Multi-Configurable Search Rules in Prolog
and Application to Testing*

1,2[0009—0002—1072—8989] 1,2[0000—0001—9782—8135]
)

Daniela Ferreiro , Jose F. Morales

Pedro Lopez-Garcial3[0000-0002-1092-2071] " 5y q Manuel V.
Hermenegildo!-210000-0002—7583—323X]

! Universidad Politécnica de Madrid (UPM), Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain
3 Spanish Council for Scientific Research, Madrid, Spain
{daniela. ferreiro, josef.morales,pedro.lopez,manuel.hermenegildo}@imdea.org

Abstract. Prolog systems traditionally employ leftmost, depth-first
search as their execution strategy. This choice is well-justified for effi-
ciency reasons, generally accepted, and useful in practice. However, it
is also well-known that it can lead to incompleteness when evaluating
programs over infinite search spaces and may not be ideal for complex
search spaces. We revisit the role of search strategies in Prolog programs,
and present a new approach, that enables programmable and compos-
able control of search. While advanced search strategies can always be
programmed in Prolog, we opt instead for an approach that separates the
search strategy used from the actual code, so that different strategies can
be used on the same set of clauses. We provide constructs for controlling
the search strategies that allow adapting the search dynamically. We also
illustrate the usefulness of the proposed approach by applying it in the
context of testing (constraint) logic programs, showing how composable
search parameters enable more controlled and targeted exploration of
program behavior.

Keywords: Prolog - Search Rules - Assertion-based Testing - Property-
based Testing - (Constraint) Logic Programming.

1 Introduction

Ever since Kowalski’s well-known equation Algorithm = Logic + Control [22],
the advantages of separating the logic and control components of a program
have been well established. In Prolog, the Logic component is expressed through
Horn clauses, while Control is handled by the engine, primarily via the search
strategy. Standard systems rely on SLD resolution, typically using a fixed top-
down, left-to-right strategy that corresponds to depth-first search. While this
choice is efficient in terms of memory, requiring storage only for the active branch,

* Partially funded by MICIU projects CEX2024-001471-M Maria de Maeztu and
TED2021-132464B-100 PRODIGY, as well as by the Tezos foundation. We would
also like to thank the reviewers for their very useful and constructive feedback.

it is incomplete in general (i.e., for infinite search spaces). Moreover, it forces
programmers to handle control issues such as cycles or left recursion indirectly,
typically by rewriting rules or adding operational details, which can compromise
the declarative character of the language.

Alternative search strategies, such as breadth-first, iterative deepening, or
random search, offer different trade-offs among efficiency, completeness, and
memory consumption. However, mainstream Prolog implementations provide
little support for selecting or customizing these strategies. Consequently, pro-
grammers have limited influence over how the search space is explored, and
control decisions remain implicit in the engine rather than expressible by the
programmer.

This paper revisits the role of search strategies in the execution of logic pro-
grams and explores how to make the control component configurable in flexible
ways while still supporting the full language and preserving the separation be-
tween logic and control in the spirit of declarative programming. Writing Prolog
code from scratch that implements some search in a state space with a particular
strategy is not especially difficult, nor is running Prolog predicates with other
search rules by using variations of the standard meta-interpreter. However, our
goal is to be able to provide the programmer with a mechanism that allows run-
ning the predicates of a standard Prolog program with different search strategies
with a high degree of flexibility. Moreover, straightforward implementation ap-
proaches of alternative search strategies typically limit the use to a subset of
Prolog and thus do not support the full expressiveness of the language. Our
second goal is thus to maintain compatibility with modules, built-ins, and other
libraries and features to a high degree.

We refine the meaning of a search strategy by defining it as the composition
of: i) A search engine, which determines how the SLD-tree is traversed, e.g.,
depth-first, breadth-first, iterative deepening, random search; and ii) control pa-
rameters, which decide if/when to switch strategies, how far or how much to
explore (e.g., depth, number of solutions, time limit), etc.

Our interest in alternative search rules comes from different angles. First,
when teaching (C)LP and Prolog, the ability to switch between depth-first and
fair search rules can help students visualize the true potential of the (C)LP
paradigm and Prolog to gain a hands-on understanding of concepts such as
termination, decidability, or the halting problem (see, e.g., [16]).

Also, Prolog programmers, for example when implementing Artificial Intelli-
gence (AI) applications, can define and experiment with different search strate-
gies to trade off efficiency against completeness. As mentioned before, the stan-
dard Prolog depth-first search can, in some cases, become trapped in an infinite
branch and fail to produce a solution, even when solutions exist. As just an
example, a strategy that begins with breadth-first search and switches to depth-
first search once a certain resource-consumption threshold is reached may yield
some, though possibly not all, solutions, yet these can still be useful.

Our final motivation, that we will use as running example throughout the pa-
per, is test case generation. Some previous work in this area within LP leverages

assertion preconditions as test case generators [23]. Since these preconditions
are conjunctions of literals, the corresponding predicates can be used to sys-
tematically produce valid inputs. The key innovation lies in executing standard
predicates under non-standard search rules, enabling either fully automatic or
user-guided generation. By adapting the search strategy, we can control how
the input space is explored, improving coverage and avoiding redundant or non-
terminating test cases. Purely random generation may be sufficient for some
programs, but for others, it can be inefficient or fail to reach deeper regions of
the search space. For instance, when predicates involve multiple recursive clauses,
random exploration may become trapped in certain branches, spending exces-
sive time generating similar test cases. Taking into account alternative search
strategies or combining different ones can provide useful alternatives.

Thus, the multi-configurable search rule framework presented in this paper
can be used for various purposes. As already mentioned, we focus here on its
application to testing.

