s\right|_{t}\right)
$$

Theorem 1 Let $s s \in S S$ and equation $x=t$, where $x \in V$ and $t \in$ Term,

$$
\begin{equation*}
a m g u^{s}(x=t, s s)^{*}=\operatorname{amgu}\left(x=t, s s^{*}\right) \tag{7}
\end{equation*}
$$

Proof We first show that

$$
\begin{equation*}
\left(s s^{*}\right)_{t}=\left(s s^{*}\right)_{t}^{*} \tag{8}
\end{equation*}
$$

Since ${ }^{*}$ is a closure, $\left(s s^{*}\right)_{t} \subseteq\left(\left(s s^{*}\right)_{t}\right)^{*}=\left(s s^{*}\right)_{t}^{*}$. From (4), $\left(s s^{*}\right)_{t}^{*} \subseteq\left(\left(s s^{*}\right)^{*}\right)_{t}=\left(s s^{*}\right)_{t}$.
Now we show that $\operatorname{amgu}^{s}(x=t, s s)^{*} \supseteq \operatorname{amgu}\left(x=t, s s^{*}\right)$:

$$
\begin{align*}
& a m g u^{s}(x=t, s s)^{*}=\left(\overline{s s_{x t}} \cup\left(\left.\left.s s\right|_{x} \Downarrow s s\right|_{t}\right)\right)^{*} \\
& \supseteq s s_{x t}{ }^{*} \cup\left(\left.\left.s s\right|_{x} \boxtimes s s\right|_{t}\right)^{*} \tag{3}\\
& ={\overline{s s_{x t}}}^{*} \cup\left(\left(\left.s s\right|_{x}\right)^{*} \otimes\left(\left.s s\right|_{t}\right)^{*}\right) \quad \text { by (2) } \\
& =\overline{\left(s s^{*}\right)_{x t}} \cup\left(\left(s s^{*}\right)_{x} \otimes\left(s s^{*}\right)_{t}\right) \quad \text { by Lemma } 4 \\
& =\overline{\left(s s^{*}\right)_{x t}} \cup\left(\left(s s^{*}\right)_{x}^{*} \otimes\left(s s^{*}\right)_{t}^{*}\right) \quad \text { by (8) } \tag{8}\\
& =\operatorname{amgu}\left(x=t, s s^{*}\right)
\end{align*}
$$

Finally, we show that $\operatorname{amgu}^{s}(x=t, s s)^{*} \subseteq \operatorname{amgu}\left(x=t, s s^{*}\right)$: Let $s \in \operatorname{amgu}^{s}(x=t, s s)^{*}=\left(\overline{s s_{x t}} \cup\left(\left.\left.s s\right|_{x} \boxtimes s s\right|_{t}\right)\right)^{*}$. Then there are $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq \overline{s s_{x t}}, m \geq 0$, and $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq\left(\left.\left.s s\right|_{x} \otimes s s\right|_{t}\right)$, $n \geq 0$, such that $s=\left(\cup_{i=1}^{m} a_{i}\right) \cup\left(\cup_{i=1}^{n} b_{i}\right)$, but not $m=n=0$.
If $n=0$ then $s=\left(\cup_{i=1}^{m} a_{i}\right), m \geq 1$, so that $s \in{\overline{s s_{x t}}}^{*}=\overline{\left(s s^{*}\right)_{x t}}$. Let then $n \geq 1$, whether $m=0$ or $m \geq 1$.

