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The general context

With IT’s share of global carbon footprint around 2.5% in 2013 and 5% in 2022, it is one of the sectors with
the fastest growing energy and carbon usage. While IT solutions have the potential to avoid emissions in other
sectors, developing new analysis and optimisation tools of IT’s carbon emissions is a worthwhile pursuit, as
such tools are currently in their infancy.

While the energy consumption of programs represents around a third of the energy use of the sector, it is
often overlooked by carbon audit experts, mostly by lack of tools and data.

The scientific field of program analysis has some prior experience in the study of resource consumption
of programs. Note that it is a rich subject from a theoretical viewpoint: we are interested in the study of
non-functional properties.

Historically, the resource that has received the most attention is time. Rather mature worst-case execution
time (WCET) tools exist, such as AbsInt’s aiT. This type of static analysis tools however suffer from a major
drawback: developers must add assertions giving constant bounds on the number of executions of each loop. In
other words, very little control-flow analysis (CFA) is performed.

CiaoPP, a program processing tool designed for logic programs, contains analysis modules for parametric
resource consumption. It is possible to study time, memory, energy, or any user-defined resource. Moreover,
CiaoPP proposes to completely automate CFA by reducing the resource consumption problem to the resolution
of recurrence equations.

Many of CiaoPP’s analyses are based on the theory of abstract interpretation, started by Patrick Cousot
in the 70s, and which gave birth to many static analyser usually focused on more functional properties.

The research problem

CiaoPP’s cost analysis idea may be framed as the following: to a large extent, systems of recurrence equations
may be viewed as programs stripped from information irrelevant for resource consumption analysis.

A central question studied during this internship is thus to improve recurrence equation solvers to make
them more powerful in the context of resource consumption analysis.

Available solvers (Mathematica, PURRS, etc.) mostly work by implementing known methods for specific
classes of recurrence equations. Given an equation to solve, they check whether it appears in a dictionary of
known shapes. If it does, the exact solution is outputted, otherwise nothing is done. This leaves the road
open for at least two types of original contributions: approximate solving – obtain bounds on the solution
rather than the exact solution – and domain-specific solving – solve equations common in cost analysis but
uncommon otherwise.

Those approaches are not entirely new and have been explored in other theses. However, our lattice-
theoretical ideas are novel and could bring new methods to the field. Moreover, in the imperative energy
analysis context, many max operators appear in the equations, and we believe that our experience with order
theory and tropical geometry may provide inspiration.

Improving recurrence solving has far-reaching consequences on cost analysis. Indeed, precision and general-
ity of the recurrence solver are currently the main bottlenecks in CiaoPP’s cost analysis. Moreover, expanding
the class of solvable equations also allows the other modules to extract more challenging but precise equations
from the programs.

More generally, during this internship, we reviewed the entire pipeline for energy consumption analysis of
imperative programs, identified shortcomings, and proposed directions of improvement.
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Your contribution

General approximate recurrence resolution
• An order-theoretical framework for monotone recurrence equations is proposed.
• Pre-/post-fixpoints are presented as easily checkable bounds on solutions. This provides a new manual proof

technique. To automate it, a custom guess-and-check algorithm is sketched, and divide-and-conquer ideas
are studied.

• A generic algorithm based on abstract interpretation is proposed.
A few abstract domains are presented and tested on paper.

Implementation
• Complex numbers and second/third order linear recurrence solving are added to CiaoPP.
• An analysis+rewriting fixpoint algorithm is added to remove irrelevant variables.
• Small updates and bugfixes.
Possible directions for future work at multiple stages of the pipeline are also proposed.

Arguments supporting its validity

Implementations are tested on various examples. New algorithm ideas are proven sound by general order-
theoretical theorems, and tested on paper.

Monotonicity of the recurrence equations is a strong requirement, but is an assumption already very present
in CiaoPP’s cost analysis. A sound but imprecise way to monotonise equations is proposed to add generality.

Summary and future work

On the implementation side, the author learned the Ciao language, got familiar with the CiaoPP codebase,
and implemented a few new functionalities to the recurrence solver.

On the theoretical side, a new order-theoretical viewpoint on recurrence solving is introduced, as well as
algorithm ideas stemming from it. It is quite general, and may be applied to other use cases. One of the next
steps is to implement those techniques and test them on realistic benchmarks. Some lines of research for future
work are listed in the following bullet points. Multiple other ideas are mentioned in the body of the report.
• Generating benchmarks displaying “the recurrence structure of real-world programs” is a challenge and an

interesting scientific question in itself. Debugging tools have been developed during this internship, but
more work is required to ensure that precise equations are generated from imperative programs (ranking
function inference, better treatment of conditionals, etc.).

• Rewriting techniques of recurrence equations and their connection with rewriting of programs, having in
mind an abstract lens on program transformation and optimisation [1].

• Generation of energy models, applications of program analysis to hardware description languages, and other
low-level aspects such as cache analysis.

• Finally, we would like to apply those ideas. Contacts have been taken with IT carbon audit professionals
to get to know industrial challenges. It would also be interesting to apply formal methods to other aspects
of IT, e.g. to detect and monitor bad practices related to energy consumption.
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Abstract

To a large extent, systems of recurrence equations may be viewed as programs stripped from information
irrelevant for resource consumption analysis. However, most available recurrence solvers are based on lookups
in dictionaries containing expert knowledge, and lack the generality required for program analysis.

In this work, we introduce new techniques for approximate recurrence solving, based on abstract inter-
pretation and order theory.

CiaoPP, the program processor framework of the Ciao language, already contains multiple functionalities
for program analysis and transformation. It includes a cost analysis module, which extracts relevant recur-
rence equations from programs and attempts to solve them. In recent work, using Ciao as an intermediate
language, this has been applied to energy consumption analysis of programs written in common imperative
languages.

In this internship report, we study those analysis pipelines, discuss their shortcomings, and propose
possible improvements.

A focus is put on improving the recurrence solving module. Before implementing our new order-
theoretical algorithms, we add some functionalities to the recurrence solving module, as an implementa-
tion exercise. Adding complex numbers to CiaoPP allows us to expend the dictionary of known recurrence
solutions. Moreover, an analyse+rewrite pass is implemented to remove irrelevant variables from equations.
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1 Background

1.1 Scientific background

Cost Analysis, Recurrence Equations, Undecidability. Complexity analysis – the study of the resource
consumption of programs in terms of time, memory, but also energy and other resources – is a common concern
in computer science, and multiple reasoning tools are available to manually study asymptotic complexities.
However, it is much harder to automate the discovery of the exact cost of programs, necessary for tasks such
as automated optimisation. In fact, this problem is undecidable, since the halting problem reduces to it. In a
1975 prototype applied to Lisp programs, Wegbreit underlined how the cost analysis problem may be reduced
to automated recurrence solving [2]. Unsurprisingly, the recurrence solving problem is also non-computable in
general, and undecidable equations may be created even with only basic arithmetic expressions [3].

Nevertheless, the field of formal methods has a way to answer seemingly impossible questions: we have
to aim for sound, approximate answers. For a decision problem, rather than a Yes/No answer, output
Yes/No/I don’t know, and aim to minimise the size of “I don’t know” space. Similarly, for cost analysis,
rather than returning an exact value, give upper and lower bounds, and aim for them to be “reasonably close”.

Abstract Interpretation, Logic Programming, Ciao. The theory of abstract interpretation, started by
Cousot and Cousot in the 70s [4], provides a systematic way to escape the consequences of Rice’s theorem,
by formally constructing abstract semantics of programs. Executing such programs in the abstract domain
provides information about their concrete semantics, whose exact properties are undecidable. This theory is
based on order-theory: semantic domains appear as lattices, and semantics of programs are defined as fixed
point of a well-chosen operator. It lead to multiple analysis tools, such as the now industrial Astrée [5] or the
modular multilingual MOPSA [6].

As abstract interpretation became mature, it was applied to new programming paradigms, including logic
programming [7, 8]. This declarative paradigm is exemplified by Prolog [9], in which programs are written using
first-order logical formulas called Horn clauses, and executed via an automated proof technique such as SLD-
resolution. It allows for non-determinism and a form of reversibility: programs are defined as relations rather
than functions. In the 90s, a Prolog dialect called Ciao appeared, with analysis, verification, debugging and
optimisation at its core, thanks to its program processor CiaoPP enabled by abstract interpretation. Thanks
to its modular design, CiaoPP has gained many functionalities since then, including new abstract domains,
and an improved fixpoint algorithm [10].

CiaoPP’s cost analysis, HCIR, Application. CiaoPP has an important line of work on automated
cost analysis and its applications. The foundational technique presented in 1990 [11] and implemented in
Caslog [12] was initially motivated by automated parallelisation. In the next few years, it received multiple
improvements, including the possibility to compute lower bounds of the complexity rather than only upper
bounds [13]. In the same paper, it was noticed that complexity analysis often encounters domain-specific
properties of recurrence equations, such as non-determinism. In 2007, the cost analysis module was made
parametric with respect to the type of bound (upper or lower), resource (time, memory, energy, user-defined,
etc.) but also cost (worst-case, probabilistic [14], accumulated [15], etc.). In 2013, the module gained in
precision by being completely reframed as an abstract domain [16], and new techniques for verification of cost
assertions via automated comparison of functions were introduced in 2018 [17].

Thanks to Horn clauses’ simplicity and expressivity, they may be used as an intermediate language (HCIR)
for the analysis of programs written in other paradigms. This idea was used in related tools such as the LLVM
analyser SeaHorn [18]. More generally, the use of Horn clauses in verification has grown in the last decades
and they have been applied to multiple fields, including cryptographic protocols with ProVerif [19].

In the recent years, CiaoPP has thus been applied to the energy analysis of imperative programs, such as
mobile applications in Java [20] and embedded software in C (at the C, LLVM and ISA levels) [21, 22, 23].
Applications to gas consumption of blockchain have also been proposed [24].

Energy, Hardware. Hardware researchers and engineers, unlike software scientists, have had a long interest
in energy consumption, as it governs heat emission, and has thus an important impact on hardware’s scale
and speed. An interesting course on energy analysis at low-levels can be found at [25]. Physical parameters
are identified, but bridging the gap between them and code execution is a hard problem.

Pure testing is possible, but misses much information about possible execution traces. To use static
analysers, energy models are required, and a suitable level of abstraction must be chosen.
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At a level closest to bare metal, the amount of gate switching has been identified as a great approximation
of dynamic energy consumption [26]. At this level, simulation is possible, using VHDL descriptions if available
[26, 27].

To make models closer to the code, one idea might be to assign an energy cost – or an interval – to each
low-level instruction – or pair of instruction, to account for some switching cost. An overview of what is done
in CiaoPP is presented in Umer Liqat’s PhD thesis [28]. This is reasonable [29], but instruction cost is quite
data-dependent in practice [30]: the cost of a subtraction may double when the result is negative, because of
two’s complement representation.

Moreover, modern processors have many functionalities, such as cache memories, which have an enormous
impact on cost. Some abstract interpretation techniques are able to deal with it [31], which is used by aiT
[32] in the case of time, but many difficulties arise, as cache models are rarely available.

Note that aiT, a tool used for WCET analysis, requires the user to input a constant bound on the number
of executions of each loop. The missing piece is more control-flow analysis, which is what we propose to do in
our work, by reduction to recurrence solving.