The rest of the paper proceeds as follows: Section 2 provides the background
on the test framework that we base our work on. Section 3 presents the proposed
language of directives for specifying search strategies and explains its interaction
with the assertion language of the test framework. It also provides examples that
demonstrate how the framework can be extended using our multi-configurable
search rules. Section 4 presents a case study on binary trees, including some
experimental results. We close by discussing related work in Section 5 and con-
clusions in Section 6.

2 Some Background on the Testing Framework Used

In this section, we start by providing some background on concepts needed to
understand how our multi-configurable search-rule framework is used to perform
improved program testing. To this end, we introduce the assertion framework
of Ciao Prolog [15,17,18], which already has many useful components for our
purposes.

2.1 Checking Predicates Against Specifications

We begin by presenting how to determine whether a given predicate satisfies
the preconditions and postconditions declared in program assertions in the Ciao
model.* In the Ciao model, predicates are checked against their specifications
through a combination of static and dynamic techniques. Static checking of these
assertions is performed at compile time by the CiaoPP tool using abstract inter-
pretation [24, 19, 12]. This allows many properties, such as types, modes, deter-
minacy, and non-failure, to be verified automatically before execution. However,
because static analysis is undecidable, some properties or parts of assertions

4 This model was a precursor of gradual typing, hybrid-typing, and similar ap-
proaches [10, 29, 26], sharing many general principles.

may remain unproven. In such cases, these unverified assertions are annotated
in the output program with check status. The resulting program can then be
instrumented with run-time checks [30, 31], to ensure safety during execution.
This run-time checking process proceeds as follows: Given a set of queries (Q and
a set of assertions A, the run-time checking process executes the program on
the queries in @ and determines whether the resulting derivations belong to the
error set defined by the assertions. It is not expected that this process can prove
an assertion to be fully checked, since that would require exploring all possible
derivations from all valid queries, often an infinite set. Instead, the goal is to test
a representative subset of queries, which, although incomplete, allows detecting
many violations of the specification. An enabler here is the fact that properties
are written in Prolog, and are thus runnable, meaning they can be verified at
run-time. For instance, consider the following property:

:- prop sorted_int_list/1.

sorted_int_list([]).

sorted_int_list([X]) :- int(X).

sorted_int_list([X,Y[|T]) :- int(X), int(Y), X >= Y, sorted_int_list([Y|T]).
The query sorted_int_list(X) succeeds for X = [1,X = [1],and X = [2, 1];fails
for X = a and X = £(a); and instantiates variables for X = [A,B] and X = A. A
predicate check/1 exists that captures failure or further instantiation (the latter
meaning that the argument is not as instantiated as the property requires),
and raises an error in any of those cases.® This mechanism enables the dynamic
verification of a wide range of properties, providing a smooth integration of static
and dynamic checking. If the definition of these properties is provided directly
in the source language, then such properties are typically already runnable and
thus available for run-time checking. However, it is also possible to provide a
specialized implementation for run-time checking if desired. For properties that
are declared native but are not written in the source language, a run-time test
version must be provided.

2.2 Generating Test Cases from Properties in Assertions

An important complement to static and dynamic checking is the ability to test a
program automatically by generating input data that satisfies its preconditions.
This idea builds on earlier work on random testing [14], later adapted to the Ciao
assertion model [23, 3]. Given an assertion for a predicate, the objective is to au-
tomatically generate goals whose arguments satisfy the assertion’s precondition
and then execute them to determine whether the corresponding postconditions
(and global properties) hold or whether violations can be detected. In this set-
ting, the notion of generating random test values from assertion preconditions
arises naturally: since preconditions are typically expressed as conjunctions of
property literals, these same property predicates can serve as generators of test
inputs. The generation process is based on executing the property predicates

® More precisely, these are instantiation checks. Compatibility checks are also sup-
ported, but the discussion is beyond the scope of this paper. See the previously cited
bibliography on the Ciao assertion model for details.

Table 1. Syntax of the search strategy language.

(sr_decl) = :- search_rule({sr_name), (pred))

(sr_definition) u= :- def_sr((sr_name), [(options)])

(pred) == (pred_name) | €

(pred _name) == Pred/(arity)

(arity) ::= Integer

(options) u= (sr_engine_decls), (control _parameter), (apply _sr)
(sr_engine_decls) ::= extends(({sr_mname)), (sr_engine_decl)
(sr_engine_decl) := (sr_engine_ pred) | (sr_engine pred), (sr_engine_decl)
(sr_engine_pred) = set_sr((pred_name))={(sr_name) | €

(sr_name) u= Sr | (sr_engine) | [(sr_rules)]

(sr_engine) x=df | bf | rnd | id | af

(sr_rules) w= (sr_rule) | (sr_rule), (sr_rules)

(sr_rule) w=_({args), (sr_name)) :- (condition)

(args) = Var | Var, (args)

(control _parameter) ::= (sr_limit), (sr_selector), (delay)

(sr_limait) ::= time =Integer | depth=1Integer | steps=Integer | €
(sr_selector) == first_solution | all_solutions | num_solutions=Integer | €
(delay) == delay = (pred_name) | €

(apply _sr) = apply_to_pre = [(asserts)] | €

(asserts) == (assert) | (assert) (asserts)

(assert) x=1d | (pred_name) | €

in generation mode using a random search rule in order to produce a set of
valid test cases. Once the test inputs are generated, the existing run-time check
instrumentation provided is reused to perform the actual verification of asser-
tions during execution. This combination allows a wide range of properties to
be tested automatically, including those specific to (Constraint) Logic Program-
ming, such as shape-based (regular) types, variable sharing, and instantiation
patterns. By interpreting assertions both as specifications and as generators of
input data, the Ciao model provides a smooth connection between specification,
verification, and testing.

