
Efficient Set Sharing using ZBDDs
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Abstract. Set sharing is an abstract domain in which each concrete object is repre-
sented by the set of local variables from which it might be reachable. It is a useful
abstraction to detect parallelism opportunities, since it contains definite informa-
tion about which variables do not share in memory, i.e., about when the memory
regions reachable from those variables are disjoint. Set sharing is a more precise
alternative to pair sharing, in which each domain element is a set of all pairs of
local variables from which a common object may be reachable. However, the ex-
ponential complexity of some set sharing operations has limited its wider applica-
tion. This work introduces an efficient implementation of the set sharing domain
using Zero-supressed Binary Decision Diagrams (ZBDDs). Because ZBDDs were
designed to represent sets of combinations (i.e., sets of sets), they naturally repre-
sent elements of the set sharing domain. We show how to synthesize the operations
needed in the set sharing transfer functions from basic ZBDD operations. For some
of the operations, we devise custom ZBDD algorithms that perform better in prac-
tice. We also compare our implementation of the abstract domain with an efficient,
compact, bitset-based alternative, and show that the ZBDD version scales better in
terms of both memory usage and running time.

1 Introduction
Set sharing [11] is an abstract domain aimed at tracking dependency information among
sets of variables. In set sharing abstractions, each concrete object is represented by the
set of program variables from which it might be reachable. Set sharing-based analyses
discover valuable information for parallelizing instructions, statements, function calls,
etc. (and are therefore typically used for that purpose), since each abstract state contains
definite information about which variables do not share, i.e., which variables cannot reach
the same memory location. From this perspective, set sharing analysis can be seen as a
compact encoding of the information present in points-to analyses, but in set sharing only
the groups of variables that might reach the same object in memory are stored.

Set sharing has been shown to be a more precise alternative to, e.g., pair sharing, in
which each domain element is a set of all pairs of local variables from which a common
object may be reachable. However, some of the intrinsic operations of the set sharing do-
main are exponential in the number of local variables being tracked, which can become
a problem for certain programs and has limited so far wider application. This intrinsic
complexity can be dealt with in part by introducing widenings, i.e., simplifying the shar-
ing sets conservatively when they become too large, but of course at the expense losing
precision. Finding significantly more efficient implementations reduces the need for re-
sorting to such lossy solutions and consequently improves practicality.

We introduce a new, efficient implementation of the set sharing domain using Zero-
supressed Binary Decision Diagrams (ZBDDs). ZBDDs were designed to represent sets
of combinations (i.e., sets of sets), so they can represent very naturally the elements of
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Fig. 1. Three concrete states.

the set sharing domain. To the best of our knowledge this is the first link provided be-
tween set sharing and ZBDDs. We start by providing set-sharing transfer functions for
a subset of Java.4 We then show how to express the operations needed for implement-
ing the set sharing transfer functions in terms of basic ZBDD operations. Also, for some
of the operations, we propose custom ZBDD algorithms that are more appropriate for
these particular cases than those in the standard ZBDD libraries. In particular we provide
a design for native ZBDD operations that emulate non-standard set manipulations. The
introduction of ZBDDs is done at the implementation level and does not alter the defini-
tion of the domain operations, so that the domain designer does not need to be aware of
their presence. Finally, we provide performance results comparing two implementations
of the set-sharing domain: an efficient, compact, bitset-based alternative (representing a
highly-tuned version of the traditional approach) and our ZBDD-based implementation.
The results show that the ZBDD version scales better in terms of both memory usage and
running time. Our custom ZBDD algorithms are also shown to perform better in practice
than the stock ones.

2 Reachability and Sharing
As mentioned before, we will concentrate for concreteness on a subset of Java, although
set sharing has been shown to be applicable to different classes of imperative and declar-
ative languages. A concrete state G = (V ar ∪ Obj,E) is a directed graph where every
node can be either a variable v ∈ V ar or an object o ∈ Obj. The edges of the graph have
been labeled such that o1

f−→ o2 means “the field f of object o1 points to o2.” We will
assume that edges connecting variables and objects have the special label -. An object o
is reachable from the variable v in G iff there is a path v -−→ o1

f−→ o1
g−→ o2 . . .

h−→ o. The
reachability set of a variable v in the state G is the set of all objects that are reachable
from it, i.e., reach(G, v) = {o ∈ Obj | o is reachable from v in G}.

One or more variables share in a state G if the intersection of their reachabilty sets is
non-empty:

share(G,V )⇔
⋂

v∈V

reach(G, v) 6= ∅.

Since null variables have no outgoing edges (conversely, if o.f is null, there is no edge
in the graph that starts at o and is labeled with f), they do not share.