Recurrence Equations. Among computer algebra systems (CAS), state of the art recurrence solvers which
may be used with CiaoPP include Mathematica [33] and PURRS [34]. The latter contains a few specialised
techniques for complexity analysis, e.g. to deal with non-deterministic divide-and-conquer equations. More
generally, the book A = B by Marko Petkovšek et al. [35] presents many state of the art techniques for the
exact resolution of known classes of equations which still have to be implemented in CiaoPP. Focus is given
to holonomic sequences, of which hypergeometric sequences are a particular case.

Solutions to classes of equations containing max operators are presented in Maximiliano Klemen’s PhD
thesis [36], as well as preliminary work on guess-and-check methods for more general recurrence solving using
Lasso regression and SMT solvers.

The COSTA group also worked on recurrence solving specialised for cost analysis, dealing with what they
call cost relations: non-deterministic recurrence equations with various types of guards. Their solver PUBS [37]
implements some specialised methods. For example, it infers ranking functions and invariants to bound cost
in evaluation trees, and performs partial evaluation to simplify equations. Other techniques are presented in
Antonio Flores’ thesis [38].

Interestingly, previous work on abstract domains of sequences exist. The only example we know of is the
domain of arithmetico-geometric sequences by Jérôme Feret [39], initially applied to numerical filters in avionic
software.

Cost analysis of Functional Programs. Related work has been done for functional programs, such as
Wegbreit’s METRIC – applied to Lisp, which extract recurrence equations to be solved by CAS, but isn’t able to
deal with mutual recursion – or David Le Métayer’s ACE [40], which focuses on asymptotic complexity. Recent
work often leverages type systems [41, 42], but have trouble with either higher-order or recursion and are not
always applicable to programs written in languages not specialised for cost analysis.

1.2 Some orders of magnitude

To curb and control an industrial sector’s carbon footprint, it is necessary to have in mind relevant orders of
magnitude, in order to focus on significant aspects. To this end, we include a small number of figures extracted
from reports published in the last 5 years by academics, associations and government officials. Of course this
is only a first glimpse, as robust data collection would require more than a few paragraphs.

IT’s share of global carbon footprint has risen from around 2.5% in 2013 to 5% in 2022. This footprint can
be entirely attributed to energy use, either in the form of electricity or directly as petrol to extract required
materials. At a macroscopic level, this footprint can be split between a low number of industrial equipment
whose operation requires lots of electricity, and a very high number of consumer equipment whose individual
operation requires less electricity. Globally, equipment production represents ∼45% of IT’s energy usage, and
restraint in this sector is a major carbon savings opportunity.

In our tool, we focus more directly on energy used for the operation of IT equipment, which represents
∼55% of IT’s consumption, although our resource analysis techniques may also be used to temper the amount
of equipment used. We check that energy usage attributed to data processing is significant with regard to
idle consumption and cooling by going through a few case studies on datacenters, which tend to get more
optimisation attention than personal equipment, although they don’t consume more globally.
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Figure 1: Energy consumption of IT’s subsectors [43, 44] (left). Energy consumption of a datacenter with reasonably
efficient cooling architecture (PUE 1.38) [45, 46] (center). Approximate idle, average and peak power usage of a server
in case study [47] as a fraction of peak power (right).

2 CiaoPP’s energy consumption analysis pipeline
In this section, we describe the current state of CiaoPP’s energy analysis pipeline, and propose some improve-
ment ideas. Here, the goal of energy consumption analysis is to provide, for each function in a program, bounds
on its energy cost that are parametric in the size of its inputs, such as the value of a number or the length of
a list. For example, consider the following C program.
1 int fact(int n){
2 if (n <= 0) return 1;
3 return n * fact(n - 1);
4 }

The analysis may output that the execution cost of the program is between 4.1n + 3.8 µJ and 5.1n + 4.2 µJ ,
when the execution architecture is set to be XMOS XS1 with XS1-A16-128-FB217 processors. In this case,
the deviation with experimental measures is between −11.7% and 7% (cf. chapter 3.5 of [28]).

CiaoPP current pipeline for energy consumption analysis of imperative programs, e.g. C programs, may
be split into four parts, which we describe in the next sections.
• First, a cost semantic must be provided via an energy model. This model must be designed, and the level

of abstraction chosen has an impact on the precision of the analysis. Depending on the method, this part
may or may not be program independent.

• Then, the core of the program-dependent analysis starts, and a C program is transformed into Ciao, viewed
as HCIR. This transformation ideally preserves functional and cost semantics up to some observational
equivalence. In practice, we may already start to focus on cost semantics.

• To analyse Ciao programs, recurrence equations are extracted. Those recurrence equations are of two kinds:
size and cost relations. Interestingly, those equations may be seen as equivalent to a Ciao program where
data is abstracted to its size.

• Finally, those recurrence equations must be solved. We describe current techniques in Section 2.4.

This pipeline may be mapped out as in Figure 3, where we emphasise that the pipeline is built on ideas of
abstract interpretation. The general idea of abstract interpretation is presented in Figure 2.

Usual Syntax Syntax for
modified program

Usual Semantic
e.g. P(Σ∗)

Abstract Semantic
i.e. desired information

S (execute on all inputs)

rewrite

S♯ (execute abstract program)

extract (forget)

Usual Syntax

Usual Semantic
e.g. P(Σ∗)

Abstract Semantic
i.e. desired information

S S♯ (abstract execution)

extract (forget)

Figure 2: Idea of abstract interpretation.
Rather than doing “execute then abstract”, do “abstract then execute” (left), or even “execute abstractly” (right).

The following paragraph is a commented version of Figure 2.
Suppose there is some information we want about the semantic of a program. The most straightforward

way to get it is to execute the program on all possible inputs (going top left to bottom left), thus computing
its full semantic (often a set of traces), and then extract this information (going from bottom left to bottom
right). However, this is not practical: there is an infinite number of inputs and each trace may be extremely
long. Abstract interpretation notices that it is a waste to compute an expensive object – the full semantic –
only to throw out some parts after that, and that we would be better off forgetting irrelevant information before
executing the program, either by rewriting it to a simpler program or by simplifying the execution semantic.
The goal is then to make the diagrams “as commutative as possible”.
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C HCIR HCIR(Size) RecEq(Sz + Cost)

Traces(Mem(C), Cost) Trees(Mem(HC))
+ Cost model for builtins

Trees(Mem(HC)
Size )

+ Cost model for builtins

FP + CostP SzP + CostSz,P SzI + CostSz,I

αSz extract

solve≈ αSz

α◦
Sz α◦

I

Figure 3: Energy analysis pipeline as the top path of an abstraction diagram.
Red arrows execute code (on all inputs), and blue arrows extract functions from traces and trees. Section 2.1 focuses on
the cost models enabling the bottom left triangle. Section 2.2 corresponds to the top left square. Section 2.3 explains

the middle square and the “extract” arrow. Finally, Section 2.4 describes the “solve” arrow.

In the diagram presented in Figure 3, note that execution trees are the equivalent for logic programs
of execution traces for imperative programs, and correspond to concrete code semantics. Mem stands for
“memory state”. The arrows in our C execution traces are weighted, to allow cost semantics.

The bottom row contains the desired functional and cost semantics. Note that while we are only interested
in cost semantics, some level of functional information is required to be able to compose functions, which will
be explained in Section 2.3. FP is a full functional semantic, which assign to each function in the program
a function Input → P(Output) recording all possible outputs for each input. CostP is a full cost semantic,
which assign to each function in the program a function Input→ P(R+) recording all possible costs for each
input. SzP and CostSz,P are abstracted versions of FP and CostP respectively, where input/output values are
replaced with input/output sizes. SzI and CostSz,I are further abstractions, where rather than collecting all
possible output sizes/costs, we provide an interval in which those output may appear, i.e. bounds on those
outputs.

2.1 Energy models

In order to compute energy consumption at the source code level, we must provide energy models, which
relate execution traces with energy consumption. The more fine-grained the model, the most precision can be
obtained, but this also means that more information must be collected in traces and their abstractions.

For example, an energy model might assert that some low-level operation on XMOS architecture always
costs 1210759 fJ to be executed, and write so in CiaoPP’s assertion language.
1 :- trust pred sub_3r2(X)
2 : var(X) => (num(X), rsize(X,num(A,B)))
3 + (is_det, not_fails, cardinality(1,1), costb(energy,1210759,1210759)).

To have a complete model, the same must be done for every low-level instruction, e.g. via experimental
measures, where we execute multiple times the same instruction, with random input data and initial state.

Such a constant model is however very simplistic. In practice, there is some variability, and we need to
use bounds on the consumption rather than exact values. Moreover, focusing on instructions only might be
too coarse. To account for some gate-switching, we can gain precision by providing the energy cost for all
pairs of instructions. Moreover, random input data might gave bad estimates of the worst-case, as energy
consumption might be very data-dependent [30] (data-switching accounts for ∼ 30% of dynamic consumption
in XMOS experiments).

Figure 4: Measures presented by Kerstin Eder [48] on an XMOS architecture, for the average consumption
of pairs of instructions on 32-bit data (left), and data-dependent consumption for the sub (middle) and and
instructions (right).
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More generally, to take architecture into account, it is possible to create models which parameterise the
consumption by a list of previous instructions, or by the state of the architecture (e.g. cache state). Note that
in some modern architectures, such as this NVIDIA GPU for supercomputers [49], fetching operands takes
more energy than computing on them, and there may be a 100-fold consumption difference between a cache
miss and cache hit.

In general, modern hardware’s complex “runtime policies” are an important limit to the precision of anal-
yses, in particular when safe upper bounds are critical (“Worst-Case Energy Consumption”, e.g. for embedded
software). Currently, one must choose depending on the application whether some lack of safety is accept-
able, e.g. to focus on average consumption to optimise for complex architecture, or not, in which case we are
restricted to very simple architectures (common in embedded software) or very large bounds.

For the moment, we talked about models at the ISA level. Another possibility is to work at a higher level,
such as at the level of LLVM or even C source. This tends to lessen energy models’ precision, but to improve
analyses, as dataflow information becomes more structured. C level is mainly used for coarse complexity
analysis (for example, a unit cost might be assigned to every instruction). At the LLVM level, two main
techniques have been explored.
• Compile LLVM to the ISA level, relate the two representations, and map back to the LLVM program using

the ISA energy model [50].
• Execute each LLVM basic block on the target machine (multiple times, with random initial values and

initial states), and measure the consumption. This makes the analysis program-dependent, but can still
be quite fast, as all recursive structure of the program is ignored. Moreover, the user can now perform
the analysis on his architecture independently of what is provided by developers of the tool. However, the
architecture must be available for execution.

We note a few propositions for future work.
• Make a working prototype of this idea of measuring the consumption of each LLVM basic block.
• Explore automated creation of models using hardware’s VHDL, to gain in generality, as creating a model

for a single chip is currently extremely expensive and time-consuming. Note that VHDL are not always
provided by constructors.

• Explore the impact and possibility to analyse low-level aspects such as cache behaviour using known abstract
interpretation methods. Note that cache models are often not provided by constructors. One way to mitigate
it would be to use retroengineering tools such as those used in side-channel cryptanalysis.

2.2 Ciao as HCIR, C/LLVM/ISA → Ciao

In order to make our analysis multilingual, an intermediate representation is chosen, corresponding to horn
clauses (HCIR) and written here in Ciao. The first obvious advantage is that it makes it possible to apply
analyses present in CiaoPP to other languages. A deeper advantage of HCIR is that it uses function call as the
only control structure, with no side-effect. Thus, it makes analyses simpler and focuses on the core problem:
recursion.

Transformations of imperative programs to HCIR are based on the discovery of basic blocks in the control
flow graph and on the translation of any higher-level control structure (cf. chapter 2 of [28]). Figure 5 gives
an example of imperative code converted to HCIR.