3 Strategy Specification and Assertion Languages

In this section, we describe the language for defining search strategies. Since
program testing is the primary application in this paper, we also present the
assertion language and explain how the two languages interact during assertion-
based testing.

3.1 The Search Strategy Language

Figure 1 presents the main grammar rules for the search strategy lan-
guage. Such language enables assigning search strategies to a modular pro-

gram through search strateqy declarations ({sr_decl)) and search strategy
definitions ({sr_definition)). The latter allow the definition of new strate-
gies as compositions of existing ones. Each strategy defines the search engine
({sr_engine_decls)) to be used for a specific predicate ({pred name)) or for
all the predicates of a whole module. The only mandatory element for defin-
ing a search strategy is the use of the extends(Sr) declaration, which specifies
the search rule being extended and defines the default search rule. This decla-
ration ensures that the new strategy inherits the complete behavior of search
rule Sr. The search engine determines the order in which nodes of the SLD-
tree are expanded, such as depth-first (df), breadth-first (bf), random (rnd),
etc., user-defined ({sr_name)), or conditional composition of different searches.
At each node, the control parameters ({control parameters)) impose quanti-
tative constraints on the exploration, such as depth, time, or solution selectors
(first_solution, all_solutions, num_solutions), and determine the conditions
under which goals and clauses are delayed.® These parameters compose the set
of options ({options)) in a search strategy definition, together with (apply sr),
which is used as an interface between the assertion language and the search
strategy language, and will be described in detail in Section 3.2. The grammar
includes the following constants: “Pred” (any valid predicate name in the under-
lying language, normally non-empty strings starting with a lower-case letter or
enclosed in quotes); “Var” (which corresponds to variable names, normally non-
empty strings of characters that start with a capital letter or an underscore);
“Integer” (which denotes any valid integer); and “Sr” and “Id” (which can be
non-empty strings starting with a lower-case letter).

3.2 Assertion Language Used

So far, we have presented constructs for dynamic search rule selection, with the
objective of using them for generating test cases, but without relating them
directly to assertions. As mentioned before, we will use Ciao Prolog’s assertion
language for our purposes. We now briefly describe it. The general specification
of a predicate p/n consists of declarations that provide partial specifications of
its behavior. They have the following syntax:

:- [Status] pred Head [: Calls] [=> Success] [+ Comp] [# Comm].
which expresses that a) calls to predicate Head that satisfy precondition Calls
are admissible and b) for such calls, if they succeed, the predicate must satisfy
post-condition Success and global computational properties Comp. Calls and
Success are conjunctions of property literals. Comm is a string that contains
a textual description or encapsulates an identifier of the assertion. If there are
several pred assertions, the disjunction of the Calls fields defines the admissible
calls to the predicate.

The following code fragment provides two pred assertions defining two par-
ticular ways in which predicate app/3 is expected to be called:

5 Any predicate can be delayed, but delaying is particularly useful for labeling.

:-check pred app(X,Y,Z) : (list(X),list(Y),var(X))=>1ist(Z) +det#"[id0O]".

:- check pred app(X,Y,2Z) : (var(X),var(Y),list(z))=>(list(X),list(Y)) +multi#"[id1]".

app([1,X,X).
app ([X|Xs1,Ys, [X]Zs]) :-
app (Xs,Ys,Zs).

The first pred assertion states that if app/3 is called with the first two arguments
instantiated to lists and the third a variable, and such call succeeds, then the
third argument must be bound to a list. This first assertion also states that
when called with such call pattern, predicate app/3 must be deterministic (det,
a global computational property). The second pred assertion states that app/3
may also be called with the third argument instantiated to a list and the first
two as variables, and that, if such a call succeeds, then the first and second
arguments should be bound to lists. It also states that, if called that way, the
predicate will produce one or more solutions, but not fail (multi, also a global
computational property). Each of the two assertions is labeled with an (optional)
identifier. The check status indicates that these are desired properties that need
to be checked, statically or dynamically, but have not been proven true or false
yet.

What links the generation properties of assertion preconditions with their cor-
responding search strategies is the identifier of each assertion, specified through
the (apply sr) option in the search rule declaration. This option defines the
list of assertions to which the search rule applies. The list can include specific
assertion identifiers or predicates, indicating that the search rule applies to all
assertions associated with those predicates. For instance, the declaration on the
left:

:- def_sr(srl, [:- def_sr(sr2, [
apply_to_pre = [idl], apply_to_pre = [app/3],
extends (bf) extends (bf)

D. D.

states that breadth-first should be used as search rule for generating the proper-
ties that appear in the precondition of the assertion with identifier id1. In turn,
the declaration on the right states that the search rule should be applied to
the preconditions of all assertions for predicate app/3. If no explicit search rule
declaration is provided, the default is that all properties are generated using a
random strategy.

3.3 Illustrative examples

We now illustrate the use of the strategy specification language through exam-
ples that show how to use it to generalize the test generation mechanism. This
extension enables finer control over the generation of test inputs compared to
previous work [3] in the Ciao system.

Dynamic Strategy Switching Consider verifying a predicate sumlist(L, S)
that computes the sum S of all elements in list L:

sumlist ([], ©).
sumlist ([H|T], Sum) :-
sumlist (T, Rest),
Sum is H + Rest.
A fundamental property is that the sum should be invariant under permutation,
i.e., reordering the elements should not change the total sum. We can express
this property formally as:

VL.YL'VS.(sumlist(L,S) A permutation(L,L")) — sumlist(L',S)

which can be encoded as follows:

:- pred sum_perm(L) : list(int,L) + multi.

sum_perm(L) :- sumlist(L, S), permutation(L, L1), sumlist(L1l, S).
where permutation/2 is defined as:

permutation([], [1).

permutation([X|Xs], [R|Rs]) :-
select(R, [X|Xs], Y),
permutation(Y, Rs).

select(X, [X|Xs], Xs).

select(X, [Y|Ys], [Y[|Zs]) :-
select (X, Ys, Zs).

