| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
| 00000        | 000000               | 000000       | 00000000     | 00000            | 00          | 00         |

# Categories and Preorders in Value Iteration Fixed Points and Surrogate Models

### Louis Rustenholz, supervised by Ichiro Hasuo and Jérémy Dubut

30 August 2021

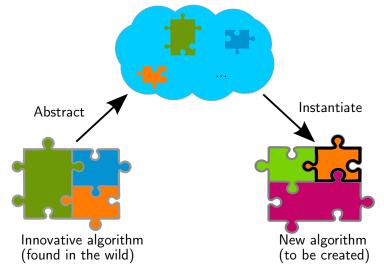
| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
| 00000        |                      |              |              |                  |             |            |

# Introduction



### Goal: extract algorithmic ideas

Category theory, order theory, ...



Categories and Preorders in Value Iteration

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
| 00000        |                      |              |              |                  |             |            |
|              |                      |              |              |                  |             |            |

## In this work

Application domain  $\rightarrow$  Model checking

Innovative algorithm  $\rightarrow$  Solves reachability in Stochastic Games Valuable ideas  $\rightarrow$  Fixed points + Surrogate models

Category theory, order theory, ... Instantiate Abstract Innovative algorithm New algorithm (found in the wild) (to be created)

Widest Paths and Global Propagation in Bounded Value Iteration for Stochastic Games

Kittiphon Phalakarn<sup>1\*</sup>, Toru Takisaka<sup>2</sup>, Thomas Haas<sup>3</sup>, and Ichiro Hasuo<sup>2,4</sup>

<sup>1</sup> University of Waterloo, Waterloo, Canada knhalakarn@uwaterloo.ca <sup>2</sup> National Institute of Informatics, Tokyo, Japan {takisaks,hasuo}@nii.ac.jp <sup>3</sup> Technical University of Braunschweig, Braunschweig, Germany thohaas@tu-bs.de <sup>4</sup> The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan

Abstract. Solving stochastic sames with the reachability objective is a fundamental problem, especially in quantitative verification and synthesis. For this purpose, bounded value iteration (BVI) attracts attention as an efficient iterative method. However, BVT's performance is often impeded by costly end component (EC) computation that is needed to ensure convergence. Our contribution is a novel BVI algorithm that conducts, in addition to local propagation by the Bellman update that is typical of BVI, global propagation of upper bounds that is not hindered by ECs. To conduct global propagation in a computationally tractable manner, we construct a weighted graph and solve the undest path problem in it. Our experiments show the algorithm's performance advantage over the previous BVI algorithms that rely on EC computation.

#### 1 Introduction

#### 1.1 Stochastic Game (SG)

A stochastic game [13] is a two-player game played on a graph. In an SG, an action a of a player causes a transition from the current state s to a successor s'. with the latter chosen from a prescribed probability distribution  $\delta(s, a, s')$ . Under the reachability objective, the two players (called Maximizer and Minimizer) aim to maximize and minimize, respectively, the reachability probability to a designated target state.

Stochastic games are a fundamental construct in theoretical computer science, especially in the analysis of prohabilistic systems. Its complexity is in-



# Contributions: axiomatise (Bounded) Value Iteration

| VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BVI + (some) Surrogate Models                                                                               |             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| $\begin{array}{ccc} \mathbf{Preord} & \stackrel{\mathcal{T}_{l}}{\longrightarrow} & \mathbf{Preord} \\ & \downarrow \upsilon & \qquad \qquad \downarrow \upsilon \\ & \mathbf{Set} & \stackrel{\mathcal{T}}{\longrightarrow} & \mathbf{Set} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{Set} \xrightarrow{T_s} \bigcup U$                                                                  | MDP ⊲ SG    |  |  |  |
| Leaf structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shape structures                                                                                            | Connections |  |  |  |
| $\begin{split} &\frac{\Omega:\operatorname{CLat}, A:\operatorname{Set}, \tau:DA \rightarrow \Omega}{(\Delta_A, \Omega, \tau):\mathcal{F}_1}(\operatorname{Constent}ppl) = \frac{\Omega:\operatorname{CLat}, A:\operatorname{Set}, \tau:\operatorname{Hom}(A, \{l\}) \rightarrow \Omega}{(\operatorname{Hom}(A, -), \Omega, \tau):\mathcal{F}_1}(\operatorname{Hom}(h, -), \Omega, \tau):\mathcal{F}_1}(\operatorname{Hom}(h, -), \Omega, \tau):\mathcal{F}_1 \\ &\frac{\Omega:\operatorname{CLat}}{(\mathcal{F}_{0m}, \Omega, \operatorname{sup}):\mathcal{F}_1}(\operatorname{Afar}\operatorname{game}) = \frac{\Omega:\operatorname{CLat}}{(\mathcal{F}_{0m}, \Omega, \operatorname{un}):\mathcal{F}_1}(\operatorname{Afar}\operatorname{game}) = \frac{(\mathcal{H}_1, \mathcal{H}_2):\mathcal{F}_1}{(\mathcal{H}_{0m}, \Omega, \operatorname{un}):\mathcal{F}_1}(\operatorname{Afar}\operatorname{game}) = \frac{(\mathcal{H}_1, \mathcal{H}_2):\mathcal{F}_1}{(\mathcal{H}_{0m}, \Omega, \operatorname{un}):\mathcal{F}_1}(\operatorname{Afar}\operatorname{game}) = \frac{(\mathcal{H}_1, \mathcal{H}_2):\mathcal{F}_1}{(\mathcal{H}_1, \mathcal{H}_2):\mathcal{F}_1}(\operatorname{Afar}\operatorname{game}) = \frac{\mathcal{H}_1(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal{H}_2):\mathcal{H}_2(\mathcal$ | $V(g) = \sup_{egin{subarray}{c} lpha: {f Ord}\ = \inf_{lpha: {f Ord}}  onumber \ lpha: {f Ord} \end{array}$ |             |  |  |  |