Assertion files must be provided in order to give functional and cost semantic to each builtin construct of
the source language. Note however that a perfect functional semantic is not necessary, and it can be sufficient
to describe only basic properties of those constructs.

Current translations are prototypes and can be refined. Some future work ideas are listed in the following.

• Much information about data structures is lost and discarded, in particular in LLVM types. Properties of
arrays, or complex structs, are mostly forgotten – we can hope to reconstruct those data structures in Ciao,
perhaps using some amount of shape analysis, to gain precision. Another example is the size of integers,
where 8 bits and 32 bits are currently treated the same by our HCIR, even though there often is at least a
2-fold energy consumption difference.

• Additionally, control structures are often translated in a way that makes analysis difficult. The most striking
example is for loops with increasing argument where cost analysis fails to infer precise bounds. A quick fix
would be to translate common for loops differently, and a more interesting solution would be to use some
automated inference of ranking functions.
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int fact(int n){
if(n <= 0)

return 1;
return n*fact(n-1);

}

<fact>:
001: entsp 0x2
002: stw r0, sp[0x1]
003: ldw r1, sp[0x1]
004: ldc r0, 0x0
005: lss r0, r1
006: bf <008>

007: bu <010>
010: ldw r0, sp[0x1]
011: sub r0, r0, 0x1
012: bl <fact>

013: ldw r1, sp[0x1]
014: mul r0, r1, r0
015: retsp 0x2

008: mkmsk r0, 0x1
009: retsp 0x2

fact(R0, R0_3) :-
entsp(0x2),
stw(R0, Sp0x1),
ldw(R1, Sp0x1),
ldc(R0_1, 0x0),
lss(R0_2, R0_1, R1),
bf(R0_2, 0x8) ,
fact_aux(R0_2, Sp0x1, R0_3, R1_1).

fact_aux(1, Sp0x1, R0_4, R1) :-
bu(0x0A),
ldw(R0_1, Sp0x1),
sub(R0_2, R0_1, 0x1),
bl(fact),
fact(R0_2, R0_3),
ldw(R1, Sp0x1),
mul(R0_4, R1, R0_3),
retsp(0x2).

fact_aux(0, Sp0x1, R0, R1) :-
mkmsk(R0, 0x1),

Figure 5: A C program (left) translated into ISA level (middle) and HCIR from ISA (right).

2.3 HCIR → RecEq ∼ Size program

In this section, we explain how recurrence equations are set up in the current pipeline. The details are not a
core part of the internship, but do represent both a foundation and a bottleneck of the tool. We present some
core notions and sketch their inference algorithms. We then propose a more abstract viewpoint and ideas for
future work.

Core standard intuitions are the following.
• A size metric m is some chosen measure of the “size” of data, such as the length of a list, the value of a

number, or the depth of a term.
• Size relations relate sizes of multiple arguments (of literals in the program). In practice, this leads to size

functions Sz(i)
p that take as argument the sizes of input arguments of the predicate p, and return bounds

on the size of p’s i-th argument.
• Cost relations relate the cost of executing a predicate with other predicates’ cost and arguments’ sizes. This

leads to cost functions Costp that take as argument the sizes input arguments of p, and return bounds on
the cost of executing it. This cost is measured according to some chosen measure, which could be time,
energy, number of resolutions, number of unifications, or some user-defined resource.

If we want cost functions, size functions are necessary for composition. Schematically, if p(n) := f(g(n)) in
functional notation, Costp(n) = Costf (Szg(n)) + Costg(n).

To read the rest of this section, it is useful to remember basic facts about the Prolog language1. To exem-
plify, consider the following quicksort program. When analysing with entry qsort(L,Ls):list(num)*var,
modes (i.e. input/output arguments) and types are inferred. Here, the output arguments are the second of
qsort, third and fourth of partition, and third of append.

1 qsort([], []).
2 qsort([F|L], Ls) :-
3 partition(L, F, L1, L2),
4 qsort(L1, L1s), qsort(L2, L2s),
5 append(L1s, [F|L2s], Ls).
6
7 append([], L, L).
8 append([H|L1], L2, [H|R]) :- append(L1, L2, R).

9
10 partition([], F, [], []).
11 partition([X|Y], F, [X|Y1], Y2) :-
12 X =< F,
13 partition(Y, F, Y1, Y2).
14 partition([X|Y], F, Y1, [X|Y2]) :-
15 X > F,
16 partition(Y, F, Y1, Y2).

• In practice, a size metric m is just a partial function H → N. Here m = len might be chosen on all
lists. In CiaoPP, metrics can be user-defined and are partially inferred, either using types or directly
term structures [16]. A metric can be extended to a function sizem on all terms, by setting sizem = n
whenever m(θ(t)) = n for all substitutions θ making t ground. For example, sizelen([X, Y ]) = 2 even
if the list contains free variables. Additionally, a function diffm is defined on pairs of terms such that
diffm(t1, t2) = d whenever t2 is a subterm of t1 and m(θ(t2))−m(θ(t1)) = d for all θ making both terms
ground. For example, difflen([A, B|L], L) = −2.
1Data in Prolog (and in Ciao) is represented by first-order terms, which may contain both free variables and ground atoms.

Compound terms are defined using “functors”. Data is a priori untyped, although functors may help to define datatypes, inferred
by CiaoPP. The Herbrand universe H is the set of ground terms, and a substitution θ is a (partial) function from variables to
terms.
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• To give examples of size relations, we denote sz(pi) the size of the i-th argument of a predicate p. The
analysis may be able to infer that, at predicates’ success, sz(append3) = sz(append1) + sz(append2), that
sz(partition3) + sz(partition4) = sz(partition1) and that sz(qsort2) = sz(qsort1).
In practice, the analysis is currently only able to infer input/output relations, and not output/output
relations like the one on partition, and can thus only get sz(partition3) ∈ [0, sz(partition1)], which is
why our size functions Sz(i)

p are only parameterised by input sizes.
The algorithm that infers those size relations works by repeatedly applying the size and diff functions
in the directed acyclic graph of literal dependencies, and doing substitutions to simplify the relations. In
the case of recursive or mutually recursive predicates, recurrence relations are generated and handed to the
solver. In the qsort example, the upper bound analysis might infer the following relations, where a ∈ {3, 4},
after doing a max on output size of partition’s two recursive clauses without using the conditions on F.

Sz(3)
append(0, m) = m

Sz(a)
partition(0, f) = 0

Sz(2)
qsort(0) = 0

Sz(3)
append(n + 1, m) = 1 + Sz(3)

append(n, m)

Sz(a)
partition(n + 1, f) ≤ 1 + Sz(a)

partition(n, f)

Sz(2)
qsort(n + 1) = Sz(3)

append

(
Sz(2)

qsort
(
Sz(3)

partition(n, _)
)
, 1 + Sz(2)

qsort
(
Sz(4)

partition(n, _)
))

After some recurrence solving and substitutions, this leads to the exact Sz(3)
append(n, m) = n + m, but only

Sz(a)
partition(n, f) ≤ n and Sz(2)

qsort(n + 1) ≤ 1 + 2 × Sz(2)
qsort(n), and thus an exponential bound on qsort.

Note that the precision would be greatly improved with output/output relations.
• To set up cost relations and functions, the analyser must then compute the resource consumption of each

predicate, split into the consumption of each clause, split into the consumption in the head and in each
body literal. In this example, the predicate qsort has two clauses for empty or non-empty list, unification
in the head of the second clause must unify an argument with [F |L] structure, and the body literals of the
second clause use all three predicates defined in this code. The way those different levels are combined is
resource-dependent. For a deterministic non-failing program, we may sum the costs of body literals and
take the maximum of the cost of each clause. Possibility of failure must also be taken into account, and –
as logic programs are non-deterministic – the number of solutions of a call may also have to be used and
estimated. More details may be found in [12, 13, 51, 16].
In the example above, for a resource related to time such as number of resolution steps, we could get the
following equations, where the last line is obtained after some substitution and recurrence solving, with
imprecision in output sizes of qsort and append leading to a O(n2n) bound on Costqsort.

Costappend(0, m) = 1
Costpartition(0, f) = 1
Costqsort(0) = 0

Costappend(n + 1, m) = 1 + Costappend(n, m)
Costpartition(n + 1, f) = max(1 + Costpartition(n, f), 1 + Costpartition(n, f))

Costqsort(n + 1) = 1 + Costpartition(n, _) + Costqsort(Sz(3)
partition(n, _)) + Costqsort(Sz(4)

partition(n, _))

+ Costappend

(
Sz(2)

qsort
(
Sz(3)

partition(n, _)
)
, 1 + Sz(2)

qsort
(
Sz(4)

partition(n, _)
))

≤ 1 + n + 2n + 2× Costqsort(n).

Some ideas for future work are listed in the following bullet points.

• Although this is not exactly what happens here, an ideal notion of size might be viewed as the coarsest
approximation of data that preserves cost semantics on a particular program.
Studying the discrepancy between this ideal notion and the implementation could lead us to new ideas to
design and infer measures, as well as a better understanding of their limits.

• If we replace a Ciao program by a similar program in which data is replaced with its size measure, we
obtain something which is extremely similar to the recurrence equations inferred. Note that recurrence
equations might be viewed as recursive “RecEq” programs (acting on size data – note that this is different
from Section 4 where equations are viewed as sequence operators).
Studying precisely this analogy, we could complete the right half of Figure 3 with a stronger connection
between HCIRSize and RecEq. We will need to describe precisely the operational semantic of RecEq.
We hope that this sheds a new light on the connection between rewriting of programs and rewriting of
recurrence equations, hence giving new ways of simplifying equations extracted from programs.

• One instance of rewriting technique that we want to implement (to improve analysis of imperative loops)
is related to automated inference of ranking functions. Other rewriting techniques coming from recurrence
equations are changes of variables.
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• An improvement to the size analysis framework would be to infer some output/output relations. Ideas
towards that are proposed in [13, 52, 53].

• It might be interesting to analyse higher-order programs, e.g. for analysis of functional code, which would
probably require a sized type of functions, using ideas encountered in [42]: the size of a function would be
some function relating the size of its inputs to the size of its outputs.

2.4 Recurrence equation solver

The current recurrence solver is mostly based on lookup in a table of known solutions. Given an equation, it
checks whether it has a known shape, such a low order linear equation on one variable with constant coefficients
or some divide-and-conquer equation. It has a few capabilities to solve equations one multiple variables if only
one actually changes in recursive calls, and can compute the closed-form of some sums and products (e.g. to
notice a factorial).

It can also discharge equations to other tools such as Mathematica.
In sections 3 and 4, we propose multiple ideas to improve this solver.

3 Implementation exercises and solver extensions
The static analysis techniques designed at CLIP Lab, including the resource consumption analysis and recur-
rence solving tools developed during this internship, are implemented in CiaoPP.

One of the goal of this internship was to get used to coding in the Ciao language, and to get familiar with
the codebase of CiaoPP by implementing a few functionalities.

Small extensions to the “table-lookup” recurrence solver are described in Section 3.1. A more interesting
algorithm for irrelevant variables analysis, developed and implemented during the internship, is presented in
3.2. Finally, a large number of small bugs have been discovered during experiments, and some of them fixed:
a short list is found in 3.3.
3.1 Complex numbers, 2nd and 3rd order linear recurrence equations

We added complex numbers to CiaoPP and introduced them to the cost module’s algebraic expressions. We
modified the functions that compute with algebraic expressions, and used safe overapproximations for cases
we didn’t want to deal with yet, e.g. comparison of expressions.