During testing of our sumlist implementation, test lists L are generated, and
then their sum S is computed, all L’ permutations are generated for each test
list, and it is then verified that sumlist(L’,S) holds for each permutation.

For list generation, we would like to produce lists incrementally by length:
[1, [_1, [-,_1, and so on. Native properties, such as list/2 or int/1, rely on
a specific implementation for generation, which requires dynamically switching
to that internal code. The internal generators for these native properties can be
executed under different search strategies. For instance, we apply a depth-first
strategy to construct the list structure, and then fill the elements with randomly
generated values.

Since we subsequently apply permutations, it is not worthwhile to generate
very large lists, as simpler cases already provide good coverage for testing. We
can define this search strategy and name it sr_list as follows:

:- def_sr(sr_list, [:- def_sr(sr_int, [
extends (df), extends(rnd),
set_sr(int/1) = sr_int first_solution

D. .

which extends the depth-first search rule by adding the declaration
set_sr(int/1) = sr_int, which in turn sets the generation of numbers to be
random.

This customized search strategy gives us the following output:

?7- list(int, L).

[1;

[-31 ;

[-51,-37] ;
[94,-73,-59] ;
[-69,-75,-86,-64] ;
[-63,-34,37,-83,-82] ;

N sl sl s el ol

Dependent Strategy Selection Search strategy selection can be made de-
pendent on the input. This enables, for instance, predicates to use two different
search strategies depending on whether the input is ground or contains variables.

The following search rule declaration for the predicate permutation/2 specifies
different search strategies depending on the length of the input list:

:- def_sr(sr_perm, [

extends (df),

set_sr(permutation/2) = [
(_(L,P,bf) :- var(P), length(L,N), N =< 7),
(_(L,P,rnd) :- var(P), length(L,N), N > 7),
(_(L,P,bf) :- var(L), ground(P))

1,

num_solutions = 500

D.

It expresses that for any call permutation(L,P), if the condition
var(P), length(L,N), N =< 7 holds (i.e., P is unbound and L is a list whose length
is less than or equal to 7), then breadth-first search is used; otherwise, random
search is applied. The declaration also states that if L is unbound and P ground,
then breadth-first search must be used.

Finally, the parameter num_solutions = 500 indicates that at most 500 so-
lutions should be generated. This last parameter is one of many termination
criteria supported by our framework, including: depth-based termination, which
halts exploration upon reaching a specified depth; solution-based termination,
which stops after discovering a target number of solutions; step-based termina-
tion, which bounds the number of transitions performed before a valid solution
is produced; and time-based termination, which enforces a maximum time bud-
get. The resulting search strategy definition for permutation/2, including these
search rules is shown in Figure 1.

3.4 Some implementation details

As mentioned earlier, our goal is to maintain compatibility with modules, built-
ins, and other libraries and features to a high degree. For example, supporting
modules means that generators are not limited to local predicates. A predicate
defined in one module can freely invoke predicates from other modules, inheriting
or overriding their corresponding search strategies as needed.

The implementation of the search strategy language is built around a collec-
tion of module-aware meta-interpreters and orchestrated around a single predi-
cate: call_with_sr(Sr, Goal), which executes a given goal Goal under a search
strategy Sr. When a module specifies a default search rule, predicates called
from a context where no other call_with_sr/2 is active are executed implic-
itly as if called through call_with_sr/2 (using the default search rule specified
for the module or for each of its predicates). That call_with_sr/2 can also be
invoked directly in the program to execute any subgoal under an explicitly spec-
ified search rule. To determine which search strategy engine or meta-interpreter
needs to be used at each call, the system maintains a global stack that is up-
dated whenever call_with_sr/2 is invoked. The top of the stack records the
current search rule, and when execution of that particular call ends, restores

:- search_rule(prop_sr).

:- def_sr(prop_sr, [
apply_to_pre = [id2],

extends (df),

set_sr(list/2) = sr_list,

set_sr(permutation/2) = [
(_(L,P,bf) :- length(L,N), N =< 7),
(_(L,P,rnd) :- length(L,N), N > 7),
(_(L,P,bf) :- var(L), ground(P))

1,
num_solutions = 500

D.

:- def_sr(sr_list, [
extends (df),
set_sr(int/1) = sr_int

D.

:- def_sr(sr_int, [
extends (rnd),
first_solution

D.

:- pred prop_sum_perm(X) : list(int,X) + multi # "[id2]".
prop_sum_perm(L) :- sumlist(L, S), permutation(L, L1), sumlist(Ll, S).

Fig. 1. Search strategy definition for permutation/2.

the previous most recently active call_with_sr/2 invocation. Thus, the search
rule applied to a predicate P is determined by looking up the definitions in the
current search rule according to the following decreasing priority order: i) search
rule declarations for the predicate; ii) declarations from inherited search rules;
iii) the primitive search rule.

Once the search rule is determined, execution proceeds with the particular
engine or meta-interpreter. For that, a dual representation is maintained for each
predicate: the compiled version, for efficient execution under standard depth-
first semantics, and the source-level version for metaprogramming. The dual
representation allows access to the rules of the program at run-time through the
built-in predicate clause/2. The implementation design relies on these two key
aspects that preserve Prolog’s module system semantics, while providing control
over which predicates are affected by a given search rule.

Let us use Figure 2 to illustrate this idea. The module main defines the
predicate gen/2, which uses the predicate prop/2 defined in module prop_def
and declares the search rule sr®. Within sr®, the search rule declares a specific
search strategy for predicate gen_/2 and extends the search rule srA. srA can
refer either to the identifier of another search rule declaration or to a primitive
search rule (e.g., breadth-first, depth-first, random, etc.). In the case where srA
refers to another search rule, the system recursively traces it until a primitive
search rule is reached and establishes it as the general search rule for sro.

