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Goal: extract algorithmic ideas

Innovative algorithm
(found in the wild)

New algorithm
(to be created)

Category theory, order theory, ...

...

Abstract Instantiate
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In this work

Application domain → Model checking
Innovative algorithm → Solves reachability in Stochastic Games

Valuable ideas → Fixed points + Surrogate models

Innovative algorithm
(found in the wild)

New algorithm
(to be created)

Category theory, order theory, ...

...

Abstract Instantiate
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Contributions: axiomatise (Bounded) Value Iteration

VI BVI + (some) Surrogate Models
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Plan

1 Research approach
2 Representation of model checking problems
3 Axiomatisation of VI technique
4 Axiomatisation of surrogate model technique
5 Future work
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Approach and Context
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Goal: extract algorithmic ideas – Research approach

“Semantics applied to algorithmic concepts”

Innovative algorithm
(found in the wild)

Generalise the problem solved by the algorithm
Understand what makes the algorithm work
Axiomatise those properties, create new abstract structures
Prove theorems about those abstract structures
Instantiate (have in mind the contexts in which we want to)
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Broader Context: Model Checking

Processes

New process types ?

Generalise with
categories, coalgebra
[Jacobs & Rutten, 90s]

Process type
l

T : Set→ Set

Process
l

M : X → TX

Here, Ω = Bool.
Ω = [0, 1], Ω = N∞, etc.

Logic

What should we do when
algorithms manipulate
predicate explicitly ?

Semantics ?
Fibrations
Predicate
transformers
Domain theory
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Base algorithm [CAV20]
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2.5-player game

P(♦1) = ?

A novel algorithm for reachability in Stochastic Games
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Base algorithm – Three main ingredients

Value Iteration (VI) [Bellman, 1957]

(
Compute a value function V (g) by iterating an operator B

)
V (g) = supα:Ord Bα(⊥)

↑ Fixed point characterisation

2.5-player game (SG) → 1.5-player game (MDP)

l Surrogate models

1.5-player game (MDP) → Weighted Graph (WG)

Incremental and Approximative

Converge to the solution
Approximate the solution

to a hard problem
by solutions to simple problems

Categories and Preorders in Value Iteration 30 August 2021 11 / 35



Introduction Approach and Context Modelisation Fixed points Surrogate models Future work Conclusion

Base algorithm – Three main ingredients

Value Iteration (VI) [Bellman, 1957](
Compute a value function V (g) by iterating an operator B

)
V (g) = supα:Ord Bα(⊥)

↑ Fixed point characterisation

2.5-player game (SG) → 1.5-player game (MDP)
l Surrogate models
1.5-player game (MDP) → Weighted Graph (WG)

Incremental and Approximative

Converge to the solution
Approximate the solution

to a hard problem
by solutions to simple problems

Categories and Preorders in Value Iteration 30 August 2021 11 / 35



Introduction Approach and Context Modelisation Fixed points Surrogate models Future work Conclusion

Base algorithm – Three main ingredients

Value Iteration (VI) [Bellman, 1957](
Compute a value function V (g) by iterating an operator B

)
V (g) = supα:Ord Bα(⊥)

↑ Fixed point characterisation

2.5-player game (SG) → 1.5-player game (MDP)
l Surrogate models
1.5-player game (MDP) → Weighted Graph (WG)

Incremental and Approximative

Converge to the solution
Approximate the solution

to a hard problem
by solutions to simple problems

Categories and Preorders in Value Iteration 30 August 2021 11 / 35



Introduction Approach and Context Modelisation Fixed points Surrogate models Future work Conclusion

Theoretical ingredients

Category theory, coalgebra, enriched categories
Order theory
Semantics, weakest precondition semantics, domain theory, etc.
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Modelisation
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Contribution: definition of structures

Nature of the structures introduced Our main definitions

Order

Logic

Branching

Leaf structure Shape structure

Process-predicate type

Process type

Process types to model processes
(e.g. graphs with accepting states)
Process predicate types to model problems
(e.g. reachability of accepting state in graphs)
Leaf structure to axiomatise Value Iteration
Shape structure to axiomatise Surrogate Models
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Model processes – From [Jacobs & Rutten, 90s]

Definition (Coalgebra)

A coalgebra is a g : X → TX , where
X : Set is the state space,
T : Set→ Set is the process type.

q0 q1

q2

q3

q4

g : {q0, q1, q2, q3, q4} → P{q0, q1, q2, q3, q4}
q0 7→ {q0, q1}
q1 7→ {q2, q3}
q2 7→ {q3, q4}
q3 7→ {q1}
q4 7→ ∅

P as the process type of graphs
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Model processes – From [Jacobs & Rutten, 90s]

Definition (Coalgebra)

A coalgebra is a g : X → TX , where
X : Set is the state space,
T : Set→ Set is the process type.

