
Categories and Preorders in Value Iteration:
Fixed Points and Surrogate Models

Internship Report

Louis Rustenholz,
supervised by Ichiro Hasuo and Jérémy Dubut

August 22, 2021

The goal of this paper is to understand and generalise modern model-checking techniques based on fixed point
characterisations. To do this, we leverage the general coalgebraic view of processes, and study order structures
that may arise.

We encode branching structure in process types, additional logical structure in process-predicate types and
fixed point problems as process-predicate types with leaf structures. Moreover, we approximate processes by
simpler kind of processes by comparing process-predicate types with shape structures.

This paper has two main contributions, which can be used as recipes for value iteration (VI) and bounded
value iteration (BVI) algorithms.

The first main contribution is a theorem simplifying the verification of monotonicity hypotheses at the heart
of VI algorithms.

It is striking that solutions of most problems about processes can be characterised as fixed points of weakest-
precondition transformers, defined on well-chosen modalities. We understand this through the notion of leaf
structure, which encodes sufficient conditions that make predicate transformers be monotone, thus proving the
existence of fixed points through the Knaster-Tarski theorem.
In particular, we generalise the result that, even with infinite state space and branching, transfinite value

iteration solves the reachability problem for stochastic games.

The second main contribution is a double approximation theorem based on comparison of process types.
In model checking, it is useful to model complex processes with simpler kind of processes, using surrogate

models. Problems in games and decision processes can be related. Problems in infinitely and finitely branching
transition systems can be related. Reachability in Markov Decision Processes can be related to widest paths in
weighted graphs [1].

The notions of shape structure, connection and tight connection help us to understand those relations, which
are more than a theoretical tool: they allow for approximate computations, used to improve value iteration
with speed-ups and bounds.
In particular, we prove that when a process-predicate T↓ with both shape and leaf structure has a “tight

overapproximation” T↑, least fixed points (suprema) in the lower model can be described as infima of a sequence
of least fixed points in the higher model, thus paving the way for BVI through surrogate models.

Finally, this theory lays the foundation for future results, e.g. for continuous value iteration and towards a
broader class of surrogate model algorithms for model checking.

1

Contents
1 Introduction 3

1.1 Scientific context . 3
1.1.1 Formal methods – Societal relevance . 3
1.1.2 Formal methods – A broad set of techniques . 4
1.1.3 Semantics . 5
1.1.4 Coalgebra . 5
1.1.5 Approximate and incremental methods – value iteration 6
1.1.6 Surrogate models . 7

1.2 Contributions . 7
1.3 Overview . 8
1.4 Acknowledgements . 9

2 Processes 11
2.1 Main definitions . 11
2.2 Intuition and examples . 12

3 Predicates on processes and preorder-enrichments 18
3.1 Logic on processes . 18
3.2 Preorder-enrichments . 22

3.2.1 Reminders about order theory and enriched category theory 23
3.2.2 Leaf and shape structure . 24

4 Fixed-point computations – leaf structure 27
4.1 Leaf structures induce monotone predicate transformers . 27
4.2 A family of examples . 30
4.3 Proof of Theorem 4.5 . 33

5 Approximation of process-predicate types – shape structure 37
5.1 Shape-monotonicity of predicate transformers . 37
5.2 Connections between ppt with shape structure . 40
5.3 An approximation theorem in the case of tight connections . 45

6 Examples and applications 54
6.1 Examples of ppt with leaf and shape structure . 54

6.1.1 SG, MDP, MC . 54
6.1.2 Liveness and safety for (in)finitely branching transition systems 56
6.1.3 Graphs . 57

6.2 Connections . 57
6.3 Applications of our theory: recipe for VI and BVI algorithm . 60
6.4 Extensions to the theory: new kind of connections for more surrogate models 61

6.4.1 A classical surrogate model: graph analysis of MC for almost sure properties 62
6.4.2 An innovative surrogate model: weighted graph analysis of MDP for reachability 62

7 Conclusion 64
7.1 Next steps . 64
7.2 Epilogue . 66

References 67

2

1 Introduction
The goal of this internship, described in the abstract, is to find theoretical structures helpful in generalising
modern model checking techniques, in particular based on value iteration and surrogate models.
This introduction is divided in five sections. The scientific context is broadly described in Section 1.1. Our

main contributions are listed in Section 1.2, and lines of research left open are then discussed in Section 7.1.
To simplify navigation in this report, its plan is described in Section 1.3. Finally, Section 1.4 is devoted to
acknowledgements.

1.1 Scientific context
1.1.1 Formal methods – Societal relevance

This internship – and the corresponding report – takes place in the context of formal methods, automated
verification and static analysis. Those fields, broadly construed, aim at tackling the following questions. Given
a formal model and a specification described as a logical formula, how can we know if the specification holds?
Given a specification, can we synthesise a controller that fulfils its requirements? How can we know if a
specification is satisfiable? Can we always know it? How fast? More generally, how can we analyse the
behaviour of a formal model, especially of computer programs?

System

Modelling

Requirements

Model Specification

1) No power blackout

2) Enough electricity for all

3) ...

Formalisation

Illustration – We want to check if the model of a system satisfies a formal specification.

Those questions are not only deep and interesting from the point of view of computer science and logics.
They have tremendous societal relevance.

3

First, formal methods can be used to chase bugs. In applications that require high level of confidence, bugs
can have a huge cost, both from a human and financial point of view. How can we bet our lives on automated
railways, autonomous cars, nuclear power stations, biomedical devices, etc. if they contain programs that could
be faulty? What about trusting websites and cryptographic protocols dealing with private data, or spacecrafts
that have cost billions? Over and over, examples have shown that testing is not enough for safety critical
systems, especially against malicious users.
However, formal methods are more than defensive tools that improve quality and reduce debugging costs.

They can be used as engines making algorithms possible, e.g. to generate control strategies, synthesise hardware,
or optimise compilers.

It must be emphasised that formal methods are not only about “computer programs” in the sense of OS
kernels, compilers and difficult algorithms. Formal methods are also used to study communication protocols,
(cyber-)physical systems, biochemical networks, games, safe machine learning, etc. Although some of those
cases are contemporary scientific challenges, formal methods may be used to deal with systems that are non-
deterministic, probabilistic, continuous or concurrent. Application fields include public transports and energy,
to safely control complex infrastructures like railway networks or continental-scale electrical grids.

To give one example among others, we can mention that many recent papers, including Section 6.6.1 of [2],
[3] and [4], wield model checking and stochastic games to study strategies in electrical grids with demand-side
management and renewable energy sources.

1.1.2 Formal methods – A broad set of techniques

Formal methods consist of a fairly broad set of techniques stemming from theoretical computer science and
applied logic. This report focuses on the model checking perspective, but many other approaches tackle the
problems studied by formal methods. While those subfields are strongly related together, we can isolate and
mention some of them.
• Deductive verification. In mathematics, it is usual to prove properties by manipulating specifications
as syntactic objects, through the use of a proof calculus and axioms. In the context of systems’ verification,
this often leads to proof obligations, invariants, preconditions and postconditions. Proofs may be done
with a high level of confidence by using an interactive theorem prover, such as Coq [5] (based on the
calculus of inductive constructions), Agda [6], Isabelle [7] or Lean [8]. Human interaction is required.

• Automated theorem proving. For some logics, proof calculi and models, the above process may be
completely or partially automated. For example, while the general question of satisfiability of first-order
logic is undecidable ([9], [10], [11]), it is decidable for particular first-order theories [12]. Similarly, several
modal logics [13] have been introduced as efficiently decidable fragments of first-order logic. The field of
descriptive complexity [14] provides valuable insight on the relationship between logics’ expressiveness and
computational complexity. Automated theorem prover include SAT solvers [15] and SMT solvers (such as
Alt-Ergo [16], CVC4 [17] and Z3 [18]).

• Model checking. This technique focuses less on the syntactic structure of the logic, and more on
exhaustive exploration of the model itself. An emphasis is put on exploration of the state space through
efficient algorithms. While graph and automata algorithms are central, model checking is not only about
these. To avoid state explosion, model checking tools may simplify the model, use partial order reduction,
take advantage of symmetry, find clever abstractions, use symbolic algorithms, etc. Tools include PRISM
[19], SPIN [20], TLC model checker for TLA+ [21] and UPPAAL [22].

• Abstract interpretation. Since analysis of computer programs and formal models is often undecidable
([23], [11]) or computationally intractable, sound abstractions are required. Abstract interpretation, based
on order theory, provides many tools to efficiently obtain partial information. Abstract interpretation is a
general theory of sound approximations of semantics, and is based on abstract domains, which can often
be given geometric interpretation. First developed in the late 1970s [24], it is extensively used in static
analysis (e.g. for compiler optimisation or verification) and in cooperation with other formal methods.
Tools based on abstract interpretation include Astrée [25], FLUCTUAT [26], or more recently neural
network verifiers like ERAN [27] or Sherlock [28].

When applying formal methods, several architectural choices are to be taken into account: the modelling
language, the specification language, and the verification tool.

4

1.1.3 Semantics

Semantics is a field of theoretical computer science, which may be described as the rigorous mathematical study
of the meaning of programming languages. In particular, it provides techniques to formally define this meaning.
This avoids relying on definitions made in prose, which are imprecise, subjective and impossible to analyse.
Over the years, semantics has found applications both to formal verification and to the design of new pro-

gramming languages, by providing insight and inspiration.
The long-term goal pursued in our paper is to understand the essence of state-of-the-art model checking

techniques and to generalise them to new instances. To achieve this goal, we have several reasons to tap into
semantics literature. Indeed, semantics is necessary to capture the essence of model checking, and provides
valuable tools for generalisation. In particular, we rely extensively on work in denotational semantics based on
category theory and order theory.

Three major approaches to semantics can be described.
• Operational semantics. Operational methods define the meaning of the language directly through a

term rewriting system, working directly on the syntax. They are usually easy to write (this may be seen
as describing a low-level interpreter of the language), useful for some applications, but are hard to analyse,
debug, and are tightly linked to a low-level description of an inefficient implementation. Examples include
small-step and big-step semantics for untyped lambda calculus, also used for LISP [29].

• Denotational semantics. Denotational methods try to give a mathematical meaning to the language, by
associating mathematical objects (denotations) to language constructs. They are high-level, more powerful
and less rigid than operational semantics, but can be much harder to design. Denotational semantics are
rather easy to analyse mathematically and amenable to techniques like abstract interpretation. Moreover,
they are often compositional, which gives them great structure and flexibility.

• Axiomatic semantics. In this third, coarsest method, no distinction is made between a phrase’s meaning
and its properties: its meaning is exactly what can be proven about it in some logic. A classical example
is Hoare logic [30], based on Hoare triples.

The case of denotational semantics is our main inspiration.
Category theory is an excellent tool for it, since it is especially well-suited to enforce compositionality. A

good general introduction to category theory is [31]. Many examples of categorical semantics can be given, e.g.
relying on the Curry-Howard-Lambek correspondence.

In the general study of processes (such as transition systems, automata, Markov chains, stochastic games,
etc.), categorical methods have given rise to the field of coalgebra [32].
Another complementary approach is by order theory, giving rise to domain theory [33] whose methods have

much interaction with the theory of abstract interpretation. A recurring theme in domain theory is the notion
of fixed points.

In this report, we benefit from the categorical perspective of coalgebra theory and the extensive results in
order theory obtained in the context of domain theory.

Moreover, we take inspiration from predicate transformer semantics [34], Dijkstra’s reformulation of Hoare
axiomatic semantics, which has been studied in the coalgebraic context by Ichiro Hasuo [35].

1.1.4 Coalgebra

The theory of coalgebra can be seen as a way to study processes (e.g. transition systems, automata, Markov
chains, stochastic games, etc.) and infinite structures (e.g. streams, infinite trees) in a generic way.
Since the initial goal of the internship was to generalise a result about surrogate models in the context of

stochastic games and weighted graphs, this theory of processes is a central foundation to our work. This is
discussed in Section 2.

An introduction to this theory can be found in the book “Introduction to Coalgebra – Towards Mathematics
of States and Observation” [32], written by Bart Jacobs, a founder of the field.

Since coalgebra generalises models that are central in computer science, such as automata, it has found
several applications over the years, not only to semantics but also to algorithmics. The following are only a few
examples.

5

• It helps to efficiently define notions of simulation and bisimulation in new contexts [36], [37]. (Bi)simulations
have several uses in theoretical computer science, and are especially useful to design model minimisation
algorithms that fight state space explosion in model checking.

• In particular, efficient algorithms for partition refinement have been found [38].

• It found applications to automata learning, where languages and models are learned from observations
[39].

• It has been used to implement coinductive types in functional languages, as illustrated by CoCaml [40].

Coalgebra theory, born in the late 90s, is thus one of the few major categorical fields in computer science.
However, classical coalgebra’s power is limited, since it mainly deals with the branching structure of processes.
Many modern model checking algorithms manipulate extensively predicates on the state space, and even (alter-
nating) fixed points as a core technique. For example, this can be used in incremental or approximate methods.
To account for this fact, there are proposals to extend the field of coalgebra with new, more expressive objects,

based on the study of fibrations ([41], [42], [43], [44], [45]).
In our work – mainly by lack of time – we don’t introduce explicitly the formalism of fibrations, even if it can

be found implicitly. Formalising the role of fibrations here could simplify our theory and ease its relationship
with other work in the coalgebraic field. However, this is left for future work.

1.1.5 Approximate and incremental methods – value iteration

Now that formal methods and foundational theoretical tools have been introduced, let us mention the kind of
algorithmic techniques we want to model.

It is increasingly understood that, for the practitioner, it is not always desirable to focus on finding an optimal
or exact solution to a problem. In some cases, optimisation or function problems have huge computational
complexity, whereas it is possible to find approximate solutions very efficiently.

The theoretical study of approximability and inapproximability is an active field of research. For example,
there are NP-hard optimisation problems – such as the knapsack problem – which enjoys Polynomial-Time
Approximation Schemes (PTAS), that compute an arbitrarily precise approximation of the optimal solution in
polynomial time [46]. On the other hand, inapproximability results can be obtained – a central conjecture is
the Unique Game Conjecture [47]. Interestingly, even undecidable problems like the halting problem may be
studied from an approximability standpoint [48].

In our case, we are especially interested in iterative incremental methods, the most known of which being
value iteration (VI) [49]. As explained in Section 4, when the solution of an optimisation problem can be
characterised as an extremal fixed point of a monotone function, this provides a VI algorithm, which computes
a sequence converging to that solution.
For example, it is possible to compute reachability probabilities in stochastic games – written V (G) – by

iterating the Bellman operator B. We have V (G) = supn∈N Bn(⊥) ([49], [1]), where the sequence (Bn(⊥))n∈N is
increasing, providing lower bounds Ln = Bn(⊥). Notice that V (G) appears as the least fixed point (lfp) of B.

⊥ = L0 ≤ L1 ≤ L2 ≤ · · · ≤ V (G).
For the practitioner, this algorithm has the advantage of being easily tuned for speed versus precision. How-

ever, an issue is that, at every step, it is impossible to know how close the current approximation is from the
solution. A natural heuristic would be to fix a threshold ε and stop the algorithm once Ln+1−Ln < ε, but this
has been shown to provide arbitrarily bad approximations [50].

To solve this problem and provide precision guarantees, bounded value iteration (BVI, also called interval
iteration) algorithms have been introduced ([50], [51]) Since a monotone operator (here B) is used, we may also
compute the decreasing sequence of upper bounds (Un)n∈N where Un := Bn(>).

⊥ = L0 ≤ L1 ≤ L2 ≤ · · · ≤
V (G)

> = U0 ≥ U1 ≥ U2 ≥ · · · ≥

6

An issue is that (Un) may not converge to V (G), since it converges to the greatest fixed point (gfp) of B, where
lfp and gfp might differ. It is thus not obvious how to define a good stopping criterion.

Ln lfp B

Un gfp B

n→∞

6=
n→∞

In the case of stochastic games, this can be solved by computations of end components ([50], [51]), but this
quickly becomes a bottleneck. A novel approach proposed in [1] is to introduce a surrogate model to create
upper bounds Ũn that do converge to the lfp V (G).

Moreover, in the general case, transfinite value iteration may be needed. This is discussed in Section 4.

1.1.6 Surrogate models

The concept of surrogate model comes from engineering, e.g. in chemistry [52], where there are used for
modelisation and simulation.
Surrogate model are simple models that mimic the behaviour of complex systems. While developing them

can be expensive and requires expertise, they approximate the behaviour of the underlying system to a good
precision and are much cheaper to evaluate.

A way to understand this idea is “improve our knowledge about the solution to a difficult problem by solving
simple problems”.

Even if this idea is very simple and powerful, it is very new to the field of model checking as a design principle.
An early result that may be seen as a simple example of this principle is the fact that many qualitative

properties about finite Markov chains can be computed purely by graph analysis, forgetting about transition
probabilities [13].

To the best of our knowledge, the only other example is found in the 2020 paper [1], where relations between
stochastic games, Markov decision processes, Markov chains and, most interestingly, weighted graphs, are used
to create a BVI algorithm for reachability probabilities in stochastic games.

A long-term goal pursued in this internship is to build a good theoretical understanding of this “base model
/ surrogate model” design principle, with the perspective of finding new instances and creating new model
checking algorithms.

1.2 Contributions

Our contributions are the following, the first three being the main ones.

• We propose a generic framework, based on the coalgebraic point of view and on order structures, to study
value iteration and surrogate models in processes.
Those recipes are summarised in Section 6.3.

• We provide a general theorem which packages all assumptions enabling VI algorithms, making them easy
to check (Theorems 4.1 and 4.5). In particular, this generalises the result that value iteration solves the
reachability problem in all stochastic games.
The structure enabling VI, which we call leaf structure, is understood as the lifting of a Set-endofunctor
to a monotone Preord-endofunctor (Definition 3.15).
We notice (Proposition 4.2) that the least fixed point and greatest fixed point operators are both functorial
and monotone.

• We provide an approximation theorem (Theorem 5.22) describing a particular kind of BVI algorithm using
surrogate models.

7

More generally, we study how branching structures impact value functions (Proposition 5.1, Corollary
5.15).
Order structures based on branching structures, which we call shape structures, are understood as the
extension of a Set-functor to Preord (Definition 3.17).
Moreover, a notion of connection and tight connection between several process types is studied in Sections
5.2 and 5.3 to gain a first understanding of surrogate models.

• Several instances of the general definitions and results are given throughout the paper, especially in
Sections 2.2, 3.1 and 6.

• In the study of preorders, a special place is given to the Egli-Milner and tailwise preorders (Examples 3.18
and 3.19), related to the suprema, infima and expectation modalities. Several monotonicity properties are
proven about them.

• Among other things, we give a description of the Bellman transformer as a weakest precondition trans-
former (Example 3.7).

• We explain why some of our results are optimal by providing counter-examples.

• Two simple examples of connections are given, one related to the approximation of a player’s strategy in a
multiplayer game, the other to the optimal scheduler in infinitely branching transition system (Examples
5.10 and 6.18).

1.3 Overview

This internship report is divided in several sections.

• You are currently in the introduction (Section 1), which discusses the scientific context and our contribu-
tions. It also gives an overview of the report and contains acknowledgements.
Possible lines of research for future work will be discussed in the conclusion (Section 7).

• Section 2 explains how we use the coalgebraic language to describe processes (such as transition systems,
automata, Markov chains and stochastic games) in a general way.
◦ Important definitions (process types, processes, coalgebra) are in Section 2.1.
◦ Intuition and illustrated examples are provided in Section 2.2.

• Section 3 then explains how to turn processes into problems with semantics.
◦ The base logical structure consists of predicates, truth objects and weakest precondition transformers,
and is explained in Section 3.1.
This section also gives many examples of what is meant by “a problem”. In particular, it explains
how the Bellman operator can be seen as a weakest precondition transformer in Example 3.7.

◦ Section 3.2 then explains how order structures can be added to process type, and is inspired by other
works, including that of Balan and Kurz [64], Jacobs [36] and Hasuo [35].
To do so, it starts by introducing relevant concepts from order theory and enriched category theory.
It then describes the two main order structures studied in this report. First, leaf structures, that
enable monotone predicate transformers, thus paving the way for VI algorithms. Then, shape struc-
tures that enable comparison of the branching structure of processes, thus paving the way for BVI
algorithms based on surrogate models.
Those two notions are then studied in Sections 4 and 5.

• Section 4 studies more precisely the notion of leaf structure, which gives us our first main result (Theorems
4.1 and 4.5).

8

◦ Section 4.1 explains why leaf structures are interesting.
When they exist, Knaster-Tarski and Cousot-Cousot theorems apply, thus making fixed point theories
possible (Theorem 4.1), even if transfinite iterations may be needed.
Then, a simple but important functoriality and monotonicity result (Proposition 4.2) is proven. It
will be used throughout the paper.
Finally, the question of convergence speed is studied.
◦ Section 4.2 then gives a large class of examples of leaf structures.
Anything defined on non-deterministic or stochastic branching with modalities based on suprema,
infima and expectation can be given a leaf structure by using Egli-Milner and tailwise preorders.
(Theorem 4.5).
◦ This theorem is proven in detail in Section 4.3.

• Section 5 then studies the notion of shape structure, going towards our second main result (Theorem
5.22).
◦ In Section 5.1, a shape-monotonicity results explains how shape structures may be used to compare
processes inside a process-type.
For example, this generalises the result that, in a stochastic game, reachability probabilities decrease
if Minimizer loses power.
◦ Section 5.2 then bridges the gap between multiple process-types by introducing connections (between
process-types) and comparison chains (between processes of different type).
◦ However, connections are not enough to smoothly obtain BVI algorithms. An additional, tightness
hypothesis is introduced and explained in Section 5.3, and we are finally able to prove Theorem 5.22.

• Finally, Section 6 is devoted to examples, applications, and discusses possible directions that could be
pursued to improve our theory.
◦ Section 6.1 gives instances of process-predicate types with leaf and shape structures, such as problems
on games, transition systems and graphs.
◦ Section 6.2 gives examples of connections between process-predicate types with shape structure,
thus showing to which extent our theory can go to accommodate base model / surrogate model
relationships.
◦ Section 6.3 takes a step back, and sums up how our theory can be used by the practitioner: it provides
recipes for VI and BVI algorithms.
◦ Finally, Section 6.4 discusses how we could extend the scope of our work, by accommodating new,
more interesting examples of surrogate models.

1.4 Acknowledgements

First and foremost, I would like to thank my internship advisers, Ichiro Hasuo and Jérémy Dubut. Thank
you both for all your constant support and remarks. Even though a global pandemic made it impossible to
come to Japan, I hope to be able to work with you again and finally meet you in person.

Thanks Ichiro for making all of this possible, for welcoming me at Erato MMSD, for giving the opportunity
to learn and explore a great subject, and for sharing your insights both into various fields of computer science
and on managing a diverse and vibrant research team. Thanks for making sure that I could make the most out
of my experience despite the time difference. I learned and explored a lot while working under your supervision.

Thanks Jérémy for being always there, for your pedagogy and for our great mathematical discussions, either
on intricate conjectures encountered during my internship or on exciting work that you made me discover. It
was always fun and helpful to speak with you.

I would also like to thank Samuel Mimram, for making me discover Erato MMSD, and Éric Goubault, for
giving references and advice towards this internship. More generally, I would like to thank École polytechnique

9

and the computer science department for creating the conditions making this internship possible.