Given graphG, define its set sharing as the set of maximal sets of variables that share:
sh(G) = {V ′ ⊆ V ar | share(G,V ′) and @W s.t. V ′ ⊂W and share(G,W )}

4 As we will see later, these transfer functions, which are independent from the specific way
in which the internal set-sharing domain operations are implemented, are in fact themselves
improvements over those previously proposed.
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The set sharing provides definite information about which variables do not have any
memory location in common, i.e., the memory regions reachable from them are disjoint.
We can be sure that no object is reachable from more than one variable of a set W if no
superset of W is an element of sh(G).
Example 1. Fig. 1 shows three examples of concrete states. We assume that all the vari-
ables are of type Foo, a class with two fields f and g, pointing to objects of class
Foo. In the graph G0, the reachability sets are reach(G0, v0) = reach(G0, v1) =
{o0, o1, o2} , reach(G0, v2) = {o2} and reach(G0, v3) = {o3}. The set sharing of G0

is sh(G0) = {{v0, v1, v2} , {v3}}. Note that sh(G0) = {{v0, v1} , {v0, v1, v2} , {v3}}
is not an acceptable set sharing, even though v0 shares with v1, because {v0, v1} ⊂
{v0, v1, v2}, and v0, v1, and v2 all share. The reachability sets of v1 and v2 in G1 and
G2 differ from the ones in G0; however, the set sharing is the same for all three graphs:
sh(G0) = sh(G1) = sh(G2) = {{v0, v1, v2} , {v3}}.

Note that the information provided by set sharing abstract states at program points is
instrumental for parallelization: assume that the set sharing of the example, {{v0, v1, v2} ,
{v3}}, is in fact the abstract state inferred by analysis at the program point just before
two consecutive method calls m(v0, v1, v2) and n(v3). The set sharing represents a num-
ber of concrete states (including G0, G1, and G2) in all of which v3 points to a memory
region that is disjoint from the memory regions pointed to by v0, v1, or v2. Since analysis
is safe, while actual sharing during execution may be less, there cannot be any concrete
states in which there is more sharing than that implied by {{v0, v1, v2} , {v3}}. Thus,
under reasonable assumptions regarding the parallel abstract machine, memory manage-
ment, scheduling, etc., the two method calls can be safely parallelized since they are
independent: execution of m(v0, v1, v2) cannot affect that of n(v3) and they can proceed
in parallel without interference. Also, the final state after executing them in parallel will
be equivalent to the state obtained after their sequential execution.

3 Sharing Semantics as Set Operations
3.1 Notation
We use double capital letters (like SH) for sets of sets, single capital letters (S) for
sets and lowercase letters (for instance, v) to denote elements of a set. We write SHV =
{S ∈ SH | V ⊆ S} to denote the subset of SH containing all sets having V as a subset.
Conversely, SH−V = SH−SHV . For singleton sets, we define a more concise notation:
SHv = SH{v} and SH−v = SH−{v}.

We define projecting out v from SH as removing v from every set in SH: SH|−v =
{S \ {v} | S ∈ SH} \ {{}}. The replacement operator on sets of sets replaces all the
ocurrences of variable v1 with v2 in every set. Formally, SH|v2

v1
=
{
S|v2

v1

∣∣ S ∈ SH},
where

S|v2
v1

=
{
S if v1 /∈ S
S \ {v1} ∪ {v2} else

The binary union operator ] computes the unions of all pairs of sets taken from two sets
of sets: SH1 ] SH2 = {S1 ∪ S2 | S1 ∈ SH1, S2 ∈ SH2}.
3.2 Abstract operations
In this section, we review the abstract set sharing semantics that was defined and proven
correct in previous work [16]. We also improve the precision for two of the operations:
the field load and the field store. Our compositional semantics defines a denotation func-
tion for each expression and command. We define the special variable res, which stores
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SEIπJnullK(SH)

SH ′ = SH

SEIπJnew kK(SH)

SH ′ = SH ∪ {{res}}

SEIπJvK(SH)

SH ′ = ({{res}} ] SHv) ∪ SH−v
SEIπJv.fK(SH)

SH ′=

8<:
⊥ if mustBeNull(SH, v)
SH ∪ ({{v, res}} ]

[
S∈SHv

P(S|−v)) else

Fig. 2. Abstract semantics for the expressions as set operations

the result of an expression. Thus, the functions for both expressions and commands are
transformers on set sharings. The function for an expression transforms the set sharing to
abstract a state in which res points to the result of evaluating the expression.

Figs. 2 and 5 contain the semantics of expressions and commands, respectively. They
represent the transition from an initial abstract state [6] SH to a final abstract state SH ′.
In our domain, an abstract state SH approximates all the set sharings of a set of concrete
states GG: SH = α(GG) =

⋃
G∈GG

sh(G) , i.e., SH is a correct abstraction of a set of

concrete states {G1, . . . , Gn} if sh(Gi) ⊆ SH, i = 1..n. For instance, given a concrete
state G such that sh(G) = {{v3}}, the abstract state {{v0, v1, v2} , {v3}} is a valid
approximation of G. If a variable is null in the concrete states {G1, . . . , Gn}, it does not
appear in SH . Thus, the predicate mustBeNull(SH, v) returns true when SHv = ∅.