There are $\left.\left\{c_{1}, \ldots, c_{n}\right\} \subseteq s s\right|_{x}$ and $\left.\left\{d_{1}, \ldots, d_{n}\right\} \subseteq s s\right|_{t}$ such that $b_{i}=c_{i} \cup d_{i}$, for all $i=1, \ldots, n$. Then, for all $i=1, \ldots, n$, either $c_{i} \in s s_{x}$ or $c_{i}=e_{i} \cup f_{i}, e_{i} \in s s_{x}$, and $f_{i} \in \overline{s s_{x}}$, or both. Let, without loss of generality, $c_{i}=e_{i} \cup f_{i}$, with $e_{i} \in s s_{x}$, and either $f_{i}=\emptyset$ or $f_{i} \in \overline{s s_{x}}$. The same reasoning can be applied to the $\left.d_{i} \in s s\right|_{t}, i=1, \ldots, n$; so, let $d_{i}=g_{i} \cup h_{i}$, with $g_{i} \in s s_{t}$, and either $h_{i}=\emptyset$ or $h_{i} \in \overline{s s_{t}}$.
So, we have $s=\left(\cup_{i=1}^{m} a_{i}\right) \cup\left(\cup_{i=1}^{n}\left(\left(e_{i} \cup f_{i}\right) \cup\left(g_{i} \cup h_{i}\right)\right)\right),\left\{e_{1}, \ldots, e_{n}\right\} \subseteq$ $s s_{x},\left\{g_{1}, \ldots, g_{n}\right\} \subseteq s s_{t}$, and, if they exist, $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq \overline{s s_{x t}}$, $\left\{f_{1}, \ldots, f_{n}\right\} \subseteq \overline{s s_{x}},\left\{h_{1}, \ldots, h_{n}\right\} \subseteq \overline{s s_{t}}$. Therefore, $\left\{a_{1}, \ldots, a_{m}\right.$, $\left.e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}\right\} \subseteq s s$ and for all $i=1, \ldots, n, e_{i} \cap x \neq \emptyset$ and $g_{i} \cap t \neq \emptyset$. Then $s \in s s^{*}, s \cap x \neq \emptyset$, and $s \cap t \neq \emptyset$; so that $s \in\left(s s^{*}\right)_{x}=\left(s s^{*}\right)_{x}^{*}$ and $s \in\left(s s^{*}\right)_{t}=\left(s s^{*}\right)_{t}^{*}$. Thus, $s \in\left(\left(s s^{*}\right)_{x}^{*} \otimes\left(s s^{*}\right)_{t}^{*}\right)$.
Hence, whether $n=0$ or $n \geq 1$, we have that $s \in\left(\overline{\left(s s^{*}\right)_{x t}} \cup\right.$ $\left.\left(\left(s s^{*}\right)_{x}^{*} \otimes\left(s s^{*}\right)_{t}^{*}\right)\right)=\operatorname{amgu}\left(x=t, s s^{*}\right)$.

Note that the above theorem is saying that by using star sets for analysis, instead of (closed) sharing sets, the analysis will not lose precision w.r.t. the Sharing domain (if all sharing sets during analysis were closed under union, obviously). Moreover, in the case of star sets there is no need for the costly star union operation, therefore gaining in analysis efficiency.

3 The Star-Sharing Domain

Despite the above result, for a practical analysis, we will need to use both star sets and sharing sets, i.e., we have to use the domain of pairs $S S H$. Here, there is the problem of the simultaneous handling of star sets and sharing sets. One issue is how to take into account the crossed effects between the sharing set and the star set parts of a pair. Another issue is how to combine new star sets arising from unification together with the star set of a given pair. There is also the issue of the possible advantages in the representation that transferring information from the sharing set part to the star set part of a pair might give.

We could use $a m g u$ for the sharing set part and $a m g u^{s}$ for the star set part. However, we have to address the previous issues. We first define an abstract unification in $S S H$ where we simply use set union for combining star sets. For equation $x=t, x \in V, t \in \operatorname{Term}$, and $(s s, s h) \in S S H$:

$$
a m g u^{\delta}(x=t,(s s, s h))=\left(\overline{s s_{x t}} \cup\left(\left(\left.s s\right|_{x} \cup s h_{x}\right) \not \otimes\left(\left.s s\right|_{t} \cup s h_{t}\right)\right), \overline{s h_{x t}}\right)
$$

Note that we address the previously mentioned concerns by accumulating results as much as possible in the star set part of the pair, where star union is not required, seeking thus for efficiency. This can be better seen from the following equivalence, which holds because of distributivity of binary set union w.r.t. set union (ref. (12) below):

$$
\begin{gather*}
\left(\left.s s\right|_{x} \cup s h_{x}\right) \uplus\left(\left.s s\right|_{t} \cup s h_{t}\right) \tag{9}\\
= \\
\left(\left.\left.s s\right|_{x} \otimes s s\right|_{t}\right) \cup\left(\left.s s\right|_{x} \boxtimes s h_{t}\right) \cup\left(\left.s h_{x} \boxtimes s s\right|_{t}\right) \cup\left(s h_{x} \boxtimes s h_{t}\right)
\end{gather*}
$$