From Erato MMSD, I would like to thank the whole team for being so welcoming. In particular, thanks to
Natsuki Urabe for his help with alternating fixed points and for telling me about various applications of the
theory studied in the internship. Thanks to the whole G0 group for their warm welcome and seminar. Thanks
to the G1 group, and in particular to Toru Takisaka, for inviting me to discuss my master’s project on tropical
abstract interpretation at the group’s seminar. Thanks to everyone in the student reading group on enriched
category theory and in the model checking group for inviting to participate in their activities and to learn with
them. Thanks to all of the administrative team for helping me through the process of trying to reach Japan and
attending LICS. Finally, a huge thanks to the organisers of the online social events, and in particular to Stefan
Klikovits, for making sure that informal discussions took place despite the pandemic, and for their amazing
welcome party!

To conclude I would like to thank my jury, Olivier Bournez and François Fages, for taking the time to study
this report and helping me progress.

10

2 Processes
In computer science in general, and in model checking in particular, many kinds of processes are of interest:
(in)finite transition systems, (non)deterministic automata, possibly non-terminating computations, multiplayer
games, Markov chains, Markov decisions processes, stochastic games, etc. The theory of coalgebras ([53], [54],
[32]) makes it possible to deal with such processes in a generic, categorical way.
The branching structure (non-deterministic, probabilistic, etc.) of such processes is encoded in what we call

process types, which we introduce in this section.
In the rest of the paper, we will put additional structure on process types to deal with modern model checking

techniques. Using logical structure and order structure, we will express predicates on the state space of processes,
give characterisations as fixed point problems, and model processes by simpler kinds of processes.

Order Leaf structure Shape structure

Logic Process-predicate type

Branching Process type

The branching strucure corresponds to the process-type. Logical and order structures are put above the
branching structure. Logical structure will turn a process (which has a process type) into a problem (which
has a process-predicate type) by adding semantics. We will see two kinds of order structure put above the
logical structure. The first (leaf structure) mixes branching and logical structures. The second (shape structure)
deals only with the branching structure (shape structure). In the next sections, we will see that leaf and shape
structures interact together.

2.1 Main definitions
Definition 2.1 (Process type). A process type T : Set→ Set is simply a Set endofunctor.

Definition 2.2 (Processes and coalgebra).
A process is a function g : X → TY where T is a process type.
More precisely, it is a tuple (T : Set→ Set, X : Set, Y : Set, g : Hom(X,TY)).
A coalgebra (or endoprocess) is a process where X = Y .
When T : Set → Set is a process type, the category of T -processes Pr(T) is the category whose objects are

processes of type T and whose arrows between g : X → TY and g′ : X ′ → TY ′ are all pairs of functions (ϕ,ψ)
making the following diagram commute.

X TY

X ′ TY ′

ϕ

g

Tψ

g′

The category of T -coalgebras (or T -endoprocesses) Coalg(T) is the (neither full nor wide) subcategory of
Pr(T) whose objects are coalgebras on T and whose arrows between g : X → TX and g′ : X ′ → TX ′ are all
functions ϕ making the following diagram commute.

X TX

X ′ TX ′

ϕ

g

Tϕ

g′

11

Remark 2.3 (Base category). Note that we are restricting ourselves to the category Set.
We may restrict further to the category of finite sets, Setfin, and define finite process types T : Setfin → Setfin,

finite processes g : X → TY with T : Setfin → Setfin, X,Y : Setfin, and finite coalgebras g : X → TX with
T : Setfin → Setfin, X : Setfin. Finite processes can be seen as processes on finite state space.
In other sections, we will add order structure to process types. Using the category Preord of preorders

and monotone functions, instead of the family Hom(Set,Set) of Set-endofunctors, we will consider the family
HomPreord(Preord,Preord) of monotone Preord-endofunctors, where “monotone” means that we restrict
ourselves to Preord-enriched functors.

More generally, we could study processes with type constructed on an arbitrary category, but this is outside
the scope of this paper, and all of our examples of process types come from Set.

The coalgebraic language of processes can be used to present and unify many results in automata theory,
game theory, etc. Before going further, we will describe how this formal notion of “processes” can be interpreted.

2.2 Intuition and examples
Example 2.4 (Intuition about processes). Let g : X → TY be a process.
X can be interpreted as the initial state space and Y as the final state space. g describes possible transitions

and observations. If x is the current state, g(x) is the “tree” of all properties locally observable (attributes of
the current state and possible next states). Coalgebras (endoprocesses) are simply processes with constant state
space.
For example, directed graphs can be seen as coalgebras on the covariant powerset functor P.
The following directed graph, on the left, would be represented as the following coalgebra, on the right.

q0 q1

q2

q3

q4

g : {q0, q1, q2, q3, q4} → P{q0, q1, q2, q3, q4}
q0 7→ {q0, q1}
q1 7→ {q2, q3}
q2 7→ {q3, q4}
q3 7→ {q1}
q4 7→ ∅

This can also be presented with trees.

•

q1q0

g(q0)

•

q3q2

g(q1)

•

q4q3

g(q2)

•

q1

g(q3)
•

g(q4)

We can “enrich the signature” to observe new phenomena. For example, to distinguish accepting states, we
can replace P by 2× P(−). Here are three representations of a coalgebra on this functor.

12

q0 q1

q2

q3

q4

g : {q0, q1, q2, q3, q4} → 2× P{q0, q1, q2, q3, q4}
q0 7→ (⊥, {q0, q1})
q1 7→ (>, {q2, q3})
q2 7→ (⊥, {q3, q4})
q3 7→ (⊥, {q1})
q4 7→ (>,∅)

•

•

q1q0

⊥

g(q0)

•

•

q3q2

>

g(q1)

•

•

q4q3

⊥

g(q2)

•

•

q1

⊥

g(q3)

•

•>

g(q4)

Remark 2.5 (Algebras and coalgebras). You may be starting to notice how convenient endofunctors are to
describe the “signature” of processes. The situation is similar to that of algebras for inductive data.
For T : Set→ Set, T -coalgebras are g : X → TX, while T -algebras are α : TX → X.
The distinction algebras versus coalgebras may be understood as the distinction data versus machines, or

construction versus observation, or (definitions and proofs by) induction versus coinduction.
This idea is presented in [54]. For our current purposes, the main insight to remember is that coalgebraic

objects have several observers (or destructors), in the same way as algebraic objects have multiple constructors.

The 2000 expository paper “Universal coalgebra: a theory of systems” [53] provides a great introduction to
the language of coalgebras, which unites the study of processes in computer science. This theory enjoyed many
successes over the years, some of which stemming from its approach of coinduction, bisimulation and process
minimisation.

To highlight the generality of this theory of processes, here are a few examples of process types.

13

Example 2.6. • Traditionally, (unlabelled) non-deterministic transition systems are described by a tuple
(S : Set,→ : P(S×S)). As we have already seen, NTS (or graphs, or Kripke structures) can be equivalently
seen as coalgebras of the covariant powerset functor P.

• Similarly, we choose to see NTS labelled on the alphabet Σ as coalgebras of process type P(Σ×−). Recall
that traditionally, they were represented by a tuple (S : Set,Σ : Set,→ : P(S × Σ× S)).

• If, like in many textbooks, we want to see Kripke structures as NTS where states are labelled with
atomic propositions from a set AP , we can define Kripke structures as coalgebras on P(AP) × P(−).
Adding P(AP)× · to a process type is the most general way of dealing with state attributes. We already
encountered the case Card(AP) = 1 when we wanted to distinguish goal states, and described NTS with
goal states as coalgebras on 2× P(−).

• Various restrictions can be encoded in the process type. NTS that are only finitely branching are modelled
by the finite powerset functor Pf . NTS without deadlocks are modelled by the non-empty powerset functor
P6=∅.

• Deterministic (unlabelled) transition systems (DTS) are simply coalgebras on the identity functor of Set.

• Markov Chains (MC) are modelled by the distribution functor D. The definition of D is given below at
Definition 2.8, and Example 2.9 is an example of MC.

• Possibly non-terminating computations, or (unlabelled) DTS with possible deadlock, can be seen as coal-
gebras on L : X 7→ 1 +X.
This illustrates how coproducts can be used to model different possibilities in branching.

• Labelled DTS with possible deadlock can be modelled on 1 + Σ × (−). An example of coalgebra on this
type is γ : Σ∞ → 1 + Σ×Σ∞, where Σ∞ is the set of finite and infinite strings on Σ and γ takes an empty
word to the first ∗ and a non-empty word to the tuple given by its head and tail.

• Composition is useful as well: (discrete) Markov Decision Processes (MDP) can be modelled by 2×PD(−),
where both non-deterministic and stochastic branching are observed, and we distinguish goals.

• Alternating stochastic games (ASG) can be modelled by 2× PDPD(−).

• Stochastic games (SG) can be modelled by 2× 2×PD(−), where the first attribute distinguishes between
the two players, and the second attribute distinguishes between goal and non-goal states.

• For a more complete example, consider deterministic finite automata (DFA), on the finite alphabet Σ,
with possible deadlocks and distinguished accepting states (but no distinguished initial states) can be
modelled by the Setfin-functor X 7→ 2× (1 +X)Σ.
Obviously, if we remove the finiteness hypothesis of the state space for DFA, we can simply use the
corresponding Set-functor 2×Hom(Σ, 1 + (−)).

• Similarly, for non-deterministic finite automata (NFA), we can use the Setfin-functor 2× P(Σ× (−)).
If we remove the finiteness hypothesis, we can use the corresponding Set-functor. If we want infinite state
spaces but only finite branching, we can use 2× Pf(Σ× (−)).

• Deterministic and non-deterministic (infinite) automata which have both input and output in Σ can be
modelled by 2×Hom(Σ, 1 + (−× Σ)) and 2× P(Σ× (−)× Σ) respectively.

• Weighted directed graphs (WG) with weights in a monoidW , modelled on the covariant functor Homfin(−,W)
of Definition 2.10, can be seen as generalisations of MP modelled on D.
Note that WG can also be seen as NTS with labelled transition, i.e. as coalgebras on P(W ×−). Those
two point of view are very different! It can be seen by the fact that there is no natural isomorphism
between Homfin(−,W) and P(W ×−). Transitions can be summed and related together in the first case,
while no such structure naturally exists in the second case, making transitions totally independent of each
other.

14

To end this section, we develop a few of those examples, which will be used again later.

Example 2.7. Consider the following decision process (or unlabelled NTS, or Kripke structure), which has an
infinite state space.

0 1 2 3

ω ω + 1 ω + 2 ω + 3

ω · 2

It can be described as a coalgebra g : X → PX on the powerset functor, with X = [0, ω · 2] the set of
ordinals smaller or equal than ω · 2, by setting g(0) = {0}, g(ω) = [0, ω), g(ω · 2) = [ω, ω · 2], and, for all n < ω,
g(n+ 1) = {n}, g(ω + n+ 1) = {ω + n}.
A similar example will be used later. Notice that 0 is reachable from all states, and that all executions starting

at a state α < ω · 2 eventually reach 0 in a finite number of steps. However, not all executions starting at ω · 2
eventually reach 0, since it is possible to loop at ω · 2 forever.

Definition 2.8 (Distribution functor). To describe stochastic branching, we use to distribution functor D,
which assigns to a set X the set of all probability distributions on X with finite support.

An element d : DX can be described as a function d : X → [0, 1], with finite support d−1((0, 1]), such that∑
x∈X d(x) = 1. It may also be represented as a finite set of tuples {(x, d(x)) | d(x) > 0}, which enjoys that

property that if (x, a), (x, b) both belong to this set then a = b.
The functor D takes functions f : X → Y to

Df : DX → DY

d 7→
(
y 7→

∑
x∈f−1(y)

d(x)
)
.

Example 2.9 (A Markov Chain).
An elementary type of processes with stochastic branching is the type of Markov Chains.
The following Markov chain, presented by Baier and Katoen in their Principles of model checking [13], is

attributed to Knuth and Yao and simulates dice with a fair coin. We present it visually as a graph, as an
explicit D-coalgebra, and with a tree representation of the coalgebra.

15

s0

s1,2,3 s6,4,5

s′1,2,3 s2,3 s4,5 s′6,4,5

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1 1

X := {s0, s1,2.3, s
′
1,2,3, s2,3, s6,4,5, s4,5, s

′
6,4,5,

q1, q2, q3, q4, q5, q6}

g : X → DX
s0 7→ {(s1,2,3, 0.5), (s4,5,6, 0.5)}

sa,b,c 7→ {(s′a,b,c, 0.5), (sb,c, 0.5)}
s′a,b,c 7→ {(sa,b,c, 0.5), (qa, 0.5)}
sb,c 7→ {(qb, 0.5), (qc, 0.5)}
qi 7→ {(qi, 1)}

•

s6,4,5s1,2,3
1
2

1
2

g(s0)

•

sb,cs′a,b,c
1
2

1
2

g(sa,b,c)

•

qasa,b,c
1
2

1
2

g(s′a,b,c)

•

qcqb
1
2

1
2

g(sb,c)

•

qi

1

g(qi)

The following definition is non-trivial, and hides additive structure in the functor’s behaviour on arrows.
Moreover, it does define a covariant functor (whereas the usual Hom(−, X) is a contravariant functor).

Definition 2.10. We can generalise the distribution functor D by considering weights in an arbitrary monoid
(W,+) and removing the requirement

∑
x d(x) = 1.

Let (W,+) be a monoid with identity element 0. We define the covariant functor

Homfin(−,W) : Set→ Set.

It takes sets X to the set of all functions d : X →W such that d−1(W \ {e}) is finite, i.e.

Homfin(X,W) = {d : X →W | d−1(W \ {e}) is finite},

and takes functions f : X → Y to

Homfin(f,W) : Homfin(X,W)→ Homfin(Y,W)

d 7→
(
y 7→

∑
x∈f−1(y)

d(x)
)
.

Remark 2.11. Note that elements d : Homfin(X,W) can be represented as element of Pf(W ×X), but that
this representation is not natural.
D is a subfunctor of Homfin(−, (R+,+)), with the additional requirement that distributions take weights in

[0, 1] ⊆ R+ and have the sum of their values equal to 1. A generalisation of the probabilistic framework to other
effect monoids can be found in [55].
In this way, Markov chains (Coalg(D)) can be seen as weighted graphs (Coalg(Homfin(−,W))) with additional

requirements.

Example 2.12. An application we are especially interested in is that of stochastic games. In that case, there
is both non-deterministic branching and stochastic branching, and two attributes “current player” and “goal”.
Stochastic games can be described as coalgebras on the functor 2× 2× PD(−). Such games are interpreted

as 2-player games, where the players are called Maximizer and Minimizer. Each state belongs to a single player,

16

and the next move is played by the player designated by the current state. At each turn, a player chooses an
action, which has a random outcome, with probabilities known in advance. Minimizer tries to minimise the
probability of reaching a goal state, and Maximizer tries to maximise this probability. In a play (finite or infinite
sequence of states),

• Maximizer wins if a goal state is reached or Minimizer enters a deadlock,

• Minimizer wins if goal states are never reached or if Maximizer enters a deadlock before the goal.

s1

sI

s2

1

0

α

1

α

1

α
1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9

X := {sI , s1, s2,0,1}

g : X → 2× 2× PDX

sI 7→
(
�,⊥,

{
{(s1, 1)},

{(s1, 0.7), (s2, 0.3)}, {(sI , 0.4), (s2, 0.6)}
})

s1 7→
(
©,⊥,

{
{(s2, 1)}, {(1, 0.8), (0, 0.2)}

})
s2 7→

(
�,⊥,

{
{(1, 0.9), (0, 0.1)}, {(0, 1)},

})
0 7→

(
©,⊥,

{
{(0, 1)}

})
1 7→

(
�,>,

{
{(1, 1)}

})

•

•

•

s2sI

0.4 0.6

•

s2s1

0.7 0.3

•

s1

1

⊥�

g(sI)

•

•

•

01
0.8 0.2

•

s2

1

⊥©

g(s1)

•

•

•

0
1

•

01
0.9 0.1

⊥�

g(s2)

•

•

•

0
1

⊥©

g(0)

•

•

•

1
1

>�

g(1)

Here is a possible run of this game. We start at sI . Maximizer (�) plays β, and reaches s1 (this outcome had
probability 0.7). It is now Minimizer’s (©) turn. He plays α, and reaches s2. � then plays α, and reaches 0
(this had only probability 0.1). From then on, © is the only player and can manage to stay at 0 forever, which
is not a goal state: Maximizer has lost.
Another possible run loops forever at sI : in that case, Maximizer loses as well. This may happen if Maximizer

chooses the strategy “play γ as long as possible”, but only with probability 0.
One interesting question about this game is the following: assuming that players play optimally, if we start

at state x, what is the probability that Maximizer will win? In other words and in the language of modal logic,
can we compute P(♦1) : X → [0, 1]?
In the next section, we will study generalisations of this question.
At this point of the paper, we will only state that P(♦1) can be characterised as the least fixed point of the

Bellman operator B : [0, 1]X → [0, 1]X .
The interested reader may prove by hand that P(♦1)(0) = 0, P(♦1)(1) = 1, P(♦1)(s2) = 0.9, P(♦1)(s1) = 0.8

and P(♦1)(sI) = 0.9. The situation becomes much harder when we increase the number of possible “loops”
between several states.

Remark 2.13. It is interesting to note that the study of processes with both non-determinism and stochasticity
is especially hard. A theoretical reason that explains this difficulty is that while P and D have monadic structure,

17

there is no monadic structure on the combination PD [56]. A monadic structure exists on the combination of
the multiset functor and distribution functor [57], but applications have not yet been extensively studied.
In the current paper, we don’t use any sort on monadic structure of process types T : Set→ Set. They are

however extensively used in the literature, especially in the study of program semantics [58]. A big difficulty is
that while monadic structures can be summed or tensored, they cannot be composed in general, and this fact
has been the motivation of much research [59], [57], [60], [61].
Nevertheless, useful structure arises from monadicity of process types. For example, when (T, η, µ) is a monad,

processes f : X → TY and g : Y → TZ can be composed to g � f := µ ◦ Tg ◦ f : X → TZ, giving rise to the
Kleisli category K`(T). This may also provide fruitful categorical insight, such as in [35], whose ideas about
predicate transformers and order enrichment are one of the roots of the current paper.

3 Predicates on processes and preorder-enrichments
In the preceding section, we have introduced the notions of process type and coalgebras, to model various kind of
processes, and gave examples such as transition systems (TS), automata, Markov chains (MC), Markov decision
processes (MDP) and stochastic games (SG).
In this section, we introduce the necessary additional structure to explore questions about processes. Process-

predicate types will contain logical structure to talk about predicates on processes, modalities and weakest-
precondition predicate transformers. We will then study how order structures can be introduced. This in-
vestigation will lead to fixed point characterisations and approximations of process types in Sections 4 and
5.

3.1 Logic on processes
For the moment, process types are only defined by transitions g : X → TY , with state spaces and some sort
of constant attributes and branching type. In our last example on stochastic games g : X → 2 × 2 × PDX,
we were interested in the study of a predicate P(♦1) : X → [0, 1], which described a reachability probability
under some hypotheses on the behaviour of players. More generally, we are interested in asking questions of
reachability, safety, distance, etc. in our models. To do this, we introduce process-predicate types.

Definition 3.1 (Process-predicate type). A process-predicate type (ppt) T := (T,Ω, τ) is a triple composed of
a process type T : Set→ Set, a truth object Ω : Set and a modality τ : Hom(TΩ,Ω).

Modalities are used to state a weakest-precondition semantics.

Definition 3.2 (Predicates and predicate transformers). Let T = (T,Ω, τ) be a ppt.
For all sets X,Y , elements of the form p : X → Ω are called predicates, and elements of the form Φ : ΩY → ΩX

are called predicate transformers.

Definition 3.3 (Weakest-precondition transformer). Let T = (T,Ω, τ) be a ppt and g : X → TY be a
T -process.
The weakest-precondition transformer corresponding to g under the modality τ is the predicate transformer

g∗τ : ΩY → ΩX

p 7→ τ ◦ Tp ◦ g.

Process-predicate types may be thought of as a basic structure (a process type encoding attributes and
branching) additionally equipped with a semantics (giving meaning to attributes and to notions like reachability,
possibility, behaviour of players, interpretation of randomness, etc.).
We will now show how those definitions are used on simple examples.

Example 3.4 (Reachability and safety in Kripke Structures). Consider the following Kripke structure, defined
as a P-coalgebra by X = [0, ω ·2], g(0) = {0}, g(ω) = [0, ω), g(ω ·2) = [ω, ω ·2], and, for all n < ω, g(n+1) = {n},
g(ω + n+ 1) = {ω + n}.

18

0 1 2 3

ω ω + 1 ω + 2 ω + 3

ω · 2

Let Ω = {⊥,>} be the set of booleans, and define the modalities may τ∃ and must τ∀ by

τ∃ : PΩ→ Ω τ∀ : PΩ→ Ω
∅, {⊥} 7→ ⊥ ∅, {>} 7→ >

{>}, {⊥,>} 7→ > {⊥}, {⊥,>} 7→ ⊥.

This thus defines two process-predicate types: P∃ = (P,Bool, τ∃) and P∀ = (P,Bool, τ∀).
Suppose that p : X → Ω in the indicator function of a set A ⊆ X. g∗τ∃(p) is then the indicator function of the

set of states from which A is reachable in one step, while g∗τ∀(p) is the indicator function of state which must
enter A in the next step or reach a deadlock.

For example, if 1{0} : X → Ω is the indicator function of {0}, g∗τ∃(1{0}) = 1{0,1,ω}, since 0 is accessible
from all of those three states. However, g∗τ∀(1{0}) = 1{0,1}, since it is possible to avoid 0 from ω. To describe
accessibility in several steps, we can iterate g∗τ . For example, (g∗τ∃)

n(1{0}) is the set of states from which 0 is
reachable in exactly n steps.
If we consider paths of arbitrary length, it is clear that 0 is actually reachable from all states, and that paths

starting at all states except ω · 2 must eventually reach 0. We will understand this in Section 3.2 by doing
transfinite iterations of g∗τ and studying fixed points of g∗τ .

Remark 3.5 (Order structure of booleans). Notice that if we see Ω = {⊥,>} as the complete lattice with
⊥ < >, then τ∃ and τ∀ are simply sup and inf, respectively.

Example 3.6 (An example on Markov Chains). Another simple example is the process-predicate type of
Markov chains with probabilities and expectations (D, [0, 1],E), where

E : D[0, 1]→ [0, 1]

d 7→
∑
p∈[0,1]

p · d(p).

For example, consider the following Markov chain.

s0

s1,2,3 s6,4,5

s′1,2,3 s2,3 s4,5 s′6,4,5

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1 1

19

Suppose that we want to compute the likeliness to reach an even number from each state.
We may start by setting p : X → [0, 1] to be the indicator function of {q2, q4, q6}. p is the probability to reach

an even number in 0 steps.
(g∗E)n(p)(x) is then the probability of reaching an even number within n steps when we start from x. We

compute it in the following table.

(g∗E)n(p)(x) q1 q2 q3 q4 q5 q6 s′1,2,3 s2,3 s4,5 s′6,4,5 s1,2,3 s6,4,5 s0
0 0 1 0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1/2 1/2 1/2 0 0 0
2 0 1 0 1 0 1 0 1/2 1/2 1/2 1/4 1/2 0
3 0 1 0 1 0 1 1/8 1/2 1/2 3/4 1/4 1/2 3/8
4 0 1 0 1 0 1 1/8 1/2 1/2 3/4 5/16 5/8 3/8
...

...
...

...
...

...
...

...
...

...
...

...
...

...
ω 0 1 0 1 0 1 1/6 1/2 1/2 5/6 1/3 2/3 1/2

ω + 1 0 1 0 1 0 1 1/6 1/2 1/2 5/6 1/3 2/3 1/2

Notice that this local computation converges by increasing to the correct probabilities at infinity, and that
the solution is a fixed point of g∗E.
In Section 3.2, we will make sense of the notation (g∗E)ω(p). Later, we will prove that the chain ((g∗E)α)α:Ord,

indexed by ordinals, always converges to the correct probability, even for infinite state spaces.