In practice, our abstract state is a pair composed of an abstract set sharing and a type
component τ . The objective of this second element is to approximate the set of possible
types of each variable. This corresponds to the concept of a “type of class” analysis [1,
7]. In our context, τ helps in determining which variables are non null and which ones
may be null. If we consider null as another type [13], then a variable may be null if null
is one of its possible types: mayBeNull(τ, v) = (mustBeNull(SH, v) and null ∈ τ(v)).
For clarity, we omitted the type component from the transfer functions in Fig. 2 and 5;
the full version of the semantics can be found in the Appendix in Fig. 13 and 14.
3.3 Semantics of Expressions
Null, New and Variable Load: The null expression loads the null constant into the
special variable res, so it has no effect on the abstract state, since res does not point to
any object, and therefore does not share with any variable (including itself), both before
and after evaluating the expression. The new expression adds the singleton {res} to the
current set sharing, since it creates a fresh object that cannot be reached from any of
the existing variables. A variable load v forces res to be an alias of v, and therefore res
shares with all those variables with which v shares. Sharings in SH−v remain unaffected,
since the addition of res cannot change the reachability set of any variable not reachable
from v. For instance, given SH = {{v0, v1, v2} , {v3}}, the variable load v0 results in
SH ′ = SH−v ∪ ({{res}} ] SHv) = {{v3}} ∪ ({{res}} ] {{v0, v1, v2}})={{v3}} ∪
{{res} ∪ {v0, v1, v2}} = {{v0, v1, v2, res} , {v3}}.

Field Load: In the case that v.f is null, there is no change in the existing set sharing.
Because the expression of SH ′ includes SH , that case is correctly approximated. When
v.f is not null, we know that the object being assigned to res is reachable from v. The
other variables that share with v in SH may or may not share with res in SH ′. In the
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state G0 of Fig. 3, although v2 shares with v0 in the initial and final states, it does not
share with res in the final state; however, v1 will share with both res and v0 after the
load. We write {{v, res}}]

⋃
S∈SHv

P(S|−v)) to account for objects reachable from v which

become also reachable from res, and may be reachable from any subset of the variables
that shared with v in SH . Objects not reachable from v (SH−v) are accounted for by the
union with SH . For instance, in the same state G0, if {v3} ∈ SH , then the load of v0.f
does not alter that particular element, which has to also be present in SH ′.
Example 2. The graphs in Fig. 3 illustrate three different memory states before the evalu-
ation of v0.f. They correspond to the graphs in Fig. 1, but this time we indicate the type
of every object and the object pointed to by res after the expression evaluation. The initial
set sharing is identical in all cases: sh(G0) = sh(G1) = sh(G2) = {{v0, v1, v2} , {v3}}.
However, the evaluation results in a different set sharing for each resulting graph G′i:
sh(G′0) = {{v0, v1, v2} , {v0, v1, res} , {v3}}, sh(G′1) = {{v0, v1, v2, res} , {v3}},
and sh(G′2) = {{v0, v1, v2} , {v0, res} , {v3}}. Assume that the abstract state that ap-
proximates all the initial concrete states is also SH = {{v0, v1, v2} , {v3}}. The trans-
fer function for v0.f results in a final abstract state SH ′ = SH ∪ ({{v0, res}} ]
P({v1, v2})) = {{v0, v1, v2} , {v3}} ∪ ({{v0, res}} ] {{} , {v1} , {v2} , {v1, v2}})
= {{v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} , {v0, v2, res} , {v0, res} , {v3}}. As re-
quired, all the sharings sh(G′0), sh(G

′
1), and sh(G′2) are included in SH ′.

3.4 Semantics of Commands
Variable Store: For a store of the form v=expr, the semantics comprises three steps.
First, the expression on the right-hand side is evaluated. Second, all ocurrences of v are
removed from the current abstract state, since the value of v is being overwritten. Finally,
all appearances of res are replaced by v, which deletes res from the abstract state.

Field Store: First, we evaluate the expression whose result is being stored; SH1 contains
that intermediate value. Sharings in SH1 unrelated to v or res are unaffected by the store
and contained in SH2 = SH1−{v,res} , which is a subset of the final state. For each
sharing in SH1v

, the store might affect the reachability set of each variable involved and
result in many smaller sharings. For example, in a memory state like G in Fig. 4, an
assignment to v0.f destroys any sharing between v0 and v1 (note that res does not share
with v1), but not the one between v0 and v2. All the possible combinations for the final
sharings that have to do with v are contained in SH3 =

⋃
S∈SH1v

P(S) \ {{}}.
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SCIπJv=exprK(SH)

SH1 = SEIπJexprK(SH)

SH2 = SH1|−v
SH ′ = SH2|vres

SCIπJv.f=exprK(SH)

SH1 = SEIπJexprK(SH)

SH2 = SH1−{v,res}

SH3 =
[

S∈SH1v

P(S) \ {{}}

SH4 = SH1res ] SH3v

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

SCIπJif v==null com1 else com2K(SH)

SH1 = SCIπJcom1K(SH|−v)
SH2 = SCIπJcom2K(SH)

SH ′ =

8<:
SH1 if mustBeNull(SH, v)
SH1 ∪ SH2 if mayBeNull(τ, v)
SH2 else

SCIπJif v==w com1 else com2K(SH)

SH1 = SCIπJcom1K(SH)
SH2 = SCIπJcom2K(SH)

SH ′ =

8<:
SH1 if mustAlias(SH, v, w)
SH1 ∪ SH2 if mayAlias(SH, v, w)
SH2 else

SCIπJcom1;com2K(SH)

SH ′ = SCIπJcom2K(SCIπJcom1K(SH))

Fig. 5. Abstract semantics for the commands.