#### Categories and Preorders in Value Iteration

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
| 00000        |                      |              |              |                  |             |            |
|              |                      |              |              |                  |             |            |

# Plan

- Research approach
- 2 Representation of model checking problems
- Axiomatisation of VI technique
- Axiomatisation of surrogate model technique
- 5 Future work

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              | 00000                |              |              |                  |             |            |

# Approach and Context





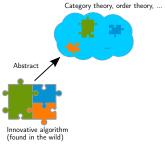


"Semantics applied to algorithmic concepts"



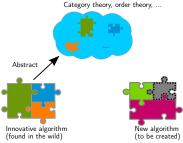
### • Understand what makes the algorithm work





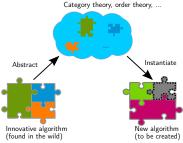
- Generalise the problem solved by the algorithm
- Understand what makes the algorithm work
- Axiomatise those properties, create new abstract structures
- Prove theorems about those abstract structures





- Generalise the problem solved by the algorithm
- Understand what makes the algorithm work
- Axiomatise those properties, create new abstract structures
- Prove theorems about those abstract structures

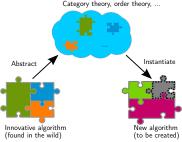




- Generalise the problem solved by the algorithm
- Understand what makes the algorithm work
- Axiomatise those properties, create new abstract structures
- Prove theorems about those abstract structures
- Instantiate (have in mind the contexts in which we want to)



### "Semantics applied to algorithmic concepts"

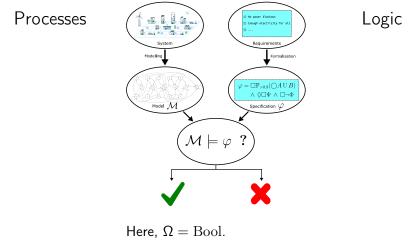


Category theory, order theory, ...

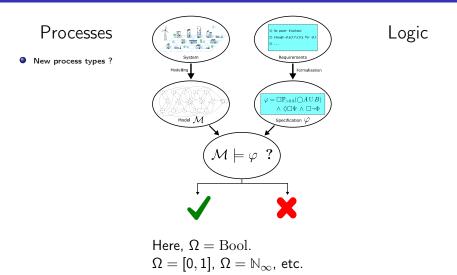
- Generalise the problem solved by the algorithm
- Understand what makes the algorithm work
- Axiomatise those properties, create new abstract structures
- Prove theorems about those abstract structures.
- Instantiate (have in mind the contexts in which we want to)



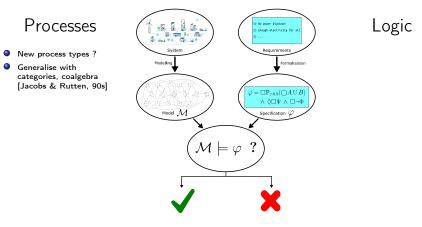
## Broader Context: Model Checking





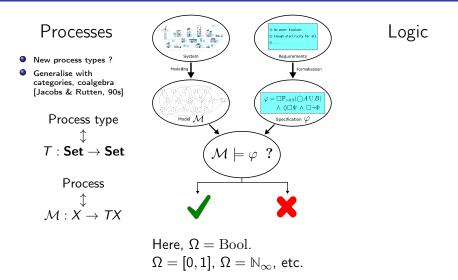




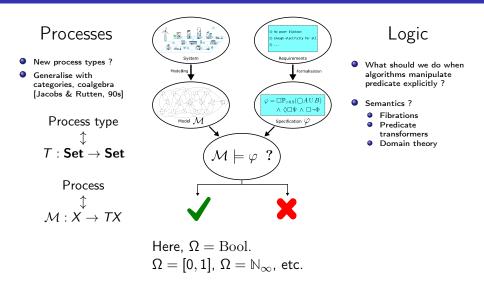


Here,  $\Omega = Bool$ .  $\Omega = [0, 1], \ \Omega = \mathbb{N}_{\infty}$ , etc.