For instance, if the goal ?- gen(X,Y) is executed, it starts under the
search strategy srA. Then prop/2 is called; note that it is inside an explicit
call_with_sr/2. Therefore, the search rule inside call_with_sr/2 takes prece-

10

: - module (prop_def, [prop/2], [srl).
:- use_module(lists).

:-module (main, [gen/2], [sr]).

: - use_module (prop_def) . :- search_rule(sr3).

:-def_sr(sr3, [...]).

:- search_rule(sr0).
:-def_sr(sr0®, [
extends (srA),

:- search_rule(prop/2,sr4).
:-def_sr(sr4, [...1).

- prop(L,M) :-
;;t_sr (gen_/2) srB length(L,N),
' prop_(N,M).
:-def_sr(srl, [...]). prop_ (X, ¥) i ...
gen(X,Y) :-
11_with nl, X,Y)), .
o (D). -st(Lsr(srD1,prop (X, 12 :- module(lists, [length/2,...1, [sr]).
gen_(X) - ... :- search_rule(length/2,sr2).

:-def_sr(sr2, [...1).
length(X,Y) :- ...

Fig. 2. Example of three modules with different search strategies defined.

dence over the search rule defined in module prop_def and the call to prop/2 is
executed using search rule sri. Note that if the query executed is ?- prop(X,Y),
it will be executed using sr4, the module default sr3 is ignored because predicate
level declarations take priority. Continuing the example, prop/2 calls length/2
from the lists module. The search rule applied is the one defined in the
lists module, which is sr2. prop/2 also calls the auxiliary predicate prop_/2.
In this case, it inherits the strategy of prop/2, since the most recent active
call_with_sr/2 is that of prop/2. Once the execution of prop/2 ends, gen/2 calls
gen_/2. In this case, the current search rule is srA. Since srA extends another
search rule, the system looks up the extends chain to check whether a specific
search rule is defined for the predicate gen_/2. In this example, it first looks up
in the search declaration of sr® whether such a rule exists, and it is applied.
Thus, gen_/2 is executed using srB. Once the search finishes, the current search
rule reverts to srA, and the call under the search rule srA terminates, completing
the execution of goal gen(X, Y).

As can be seen, even some system-defined predicates, such as length/2 in
the above example, can be executed using non-standard search rules, in par-
ticular those used as properties in assertions, such as int/1. To this end, we
have developed alternative generating implementations of these built-ins, and
these alternative implementations are selected dynamically based on the search
strategy.

An important open question is the applicability of our mechanism in the
presence of extra-logical constructs. While the approach works for pure pro-
grams, including those with constraints, predicates such as assert/1, retract/1,
or other side-effects introduce dependencies on sequentiality that may interact
non-trivially with some search rules. It is the programmer’s responsibility to
ensure that the behavior is as intended if these built-ins are used. Moreover, in-
finite or unbounded search spaces can be mitigated by imposing explicit limits,

11

:- prop complex_property/2 # "A predicate generator".
complex_property (X,S) :-

tree(X),

sorted_tree(X),

tsum(X,S).

:- regtype tree/l # "Simple binary tree with integer nodes".
tree(empty) .
tree(tree(LC,X,RC)) :-

X #> 0, X #=< 100,

tree(LC),

tree (RC).

% Check if tree T is sorted
sorted_tree(T) :-

% tsum(T,N) : Constrains the sum of all node values in tree T to N
tsum(T,N) :-

% insert(X,TO,T1) : The result of inserting the node X into the tree TO is T1
:- pred insert(X,T0,T1) : (nnegint(X), tree(T®), sorted_tree(T0))

=> (sorted_tree(T1), non_empty_tree(T1))

+ det # "[id2]".

insert (X, empty, tree(empty,X, empty)).
insert (X, tree(LC,X,RC),tree(LC,X,RC)).
insert (X, tree(LC,Y,RC),tree(LC_p,Y,RC)) :-
X #=< Y, % <-- There is a bug!
insert(X,LC,LC_p).
insert (X, tree(LC,Y,RC),tree(LC,Y,RC_p)) :-
X #> Y,
insert (X,RC,RC_p).

. % rest of the implementation of module predicates

Fig. 3. Binary tree library.

such as bounding the number of solutions, execution time, or search depth, but
a more general mechanism for controlling such behavior remains as future work.

4 A Case Study: Generation of Binary Trees

Consider the excerpt in Figure 3 from a library using binary trees. The tree/1
property describes the shape of trees, which can be an empty tree (a terminal
node) or a compound term (a non-terminal node) with a value, and left and
right subtrees as arguments. The node values are integers between 1 and 100.

Generating a more complex property. Our intention is to generate values for
complex_property/2, which is composed of several sub-properties: the tree struc-
ture, the ordering constraint (sorted_tree/1), and the total sum of node values
(tsum/2). Such ordering constraint states that every node’s left subtree contains
only values less than the node’s value, and every node’s right subtree contains
only values greater than the node’s value. This ensures that an in-order traversal
of the tree yields a sorted sequence.