Now, for every sharing in SH3 that contains v we have two possibilities: all the
variables share also with res (and therefore, with SH1res

), or none of them does. Note
that every possible intermediate case in which just a few of the variables share with
SH1res

is represented by a smaller subset in SH3 containing only those variables. While
SH4 = SH1res ] SH3v includes the combinations in which all the variables do share
with SH1res , SH3 approximates the situations in which none of them do share with res.

Foo

FooFoo

gf

gfgf

V2V1 V0

gf

Foo

res

Fig. 4. Graph G.

Example 3. Assume an initial state (after evaluat-
ing the expression) G depicted in Fig. 4. The dotted
edge indicates where v0.f will point after the execu-
tion of v0.f= expr. The initial set sharing is sh(G) =
{{v0, v1} , {v0, v2} , {res}}. After the load, sh(G′) =
{{v0, v2} , {v0, res} , {v1}}. Assume that the starting ab-
stract state, after the evaluation of the expression expr, is
also SH1 = {{v0, v1} , {v0, v2} , {res}}. Since there is
no sharing unrelated to v or res, SH2 = ∅. The next
step is to calculate SH3 = P({v0, v1}) ∪ P({v0, v2}) \
{{}}= {{v0} , {v0, v1} , {v1}} ∪ {{v0} , {v0, v2} , {v2}} =
{{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}}. Since SH1res

= {{res}} and SH3v0 =
{{v0} , {v0, v1} , {v0, v2}}, SH4 = {{v0, res} , {v0, v1, res} , {v0, v2, res}}. The fi-
nal abstract state SH ′ = {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}} is the union of
SH3|−res = SH3 and SH4|−res ⊂ SH3. As required, sh(G′) ⊆ SH ′ holds after
the removal of the auxiliary variable res from G′.

Conditional Statements: In the case where the guard is (v==null), the type com-
ponent may contain definite information about whether a variable v is not null (null /∈
τ(v)). If we cannot determine exactly the nullity of v (i.e., mayBeNull(τ, v) is true), then
the final state is the least upper bound of the resulting set sharing for the two branches.
In particular, SH1 t SH2 = SH1 ∪ SH2.
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In the case where the condition is v==w, the sharing information may be enough to
tell that the two variables are definitely equal, because they are both null: mustAlias(SH,
v, w) = (mustBeNull(SH, v) and mustBeNull(SH,w)). On the other hand, v and w do
not share if they do not appear together within a subset of SH. Therefore mayAlias(SH,
v, w) = (mustAlias(SH, v, w) and SH{v,w} 6= ∅). It is important to see that sharing
information does not imply equality: a set sharing like {{v, w}} indicates that v and w
might reach a common object, not that they must be aliases.

Example 4. Given a command like if (cond) v0 = v1 else {v0 = null;
v1 = null}, and assuming an initial abstract state SH = ∅ that does not contain
enough information to determine cond, the set sharing corresponding to the if branch
is SH1 = {{v0, v1}}. The abstract state after simulating the else branch is SH2 = {}.
Therefore, the final state is SH ′ = SH1 ∪ SH2 = {{v0, v1}}. However, SH ′ does not
imply that v0 necessarily shares with v1, even when they appear together in SH ′, but that
v0 might reach an object reachable from v1 in some of the concrete states approximatted
by SH ′; in the example, if cond would be false, both variables are null and do not share.

4 Semantics as ZBDD operations
Zero-suppressed BDDs (ZBDDs) [8, 9] are a data structure similar to binary decision
diagrams (BDDs) [3], but designed to encode sets of combinations (i.e., sets of sets
of primitive elements). To encode the set sharing domain using ZBDDs, we define the
primitive elements to be the variables in the program being analyzed. ZBDDs have been
demostrated to perform better [15, 14] than standard BDDs when encoding sets of com-
binations that are sparse in the sense that a) the set contains just a small fraction of all
the possible combinations, and b) each combination contains just a few literals. A ZBDD
is a rooted directed acyclic graph (DAG) of non-terminal and terminal nodes. Each non-
terminal ZBDD node is labeled with a variable, and has two outgoing edges to other
nodes, called the zero-edge and the one-edge. There are two terminal nodes, the zero
node and the one node. They do not have variables or outgoing edges. The universe of all
variables is totally ordered, and the order of the variables appearing on the nodes of any
path through the ZBDD is consistent with the total order. Each path through the ZBDD
that ends at the one terminal node defines a set of variables. The set contains a variable v
if the path passes through a node labeled with v, and leaves the node along its one edge.
Assuming the variable ordering is fixed, the smallest ZBDD representing a given set of
sets is unique, and can be found efficiently.