# Base algorithm [CAV20]

#### Widest Paths and Global Propagation in Bounded Value Iteration for Stochastic Games

Kittiphon Phalakarn<sup>1\*</sup>, Toru Takisaka<sup>2</sup>, Thomas Haas<sup>3</sup>, and Ichiro Hasuo<sup>2,4</sup>

 <sup>1</sup> University of Waterloo, Waterloo, Canada **ipai Larentizevaterloo**: a <sup>2</sup> National Institute of Informatics, Tokyo, Japan (taki taka, hano) feni i.a.; J. Technical University of Arbumathewig, Braumchewig, Germany <sup>2</sup> Technical University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Gradwate University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Janan <sup>4</sup> The Source University for Arbumed Studies (SOKENDA), Takoya, Ja

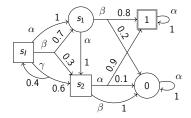
Abstract. Solving atolastic panes with the reachability objective in a factor of the solution of the dect, in addition to local propagation by the BdBman patient has been detecned as the solution of the dect, in addition to local propagation by the BdBman patient has been detecned as the solution of the manner, we construct a weighted graph and solve the solution of the solution

#### 1 Introduction

#### 1.1 Stochastic Game (SG)

A storbackic game [23] is a two-player game played on a graph. In an SG, an action of a player causes a trainition from the current state s to a successor  $e^i$ , with the latter chosen from a prescribed probability distribution  $\delta(e, a, e^i)$ . Under the reachability objective, the two players (called *Maximizer* and *Minimizer*) aim to maximize and minimize, respectively, the reachability probability to a desimated target state.

Stochastic games are a fundamental construct in theoretical computer science, especially in the analysis of probabilistic systems. Its complexity is in-



2.5-player game

 $\mathbb{P}(\Diamond 1) = ?$ 

### A novel algorithm for reachability in Stochastic Games



### Base algorithm – Three main ingredients

• Value Iteration (VI) [Bellman, 1957]

- 2.5-player game (SG) ightarrow 1.5-player game (MDP)
- 1.5-player game (MDP)  $\rightarrow$  Weighted Graph (WG)

Introduction ococo dependence dep

### Base algorithm – Three main ingredients

• Value Iteration (VI) [Bellman, 1957] (Compute a value function V(g) by iterating an operator  $\mathcal{B}$  $V(g) = \sup_{\alpha: \mathbf{Ord}} \mathcal{B}^{\alpha}(\bot)$ 

 $\uparrow$  Fixed point characterisation

- 2.5-player game (SG)  $\rightarrow$  1.5-player game (MDP)  $\uparrow$  Surrogate models
- 1.5-player game (MDP)  $\rightarrow$  Weighted Graph (WG)

Introduction ocooo Approach and Context Modelisation Fixed points ocooo Surrogate models Future work Conclusion oc

### Base algorithm – Three main ingredients

• Value Iteration (VI) [Bellman, 1957] (Compute a value function V(g) by iterating an operator  $\mathcal{B}$  $V(g) = \sup_{\alpha: \mathbf{Ord}} \mathcal{B}^{\alpha}(\bot)$ 

 $\uparrow$  Fixed point characterisation

- 2.5-player game (SG)  $\rightarrow$  1.5-player game (MDP)  $\uparrow$  Surrogate models
- 1.5-player game (MDP)  $\rightarrow$  Weighted Graph (WG)

# Incremental and Approximative

Approximate the solution to a hard problem by solutions to simple problems

Converge to the solution

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
| 00000        | 00000                | 000000       | 00000000     | 00000            | 00          | 00         |

# Theoretical ingredients

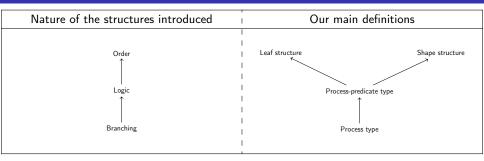
- Category theory, coalgebra, enriched categories
- Order theory
- Semantics, weakest precondition semantics, domain theory, etc.

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      | 00000        |              |                  |             |            |

# Modelisation



# Contribution: definition of structures



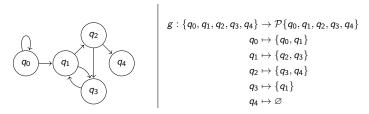
- **Process types** to model processes (e.g. graphs with accepting states)
- Process predicate types to model problems (e.g. reachability of accepting state in graphs)
- Leaf structure to axiomatise Value Iteration
- Shape structure to axiomatise Surrogate Models



### Model processes – From [Jacobs & Rutten, 90s]

### Definition (Coalgebra)

- A coalgebra is a  $g: X \to TX$ , where
- X : Set is the state space,
- $T : \mathbf{Set} \to \mathbf{Set}$  is the *process type*.



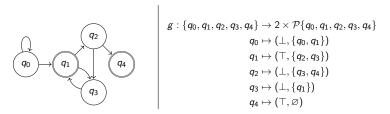
 ${\mathcal P}$  as the process type of graphs



### Model processes – From [Jacobs & Rutten, 90s]

### Definition (Coalgebra)

- A coalgebra is a  $g: X \to TX$ , where
- X : Set is the state space,
- $T : \mathbf{Set} \to \mathbf{Set}$  is the *process type*.



 $2 \times \mathcal{P}$  as the process type of graphs with accepting states

## Model processes – From [Jacobs & Rutten, 90s]

### Definition (Coalgebra)

A coalgebra is a  $g: X \to TX$ , where

- X : Set is the state space,
- $T : \mathbf{Set} \to \mathbf{Set}$  is the *process type*.

### Very flexible!

- $\bullet \ \mathcal{D}$  for Markov chains
- $2 imes (1 + (-))^{\Sigma}$  for Deterministic Automata
- $2 imes \operatorname{Hom}(\Sigma, 1 + (-))$  for Non-deterministic Automata
- $\{\bot,\top\}\times\{\Box,\bigcirc\}\times\mathcal{PD}(-)$  for Stochastic Games

• etc.