Thanks to this, it was possible to expand the solver by completing the resolution of second order linear
recurrence equations with constant coefficients: it was previously impossible to deal with equations of negative
discriminant, e.g. f(n) = f(n− 1)− f(n− 2) + n.

We also added a solution for third order linear recurrence equations with constant coefficients, using
Cardano’s method. Complex numbers were necessary for third order: general arguments from Galois theory
may be used, but notice that even the simple equation f(n) = f(n− 3) leads to the polynomial X3 − 2 which
has complex roots. Consider the following example.

1 :- entry p/2 : list(gnd) * var.
2 p([], []).
3 p([X], [X]).
4 p([X,Y], [X,Y]).
5 p([_,Y,Z|R], T) :-
6 p([Y,Z|R], L1), p([Z|R], L2), p(R, L3),
7 append(L1, L2, L4), append(L4, L3, T).
8
9 append([], X, X).

10 append([H|X], Y, [H|Z]) :- append(X, Y, Z).

The analyser easily infers that Cappend(x, y) = x + y, using list length as size measure. Moreover,{
Szp(0) = 0, Szp(1) = 1, Szp(2) = 2,

Szp(n) = Szp(n− 1) + Szp(n− 2) + Szp(n− 3) when n ≥ 3.

Since there is no additional term, we can focus on the homogeneous solution – otherwise, a particular
solution would be found. The corresponding polynomial is X3 − X2 − X − 1. Its roots are r1 ≈ 1.8393,
r2 ≈ −0.41964− 0.60629i and r3 ≈ −0.41964 + 0.60629i, and are found using Cardano’s method. The solution
to the equation is thus of the shape Szp(n) = a1rn

1 + a2rn
2 + a3rn

3 . The solver then computes the coefficients
using the initial conditions, and outputs
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1 :- true pred p(_A,T) : [...] => ([...],
2 size(ub,length,T,
3 ccomplex(-0.25951582498161835,-0.1422223907459299)*ccomplex(-0.4196433776070804,-0.6062907292071993)**length(_A)
4 +ccomplex(-0.25951582498161824,0.14222239074592993)*ccomplex(-0.41964337760708065,0.6062907292071993)**length(_A)
5 +ccomplex(0.5190316499632366,-1.7214688391203412e-17)*1.8392867552141612**length(_A))),

and the same function for the lower bound (lb). Notice that a numerical error occurred, with −1.72 · 10−17

appearing instead of 0. Dealing with this is left for future work, and two solutions may be considered. The
first is to use a domain for floating-point computation which tracks errors and provides an interval in which
the exact value is found. An issue is that for large exponents, intervals become extremely wide as errors
accumulate quickly. Another solution may be to use some amount of symbolic computation and to convert
between cartesian and polar representation of complex numbers when suitable.

3.2 Irrelevant variables analysis

In order to simplify equations, an analyse+rewrite pass is implemented to remove irrelevant variables. More
analyse+rewrite passes may be implemented in the future.

Consider the following program, which uses an accumulating variable to compute the factorial.
1 :- entry fact(N,R) : num * var.
2 fact(N,R) :- fact_aux(N,1,R).
3
4 fact_aux(N,A,R) :-
5 N > 0, N1 is N - 1, A1 is N1 * A,
6 fact_aux(N1,A1,R).
7
8 fact_aux(N,A,R) :-
9 N =< 0,

10 R = A.

Suppose that we want to compute the cost of executing fact measured as the number of arithmetic
operations performed. We get Cfact(n) = Cfact_aux(n, 1) and{

Cfact_aux(n, a) = 2 + Cfact_aux(n− 1, (n− 1)× a) if n > 0,
Cfact_aux(n, a) = 0 if n ≤ 0.

Clearly, Cfact_aux(n, a) = 2n and the second index of Cfact_aux is irrelevant here. We could write anything
instead of (n− 1)× a and still get the solution: the equation may be seen as a single variable equation on n.{

C̃fact_aux(n) = 2 + C̃fact_aux(n− 1) if n > 0,
C̃fact_aux(n) = 0 if n ≤ 0.

The current version of CiaoPP was unable to notice that, and failed to obtain any information on the
solution: the output was 0 ≤ Cfact_aux(n, a) ≤ +∞. However, such irrelevant indices are common in cost
analysis of imperative programs, where many variables may appear in a basic block without being used.

To solve this, we propose a simple fixpoint algorithm which overapproximates the set of relevant indices.
For the sake of rigour, for 1 ≤ i ≤ k, let us define an operation

Trimi : (Nk → N)→ (Nk−1 → N)
f 7→

(
(x1, ..., xk) 7→ f(x1, ..., xi−1, 0, xi+1, ...xk)

)
,

which creates a new function with one less index, and a dual operation
Expandi : (Nk−1 → N)→ (Nk → N)

f 7→
(
(x1, ..., xk) 7→ f(x1, ..., xi−1, xi+1, ...xk)

)
.

Definition 3.1. We say that an index i is irrelevant in the equation S : (Nk → N)→ (Nk → N) whenever, for
every solution fsol of fsol = Sfsol, we have fsol = Expandi◦Trimi(fsol), making the reduced function Trimi(fsol)
a solution of the reduced equation S̃ : f̃ 7→ Trimi ◦ S ◦ Expandi(f̃).

Our goal is to overapproximate the set I ⊂ P(J1, kK) of relevant variables in an equation S presented in the
following form, where Ψj are expressions with f,−→n as free variables, and ϕj are a finite number of conditions
such that the ϕ−1

j (true) cover Nk (or partition it if we want to force unicity of the solution).

S(f) = −→n 7→


...

Ψj(f,−→n ) if ϕj(−→n ),
...
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Note that in the case of the cost module we studied, ϕj are always boundary conditions (such as ni = 0).
Our algorithm is based on the following fact.

Proposition 3.2. The least fixed point of the following operator, which is monotone for inclusion, is an
overapproximation of the set of relevant variables, i.e. lfp F contains the set of relevant variables.

F : P(J1, kK)→ P(J1, kK)
I 7→ I ∪ {i |ni appears in a condition ϕj}
∪ {i |ni appears in an expression Ψj via a path going only through f via indices i′ ∈ I}.

Proof. (Sketch) When evaluation fsol(−→n ) by unrolling (Sfsol)(−→n ), an ni may only be used in the result in the
following three cases. It may appear in condition, and thus impact the result. It may appear in an expression
outside recursive calls, and thus be used directly in the result. Finally, it may be used in a recursive call to
define an index whose value impacts the result.

Thanks to the domain’s small height, we can simply iterate F from ∅ to compute lfp F in time O(k).

Example 3.3. Consider the following equation on f : N5 → N.{
f(n1, n2, n3, n4, n5) = 0 if n1 ≤ 0
f(n1, n2, n3, n4, n5) = 1 + f(n1 − n3 − 1, n1 × n2, n2 × n3, n3 × n4, n4 × n5) if n1 > 0.

• Initially, we set I = ∅.
• In the next step, we add 1 as n1 appears in a boundary condition.
• Then, we add 3, as n3 is required to compute the value in the first index of f in the recursive call.
• Finally, we add 2, as n2 is required to compute the value in the third index of f in the recursive call. A

fixed point is reached, as no new index is required to compute n2. We get lfp F = {1, 2, 3}, and we can
simplify the equation to{

f̃(n1, n2, n3) = 0 if n1 ≤ 0
f̃(n1, n2, n3) = 1 + f̃(n1 − n3 − 1, n1 × n2, n2 × n3) if n1 > 0.

.

This algorithm was implemented in CiaoPP, in the Ciao language, in around 250 lines of code.
It is easy to expand this algorithm to work with sets of mutually recursive equations.

3.3 Other updates and bug discovery

While doing experiments on CiaoPP’s cost analysis, we had the opportunity to notice a number of small bugs
or outdated modules. Some of those observations are listed here.
• The LLVM pass (written in C++) used to convert LLVM code into Ciao was not compatible with LLVM13

due to a change of pass manager. A simple change in options was enough to let the pass work again.
• In a number of places, when the cost analysis module fails while trying to compute lower bounds, in order

to safely say “I don’t know”, it outputs the constant function +∞. However, this is only sound in the case
of upper bounds. This was changed to 0.

• There are errors in a section of code which compares sequences together.
While most of the code adopts the convention that max(f, g) means an overapproximation of n 7→ max(f(n), g(n))
when we compute a upper bound, and an underapproximation when we compute a lower bound, and simi-
larly for min, this is forgotten in a portion of code computing minimum of expressions. Moreover, it forgets
that two sequences might be non-comparable (e.g. n 7→ 10 and n 7→ n).

1 min_approximation(S1, S2, Sol) :-
2 max_expr(S1, S2, Sol1),
3 (
4 (Sol1 == inf ; Sol1 == bot) ->
5 normal_form(0, Sol)
6 ;
7 (
8 Sol1 == S1 -> Sol = S2 ; Sol = S1
9 )).
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This leads to unsoundness errors. For example, the module might assert x ≤ min(x, y) when x and y are
free variables, or similarly that x ≤ min(x, 2).
Moreover, we notice that, when computing the maximum of f and g, the code resorts to the overapproxi-
mation f + g even in cases where it would have been easy to be more precise (in some cases, it does only
max(x + 1, y + 1) ≤ x + y + 2, or max(n + 3, 2) ≤ n + 3 but only max(n + 3, 4) ≤ n + 7).
We plan to fix those modules, and also to give them a bigger role by using more determinacy analysis and
max/min expressions, which are particularly useful when analysing imperative programs.

• Several abstract domains were not running anymore. An example is the numerical domain of polyhedra,
which we wanted to test as it is often used for the analysis of imperative programs. The bug was fixed
by a PhD student in the team, but further experiments revealed several limitations already present in the
domain. For example, in the case of the following program, the domain infers nothing about R, whereas
the information R = 3× N would be inferred by a domain as weak as intervals.

1 p(N,R) :-
2 K is 3,
3 R is K*N.

This is caused by the inability of CiaoPP’s polyhedra domain to deal with “non-linear” multiplications.
One easy solution is to write a reduced product with the domain of intervals (via an inclusion of polyhedra
in hypercubes), either using CiaoPP’s functionalities for reduced products or directly in the code of the
polyhedra domain when a non-linear operation is performed.
We plan to use polyhedra to infer more precise recurrence equations, in particular for imperative programs.

4 Algorithmic ideas and theory: recurrence solving via order theory and
abstract interpretation

In this section, we present new ideas on recurrence solving based on order theory. Important facts about this
theory and abstract interpretation are recalled in Annex B.

The general framework is introduced is Section 4.1. Recurrence equations will be viewed as fixpoint
equations for a sequence operator, and we will be particularly interested in the case where the operator is
monotone. Then, in Section 4.2, we will see how pre- and post-fixpoints appear as “easily checkable bounds”
on an equation’s solution, and we explore how to use this fact for resolution via guess-and-check and divide-and-
conquer methods. Finally, Section 4.3 describes how we apply abstract interpretation to recurrence solving,
via abstract domains of bounds on sequences.

4.1 Order-theoretical framework

We apply the theory of abstract interpretation to recurrence equations – which correspond to programs – in
order to compute, or rather approximate, their solution – viewed as their semantic. Everything starts from
the following core observation: just like a program’s semantic can be described as a fixpoint of some operator,
a recurrence equation can always be viewed as a fixpoint equation on the domain of sequences.