Lemma 5 Let $s h_{1} \in S H$, $s h_{2} \in S H$, $s h_{3} \in S H$, and $t \in$ Term, then:

$$
\begin{gather*}
\left(s h_{1} \cup s h_{2}\right)_{t}=s h_{1 t} \cup s h_{2 t} \tag{10}\\
\overline{\left(s h_{1} \cup s h_{2}\right)_{t}}=\overline{s h_{1 t}} \cup \overline{s h_{2 t}} \tag{11}\\
s h_{1} \otimes\left(s h_{2} \cup s h_{3}\right)=\left(s h_{1} \otimes s h_{2}\right) \cup\left(s h_{1} \boxtimes s h_{3}\right) \tag{12}\\
\left(s h_{1}^{*} \cup s h_{2}\right)^{*}=\left(s h_{1} \cup s h_{2}\right)^{*} \tag{13}
\end{gather*}
$$

Proof All four results are straightforward to show.
In (9) one can see that $a m g u^{\delta}$ incorporates a term that accounts for the unification within the star set part of the initial pair, another term that accounts for the sharing set part (which is "transferred" to the star set part), and two other terms for the crossed effects between both parts. Abstract unification $a m g u^{\delta}$ is correct (but imprecise!):

Theorem 2 Let $(s s, s h) \in S S H$ and equation $x=t$, where $x \in V$ and $t \in T e r m$, and $\operatorname{amgu}{ }^{\delta}(x=t,(s s, s h))=\left(s s_{\delta}, s h_{\delta}\right)$,

$$
\begin{equation*}
s s_{\delta}^{*} \cup s h_{\delta} \supseteq \operatorname{amgu}\left(x=t, s s^{*} \cup s h\right) \tag{14}
\end{equation*}
$$

but not the other way around.
Proof First note that

$$
\begin{equation*}
{\overline{s s_{x t}}}^{*} \cup \overline{s h_{x t}}=\overline{\left(s s^{*} \cup s h\right)_{x t}} \tag{15}
\end{equation*}
$$

since $\overline{s s_{x t}} * \cup \overline{s h_{x t}}=\overline{\left(s s^{*}\right)_{x t}} \cup \overline{s h_{x t}}=\overline{\left(s s^{*} \cup s h\right)_{x t}}$ by (6) and (11), respectively.
Also, note that:

$$
\begin{equation*}
\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*}=\left(s s^{*} \cup s h\right)_{t}^{*} \tag{16}
\end{equation*}
$$

since $\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*}=\left(\left(\left.s s\right|_{t}\right)^{*} \cup s h_{t}\right)^{*}=\left(\left(s s^{*}\right)_{t} \cup s h_{t}\right)^{*}=\left(s s^{*} \cup s h\right)_{t}^{*}$ by (13), (5), and (10), respectively.

Now we can write:

$$
\begin{align*}
& s s_{\delta}^{*} \cup s h_{\delta} \\
& =\quad\left(\overline{s s_{x t}} \cup\left(\left(\left.s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.s s\right|_{t} \cup s h_{t}\right)\right)\right)^{*} \cup \overline{s h_{x t}} \\
& \supseteq \quad \overline{s s_{x t}} * \cup\left(\left(\left.s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.s s\right|_{t} \cup s h_{t}\right)\right)^{*} \cup \overline{s h_{x t}} \quad \text { by (3) } \\
& =\quad{\overline{s s_{x t}}}^{*} \cup\left(\left(\left.s s\right|_{x} \cup s h_{x}\right)^{*} \otimes\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*}\right) \cup \overline{s h_{x t}} \quad \text { by (2) } \\
& =\quad{\overline{s s_{x t}}}^{*} \cup\left(\left(s s^{*} \cup s h\right)_{x}^{*} \otimes\left(s s^{*} \cup s h\right)_{t}^{*}\right) \cup \overline{s h_{x t}} \quad \text { by }(16) \\
& =\quad{\overline{s s_{x t}}}^{*} \cup \overline{s h_{x t}} \cup\left(\left(s s^{*} \cup s h\right)_{x}^{*} \otimes\left(s s^{*} \cup s h\right)_{t}^{*}\right) \\
& =\quad \overline{\left(s s^{*} \cup s h\right)_{x t}} \cup\left(\left(s s^{*} \cup s h\right)_{x}^{*} \otimes\left(s s^{*} \cup s h\right)_{t}^{*}\right) \quad \text { by (15) } \tag{15}\\
& =\quad \operatorname{amgu}\left(x=t, s s^{*} \cup s h\right)
\end{align*}
$$