To study the behavior of different search strategies, we conducted an experi-
ment based on the property complex_property(T,S), varying S. Each generation

12

4000

X+

- bt Rpboatition a0t R X

3500
3000

2500

Time (ms)

2000

Time (ms)

FIOPINTE
P e AR

1500

1000

L 200 L L L
900 1000 0 20 a0 60 80 100 120

Number of attempts before finding the bug

Fig. 4. Comparing search rules executing Fig. 5. Execution time and number of at-
complex_property(T,S). tempts until the bug is found.

was executed with a limit of 100 solutions and a maximum time of 180 seconds
per run. Figure 4 shows the execution time for several strategies: breadth-first
(bf), breadth-first AND-fair (af), iterative deepening (id), and random (rnd),
which is the default one. For small sums, S < 500, breadth-first yields the best
performance, as it explores shallow trees first and quickly finds valid configu-
rations. However, as S increases, the number of possible combinations grows
exponentially, and breadth-first becomes less efficient. Iterative deepening (id)
incurs moderate overhead due to repeated traversals but remains complete and
scales reasonably well. In contrast, the random strategy (rnd) exhibits higher
variance and slower convergence, particularly for larger values of S, as it lacks
structural guidance and may repeatedly explore redundant branches. Finally,
depth-first (df) proved the least effective. Because the number of required solu-
tions was capped at 100, it frequently descended down deep branches and spent
substantial time exploring a single path before backtracking, often resulting in
timeouts.

The experimental results suggest that an effective search strategy for gener-
ating values for complex_property/2 is the following:

:- def_sr(complex_prop_sr, [
extends (df),
set_sr(complex_property/2) = [

(_(X,Y,bf) :- Y =< 500),
(_X,Y,id) :- Y > 500)
1,
delay = labeling/2,
num_solutions = 100,
time = 180
D.

This definition specifies that the complex_property/2 predicate dynamically
adapts its search strategy based on the metric value S. As suggested by the plot,
if S <500, breadth-first (bf) search is used; if S > 500, iterative deepening (id)
is used. The remaining predicates that compose the generator are executed using
depth-first search for efficiency. Additionally, labeling (via labeling/2) is delayed
until the end of the computation, adopting a constrain-and-generate approach,

13

common in constraint logic programming: constraints are accumulated during
structure generation, and numeric variables are instantiated later.

Assertion checking. We now turn to testing the predicate insert/3, also imple-
mented in Figure 3, which returns the tree resulting from adding a node to an
existing tree. We have intentionally introduced a bug in the third clause: instead
of using the correct constraint #<, the clause uses #=<. As a result, when the
tree contains a node with the same number of input nodes, two clauses succeed,
i.e., the clauses are not mutually exclusive, which violates the intended ordering
property of the tree and the computational property det (deterministic). In this
case, we evaluate which search rule for generating trees requires less time and
fewer attempts to detect the bug. For nnegint/1, which generates non-negative
integers, random search is used.

Figure 5 shows a scatter plot comparing the search rules in terms of exe-
cution time and the number of tests required to find the bug. We conducted
the experiments using the same search rules as before, performing 100 runs for
each. We observe that, regarding execution time, the iterative-deepening strat-
egy is the fastest in finding bugs, typically requiring a relatively small number of
attempts (mostly between 0 and 80). Breadth-first and breadth-first AND-fair
strategies are more consistent in the number of attempts needed: most bf runs
find the bug in fewer than 50 attempts, while af usually requires fewer than 65
attempts. However, both bf and af tend to take more time overall, especially
af. The random strategy exhibits the highest variability, with some runs finding
the bug quickly, while others require substantially more attempts. This strategy
performs reasonably well in this example. However, it does not guarantee that
the bug will be found within a limited number of attempts. If another search
rule can provide such a guarantee, such as iterative deepening in this example,
it is preferable to use it, as it offers more predictable and controllable search
behavior.

Improving fairness in random search. Let us now illustrate an extension of our
search algorithm, useful to improve fairness when using random search strategies.
As an example, consider the problem of generating random linear constraints:

constraint(=(L1, L2)) :- lin_expr(L1l, L2).
constraint (=<(L1, L2)) :- lin_expr(L1l, L2).
constraint(>=(L1, L2)) :- lin_expr(L1l, L2).
constraint(<(L1l, L2)) :- lin_expr(L1l, L2).
constraint(>(L1, L2)) :- lin_expr(L1l, L2).

lin_expr(Ll, L2) :- lin_expr(L1l), lin_expr(L2).

lin_expr(C) HE
lin_expr (V) He
lin_expr (+(E)) e
lin_expr(-(E)) HE
lin_expr(+(El, E2)) :-
lin_expr(-(E1, E2)) :-
lin_expr(*(C, E)) e
lin_expr(*(E, Q) HE

coefficient(C) :- C in

coefficient(C).

var (V).

lin_expr(E).

lin_expr(E).

lin_expr(E1), lin_expr(E2).
lin_expr(E1), lin_expr(E2).
coefficient(C), lin_expr(E).
coefficient(C), lin_expr(E).

0..500, labeling([rnd],C).

% $VAR used as ground representation of variables

var (A)

:- uppercase_char(Arg), A =

"$VAR’ (ATg) .

14

The previous rules define arithmetic constraints recursively, using relational op-
erators (=, =<, >, etc.) and linear expressions that combine coefficients, variables
and subexpressions through addition, subtraction, and multiplication. Each co-
efficient is an integer variable constrained to lay within a given range (here, 0 to
500). The final call to labeling/2 enumerates concrete integer values for these
coefficients.
These constraints are employed to synthesize programs that can serve as
benchmarks for evaluating the polyhedra abstract domain [9]:
p(C,F,G) :-
5*A-67+F<100,
A*(142%4)=G,
3< - (47*M*78)*291,
88* -(311*F)>=C,

X*215=<0,
- -H>(90+(C*(178%1)))*67.

Naive random exploration in this example may lead to non-termination when
execution is trapped in the creation of more recursive clauses than base cases. To
make search generation fair, our work proposes a method based on identifying
recursive predicates within a given program, using the implementation of Tar-
jan’s algorithm [32,33] used in CiaoPP to classify recursive and non-recursive
predicates. Using this information, we alternate between base and recursive cases
during generation, ensuring that the search process avoids infinite recursion. As
future work, we plan to explore this idea further by leveraging static analysis to
further enhance search strategies.