Introduction Approach and Context Modelisation ocooco Surrogate models Conclusion ocooco oco

# Model problems – From [Hasuo, 15]

### Definition (Process predicate type)

A ppt is a tuple  $\mathcal{T} = (\mathcal{T}, \Omega, \tau)$ , where

- $T : \mathbf{Set} \to \mathbf{Set}$  is a process type,
- $\Omega$  : Set is a *truth object*,
- $\tau$  :  $T\Omega \rightarrow \Omega$  is a modality.

### Definition (Weakest precondition transformer)

Given  $\mathcal{T} = (T, \Omega, \tau)$ ,  $g : X \to TX$ , we introduce the predicate transformer

$$egin{aligned} g^*_{ au} &: \Omega^X o \Omega^X \ p &\mapsto au \circ \mathsf{T} p \circ g \end{aligned}$$

i.e. 
$$g_{\tau}^{*}(p): X \xrightarrow{g} TX \xrightarrow{Tp} T\Omega \xrightarrow{\tau} \Omega$$

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |  |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|--|
| 00000        | 000000               | 000000       | 00000000     | 00000            | 00          | 00         |  |

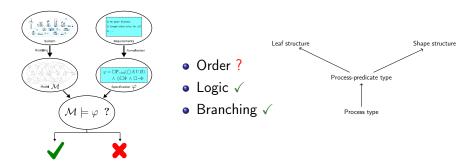
# Model problems – Examples of ppt

| Problem                         | Process predicate type                                                                                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------|
| E◊1 in NTS                      | $(2 \times \mathcal{P}(-), \operatorname{Bool}, \top + \operatorname{sup})$                            |
| $A\Diamond 1$ in NTS            | $(2 \times \mathcal{P}(-), \text{Bool}, \top + \inf)$                                                  |
|                                 |                                                                                                        |
| $\mathbb{P}(\Diamond 1)$ in MC  | $ig(2	imes\mathcal{D}(-),[0,1],1+\mathbb{E}ig)$                                                        |
| $\mathbb{P}(\Diamond 1)$ in MDP | $(2 	imes \mathcal{PD}(-), [0,1], 1 + sup \circ \mathbb{E})$                                           |
| $\mathbb{P}(\Diamond 1)$ in SG  | $(2 \times 2 \times \mathcal{PD}(-), [0, 1], (1 + sup \circ \mathbb{E}) + (1 + inf \circ \mathbb{E}))$ |

Also suited to graph problems.

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      | 000000       |              |                  |             |            |

# Model model-checking – Conclusion



| Type of model                  | $\longleftrightarrow$ | Process type $T : \mathbf{Set} \to \mathbf{Set}$ |
|--------------------------------|-----------------------|--------------------------------------------------|
| Specific model                 | $\longleftrightarrow$ | Coalgebra $g:X	o TX$                             |
| Type of model-checking problem | $\longleftrightarrow$ | $Ppt\;({\mathcal{T}},\Omega,\tau)$               |

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      |              | 0000000      |                  |             |            |

# Fixed points

An example: Bellman Operator as Weakest Precondition

$$\mathbb{P}(\Diamond 1) ext{ in SG } \longleftrightarrow (2 imes 2 imes \mathcal{PD}(-), [0, 1], eta)$$

### Example

With the Bellman modality

$$\begin{array}{l} \beta: 2 \times 2 \times \mathcal{PD}[0, 1] \longrightarrow [0, 1] \\ (-, \top, -) \longmapsto 1 \\ (\Box, \bot, t) \longmapsto \sup_{d \in t} \mathbb{E}(d) \\ (\bigcirc, \bot, t) \longmapsto \inf_{d \in t} \mathbb{E}(d) \end{array}$$

For any Stochastic Game  $g: X \to 2 \times 2 \times \mathcal{PDX}$ , The weakest precondition transformer  $g_{\beta}^*$  is simply the Bellman Operator!

$$\mathcal{B} = g_{\beta}^* : [0,1]^X \longrightarrow [0,1]^X$$

$$p \longmapsto \begin{pmatrix} x \longmapsto \begin{cases} 1 & \text{if } x \text{ is a goal state} \\ \sup_a \sum_y \delta(x,a,y) p(y) & \text{if } x \text{ belongs to Maximizer} \\ \inf_a \sum_y \delta(x,a,y) p(y) & \text{if } x \text{ belongs to Minimizer} \end{cases}$$



An example: Fixed point characterisation, Value Iteration

• 
$$\mathbb{P}(\Diamond 1) \text{ in SG } \longleftrightarrow (2 \times 2 \times \mathcal{PD}(-), [0, 1], \beta)$$
  
•  $g_{\beta}^* : [0, 1]^X \to [0, 1]^X$ 

Take the usual  $([0,1], \leq)$  : **CLat**, pointwise order on  $[0,1]^X$ . Then,

$$\mathbb{P}(\Diamond 1) = \operatorname{lfp} g_{\beta}^*$$

Using Knaster-Tarski / Cousot-Cousot, since  $g^*_\beta$  is monotone,

$$\mathbb{P}(\Diamond 1) = \sup_{lpha: \mathsf{Ord}} (g^*_eta)^lpha(ot).$$

This can be generalised!



Ppt  $\mathcal{T} = (T, \Omega, \tau)$ , coalgebra  $g : X \to TX$ .