At this point, we have actually already encountered all three basic modalities that will be the main building
blocks of all modalities used in this paper, through the examples of the process-predicate types (P,Bool, sup),
(P,Bool, inf) and (D, [0, 1],E).
We will now mix those modalities together, explain what we have asserted in the last section. We said that

reachability in stochastic games could be computed using the Bellman operator B. We will now explain how B
arises as the weakest-precondition transformer defined by a well-chosen modality.

Example 3.7 (Bellman operator). Stochastic games with distinguished goals can be seen as coalgebras on
2× 2× PD. Since we want to compute probabilities, we will use the truth object Ω = [0, 1].

Since players want to optimise the expectation of the outcome of their actions, we will build B out of the
modalities E : D[0, 1]→ [0, 1], inf : P[0, 1]→ [0, 1], and sup : P[0, 1]→ [0, 1]. To take into account distinguished
goals, we also use the constant modality τ1 : 2 → [0, 1] defined by τ1(⊥) = 0 and τ1(>) = 1. The Bellman
modality can then be defined as

β : 2× 2× PD[0, 1]→ [0, 1]
(·,>, ·) 7→ 1

(�,⊥, t) 7→ sup
d∈t

E(d)

(©,⊥, t) 7→ inf
d∈t

E(d).

For a stochastic game g : X → 2 × 2 × PDX, the weakest-precondition transformer g∗β is then the usual
Bellman operator B, where δ(x, a, y) denotes the transition probability from x to y when action a is chosen.

B = g∗β : [0, 1]X → [0, 1]X

p 7→

x 7→

1 if x is a goal state
supa

∑
y δ(x, a, y)p(y) if x belongs to Maximizer

infa
∑
y δ(x, a, y)p(y) if x belongs to Minimizer

Note that “reader-monad-like notations”, with letters a used in transitions, are only used here for ease of
comparison with the usual Bellman operator. Choice is really modelled here with the powerset monad.
If we want to be precise, we can say that a denotes a distribution of states. The function δ : (x, a, y) 7→ a(x)

takes elements x ∈ X, a ∈ π3(g(x)) ⊆ DX and y ∈ X to the probability a(x) ∈ [0, 1].

20

Predicates could also be used for other quantitative results. For example, distance, progress functions, etc.
can be computed using the truth object N∞.
Example 3.8 (Shortest distance in graphs).

Consider once again the case of Kripke structures, here seen as (unweighted) directed graphs.
The Bellman-Ford algorithm (in the dual graph) can then be described as the computation of the sequence

(g∗τ)n(⊥), in the process predicate type (2 × Id × P(−),N∞, τ), where N∞ = N t {∞}, ⊥ : X → N∞ is the
constant function x 7→ ∞, and τ is the “shortest distance to goal” modality

τ : 2× N∞ × PN∞ → N∞
(>, ·, ·) 7→ 0

(⊥, d,D) 7→ min(d, 1 + min(D)).

More specifically, if we put the order ∞ < · · · < n < n − 1 < · · · < 1 < 0 on N∞, the shortest distance to a
goal can be seen as the least fixed point of g∗τ .
Notice that we have been forced to introduce Id to the process type to make each node x able to observe itself

in g(x). We may also prefer to avoid modifying the directed graph process type, and formulate our problem as
the ppt (2× P(−),N∞, τ) where

τ : 2× PN∞ → N∞
(>, ·, ·) 7→ 0
(⊥, D) 7→ 1 + min(D).

The solution then appears as the lfp of p 7→ min(p, g∗τ (p)) (with min computed pointwise).
Other interesting modalities can be computed on the truth object N∞ to model other local computations in

graphs.
Example 3.9 (Widest path in weighted graph). Consider the case of weighted graphs with distinguished goals
on the monoid W = ([0, 1],max), modelled by the process type 2×Homfin(−,W).
The widest path problem, also called the maximum capacity path problem, asks what is the widest path from

each state to a goal state.
For example, consider the following weighted graph. Note that the quantities above edges don’t represent

probability transitions anymore, but simply weights, which don’t have to sum to 1.

s1

sI

s2

1

0

1

0.90.9

0.8

0.8

0.9

0.9

0.8
3

X := {sI , s1, s2,0,1}

g : X → 2×Homfin(X, [0, 1])

sI 7→
(
⊥,
{

(sI , 0.9), (s1, 0.83), (s2, 0.9)
})

s1 7→
(
⊥,
{

(0, 0.8), (1, 0.8)
})

s2 7→
(
⊥,
{

(0, 0.9), (1, 0.9)
})

0 7→
(
⊥, 0

)
1 7→

(
>,
{

(1, 1)
})

•

•

s2s1sI
0.9 0.83 0.9

⊥

g(sI)

•

•

10
0.8 0.8

⊥

g(s1)

•

•

10
0.9 0.9

⊥

g(s2)

•

•⊥

g(0)

•

•

1
1

>

g(1)

21

Any widest path from sI to 1 has width 0.9. An example of such widest path is sI → s2 → 1, whose width is
indeed max(0.9, 0.9) = 0.9. Another example of widest path between sI and 1 is sI → sI → s2 → 1→ 1→ 1.
Any other path has a smaller width. For example, sI → s1 → 1 has width max(0.83, 0.8) = 0.8.

You may have noticed that 0.9, the width of a widest path from sI to 1, is the same as the probability
P(♦1)(sI) from the stochastic game in Example 2.12. Similarly, in this weighted graph the width of a widest
path is 0.8 from s1 to 1, 0.9 from s2 to 1, 1 from 1 to 1, and 0 from 0 to 1.
There is a good reason why widest path and reachability probabilities coincide in this example. The WG

above was constructed by transforming the SG of Example 2.12, first into a MDP, then into a WG, using the
method described in paper [1]. Similar connections, relating SG and MDP, or other kinds of process-predicate
types related together, are studied in Section 5.

Like before, the solution to this widest path problem enjoys a fixed point characterisation, and can be
computed as sup gατ (0), in the process-predicate type (2 × Id× Homfin(−,W),W, τ), where 0 : x 7→ 0 and τ is
the widest path modality

τ : 2×W ×Homfin(W,W)→W

(>, ·, ·) 7→ 1
(⊥, w0, d) 7→ max

(
w0,max

w∈W
(min(w, d(w)))

)
.

Like in the previous example, Id was necessary to make nodes able to observe themselves, but we may also
choose to reformulate our problem on 2×Homfin(−,W) and compute the lfp of the new p 7→ max(p, g∗τ (p)).

A useful property on this example is that the problem can be solved directly by graph analysis, in time
O(|E| + |V |log|V |). Relating the difficult problem of reachability probabilities in SG to the simple problem
of widest paths in WG is the main technique developed in [1]. Fixed-point characterisations are the main
ingredient making this possible, and generalising this method is one of the goals of the current paper.

In 3.1, we have introduced process-predicate types, a structure extending that of process types with truth
objects and modalities, allowing for predicates and weakest-precondition transformers.
We have noticed that many interesting quantities could be computed as fixed points of weakest-precondition

transformers. We gave a few examples, but it is possible to go much further, e.g. by studying alternating fixed
points semantics for modal µ-logic (a generalisation of modal logics like LTL, CTL and CTL*) [62], [63].

So far, we have introduced half of the structure used in this paper, by adding logic to process types. However,
we have already noticed, on examples, the role of fixed point characterisations, which require additional order
structure: something is missing. In Section 3.2, we give the remaining half, by exploring how order structures
can be added to process(-predicate) types. This will give us not only a theory of fixed points, in Section 4, but
also a theory of process type approximation in Section 5.

3.2 Preorder-enrichments
Ordered structures like preorders, partial orders, complete lattices, etc. are highly used in computer science
to study iterative processes, incremental methods or (co)inductive definitions. In this section, we explain how
they can be used to study processes.

Recall that process types are simply endofunctors T : Set → Set. Balan and Kurz [64] studied how to
extend and lift such endofunctors to Preord and Poset, focusing on the case of finitary functors. We make
use of those ideas, but not of their methods, since we are interested in some non-finitary functors. Lifting and
extension of T : Set → Set to order categories appear regularly in coalgebraic studies. Extensions to Preord
are at the heart of the theory of (bi)simulation studied in [36]. Liftings to categories enriched on Poset and
Cppo appear [35] in the study of weakest-precondition semantics. Those last two examples are very similar to
what we will call shape structure and leaf structure in the rest of this paper.
We start from the tree representation of elements g(x) : TY of processes g : X → TY , and try to see which

kinds of order structures may arise.

22

•

010.4
1
2

1
3

1
6

ta : T [0, 1]

≤?
•

010.4
1
2

1
3

1
6

•

0.80.4
1
2

1
2

tb : T [0, 1]

≤?
•

0.210.3
1
2

1
3

1
6

•

0.90.5
1
2

1
2

tc : T [0, 1]

There are two natural ways of putting a preorder structure on TY .

(i) Directly use the preorder structure of Y if it is available.

(ii) Compare elements of TY without using any sort of structure on Y .

We call the first preorder structure a leaf structure, and the second preorder structure a shape structure.
Leaf structures are described by a lifting of the endofunctor T : Set → Set to a monotone endofunctor

Tl : Preord→ Preord. Monotone endofunctors are simply endofunctors enriched over Preord.
Shape structures are defined by an extension of T : Set→ Set to Ts : Set→ Preord.

In Section 4, we will study leaf structures, see how they can be used to recognise situations with fixed point
characterisations, and use them to give conditions for predicate transformers to be monotone.

In Section 5, we will study shape structures, and use them to design a generic way of comparing predicate-
process types together, with the goal of approximating complex processes by simpler ones.

3.2.1 Reminders about order theory and enriched category theory

The reader acquainted with order theory and enriched category theory may choose to skip Section 3.2.1.
Before stating the definition of leaf structures, we need to recall the definition of an enriched category over

Preord. The concept of enriched categories is a generalisation of the concept of categories, where sets of
morphisms are replaced by an object from a different category. A general introduction to enriched category
theory can be found at [65], along with precise definitions. Here, we simply unwind those definitions in the case
of Preord.

Definition 3.10 (Notions for Preord). A preorder (A,≤) consists of a set A and a relation ≤ ∈ A × A that
is reflexive and transitive (but not necessarily total nor antisymmetric).
A monotone function f : (A,≤) → (B,≤) between two preorders is a function f : A → B such that

∀a, a′ ∈ A, a ≤ a′ =⇒ f(a) ≤ f(a′).
Preord is the category whose objects are preorders and whose arrows are monotone functions. It is known

to be complete, cocomplete, and cartesian closed. In particular, it is monoidal and symmetric.
The internal hom-object between two elements A,B : Preord is the preorder [A,B] := (Hom(A,B),≤)

defined by the pointwise order

∀f, g : Hom(A,B), f ≤ g ⇐⇒ ∀a ∈ A, f(a) ≤B f(b).

Note that ≤A does not appear in this definition. Moreover notice that there was no other choice for the
order structure of Hom(A,B). It is uniquely defined (up to natural isomorphism) by the enrichment. Indeed,
internal hom-objects are defined by a product-hom adjunction, and adjoint functors are unique up to natural
isomorphism.
The product of Preord is called the product (pre)order. For (A,≤A), (B,≤B) : Preord, the product

(A×B,≤A×B) is given by ∀a, a′ : A∀b, b′ : B, (a, b) ≤A×B (a′, b′) ⇐⇒ a ≤A a′ ∧ b ≤B b′.
We have a sequence of discrete-forgetful-trivial adjunction

D ` U ` T,

where U : Preord → Set is the forgetful functor U : (A,≤) 7→ A, D : A 7→ (A,=) puts the discrete preorder,
and T : A 7→ (A,A×A) puts the indiscrete preorder.

23

We will also use the notion of up-set. In a preorder (X,≤) an up-set U ⊆ X is a subset such that

∀x, x′ ∈ X, x ∈ U ∧ x ≤ x′ =⇒ x′ ∈ U.

The following definition unwraps the general definition of enriched categories.

Definition 3.11 (Preord-category). A Preord-category A consists of a class of objects ob(A) and a Preord-
object A(A,B) for each A,B : ob(A). Moreover, we need to satisfy usual composition, associativity and unit
laws.
Furthermore, we ask for composition

MA,B,C : A(B,C)×A(A,B)→ A(A,C)

to be monotone.

Remark 3.12. Since Preord is cartesian closed, it is enriched over itself, i.e. it has a structure of Preord-
category given by pointwise orders (internal hom-preorders).
Note that this proves that the composition operation in Preord is monotone. In other words, postcomposition

by a monotone function is a monotone operation, and similarly for precomposition.

Definition 3.13 (Preord-functor). A Preord-functor F : A → B between Preord-categories is given by
functions F : ob(A) → ob(B) and monotone maps F : A(A,B) → B(FA,FB) for all objects A,B of A,
satisfying additional, usual coherence laws (relative to composition and units).
We note HomPreord(A,B) the class of all such functors, and HomSet(A,B) the class of usual Set-functors

between the underlying categories A0 and B0 (forgetting about structure on homsets).
Preord-functors will also be called monotone functors.
In particular, the class HomPreord(Preord,Preord) of monotone endofunctors on Preord is a class of

Preord-endofunctors.

To complete Section 3.2.1, we will recall Knaster-Tarski’s theorem and its Cousot-Cousot counterpart.

Theorem 3.14 (Knaster-Tarski and Cousot-Cousot).
Let (A,≤) be a complete lattice (a partial order such that every subset has (unique) infimum and supremum).
Then, for every monotone function f : (A,≤)→ (A,≤), the set of fixed points of f is itself a complete lattice.
In particular, f has least and greatest fixed points, written lfp(f) and gfp(f) respectively.
Moreover,

lfp(f) = inf{a ∈ A | a ≥ f(a)}
gfp(f) = sup{a ∈ A | a ≤ f(a)}

and

lfp(f) = sup
α:Ord

fα(⊥)

gfp(f) = inf
α:Ord

fα(>)

where ⊥ = inf ∅ is the least element of A, > = sup∅ is the top element of A, and α goes over all ordinals,
where the transfinite iteration fα is defined by transfinite induction: f0 = idA, ∀α fα+1 = f ◦ fα, and for each
limit ordinal λ, fλ = supα<λ fα, where Hom(A,A) is equipped with the pointwise order (making it a complete
lattice).
Moreover, (fα(⊥))α is increasing, and (fα(>))α is decreasing.

3.2.2 Leaf and shape structure

With all this vocabulary, we are finally ready to introduce the characterisation of leaf and shape structures.
In Section 3.2.2 we will define leaf structures and shapes structures through lifting and extension of process

predicate types. After this general definition, examples of those structures will be given in elementary cases, on
functors of interest like P and D, and in cases of interest like MDP and SG.

Leaf structures are obtained by putting an order structure on each TΩ where (Ω,≤) is a preorder. Moreover,
we ask for Ω to be a lattice, and for τ to be compatible with this structure. This is an order-enrichment of
process types that is based on the order structure of the truth object.

24

Definition 3.15 (Leaf structure). We say that a process-predicate type T = (T,Ω, τ) has leaf structure when-
ever we have a Tl = (Tl,Ωl, τl) such that the following hold.

• Tl : EndPreord(Preord) is a lifting of T , i.e. the following diagram commutes.

Preord Preord

Set Set

U

Tl

U

T

• Ωl is a complete lattice (partial order with all sup and inf) with underlying set Ω.

UΩl = Ω

• τl : TlΩl → Ωl is monotone, and is a lifting of τ , i.e.

U(TlΩl
τl→ Ωl) = (TΩ τ→ Ω).

The following characterisation makes it easier to check that Tl is a Preord-lifting of T , without going through
all assumptions of the general case of enriched category theory. This is rather easy to prove, using D ` U and
the fact that U : Preord→ Set is faithful.

Proposition 3.16 (Lifting from Set to Preord). An “assignment on objects” Tl : Preord → Preord is a
Preord-lifting of T : Set→ Set if and only if all of the following hold.

(i) Tl is a functor, i.e. for all monotone functions f , Tlf is monotone.
(It is unnecessary to check Tlid = id and Tl(f ◦ g) = Tlf ◦ Tlg when it is known for T .)

(ii) Tl is a lifting, i.e. TU = UTl.

(iii) For all X : Set, (B,≤B) : Preord,

Tl(−) : (Hom(X,B),≤B)→ (Hom(TX, TlB),≤TlB)
f 7→ Tlf

is monotone (where pointwise order are used). This can be checked pointwise for each t : TX.

Leaf structures will be studied in Section 4 to give sufficient conditions for the construction of a fixed point
theory.

Before giving a few examples, we will state how we describe the second kind of order enrichment for process
types, the one that does not use at all the structure of the truth object, and uses only the branching structure.

Definition 3.17 (Shape structure). We say that a process-predicate type T = (T,Ω, τ) has shape structure
whenever we have a Ts = (Ts,Ωs, τs) such that the following hold.

• Ts : Set→ Preord is an extension of T , i.e. the following diagram commutes.

Preord

Set Set

U

T

Ts

• Ωs is a preorder with underlying set Ω.
UΩs = Ω

• τs : TsΩ→ Ωs is monotone, and is a lifting of τ (coincides with τ on elements), i.e.

U(TsΩ
τs→ Ωs) = (TΩ τ→ Ω).

25

Shape structures will be studied in Section 5. There, we will construct a notion of comparison between ppt
with shape structure, on which approximation algorithms can be based.

Before starting this deeper study, we exhibit a few examples of process-predicate types with leaf or shape
structure, so as to know what to have in mind when reading the general theory.

Example 3.18 (Leaf structure on P – Egli-Milner preorder). Let (Ω,≤) be a preorder. The Egli-Milner
preorder on (Ω,≤) is the preorder (PΩ,�) defined by

∀A,B ∈ PΩ, A � B ⇐⇒ (∀a ∈ A, ∃b ∈ B, a ≤ b)
∧ (∀b ∈ B, ∃a ∈ A, a ≤ b).

In other words A � B iff there exists an increasing i : A→ B and decreasing j : B → A.
Note that if Ω has a least element ⊥, then for all A ∈ P 6=∅X, {⊥} � A, and similarly if there is a greatest

element >. ∅ is never comparable to any other subset.
Write Pem : (Ω,≤) 7→ (PΩ,�) the functor which assign to each preorder the Egli-Milner preorder on PΩ.
It can be shown (cf. Propositions 4.10 and 4.11) that Pem is a Preord-functor that is a lifting of P, and that

we obtain leaf structures for the modalities sup and inf for all complete lattices Ω.

• (Pem,Ω, inf) is a ppt with leaf structure.

• (Pem,Ω, sup) is a ppt with leaf structure.

To see how the Egli-Milner preorder behaves on an example, let (Ω,≤) = ([0, 1],≤) be the unit segment
with the usual order (which is a complete totally ordered lattice). For 0 ≤ a < b < c < d ≤ 1, we have
[a, c] � [b, d], but [b, d] 6� [a, d]. [a, b] � [c, d], but the opposite is false. [b, c] and [a, d] are not comparable
through �. [a, c) � [a, c] � (a, c], but the opposite is false. [a, d] and [a, b] ∪ [c, d] are equivalent through �, i.e.
[a, d] � [a, b] ∪ [c, d] � [a, d]. This shows that � can be only a preorder even when ≤ has very strong regularity
properties.
The notions of suprema, infima and continuity for Egli-Milner preorder are interesting, but left for further

research. This is related to conjectures mentioned in Section 7.1.

Example 3.19 (Leaf structure on D – Tailwise preorder). Consider a preorder (Ω,≤). The tailwise preorder
of (Ω,≤) is the preorder (DΩ,�) defined by

∀d, d′ ∈ DΩ, d � d′ ⇐⇒
(
∀U ⊆ Ω, U is an up-set =⇒

∑
y∈U

d(y) ≤
∑
y∈U

d′(y)
)
.

� may be seen as the pointwise order on the tail distributions x 7→ d(↑x) where ↑x:= {y |x ≤ y}, with additional
hypotheses.
Write Dtl : (Ω,≤) 7→ (DΩ,�) the functor which assign to each preorder the tailwise preorder on DΩ.
It can be shown (cf. Corollary 4.17) that Dtl is a Preord-functor that is a lifting of D, and that we obtain

leaf structures for the expectation modality on ([0, 1],≤).

• (Dtl, [0, 1],E) is a ppt with leaf structure.

Example 3.20 (Inductive construction of leaf structures). It will be shown in Section 4 that leaf structures
can be added, multiplied, composed, etc. They can thus be put on a large family of functors.
In particular, stochastic games (modelled on 2 × 2 × PD(−)) and MDP (modelled 2 × PD(−)) enjoy a leaf

structure for the reachability modality, composed using the tailwise order on D[0, 1] and the Egli-Milner preorder
on PD[0, 1].
Unwinding this definition, for t, t′ : PD[0, 1], we will write that t � t′ if and only if

∀d ∈ t, ∃d′ ∈ t′, ∀x ∈ [0, 1], d(↑x) ≤ d′(↑x) and ∀d′ ∈ t′, ∃d ∈ t, ∀x ∈ [0, 1], d(↑x) ≤ d′(↑x).

For shape structures, a few simple examples will be enough for us.

Example 3.21 (Some shape structures).

• For any process-predicate type (T,Ω, τ) and every Ωs : Preord, we may always construct a shape structure
by putting the discrete preorder on every TX.

26

• For any process-predicate type (T,Ω, τ), if Ωs is the indiscrete preorder on Ω, then every extension of T
to Preord (including the one that puts the indiscrete order everywhere) induces a shape structure.

• More interestingly, inclusion preorder induces a shape structure for (P,Ω, sup).

• Similarly, reverse inclusion preorder induces a shape structure for (P,Ω, inf).

• Because of this, MDP := (2×PD(−), [0, 1], β) (where β is the Bellman modality) may be equipped with
a shape structure defined by inclusion.

∀X : Set, ∀t1, t2 ∈ 2× PDX, t1 v t2 ⇐⇒ (π1t1 = π1t2) ∧ (π2t1 ⊆ π2t2).

On MDPs g1, g2 : X → 2×PDX, this can be interpreted as g1 v g2 if and only if there are more choices
in g2 than in g1.

• Similarly, we may define a shape structure on stochastic games (SG := (2×2×PD(−), [0, 1], β)) by using
reverse inclusion for Minimizer’s choices, and equality for Maximizer’s choices.

∀X : Set, ∀t1, t2 ∈ 2× 2× PDX,

t1 v t2 ⇐⇒ (π1t1 = π1t2) ∧ (π2t1 = π2t2) ∧
((
π1t1 = � ∧ π3t1 = π3t2

)
∨
(
π1t1 =© ∧ π3t1 ⊇ π3t2

))
.

On stochastic games g1, g2 : X → 2 × 2 × PDX, this is interpreted by saying that g1 v g2 if and only if
Maximizer has the same choices in both games and Minimizer has fewer choices in g2 than in g1.

In Sections 5 and 6, those shape structures on MDPs and SGs will allow us to connect the computations
of reachability probabilities P(♦1) in those two types of processes. We will then work toward a similar goal
to create a connection between shapes structure of finite and infinite branching (P and Pf). Relating MDPs
with WGs is discussed in Section 6.4.2, but left for further research. Finding additional examples is also left to
further research, and could lead to new model checking algorithms based on surrogate models.