1

1
0

0

1
0

V2

V1

0 1

V0

Fig. 6.

Example 5. Assume a set of variables V ar = {v0, v1, v2} and the
variable ordering v0, v1, v2. The unique smallest ZBDD representing
the set of sets {{v0, v2} , {v1}} is the ZBDD shown in Fig. 6. There
are two paths from the root of the ZBDD to the one terminal node.
On the path containing the v0 and v1, only the node labeled v1 is
exited through the one edge; thus, this path represents the set {v1}.
On the path containing v0 and v2, both nodes are exited through their
one edges; thus, this path represents the set {v0, v2}.

Efficient algorithms exist for common operations on the set of
sets encoded by a ZBDD, including union (denoted +), intersection,
set difference, product (SH1 ∗ SH2 = {S1 ∪ S2 | S1 ∈ SH1 and S2 ∈ SH2}), and di-
vision (SH/v = {S \ {v} | S ∈ SH and v ∈ S} and SH%v = {S ∈ SH | v 6∈ S}).
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SEIπJnullK(SH)

SH ′ = SH

SEIπJnew kK(SH)

SH ′ = SH + res

SEIπJvK(SH)

SH ′ = setResEqTo(SH, v)

SEIπJv.fK(SH)

SH ′=

(
⊥ if mustBeNull(SH, v)
SH + v ∗ res ∗ powUnion(SH/v) else

se tResEqTo ( P ) {
i f (P = 0 or P = 1 or P.top > v )

re turn P
i f (P.top < v) )

re turn Getnode (P.top ,P0 ,P1 )
re turn Getnode (P.top ,P0 , r e s∗P1 )

}

powUnion ( P ) {
i f (P = 0 or P = 1 )

re turn P
R0 ← powUnion(P0)
R1 ← powUnion(P1)
re turn Getnode (P.top ,Ro + R1 ,1 + R1 )

}

Fig. 7. Abstract semantics for the expressions as ZBDD operations.

A set sharing like SH = {{v0, v2} , {v1}} is expressed in ZBDD notation as SH =
v0v2 + v1. Note that we will denote single literal sets by a single lower case letter (like
v), while generic ZBDDs will be referred to with double upper case (normally, SH). For
instance, given the set sharings SH = v0v2 + v1 and v0 , an expression like SH ∗ v0 =
v0v1 + v0v2 is legal. The empty set is written as 0, and the set containing only the empty
set is written as 1.
4.1 Expressions and Commands; Native Operations
Figs. 7 and 9 show the ZBDD version of the transfer functions5 in Fig. 2 and 5. For most
of the set operations, there is an equivalent native ZBDD operation. For instance, SH1 ]
SH2 is equivalent to SH1∗SH2 and SH−v is equivalent to SH%v. This correspondence
is useful because it results in no gap between the denotational semantics of Sect. 3 and
the implementation. However, we added a number of non-standard ZBDD operators to
improve the readability of the equations. The set of elements in SH containing v (SHv ,
in set notation) is obtained via SH//v = SH/v ∗ v. We delete all the ocurrences of v
in SH using projOut(SH, v) = SH/v + SH%v − 1. The unit set 1 (which represents
the set containing the empty set) has to be deleted because SH might contain the single
literal v, as we did in the corresponding project out set operator SH|−v .

In other occasions, we created new ZBDD operators because of efficiency reasons.
For instance, the variable load set equation SH ′ = ({{res}} ] SHv) ∪ SH−v can be
expressed as SH ′ = res ∗ (SH//v) + SH%v. This combination of standard operators,
while intuitive, has the disadvantage of being inefficient in practice. Since we expect
this function to be invoked with high frequency (every time a variable is on the right
hand side of an assignment), we devised a dedicated ZBDD algorithm that computes
the same result, setResEqTo(SH, v). The algorithm, shown in Fig. 7, uses the same
notation as in [9]: P0 and P1 for the graph reachable through the zero-edge and one-edge,
respectively, P.top for the current variable, and Getnode(v, P0, P1) for the procedure
that generates a node with the variable v and subgraphs P0 and P1. The correctness of
setResEqTo(SH, v) is based on a variable order in which res is always the last variable,

5 The type component is again omitted, although in practice it is updated in an identical fashion
to Fig. 13 and 14.
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Fig. 8. ZBDDs representing v0v2, 1 + v2, and 1 + v0 + v0v2 + v2.

the one closer to the leaves. Given this precondition, we only need to find v in the graph,
and then multiply its one-edge child by res, which will preserve the variable order.