Very flexible!
D for Markov chains
2× (1 + (−))Σ for Deterministic Automata
2×Hom(Σ, 1 + (−)) for Non-deterministic Automata
{⊥,>} × {�,©}× PD(−) for Stochastic Games
etc.
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Model problems – From [Hasuo, 15]

Definition (Process predicate type)

A ppt is a tuple T = (T ,Ω, τ), where
T : Set→ Set is a process type,
Ω : Set is a truth object,
τ : TΩ→ Ω is a modality.

Definition (Weakest precondition transformer)

Given T = (T ,Ω, τ), g : X → TX ,
we introduce the predicate transformer

g∗τ : ΩX → ΩX

p 7→ τ ◦ Tp ◦ g

i.e. g∗τ (p) : X
g→ TX

Tp→ TΩ
τ→ Ω.
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Model problems – Examples of ppt

Problem Process predicate type
E♦1 in NTS

(
2× P(−),Bool,>+ sup

)
A♦1 in NTS

(
2× P(−),Bool,>+ inf

)
P(♦1) in MC

(
2×D(−), [0, 1], 1 + E

)
P(♦1) in MDP

(
2× PD(−), [0, 1], 1 + sup ◦E

)
P(♦1) in SG

(
2× 2× PD(−), [0, 1], (1 + sup ◦E) + (1 + inf ◦E)

)
Also suited to graph problems.
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Model model-checking – Conclusion

Order ?
Logic X
Branching X

Leaf structure Shape structure

Process-predicate type

Process type

Type of model ←→ Process type T : Set→ Set
Specific model ←→ Coalgebra g : X → TX

Type of model-checking problem ←→ Ppt (T ,Ω, τ)
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Fixed points
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An example: Bellman Operator as Weakest Precondition

P(♦1) in SG ←→
(
2× 2× PD(−), [0, 1], β)

Example
With the Bellman modality

β : 2× 2× PD[0, 1] −→ [0, 1]

(−,>,−) 7−→ 1

(�,⊥, t) 7−→ sup
d∈t

E(d)

(©,⊥, t) 7−→ inf
d∈t

E(d)

For any Stochastic Game g : X → 2× 2× PDX ,
The weakest precondition transformer g∗β is simply the Bellman Operator!

B = g∗β : [0, 1]X −→ [0, 1]X

p 7−→

x 7−→


1 if x is a goal state
supa

∑
y δ(x , a, y)p(y) if x belongs to Maximizer

infa
∑

y δ(x , a, y)p(y) if x belongs to Minimizer
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An example: Fixed point characterisation, Value Iteration

P(♦1) in SG ←→
(
2× 2× PD(−), [0, 1], β)

g∗β : [0, 1]X → [0, 1]X

Take the usual ([0, 1],≤) : CLat, pointwise order on [0, 1]X . Then,

P(♦1) = lfp g∗β

Using Knaster-Tarski / Cousot-Cousot, since g∗β is monotone,

P(♦1) = sup
α:Ord

(g∗β)α(⊥).

This can be generalised!

Categories and Preorders in Value Iteration 30 August 2021 21 / 35
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Leaves, fixed points, VI algorithms (1) – Generalise

Ppt T = (T ,Ω, τ), coalgebra g : X → TX .

VI algorithms compute the value function V (g) of g in T .
We want to define V generally by saying

V (g) := lfp g∗τ = sup
α:Ord

(g∗τ )α(⊥)

For that, make Ω a complete lattice, and g∗τ monotone.

In the next slide, we provide a theorem to check monotonicity
easily, looking only at T and τ (not g).

“Monotone liftings provide fixed points”
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Introduction Approach and Context Modelisation Fixed points Surrogate models Future work Conclusion

Leaves, fixed points, VI algorithms (1) – Generalise

Ppt T = (T ,Ω, τ), coalgebra g : X → TX .

VI algorithms compute the value function V (g) of g in T .
We want to define V generally by saying

V (g) := lfp g∗τ = sup
α:Ord

(g∗τ )α(⊥)

For that, make Ω a complete lattice, and g∗τ monotone.

In the next slide, we provide a theorem to check monotonicity
easily, looking only at T and τ (not g).

“Monotone liftings provide fixed points”

Categories and Preorders in Value Iteration 30 August 2021 22 / 35



Introduction Approach and Context Modelisation Fixed points Surrogate models Future work Conclusion

Leaves, fixed points, VI algorithms (1) – Generalise

Ppt T = (T ,Ω, τ), coalgebra g : X → TX .

VI algorithms compute the value function V (g) of g in T .
We want to define V generally by saying

V (g) := lfp g∗τ = sup
α:Ord

(g∗τ )α(⊥)

For that, make Ω a complete lattice, and g∗τ monotone.

In the next slide, we provide a theorem to check monotonicity
easily, looking only at T and τ (not g).

“Monotone liftings provide fixed points”

Categories and Preorders in Value Iteration 30 August 2021 22 / 35



Introduction Approach and Context Modelisation Fixed points Surrogate models Future work Conclusion

Leaves, fixed points, VI algorithms (2) – Axiomatise

Ppt T = (T ,Ω, τ), Ωl = (Ω,≤) : CLat.