4 Fixed-point computations – leaf structure
We are now going to explain how the existence of a leaf structure on a process-predicate type, introduced in
the last section, can be used as a sufficient condition to construct fixed points of the predicate transformer.
The role of this structure, defined by a lifting of T : Set → Set to a monotone Tl : Preord → Preord and a
monotone modality, is to package all assumptions making Theorem 4.1 be true.
Thanks to that, for applications, it will be easy to construct process-predicate types on which the predicate

transformer g∗τ has fixed points, computable by transfinite induction: it is enough to build process types and
modalities out of the examples of Theorem 4.5. The hardest part of the theory of leaf structures will actually
be to prove that those canonical examples fit all assumptions to enjoy a leaf structure.
In Example 4.4, we will emphasise that transfinite induction is really needed, since an arbitrary number of

limit cases may be necessary. Those speeds are measured using convergence times, defined in 4.3.

4.1 Leaf structures induce monotone predicate transformers
Theorem 4.1 (Monotone predicate transformers). Let T = (T,Ω, τ) be a process-predicate type. If T admits
a leaf structure, then for all processes g : X → TY , the predicate transformer g∗τ is monotone.
Thus, by the Knaster-Tarski theorem, if g : X → TX is a coalgebra, fixed points of g∗τ form a complete lattice.
In particular, g∗τ then admits a least fixed point and a greatest fixed point which can be computed by transfinite

induction.

V (g) := lfp(g∗τ) = sup
α:Ord

gατ (⊥) and gfp(g∗τ) = inf
α:Ord

gατ (>)

More precisely, those lfp and gfp are computed in the lattice (Hom(X,Ωl),≤Ωl) with the pointwise order
induced by the leaf structure.

27

Proof. Suppose that T = (T,Ω, τ) is a process-predicate type with leaf structure Tl = (Tl,Ωl, τl).
Let g : X → TY be a process. Recall that g∗τ := (p : ΩY) 7→ (τ ◦ Tp ◦ g : ΩX).
Notice that for the pointwise (pre)order, precomposition by arbitrary functions and postcomposition by

monotone functions preserves monotonicity.
Since by hypothesis both T (−) : Hom(Y,Ωl)→ Hom(TY, TlΩl) and τl : TlΩl → Ωl are monotone, we deduce

that g∗τ : Hom(X,Ωl)→ Hom(Y,Ωl) is monotone.

The following properties will be used in many proofs about least fixed points of weakest-precondition trans-
formers. Of course, the same holds for greatest fixed points.

Proposition 4.2 (Functoriality and monotonicity of value). Let T = (T,Ω, τ) be a process-predicate type with
leaf structure Tl.

• Then,

V : Coalg(T) −→ Set/Ω
g 7−→ sup

α
gατ (⊥)

X Y

TX TY

ϕ

c d

Tϕ

7−→
X Y

Ω
V (c)

ϕ

V (d)

is a well-defined Set-functor.
In other words, for any two c, d : Coalg(T), whenever the diagram on the left commutes, the diagram on
the right commutes as well, and V (d) can be known from V (c).

X Y X Y

TX TY Ω

ϕ

c d
V (c)

ϕ

V (d)
Tϕ

• Moreover, if c∗τ ≤ d∗τ (pointwise, for the order of Hom(X,Ωl)), then V (c) ≤ V (d) (pointwise, for the order
of Ωl).

Proof. We will check each hypothesis making V : Coalg(T) → Set/Ω a Set-functor, and then prove that it is
monotone in the sense of the theorem.

• The main thing to do is to prove that V is actually well-defined on Coalg(T)-arrows.
Let ϕ : X → Y be a (Set)-function.
First, notice that for any f : Y → Ω, c∗τ (f ◦ ϕ) = d∗τ (f) ◦ ϕ.
Indeed,

c∗τ (f ◦ ϕ) = τ ◦ Tf ◦ Tϕ ◦ c = τ ◦ Tf ◦ d ◦ ϕ = d∗τ (f) ◦ ϕ.

Then, define two chains of functions fα : Y → Ω, gα : X → Ω, indexed by ordinals α, by f0 = ⊥,
fα+1 = d∗τ (fα), fλ = supα<λ fα, and always setting gα = fα ◦ ϕ.
By definition,

sup fα = V (d)

Notice that g0 = ⊥Hom(X,Ωl). Indeed, for all x ∈ X, g0(x) = f0(ϕ(x)) = ⊥Ωl .
Moreover, for each α,

gα+1 = d∗τ (fα) ◦ ϕ = c∗τ (fα ◦ ϕ) = c∗τ (gα).

Additionally, for limit ordinals λ,

gλ = fλ ◦ ϕ = (sup
α<λ

fα) ◦ ϕ = sup
α<λ

(fα ◦ ϕ) = sup
α<λ

gα,

28

where precomposition by ϕ is continuous (commutes with sup) by definition of the pointwise order.
Thus, sup gα = V (c). Therefore,

V (c) = sup(fα ◦ ϕ) = sup(fα) ◦ ϕ = V (d) ◦ ϕ,

where we once again used the continuity of precomposition.

• Now that we have proven that V is well-defined both on Coalg(T)-objects and Coalg(T)-arrows, it is
straightforward to prove that it preserves identities and compositions.
Indeed, for each g : X → TX,

V
(
idCoalg(T)
g

)
= V

 X X

TX TX

idX

g g

T idX

 =
X X

Ω
V (g)

idX

V (g)
= idSet/Ω

V (g) .

Moreover, given two arrows f → g and g → h in Coalg(T) described by ϕ : X → Y and ψ : Y → Z,

V

 Y Z

TY TZ

ψ

g h

Tψ

◦
X Y

TX TY

ϕ

f g

Tϕ

 = V

 X Z

TX TZ

ψ◦ϕ

f h

T (ψ◦ϕ)

=
X Z

Ω
V (f)

ψ◦ϕ

V (h)

=
Y Z

Ω
V (g)

ψ

V (h)
◦
X Y

Ω
V (f)

ϕ

V (g)

= V

 Y Z

TY TZ

ψ

g h

Tψ

 ◦ V
 X Y

TX TY

ϕ

f g

Tϕ

 .

• Finally, we will now prove our monotonicity result. Suppose that c∗τ ≤ d∗τ .
Set pα, qα two chains of functions so that V (c) = sup pα, V (d) = sup qα like in 4.1. By transfinite
induction, pα ≤ qα for each ordinal α.
Indeed, p0 = ⊥ = q0.
If pα ≤ qα, then pα+1 = (c∗τ)(pα) ≤ (c∗τ)(qα) ≤ (d∗τ)(qα) = qα+1.
Finally, if λ is a limit ordinal and if we have pα ≤ qα for each α ≤ λ, then

pλ = sup
α<λ

pα ≤ sup
α<λ

qα = qλ

by the properties of sup.
In conclusion, V (c) = sup pα ≤ sup qα = V (d).

Definition 4.3 (Convergence time). Let (Ω,≤) be a complete lattice, and let (xα)α:Ord be a (monotone) chain
of elements of Ω.
We define the convergence time of (xα)α as

min{α : Ord |xα+1 = xα}.

29

As was explained in the introduction, convergence time to lfp and gfp may be arbitrarily long, and involve
arbitrarily many limit cases.

Example 4.4 (Late convergence). Let α > 0 be an ordinal.
Consider the case of the ppt (2× P(−),Bool, τ) where τ(>, ·) = > and τ(⊥, t) = inf t, which can be seen as

a game where only Minimizer is playing, trying to avoid goal states.
We can construct a process g where the convergence time (gβτ)(⊥), which converges to V (g), is exactly α.
Let X = [0, α) be the set of ordinals strictly smaller than α. Define the coalgebra

g : X → 2× PX
0 7→ (>, {0})
β 7→ (⊥, [0, β)) otherwise.

Here, V (g) = >. (constant everywhere).
Moreover, for each β ≤ α, (gβτ)(⊥) = 1[0,β).

0 1 2 3

ω ω + 1

The case α = ω + 2, with convergence in ω + 2 steps.

Notice that in the example above, after ω steps, the row below is full of >, but all other nodes are still at
⊥. We may interpret this example by saying that Minimizer is trying to avoid the goal state. After n < ω
iterations, i.e. at gnτ (⊥), she knows the consequences of her actions only up to n time steps, and so still believes
that if she starts at ω, she can transition to states m with n � m < ω (m much greater than n) and avoid a
disaster . It takes an induction (a transfinite iteration to the limit case ω for gωτ (⊥)) to realise that the whole
first row if off-limit. The consequences of this fact for ω and ω + 1 are only discovered at step ω + 1 and ω + 2:
two more successor cases after a limit case.

Recall that for applications, we are interested in techniques like value iteration (VI). We want to compute an
increasingly better approximation of a value V (g) through a sequence of lower bounds (gnτ (⊥))n∈N. However,
we just saw that the number of steps required for convergence could actually be transfinite, and that limit cases
(inductions) must be performed by the implementation.
Transfinite value iteration has been studied before, e.g. for MDPs in [66], [67], but it is unclear how to use it

directly in implementations.
To avoid this difficulty, we may prove by hand that predicate transformers are also continuous, or introduce

additional continuity hypotheses to our leaf structures. This is left for further research.

4.2 A family of examples
The rest of this section is dedicated to the proof of the following theorem, providing a large class of examples
of ppt with leaf structure.

Theorem 4.5. The family F1, defined inductively, is a family of process-predicate with leaf structure.

30

Ω : CLat, A : Set, τ : DA→ Ω
(Constant ppt)

(∆A,Ω, τ) : F1

Ω : CLat, A : Set, τ : Hom(A,Ω)→ Ω
(Reader ppt)

(Hom(A,−),Ω, τ) : F1

Ω : CLat
(Max game)

(Pem,Ω, sup) : F1

Ω : CLat
(Min game)

(Pem,Ω, inf) : F1
(Random process)

(Dtl, [0, 1],E) : F1

(W,+) : Monoid, (W,≤+) : CLat, τ : (Homfin(W,W),�tl)→ (W,≤+)
(Generalised random process)

(Homfin(−,W),W, τ) : F1

Ta = (Ta,Ωa, τa) : F1, Tb = (Tb,Ωb, τb) : F1 (Product)
Ta × Tb := (Ta × Tb,Ωa × Ωb, τa × τb) : F1

Ta = (Ta,Ω, τa) : F1, Tb = (Tb,Ω, τb) : F1 (Coproduct)
Ta + Tb := (Ta + Tb,Ω, τa + τb) : F1

Ta = (Ta,Ω, τa) : F1, Tb = (Tb,Ω, τb) : F1 (Composition)
Ta ◦ Tb := (Ta ◦ Tb,Ω, τa ◦ Taτb) : F1

T = (T,Ω, τ) : F1, τ̃ : TΩ→ Ω
(Modality replacement)

(T,Ω, τ̃) : F1

Note that the following definitions and conventions are used.

• CLat is the category of complete lattices.
The truth object Ω of a ppt with leaf structure will thus always be a complete lattice.

• Modalities used in the hypotheses, which are written τ : A → B, with A,B two preorders, are always
supposed monotone (τ : A→ B is a Preord-arrow).

• Constant ppt. For any A : Set, ∆A is the constant functor to the discrete order on A.

∆A : Preord→ Preord
X 7→ DA

(f : X → Y) 7→ idA

(∆A,Ω, τ) is a ppt with leaf structure for any application τ : DA→ Ω.
In particular, we may choose to use the terminal complete lattice Ω = {∗} and get the ppt with leaf
structure (∆A, 1, 1).

• Reader ppt. For any A : Set, Hom(A,−) is the functor

Hom(A,−) : Preord→ Preord
X 7→ Hom(A,X)

(f : X → Y) 7→ ((g : A→ X) 7→ (f ◦ g : A→ Y))

where the pointwise preorder is put on Hom(A,X). (Hom(A,−),Ω, τ) is a ppt with leaf structure for any
monotone τ : Hom(A,Ω)→ Ω. Examples include function application δa : (f : A→ Ω) 7→ (f(a) : Ω).

• Covariant powerset functor with Egli-Milner preorder. Cf. Example 3.18.

• Distribution functor with tailwise preorder. Cf. Example 3.19.

• Homfin(−,W) with tailwise preorder. Cf. Definition 2.10. (W,+) is a monoid such that (W,≤+) is a
complete lattice, where we define

∀x, y ∈W, x ≤+ y ⇐⇒ ∃z ∈W, x+ z = y.

31

Note that this “monoid preorder” coincides with the usual order in the cases of ([0, 1],max) and (R+,+).

For d, d′ : Homfin(X,W), d �tl d′ ⇐⇒ ∀U ⊆ X up-set, d(U) ≤ d′(U).

(Homfin(−,W),W, τ) is then a ppt with leaf structure when τ : Homfin(W,W) → W is monotone for the
leaf structure. Examples include expectation E for W = (R+,+) and W = (N∞,+).

• Product. The product of two ppt with leaf structure Ta = (Ta,Ωa, τa), Tb = (Tb,Ωb, τb), where the lattices
Ωa and Ωb may be different, is defined using the product order (cf. Definition 3.10), as

(Ta × Tb,Ωa × Ωb, τa × τb).

• Coproduct. Similarly, if Ta and Tb share the same complete lattice Ω, we may define their coproduct

Ta + Tb = (Ta + Tb,Ω, τa + τb).

• Composition. Similarly, if Ta and Tb share the same complete lattice Ω, we can define the composition

Ta ◦ Tb = (Ta ◦ Tb,Ω, τa ◦ Taτb).

• Constant modality. If T = (Tl,Ω, τ) : Fl, we may replace τ by any increasing modality. Trivial examples
include constant modalities δu : (t : TlΩ) 7→ u, where u ∈ Ω is a constant. We write this (Tl,Ω, δu).

This theorem will be proven in the rest of the section.

Remark 4.6 (Interpretation of Theorem 4.5). We may interpret Theorem 4.5 by saying that “anything con-
structed on” modalities sup, inf and E, using Egli-Milner preorder and tailwise preorder, induces a leaf structure.
Thus, for any process type T constructed (in a polynomial way) on P and D, and for any modality τ

constructed on sup, inf and E, for all g : X → TX, g∗τ has fixed points reachable by (transfinite) value iteration.

Example 4.7. Stochastic games modelled on {�,©} × {⊥,>} × PD(−) can be given a leaf structure by the
following construction. (

{�,©}× {⊥,>} × PemDtl(−), [0, 1], β
)

+

(
{�,©}× PemDtl(−), [0, 1], δ1

)(
{�,©}× PemDtl(−), [0, 1], β̃

)
+

(
PemDtl, [0, 1], inf ◦ PE

)
◦

(Dtl, [0, 1],E
)

(Pem, [0, 1], inf
)

(
PemDtl, [0, 1], sup ◦ PE

)
◦

(Dtl, [0, 1],E
)

(Pem, [0, 1], sup
)

Notice that we obtain the Bellman modality.
This proves that the reachability probabilities P(♦1) in SG can be computed by value iteration of g∗β , even

for infinite state spaces, i.e.
P[g](♦1) = sup

α:Ord
gαβ (⊥).

32

4.3 Proof of Theorem 4.5
We will now prove all ingredients of Theorem 4.5.
We start by a trivial case to remember what there is to prove. It may be a bit wordy: we will allow ourselves

to skip some details in the next cases.

Proposition 4.8 (The discrete constant ppt has leaf structure).
Let A be a set, Ω be a complete lattice, and τ : A→ Ω be an application.
Then, (∆A,Ω, τ) is a ppt with leaf structure.

Proof. We will use Definition 3.15 and Proposition 3.16.
First, we check that ∆A, the constant functor to DA, is a Preord-functor.

• Indeed, ∆A : Preord→ Preord is a lifting of the constant functor ∆A : Set→ Set.

• Moreover, if f : X → Y is a monotone function between preorders, ∆Af = idDA is monotone (for all
a, b ∈ A, if a ≤ b, idAa ≤ idAb).

• Finally, let X be a set, (B,≤B) be a preorder, and let f, g : X → B be two functions such that f ≤B g
pointwise. Let t ∈ ∆AX.
We want to prove that (∆Af)(t) ≤ (∆Ag)(t). This is obvious, since ∆Af = ∆Ag = idA.

There is one more point to prove: τ : ∆AΩ → Ω must be monotone. This is obvious as well, since ∆AΩ
is discrete, so whenever x, y ∈ ∆AΩ are such that x ≤ y, we have x = y, and thus τx = τy. In particular
τx ≤ τy.

Proposition 4.9 (The reader ppt has leaf structure).
Let A be a set, Ω be a complete lattice, and τ : Hom(A,Ω)→ Ω be a monotone application.
Then, (Hom(A,−),Ω, τ) is a ppt with leaf structure.

Proof. τ is monotone by assumption, so we only have to prove that Hom(A,−) (with the pointwise order) is a
Preord-functor.

• Hom(A,−) : Preord→ Preord is a lifting of the constant functor Hom(A,−) : Set→ Set.

• Let f : X → Y be a monotone function between preorders. Let g, h : A→ X be such that g ≤ h pointwise.
Then, for all a ∈ A, f(g(a)) ≤ f(h(a)), thus Hom(A, f)(g) ≤ Hom(A, f)(h).

• Let f, g : X → Y be two monotone functions between preorders such that f ≤ g pointwise. Let h : A→ X
be a function. For all a ∈ A, we have f(h(a)) ≤ g(h(a)), thus Hom(A, f) ≤ Hom(A, g).

For the cases (Pem,Ω, sup) and (Pem,Ω, inf), we will start by checking that Pem is indeed a Preord-lifting
of P, and then check that sup and inf are indeed monotone for the Egli-Milner preorder.

Proposition 4.10 (Egli-Milner lifting of P). The covariant powerset functor with Egli-Milner preorder Pem :
Preord→ Preord is a Preord-lifting of P : Set→ Set.

Proof. • It is clear that UPem = PU .

• Let f : X → Y be a monotone function between preorders. Let A,B : PX be to subsets of X such that
A � B (for the Egli-Milner preorder). We have an increasing i : A → B and a decreasing j : B → A. If
A = ∅ = B there is nothing to prove, so we suppose A 6= ∅ 6= B.
Let x ∈ f(A), and let a ∈ f−1(x) ∩A. Then, x = f(a) ≤ f(i(a)) ∈ f(B).
Let y ∈ f(B), and let b ∈ f−1(y) ∩B. Then f(A) 3 f(j(b)) ≤ f(b) = y.
Thus, f(A) � f(B).

33

• Let X be a set, (B,≤B) be a preorder, and f, g : X → (B,≤B) be functions such that f ≤B g pointwise.
We want to prove that Pf � Pg. Let A ∈ PX. If A = ∅ there is nothing to prove, so we suppose A 6= ∅.
Let x ∈ f(A), and let a ∈ f−1(x) ∩A. Then, x = f(a) ≤B g(a) ∈ g(A).
Let y ∈ g(A), and let a ∈ g−1(y) ∩A. Then, f(A) 3 f(a) ≤B g(a) = y.
Thus, f(A) � g(A).

Proposition 4.11 (inf and sup are monotone for the Egli-Milner preorder). Let Ω be a complete lattice.
inf : PemΩ→ Ω and sup : PemΩ→ Ω are monotone.

Proof. • sup. Let A,B ∈ PΩ be such that A � B for the Egli-Milner preorder.
If A = ∅ = B, supA = supB = ⊥ and there is nothing to prove.
Otherwise, let i : A→ B be increasing. We have

sup
a∈A

a ≤ sup
a∈A

i(a) ≤ sup
b∈B

b.

• inf. Let A,B ∈ PΩ be such that A � B for the Egli-Milner preorder.
If A = ∅ = B, inf A = inf B = > and there is nothing to prove.
Otherwise, let j : B → A be decreasing. We have

inf
a∈A

a ≤ inf
b∈B

j(b) ≤ inf
b∈B

b.

Corollary 4.12. (Pem,Ω, sup) and (Pem,Ω, inf) are ppt with leaf structure.

We will now prove that Homfin(−,W) is indeed a Preord-functor for the tailwise order, and that expectation
E : Homfin(W,W)→W is monotone for some particular W .
From this, we deduce the corresponding results for Dtl and E : D[0, 1]→ [0, 1].

Proposition 4.13 (Homfin(−,W) is a Preord-functor). Let (W,+) be a monoid. Consider the “monoid
preorder” (W,≤) defined by

∀x, y ∈W, x ≤ y ⇐⇒ ∃z ∈W, x+ z = y.

Then, Homfin(−,W) is a Preord-functor for the tailwise preorder based on the monoid preorder.

Proof. • It is easy to check that Homfin(−,W) : Set → Set is indeed a functor. This implies that the
version defined from Preord to Preord will then satisfy basic identity and composition axioms as well.

• Let f : X → Y be a monotone function between preorders. Let d, d′ : Homfin(X,W) be such that d � d′

for the tailwise order, i.e. ∀U ⊆ X up-set, d(U) ≤ d′(U).
Let V ⊆ Y be an up-set. We have

Homfin(f,W)(d)(Y) =
∑

x∈f−1(V)

d(x) ≤
∑

x∈f−1(V)

d′(x) = Homfin(f,W)(d′)(V),

where the middle inequality comes from the fact that f−1(V) is an up-set, by monotonicity of f . Indeed,
if x, x′ ∈ X are such that x ≤ x′ and f(x) ∈ V , f(x) ≤ f(x′), thus f(x′) ∈ V .
Thus, Homfin(f,W) is monotone.

• Let X be a set, (B,≤B) be a preorder, and f, g : X → B be two functions such that f ≤B g pointwise.
Let d ∈ Homfin(X,W) and U ⊆ B be an up-set. We have

Homfin(f,W)(d)(U) =
∑

x∈f−1(U)

d(x) ≤
∑

x∈g−1(U)

d(x) = Homfin(g,W)(d)(U),

34

where the middle inequality comes from the fact that f−1(U) ⊆ g−1(U) by f ≤ g. Indeed, let x ∈ f−1(U).
We have f(x) ≤B g(x), thus g(x) ∈ U , i.e. x ∈ g−1(U).
Thus, Homfin(−,W) is monotone on functions.

In both of the following propositions, N∞ = N ∪ {+∞} and R+ = R+ ∪ {+∞} are equipped with the usual
sum and the usual product. We use the convention 0×∞ = 0.

Lemma 4.14 (Tail integration). • Let W = (N∞,+). The monoid order is the usual order (N∞,≤).
For all d : Homfin(W,W), we have

E(d) =
∑
n∈N

d((n,+∞]).

• Let W = (R+,+). The monoid order is the usual order (R+ ≤).
For all d : Homfin(W,W), we have

E(d) =
∫
x∈[0,+∞)

d((x,+∞]) dx.

Proposition 4.15.
E : Homfin(W,W)→W is monotone for the tailwise order when W = (N∞,+) or W = (R+,+).

Proof. Let d, d′ : Homfin(W,W). In the case W = (N,+), we have

E(d) =
∑
n∈N

d((n,+∞]) ≤
∑
n∈N

d′((n,+∞]) = E(d′),

and in the case W = (R+,+) we have

E(d) =
∫
x∈[0,+∞)

d((x,+∞]) dx ≤
∫
x∈[0,+∞)

d′((x,+∞]) dx = E(d′).

The positivity of d and d′ is used to make sure that the sums and integrals are well-defined, and the fact that
(n,+∞], (x,+∞] are up-sets provides local inequalities.

Corollary 4.16.
(Homfin(−,N∞),N∞,E) and (Homfin(−,R+),R+,E) are ppt with leaf structure for the tailwise order.

Corollary 4.17.

• Dtl : Preord→ Preord is a Preord-functor.

• For d : D[0, 1],

E(d) =
∫ 1

0
d(]x, 1]) dx.

• E : D[0, 1]→ [0, 1] is monotone for the tailwise order.

• (Dtl, [0, 1],E) is a ppt with leaf structure.