With the basic ZBDD operators and setResEqTo we can understand the transfer func-
tions of the null, new, and variable load expressions. The field load, on the other hand,
depends on the ZBDD version of the predicate that determines whether a variable is null:
mustBeNull(SH, v) = (SH/v = 0). It also requires computing the union of the pow-
ersets of the elements of a set sharing SH: {P(S) | S ∈ SH}. Although this seems to
be a complex operation, it has a very natural description in terms of an algorithm in ZB-
DDs. We have devised a native ZBDD algorithm, powUnion(SH), shown in pseucode
in Fig. 7. The correctness proof of the algorithm is given in the appendix. This native
implementation will prove to be fundamental for the scalability of the analysis (Sect. 5).

Example 6. We show how the native algorithm computes powUnion(v0v2). Fig. 8 con-
tains the initial ZBDD representing v0v2 (left). To compute powUnion for the original
ZBDD, we first recursively compute powUnion for the node labeled v2. When powU-
nion is applied to the node labeled v2, which represents the set v2, we haveR0 = P0 = 0
and R1 = P1 = 1. The result is a node labeled v2 with zero successor R0 + R1 = 1
and one successor 1 + R1 = 1 + 1 = 1, shown in the center of the figure. This ZBDD
represents the powerset of v2, namely 1 + v2. We will call this ZBDD N . When we
compute powUnion of the original ZBDD, R0 = P0 = 0, and R1 = N . This step gen-
erates a node with value v0, zero successor R0 + R1 = 0 +N = N , and one successor
1 + R1 = 1 +N = N . Because both nodes are identical (reduction rule applied within
Getnode), we can delete one of them and change both edges of v0 to lead to just one N ,
as shown in the right ZBDD in Fig. 8. The resulting graph represents 1+ v0 + v0v2 + v2.

The command semantics (Fig. 9) is described in terms of the operators listed before.
We only add a new predicate, used when checking if two variables might be aliases:
mayAlias(SH, v, w) = (mustAlias(SH, v, w) and SH/(v ∗ w) 6= 0). The following
example shows how the field store from Example 3 would be calculated using ZBDDs.

Example 7. Assume we start evaluating v0.f= expr in an abstract set sharing SH1 =
v0v1+v0v2+res. Because all the sharings in SH1 contain v0 or res, SH2 = 0. The union
of the powersets of SH1//v0 = v0v1 + v0v2 is calculated in a very similar fashion to the
last example, and results in a set sharing 1+v0+v0v1+v0v2+v1+v2. Therefore, SH3 =
projOut(v0+v0v1+v0v2+v1+v2, res) = v0+v0v1+v0v2+v1+v2. The last component
of the result is SH4 = (SH1/res) ∗ (SH3//v0) = 1 ∗ (SH3//v0) = v0 + v0v1 + v0v2.
The result is SH ′ = 0 + SH3 + SH4 = SH3 = v0 + v0v1 + v0v2 + v1 + v2, which is
the same result obtained in the set example.
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SCIπJv=exprK(SH)

SH1 = SEIπJexprK(SH)

SH2 = projOut(SH1%res, v)

SH ′ = SH1/res ∗ v + SH2

SCIπJv.f=exprK(SH)

SH1 = SEIπJexprK(SH)

SH2 = SH1%v%res

SH3 = projOut(
powUnion(SH1//v)− 1, res)

SH4 = (SH1/res) ∗ (SH3//v)

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 + SH3 + SH4 else

SCIπJif v==null com1 else com2K(SH)

SH1 = SCIπJcom1K(projOut(SH, v))
SH2 = SCIπJcom2K(SH)

SH ′ =

8<:
SH1 if mustBeNull(SH, v)
SH1 + SH2 if mayBeNull(τ, v)
SH2 else

SCIπJif v==w com1 else com2K(SH)

SH1 = SCIπJcom1K(SH)
SH2 = SCIπJcom2K(SH)

SH ′ =

8<:
SH1 if mustAlias(SH, v, w)
SH1 + SH2 if mayAlias(SH, v, w)
SH2 else

SCIπJcom1;com2K(SH)

SH ′ = SCIπJcom2K(SCIπJcom1K(SH))

Fig. 9. Abstract semantics for the commands.

5 Experiments
To evaluate the scalability (in terms of memory usage and running time) of the ZBDD
approach, we compared it to an alternative representation for set sharings based on sets
of bitsets. Bitsets are a fast, light representation compared to other ways of representing
a set sharing. In a bitset, each bit bi indicates if the variable vi is in the sharing (bi = 1)
or not (bi = 0). Our first implementation used the Java library where a BitSet is an
array of double words. However, our first experiments showed that this approach does
not scale beyond set sharings with more than a few thousand elements. For this reason,
we replaced the library implementation by a lightweight version, which only requires
a single word to represent each sharing. This effectively limits the number of variables
to be not more than 32 for the bitset approach, which is reasonable when confronted
with powerset operations. In all the experiments we assume that the number of variables
n is bounded by 32, but note that the ZBDD implementation scales well for larger set
sharings, and could handle bigger values of n. Our ZBDD implementation of set sharing
is based on the JDD library [21].