5 Related work

Property-based testing [5] frameworks have become a widely used approach for
validating program properties by generating and executing test cases. Originally
developed for Haskell and functional programming [5], these frameworks allow
developers to automatically generate random input data from some given prop-
erties. It has since been adapted to additional languages, including Erlang [25],
Curry with EasyCheck [4], and Prolog [1,23,9,7]. In the context of Constraint
Logic Programming (CLP) and Constrained Horn Clauses (CHC), using predi-
cates as property-based generators is particularly natural, since calling a pred-
icate with free variables can automatically instantiate them. PrologCheck [1]
provides a language for specifying properties and custom generators for Prolog
programs. For complex data structures, such as sorted lists or AVL trees, naive
random generation is often insufficient, and developers must provide special-
ized generators. The tool supports writing such generators, including properties
that consider the modes of the arguments. As mentioned before, Ciao Prolog’s
LPcheck [23, 9] introduced the concept of assertion-based testing, based on using
the properties in its assertion language directly as generators. ProSyT [7] gener-
ates data structures for Erlang programs by combining symbolic data structure
generation, constraint solving, and randomized variable instantiation via corou-
tining. Thus, it reduces the programmer’s effort in writing custom generators.

15

The integration of search strategies into declarative languages has long also
been explored. CLP systems [21, 27] and most Prolog systems include Constraint
Logic Programming (CLP) libraries [2,6, 34, 13,20, 15] that provide predefined
search strategies. These search rules are often embedded in labeling predicates
for solving different classes of problems. In [8], search control was investigated by
proposing a flexible framework for CHRV (Constraint Handling Rules with dis-
junction), extended with rule and search branch priorities. Schrijvers proposed
Tor [28] as a mechanism for supporting the execution of predicates using al-
ternative search rules. Tor represents a device that could certainly be useful as
an implementation technique for our approach, although we currently use other
mechanisms available in the Ciao Prolog system instead, which we have used as
the basis for our experiments. In this work, however, we concentrate instead on
providing a higher-level way for users to specify search strategies.

The idea of exploiting search strategies within property-based testing uni-
fies these two lines of research. By viewing the testing process itself as a search
problem, alternative search rules can guide how candidate test cases are gener-
ated and explored. Unlike earlier work where search and test generation were
orthogonal, our approach treats the search strategy as a component of the testing
process, providing a framework for exploring properties under different execution
rules.

6 Conclusions

In this work, we have presented a framework for controlling the execution of
Prolog programs through flexible search strategies. By separating the logic of
predicates from their exploration order, our approach allows the same standard
Prolog predicate to be executed under different search rules without modify-
ing the program itself. This capability mitigates several common limitations of
random property-based testing, such as infinite exploration, non-termination, or
inefficient traversal of the search space. We introduced a search strategy spec-
ification language that combines search engines with control parameters such
as clause selection, delayed evaluation, and termination criteria. The framework
fully supports Prolog’s expressive features, including constraints, DCGs, and
modules, ensuring that predicates can call other predicates across modules while
respecting or overriding their search strategies. Through several examples, we
demonstrated how the proposed search strategy language improves exploration
efficiency. Future work includes refining metric-based strategy selection, extend-
ing search strategies with static analysis guidance, and exploring richer schedul-
ing policies, as well as, in the testing context, studying combinations with other
orthogonal techniques such as those based on program coverage or concolic test-
ing [11]. Overall, we argue that our framework provides a flexible, declarative,
and practical approach to controlling the execution of logic programs, bridging
the gap between declarative specifications and operational behavior.

16

References

10.

11.

12.

13.

14.

15.

Amaral, C., Florido, M., Costa, V.S.: PrologCheck - Property-Based Testing in
Prolog. In: Functional and Logic Programming - 12th Int’l. Symp., FLOPS. LNCS,
vol. 8475, pp. 1-17. Springer (2014)

Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain
constraint solver. In: Proceedings of the 9th International Symposium on
Programming Languages: Implementations, Logics, and Programs: Includ-
ing a Special Trach on Declarative Programming Languages in Educa-
tion. pp. 191-206. PLILP ’97, Springer-Verlag, London, UK, UK (1997),
http://dl.acm.org/citation.cfm?id=646452.692956

Casso, L., Morales, J.F., Lopez-Garcia, P., Hermenegildo, M.: An Integrated Ap-
proach to Assertion-Based Random Testing in Prolog. In: Gabbrielli, M. (ed.) Post-
Proceedings of the 29th International Symposium on Logic-based Program Synthe-
sis and Transformation (LOPSTR’19). LNCS, vol. 12042, pp. 159-176. Springer-
Verlag (April 2020). https://doi.org/10.1007/978-3-030-45260-5\ 10
Christiansen, J., Fischer, S.: EasyCheck - Test Data for Free. In: Functional and
Logic Programming, 9th Int’l. Symp., FLOPS. pp. 322-336 (April 2008)
Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: Fifth ACM SIGPLAN Int’l. Conf. on Functional Program-
ming. pp. 268-279. ICFP’00, ACM (2000)

D. Diaz, S.A., Codognet, P.: On the implementation of GNU Prolog. Theory and
Practice of Logic Programming 12(1-2), 253-282 (January 2012)

De Angelis, E., Fioravanti, F., Palacios, A., Pettorossi, A., Proietti, M.: Property-
based test case generators for free. In: International Conference on Tests and
Proofs. pp. 186-206. Springer (2019)