Proof.

• Same proof as Proposition 4.13, checking hypotheses for only some of the d : Homfin(W,W).

• Special case of Lemma 4.14.

• Special case of Proposition 4.15, using only some of the d : Homfin(W,W).

• Combine the preceding points.

35

We now proceed by showing that ppt with leaf structure can be multiplied, summed and composed.

Proposition 4.18 (Product of ppt with leaf structure). Let Ta = (Ta,Ωa, τa) and Tb = (Tb,Ωb, τb) be two ppt
with leaf structure, where the lattices Ωa and Ωb may be different.
Then, (Ta × Tb,Ωa × Ωb, τa × τb) is a ppt with leaf structure.

Proof. • The product of two Set-functors is again a Set-functor.
Moreover, if f : X → Y is a monotone function between preorders, and (ta, tb), (t′a, t′b) ∈ TaX × TbX
are such that (ta, tb) ≤(Ta×Tb)X (t′a, t′b), then ta ≤TaX t′a and tb ≤TbX t′b, thus f(ta) ≤TaY f(t′a) and
f(tb) ≤TbY f(t′b), thus f((ta, tb)) ≤(Ta×Tb)Y f((t′a, t′b)).
Finally, for any X,Y : Preord, (Ta × Tb)(−) : Hom(X,Y)→ Hom((Ta × Tb)X, (Ta × Tb)Y) is monotone
as the product of the two monotone functions Ta(−) and Tb(−).
The product of two elements of HomPreord(Preord,Preord) is thus still in HomPreord(Preord,Preord).

• The product of the two complete lattices Ωa × Ωb is a complete lattice, where sup and inf are computed
element-wise.

• τa × τb : TaΩa × TbΩb → Ωa × Ωb is monotone as the product of two monotone applications.

Proposition 4.19 (Coproduct of ppt with leaf structure). Let Ta = (Ta,Ω, τa) and Tb = (Tb,Ω, τb) be two ppt
with leaf structure sharing the same complete lattice.
Then, (Ta + Tb,Ω, τa + τb) is a ppt with leaf structure.

Proof. • The coproduct of two Set-functors is again a Set-functor.
Moreover, if f : X → Y is a monotone function between preorders, and t, t′ ∈ TaX + TbX are such
that t ≤ t′, then t, t′ ∈ TaX or t, t′ ∈ TbX. Without loss of generality, we assume t, t′ ∈ TaX, thus
(Ta + Tb)(f)(t) = (Taf)(t) ≤ (Taf)(t′) = (Ta + Tb)(f)(t′).
Finally, for any X,Y : Preord, (Ta + Tb)(−) : Hom(X,Y)→ Hom((Ta + Tb)X, (Ta + Tb)Y) is monotone
as the coproduct of the two monotone functions Ta(−) and Tb(−).
The coproduct of two elements of HomPreord(Preord,Preord) is thus still in HomPreord(Preord,Preord).

• τa + τb : TaΩ + TbΩ→ Ω, defined by case, is monotone since for each t, t′ ∈ TaΩ + TbΩ, t � t′ if and only
if we have both t, t′ ∈ TaΩ and t, t′ ∈ TbΩ. We can thus rely on the monotonicity of τa and τb.

Proposition 4.20 (Composition of ppt with leaf structure). Let Ta = (Ta,Ω, τa) and Tb = (Tb,Ω, τb) be two
ppt with leaf structure sharing the same truth object.
Then, (Ta ◦ Tb,Ω, τa ◦ Taτb) is a ppt with leaf structure.

Proof. • The composition of two Set-functors is again a Set-functor.
Moreover, if f : X → Y is a monotone function between preorders, Tbf is monotone, thus (TaTb)(f) =
Ta(Tbf) is monotone.
Finally, for any X,Y : Preord, (Ta ◦ Tb)(−) : Hom(X,Y) → Hom((Ta + Tb)X, (Ta + Tb)Y) is monotone
as the composition of the two monotone functions Ta(−) and Tb(−).
The composition of two elements of HomPreord(Preord,Preord) is thus still in HomPreord(Preord,Preord).

• Notice that τa ◦ Taτb : TaTbΩ → Ω typechecks. Moreover, it is monotone as the composition of two
monotone functions.

Proposition 4.21. If T = (T,Ω, τ) is a ppt with leaf structure, for any monotone τ̃ : TΩ → Ω, (T,Ω, τ̃) is a
ppt with leaf structure.

Proof. Trivial.

We have finally proven all points of Theorem 4.5.

36

5 Approximation of process-predicate types – shape structure
This section is devoted to the study of shape structures on process-predicate types and of connections between
different ppt with shape structures.
While the role of leaf structure was to provide fixed points of predicate transformers for a single process, shape

structures and connections enable the comparison of several processes on the same type or on different types.
We will outline main definitions, results about shape structures and connections, and illustrate them in the case

of stochastic games (SG) and Markov decision processes (MDP). Several additional examples and applications
are provided in Section 6.
Recall that shape structures on ppts have been described in Definition 3.17 as tuples (Ts,Ωs, τs), where

Ts : Set → Preord is a Preord-extension of a process type T : Set → Set, and where τs : TsΩ → Ωs is
monotone.
In Section 5.1, we use shape structures to compare processes on the same type. This models simple phenomena

like the fact that in a SG, if Minimizer loses power, then reachability probabilities of the goal increase.
In Section 5.2, we then introduce the notion of connection between process-predicate types with shape struc-

ture (Definition 5.7). An example of such connection is the “Minimizer restriction” relationship between SG
and MDP. Other examples are given in Section 6.
This makes it possible to approximate solutions of problems expressed as a ppt by solutions of problems

expressed on another ppt. This is stated in Corollary 5.15 as a comparison result between processes on different
types. As explained in Remark 5.16, this improves value iteration algorithms (VI) provided by leaf structure
(cf. Section 4), by adding upper bounds to lfp and lower bounds to gfp.
To go from VI to bounded value iteration (BVI), we need to go a bit further. Section 5.3 states assumptions

that turn a connection into a tight connection (Definition 5.17). When those assumptions are met, we obtain
Theorem 5.22, a strong approximation theorem making BVI possible by connecting two ppt together.
Theorem 5.22 states that when we have a connection T↓ /T↑ between ppt with both shape and leaf structures,

if T↑ is a tight upper approximation of T↓, then lfp in T↓ can be described as both suprema (using leaf structure)
and infima (of lfp in T↑, using the connection).
For example, in Example 5.23, we obtain a form of BVI for SG using the connection SG / MDP , which

meets our tightness assumptions in the case of finite branching. The importance of convergence speed for BVI
is explained in Remark 5.24 and Proposition 5.25. This limits the applicability of this example, and more
powerful applications are described in Section 6.

5.1 Shape-monotonicity of predicate transformers
We start by the following simple result, showing how shape structure and leaf structure interact.

Proposition 5.1 (Shape-monotonicity of predicate transformers). Let Ω be a complete lattice, Ω0 = UΩ the
underlying set of Ω and T = (T,Ω0, τ) be a ppt with shape structure Ts = (Ts,Ω, τs). Recall that this means
that Ts : Set→ Preord is an extension of T and that τs : (TsΩ0,v)→ (Ω,≤) is monotone.
Then, for any two processes g, g′ : X → TY , if g v g′ (for the shape preorder), we have

g∗τ ≤ g′∗τ .

In particular, by Proposition 4.2, if T also has leaf structure Tl = (Tl,Ω, τl), and if g, g′ are coalgebras, we
thus have the following inequalities of value functions.

V (g) ≤ V (g′)

The same holds for greatest fixed points.
gfp(g) ≤ gfp(g′)

Proof. Look at the following diagram.

37

X

TY TY

TsΩ0 TsΩ0

Ω

g′g

Tsf

id

Tsf

τs

id

τs

Since g v g′, we have an inequality v on the top triangle.
Since Tsf is monotone (by functoriality), this lifts to a relation v with the top triangle and center square.
Since τs is monotone for v, post-composition by τ is increasing, and we thus have an inequality ≤ on the

whole diagram.

Remark 5.2. Notice that there is only one compatibility condition between the shape structure Ts and the
leaf structure Tl: there are defined on the same order Ω.

Both τs : TsΩ0 → Ω and τl : TlΩ→ Ω are monotone.
All comparison are made on predicate transformers X → Ω, so the order structure of the shared Ω can be

used, and we can rely on the second point of proposition 4.2 which states that if g∗τ ≤ g′∗τ (pointwise for the
order of Hom(X,Ω)), then V (g) ≤ V (g′) (pointwise for the order of Ω).

This proposition models simple properties on the branching structure of our processes, such as the fact that
when Minimizer loses choices in a SG, reachability probabilities of the goal increase, or similarly that they
increase when the player of a MDP obtains new choices.

MDP and SG will serve as illustration to most properties in this example. Thus, before going further, we
recall Example 3.21, and describe precisely the shape structures we put on MDPs and SGs,

Example 5.3 (A shape structure for MDPs: choice inclusion). LetMDP be the process-predicate type defined
by (2× PD(−), [0, 1], β), where β is the Bellman modality (β(>,−) = 1, β(⊥, t) = supd∈t E(d)).
This ppt models the problem of goal reachability in Markov decision processes, and can be given a leaf

structure similarly as in Example 4.7, using Egli-Milner preorder and tailwise preorder.
Egli-Milner preorder is chosen, like it was in Section 4, so as to make sup and inf be monotone.
We define a shape structure for MDPs in the following way.
First, for all sets X, define the preorder (2× PDX,v) by

∀t1, t2 ∈ 2× PDX, t1 v t2 ⇐⇒ (π1t1 = π1t2) ∧ (π2t1 ⊆ π2t2).

This defines a Preord-extension Ts of 2× PD(−):

Ts : Set→ Preord
X 7→ (2× PDX,v)

(f : X → Y) 7→ 2× PDf.

Indeed, it is easy to check that if f : X → Y , Tsf = 2× PDf is monotone for v.
Let t1, t2 be in TsX, such that t1 v t2, i.e. π1t1 = π1t2 and {d : DX | d ∈ π2t1} ⊆ {d : DX | d ∈ π2t2}. We

then have (Tsf)(t1) = (π1t1, {D(f)d : DY | d ∈ π2t1}) and (Tsf)(t2) = (π1t2, {D(f)d : DY | d ∈ π2t2}), where
{D(f)d : DY | d ∈ π2t1} ⊆ {D(f)d : DY | d ∈ π2t2}, thus (Tsf)(t1) v (Tsf)(t2).

Ωs = ([0, 1],≤) is a complete lattice.
Furthermore, the Bellman modality βs : (2×PD[0, 1],v)→ ([0, 1],≤) is monotone. Indeed, there is nothing

to check for the case of goal states >. In the other case, we use the fact that for any two sets A ⊆ B ⊂ [0, 1],
supA ≤ supB.
Thus, the “choice inclusion” preorder v induces a ppt with shape structure (Ts,Ωs, βs).

We define a slightly different kind of shape structure for SGs, using only reverse inclusion on Minimizer’s
choices, and equality on Maximizer’s choices. This will be useful in Section 5.3 to connect SGs with MDPs.

38

Example 5.4 (A shape structure for SGs: Minimizer restriction). Let SG be the process-predicate type
defined by (2×2×PD(−), [0, 1], β), where β is the Bellman modality (β(>,−,−) = 1, β(�,⊥, t) = supd∈t E(d),
β(©,⊥, t) = infd∈t E(d)).
This ppt models the problem of goal reachability in stochastic games, and is given a leaf structure in Example

4.7, using Egli-Milner preorder and tailwise preorder.
We define a shape structure for SGs in the following way.
First, for all sets X, define the preorder (2× 2× PDX,v) by

∀t1, t2 ∈ 2× 2× PDX,

t1 v t2 ⇐⇒ (π1t1 = π1t2) ∧ (π2t1 = π2t2) ∧
((
π1t1 = � ∧ π3t1 = π3t2

)
∨
(
π1t1 =© ∧ π3t1 ⊇ π3t2

))
.

This defines a Preord-extension Ts of 2× 2× PD(−):

Ts : Set→ Preord
X 7→ (2× PDX,v)

(f : X → Y) 7→ 2× PDf.

Like before, it is easy to check that if f : X → Y , Tsf = 2× PDf is monotone for v. Ωs = ([0, 1],≤) is still a
complete lattice, and the Bellman modality βs : (2 × 2 × PD[0, 1],v) → ([0, 1],≤) is still monotone, where we
use the fact that for any two sets [0, 1] ⊇ A ⊇ B, inf A ≤ inf B.

Thus, the “Minimizer restriction” preorder v induces a ppt with shape structure (Ts,Ωs, βs).

Now that we have shape structures in mind for MDPs and SGs, we can illustrate the simple Proposition 5.1
on shape-monotonicity of predicate transformers.

Notice that we don’t prove anything new or especially interesting: it is Proposition 5.1 that is a generalisation
of those results.

Example 5.5 (Shape-monotonicity for choice inclusion in MDPs). Let T = (2 × PD(−), [0, 1], β) be the ppt
of MDPs (for goal reachability), and Ts be its shape structure defined by choice inclusion like in 5.3.
Let g, g′ : X → 2× PDX be two MDPs such that g v g′.
This means that for every state x ∈ X, π1g(x) = π1g

′(x) and π2g(x) ⊂ π2g
′(x), i.e. goal states are the same

in both MDPs and the player has more choices in g′ than in g.
Proposition 5.1 show that this implies the relation g∗β ≤ g′∗β on predicate transformers. This can be written

as Bg ≤ Bg′ , where Bh is the Bellman operator on the MDP h. More precisely, for every predicate p : X → [0, 1]
and every x ∈ X which isn’t a goal state,

sup
d∈π2g(x)

∑
y∈X

p(y)d(y) ≤ sup
d∈π2g′(x)

∑
y∈X

p(y)d(y).

In particular, since T can be given a leaf structure, with V (g)(x) = Pg(♦1)(x), we have that for all x ∈ X,

Pg(♦1)(x) ≤ Pg′(♦1)(x).

Example 5.6 (Shape-monotonicity for Minimizer restriction in SGs). Let T = (2×2×PD(−), [0, 1], β) be the
ppt of SGs (for goal reachability), and Ts be its shape structure defined by Minimizer restriction like in 5.4.
Let g, g′ : X → 2× PDX be two MDPs such that g v g′.
This means that g and g′ share the same goal states, and that states in g and g′ are assigned to the same player.

Moreover, for any x ∈ X, if π1g(x) = � then π3g(x) = π3g
′(x), and if π1g(x) = © then π3g(x) ⊇ π3g

′(x). In
other words, Maximizer has the same choices in g and g′, and Minimizer has fewer choices in g′ than in g.
Proposition 5.1 shows that this implies the relation g∗β ≤ g′∗β on predicate transformers. This can be written

as Bg ≤ Bg′ , where Bh is the Bellman operator on the SG h. More precisely, for every predicate p : X → [0, 1]
and every x ∈ X which isn’t a goal state,

sup
d∈π3g(x)

∑
y∈X

p(y)d(y) ≤ sup
d∈π3g′(x)

∑
y∈X

p(y)d(y) if x belongs to Maximizer

inf
d∈π3g(x)

∑
y∈X

p(y)d(y) ≤ inf
d∈π3g′(x)

∑
y∈X

p(y)d(y) if x belongs to Minimizer.

39

(We actually have an equality in the case of Maximizer’s states).
In particular, since T can be given a leaf structure, with V (g)(x) = Pg(♦1)(x), we have that for all x ∈ X,

Pg(♦1)(x) ≤ Pg′(♦1)(x).

5.2 Connections between ppt with shape structure
We now introduce a notion of connection between ppt with shape structures. This allows us to relate ppt (with
shape structure) together, and to compare processes on different ppt, paving the way for surrogate models and
bounded value iteration.
Note that since our shape structures are very much related to the “orders on functors” described in [36], an

interesting direction of research would be to construct connections between the many examples described in
second section of [36].

Definition 5.7 (Connections and approximations). Let T↓ = (T↓,Ω, τ↓), T↑ = (T↑,Ω, τ↑) be process-predicate
types with shape structure on the same truth object.
We say that T↓ and T↑ are connected whenever there exists a ppt with shape structure T∗ = (T∗,Ω, τ∗) such

that the following holds.
We write Ω0 := UΩ, T↓,0 := UT↓, T∗,0 := UT∗, T↑,0 := UT↑ the underlying set and process types.

• The Set endofunctor T∗,0 is a cospan of T↓,0 and T↑,0, i.e. there is a diagram with two natural transfor-
mations α↓, α↑ of the following shape.

T↓,0
α↓=⇒ T∗,0

α↑⇐= T↑,0.

• We have τ↓ ≤ τ∗ ◦ α↓ and τ∗ ◦ α↑ ≤ τ↑ for the pointwise order on Ω.

T↓Ω0 T∗Ω0 T↑Ω0

Ω

α↓,Ω0

≤
τ↓

τ∗

α↑,Ω0

≤
τ↑

In that case we say that T∗ is the connector between T↓ and T↑, that T↓ and T↑ are connected through T∗,
that T↓ is a lower approximation of T↑, and that T↑ is an upper approximation of T↓.
When this holds, we write

T↓ /T∗ T↑,

or simply T↓ / T↑ to signify that such a connection exists.

Remark 5.8. We could make a more general definition by using a zigzag instead of a cospan, but the cospan
definition covers our examples.

Several examples of connections are given in Section 6.2.
A simple way of constructing such a connection is to simply have a natural transformation between process

types. More sophisticated connectors simply serve as a generalisation of the following situation.

Proposition 5.9 (Connections through natural transformations). Let T↓ = (T↓,Ω, τ↓), T↑ = (T↑,Ω, τ↑) be
process-predicate types with shape structure on the same truth object.
Suppose that there exists a natural transformation α : UT↓ ⇒ UT↑ such that τ↓ ≤ τ↑ ◦ αΩ0 . Then,

T↓ /T↑ T↑.

Similarly, if there exists α : UT↑ ⇒ UT↓ such that τ↓ ◦ αΩ0 ≤ τ↑, then

T↓ /T↓ T↑.

Proof. For the other natural transformation, take the identity.

We give an example by connecting SGs with MDPs.

40

Example 5.10 (SG /MDP MDP). Consider the two ppt with shape structure MDP and SG defined in
Examples 5.3 and 5.4. We have a connection

SG /MDP MDP.

In other words, stochastic games can be connected to Markov decision processes in the sense of connections
between ppt with shape structure.
Proof. Recall that MDP is defined on the ppt (2 × PD(−), [0, 1], βMDP), with the shape structure induced
by choice inclusion, and that SG is defined on the ppt (2 × 2 × PD(−), [0, 1], βSG), with the shape structure
induced by Minimizer restriction.
Define a natural transformation α by

αX : {�,©}× {⊥,>} × PDX → {⊥,>} × PDX
(©, g,∅) 7→ (>,∅)

(p, g, t) 7→ (g, t) if (p, t) 6= (©,∅).

α forgets, for each state, to which player it belongs, and deals with the special case where Minimizer is in a
deadlock by turning it into a goal. It is straightforward to verify that α is indeed natural.
We thus only have to prove that βSG ≤ βMDP ◦ α[0,1].
Let u = (p, g, t) ∈ 2× 2× PD[0, 1] and v = α[0,1](u) = (g, t) ∈ 2× PD[0, 1].
If g = > (if u stems from a goal state), we directly have βSG(u) = 1 = βMDP (v).
Similarly, if g = ⊥ and p = �, βSG(u) = supd∈t E(d) = βMDP (v).
If g = ⊥, p =©, t 6= ∅, we can check that βSG(u) = infd∈t E(d) ≤ supd∈t E(d) = βMDP (v).
Finally, if p =© with t = ∅, we have βSG(u) = inf ∅ = 1 = βMDP (v).

The names lower and upper approximations can be justified by the following property.
Proposition 5.11 (Predicate transformers going through the connector). Let T↓, T∗ and T↑ be ppt with shape
structure such that T↓ /T∗ T↑.
Let g↓ : X → T↓Y and g↑ : X → T↑Y be two processes. Then,

(g↓)∗τ↓ ≤ (α↓ ◦ g↓)∗τ∗ and (α↑ ◦ g↑)∗τ∗ ≤ (g↑)∗τ↑ .

Moreover,
• If g↓ and g↑ coincide in T∗, i.e. if α↓ ◦ g↓ = α↑ ◦ g↑ then

(g↓)∗τ↓ ≤ (g↑)∗τ↑ .

• If T↓, T∗, T↑ also have leaf structure (with the same order structure on Ω), and if g↓, g↑ are coalgebras,
then

V (g↓) ≤ V (α↓ ◦ g↓) and V (α↑ ◦ g↑) ≤ V (g↑),
and the same holds for greatest fixed points.

• Finally, if all the hypotheses above hold, i.e. if g↓ and g↑ coincide in T∗, if we have leaf structures, and if
the processes are coalgebras, then

V (g↓) ≤ V (g↑),
and the same holds for greatest fixed points.

Proof. Let p : Y → Ω be a predicate, and look at the following diagram.

X

T↓Y T∗Y

T↓Ω0 T∗Ω0

Ω

g↓ α↓,Y ◦g↓

T↓p

α↓,Y

T∗p

α↓,Ω0

τ↓ τ∗

41

The triangle on the top is commutative by definition (composition).
The square in the middle is commutative by naturality of α.
The last triangle is ≤ by definition of the connection through T∗, τ∗.
This lifts to a ≤ relation on the full diagram since precomposition is increasing.
The same proof can be done on this diagram

X

T∗Y T↑Y

T∗Ω0 T↑Ω0

Ω

g↑α↑,Y ◦g↑

T∗p T↑p

α↑,Y

τ∗

α↑,Ω0

τ↑

This can be exemplified in the connection SG /MDP MDP .

Example 5.12 (Minimizer restriction increases reachability probabilities). Consider once again the case of
SG and MDP, using the connection SG /MDP MDP defined in Example 5.10 with a natural transformation
α : 2× 2× PD(−) =⇒ 2× PD(−).
Let g : X → 2 × 2 × PDX be a SG. Then, αX ◦ g : X → 2 × PDX is a MDP, where all states that used to

belong to Minimizer (trying to avoid goal states) now belong to a player trying to reach goal states.
Without surprises, Proposition 5.11 states that g∗βSG ≤ (αX ◦g)∗βMDP , and in particular VSG(g) ≤ VMDP (αX ◦

g), i.e.
PSG, g(♦1) ≤ PMDP,αX◦g(♦1).

In other words, giving all states to Maximizer increased the probability of reaching a goal.
More generally, let g↑ : X → 2×PD be a MDP such that αX ◦ g vMDP g↑. This corresponds to saying that,

while going from g to g↑, all states have been given to Maximizer, and Maximizer may then have been given
even more choices at each state. In that case, Proposition 5.11 states that we also have g∗βSG ≤ (g↑)∗βMDP .

s1

sI

s2

1

0

α

1

α

1

α
1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9

g : X → 2× 2× PDX

s1

sI

s2

1

0

α

1

α

1

α
1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9

αX ◦ g : X → 2× PDX

VSG(g) =
(
sI s1 s2 0 1
0.9 0.8 0.9 0 1

)
≤ VMDP (αX◦g) =

(
sI s1 s2 0 1
0.9 0.9 0.9 0 1

)

In this example, the single player chooses α at s1, when Minimizer would have played β.

It is actually unnecessary to ensure that g↓ and g↑ coincide in T∗. More generally, we may simply try to prove
that g↓ is “smaller” than g↑, in the following way.