To see that it is not always the case that $s s_{\delta}^{*} \cup s h_{\delta} \subseteq a m g u(x=$ $t, s s^{*} \cup s h$) take $s s=\{w\}$ and $s h=\{x, y\}$ with $t=y$. We have that $\left.s s\right|_{x}=\left.s s\right|_{t}=\overline{s h_{x t}}=\emptyset$, so that:

$$
\begin{aligned}
s s_{\delta}^{*} \cup s h_{\delta} & =\left(\overline{s s_{x t}} \cup\left(s h_{x} \boxtimes s h_{t}\right)\right)^{*} \\
\operatorname{amgu}\left(x=t, s s^{*} \cup s h\right) & ={\overline{s s_{x t}}}^{*} \cup\left(\left(s s^{*} \cup s h\right)_{x}^{*} \otimes\left(s s^{*} \cup s h\right)_{t}^{*}\right)
\end{aligned}
$$

We also have that $s s^{*}=s s=\overline{s s_{x t}}={\overline{s s_{x t}}}^{*}=\{w\}$, ssh $=$ $s s^{*} \cup s h=\{w, x, y\}, s s h_{x}=s h_{x}=\{x\}=s s h_{x}^{*}, s s h_{t}=s h_{t}=$ $\{y\}=s s h_{t}^{*}$, and $s s h_{x}^{*} \boxtimes s s h_{t}^{*}=s h_{x} \boxtimes s h_{t}=\{x y\}$. Thus, we have $s s_{\delta}^{*} \cup s h_{\delta}=\{w, x y\}^{*}=\{w, w x y, x y\}$ but $\operatorname{amgu}\left(x=t, s s^{*} \cup s h\right)=$ $\{w\} \cup\{x y\}=\{w, x y\}$.

Note that the above theorem implies a loss of precision which is due to the fact that set union and closure under union do not commute, as Lemma 2 shows. We can remedy this by avoiding the use of set union, accumulating the different star sets that appear during unification into a set of them, instead of merging them with set union. Thus, we define for each $s s s \in \wp(S S), s s s^{\prime} \in \wp(S S), t \in$ Term $:$

$$
\left.s s s\right|_{t}=\left\{\left.s s\right|_{t} \mid s s \in s s s\right\} \quad \text { and } \quad \overline{\left.s s s\right|_{t}}=\left\{\overline{s s_{t}} \mid s s \in s s s\right\}
$$

The definitions lift naturally to $\left.s s s\right|_{r t}$ and $\overline{\left.s s s\right|_{r t}}$ for two terms r and t. For a set of star sets, the sharing that it represents corresponds to the sharing set obtained as the union of the sharing sets represented by each of the star sets. I.e., the sharing represented by sss $\in \wp(S S)$ is $\uplus s s s=$ $\cup\left\{s s^{*} \mid s s \in s s s\right\}$. We will make use of these operations over sets of star sets and their following properties:

Lemma 6 Let sss $\in \wp(S S)$ and $t \in$ Term,

$$
\begin{align*}
& \left.\uplus s s s\right|_{t}=(\uplus s s s)_{t} \tag{17}\\
& \uplus \overline{\left.s s s\right|_{t}}=\overline{(\uplus s s)_{t}} \tag{18}
\end{align*}
$$

Proof Using (5) and (10) we have that:

$$
\left.\uplus s s s\right|_{t}=\cup\left\{\left(\left.s s\right|_{t}\right)^{*} \mid s s \in s s s\right\}=\cup\left\{\left(s s^{*}\right)_{t} \mid s s \in s s s\right\}=(\uplus s s s)_{t}
$$

Using (6) and (11) we have that:

$$
\uplus \overline{\left.s s s\right|_{t}}=\cup\left\{\overline{\left.s s\right|_{t}}{ }^{*} \mid s s \in s s s\right\}=\cup\left\{\overline{\left(s s^{*}\right)_{t}} \mid s s \in s s s\right\}=\overline{(\uplus s s s)_{t}}
$$

The Star-Sharing domain is

$$
S^{3} H=\{(s s s, s h) \mid s s s \in \wp(S S), s h \in S H\}
$$

and abstract unification in the domain is given, for equation $x=t$, where x is a variable and t a term, and $(s s s, s h) \in S^{3} H$, by:

$$
a m g u^{\omega}(x=t,(s s s, s h))=\left(\overline{\left.s s s\right|_{x t}} \cup\left\{\left(\left.\cup s s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)\right\}, \overline{s h_{x t}}\right)
$$

Note that the sharing that an element $(s s s, s h) \in S^{3} H$ represents corresponds to the sharing set obtained as the union of the sharing represented by $s s s$ and that represented by $s h$. I.e., the sharing represented by ($s s s, s h$) is $\uplus s s s \cup s h$.