- VI algorithms compute the value function V(g) of g in  $\mathcal{T}$ .
- We want to define V generally by saying

$$V(g) := \operatorname{lfp} g_{ au}^* = \sup_{lpha: \operatorname{\mathsf{Ord}}} (g_{ au}^*)^{lpha}(ot)$$



Ppt  $\mathcal{T} = (\mathcal{T}, \Omega, \tau)$ , coalgebra  $g : X \to TX$ .

- VI algorithms compute the value function V(g) of g in  $\mathcal{T}$ .
- We want to define V generally by saying

$$V(g) := \operatorname{lfp} g_{ au}^* = \sup_{lpha: \operatorname{\mathsf{Ord}}} (g_{ au}^*)^{lpha}(ot)$$

• For that, make  $\Omega$  a complete lattice, and  $g_{ au}^*$  monotone.



Ppt  $\mathcal{T} = (T, \Omega, \tau)$ , coalgebra  $g : X \to TX$ .

- VI algorithms compute the value function V(g) of g in  $\mathcal{T}$ .
- We want to define V generally by saying

$$V(g) := \operatorname{lfp} g_{ au}^* = \sup_{lpha: \operatorname{\mathsf{Ord}}} (g_{ au}^*)^{lpha}(ot)$$

- For that, make  $\Omega$  a complete lattice, and  $g_{ au}^*$  monotone.
- In the next slide, we provide a theorem to check monotonicity easily, looking only at T and  $\tau$  (not g).

"Monotone liftings provide fixed points"

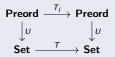


Leaves, fixed points, VI algorithms (2) – Axiomatise

Ppt 
$$\mathcal{T} = (\mathcal{T}, \Omega, \tau)$$
,  $\Omega_I = (\Omega, \leq)$ : CLat.

#### Theorem (Leaf structure)

To construct a fixed point theory (i.e. to ensure that each  $g_{\tau}^*$  is monotone), it is sufficient to construct a lifting



where  $T_l$ : **Preord**  $\rightarrow$  **Preord** is enriched over **Preord** and  $\tau$ :  $T_l(\Omega, \leq) \rightarrow (\Omega, \leq)$  is monotone.

"Monotone liftings provide fixed points"

#### Definition (Leaf structure)

In such conditions,  $(T_I, \Omega_I, \tau)$  is called a ppt with leaf structure.

# Leaves, fixed points, VI algorithms (3) – Recipe

#### Theorem (Family of examples)

The family  $\mathcal{F}_1$  is a family of ppt with leaf structure.

 $\frac{\Omega: \mathbf{CLat}, A: \mathbf{Set}, \tau: DA \to \Omega}{(\Delta + \Omega, \tau): \mathcal{F}_{\mathbf{r}}}(Constant \ ppt) \qquad \frac{\Omega: \mathbf{CLat}, A: \mathbf{Set}, \tau: \operatorname{Hom}(A, \Omega) \to \Omega}{(\operatorname{Hom}(A, -), \Omega, \tau): \mathcal{F}_{\mathbf{r}}}(Reader \ ppt)$  $\frac{\Omega: \mathbf{CLat}}{(\mathcal{P}_{em}, \Omega, \sup): \mathcal{F}_1}(Max \; game) = \frac{\Omega: \mathbf{CLat}}{(\mathcal{P}_{em}, \Omega, \inf): \mathcal{F}_1}(Min \; game) = \frac{(\mathcal{D}_{11}, [0, 1], \mathbb{E}): \mathcal{F}_1}{(\mathcal{D}_{11}, [0, 1], \mathbb{E}): \mathcal{F}_1}(Random \; process)$  $(W,+): \mathbf{Monoid}, \ (W,\leq_+): \mathbf{CLat}, \ \tau: (\mathrm{Hom}_{\mathrm{fin}}(W,W), \preceq_{tl}) \rightarrow (W,\leq_+) \ (Generalised \ random \ process) \ (W, \leq_+) \ (W, \otimes_+) \ (W, \otimes_+)$  $(\operatorname{Hom}_{\operatorname{fin}}(-, W), W, \tau) : \mathcal{F}_1$  $\frac{\mathcal{T}_{a} = (T_{a}, \Omega_{a}, \tau_{a}) : \mathcal{F}_{1}, \mathcal{T}_{b} = (T_{b}, \Omega_{b}, \tau_{b}) : \mathcal{F}_{1}}{\mathcal{T}_{a} \times \mathcal{T}_{a} : = (T_{a} \times \Omega_{a}, \tau_{a}) : \mathcal{F}_{1}, \mathcal{T}_{b} = (T_{b}, \Omega, \tau_{b}) : \mathcal{F}_{1}}(Coproduct) \qquad \frac{\mathcal{T}_{a} = (T_{a}, \Omega, \tau_{a}) : \mathcal{F}_{1}, \mathcal{T}_{b} = (T_{b}, \Omega, \tau_{b}) : \mathcal{F}_{1}}{\mathcal{T}_{a} + \mathcal{T}_{a} : = (T_{a} + T_{b}, \Omega, \tau_{a} + \tau_{b}) : \mathcal{F}_{1}}(Coproduct)$  $\frac{\mathcal{T}_{a} = (T_{a}, \Omega, \tau_{a}) : \mathcal{F}_{1}, \mathcal{T}_{b} = (T_{b}, \Omega, \tau_{b}) : \mathcal{F}_{1}}{\mathcal{T}_{a} \circ \mathcal{T}_{b} := (T_{a} \circ T_{b}, \Omega, \tau_{a} \circ \tau_{a} \tau_{b}) : \mathcal{F}_{1}} (Composition) \qquad \frac{\mathcal{T} = (T, \Omega, \tau) : \mathcal{F}_{1}, \tilde{\tau} : T\Omega \to \Omega}{(T, \Omega, \tilde{\tau}) : \mathcal{F}_{1}} (Modality \ replacement)$ 