42

Definition 5.13 (Comparison chains). Let T↓, T∗ and T↑ be ppt with shape structure such that T↓ /T∗ T↑.
For any two processes g↓ : X → T↓Y and g↑ : X → T↑Y , we write

g↓ /
(g′↓,T∗,g

′
↑)
g↑

whenever we have a comparison chain

g↓ v↓ g′↓, α↓ ◦ g′↓ v∗ α↑ ◦ g′↑, g′↑ v↑ g↑,

where g′↓ : X → T↓Y , g′↑ : X → T↓Y , and v↓,v∗,v↑ are the shape preorders.
In that case, we say that g↓ and g↑ are connected, that g↓ is a lower approximation of g↑ and that g↑ is an

upper approximation of g↓.
To say that such a connection exists, we may also simply write

g↓ /T∗g↑ or g↓ / g↑.

Example 5.14 (Shape monotonicity between SG and MDP). In the case of SG and MDP (cf. Example 5.10),
the formula

g↓ /
(g′↓,T∗,g

′
↑)
g↑

means that we go from a SG g↓ to a MDP g↑ through the following steps.

• From g↓ to another SG g′↓, you may remove some of Minimizer’s choices (g↓ vSG g′↓).

• From the SG g′↓ to the MDP g′↑, give all of Minimizer’s states to the single player (αX ◦ g′↓), turning
Minimizer’s deadlocks into goal states.
You may then give some new options at all states to this single player (αX ◦ g′↓ vMDP idX ◦ g′↑ = g′↑).

• Once again, you may give new options to the player (g′↑ vMDP g↑).

In that case, the following corollary states that

(g↓)∗τSG ≤ (g↑)∗τMDP ,

and in particular
VSG(g↓) ≤ VMDP (g↑).

We illustrate this on an example (note that we made Minimizer slightly more powerful in g↓ than in our
previous examples).

43

s1

sI

s2

1

0

α

1

α

1

α

1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9
g↓ : X → 2× 2× PDX

VSG(g↓) =
(
sI s1 s2 0 1
0.8 0.8 0.9 0 1

)

s1

sI

s2

1

0

α

1

α

1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9

g′↓ : X → 2× PDX

VSG(g′↓) =
(
sI s1 s2 0 1

0.83 0.8 0.9 0 1

)
s1

sI

s2

1

0

α

1

α

1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9

αX ◦ g′↓ : X → 2× PDX

VMDP (αX ◦ g′↓) =
(
sI s1 s2 0 1
0.9 0.9 0.9 0 1

)

s1

sI

s2

1

0

α

1

α
1

γ

0.6

α

1
β

0.2

β 0.8

α 0.1

β 1
0.7

0.3 0.8

0.4

β

0.2

0.9

idX ◦ g′↑ = g′↑ = g↑ : X → 2× PDX

VMDP (g′↑) = VMDP (g↑) =
(
sI s1 s2 0 1

0.92 0.92 0.92 0.2 1

)
Choices are removed from Min, then states are given to Max, then choices are given to Max.

Corollary 5.15 (Shape-monotonicity between different types). Let T↓, T∗ and T↑ be ppt with shape structure
such that T↓ /T∗ T↑.
Let g↓ : X → T↓Y , g↑ : X → T↑Y be two processes such that g↓ / g↑. Then

(g↓)∗τ↓ ≤ (g↑)∗τ↑ .

Moreover, if T↓, T↑ have leaf structure and if g↓, g↑ are coalgebras,

V (g↓) ≤ V (g↑),

and the same holds for greatest fixed points.

Proof. By Proposition 5.1, (g↓)∗τ↓ ≤ (g′↓)∗τ↓ and (g′↑)∗τ↑ ≤ (g↑)∗τ↑ .
By Proposition 5.11, (g′↓)∗τ↓ ≤ (α↓ ◦ g′↓)∗τ∗ and (α↑ ◦ g′↑)∗τ∗ ≤ (g′↑)∗τ↑ .
We then conclude by transitivity.

Remark 5.16 (Upper bounds in value iteration). Corollary 5.15 has strong consequences. Suppose that we are
interested in solving a problem which can be described by a process-predicate type T = (T,Ω, τ). An instance
of the problem is given by a coalgebra g : Coalg(T), and the goal is to compute V (g).
From Section 4, we know that V (g) can be computed as the (transfinite) limit of the increasing chain

(gατ (⊥))α:Ord. In particular, this gives us a way of computing a lower bound of V (g), and incrementally make
it better: this is the technique called value iteration.
Corollary 5.15 points toward a way of computing upper bounds of V (g). Indeed, suppose that T has shape

structure, and that we can find an upper approximation T↑ of T , i.e. another ppt with shape structure such
that T / T↑ (cf. Definition 5.7).

44

If we can furthermore compute a g↑ : Coalg(T↑) such that g / g↑ (cf. Definition 5.13), we will then have
V (g) ≤ V (g↑).
If this V (g↑) can be computed efficiently, e.g. if the upper bound T↑ enjoys good algorithmic properties, we

will have effectively computed an upper bound of V (g).

5.3 An approximation theorem in the case of tight connections
As explained in Remark 5.16, thanks to Corollary 5.15, we can obtain upper bounds of least fixed points
(and similarly, lower bounds of greatest fixed points) by using connections between ppt with shape structures
(Definition 5.7). This is an improvement upon Section 4, where lfp (resp. gfp) could only be computed as
suprema (resp. infima) of transfinite sequences, thus giving only lower bounds (resp. upper bounds).
However, the bounds from Section 4 were converging, and this is not the case of the bound obtained in Remark

5.16. To obtain convergence from this other direction, we need more than simple connection.
The following axiom, exemplified in 5.20 and other applications of Section 6, gives us what we hope.

Definition 5.17 (Tight connection).
Let T↓ = (T↓,Ω, τ↓), and T↑ = (T↑,Ω, τ↑) be ppt with shape structure such that T↓ / T↑.
We say that T↑ is a tight overapproximation of T↓ whenever for all sets X, for all coalgebras g↓ : X → T↓X,

for all predicates p : X → Ω, there exists a g↑ : X → T↑X such that

g↓ / g↑ and (g↓)∗τ↓(p) = (g↑)∗τ↑(p).

Similarly, we say that T↓ is a tight underapproximation of T↑ whenever for all sets X, for all coalgebras
g↑ : X → T↑X, for all predicates p : X → Ω, there exists a g↓ : X → T↓X such that

g↓ / g↑ and (g↓)∗τ↓(p) = (g↑)∗τ↑(p).

Remark 5.18. By Corollary 5.15, we can reformulate Definition 5.17 by saying that T↑ is a tight overapprox-
imation of T↓ if and only if for all X, g↓ : X → T↓X and p : X → Ω, there exists a g↑ : X → T↑X such
that

g↓ / g↑ and (g↓)∗τ↓(p) ≥ (g↑)∗τ↑(p).
Similarly, T↓ is a tight underapproximation of T↑ if and only if for all X, g↑ : X → T↑X and p : X → Ω, there

exists a g↓ : X → T↓X such that

g↓ / g↑ and (g↓)∗τ↓(p) ≥ (g↑)∗τ↑(p).

Since the concept of tight connection gives us one of the central results of this paper, we repackage its
definition and explain it more plainly in the following remark.

Remark 5.19 (Tight connection reformulated).
This remark provides an equivalent, although imprecise, definition to that of 5.17.
Let T↓ and T↑ be two ppt (representing process types, with additional semantic to model two different problems

on the same truth object). We say that T↑ is a tight overapproximation of T↓ whenever the following hold.

• We can say when a process g↑ in T↑ is an “overapproximation” of a g↓ in T↓, thanks to a connection T↓ /T↑.
The definition says that, in that case, g↑ overapproximates g↓ whenever there is some relationship between
the branching structures of g↓ and g↑ (check if there is a comparison chain like in Definition 5.13).
This implies that the predicate transformer (g↑)∗τ↑ computes a solution to the problem of T↑ that is larger
than the solution computed by (g↓)∗τ↓ to the problem of T↓.

• Moreover, we ask that for every g↓ in T↓, there exists an overapproximation g↑ in T↑, i.e. g↓ / g↑.
This provides upper bounds to solutions of problems in T↓.

• Finally, we strengthen the last requirement by asking for overapproximations that are locally exact.
For each g↓ in T↓ on the state space X and every predicate p : X → Ω, we need to be able to provide an
approximation g↑ such that (g↓)∗τ↓(p) = (g↑)∗τ↑(p), and not only (g↓)∗τ↓(p) ≤ (g↑)∗τ↑(p).
Thus, g↑ is a process in the problem T↑ such that no information is lost with regard to p while going from
g↓ to its approximation g↑.

45

This concept will give us a theorem which enables bounded value iteration (BVI). Before stating the theorem,
we note that in the connection SG /MDP MDP , MDP is a tight overapproximation of SG when we restrict
ourselves to finite branching.

Example 5.20 (Tight connection between SG and MDP). In this example, we provide the necessary con-
structions to prove that MDP is a tight overapproximation of SG in the case of finite branching.

We still use definitions of Example 5.10, but restrict the functors to finite branching: the ppt considered are
(2× PfD(−), [0, 1], βMDP) and (2× 2× PfD(−), [0, 1], βSG).

Consider g↓ : X → 2× 2×PfDX a finitely branching stochastic game on a (possibly infinite) state space X.
Let p : X → [0, 1] be a predicate. We want to construct a (finitely branching) MDP g↑ : X → 2 × PfDX that
overapproximates g↓ (we have g↓ / g↑) such that no information about the behaviour of g↑ on p is lost (we have
(g↓)∗τ↓(p) = (g↑)∗τ↑(p)).

Construct the MDP g↑ from g↓ by keeping only Minimizer’s moves that are optimal with respect to p.

g↑ : X → 2× PfDX
x 7→

(
π2g↓(x), π3g↓(x)

)
if π1g↓(x) = �

x 7→
(
π2g↓(x),

{
d ∈ π3g↓(x)

∣∣E((Dp)d) = inf
d′∈π3g↓(x)

E((Dp)d′)
})

if π1g↓(x) =© and π3g↓(x) 6= ∅

x 7→
(
>,∅

)
if π1g↓(x) =© and π3g↓(x) = ∅

Notice how, indeed, no information has been lost with respect to p. We prove that τ↓ ◦T↓p◦g↓ = τ↑ ◦T↑p◦g↑.
Let x ∈ X. If x is a goal state, (g↓)∗τ↓(p)(x) = 1 = (g↑)∗τ↑(p)(x).
Otherwise, if x belongs to Max, (g↓)∗τ↓(p)(x) = supd∈π3g↓(x) E((Dp)d) = (g↑)∗τ↑(p)(x).
If x is a deadlock for Min, (g↓)∗τ↓(p)(x) = inf ∅ = 1 = (g↑)∗τ↑(p)(x). Finally, if x belongs to Min with

π3g↓(x) 6= ∅, (g↓)∗τ↓(p)(x) = infd∈π3g↓(x) E((Dp)d) = infd∈π2g↑(x) E((Dp)d) = (g↑)∗τ↑(p)(x).
Notice that in the last case, we have used the fact that π3g↓(x) is finite to prove that there exists an optimal

choice d ∈ π3g↓(x) such that E((Dp)d) = infd′∈π3g↓(x) E((Dp)d′).

By construction, we do have g↓ / g↑. Indeed, we have the comparison chain

g↓ vSG g′↓, αX ◦ g′↓ = idx ◦ g↑ = g↑,

where we only used Minimizer restriction by going from g↓ to

g′↓ : X → 2× 2× PfDX
x 7→ g↓(x) if π1g↓(x) = �

x 7→
(
π1g↓(x), π2g↓(x),

{
d ∈ π3g↓(x)

∣∣E((Dp)d) = inf
d′∈π3g↓(x)

E((Dp)d′)
})

if π1g↓(x) =©.

Thus, MDPf is a tight overapproximation of SGf .

In the following example, we show what this locally lossless approximation looks like in the cases

p = VSG(g↓) =
(
sI s1 s2 0 1
0.8 0.8 0.9 0 1

)
and p = (g↓)2

τ↓
(⊥) =

(
sI s1 s2 0 1
0 0.8 0.9 0 1

)
.

We can interpret this setting in the following way. In the first case, Minimizer has understood everything
about Maximizer’s strategy, knows what the consequences of its actions will be even after ω time steps, and
thus really knows what its optimal choices are.
In the second case, however, Minimizer has only looked at the consequences of his actions with a horizon of

2 time steps. Minimizer will still try to follow an optimal strategy, but will only be able to do so based on his
limited knowledge. Here, Minimizer will still believe that choosing γ in sI is a viable strategy for staying in an
infinite loop.

46

s1

sI

s2

1

0

α

1

α

1

α

1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9
g↓ : X → 2× 2× PDX

s1

sI

s2

1

0

α

1

α

1

α
1 β 0.8

α 0.1

β 1

0.2

0.9

g↑ : X → 2× PDX

(g↓)∗βSG(VSG(g↓)) = VSG(g↓) =
(
sI s1 s2 0 1
0.8 0.8 0.9 0 1

)
= (g↑)∗βMDP (VSG(g↓)) =

(
sI s1 s2 0 1
0.8 0.8 0.9 0 1

)
Overapproximation of g↓ exact at p = VSG(g↓). Only Min’s optimal choices (with respect to VSG(g↓)) are kept.

s1

sI

s2

1

0

α

1

α

1

α

1

γ

0.6

α

1

β 0.8

α 0.1

β 1

0.7

0.3

0.4

β

0.2

0.9

g↓ : X → 2× 2× PDX

s1

sI

s2

1

0

α

1

α

1

γ

0.6

β 0.8

α 0.1

β 1

0.2

0.4

0.9
g↑ : X → 2× PDX

(g↓)∗βSG
(
(g↓)2

βSG(⊥)
)

=
(
sI s1 s2 0 1

0.54 0.8 0.9 0 1

)
= (g↑)∗βMDP

(
(g↓)2

βSG(⊥)
)

=
(
sI s1 s2 0 1

0.54 0.8 0.9 0 1

)

VSG(g↓) =
(
sI s1 s2 0 1
0.8 0.8 0.9 0 1

)
≤ VMDP (g↑) =

(
sI s1 s2 0 1
0.9 0.8 0.9 0 1

)
Overapproximation of g↓, where only Min’s optimal choices (with respect to (g↓)2

βSG
(⊥)) are kept.

Notice that computing the overapproximation (exact at p) g↓ from g↑ and p was very simple in our case: it
could be done in linear time in the size of the MDP (for finite state spaces). This is encouraging, and shows
that the tight connection SGf /MDPf can be used in applications. It is indeed used, e.g. in [1], where it is also
composed with a connection between MDP and WG.
This emphasises an important point about our theory. Finding a tight connection tells us what objects can

be used for applications such as BVI. However, the theory doesn’t provide a constructive, fast algorithm to
compute those objects: this is still up to the implementer. Our order theory is structural, but not algorithmic.

Remark 5.21 (Local computation of truth values, local approximation).
We could axiomatise the fact that locally exact upper bounds are computed locally, to motivate the fact that

they can be computed efficiently.
Up until now, we only used local computation of truth values, using

τ ◦ T (−) : ΩX → TX → Ω
p 7→ (t 7→ (τ ◦ Tp)(t))

47

which gave us our predicate transformers (written in currified form)

(−)∗τ (−) : ΩX → (TX)X → ΩX
p 7→ (g 7→ τ ◦ Tp ◦ g)

which compute local propagation of truth values, and can be studied with leaf structure.
Similarly, in the case T↑ a tight overapproximation of T↓, we could ask for local approximation of processes,

using a
ϕ : ΩX → T↓X → T↑X

such that

∀p : ΩX , ∀t : T↓X,
(
t / ϕ(p)(t) ∧ (τ↓ ◦ T↓p)(t) = (τ↑ ◦ T↑p ◦ ϕ(p))(t)

)
.

This would give us a
Φ : ΩX → (T↓X)X → (T↑X)X

p 7→ (g↓ 7→ ϕ(p) ◦ g↓)

computing overapproximations Φ(p, g↓) : X → T↑X of g↓ exact at p.

Notice that the construction above for SG/MDP was local, with

ϕ : ΩX → 2× 2× PfDX → 2× PfDX
(p, (g,�, t)) 7→ (g, t)

(p, (g,©,∅)) 7→ (>,∅)

(p, (g,©, t)) 7→
(
g,
{
d ∈ t

∣∣E((Dp)d) = inf
d′∈t

E((Dp)d′)
})

if t 6= ∅.

The following theorem gives us sequences converging to fixed point from both below and above.

Theorem 5.22 (Double approximation theorem).
Let T↓ = (T↓,Ω, τ↓), and T↑ = (T↑,Ω, τ↑) be ppt with both shape and leaf structure such that T↓ / T↑.
This supposes that the complete lattice Ω is shared between the shape and leaf structures of both ppt.
Moreover, suppose that T↑ is a tight overapproximation of T↓.
Let g↓ : X → T↓X be a coalgebra. For each ordinal α, we can define pα = (g↓)ατ↓(⊥), and choose gα : X → T↑X

with g↓ / gα such that (g↓)∗τ↓(pα) = (gα)∗τ↑(pα). Then,

V (g↓) := lfp
(
(g↓)∗τ↓

)
= sup
α:Ord

pα = inf
α:Ord

V (gα).

Furthermore, the convergence time of (V (gα))α:Ord is smaller than the convergence time of (pα)α:Ord.

Similarly, suppose that T↓ is a tight underapproximation of T↑.
Let g↑ : X → T↑X be a coalgebra. For each ordinal α, we can define pα = (g↑)ατ↑(>), and choose gα : X → T↓X

with gα / g↑ such that (gα)∗τ↓(pα) = (g↑)∗τ↑(pα). Then,

gfp
(
(g↑)∗τ↑

)
= inf
α:Ord

pα = sup
α:Ord

gfp
(
(gα)∗τ↓

)
.

Furthermore, the convergence time of (V (gα))α:Ord is smaller than the convergence time of (pα)α:Ord.

Proof. We only have to prove the first result, the other case is symmetric.
Suppose that T↑ is a tight overapproximation of T↓, and let g↓ : X → T↓X be a coalgebra.
Define pα = (g↓)ατ↓(⊥), such that V (g↓) = sup pα by Theorem 4.1.
For each α, let gα : X → T↑X such that g↓ / gα and (g↓)∗τ↓(pα) = (gα)∗τ↑(pα).

48

• By Corollary 5.15, we already know that for each α, V (g↓) ≤ V (gα), thus

V (g↓) ≤ inf
α:Ord

V (gα).

• Let αlim be the convergence time of (pα), and let α ≥ αlim. We have pα = V (g↓), thus

(gα)∗τ↑(pα) = (g↓)∗τ↓(pα) = (g↓)∗τ↓(V (g↓)) = V (g↓) = pα.

Thus, pα is a fixed point of (gα)∗τ↑ !
This implies that the least fixed point V (gα) of (gα)∗τ↑ is smaller than pα = V (g↓).

V (g↓) ≥ V (gα) ≥ inf
α:Ord

V (gα).

Notice what this gives us on our running example.

Example 5.23 (Theorem 5.22 for SG /MDP). Let g↓ be a SG, pα = (g↓)αβSG(⊥) be our usual chain of lower
bounds of VSG(g↓), and for each α let gα be a MDP, like in Example 5.20 overapproximating g↓ with no loss of
information at pα.

Then,

VSG(g↓) = sup
α:Ord

pα

= inf
α:Ord

VMDP (gα) = inf
α:Ord

sup
β:Ord

(gα)ββMDP (⊥).

The sequence (PMDP, gα(♦1))α of value functions for MDPs converges from above to the value function
PSG, g↓(♦1) of the SG that interests us.
Notice how this gives us a form of BVI for reachability in stochastic games.

• Take the SG g↓ as input, initialise p0 = ⊥ and the upper bound at >.

• At each inductive step α+ 1,
◦ Compute a new lower bound pα+1 = (g↓)∗βSG(pα).
◦ Compute the MDP gα+1 like in Example 5.20.
◦ Compute a new upper bound VMDP (gα+1).

• If a limit case λ = supα<λ is needed, be prepared to
◦ Compute a new lower bound pλ = supα<λ pα.
◦ Compute a new upper bound VMDP (gλ) like before.

• The chain (pα)α converges from below to VSG(g↓), and (VMDP (gα))α converges from above to VSG(g↓).
Thus, we know the value of VSG(g↓) with precision ε whenever |VMDP (gα)− pα|∞ ≤ ε.

Just like in Example 5.20, gα in a MDP obtained by fixing the strategy of Minimizer on g↓, with a strategy
converging to the optimal strategy.
This BVI algorithm has some merits, but there are some obvious shortcomings.

• We may have to deal with transfinite induction (but it can be shown that this only appears on infinite
state spaces).

• We have to compute many VMDP to compute a single VSG. This supposes that we have a great algorithm
for MDP that didn’t work for SG.

This last point shows that such BVI algorithm mainly works if we are able to connect our problem (here
reachability in SG) to a problem that is very simple, such as one that can be solved by graph analysis.

49

Remark 5.24 (Convergence speeds). In the theorem above, notice that the quantity V (g↓), which we want to
compute, is equal to both supα:Ord pα and infα:Ord V (gα).

If (pα)α and (V (gα))α have the same convergence speed, this simply provides a BVI algorithm.
However, we might imagine that (V (gα))α converges faster than (pα)α. In this situation, the relationship

V (g↓) = infα:Ord V (gα) can provide an iterative algorithm to compute V (g↓) that is actually faster than the
VI algorithm provided by the relationship V (g↓) = supα:Ord pα. Of course, this requires fast algorithms to
compute each approximation gα and each value function V (gα).

Interestingly, in the case of MDP and SG on finite state spaces, we do have the relation

convergence_time_of
((
VMDP (gα)

)
α

)
< ω,

shown in Lemma 4.5 of [1], while it is possible to have

convergence_time_of
((

(g↓)αβSG(⊥)
)
α:Ord

)
= ω.

In other words, we need only a finite number of approximations by MDPs gα, while we may have needed an
infinite number of lower bounds pα.

Notice that we are not saying that each VMDP (gα) can be computed quickly, but only that the chain of all
such values converges quickly.

We may wonder if the inequality

convergence_time_of
((
V↑(gα)

)
α

)
< convergence_time_of

((
(g↓)ατ↓(⊥)

)
α:Ord

)
holds in the general case. Unfortunately, the following example shows that it is not true.

Proposition 5.25 (Slow convergence of approximations). In general, the inequality

convergence_time_of
((
V↑(gα)

)
α

)
≤ convergence_time_of

((
(g↓)ατ↓(⊥)

)
α:Ord

)
may be saturated.
More precisely, for any ordinal αlim > 0, there exists a connection T↓ / T↑ such that T↑ is a tight overapprox-

imation of T↓ and such that there exists a coalgebra g↓ on T↓ such that

• The convergence time of the chain (pα)α:Ord defined by pα = (g↓)ατ↓(⊥) is equal to αlim.

• There exists a set of coalgebras (gα)α≤αlim on T↑ which is such that, for each α we have g↓ / gα and
(g↓)∗τ↓(pα) = (gα)∗τ↑(pα), and which verifies that

convergence_time_of
((
V↑(gα)

)
α

)
= αlim.

Proof. The counter-example consists of taking the NTS of Example 4.4 about late convergence, adding a loop
on the highest state, and comparing the problems of (un)safety and reachability.

Details are provided below.

Consider the following example, similar in nature to MDP/SG without stochasticity.
Let T↓ = (2 × P,Bool, 1 + inf) and T↑ = (2 × P,Bool, 1 + sup) be the ppt with shape structures given by

reverse inclusion for T↑, and inclusion for T↓.
T↓ can be interpreted as the problem of (un)safety in a non-deterministic transition system with goals (NTS),

and T↑ as the reachability problem on the same process-type.
The proof that they are both ppt with shape structures is similar to the corresponding fact for MDP and SG.