Theorem 3 Let $(s s s, s h) \in S^{3} H$ and equation $x=t$, where $x \in V$ and $t \in T e r m$, and $\operatorname{amgu}^{\omega}(x=t,(s s s, s h))=\left(s s s_{\omega}, s h_{\omega}\right)$,

$$
\begin{equation*}
\uplus s s s_{\omega} \cup s h_{\omega}=\operatorname{amgu}(x=t, \uplus s s s \cup s h) \tag{19}
\end{equation*}
$$

Proof First note that:

$$
\begin{aligned}
& \qquad \uplus \overline{\left.s s s\right|_{x t}} \cup \overline{s h_{x t}}=\overline{(\uplus s s s \cup s h)_{x t}} \\
& \text { since } \uplus \overline{\left.s s s\right|_{x t}} \cup \overline{s h_{x t}}=\overline{(\uplus s s s)_{x t}} \cup \overline{s h_{x t}}=\overline{(\uplus s s s \cup s h)_{x t}} \text { by } \\
& \text { and (11), respectively. }
\end{aligned}
$$

Also, note that:

$$
\begin{equation*}
\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)^{*}=(\uplus s s s \cup s h)_{t}^{*} \tag{21}
\end{equation*}
$$

since $\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)^{*}=\left(\left.\uplus s s s\right|_{t} \cup s h_{t}\right)^{*}=\left((\uplus s s s)_{t} \cup s h_{t}\right)^{*}=$ $(\uplus s s s \cup s h)_{t}^{*}$ by (13), (17), and (10), respectively.
Now we can write:

$$
\begin{aligned}
& \nVdash s s s_{\omega} \cup s h_{\omega} \\
& =\uplus\left(\overline{\left.s s s\right|_{x t}} \cup\left\{\left(\left.\cup s s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)\right\}\right) \cup \overline{s h_{x t}} \\
& =\uplus \overline{\left.s s s\right|_{x t}} \cup\left(\left(\left.\cup s s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)\right)^{*} \cup \overline{s h_{x t}} \\
& =\uplus \overline{\left.s s s\right|_{x t}} \cup \overline{s h_{x t}} \cup\left(\left(\left.\cup s s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)\right)^{*} \\
& =\overline{(\uplus s s s \cup s h)_{x t}} \cup\left(\left(\left.\cup s s s\right|_{x} \cup s h_{x}\right) \otimes\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)\right)^{*} \quad \text { by }(20) \\
& =\overline{(\uplus s s s \cup s h)_{x t}} \cup\left(\left(\left.\cup s s s\right|_{x} \cup s h_{x}\right)^{*} \otimes\left(\left.\cup s s s\right|_{t} \cup s h_{t}\right)^{*}\right) \quad \text { by } \quad(2) \\
& =\overline{(\uplus s s s \cup s h)_{x t}} \cup\left((\uplus s s s \cup s h)_{x}^{*} \otimes(\uplus s s s \cup s h)_{t}^{*}\right) \quad \text { by }(21) \\
& =\operatorname{amgu}(x=t, \uplus s s s \cup s h)
\end{aligned}
$$

Thus, analysis with the Star-Sharing domain is as precise as analysis with the original Sharing domain. However, because of the absence of the costly star union operation in abstract unification, it is expected to be more efficient.

References

[1] P. M. Hill, R. Bagnara, and E. Zaffanella. Soundness, idempotence and commutativity of set-sharing. Theory and Practice of Logic Programming, 2(2):155-201, 2002.
[2] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent And-Parallelism. Journal of Logic Programming, 13(2 and 3):291-314, July 1992.
[3] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347, July 1992.