Consider the following nested recurrence equation, on (a, f) ∈ N× (N→ N).{
f(0) = a

f(n) = f(f(n− 1)) + 1, ∀n ∈ N∗.

Clearly, a sequence f is solution of the equation if and only if it is a fixed point of the following operator,
where a ∈ N is a chosen constant,

S : (N→ N)→ (N→ N)

g 7→
(

n 7→
{

a if n = 0
g(g(n− 1)) + 1 otherwise

)
.

Playing with this equation by hand, it is not too hard to prove that (n 7→ n, 0) is the only solution.
However, it is harder to automate the resolution of this kind of equations in general. Adding an order to
N→ N, the characterisation of fsol as lfp S hints towards (several) methods of resolution.
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For example, iterating from ⊥ = (n 7→ 0) just like before, we get the sequences of sequences

0∗ 7→ 01∗ 7→ 012∗ 7→ ... 7→ (n 7→ n) when a = 0,
0∗ 7→ a1∗ 7→ a2∗ 7→ a3∗ 7→ ... when a > 0,

where the sequences are written in regex form, the first sequence converges to the solution, and the second
sequence diverges, indicating the absence of solution for a > 0.

This is interesting: this suggests that we can compute the solutions of recurrence equations by iterating
the operator corresponding to the equation.

It makes sense: according to Cousot and Cousot’s theorem, for a monotone operator S in a complete
lattice, the chain (Sα(⊥))α∈Ord converges – perhaps in transfinitely many steps – to the least fixed point lfp S.
Of course, here, since we can diverge, N → N is not a domain. Moreover, the operators corresponding to
recurrence equations will not always be monotone.

To fix those pitfalls, we use N∞
∆= N∪{∞}, which extends N with a top element2, and we restrict ourselves

to monotone recurrence equations (to deal with the general case, we introduce methods to “monotonise”
equations). We thus work on the following domain of sequences3.

D
∆= N∞ → N∞,

⊔
i

fi =
(
n 7→ max

i
fi(n)

)
,

l

i

fi =
(
n 7→ min

i
fi(n)

)
,

f ≤D g
∆⇐⇒ ∀n ∈ N∞, f(n) ≤N∞ g(n), ⊥D =

(
n 7→ 0

)
, ⊤D =

(
n 7→ ∞

)
In the next two sections, we will describe ideas on solving recurrence equation by using this fixpoint

characterisation of their solution.
In Section 4.2, we will use the notions of pre- and post-fixpoint, which instantiate in our case to easily

checkable bounds, used to get approximate solutions by both divide-and-conquer and guess-and-check methods,
either manually or with some level of automation.

Then, in Section 4.3, we will present some ideas on approximate recurrence solving by abstract interpreta-
tion, creating abstract domains D♯ of bounds on sequences and abstract operators S♯ used to perform abstract
iteration.

4.2 A simple method for proving bounds

Consider a monotone4 recurrence equation in one variable5, and let S : D → D be the corresponding operator
on sequences. Suppose that this equation has a single solution fsol = lfp S = gfp S. We can make the following
observation about pre- and post-fixpoints.
Proposition 4.1. Let g ∈ D be a sequence.

If Sg ≤ g, then fsol ≤ g. Similarly, if g ≤ Sg, g ≤ fsol.
In other words, postfixpoints (resp. prefixpoints) can be viewed as easily checked upper (resp. lower) bounds

of the solution.
Note that the converse is false: being a pre/postfixpoint is a stronger property than being a lower/upper

bound of the solution.

4.2.1 A technique for humans

The simple observation above gives a simple procedure for checking if a sequence chosen as a candidate bound
on the solution of a recurrence equation is indeed a bound.
Example 4.2. Consider the following equation, written as a sequence operator. Such equation may arise
while doing worst-case analysis of a quicksort program.

S : D → D

f 7→ n 7→


0 if n = 0
1 if n = 1

max
1≤k≤n−1

f(k) + f(n− k) + n otherwise

2This also accommodates non-terminating programs and infinite sizes.
3N∞ is the ordinal ω + 1 and enjoys the descending chain condition (DCC). D is a complete lattice of infinite height (we can

have large well-founded chains, e.g. of length ω2 + ω + 1), and doesn’t enjoy the DCC (consider 1∗ → 01∗ → 001∗ → ...).
4i.e. such that the corresponding operator is monotone
5We could easily extend the results of this report to multiple variables, but we keep a single dimension for ease of presentation.
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The operator is indeed monotone. Let g : n 7→ n2 be a candidate upper bound on fsol.
We have (Sg)(0) = 0, (Sg)(1) = 1, and (Sg)(n) = 12 + (n − 1)2 + n = n2 − n + 2 when n ≥ 2, thus

(Sg)(n) ≤ g(n) for all n.
Hence, g is a postfixpoint of S, and thus an upper bound on the solution: ∀n, fsol(n) ≤ n2.

There is something remarkable and counterintuitive about this proof process: if only skimmed through,
the proof may appear like the following. “Let g be a candidate upper bound on fsol. We would have fsol ≤ g,
thus fsol = Sfsol ≤ Sg by monotonicity of S. In this case, we observe Sg ≤ g, i.e. we have deduced a stronger
upper bound from a candidate upper bound. Thus, g is indeed an upper bound on fsol”.

The process is surprising, and this last thus seems like a reasoning mistake: “suppose a thing, deduce a
stronger thing, thus the thing is actually true”. Nevertheless, the proof is correct – this strongly relies on the
monotonicity of S and the properties of pre- / post-fixpoints.

Note that the simplicity and generality of this proof makes it much more amenable to automation than
most proofs of the same fact that could be found in undergraduate textbooks. We only need to be able to
perform two operations: compute Sg, and compare Sg with g. Those order-based proofs are also shorter than
standard proofs, at least once theory is established.

Example 4.3. Similarly, consider the equation f(0) = 0, f(1) = 1, f(n) = 2f
(
⌊n

2 ⌋
)

+ n.
For n ∈ 0, 1, S(n 7→ n2)(n) = n2. For n ≥ 2, we have S(n 7→ n2)(n) = 2⌊n

2 ⌋
2 + n ≤ 1

2n2 + n ≤ n2. Thus,
fsol ≤ (n 7→ n2). With some more computation, with g

∆= n 7→ 2n⌊log2 n⌋+ 1 we get Sg ≤ g hence fsol ≤ g.

Example 4.4. Consider an equation of the shape f(n) = un for n < k and f(n) = ∑k
i=1 cif(n− i) with k, un

and ci chosen positive constants.
Using the same arguments as before extended to sequences of reals, if α is a real such that un ≤ αn for

each n < k and ∑k
i=1 ciα

k−i ≤ αk, then we have fsol(n) ≤ αn for all n ∈ N.

4.2.2 Usage in guess-and-check methods

Of course, in our analysis, we would like to automatically generate bounds on the solutions, and not have to
input them by hand.

One possibility is to execute an equation S to obtain the exact values of fsol at a few indices, and use them
to try to guess the solution via heuristics, before checking that it actually is a solution.

This generic idea was explored by Maximiliano Klemen in the 5th chapter of his PhD thesis [36]. There,
he proposes to do the following.

1. Train. Generate a random set Xtrain of indices and compute fsol(x) for all x ∈ Xtrain.
2. Guess. Fit the curve by using quadratic regression with Lasso regularisation (i.e. minimise the ℓ2 distance

while penalising the ℓ1 norm), using cross-validation for the regularisation coefficient.
Do it using a given set of candidate functions, representative of the most common complexity orders,
e.g. T = {λx.x, λx.x2, λx.x3, λx.⌈log2(x)⌉, λx.2x, λx.x⌈log2(x)⌉}.
We obtain a candidate fcandidate = ∑

g∈T αgg and remove coefficients |αg| < ϵ.
3. Check. If fcandidate coincides with fsol on all x ∈ Xtrain, use a SMT-solver to verify the solution, i.e. that

the expressions (fcandidate)(n) and (Sfcandidate)(n) are equal for all n.

One of the shortcomings of this method is that the guessing step has to produce the exact value of the
solution, which is clearly quite hard.

We propose to relax this condition, by trying to generate only bounds on the solution, rather than its exact
value, thus providing a much larger chance of success. Two difficulties arise.

1. While it is reasonably easy to check if fcandidate = fsol using only the equation (fsol is unknown), there
is a priori no systematic way of checking whether fsol ≤ fcandidate without knowing fsol (most proofs
methods would use an induction, which is difficult to automate).

2. In the guessing step, the cost function β 7→ ∥y −Xβ∥22 + λ∥β∥1 is not suited to generating strict upper
or lower bounds.

To solve the first issue, we propose to use our pre-/post-fixpoint technique. If Sfcandidate ≤ fcandidate, than
the candidate is an upper bound. It is still much easier to guess a postfixpoint than to guess the exact solution,
and automating the comparison between Sfcandidate and fcandidate is a reasonable problem, at least for simple
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candidate functions. For the second issue, we propose to use common techniques for optimisation under (hard
or soft) constraints. Experiments will have to be performed to see what works best in our case.

This guess-and-check method may be used in conjunction with divide-and-conquer heuristics in order to
produce more precise bounds on the solution.

4.2.3 Ideas towards divide-and-conquer methods

Usually, in the context of abstract interpretation, we are interested in computing a fixed point lfp S, and we
propose to overapproximate it via an abstract operator S♯ working in a simpler domain than S.

However, when solving recurrence equations, we can take advantage of the fact that the solution is usually
unique, i.e. there is a unique fixpoint lfp S = gfp S. Thanks to that, specialised technique can be designed,
using the pre-/post-fixpoints properties presented above.

In the last section, we explained how to use the notion of “easily checkable bound” in guess-and-check
methods. To go a bit further, notice that, once a bound is found by the guess-and-check method of the last
section, we can keep looking for tighter bounds, with the search space now reduced.

In this section, we mention ideas to build upon those dichotomy-like ideas, with the hope of building, not
only heuristics, but algorithms that always compute good approximations of the solution, or even converge
towards it. The situation of our lattice among related work can be framed as the following.

• In a total order, e.g. Lt = J1, ndK, it is easy to use dichotomy to compute a fixpoint of any monotone
f : Lt → Lt in O(d log n).

• In the last three years, ideas have been proposed to compute fixpoints in logarithmic time in other
lattices, where points may be non-comparable, thus making dichotomy trickier. More precisely, [54] and
[55] propose algorithms to compute fixpoints of monotone functions in the lattice Lc = J1, nKd – equipped
with the product order – in time O(logd n) and O(log2⌈d/3⌉ n) respectively.

• The case we are interested in is somehow intermediate between those two kinds of lattices. For example,
consider the lattice L = {∑d−1

i=0 aiX
i | 1 ≤ ai ≤ n} of polynomials with bounded degree and bounded

natural coefficients, ordered by P ≤ Q ⇐⇒ ∀n ∈ N, P (n) ≤ Q(n).
Clearly, Lc is a wide sublattice of L: if ∀i, Pi ≤ Qi, then P ≤ Q. Moreover, L is not total (X2 and X + 1
are not comparable). However, L has many more relations than Lc: we have X ≤ X2, 9X ≤ 20 + X2,
6X + 6X3 ≤ 11X2 + X4...

We thus have two lattices in which logarithmic algorithms are known to solve the fixpoint problem, while
only linear algorithms are currently known in an intermediate case: this calls for exploration!

This is work in progress, and multiple questions will have to be solved.
• The lattice D of sequences is too large, and we must deal with an abstraction step to a D♯ such as the

lattice of polynomials.
• Those algorithms apply to finite lattices: to use them, we need to first find an upper bound on lfp S, and

testing all values in a fast growing chain such towards the top (such as 1, 2(1 + X), 3(1 + X + X2), ...) is
not guaranteed to provide postfixpoints in all lattices.