Both ppt can be given leaf structure based on Egli-Milner preorder using Theorem 4.5.

50

Like in MDP/SG, we have T↓ /T↑ T↑, through the use of the natural transformation α defined by the maps

αX : 2× PX → 2× PX
(g,∅) 7→ (>,∅)
(g, t) 7→ (g, t) if t 6= ∅.

Using the finiteness of the complete total order Bool, we can easily show that T↑ is a tight overapproximation
of T↓. Indeed, for any g↓ : X → 2× PX and any p : X → Bool, we may define

g′↓ : X → 2× PX

x 7→
(
π1g↓(x),

{
y ∈ π2g↓(x)

∣∣ p(y) = inf
z∈π2g↓(x)

p(z)
})
,

and

g↑ := αX ◦ g′↓ : X → 2× PX
x 7→

(
>,∅) if π2g↓(x) = ∅

x 7→
(
π1g↓(x),

{
y ∈ π2g↓(x)

∣∣ p(y) = inf
z∈π2g↓(x)

p(z)
})

if π2g↓(x) 6= ∅.

With those definitions, we can easily check that (g↓)∗τ↓(p) = (g↑)∗τ↑(p).

We can finally get to our example of process badly approached by approximations, which behaves similarly
to Example 2.7. Let X = [0, αlim], and

g↓ : X → 2× PX
0 7→ (>, {0})
α 7→ (⊥, [0, α)) if 0 < α < αlim

αlim 7→ (⊥, X).

It is clear that 0 can be avoided only from αlim, by doing an infinite loop. Thus, V↓(g↓) = 1[0,αlim). Moreover,
for each α ≤ αlim, pα := (g↓)ατ↓(⊥) = 1[0,α). Thus,

convergence_time_of
(
(pα)α

)
= αlim.

Now, for each 0 ≤ α < αlim, if we construct the approximation g / gα like described above, we obtain

gα : X → 2× PX
0 7→ (>, {0})
β 7→ (⊥, [0, β)) if 0 < β ≤ α
β 7→ (⊥, [α, β)) if α < β < αlim

αlim 7→ (⊥, [α, αlim]),

thus V↑(gα) = 1X = >. It is easy to check that, indeed, (gα)∗τ↑(pα) = (g↓)∗τ↓(pα).
Put in words, if β ≤ α, Minimizer has already realised that he can only lose, but if α < β < αlim, Minimizer

still wrongly believes that there is a way out, because he hasn’t realised that α is a state from which we will
necessarily reach 0.
We only reach V↓(g↓) = 1[0,αlim) at step αlim, where

gαlim : X → 2× PX
0 7→ (>, {0})
β 7→ (⊥, [0, β)) if 0 < β < αlim

αlim 7→ (⊥, {αlim}).

51

Minimizer finally gives up everywhere but at the maximal state, and we have V↑(gαlim) = 1[0,αlim) = V↓(g↓), as
expected from Theorem 5.22.
Thus,

convergence_time_of
((
V↑(gα)

)
α

)
= αlim = convergence_time_of

(
(pα)α

)
.

Example 5.26. We illustrate the proof above in the case αlim = ω + 1, by showing g↓ and some of the gα.

0 1 2 3

ω ω + 1

The process g↓ when αlim = ω + 1. Only ω + 1 can avoid 0. For α ≤ ω + 1, pα = 1[0,α).

0 1 2 3

ω ω + 1

The process g1. All states can reach 0. Minimizer made the mistake of thinking that 1 was a safe spot.

52

0 1 2 3

ω ω + 1

The process g2. All states can reach 0. Minimizer made the mistake of thinking that 2 was a safe spot.

0 1 2 3

ω ω + 1

The process gω. All states can reach 0. Minimizer made the mistake of thinking that ω was a safe spot.

0 1 2 3

ω ω + 1

The process gω+1. 0 is unreachable from ω + 1. Minimizer finally made no mistake.

Remark 5.27. It is interesting to note that in the above example, while the convergence of
(
V↑(gα)

)
α
is slow,

the computation of each V↑(gα) is very fast.

53

Indeed, V↑(gα) = supβ:Ord(gα)βτ↑(⊥), where convergence_time_of
((

(gα)βτ↑(⊥)
)
β

)
≤ 2 (in the worst case, go

from β > α to α in one step, and then from α to 0 in a second step).
This contrasts with the case of SG / MDP on finite state spaces, where each V↑(gα) can take ω steps to be

computed, but (V↑(gα))α:Ord converges in finitely many steps (Cf. Lemma 4.5 of [1]).

The main part of this report has now been completed. We have seen in Section 4 how to axiomatise properties
making VI iteration work, and Section 5 just explained how connections could be found between models to allow
BVI. This point is made explicit in Section 6.3.

For the moment, we have mainly illustrated our discussion with the examples of SG and MDP. In Section 6,
new examples are provided, and an opening towards “base model / surrogate model” situations not yet covered
by our theory is discussed.

6 Examples and applications
This section provides material that can be used to illustrate the theory developed in this paper.

In Section 6.1, several examples of process-predicate type with leaf and/or shape structure are given. They
model problems on SG, MDP, MC (Section 6.1.1), on (in)finitely branching transition systems (Section 6.1.2),
and on (un)weighted graphs (Section 6.1.3).
Section 6.2 then provides three examples of connections.

• Reachability in SG and MDP.

• Reachability in MC and MDP.

• Safety in finitely branching and infinitely branching transition systems.

A few applications of the theory developed in this paper are summed up in Section 6.3. We have obtained a
recipe to design VI and BVI algorithms: we have obtained sufficient conditions for their construction.

Our BVI algorithms use surrogate models, but we have only used one particular kind of recipe. While the
idea of using surrogate models in model-checking is still new, other examples exist. Those future line of research
are discussed in Section 6.4, where we talk about what might be needed to make our theory able to deal with
those new kinds of connections.

6.1 Examples of ppt with leaf and shape structure
In Section 6.1, we provide a short list of examples of problems that can be described as process-predicate type.
For each example,

• We give a ppt representing the problem,

• We explain what leaf structure can be used to prove that we have a VI algorithm to solve the problem,

• If useful, we describe a shape structure to be used for connections (Section 6.2).

6.1.1 SG, MDP, MC

Example 6.1 (P(♦1) in SG).

• Ppt. (2× 2× PD(−), [0, 1], β), using lfp, where

β : 2× 2× PDΩ→ Ω
(p,>, t) 7→ 1
(�,⊥, t) 7→ sup

d∈t
E(d)

(©,⊥, t) 7→ inf
d∈t

E(d)

• Leaf structure. Egli-Milner preorder and tailwise preorder.

54

• Shape structure. Reverse inclusion on Min’s choices.

Proof. There is nothing to do to prove that we have described a process-predicate type.
The fact that P(♦1) is computed as the lfp can be seen as a definition of P(♦1). Proofs that this coincides

with other definitions can be found in [49].
The proofs that we have really obtained leaf structure and shape structure is detailed in Examples 4.7 and

5.4.

Example 6.2 (P(♦1) in MDP).

• Ppt. (2× PD(−), [0, 1], β), using lfp, where

β : 2× PDΩ→ Ω
(>, t) 7→ 1
(⊥, t) 7→ sup

d∈t
E(d)

• Leaf structure. Egli-Milner preorder and tailwise preorder.

• Shape structure. Inclusion on choices.

Proof. There is nothing to do to prove that we have described a process-predicate type.
The proof that we have really obtained a shape structure is detailed in Example 5.3.
The proof that we have really obtained a leaf structure is similar to that of Example 4.7 and is direct by

using Theorem 4.5: we only used modalities sup and E.

Example 6.3 (P(♦1) in MC).

• Ppt. (2×D(−), [0, 1], 1 + E), using lfp, where

1 + E : 2×DΩ→ Ω
(>, d) 7→ 1
(⊥, d) 7→ E(d)

• Leaf structure. Tailwise preorder.

• Shape structure. Equality.

Proof. Similar to the previous cases. For leaf structure, use Theorem 4.5. For shape structure, we are in a
trivial case: it is true that

D : Set→ Preord
X 7→ (X,=)

defines a shape structure, since we trivially have that x = y implies τ(x) ≤ τ(y) for any modality τ .

Remark 6.4.
Above and below, we can obtain finitely branching versions of SG, MDP , using Pf instead of P.
We may even restrict ourselves to finite versions of those ppt with both leaf and shape structure, by using

endofunctors Setfin → Setfin.

Example 6.5 (P(�1) in MC).

• Ppt. (2×D(−), [0, 1], τ�), using gfp, where

τ� : 2×DΩ→ Ω
(>, t) 7→ 1
(⊥, t) 7→ inf

d∈t
E(d)

55

• Leaf structure. Egli-Milner preorder and Tailwise preorder.

• Shape structure. Inclusion on choices.

Remark 6.6. At the moment, we didn’t go far in studying how alternating fixed points (afp) behave in our
framework.
Afp are useful for properties such as repeated reachability �♦1 or persistence ♦�1. More generally, they can

be used for acceptance conditions of Büchi automata and parity automata.
The papers [62] and [63] provide valuable insights on the use of alternating fixed points in the coalgebraic

context.
To imagine what this might look like, the set of states in X = X1 t X2 satisfying the Büchi acceptance

condition �♦X2 could be computed in our framework as the set Usol, in an equation similar to the following.

f1 = g∗τ∃ ∧ g
∗
τ1

f2 = g∗τ∃ ∧ g
∗
τ2

λ1 = λU.µV.f1(U ∨ V)
Usol2 = ν(f2 ◦ (id ∨ λ1))
Usol1 = λ1(Usol2)
Usol = (id ∨ λ1)(ν(f2 ◦ (id ∨ λ1)))

6.1.2 Liveness and safety for (in)finitely branching transition systems

Example 6.7 (E♦1 in NTS).

• Ppt. (2× P(−),Ω, 1 + sup), using lfp, where

1 + sup : 2× PΩ→ Ω
(>, t) 7→ 1
(⊥, t) 7→ sup t

• Leaf structure. Egli-Milner preorder and Tailwise preorder.

• Shape structure. Inclusion on choices.

Example 6.8 (A♦1 in NTS).

• Ppt. (2× P(−),Ω, 1 + inf), using lfp, where

1 + inf : 2× PΩ→ Ω
(>, t) 7→ 1
(⊥, t) 7→ inf t

• Leaf structure. Egli-Milner preorder and Tailwise preorder.

• Shape structure. Reverse inclusion on choices.

Remark 6.9. Like before, we can model and solve the same problem for finitely branching transition systems
by using Pf instead of P.
The case where Ω is a total order behaves especially well, even more so if it is finite.
In particular, interesting examples are Ω = Bool and Ω = [0, 1].

56

6.1.3 Graphs

Example 6.10 (Widest path in weighted graphs).
Let W = (R+,+, ∗), with the usual addition and multiplication with 0×∞ = 0.
• Ppt. (2× Id×Homfin(−,W),W, τ), using lfp, where

τ : 2×W ×Homfin(W,W)→W

(>, ·, ·) 7→ 1
(⊥, w0, d) 7→ max

(
w0,max

w∈W
(min(w, d(w)))

)
.

• Leaf structure. Tailwise preorder.
Example 6.11 (Shortest path in graphs). Let W be the monoid (N∞,+).

• Ppt. (2× Id× Pf(−),N∞, τ), using lfp, where

τ : 2× N∞ × PfN∞ → N∞
(>, ·, ·) 7→ 0

(⊥, d,D) 7→ min(d, 1 + min(D)).

• Leaf structure. Egli-Milner preorder.

Remark 6.12. In this paper, we haven’t worked a lot on examples where the truth object is N∞.
Doing so could be useful for applications such as progress measures.
This is the context of quantitative verification, for which many VI algorithms are described in [49].

Remark 6.13. Both examples above give us local computations techniques, but more efficient global algorithms
for graph analysis exist.

6.2 Connections
Example 6.14 (Reachability for SG and MDP). For the reachability problem,

SG /MDP MDP.

Furthermore, if we restrict ourselves to finite branching, MDPf is a tight overapproximation of SGf which
is computable locally.
As a consequence, for any finitely branching stochastic game g, we have

VSG(g) = sup
α:Ord

pα = inf
α:Ord

VMDP (gα),

where pα := (g∗βSG)α(⊥) and where gα := Φ(pα, g) is a MDP locally computed through Φ such that g / gα and
(gα)∗βMDP (pα) = g∗βSG(pα).
Proof. Cf. Example 5.10.
We use the natural transformation

αX : {�,©}× {⊥,>} × PDX → {⊥,>} × PDX
(©, g,∅) 7→ (>,∅)

(p, g, t) 7→ (g, t) if (p, t) 6= (©,∅),

and the local approximation

ϕ : ΩX → 2× 2× PfDX → 2× PfDX
(p, (g,�, t)) 7→ (g, t)

(p, (g,©,∅)) 7→ (>,∅)

(p, (g,©, t)) 7→
(
g,
{
d ∈ t

∣∣E((Dp)d) = inf
d′∈t

E((Dp)d′)
})

if t 6= ∅,

57

like in Remark 5.21.
It is easy to check that α is natural and that ϕ does indeed verify

∀p : ΩX , ∀t : T↓X,
(
t / ϕ(p)(t) ∧ (τ↓ ◦ T↓p)(t) = (τ↑ ◦ T↑p ◦ ϕ(p))(t)

)
.

It is done in Examples 5.10 and 5.20.

Example 6.15 (Reachability for MDP and MC). For the reachability problem,

MC /MDP MDP.

Furthermore, if we restrict ourselves to finite branching, MCf is a tight underapproximation of MDPf which
is computable locally.
As a consequence, for any finitely branching Markov decision processM, we have

gfpM∗β = inf
α:Ord

pα = sup
α:Ord

gfp (Cα)∗1+E,

where pα := (M∗βMDP)α(>) and where Cα := Φ(pα,M) is a MC locally computed through Φ such that gα / g
and (Cα)∗1+E(pα) =M∗βMDP (pα).

However, a priori, we only have

VMDP,♦1(M) = lfpM∗β = sup
α:Ord

qα ≥ sup
α:Ord

lfp (C′α)∗1+E = sup
α:Ord

VMC,♦1(C′α)

when we instead fix qα := (M∗βMDP)α(⊥) and C′α := Φ(qα,M). Using some properties of MC described in
Remark 6.16, this issue can often be solved in implementations.

Proof. We use the natural transformation

αX : 2×DX → 2× PDX
(p, d) 7→ (p, {d}),

and, for each MDPM and predicate p : X → Ω, the locally computed approximation

Φ(p,M) : X → 2×DX
x 7→ (g,1{x}) ifM(x) = (g,∅)
x 7→ (g, {d}) for a d ∈ argmax

d′∈t

(
E((Dp)d′)

)
ifM(x) = (g, t), with t 6= ∅,

which computes an optimal scheduler.
It is easy to check that α is natural, that

(1 + E) ≤ βMDP ◦ α[0,1]

(they are actually equal), and that Φ does indeed verify that for all MDPM and for all p : X → Ω,

Φ(p,M) /M and
(
Φ(p,M)

)∗
1+E(p) =M∗β(p).

Remark 6.16. A good property of MC is that, when the state space is finite, it is easy to find an equivalent
situation where lfp C∗1+E = gfp C∗1+E, by restricting the state space to

S♦1 = {x ∈ X |P(♦1)(x) > 0},

where S♦1 can be computed in linear time using graph analysis. Cf. [13], and in particular Theorem 10.19 and
Corollary 10.31, for an explanation of this technique.
Thanks to that, efficient algorithms exist for computing P(♦1) in MC, e.g. by BVI or by solving a linear

system.
Moreover, the fact that lfp C∗1+E = gfp C∗1+E can be useful in proofs about surrogate models, like in the

MDP-WG example of Section 6.4.

58

In the next example, we prove that we can restrict the safety problem of NTS to finitely branching NTS.
Going to the surrogate model provides a large speed-up, since the VI convergence time of the base model on

P can be arbitrary (cf. Example 4.4), whereas the VI convergence time of the surrogate model on Pf is always
smaller than ω.
However, for implementations, we need a way of computing ϕ efficiently. It is only provided here using the

axiom of choice.

Remark 6.17. The following result notices something elementary: if we restrict to the optimal scheduler, then
P and Pf are the same, since they can both accommodate the optimal scheduler.

Notice that it would not be the case for Ω = [0, 1]!

Example 6.18 (Safety for P and Pf). Let Ω be a complete lattice.
For the reachability problem, we have a connection between infinitely and finitely branching NTS.

(2× P,Ω, 1 + inf) / (2× Pf ,Ω, 1 + inf)

Moreover, if Ω is total and finite, (2×Pf ,Ω, 1 + inf) is a tight overapproximation that is locally computable.
In particular, this is the case for Ω = Bool.
Thus, if g : X → 2× PX is an NTS, for the safety problem expressed on Bool,

Sat¬�(¬1)(g) = sup
α:Ord

pα = inf
α:Ord

Sat¬�(¬1)(gα),

where pα := (g∗1+inf)α(⊥) and where gα := Φ(pα, g) is a finitely branching NTS locally computed through Φ
such that g / gα and (gα)∗τ (pα) = g∗τ (pα).
Note that, however, the name “locally computable” may be misguiding, since we may need the axiom of

choice to obtain Φ non-constructively.

Proof. We use the natural transformation defined by inclusion

αX : 2× PfX → 2× PX
(g, t) 7→ (g, t).

It is obvious that α is natural and that (1 + inf) ≤ (1 + inf) ◦ αΩ, since they are equal.
When Ω is total and final, such as when Ω = Bool, we prove that 2×Pf is a tight approximation of 2×P by

using

ϕ : ΩX → 2× PX → 2× PfX

(p, (g,∅)) 7→ (g,∅)
(p, (g, t)) 7→ (g, {y}), where y is a single element chosen in argmin

z∈t
p(z).

The existence of ϕ is provided by the axiom of choice.
It is easy to check that α is natural and that ϕ does verify

∀p : ΩX , ∀t : T↓X,
(
t / ϕ(p)(t) ∧ (τ↓ ◦ T↓p)(t) = (τ↑ ◦ T↑p ◦ ϕ(p))(t)

)
.

Indeed, for each p : ΩX , t : PX, ϕ(p)(t) is an element of PfX such that

• π1t = π1ϕ(p)(t) and π2t ⊃ π2ϕ(p)(t), thus t v αX ◦ ϕ(p)(t), thus t / ϕ(p)(t).

• If g = >, ((1 + inf) ◦ Pp)(t) = 1 = ((1 + inf) ◦ Pfp ◦ ϕ(p))(t) and
if g = ⊥, ((1 + inf) ◦ Pp)(t) = minz∈t p(z) = ((1 + inf) ◦ Pfp ◦ ϕ(p))(t).

Remark 6.19. We could generalise this result to the case where Ω is total but infinite, by creating a notion of
“ε-tight approximation”. This is left for further research.

59

6.3 Applications of our theory: recipe for VI and BVI algorithm
In this paper, we have obtained a recipe to design VI and BVI algorithms: we have obtained sufficient conditions
for their construction.

Remark 6.20 (VI). To construct a value iteration (VI) algorithm, it is sufficient to do the following.

• Describe the process type as an endofunctor T : Set→ Set. Name Ω the truth object.

• Find a candidate τ : TΩ→ Ω giving local optimal solutions to the problem.

• Check that (T,Ω, τ) has leaf structure.
This is always the case when T and τ can be constructed using the ingredients of Theorem 4.5, such as
P, D, inf, sup, E, and polynomial constructions.

Having leaf structure means, like in Section 4, that T can be lifted to a Preord-enriched Preord endofunctor,
and that τ : (TΩ,�)→ (Ω,≤) is monotone.

Remark 6.21 (BVI). To turn a VI algorithm into a bounded value iteration (BVI) algorithm using a surrogate
model, it is sufficient to do the following. We will suppose that our VI algorithm computes a lfp, the other case
is symmetric.
Our initial VI algorithm is described by the ppt T↓ = (T↓,Ω, τ↓).

• Find a candidate surrogate model T↑ = (T↑,Ω, τ↑). It represents a new problem for which a VI algorithm
exists.
It is good if there are tricks to solve this problem efficiently (e.g. using graph analysis).

• Find a way of relating processes T↓ and T↑, describing this with shape structures and a connection.
This can be achieved in two steps, to be performed in parallel.
On the one hand, extend T↓ and T↑ to functors Set→ Preord such that both τ : (TΩ,v)→ (Ω,≤) are
monotone.
On the other hand, find a (T∗,Ω, τ∗) (it can be T↓ or T↑) such that we have the following commutative
diagrams.

T↓,0
α↓=⇒ T∗,0

α↑⇐= T↑,0.

T↓Ω0 T∗Ω0 T↑Ω0

Ω

α↓,Ω0

≤
τ↓

τ∗

α↑,Ω0

≤
τ↑

This is written
T↓ /T∗ /T↑.

Processes g↓ : X → T↓X and g↑ : X → T↑X will be deemed comparable, which is written g↓ / g↑, if and
only if there exists a comparison chain

g↓ v↓ g′↓, α↓ ◦ g′↓ v∗ α↑ ◦ g′↑, g′↑ v↑ g↑.

• Make sure that the connection is tight, by showing that for each g↓ : X → T↓X and each predicate
p : X → Ω, a (good) approximation g↑ = Φ(p, g↓) can be locally computed.
It is enough to construct a ϕ : ΩX → T↓X → T↑X such that

∀p : ΩX , ∀t : T↓X,
(
t / ϕ(p)(t) ∧ (τ↓ ◦ T↓p)(t) = (τ↑ ◦ T↑p ◦ ϕ(p))(t)

)
.

60

In that case, for any process g↓ : X → T↓X,

V↓(g↓) = sup
α:Ord

pα = inf
α:Ord

V↑(gα),

where pα = (g↓)∗τ↓ like in the VI algorithm, and gα : X → T↑X is defined by gα = Φ(pα, g), like in 5.21.

Remark 6.22. In the description above, we obtained

V↓(g↓) = sup
α:Ord

pα = inf
α:Ord

V↑(gα),

To make this a useful BVI algorithm, it is necessary to be able to compute each V↑(gα) in a fast way. It is
reasonable to do it only for some of the α.

If, by chance, the upper chain (V↑(gα))α:Ord converges much faster than the lower chain (pα)α:Ord, we get
even better than a BVI algorithm: a fast way of computing V↓(g↓) through a surrogate model.

For example, this happens in the case of reachability for finite SG and MDP: the upper chain converges in
finite time, whereas the lower chain often takes infinitely many steps.

6.4 Extensions to the theory: new kind of connections for more surrogate models
At this point, our theory handles a large amount of examples for VI, and a few simple examples of BVI using
surrogate models. However, more could be done.

The concept of surrogate models is still quite new in the realm of model-checking, but the idea is powerful
and promising. Given a difficult base problem, is there a way to relate it to a simple problem (the surrogate
model) whose solutions can be efficiently computed and approximate that of the base problem? Given a difficult
problem (base model), can we know in advance who will be good candidate for surrogate models? Is there a
way to relate this to abstract interpretation [24]?

Generalising those ideas would be a good step toward implementing the “base model / surrogate model”
design principle to discover new efficient algorithms for model checking.

The work done in this report in a first step towards that. Our notion of connection between ppt with shape
structure has been shown to accommodate at least some of the “base model / surrogate model” relationships.
However, we only applied it in one way. Even if it can be used in several examples, we only obtained one

kind of relationship.

• Consider a base problem g in a base model type T↓: we want to compute the lfp of g∗τ .