A Sets of Star Sets

We can define abstract unification for sets of star sets as follows. For equation $x=t$, where x is a variable and t a term, and sss $\in \wp(S S)$:

$$
\operatorname{amgu}^{s s}(x=t, s s s)=\overline{\left.s s s\right|_{x t}} \cup\left(\left.\left.s s s\right|_{x} \psi s s s\right|_{t}\right)
$$

and it is also correct and precise:
Theorem 4 Let sss $\in \wp(S S)$ and equation $x=t, x \in V, t \in$ Term,

$$
\begin{equation*}
\uplus a m g u^{s s}(x=t, s s s)=\operatorname{amgu}(x=t, \uplus s s s) \tag{22}
\end{equation*}
$$

Proof Under construction...
This was thought to remedy the probable loss of precision of $a m g u^{s}$ by simply accumulating star sets in a set of them instead of merging them with set union. However, it seems that $a m g^{s}$ is not only correct but also precise, so $a m g u^{s s}$ is not necessary.

The following is an alternative proof of (16).

Lemma 7

$$
\begin{equation*}
\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*} \supseteq\left(s s^{*} \cup s h\right)_{t}^{*} \tag{23}
\end{equation*}
$$

Proof To prove this, let $s \in\left(s s^{*} \cup s h\right)_{t}^{*}$. From (10), ($s s^{*} \cup$ $s h)_{t}^{*}=\left(\left(s s^{*}\right)_{t} \cup s h_{t}\right)^{*}$, so $s \in\left(\left(s s^{*}\right)_{t} \cup s h_{t}\right)^{*}$. Then there are $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq\left(s s^{*}\right)_{t}, m \geq 0$, and $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq s h_{t}, n \geq 0$, such that $s=\left(\cup_{i=1}^{m} a_{i}\right) \cup\left(\cup_{i=1}^{n} b_{i}\right)$, but not $m=n=0$.
If $m=0$ then $s=\left(\cup_{i=1}^{n} b_{i}\right), n \geq 1$, so that $s \in s h_{t}^{*} \subseteq\left(\left(\left.s s\right|_{t}\right)^{*} \cup\right.$ $\left.s h_{t}^{*}\right) \subseteq\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*}$. So, let $m \geq 1$, whether $n=0$ or $n \geq 1$.
For all $i=1, \ldots, m: a_{i} \in s s^{*}$ and $a_{i} \cap t \neq \emptyset$; then there are $\left\{c_{i 1}, \ldots, c_{i p}\right\} \subseteq s s, p \geq 1$, and $\left\{d_{i 1}, \ldots, d_{i q}\right\} \subseteq s s, q \geq 0$, such that for all $j=1, \ldots, p, c_{i j} \cap t \neq \emptyset$, for all $k=1, \ldots, q, d_{i k} \cap t=\emptyset$, and $a_{i}=\left(\cup_{l=1}^{p} c_{i l}\right) \cup\left(\cup_{l=1}^{q} d_{i l}\right)$. Then $c_{i j} \in s s_{t}, j=1, \ldots, p$, and $d_{i k} \in \overline{s s_{t}}, k=1, \ldots, q$, if they exist.
For any given $i \in\{1, \ldots, m\}$, all $j=1, \ldots, p$, and $k=1, \ldots, q$: If $q \geq 1$ then $\left.\left(c_{i j} \cup d_{i k}\right) \in\left(s s_{t} \otimes \widehat{s s_{t}}\right) \subseteq s s\right|_{t}$; if $q=0$ then we can write $c_{i j} \cup d_{i k}=\left.c_{i j} \in s s_{t} \subseteq s s\right|_{t}$. Let, then, without loss of generality, $\left.\left(c_{i j} \cup d_{i k}\right) \in s s\right|_{t}$. Thus, $\left(c_{i j} \cup d_{i k}\right) \in\left(\left.s s\right|_{t} \cup s h_{t}\right)$.
Since $b_{i} \in s h_{t}$, for all $i=1, \ldots, n$, then also $b_{i} \in\left(\left.s s\right|_{t} \cup s h_{t}\right)$. Thus, $\left(\cup_{i=1}^{m} \cup_{j=1}^{p}{ }_{k=1}^{q}\left(c_{i j} \cup d_{i k}\right)\right) \cup\left(\cup_{i=1}^{n} b_{i}\right)=s \in\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*}$. Hence, whether $m=0$ or $m \geq 1, s \in\left(\left.s s\right|_{t} \cup s h_{t}\right)^{*}$.

[^0]: ${ }^{1}$ Note that $s h_{t}^{*}=\left(s h_{t}\right)^{*}$.

[^1]: ${ }^{2}$ To simplify notation, we denote a sharing group by the concatenation of its variables, e.g., $x y z$ is $\{x, y, z\}$.
 ${ }^{3}$ To simplify notation, we abuse term t to denote its own set of variables.