Theorem (Leaf structure)
To construct a fixed point theory (i.e. to ensure that each g∗τ is monotone),
it is sufficient to construct a lifting

Preord Preord

Set Set

U

Tl

U

T

where Tl : Preord→ Preord is enriched over Preord
and τ : Tl (Ω,≤)→ (Ω,≤) is monotone.

“Monotone liftings provide fixed points”

Definition (Leaf structure)

In such conditions, (Tl ,Ωl , τ) is called a ppt with leaf structure.
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Leaves, fixed points, VI algorithms (3) – Recipe

Theorem (Family of examples)
The family F1 is a family of ppt with leaf structure.

“Any problem with non-determinism (choice or randomness),
where players optimise expectation,

can be solved using VI”
Categories and Preorders in Value Iteration 30 August 2021 24 / 35
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Leaf structure – Conclusion

Represent model checking problems as ppt.
Axiomatise the conditions enabling VI as “ppt with leaf structure”.
In this nice categorical context, prove that VI works.
Explain the “categorical essence” of VI.
Instantiate to a large family of examples.

VI has meaning for problem T ⇐⇒ T admits a “monotone lifting”
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Interlude – Categorical Structure

Lemma (Functoriality and Monotonicty of Value)
Let T = (T ,Ω, τ) be a ppt with leaf structure Tl .

V : Coalg(T ) −→ Set/Ω

g 7−→ sup
α

gατ (⊥)

X Y

TX TY

ϕ

c d

Tϕ

7−→
X Y

Ω
V (c)

ϕ

V (d)

is a well-defined Set-functor.

Moreover, for pointwise orders based on Ωl , and any c, d : X → TX ,

c∗τ ≤ d∗τ =⇒ V (c) ≤ V (d).
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Surrogate models
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Shapes, connections and BVI algorithms (1) – Result

Axiomatise the conditions enabling BVI with surrogate models.

Two ingredients. Start with “shape structures” on ppt,
and create “connections” T↓ / T↑.

Suppose that you want to compute V↓(g↓).
If we have leaf structure + “tight” connection

V↓(g↓) := lfp
(
(g↓)

∗
τ↓

)
= sup

α:Ord
pα = inf

α:Ord
V↑(gα).

Lower bounds pα provided by VI.

Upper bounds V↑(gα) are solutions of surrogate models.
The surrogate problem gα is built from the lower bound pα.
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Shapes, connections and BVI algorithms (2) – Intuition

Axiomatise the conditions enabling BVI with surrogate models.
We need to compare the branching structures of processes with different types.
(Example: Minimizer restriction in SG, going to SG or MDP)

First, compare branching structure on a single type. “Shape structure”
Extension Ts : Set→ Preord compatible with τ .
τ : TsΩ = (T0Ω0,v)→ (Ω0,≤)

Second, relate multiple types with connections (T↓,Ωs , τ↓) / (T↑,Ωs , τ↑).

T↓,0
α↓

=⇒ T∗,0
α↑⇐= T↑,0.

T↓Ω T∗Ω T↑Ω

Ω

α↓,Ω0

≤
τ↓

τ∗

α↑,Ω0

≤
τ↑
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Shapes, connections and BVI algorithms (3) – Comment

Theorem (Double approximation)
Let T↓, T↑ be ppt with both shape and leaf structure such that T↓ / T↑.
Moreover, suppose that T↑ is a tight overapproximation of T↓.

For any g↓ : X → T↓X , V↓(g↓) : ΩX can be computed in the following way.
For each ordinal α, compute

pα = (g↓)
α
τ↓ (⊥) : ΩX ,

gα : X → T↑X such that g↓ / gα and (g↓)
∗
τ↓ (pα) = (gα)∗τ↑ (pα),

V↑(gα).

Then,
V↓(g↓) := lfp

(
(g↓)

∗
τ↓

)
= sup
α:Ord

pα = inf
α:Ord

V↑(gα).

Application: to solve a problem T↓ by BVI, check that is is solvable
by VI (leaves), and find a (tightly connected) surrogate problem T↑.

V↑(gα) must be easy to compute.

Shape structures must be carefully constructed to enable connections.
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Conclusion

Process ↔ Process type T : Set→ Set
Problem ↔ Process predicate type T

Possibility of VI for T ⇔ T can be given leaf structure
Possibility of ⇐ T can be given shape structuresurrogate models of T

Possibility of BVI for T ⇐ T can be given both
and tight connections can be found

“Semantics applied to algorithmic concepts”
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Future work
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Future work

What has been done
Categorical explanations of
fixed-point theory and surrogate models for coalgebra
Thus, recipes for VI and BVI algorithms in model checking

Future work
Avoid transfinite value iteration:

(Monotone g∗τ ) → (Scott-continuous g∗τ )
Accomodate more kinds of surrogate models!
Make the theory more useful with new connection types, such as

MDP →WG

We have some ideas!
Also: new instances, fibrations, alternating fixed points, approximate connections, N∞ truth object, ...
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Thank you !
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