• Find a surrogate model type T↑, and a connection T↓ / T↑ (clever shape structures may have to be found).
Find a way to locally compute approximations Φ : XΩ → (T↓X)X → (T↑X)X .

• At each step α, compute pα = (g∗τ)α(⊥).

• At each step α, compute gα = Φ(p, g) and lfp (gα)∗τ .

• Obtain BVI
lfp g∗τ = sup

α:Ord
pα = inf

α:Ord
lfp (gα)∗τ .

This is great, and can prove useful both in applications and in proofs. However, notice that a surrogate
problem must be studied at each step α: this could be extremely expensive if the problem type isn’t easy
enough.
Moreover, we have not accommodated all kind of base model / surrogate model relationships.

In Section 6.4, we describe two other examples of base model / surrogate model relationship. Accommodating
them, especially the MDP-WG one, is an important next step for further research.

61

6.4.1 A classical surrogate model: graph analysis of MC for almost sure properties

For finite Markov chains – the process type is 2AP × D(−) – a large class of almost sure properties can be
checked in linear time. In other words, given a MC C on the state space X and a property ψ belonging to the
family (like reachability, repeated reachability, persistence, etc.), computing

{x ∈ X |PC(ψ)(x) = 1}

can be done in linear time.
The method can be seen as a use of surrogate models in classical model checking. Indeed, the idea, described

in section 10.2 of [13], is to replace the MC by a directed graph, and then perform graph analysis (backward
analysis, computing bottom strongly connected components, etc.).

αX : 2AP ×DX → 2AP × PfX

(p, d) 7→
(
p,
{
x ∈ X

∣∣ d(x) > 0
})

For finite MC, most qualitative problems can be solved by forgetting about the probability transitions and
then doing graph analysis. Studying this relationship could be a good first step toward generalising our theory.
Notice that the surrogate model is built only once, without using any predicate XΩ.

It is important to note that this relationship does not hold for infinite MC.

6.4.2 An innovative surrogate model: weighted graph analysis of MDP for reachability

In [1], an algorithm is given to compute VSG(G) for G : X → 2× 2× PDX, where X is finite.
It uses (tight) connections (between SG, MDP and MC), but also two other kind of local approximation,

which may be seen as new kind of connections.
In particular, (widest paths in) weighted graphs are used as surrogate models for (reachability in) MDP, while

using properties of MC to make this relationship work.
The full algorithm and proof of correctness can be found in [1], but we explain the main ideas here in our

theory’s language, as a first step toward accommodating this powerful algorithm based on the “base model /
surrogate model” design principle.

The algorithm and its proof can be described in the following way.

Remark 6.23 (Surrogate model for V (G) by global propagation in WG). Have in mind the process types
2× 2× PD(−) for SG, 2× PD(−) for MDP, 2×D(−) for MC, and 2×Homfin(−, [0, 1]).

• The goal is to compute VSG(G) for G a stochastic game.
Using the method of tight connections on SG / MDP , we reduce the problem to the computation of
VMDP (M) forM a Markov decision process.
This is done in the previous sections. The local approximation is computed by

ϕSG→MDP : ΩX → 2× 2× PDX → 2× PDX
(p, (g,�, t)) 7→ (g, t)

(p, (g,©,∅)) 7→ (>,∅)

(p, (g,©, t)) 7→
(
g,
{
d ∈ t

∣∣E((Dp)d) = inf
d′∈t

E((Dp)d′)
})

if t 6= ∅,

where we implicitly decurrified ΩX → 2× 2×PDX → 2×PDX to ΩX × (2× 2×PDX)→ 2×PDX in
the declaration of ϕSG→MDP .

• The algorithm will use

ϕMDP→WG : ΩX → 2× PDX → 2×Homfin(X,Ω)

(p, (g, t)) 7→
(
g, x 7→

{
E((Dp)d)

∣∣ d ∈ t, d(x) > 0
})

62

to compute a surrogate model for global propagation.
The convergence proof will also use

ϕMDP→MC : ΩX → 2× P 6=∅DX → 2×DX
(p, (g, t)) 7→ (g, {d}), where d belongs to argmax

d′∈t
E((Dp)(d′)).

For all three ϕ : ΩX → T1X → T2X, we write

Φ : ΩX → (T1X)X → (T2X)X

(p, g) 7→ ϕ(p) ◦ g.

• Three special properties of our models are used.
◦ ϕSG→MDP and ϕMDP→MC are computable, since we have finite branching.
◦ Given any MDPM : X → 2×PDX on X finite, there is only a finite number of MC C : X → 2×DX
such that

C /M.

(In other words, there is only a finite number of ways to fix the strategy inM.)
◦ Given a MC C : X → 2×DX, it is easy to compute the set

X ′ = {x ∈ X |PC(♦1)(x) > 0}.

In that case, we obtain a single fixed point (for the problem of reachability in MC).

lfp
(
(C)∗1+E

)
= gfp

(
(C)∗1+E

)
Cf. section 10.1.2 of [13] to see how to compute X ′ in linear time by double backward analysis on
the underlying graph of C.

• The algorithm and the proof than proceed in the following way.
◦ Let

t?M : ΩX → ΩX

p 7→ VWG(ΦMDP→WG(p,M)),

where VWG : (X → 2 × Homfin(X,Ω)) → ΩX computes the widest path in a weighted graph. VWG

is a lfp, but may be computed quickly by global graph analysis.
t?M is monotone.
We will prove that

VMDP (M) = lfpM∗β = gfp t?M,
thus providing upper bounds.
◦ Notice that

VMDP (M) ≤ t?M(VMDP (M)).
This proves that

VMDP (M) ≤ gfp t?M.

◦ Notice that, for each p : X → Ω, the MC C := ΦMDP→MC(p,M) is such that C /M and

t?M(p) ≤ C∗1+E(p).

By finiteness, we can choose a MC C such that for infinitely many pα := (t?M)α(>) we have

t?M(pα) ≤ C∗1+E(pα),

thus
gfp t?M ≤ gfp C∗1+E.

We keep naming this MC C in the following points.

63

◦ We check that nothing is lost by restricting to X ′ = {x ∈ X |PC(♦1)(x) > 0}. Thus,

gfp C∗1+E = lfp C∗1+E.

◦ Since C /M, we have (cf. 5.15)
lfp C∗1+E ≤ lfpM∗β .

◦ We can now conclude. We have proven

lfp C∗1+E ≤ lfpM∗β ≤ gfp t?M ≤ gfp C∗1+E = lfp C∗1+E,

thus
VMDP (M) = lfpM∗β = gfp t?M.

Remark 6.24. Two things happened here that are well understood by our theory : the connectionMC/MDP
(related to ΦMDP→MC) and the tight connection SG /MDP (defined by ΦSG→MDP).

However, our theory doesn’t yet deal well with t?M := p 7→ VWG(ΦMDP→WG(p,M)). Notice how our theory
performs only local computations in the g∗τ , while a global propagation (VWG) is computed inside t?M.
The two following points are still to be generalised to the abstract setting.

• For each p : X → Ω, C := ΦMDP→MC(p,M) is such that

t?M(p) ≤ C∗1+E(p).

• We have
VMDP (M) ≤ t?M(VMDP (M)).

Notice that, given a MDP M, the evolution of the surrogate model W is independent of computations
performed onM. We compute (M∗β)α(⊥) on one hand, and (t?M)α(>) on the other hand.

This contrasts with connections studied in Section 5, where at each step the surrogate model was updated
based on the result pα = (g∗τ)α(⊥).
At this point of our work, exploring the MDP-WG relationship is left for further research.

7 Conclusion
7.1 Next steps

Our work leaves the road wide open for further research.

Global propagation, new instances
In our work, we accommodate some of the relationships between base models and surrogate models, and this

provides BVI algorithms.
However, we do not accommodate all such relationships. In particular, we do not fully reach the initial goal

of the internship, since we do not accommodate the “global propagation” relationship between MDP and WG
studied in [1].

The main issue is that “tight connections” based on weakest precondition transformers are too weak: they
leave all global computations outside of the predicate transformer. This is discussed in Section 6.4, and more
specifically in Remark 6.24.

New kind of connections must be described!

This line of research is extremely important to the further development and applicability of our theory and
of the surrogate model design principle.

More generally, a goal is to find new instances of the general notions studied in this report.

64

Continuity
In this report, general conditions enabling VI algorithm are described. Those conditions imply monotone

predicate transformers, thus transfinite value iteration may be needed, as discussed in Example 4.4.

To strengthen our results, it would be interesting to design continuous leaf structures enabling Scott-continuous
predicate transformers.
This would lead to properties like the following.

Conjecture 7.1.
The Bellman operator is Scott-continuous in all finitely branching stochastic games, even on infinite state

space. Thus, value iteration converges in at most ω steps.

Several weeks of the internship were devoted to this question, but too many holes remained in the proofs to
make it presentable.

The main thing to study are the (Scott-)continuity properties of Egli-Milner preorder for subsets, tailwise
preorder for distribution, and modalities including suprema, infima and expectation.

For example, one of the proofs’ holes could be filled by proving the following conjecture, which we didn’t
manage to do.

Conjecture 7.2. Let � be the Egli-Milner preorder (defined in 3.18).
(Ω,≤) is a complete lattice (not necessarily total nor finite), and (PΩ,�) is defined by

∀A,B ∈ PΩ, A � B ⇐⇒ (∀a ∈ A, ∃b ∈ B, a ≤ b)
∧ (∀b ∈ B, ∃a ∈ A, a ≤ b).

Let (Ai)i∈I be a chain of (PΩ,�), i.e. a chain of subsets of Ω.
Then, (Ai) admits at least one infimum (in the sense of preorders), which can be described as{

inf
i∈I

xi

∣∣∣ (xi)i∈I ∈ ΩI and ∀i ∈ I, xi ∈ Ai
}
.

Various ideas were explored in those continuity proofs.
For example, to prove the continuity of D(−) : Hom(X, [0, 1])→ Hom(DX,D[0, 1]) in the sense of the tailwise

order used pointwise, the proof relied on (simple) ideas from the theory of càdlàg functions, such as “wiggling
in both space and time”.
Those results may be put together in further work if buggy proofs are repaired.

Fibrations and categorical viewpoint
We implicitly work extensively with the fibration

PredΩ

Set

where Pred := Set/Ω is the category of predicates p : X → Ω.
We noted (Proposition 4.2) that for a process-predicate type T = (T,Ω, τ) with leaf structure, computations

of lfp and gfp gave rise to functors
Coalg(T)→ Pred.

Functorial properties were used in key proofs, but we didn’t go any further in studying the fibrational structures
that appear in our work.
Doing so could be useful to connect with current development in coalgebraic theory (Cf. Section 1.1.4) and

to synthesise our work. What would we gain by using fibrational structures like codensity liftings?

For the sake of simplicity, all monadic hypotheses about process types were left aside in our work. However,
they are common in the literature. How would we accommodate them, and what new results would we gain?
We could study T -processes g : X → TY as Kleisli arrows, composable in the Kleisli category K`(T), would

65

this give us any insight?

Moreover, we noticed glimpses of structure in several objects encountered in this internship, but didn’t always
create a big picture.

Leaf structures can be summed, composed, etc. can we extract useful structure out of this? For any Set-
endofunctor T , there are coarsest and finest liftings to Preord, what can we deduce out of this, knowing that
modalities impose restrictions on possible liftings?
What about shape structure? All of them were hand-made for our proofs, can we design a more generic

architectural process, like we did for leaf structures?
We have a relationship T↓ / T↑ between process-predicate type with both leaf and shape structure. This

relation is reflexive and transitive, do we gain anything by seeing it as a preorder? Could we make this a
category? What is the overall structure of relationships between models of processes?

Alternating fixed points
For the moment, our theory studies least fixed points and greatest fixed points, but not alternating fixed

points, i.e. alternation of lfp and gfp.
However, many problems require some alternation depth to be described with a fixed point characterisation.

This is illustrated by the survey paper [49] on value iteration.
We shortly mention this question in Remark 6.6. Work on alternating fixed points in the coalgebraic context

can be found in [62] and [63].

Approximately tight connections
Our notion of tight connection (Cf. definition 5.17) requires an equality (written (g↓)∗τ↓(p) = (g↑)∗τ↑(p)), but

it would be possible to work with arbitrarily good approximations.
This is quickly mentioned in Remark 6.19.
Such incremental techniques could help us to deal better with infinite truth objects, such as Ω = [0, 1] for

probabilistic verification.

Quantitative computations: N∞ as a truth object
In this report, we mainly work with boolean (Ω = {⊥,>}) and probabilistic (Ω = [0, 1]) truth domains.
Some examples use the quantitative truth domain (Ω = N∞), but we didn’t focus on the specific properties

of this case.
This could be a large source of examples and application cases, including of surrogate models well-suited to

graph analysis.
Examples of VI algorithm for the quantitative truth domain R+ are discussed in the survey paper [49].

7.2 Epilogue

During this internship, we have studied categorical structures appearing in incremental and approximate
algorithms, focusing on value iteration and surrogate models.

Using coalgebras, order theory and predicate transformers, we described a general theory of processes able to
deal with predicates on the state space.

Two kinds of order structures appeared: leaf structures, which ensure convergence of VI algorithms, and shape
structures, which help us to compare processes together, paving the way for surrogate models understood with
connections.
We thus obtained recipes for VI and BVI algorithms, based on two main theorems.
However, as discussed in Section 7.1, this is only the beginning of the road: new insights are to be found, and

new algorithms are to be designed.

66

References
[1] Kittiphon Phalakarn, Toru Takisaka, Thomas Haas, and Ichiro Hasuo. Widest paths and global propagation

in bounded value iteration for stochastic games. In Computer Aided Verification, pages 349–371. Springer
International Publishing, 2020.

[2] A Simaitis. Automatic verification of competitive stochastic systems. PhD thesis, University of Oxford,
2014.

[3] S. Rasoul Etesami, Walid Saad, Narayan B. Mandayam, and H. Vincent Poor. Stochastic games for
the smart grid energy management with prospect prosumers. IEEE Transactions on Automatic Control,
63(8):2327–2342, 2018.

[4] Souymodip Chakraborty, Joost-Pieter Katoen, Falak Sher, and Martin Strelec. Modelling and statistical
model checking of a microgrid. International Journal on Software Tools for Technology Transfer, 17, 01
2014.

[5] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development: Coq’Art: the
calculus of inductive constructions. Springer Science & Business Media, 2013.

[6] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional language with dependent
types. In International Conference on Theorem Proving in Higher Order Logics, pages 73–78. Springer,
2009.

[7] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for higher-order
logic, volume 2283. Springer Science & Business Media, 2002.

[8] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The lean
theorem prover (system description). In International Conference on Automated Deduction, pages 378–388.
Springer, 2015.

[9] D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Springer Berlin Heidelberg, 1928.

[10] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Mathematics,
58(2):345, April 1936.

[11] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of
the London Mathematical Society, s2-42(1):230–265, 1937.

[12] J. Donald Monk. Mathematical Logic. Springer New York, 1976.

[13] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008.

[14] Neil Immerman. Descriptive complexity. Springer Science & Business Media, 2012.

[15] Marijn JH Heule, Matti Järvisalo, and Martin Suda. Sat competition 2018. Journal on Satisfiability,
Boolean Modeling and Computation, 11(1):133–154, 2019.

[16] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout. Alt-ergo 2.2. In SMT
Workshop: International Workshop on Satisfiability Modulo Theories, 2018.

[17] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, An-
drew Reynolds, and Cesare Tinelli. Cvc4. In International Conference on Computer Aided Verification,
pages 171–177. Springer, 2011.

[18] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[19] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems.
In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

67

[20] Mordechai Ben-Ari. Principles of the Spin model checker. Springer Science & Business Media, 2008.

[21] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications. In Advanced
Research Working Conference on Correct Hardware Design and Verification Methods, pages 54–66. Springer,
1999.

[22] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson, Paul Pettersson, Wang Yi,
and Martijn Hendriks. Uppaal 4.0. 2006.

[23] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American
Mathematical Society, 74(2):358–358, February 1953.

[24] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles, California,
1977. ACM Press, New York, NY.

[25] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. The ASTREé analyzer. In Programming Languages and Systems, pages 21–30. Springer
Berlin Heidelberg, 2005.

[26] Olivier Bouissou, Eric Goubault, Sylvie Putot, Karim Tekkal, and Franck Vedrine. Hybridfluctuat: A static
analyzer of numerical programs within a continuous environment. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV ’09, page 620–626, Berlin, Heidelberg, 2009. Springer-
Verlag.

[27] SRILab ETHZ. ERAN. https://github.com/eth-sri/eran.

[28] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Sherlock - a
tool for verification of neural network feedback systems: Demo abstract. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC ’19, page 262–263, New
York, NY, USA, 2019. Association for Computing Machinery.

[29] John McCarthy. Recursive functions of symbolic expressions and their computation by machine, part i.
Communications of the ACM, 3(4):184–195, April 1960.

[30] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–
580, October 1969.

[31] Emily Riehl. Category theory in context. Courier Dover Publications, 2017.

[32] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

[33] Samson Abramsky and Achim Jung. Domain theory. 1994.

[34] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communi-
cations of the ACM, 18(8):453–457, August 1975.

[35] Ichiro Hasuo. Generic weakest precondition semantics from monads enriched with order. Theoretical
Computer Science, 604:2–29, November 2015.

[36] Bart Jacobs and Jesse Hughes. Simulations in coalgebra. Electronic Notes in Theoretical Computer Science,
82(1):128–149, 2003. CMCS’03, Coalgebraic Methods in Computer Science (Satellite Event for ETAPS
2003).

[37] Sam Staton. Relating coalgebraic notions of bisimulation. In Algebra and Coalgebra in Computer Science,
pages 191–205. Springer Berlin Heidelberg, 2009.

68

https://github.com/eth-sri/eran

[38] Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. Efficient Coalgebraic Partition
Refinement. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference on Concurrency
Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings in Informatics (LIPIcs), pages
32:1–32:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[39] Bart Jacobs and Alexandra Silva. Automata learning: A categorical perspective. In Horizons of the Mind.
A Tribute to Prakash Panangaden, pages 384–406. Springer, 2014.

[40] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml: Functional programming with regular
coinductive types. Fundamenta Informaticae, 150(3-4):347–377, 2017.

[41] Shin-ya Katsumata and Tetsuya Sato. Codensity liftings of monads. In 6th Conference on Algebra and
Coalgebra in Computer Science (CALCO 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[42] David Sprunger, Shin ya Katsumata, Jérémy Dubut, and Ichiro Hasuo. Fibrational bisimulations and
quantitative reasoning. In Coalgebraic Methods in Computer Science, pages 190–213. Springer International
Publishing, 2018.

[43] Yuichi Komorida, Shin ya Katsumata, Nick Hu, Bartek Klin, and I. Hasuo. Codensity games for bisimilarity.
2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, 2019.

[44] Alejandro Aguirre and Shin ya Katsumata. Weakest preconditions in fibrations. Electronic Notes in Theo-
retical Computer Science, 352:5–27, 2020. The 36th Mathematical Foundations of Programming Semantics
Conference, 2020.

[45] Mayuko Kori, Ichiro Hasuo, and Shin ya Katsumata. Fibrational initial algebra-final coalgebra coincidence
over initial algebras: Turning verification witnesses upside down, 2021.

[46] Vijay V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2003.

[47] Subhash Khot. On the unique games conjecture (invited survey). In 2010 IEEE 25th Annual Conference
on Computational Complexity. IEEE, June 2010.

[48] Sven Köhler, Christian Schindelhauer, and Martin Ziegler. On approximating real-world halting problems.
In Fundamentals of Computation Theory, pages 454–466. Springer Berlin Heidelberg, 2005.

[49] Krishnendu Chatterjee and Thomas A. Henzinger. Value Iteration, page 107–138. Springer-Verlag, Berlin,
Heidelberg, 2008.

[50] Serge Haddad and Benjamin Monmege. Interval iteration algorithm for MDPs and IMDPs. Theoretical
Computer Science, 735:111–131, July 2018.

[51] Edon Kelmendi, Julia Krämer, Jan Křetínský, and Maximilian Weininger. Value iteration for simple
stochastic games: Stopping criterion and learning algorithm. In Computer Aided Verification, pages 623–
642. Springer International Publishing, 2018.

[52] Mandar N. Thombre, Heinz A. Preisig, and Misganaw B. Addis. Developing surrogate models via computer
based experiments. In 12th International Symposium on Process Systems Engineering and 25th European
Symposium on Computer Aided Process Engineering, pages 641–646. Elsevier, 2015.

[53] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,
2000. Modern Algebra.

[54] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. 1997.

[55] Bart Jacobs. Probabilities, distribution monads, and convex categories. Theoretical Computer Science,
412(28):3323–3336, 2011. Festschrift in Honour of Jan Bergstra.

[56] Maaike Zwart and Dan Marsden. No-go theorems for distributive laws. In Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’19. IEEE Press, 2019.

69

[57] Bart Jacobs. From multisets over distributions to distributions over multisets. CoRR, abs/2105.06908,
2021.

[58] Bart Jacobs and Erik Poll. Coalgebras and monads in the semantics of java. Theoretical Computer Science,
291(3):329–349, 2003. Algebraic Methodology and Software Technology.

[59] Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical Homology Theory,
pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

[60] Maaike Zwart. On the Non-Compositionality of Monads via Distributive Laws. PhD thesis, Department of
Computer Science, University of Oxford, September 2020.

[61] Louis Parlant. Monad Composition via Preservation of Algebras. PhD thesis, 10 2020.

[62] Natsuki Urabe and Ichiro Hasuo. Categorical buechi and parity conditions via alternating fixed points of
functors, 2018.

[63] Quentin Aristote. Fibrational framework for nested alternating fixed points and(bi)simulation notions for
büchi automata, 2020.

[64] Adriana Balan and Alexander Kurz. Finitary functors: From set to preord and poset. In Proceedings of
the 4th International Conference on Algebra and Coalgebra in Computer Science, CALCO’11, page 85–99,
Berlin, Heidelberg, 2011. Springer-Verlag.

[65] G. KELLY. The basic concepts of enriched category theory. Reprints in Theory and Applications of
Categories [electronic only], 2005, 01 2005.

[66] A. Maitra and W. Sudderth. The optimal reward operator in negative dynamic programming. Math. Oper.
Res., 17(4):921–931, November 1992.

[67] Huizhen Yu. On convergence of value iteration for a class of total cost markov decision processes. SIAM
Journal on Control and Optimization, 53(4):1982–2016, January 2015.

70

	Introduction
	Scientific context
	Formal methods – Societal relevance
	Formal methods – A broad set of techniques
	Semantics
	Coalgebra
	Approximate and incremental methods – value iteration
	Surrogate models

	Contributions
	Overview
	Acknowledgements

	Processes
	Main definitions
	Intuition and examples

	Predicates on processes and preorder-enrichments
	Logic on processes
	Preorder-enrichments
	Reminders about order theory and enriched category theory
	Leaf and shape structure

	Fixed-point computations – leaf structure
	Leaf structures induce monotone predicate transformers
	A family of examples
	Proof of Theorem 4.5

	Approximation of process-predicate types – shape structure
	Shape-monotonicity of predicate transformers
	Connections between ppt with shape structure
	An approximation theorem in the case of tight connections

	Examples and applications
	Examples of ppt with leaf and shape structure
	SG, MDP, MC
	Liveness and safety for (in)finitely branching transition systems
	Graphs

	Connections
	Applications of our theory: recipe for VI and BVI algorithm
	Extensions to the theory: new kind of connections for more surrogate models
	A classical surrogate model: graph analysis of MC for almost sure properties
	An innovative surrogate model: weighted graph analysis of MDP for reachability

	Conclusion
	Next steps
	Epilogue

	References