De Koninck, L., Schrijvers, T., Demoen, B.: A Flexible Search Framework for CHR,
pp. 16-47. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Ferreiro, D., Casso, 1., Lopez-Garcia, P., Morales, J.F., Hermenegildo, M.V.: Check-
ification: A Practical Approach for Testing Static Analysis Truths. Theory and
Practice of Logic Programming (May 2025), https://arxiv.org/abs/2501.12093
Flanagan, C.: Hybrid Type Checking. In: 33rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2006. pp. 245-256 (January
2006)

Fortz, S., Mesnard, F., Payet, E., Perrouin, G., Vanhoof, W., Vidal, G.: An
SMT-Based Concolic Testing Tool for Logic Programs. In: Functional and
Logic Programming - 15th International Symposium, FLOPS. Lecture Notes
in Computer Science, vol. 12073, pp. 215-219. Springer (September 2020).
https://doi.org/10.1007/978-3-030-59025-3\ 13

Garcia-Contreras, 1., Morales, J., Hermenegildo, M.: Incremental Analysis of
Logic Programs with Assertions and Open Predicates. In: Proceedings of
the 29th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’19). LNCS, vol. 12042, pp. 36-56. Springer (2020).
https://doi.org/10.1007/978-3-030-45260-5 3

Garcia de la Banda, M.J., Jeffery, D., Marriott, K., Nethercote, N., Stuckey, P.J.,
Holzbaur, C.: Building constraint solvers with hal. In: ICLP’04. pp. 90-104 (2001)
Hamlet, D.: Random Testing. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering, p. 970-978. Wiley (1994)

Hermenegildo, M.V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E.,
Morales, J., Puebla, G.: An Overview of Ciao and its Design Philosophy.

17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Theory and Practice of Logic Programming 12(1-2), 219-252 (January 2012).
https://doi.org/10.1017/S1471068411000457, https://arxiv.org/abs/1102.5497
Hermenegildo, M.V., Morales, J.F., Lopez-Garcia, P.: Teaching Pure LP with Pro-
log and a Fair Search Rule. In: Proceedings of the 40th ICLP Workshops. vol. 3799.
CEUR-WS.org (October 2024), https://ceur-ws.org/Vol-3799 /paper2PEG2.0.pdf
Hermenegildo, M., Puebla, G., Bueno, F.: Using Global Analysis, Partial Speci-
fications, and an Extensible Assertion Language for Program Validation and De-
bugging. In: Apt, K.R., Marek, V., Truszczynski, M., Warren, D.S. (eds.) The
Logic Programming Paradigm: a 25—Year Perspective, pp. 161-192. Springer-
Verlag (July 1999)

Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Program Development
Using Abstract Interpretation (and The Ciao System Preprocessor). In: 10th In-
ternational Static Analysis Symposium (SAS’03). pp. 127-152. No. 2694 in LNCS,
Springer-Verlag (June 2003)

Hermenegildo, M., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems 22(2), 187-223 (March 2000)

Holzbaur, C.: OFAI CLP(Q,R) Manual, Edition 1.3.3. Tech. Rep. TR-95-09, Aus-
trian Research Institute for Artificial Intelligence, Vienna (1995)

Jaffar, J., Michaylov, S.: Methodology and Implementation of a CLP System. In:
Fourth International Conference on Logic Programming. pp. 196-219. University
of Melbourne, MIT Press (1987)

Kowalski, R.: Algorithm = logic + control. Communications of the ACM 22(7),
424-436 (1979)

Mera, E., Lopez-Garcia, P., Hermenegildo, M.: Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In: 25th Int’l. Con-
ference on Logic Programming (ICLP’09). LNCS, vol. 5649, pp. 281-295. Springer-
Verlag (July 2009)

Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming 13(2/3), 315—
347 (July 1992)

Papadakis, M., Sagonas, K.: A PropEr Integration of Types and Function Specifica-
tions with Property-Based Testing. In: 10th ACM SIGPLAN workshop on Erlang.
pp- 39-50 (September 2011)

Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & Efficient
Gradual Typing for TypeScript. In: 42nd POPL. pp. 167-180. ACM (January

2015)

Schimpf, J., Shen, K.. ECLiPSe - from LP to CLP. The-
ory and Practice of Logic Programming 12(1-2), 127-
156 (Jan 2012). https://doi.org/10.1017/S1471068411000469,

http://dx.doi.org/10.1017/S1471068411000469

Schrijvers, T., Demoen, B., Triska, M., Desouter, B.: Tor: Modular search with
hookable disjunction. Sci. Comput. Program. 84, 101-120 (2014)

Siek, J.G., Taha, W.: Gradual Typing for Functional Languages. In: Scheme and
Functional Programming Workshop. pp. 81-92. University of Chicago Department
of Computer Science (2006)

Stulova, N.; Morales, J.F., Hermenegildo, M.: Practical Run-time Checking via
Unobtrusive Property Caching. Theory and Practice of Logic Programming,
31st Int’l. Conference on Logic Programming (ICLP’15) Special Issue 15(04-
05), 726-741 (September 2015). https://doi.org/10.1017/S1471068415000344,
https://arxiv.org/abs/1507.05986

18

31.

32.

33.

34.

Stulova, N., Morales, J.F., Hermenegildo, M.: Reducing the Overhead of Assertion
Run-time Checks via Static Analysis. In: 18th Int’l. ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming (PPDP’16). pp. 90-103.
ACM Press (September 2016)

Tarjan, R.: Depth-First Search and Linear Graph Algorithms. STAM J. Comput.
1, 140-160 (1972)

Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM
28(3), 594614 (July 1981). https://doi.org/10.1145/322261.322273,
https://doi.org/10.1145/322261.322273

Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.. SWI-Prolog.
Theory and Practice of Logic Programming 12(1-2), 67-96 (2012).
https://doi.org/10.1017/S1471068411000494

19