• The algorithms of [54, 55] strongly use the recursive structure of J1, nKd, and it is not clear yet how to
deal with this obstruction. Moreover, they strongly use the fact that recursive calls compute a exact
fixpoint, so new ideas have to be found if we want to use only bounds.

Nevertheless, we are convinced that using the “unique fixed point” properties of recurrence equations are
a promising research direction, either using guess-and-check heuristics or converging algorithms,

In the next section, we will present the “more classic” method of computing lfp S by abstract iteration,
without assumptions on the unicity of the fixed point.

4.3 Abstract iteration – Solving equations by abstract interpretation

In this section, we propose to overapproximate the solution of recurrence equations by abstractly executing the
equations, viewed as sequence operators. To do so, we introduce abstract domains of sequences and bounds
on sequences. The general framework is presented in Section 4.3.2, while examples are given in sections 4.3.1
and 4.3.3. Finally, 4.3.4 provides perspective on extensions and research lines explored during the internship.
Additional detail can be found in Annexes C and D.
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4.3.1 Introductory example

Consider the operator S : D → D corresponding to the equation f(0) = 0 and ∀n > 0, f(n) = f(f(n− 1)) + 1.
We use a domain A of affine sequences and a domain D♯ = (P(A),⊇) of affine upper bounds on sequences.
The goal is to compute fsol = lfp S, and we overapproximate it by computing lfp S♯ where S♯ : D♯ → D♯. In
the Galois connection (D,≤D) −−−→←−−−α

γ
(P(A),⊇), the abstraction α(f) is the set of all affine upper bounds of a

sequence f , and the concretisation γ(U) is the highest sequence that verifies all upper bounds in U .
We start from U0 := ⊥D♯ = A = ↑{⊥A} = ↑{n 7→ 0n + 0}, which means6 that, initially, all affine sequences

are considered candidate upper bounds on the solution. At each step, we will then remove candidates until a
fixpoint is reached, where we will only have actual bounds on fsol.

n
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0
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4
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f(n)
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f(n)

0 1 2 3 4
0
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· · ·
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Uω

Figure 6: Candidate upper bounds (light blue), are progressively removed by applying S on all of them. It is sufficient to only
apply S on extremal bounds (dark blue). Between U1 and U2, (n 7→ n) is fixed, which shows that it is a correct upper bound on
fsol. When the fixpoint Uω is reached, only correct upper bounds are left.

For the first step, we apply S on the candidate upper bound, and we get7 S(n 7→ 0n + 0) = 01∗, hence the
candidate upper bounds U1 = α(01∗) = ↑{n 7→ 1n + 0, n 7→ 0n + 1}.

Then, we once again apply S on the candidates, getting S(n 7→ 1n + 0) = (n 7→ 1n + 0) and S(1∗) = 02∗.
At this step, the analysis discovers that fsol ≤ (n 7→ 1n + 0). However, it doesn’t know whether the other
candidate can help refine the bound, and may try to keep going, setting U2 = α(n 7→ 1n + 0) ∪ α(02∗) =
↑{n 7→ 1n + 0, n 7→ 2n + 0, n 7→ 0n + 2} = ↑{n 7→ 1n + 0, n 7→ 0n + 2} where a simplification step is taken for
the last equality.

If the analysis keeps going, it will get Uk = ↑ {n 7→ 1n + 0, n 7→ 0n + k} for 3 ≤ k < ω, progressively
removing all constant candidates, before finally reaching Uω = ↑{n 7→ 1n + 0, n 7→ 0n +∞} = ↑{n 7→ 1n + 0},
which is a fixpoint of the abstract operator. Note that widenings could have been used to get there in a finite
number of steps.

In the end, the analysis correctly inferred that fsol ≤ (n 7→ 1n + 0).
We could do the same for lower bounds, and reach (n 7→ 1n + 0) ≤ fsol.

4.3.2 Abstract framework

In this section, we give more precise definitions on our framework.
Domain of abstract sequences. The main reason for which abstraction is required is that sequences, i.e.
elements of D, cannot be finitely represented in general. Hence, we start with an abstract domain A, whose
elements represent sequences and admit a finite representation, with ϕ : A→ D a concretisation operator, and
f ♯ ≤A g♯ ⇐⇒ ϕ(f ♯) ≤D ϕ(g♯) For example, we could choose for A to be the domain of affine sequences, with
ϕ((a, b)) ∆= (n 7→ an + b). Unfortunately, this doesn’t lead to a Galois connection.
Proposition 4.5 (No easy connections). With A the domain of affine sequences and ϕ the concretisation
operator above, there are no Galois connections D −−−→←−−−α

ϕ
A, and neither in the other direction.

Proof. (Sketch) The element 12∗ ∈ D doesn’t admit a best abstraction in A. In fact, it admits the two
incomparable minimal upper bounds (n 7→ 1n + 1) and (n 7→ 0n + 2).

To fix this, we can use the powerset trick, and record all true bounds rather than trying to choose one.

Definition 4.6 (Domain of abstract bounds). We call D♯ ∆= (P(A),⊑) the domain of abstract bounds.
Note that since the inclusion order is reversed, ⊔♯ = ∩, ⊓♯ = ∪, ⊥♯ = A = ↑{⊥A}, and ⊤♯ = ∅.

6Given a domain (L, ≤) and a subset S ⊆ L, ↑S
∆= ∪x∈S{u ∈ L | x ≤ u} is called the upper closure of S

7Sequences are often written in regex shape.
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Proposition 4.7. We have a Galois connection D −−−→←−−−α

γ
D♯, defined by

α : D → D♯

f 7→
{
f ♯ ∈ A

∣∣ f ≤D ϕ(f ♯)
}
,

γ : D♯ → D

U 7→
(
n 7→ min

f♯∈U
ϕ(f ♯)(n)

)
.

Moreover, for any U , γ ◦ α(U) = ↑U . In particular, α(U) = α( ↑U).

The U ∈ D♯ may still contain an infinite number of elements, which make it seems like we have not made
progress. However, most of the ↑U are finitely representable, using their generators, or extremal bounds. For
example, 12∗ has an infinite number of affine upper bounds, but α(12∗) = ↑{(1, 1), (0, 2)} can be represented
with only 4 numbers.

Proposition 4.8 (Extremal bound). If A verifies the descending chain condition, then for any U ∈ P(A),
there exists a unique Uextr minimal for inclusion such that ↑U = ↑Uextr, called set of extremal bounds of U .

Moreover, Uextr is an antichain of A. In particular, Uextr is always finite if all antichains are finite.

Note that both hypotheses are verified for all domains studied here.
In implementations, we introduce a simplify operation which removes redundant from bounds from rep-

resentations. For example, for affine bounds, simplify
(
{(1, 1), (0, 2), (2, 1)}

)
= {(1, 1), (0, 2)}.

Interestingly, this operator is the γA of a Galois connection (A(A),⊑A) −−−−→←−−−−
αA

γA (P(A),⊇) where A(A) is the
set of antichains of A, with αA(U) := ↑U and ⊑A chosen to make αA and γA monotone.
Abstract operators and transfer functions. We now explain how we obtain a sound abstraction S♯ :
D♯ → D♯ given a concrete sequence operator S : D → D representing a recurrence equation.

Ideally, we would choose the best abstraction S♯ = α ◦ S ◦ γ, but this is not computable.
We use the common solution which gives its name to abstract interpretation. The idea is to notice that

S = JCom1K ◦ ... ◦ JComkK, where Comi are constructs in the syntax of the language used to define S, with
J·K their semantic. We can then set S♯ = JCom1K♯ ◦ ... ◦ JComkK♯, where JComiK♯ are sound (or even best)
abstractions of JComiK which can be computed by hand, giving rise to an abstract semantic of the language.

To do so in a clear way, we define the syntax and semantic of a sequence operator language defined in
Annex C, which can be used to describe recurrence equations.

Additionally, we decide that it is too complicated to define directly abstract operators on sets of bounds,
so we just define them on each extremal bound before making a union, i.e. JComK♯ : A → D♯, extended for
U ∈ D♯ to JComK♯(U) := ∪f♯∈simplify(U)JComK♯(f ♯). It is easy to prove that this is sound.

4.3.3 Abstract domains and transfer functions applied to equations

To design good abstract interpretation frameworks and domains, much of the work is in defining good transfer
functions, i.e. JComK♯ that compose well and are not too expensive to compute.

Abstract domains designed during this internship include a domain of affine sequences, a domain of
arithmetico-geometric sequences and a domain of polynomial sequences. Additionally, a domain modifier which
allows for initial exactness, i.e. to remember exactly the first few values of sequences, has been created. Other
experiments were performed on “cheap” polynomial sequences and on a domain allowing for both logarithmic,
polynomial and exponential sequences, but were mostly inconclusive for the moment because of lack of preci-
sion in either composition or shifting arguments. Annexes being already large, we didn’t include all abstract
domains in them, but precise abstract semantics of the domains of affine sequences and initial exactness can
be found in Annex D.

In this section, we develop another example of recurrence solving by abstract interpretation, with a higher
level of details than in Section 4.3.1. Consider the following nested recurrence equation.{

f(0) = 0
f(n) = f

(
f
(⌊

n
2
⌋))

+ 1 when n ̸= 0

We parse it into a combination of basic operators in the following way. We first have self composition, then
add the constant 1, then scale n into n/2, then set the initial value to 0. In the language presented in Annex
C, this is the operator Set0 0 (Divin 2 (+ (Cst 1) (◦(f)(f)))).

The exact solution of this equation is fsol = 01223∗. Abstract iteration with the domain A of affine
sequences returns the bound fsol ≤ (n 7→ 1n + 0). Abstract iteration with the domain A5 of affine sequences
extended to remember the exact value of the first 5 indices returns the bound fsol ≤ 01223∗.

Example 4.9 (Computation with affine sequences). Results are the same as in Figure 6.
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• We start with U0 = ↑{⊥A}, where ⊥A = (0, 0), which we will write 0n + 0 for the sake of readability.
• To compute U1, we do the following. First, self composition gives J◦K♯

A(0n + 0, 0n + 0) = {0n + 0}. We add
Cst 1, which is {0n + 1}, giving the result {0n + 1}. Then, we apply Set0 0 (Divin 2 ·). Since 0 ≤ (1−0)×2
and 0 ≤ 1 ≤ 0 + (1− 0)× 2− 0, we enter the special case, and output U1 = {0n + 1, 1n + 0}.

• We compute U2. First, we use the candidate 0n + 1. Self composition fixes it, adding 1 gives 0n + 2,
and Set0 0 (Divin 2 ·) enters the special case to give {0n + 2, 2n + 0}. Then, we use the candidate
1n + 0. Self composition fixes it, adding 1 gives 1n + 1, and Set0 0 (Divin 2 ·) enters the special case
to give {1n + 1, 1n + 0}. 1n + 0 is discovered to be a correct bound on fsol. We then output U2 =
simplify({0n + 2, 2n + 0} ∪ {1n + 1, 1n + 0}) = {0n + 2, 1n + 0}.

• In all future steps, Uk = {0n + k, 1n + 0} for 3 ≤ k < ω, and Uω = {1n + 0} is fixed. No new bound is
discovered after step 2.
We have obtained fsol ≤ (n 7→ n) which is a good upper bound, but is not the best of affine bounds on the
solution, which would be ↑{1n + 0, 0n + 3}.