"Any problem with non-determinism (choice or randomness), where players optimise expectation, can be solved using VI"

#### Leaf structure – Conclusion

- **Represent** model checking problems as ppt.
- Axiomatise the conditions enabling VI as "ppt with leaf structure".
- In this nice categorical context, **prove** that VI works.
- Explain the "categorical essence" of VI.
- Instantiate to a large family of examples.

VI has meaning for problem  $\mathcal{T}\iff \mathcal{T}$  admits a "monotone lifting"

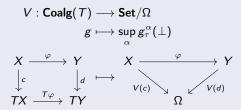


## Interlude – Categorical Structure

Lemma (Functoriality and Monotonicty of Value)

Let  $\mathcal{T} = (\mathcal{T}, \Omega, \tau)$  be a ppt with leaf structure  $\mathcal{T}_l$ .

۲



is a well-defined **Set**-functor.

• Moreover, for pointwise orders based on  $\Omega_l$ , and any  $c, d: X \to TX$ ,

$$c_{ au}^* \leq d_{ au}^* \implies V(c) \leq V(d).$$

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      |              |              | 00000            |             |            |

# Surrogate models



Axiomatise the conditions enabling BVI with surrogate models.

 Two ingredients. Start with "shape structures" on ppt, and create "connections" T<sub>↓</sub> ⊲ T<sub>↑</sub>.



- Two ingredients. Start with "shape structures" on ppt, and create "connections" T<sub>↓</sub> ⊲ T<sub>↑</sub>.
- Suppose that you want to compute V<sub>↓</sub>(g<sub>↓</sub>).
   If we have leaf structure + "tight" connection

$$V_{\downarrow}(g_{\downarrow}) := \operatorname{lfp}((g_{\downarrow})^{*}_{\tau_{\downarrow}}) = \sup_{\alpha: \operatorname{Ord}} p_{\alpha} = \inf_{\alpha: \operatorname{Ord}} V_{\uparrow}(g_{\alpha}).$$

- Two ingredients. Start with "shape structures" on ppt, and create "connections" T<sub>↓</sub> ⊲ T<sub>↑</sub>.
- Suppose that you want to compute V<sub>↓</sub>(g<sub>↓</sub>).
   If we have leaf structure + "tight" connection

$$V_{\downarrow}(g_{\downarrow}) := \mathrm{lfp}\big((g_{\downarrow})^*_{\tau_{\downarrow}}\big) = \sup_{\alpha:\mathsf{Ord}} p_{\alpha} = \inf_{\alpha:\mathsf{Ord}} V_{\uparrow}(g_{\alpha}).$$

- Lower bounds  $p_{\alpha}$  provided by VI.
- Upper bounds V<sub>↑</sub>(g<sub>α</sub>) are solutions of surrogate models.
   The surrogate problem g<sub>α</sub> is built from the lower bound p<sub>α</sub>.

## Shapes, connections and BVI algorithms (2) – Intuition

#### Axiomatise the conditions enabling BVI with surrogate models.

• We need to compare the branching structures of processes with different types. (Example: Minimizer restriction in SG, going to SG or MDP)

## Shapes, connections and BVI algorithms (2) – Intuition

- We need to compare the branching structures of processes with different types. (Example: Minimizer restriction in SG, going to SG or MDP)
- First, compare branching structure on a single type. "Shape structure" Extension *T<sub>s</sub>* : Set → Preord compatible with *τ*. *τ* : *T<sub>s</sub>*Ω = (*T*<sub>0</sub>Ω<sub>0</sub>, ⊆) → (Ω<sub>0</sub>, ≤)

## Shapes, connections and BVI algorithms (2) – Intuition

- We need to compare the branching structures of processes with different types. (Example: Minimizer restriction in SG, going to SG or MDP)
- First, compare branching structure on a single type. "Shape structure" Extension T<sub>s</sub> : Set → Preord compatible with τ. τ : T<sub>s</sub>Ω = (T<sub>0</sub>Ω<sub>0</sub>, ⊑) → (Ω<sub>0</sub>, ≤)
- Second, relate multiple types with connections  $(T_{\downarrow}, \Omega_s, \tau_{\downarrow}) \triangleleft (T_{\uparrow}, \Omega_s, \tau_{\uparrow})$ .

$$T_{\downarrow,0} \xrightarrow{\alpha_{\downarrow,0}} T_{*,0} \xleftarrow{\alpha_{\uparrow}} T_{\uparrow,0}.$$

$$T_{\downarrow,0} \xrightarrow{\alpha_{\downarrow,0}} T_{*,0} \xleftarrow{\alpha_{\uparrow}} T_{\uparrow,0}$$

#### Theorem (Double approximation)

Let  $\mathcal{T}_{\downarrow}$ ,  $\mathcal{T}_{\uparrow}$  be ppt with both shape and leaf structure such that  $\mathcal{T}_{\downarrow} \triangleleft \mathcal{T}_{\uparrow}$ . Moreover, suppose that  $\mathcal{T}_{\uparrow}$  is a **tight overapproximation** of  $\mathcal{T}_{\downarrow}$ .