Several characteristics of set sharings influence the memory usage and the perfor-
mance of the data structure representing them. Although the number of variables n seems
to be important, our two representations are independent of this parameter. In the case of
the bitsets, because we use 32 bits to store every sharing, independently of the number
of variables. In the case of ZBDDs, only the statistical distribution of the sharings (i.e.,
their sparsity) influences the number of nodes required to represent the information, and
therefore the memory usage and performance of the ZBDD. For the same reason, the
behavior of the two data structures is independent of the sharing density of SH , i.e., the
proportion of the number of sharings over the maximum possible: SHd = |SH|/2n.

The most decisive factor is the number of sharings |SH|. Because we allocate a new
bitset every time a new sharing is added, the performance of the set of bitsets approach is
inversely proportional to |SH|. In the case of ZBDDs we also have to take into account
the variable density. This metric is the average number of variables per sharing: vd =

10



1
n∗|SH| ∗

∑
S∈SH|S|. A small variable density is synonymous with a sparse set sharing,

and therefore we can expect the ZBDD to perform inversely proportional to the metric.
We now examine how the number of sharings and the variable density relate to memory
consumption and execution times in our experiments.
Memory Usage: We generated random set sharings and measured the space require-
ments for the Java objects backing the set of bitsets and ZBDD as reported by a pro-
filer [12]. The different memory usages are shown on the left of Fig. 10. The plot shows
that the ZBDD scales better than the bitset solution. The differences are more significant
(a factor of 5) for large values of |SH|. A set of bitsets uses 56 bytes per sharing, less
than the 80 required by a set of the JDK 1.5 BitSet class. At one million sharings, the
set of bitsets requires more than 56Mb, while the same information occupies 12Mb in the
ZBDD version (vd = 0.28). The staircase behavior of the ZBDD memory usage function
is due to the capacity of the array storing the node list (ZBDDs are represented as arrays
in JDD), which doubles when the load exceeds a certain threshold.

In the leftmost graph in Fig. 10 we did not take into account the effect of variable
density. The other plot in that figure demonstrates how ZBDDs benefit from sparse vari-
able distributions. This time we do not show the number of Kbytes in the y-axis, but
rather the number of nodes in the binary decision diagram. As expected, sparse sharings
require fewer nodes than those that are more dense in terms of vd. In the experiments,
the number of nodes goes down by an average 38.2% from vd = 0.34 to vd = 0.22.
Speed: We measured the number of milliseconds required to compute the semantics of
the most significant operations (variable load/store, and field load/store), given a random
initial set sharing. We disabled the JDD cache for the experiments. All the measurements
were done on a Pentium M 1.73Ghz with 1Gb of RAM. The virtual machine was Sun’s
JVM 1.5.0 running on Ubuntu 6.06. The results are in Figs. 11 and 12.

The time required to simulate a variable load presents a similar, linear behavior in
both cases; the bitset version is 14.6% faster in the average. Although not reflected in
Fig. 11, the native operation setResEqto takes half the time of the equivalent composition
of ZBDD operations (see Sect. 4). For the variable store, both running times are roughly
linear in the number of sharings. However, the lack of a native ZBDD implementation
results in running times noticeably slower than those of the set of bitsets. It remains an
open question whether a dedicated ZBDD algorithm can be devised for this command.

The powerset operation is a major obstacle for a feasible implementation of set shar-
ing using the sets of bitsets. Both the field load and field store transfer functions depend
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on this operation. While the ZBDD powUnion algorithm requires reasonable times for
calculating the union of many powersets, the bitset implementation presents exponen-
tial growth with respect to the number of sharings. For example, it needs half a minute
to compute the output state for a field load in which the initial sharing has 5,000 ele-
ments. The ZBDD implementation finishes the same operation in less than 600ms. The
field store (Fig. 12, right), which is a more complex operation, presents a similar pattern,
although the running times are always significantly larger than for the field load.

6 Related Work
The ideas presented in this paper build on one hand on [16], where a first definition
of a set sharing-based analysis for Java was introduced and shown to offer advantages
in certain cases with respect to pair sharing-based analyses. We offer substantially im-
proved definitions of the abstract semantics, a reduction in the number of components of
an abstract state, and in some cases (like the field load and store) more precise abstract
operations. In addition, a significant difference with our previous work is of course the
use of Zero-suppressed Decision Diagrams to efficiently implement the analysis domain.
This is done without having to redesign any of the existing abstract operations. The ex-
periments in [16] involved small set sharings (of at most 50 elements at a time) while in
this paper we show how with ZBDDs we can scale up to thousands of sharings and still
get reasonable times.

There has been extensive work in recent years on the use of BDDs [24, 2, 22, 25] to
represent (abstract) points-to information. In these abstractions, information is stored in
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the form of (v, a) pairs, where each such pair indicates that v may point to the allocation
site a. As mentioned before, set sharing information can be interpreted as an abstraction
of points-to information where instead of representing which exact objects can be pointed
to by a variable, the domain captures only which sets of variables may point transitively
to the same object. Thus, our analysis works at a different level since the set sharing
encoding can result in some loss of precision, but offers the advantage of more compact
representation.