Example 4.10 (Computation with initally exact affine sequences). We represent the elements of A5 as pairs,
with the first part corresponding to the exact values of the 5 first indices in a sequence, and the second
part corresponding to the remaining (shifted) affine behaviour, i.e. ϕA5(−→u , an + b)(n) = un if n ≤ 4 and
ϕA5(−→u , an + b)(n) = a(n− 5) + b otherwise.

Doing all computations by hand, we obtain the results U0 = ↑{(00000, 0n + 0)}, U1 = ↑{(01111, 0n + 1)},
U2 = ↑{(01222, 0n + 2)} and U3 = ↑{(01223, 0n + 3)}, which is fixed.

The main subtleties in the computations are that we have to decide which part of the sequence (exact or
affine) to use in self-composition, and we have to send some of the exact part to the affine part we replacing
n by n/2. This is described in more details in Annex D.

We thus conclude that the solution to the equation is smaller than ϕA5

(
01223, 0n + 3

)
= 01223∗, which is

both true and optimal.
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Figure 7: Abstract iteration removing candidate upper bounds, using a domain with initial exactness.

4.3.4 Extensions and perspectives

This short section lists other ideas on abstract iteration studied during this internship, as well as some lines
of research for future work.
• Equations may be monotonised by a purely syntactic transformation, using the assumption 0 ≤ fsol ≤ ∞.

We obtain different results depending on whether we are looking for an upper bound or a lower bound (Sup
or Sdown). Precision tends to be better for upper bounds.

• We can analyse for both upper and lower bounds at the same time, running Kleene sequences in parallel
for all of lfp Sup, gfp Sup, lfp Sdown and gfp Sdown. As sound bounds are discovered, they can be used to
improve both transfer functions and monotonisations, either online or by restarting the Kleene sequences.

• When we studied manual proofs on nested recurrences such as C(n) = C(n−C(n−1))+C(n−1−C(n−2)),
we noticed that some proofs of the “slow growth” property (i.e. ∀n, C(n) − C(n − 1) ∈ {0, 1}) could be
partly automatised with the help of an SMT-solver (studying inequality constraints).
It would be interesting to see to what extent we could use the discovery of such properties to help the
abstract solver. More generally, we are interested to see how to use assertions inside abstract iteration, or
conversely if abstract iteration ideas can provide insight on the qualitative properties of solutions.

• Experiments showed that running a classical numerical domain on the numerical programs corresponding
to recurrence equations leads to useful bounds on its solutions.
For example, polyhedral analysis is very related to our domain of affine sequences, and both method infer
the correct solution to f(0) = 0, f(n) = f(f(n − 1)) + 1. However, among CiaoPP’s domains, only our
initially exact affine domain infers the correct solution for f(n) = f(f(⌊n/2⌋)) + 1.
Additionally, some experiments suggest that polyhedra can help to infer output/output size relations.
This leaves open an exciting research line: study the relationships between numerical and sequence domains,
as well as between representations of recurrence equations as numerical programs and sequence operators.
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B Order-theoretical background
In this annex, we recall some background in order theory and abstract interpretation, useful to understand
the ideas presented in Section 4.

We first recall facts from lattice theory8. This subfield of order theory is remarkably useful in program
semantics and in the computation of (approximate) program properties, especially through the use of fixpoints.
It has been largely studied by Birkhoff in the middle of the 20th century [56], and inspired by earlier work by
Dedekind, such as [57]. To stay close to intuitions useful in this report, we directly define a strong object of
this theory, the complete lattice.

Definition B.1. A complete lattice (L,⊑,⊔,⊓,⊥,⊤) is a partial order (L,⊑) which has9

1. A greatest lower bound ⊔S ∈ L, for every subset S ⊂ L, called the join of S,
2. A least upper bound ⊓S ∈ L, for every subset S ⊂ L, called the meet of S,
3. A least element ⊥, called bottom,
4. A greatest element ⊤, called top.

Recall that, in a partial order (L,≤), three situations may occur given x, y ∈ L. Either x ≤ y, or y ≤ x, or
x and y and incomparable. We call chain a subset of L containing elements which are all comparable to each
other, and antichain a subset of L containing no distinct comparable elements.

Example B.2. The canonical example of a complete lattice is given by (P(S),⊆,∪,∩,∅, S), the powerset
lattice of a set S.

In the context of computer science, program semantics and verification, the order relation ⊑ may be used
to order logical formulas, behaviours of programs, information, etc.

Moreover, as noted by domain theorists, this structure can be used to give meaning to programs which
contains recursion (or loops), through the use of (least) fixed points.

Let us introduce some notations and useful theorems.

Definition B.3. A function f : (L,≤) → (L′,⊑) between partial orders is said to be monotone whenever
∀x, y ∈ L, x ≤ y =⇒ f(x) ⊑ f(y).

Definition B.4. An element x ∈ X is said to be a fixpoint of f : X → X whenever f(x) = x.

Theorem B.5 (Knaster-Tarski [58, 59]). Given a complete lattice L and a monotone function f : L→ L, the
set of fixpoints of f is itself a complete lattice. In particular, f admits unique least and greatest fixed points,
respectively written lfp f and gfp f .

Cousot and Cousot have given, as a generalisation of Kleene’s ideas, a constructive version of this beautiful
fixed point theorem [60].

Theorem B.6. Given a complete lattice L and a monotone function f : L → L, lfp f and gfp f can be
computed by transfinite iteration10. Writing Ord the class of ordinals, we have

lfp f =
⊔

α∈Ord
fα(⊥) and gfp f =

l

α∈Ord
fα(⊤).

Moreover, the notions of pre- and post-fixpoints will be of interest for us.

Definition B.7. Given a monotone function between complete lattices f : L → L, x ∈ L is said to be a
prefixpoint whenever f(x) ⊑ x, and a postfixpoint whenever x ⊑ f(x).

Proposition B.8. If x is a prefixpoint, lfp (f) ⊑ x. If x is a postfixpoint, x ⊑ gfp (f).

8Lattices in order theory – called treillis/retículos in French/Spanish – are not to be confused with the lattices in geometrical
group theory, more well-known in cryptography, and called réseaux/redes in French/Spanish.

9Note that only the first condition is necessary, and all others can be deduced from it.
10For limit ordinals λ, fλ(x) is defined as ⊔α<λfα(x) in the case of the increasing sequence and as ⊓α<λfα(x) in the case of

the decreasing sequence. Otherwise, f0(x) := x and fα+1(x) := f(fα(x)).
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To complete this annex, we go back to applications to program analysis through abstract interpretation.
In denotational semantics, the meaning of a program may be defined as lfp F , where F : D → D is a

operator corresponding to the program, and D is a complete lattice – called the concrete domain – related the
execution environment.

The issue is that the exact semantic lfp F is often non-computable. This can be viewed as a consequence
of the fact that the ordinal length of the chain ⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ ... ⊑ lfp F may be transfinite, because
the height11 of D may be transfinite.

To tackle this issue, abstract interpretation proposes to compute a sound approximation of the semantic.
To do this, we replace the overly complicated lattice D by a simpler lattice D♯, called the abstract domain. In
this context, we construct a sound abstraction F ♯ : D♯ → D♯ of F , and compute lfp F ♯, which will be a sound
approximation of lfp F thanks to a fixpoint transfer theorem.

More precisely, we ask for D and D♯ to be related by a Galois connection, i.e. an adjunction of thin
categories.

Definition B.9. A Galois connection between partial orders (D,⊑) and (D♯,⊑♯) is given by monotone func-
tions α : D → D♯ and γ : D♯ → D, respectively called abstraction and concretisation operators, such that
∀c ∈ D, ∀a ∈ D♯, α(c) ⊑♯ a ⇐⇒ c ⊑ γ(a).

In this case, we write
(D,⊑) −−−→←−−−α

γ
(D♯,⊑♯).

Proposition B.10. Equivalently, (D,⊑) −−−→←−−−α

γ
(D♯,⊑♯) is Galois connection whenever α is monotone, γ is

monotone, γ ◦ α is increasing and α ◦ γ is decreasing.

Definition B.11. Given a Galois connection, a sound abstraction of c ∈ D is an a ∈ D♯ such that c ⊑ γ(a),
and a sound abstraction of f : D → D is an f ♯ : D♯ → D♯ such that ∀a ∈ D♯, (f ◦ γ)(a) ⊑ (γ ◦ f ♯)(a), or
equivalently (α ◦ f ◦ γ)(a) ⊑♯ f ♯(a).

D D♯

D D♯

f f♯

γ

⊑♯

α

We also have notions of best abstractions, which are generally not computable.

Proposition B.12 (Composability). Given a Galois connection, if f ♯ and g♯ are sound abstractions of f and
g, then f ♯ ◦ g♯ is a sound abstraction of f ◦ g.

This allows us to state the following fixpoint approximation theorem.

Theorem B.13. Given a Galois connection, a monotone F : D → D and a sound abstraction F ♯ : D♯ → D♯,
lfp F ♯ is a sound abstraction of lfp F , i.e.

lfp F ⊑ γ(lfp F ♯).

More generally, any postfixpoint of F ♯ is a sound abstraction of lfp F .

Thanks to all of this, when the height of D♯ is finite, lfp F ♯ is computable and provides a sound abstraction
of the concrete semantic lfp F .

Remark B.14 (Widenings). Note that, in most applications, lfp F ♯ may still be non-computable, because
even if the abstract domain D♯ is much simpler than the concrete domain D, the height of D♯ may still be
infinite or prohibitively high. To deal with this, a notion of widening is often used. Due to size limitations,
we will not give a precise detail on widenings, but the idea is that it accelerates the convergence of sequences
while adding overapproximations.

The following intuition may be given: a widening step may be viewed as a giant leap which overapproximates
multiple small steps in the iteration chain. Since going through a limit ordinal may be viewed as computing
an induction, a widening step may also be viewed as the overapproximation of the result of an induction.

11Defined as the supremum of the ordinal length of the well-ordered chains of D, cf. [61] for more background.
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C Syntax and semantics of a sequence operators language
Remember that, for us, recurrence equations correspond exactly to operators on the domain of sequences.

In this annex, we describe the syntax and semantics of a small language – which we will call Eqs – describing
operators on sequence. Since Eqs’ syntax is finitely described, to perform abstract interpretation, it is sufficient
to compute a sound abstraction of the semantic of each construction in the language.
Syntax. For the moment, Eqs allows basic arithmetic operations, initialisation at 0, and composition – used
for nested equations. Moreover, it introduces shifting and scaling operations, which will be used to deal with
recursive calls.

⟨full_equation⟩ ::= <initialisation> <expr>

⟨initialisation⟩ ::= Set0 <nat>

⟨expr⟩ ::= ( <expr’> )

⟨expr’⟩ ::=
| Shift <int> <expr> | Push <nat> <expr> | Pop <expr>
| Multin <nat> <expr> | Divin <nat> <expr>
| + <expr> <expr> | × <expr> <expr>
| ◦ <expr> <expr> | − <expr> <expr>
| Cst <nat> | ‘n’
| ‘f’

⟨nat⟩ ::= n ∈ N <int> ::= n ∈ Z
Figure 8: Syntax of Eqs.

For example, let u, v be constants in N. Consider the following simple recurrence equation.{
f(0) = v

f(n) = f(n− 1) + u when n ̸= 0,

In our language, it can be represented both by the expression Set0 v (Shift 1 (+ (Cst u) (f))), and the
expression Push v (+ (Cst u) (f)).