For any  $g_{\downarrow}: X \to T_{\downarrow}X$ ,  $V_{\downarrow}(g_{\downarrow}): \Omega^X$  can be computed in the following way. For each ordinal  $\alpha$ , compute

- $p_{\alpha} = (g_{\downarrow})^{\alpha}_{\tau_{\perp}}(\bot) : \Omega^{X}$ ,
- $g_{\alpha}: X \to T_{\uparrow}X$  such that  $g_{\downarrow} \triangleleft g_{\alpha}$  and  $(g_{\downarrow})^*_{\tau_{\downarrow}}(p_{\alpha}) = (g_{\alpha})^*_{\tau_{\uparrow}}(p_{\alpha})$ ,

• 
$$V_{\uparrow}(g_{\alpha})$$
.

Then,

$$V_{\downarrow}(g_{\downarrow}) := \mathrm{lfp}\big((g_{\downarrow})^*_{\tau_{\downarrow}}\big) = \sup_{\alpha: \mathbf{Ord}} p_{\alpha} = \inf_{\alpha: \mathbf{Ord}} V_{\uparrow}(g_{\alpha}).$$

#### Theorem (Double approximation)

Let  $\mathcal{T}_{\downarrow}$ ,  $\mathcal{T}_{\uparrow}$  be ppt with both shape and leaf structure such that  $\mathcal{T}_{\downarrow} \triangleleft \mathcal{T}_{\uparrow}$ . Moreover, suppose that  $\mathcal{T}_{\uparrow}$  is a **tight overapproximation** of  $\mathcal{T}_{\downarrow}$ .

For any  $g_{\downarrow}: X \to T_{\downarrow}X$ ,  $V_{\downarrow}(g_{\downarrow}): \Omega^X$  can be computed in the following way. For each ordinal  $\alpha$ , compute

- $p_{\alpha} = (g_{\downarrow})^{\alpha}_{\tau_{\perp}}(\bot) : \Omega^{X}$ ,
- $g_{\alpha}: X \to T_{\uparrow}X$  such that  $g_{\downarrow} \triangleleft g_{\alpha}$  and  $(g_{\downarrow})^*_{\tau_{\downarrow}}(p_{\alpha}) = (g_{\alpha})^*_{\tau_{\uparrow}}(p_{\alpha})$ ,
- $V_{\uparrow}(g_{\alpha})$ .

Then,

$$V_{\downarrow}(g_{\downarrow}) := \mathrm{lfp}\big((g_{\downarrow})^*_{\tau_{\downarrow}}\big) = \sup_{\alpha: \mathsf{Ord}} p_{\alpha} = \inf_{\alpha: \mathsf{Ord}} V_{\uparrow}(g_{\alpha}).$$

#### Theorem (Double approximation)

Let  $\mathcal{T}_{\downarrow}$ ,  $\mathcal{T}_{\uparrow}$  be ppt with both shape and leaf structure such that  $\mathcal{T}_{\downarrow} \triangleleft \mathcal{T}_{\uparrow}$ . Moreover, suppose that  $\mathcal{T}_{\uparrow}$  is a **tight overapproximation** of  $\mathcal{T}_{\downarrow}$ .

For any  $g_{\downarrow}: X \to T_{\downarrow}X$ ,  $V_{\downarrow}(g_{\downarrow}): \Omega^X$  can be computed in the following way. For each ordinal  $\alpha$ , compute

- $p_{\alpha} = (g_{\downarrow})^{\alpha}_{\tau_{\perp}}(\bot) : \Omega^{X}$ ,
- $g_{\alpha}: X \to T_{\uparrow}X$  such that  $g_{\downarrow} \triangleleft g_{\alpha}$  and  $(g_{\downarrow})^*_{\tau_{\downarrow}}(p_{\alpha}) = (g_{\alpha})^*_{\tau_{\uparrow}}(p_{\alpha})$ ,

• 
$$V_{\uparrow}(g_{\alpha})$$
.

Then,

$$V_{\downarrow}(g_{\downarrow}) := \mathrm{lfp}ig((g_{\downarrow})^*_{\tau_{\downarrow}}ig) = \sup_{lpha: \mathrm{Ord}} p_{lpha} = \inf_{lpha: \mathrm{Ord}} V_{\uparrow}(g_{lpha}).$$

 Application: to solve a problem T<sub>↓</sub> by BVI, check that is is solvable by VI (leaves), and find a (tightly connected) surrogate problem T<sub>↑</sub>.

#### Theorem (Double approximation)

Let  $\mathcal{T}_{\downarrow}$ ,  $\mathcal{T}_{\uparrow}$  be ppt with both shape and leaf structure such that  $\mathcal{T}_{\downarrow} \triangleleft \mathcal{T}_{\uparrow}$ . Moreover, suppose that  $\mathcal{T}_{\uparrow}$  is a **tight overapproximation** of  $\mathcal{T}_{\downarrow}$ .