ZBDDs were introduced by Minato [8] and applied to a great diversity of problems
in model checking (e.g., [23, 5, 10]). More recently, Lhoták et al. have applied ZBDDs to
the exploration of infinite state spaces [14] in the context of points-to analysis. The main
differences between this work and [14] are one hand the abstraction used (set sharing
vs. points-to pairs) and on the other that in the approach proposed the domain does not
require relational information, i.e., we can use existing ZBDD libraries [20, 21] directly
in our implementation.

To the extent of our knowledge, this is the first work that relates set sharing analysis
with ZBDDs or presents implementation results for the set-sharing domain using any type
of binary decision diagram. In the logic programming realm, there has been a significant
amount of work related to set sharing-based analysis for the automatic parallelization of
Prolog programs (e.g., [11, 17, 18]). However, the abstract operations show significant
differences with the ones required for an imperative/OO language. Furthermore, to the
best of our knowledge, all existing implementations use lists of lists to represent set shar-
ings. In [4] a connection between the set sharing domain and standard BDDs is suggested,
but no implementation or experimental results are provided and there is no mention of
ZBDDs. More recent work [19] for Java presents results for a BDD-based implementa-
tion of the less precise pair sharing domain [16]. Because in this case the abstraction is a
set of pairs (and not a set of sets), the representation used is quite different from ours.
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A Complete semantics for the expressions and commands
Contained in figures 13 and 14. In the case of the type component, the least upper bound
is computed as τ1 t τ2 = { (v, τ1(v) ∪ τ2(v)) | v ∈ V ar}.

B PowUnion: correctness proof
Proof. powUnion(SH) correctly computes

⋃
S∈SH

P(S):

powUnion(ZBDD(a, P0, P1)) = powUnion(P0+a∗P1) = powUnion(Po)+powUnion(a∗
P1) =

⋃
S∈P0

P(S) ∪
⋃

S∈P1

(P(S ∪ {a}) =
⋃

S∈P0

P(S) ∪{{a}}∪
⋃

S∈P1

(P(S)] {{} , {a}}) =⋃
S∈P0

P(S) ∪
⋃

S∈P1

P(S) ∪ {{a}}∪
⋃

S∈P1

(P(S)]{{a}}) =
⋃

S∈P0∪P1

P(S) ∪ {{a}}∪({{a}}]⋃
S∈P1

P(S)) = ZBDD(a,powUnion(P0 + P1), 1 + powUnion(P1)).
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SEIπJnullK(SH, τ)

SH ′ = SH

τ ′ = τ [res 7→ {null}]

SEIπJnew kK(SH, τ)

SH ′ = SH ∪ {{res}}
τ ′ = τ [res 7→ {k}]

SEIπJvK(SH, τ)

SH ′ = ({{res}} ] SHv) ∪ SH−v
τ ′ = τ [res 7→ τ(v)]

SEIπJv.fK(SH, τ)

SH ′=

8><>:
⊥ if mustBeNull(SH, v)

SH ∪ ({{v, res}} ]
[

S∈SHv

P(S|−v)) else

τ1 = τ [v 7→ (τ(v) \ {null}), res 7→ (↓F (v.f) ∪ {null})]

Fig. 13. Abstract semantics for the expressions as set operations

SCIπJv=exprK(SH, τ)

(SH1, τ1) = SEIπJexprK(SH, τ)
SH2 = SH1|−v
SH ′ = SH2|vres
τ ′ = τ1[v 7→ τ1(res)] \ (res, τ1(res))

SCIπJv.f=exprK(SH, τ)

(SH1, τ1) = SEIπJexprK(SH, τ)

SH2 = SH1−{v,res}

SH3 =
[

S∈SH1v

P(S) \ {{}}

SH4 = SH1res ] SH3v

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

τ ′ = τ1[v 7→ (τ1(v) \ {null})] \ (res, τ1(res))

SCIπJif v==null com1 else com2K(SH, τ)

SH1 = SH|−v
τ1 = τ [v 7→ {null}]
σ1 = SCIπJcom1K(SH1, τ1)
τ2 = τ [v 7→ (τ(v) \ {null})]
σ2 = SCIπJcom2K(SH, τ2)

(SH ′, τ ′) =

8<:
σ1 if mustBeNull(SH, v)
σ1 t σ2 if mayBeNull(τ, v)
σ2 else

SCIπJif v==w com1 else com2K(SH, τ)

σ1 = SCIπJcom1K(SH, τ)
σ2 = SCIπJcom2K(SH, τ)

(SH ′, τ ′) =

8<:
σ1 if mustAlias(SH, v, w)
σ1 t σ2 if mayAlias(SH, v, w)
σ2 else

SCIπJcom1;com2K(SH, τ)
(SH ′, τ ′) = SCIπJcom2K(SCIπJcom1K(SH, τ))

Fig. 14. Abstract semantics for the commands.
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