For any  $g_{\downarrow}: X \to T_{\downarrow}X$ ,  $V_{\downarrow}(g_{\downarrow}): \Omega^X$  can be computed in the following way. For each ordinal  $\alpha$ , compute

- $p_{\alpha} = (g_{\downarrow})^{\alpha}_{\tau_{\perp}}(\bot) : \Omega^{X}$ ,
- $g_{\alpha}: X \to T_{\uparrow}X$  such that  $g_{\downarrow} \triangleleft g_{\alpha}$  and  $(g_{\downarrow})^*_{\tau_{\downarrow}}(p_{\alpha}) = (g_{\alpha})^*_{\tau_{\uparrow}}(p_{\alpha})$ ,

• 
$$V_{\uparrow}(g_{\alpha})$$
.

Then,

$$V_{\downarrow}(g_{\downarrow}) := \mathrm{lfp}ig((g_{\downarrow})^*_{\tau_{\downarrow}}ig) = \sup_{lpha: \mathrm{Ord}} p_{lpha} = \inf_{lpha: \mathrm{Ord}} V_{\uparrow}(g_{lpha}).$$

- Application: to solve a problem T<sub>↓</sub> by BVI, check that is is solvable by VI (leaves), and find a (tightly connected) surrogate problem T<sub>↑</sub>.
- $V_{\uparrow}(g_{\alpha})$  must be easy to compute.

#### Theorem (Double approximation)

Let  $\mathcal{T}_{\downarrow}$ ,  $\mathcal{T}_{\uparrow}$  be ppt with both shape and leaf structure such that  $\mathcal{T}_{\downarrow} \triangleleft \mathcal{T}_{\uparrow}$ . Moreover, suppose that  $\mathcal{T}_{\uparrow}$  is a **tight overapproximation** of  $\mathcal{T}_{\downarrow}$ .

For any  $g_{\downarrow}: X \to T_{\downarrow}X$ ,  $V_{\downarrow}(g_{\downarrow}): \Omega^X$  can be computed in the following way. For each ordinal  $\alpha$ , compute

- $p_{\alpha} = (g_{\downarrow})^{\alpha}_{\tau_{\perp}}(\bot) : \Omega^{X}$ ,
- $g_{\alpha}: X \to T_{\uparrow}X$  such that  $g_{\downarrow} \triangleleft g_{\alpha}$  and  $(g_{\downarrow})^*_{\tau_{\downarrow}}(p_{\alpha}) = (g_{\alpha})^*_{\tau_{\uparrow}}(p_{\alpha})$ ,

• 
$$V_{\uparrow}(g_{\alpha})$$
.

Then,

$$V_{\downarrow}(g_{\downarrow}) := \mathrm{lfp}\big((g_{\downarrow})^*_{\tau_{\downarrow}}\big) = \sup_{\alpha:\mathsf{Ord}} p_{\alpha} = \inf_{\alpha:\mathsf{Ord}} V_{\uparrow}(g_{\alpha}).$$

- Application: to solve a problem T<sub>↓</sub> by BVI, check that is is solvable by VI (leaves), and find a (tightly connected) surrogate problem T<sub>↑</sub>.
- $V_{\uparrow}(g_{\alpha})$  must be easy to compute.
- Shape structures must be carefully constructed to enable connections.

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
| 00000        | 000000               | 000000       | 00000000     | 00000            | 00          | 00         |

## Conclusion

| Process                                     | $\leftrightarrow$ | Process type $T: \mathbf{Set} \to \mathbf{Set}$ |  |
|---------------------------------------------|-------------------|-------------------------------------------------|--|
| Problem                                     | $\leftrightarrow$ | Process predicate type ${\mathcal T}$           |  |
| Possibility of VI for ${\cal T}$            | $\Leftrightarrow$ | ${\mathcal T}$ can be given leaf structure      |  |
| Possibility of                              |                   | ${\mathcal T}$ can be given shape structure     |  |
| surrogate models of ${\mathcal T}$          | $\sim$            | / can be given snape structure                  |  |
| Possibility of <b>BVI</b> for $\mathcal{T}$ | ,                 | ${\mathcal T}$ can be given ${f both}$          |  |
|                                             | <=                | and tight connections can be found              |  |

#### "Semantics applied to algorithmic concepts"

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      |              |              |                  | 0           |            |

#### Future work

| Introduction<br>00000 | Approach and Context | Fixed points | Future work<br>○● | Conclusion |
|-----------------------|----------------------|--------------|-------------------|------------|
|                       |                      |              |                   |            |

#### Future work

# What has been done

- Categorical explanations of fixed-point theory and surrogate models for coalgebra
- Thus, recipes for VI and BVI algorithms in model checking

## Future work

• Avoid *transfinite* value iteration:

(Monotone  $g^*_{ au}) o$  (Scott-continuous  $g^*_{ au})$ 

Accomodate more kinds of surrogate models!
 Make the theory more useful with new connection types, such as

$$MDP \rightarrow WG$$

We have some ideas!

Also: new instances, fibrations, alternating fixed points, approximate connections,  $\mathbb{N}_\infty$  truth object, ...

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      |              |              |                  |             | 00         |

# Conclusion

| Introduction | Approach and Context | Modelisation | Fixed points | Surrogate models | Future work | Conclusion |
|--------------|----------------------|--------------|--------------|------------------|-------------|------------|
|              |                      |              |              |                  |             | 00         |

# Thank you !