The operators "+" and "Cst u" are used to add u everywhere in the sequence. The operator "Shift 1" is
used to deal with the recursive call f(n− 1). The operator "Set0 v" is used to enforce f(0) = v.

When we compute the semantics of the second expression, we get JfK(f) = f , JCst uK(f) = (n 7→ u),
J+ (Cst u) (f))K(f) = (n 7→ f(n) + u), hence

JPush v (+ (Cst u) (f))K(f) =
(

n 7→
{

v if n = 0
f(n− 1) + u if n ̸= 0,

)
.

Semantics. The precise definition of J·K : Eqs→ (D → D) is given by structural induction.

JCst cK(f) =
(
n 7→ c

)
JnK(f) =

(
n 7→ n

)
JfK(f) = f

J+ e1 e2K(f) =
(
n 7→ Je1K(f)(n) + Je2K(f)(n)

)
J× e1 e2K(f) =

(
n 7→ Je1K(f)(n)× Je2K(f)(n)

)
J− e1 e2K(f) =

(
n 7→ Je1K(f)(n)− Je2K(f)(n)

)
J◦ e1 e2K(f) =

(
n 7→ Je1K(f)

(
Je2K(f)(n)

))

JPush cK(f) =
(

n 7→
{

c if n = 0
f(n− 1) otherwise

)
JPopK(f) =

(
n 7→ f(n + 1)

)
JShift δK(f) =

{
JPush 0Kδ(f) for δ ≥ 0
JPopK|δ|(f) for δ ≤ 0

JSet0 cK(f) = JPush cK ◦ JPopK(f)

JMultin cK(f) =
(
n 7→ f(c× n)

)
JDivin cK(f) =

(
n 7→ f

(⌊n

c

⌋))
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D Domains of affine sequences and initial exactness

D.1 Affine sequences

We consider the domain A of affine sequences, whose elements concretise as f : n 7→ an + b with a, b ∈ N∞.

A
∆= N∞ × N + {⊤A} ϕ : A→ D

(a, b) 7→ (n 7→ an + b)
⊤A 7→ (n 7→ ∞)

f ♯ ⊑A g♯ ∆⇐⇒ ϕ(f ♯) ≤D ϕ(g♯).

This gives us
(a1, b1) ⊑A (a2, b2) ⇐⇒ a1 ≤N∞ a2 ∧ b1 ≤N b2,⊔

i

{
(ai, bi)

}
=
(

max
i

ai, max
i

bi
)
, and

l

i

{
(ai, bi)

}
=
(

min
i

ai, min
i

bi
)

A is a complete lattice, of height ω · 2 + 1, which enjoys the DCC. We can thus use the notion of extremal
bounds like defined above.

Transfer functions We define J·K♯ : Eqs→ (A→ P(A)) by structural induction.
This can be extended to Eqs→ (P(A)→ P(A)) by setting JCK♯(U) ∆= ⋃{

JCK♯(f ♯)
∣∣ f ♯ ∈ U

}
.

JCst cK♯(f ♯) =
{
(0, c)

}
JnK♯(f ♯) =

{
(1, 0)

}
JfK♯(f ♯) =

{
f ♯}

To ease composition later on, for arithmetic operations, we first introduce operators J♢K♯ : A×A→ P(A)
for ♢ ∈ {+,×, ◦,−}, and then use this to define J♢ e1 e2K♯.

J♢K♯(⊤A, g♯) = J♢K♯(f ♯,⊤A) = {⊤A} for ♢ ∈ {+,×, ◦,−}
J+K♯((a1, b1), (a2, b2)

)
=
{(

a1 + a2, b1 + b2
)}

J×K♯((a1, b1), (a2, b2)
)

=
{(

a1a2∞+ a1b2 + a2b1, b1b2
)}

where we set 0×∞ =∞
J◦K♯((a1, b1), (a2, b2)

)
=
{(

a1a2, a1b2 + b1
)}

J−K♯((a1, b1), (a2, b2)
)

=
{(

a1 − a2, b1 − b2
)}

Notice that J−K♯ is not a sound abstraction of J−K in general, and has to be dealt with in a specific way.

J♢ e1 e2K♯(f ♯) =
⋃

g♯
1∈Je1K♯(f♯)

g♯
2∈Je2K♯(f♯)

J♢K♯(g♯
1, g♯

2), for ♢ ∈ {+,×, ◦}

J− e1 e2K♯(f ♯) =



⋃
g♯

1∈Je1K♯(f♯)
g♯

2∈Je2K♯(f♯)

J−K♯(g♯
1, g♯

2),
if we know that the approximation of e2
is exact and a singleton,
e.g. if e2 = Cst c or e2 = n

Je1K♯(f ♯) otherwise (or use lower bounds)

You may have noticed that, for the moment, we only create one bound for each individual operation applied
in A. This is not the case anymore in operations derived from Push, where a single bound may give rise to
two bounds.

JPush cK♯(f ♯) =


{
(∞, c)} if f ♯ = ⊤A{
(a, c)

}
if f ♯ = (a, b) and b ≤ a + c{

(a, b− a), (b− c, c)
}

if f ♯ = (a, b) and b > a + c

JPopK♯((a, b)) =
{{
⊤A} if f ♯ = ⊤A{
(a, b + a)

}
if f ♯ = (a, b)
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JShift δK♯(f ♯) =


(JPush 0K♯)δ(f ♯) if δ ≥ 0{
⊤A

}
if δ ≤ 0 and f ♯ = ⊤A{

(a, b + |δ|a)
}

if δ ≤ 0 and f ♯ = (a, b)

JSet0 cK♯(f ♯) = JPush cK♯ ◦ JPopK♯(f ♯)

=


{(∞, c)} if f ♯ = ⊤A{
(a, c)

}
if f ♯ = (a, b) and b ≤ c{

(a, b), ((a + b)− c, c)
}

if f ♯ = (a, b) and b > c

JMultin cK♯((a, b)) =
{
(ca, b)

}
JDivin cK♯((a, b)) =

{(⌈a

c

⌉
, b
)}

In addition, we add the following special case (more precise than doing the composition, because we only
have access to integer slopes in the representation).

JSet0 c (Divin d ·)K♯((a, b)) =


{(⌈

a
d

⌉
, b
)
, (b− c, c)

} if d ≥ 2, a ≤ (b− c)d
and c ≤ b ≤ c + (b− c)d− a

JSet0 cK♯ ◦ JDivin dK♯((a, b)) otherwise

n

f(n)

0 1 2 3 4 5
0

1

2

3

4

5

6

Figure 9: 1n + 3 (green), JPush 1K(1n + 3) (frontier), and JPush 1K♯(1n + 3) (blue).
When pushing 1 to the beginning of the 1n + 3, the best affine representation admits two extremal bounds.

D.2 Initial exactness

Sometimes, the solution to a recurrence equation may display very chaotic behaviour for the first few values,
which are edge cases, and then adopt a more regular behaviour that we can capture with abstract sequences.

In order to accommodate this, we introduce abstract domains with initial exactness, where the first k values
– with k fixed – are recorded exactly, and the rest of the sequence is represented by an abstract sequence.

Suppose given a domain A of sequences with concretisation ϕA : A → D. For k ∈ N∗, we introduce the
domain Ak of A-abstract sequences with k-initial exactness. We set

Ak
∆= Nk

∞ ×A,

(−→u , f ♯) ⊑Ak
(−→v , g♯) ∆⇐⇒

(
∀0 ≤ i < k, ui ≤N∞ vi

)
∧ f♯ ⊑A g♯,

ϕAk
: Ak → D

(−→u , f ♯) 7→
(

n 7→
{

un if n < k,
ϕA(f ♯)(n− k) otherwise.

)
The joins and meets can be computed pointwise. Ak is a complete lattice of infinite height, and enjoys the

DCC whenever A does. As can be seen from the formula of the height of a cardinal product recalled in [61],
the height of Ak is supα<h(A) ω · k + α + 2.
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Transfer functions All pointwise operations are easy to extend. Similarly, Set0 becomes trivial. The shifts
are not too complicated, but scalings require a bit more work.

The most difficult case is composition, which requires to compute some global inequalities, and where we
have some design space.

We define J·K♯
Ak

: Eqs→ (Ak → P(Ak)) by structural induction, making use of J·K♯
A.

JCst cK♯
Ak

(
(−→u , f ♯)

)
=
{(

(c, · · · , c), g♯) ∣∣∣ g♯ ∈ JCst cK♯
A(f ♯)

}
JnK♯

Ak

(
(−→u , f ♯)

)
=
{(

(0, · · · , k − 1), g♯) ∣∣∣ g♯ ∈ JShift (−k)K♯
A ◦ JnK♯

A(f ♯)
}

JfK♯
Ak

(
(−→u , f ♯)

)
=
{
(−→u , f ♯)

}
J♢K♯

Ak

(
(−→u , g♯

1)
)
, (−→v , g♯

2)
)

=
{(

i 7→ ui♢vi, J♢K♯
A(g♯

1, g♯
2)
)}

for ♢ ∈ {+,×,−}

J♢ e1 e2K
♯
Ak

(f ♯) =
⋃

g♯
1∈Je1K♯

Ak
(f♯)

g♯
2∈Je2K♯

Ak
(f♯)

J♢K♯
Ak

(g♯
1, g♯

2), for ♢ ∈ {+,×, ◦}

J− e1 e2K
♯
Ak

(f ♯) =



⋃
g♯

1∈Je1K♯
Ak

(f♯)

g♯
2∈Je2K♯

Ak
(f♯)

J−K♯
Ak

(g♯
1, g♯

2),
if we know that the approximation of e2
is exact and a singleton,
e.g. if e2 = Cst c or e2 = n

Je1K
♯
Ak

(f ♯) otherwise (or use lower bounds)
Composition is harder, and will be described at the end of this annex.
Now, notice that Set0 becomes trivial, and that we can reuse previous transfer functions for shifts.

JSet0 cK♯
Ak

(
(−→u , f ♯)

)
=
{((

c, u1, ..., uk−1
)
, f ♯
)}

JPush cK♯
Ak

(
(−→u , f ♯)

)
=
{((

c, u0, ..., uk−2
)
, g♯

) ∣∣∣ g♯ ∈ JPush uk−1K
♯
A(f ♯)

}
JPopK♯

Ak

(
(−→u , f ♯)

)
=
{((

u1, ..., uk−1, ϕAk
(f ♯)(0)

)
, g♯

) ∣∣∣ g♯ ∈ JPopK♯
A(f ♯)

}
JShift δK♯

Ak

(
(−→u , f ♯)

)
=
{

(JPush 0K♯
Ak

)δ
(
(−→u , f ♯)

)
if δ ≥ 0

(JPopK♯
Ak

)|δ|((−→u , f ♯)
)

if δ ≤ 0

For scalings, we can lookup exact value in the initial part using concretisation, and use combinations of
scalings and push/pop to update the abstract part.

JMultin cK♯
Ak

(
(−→u , f ♯)

)
=
{(

i 7→ ϕAk

(
(−→u , f ♯)

)
(ci), g♯

) ∣∣∣ g♯ ∈ JMultin cK♯
A ◦ JShift (1− c)kK♯

A(f ♯)
}

JDivin cK♯
Ak

(
(−→u , f ♯)

)
=
{(

i 7→ ϕAk

(
(−→u , f ♯)

)(⌊ i

c

⌋)
, g♯
) ∣∣∣ g♯ ∈ JDivin cK♯

A(U)
}

where U
∆= JPush u⌊ k−1

c
⌋+1K

♯

A
◦ · · · ◦ JPush uk−2K

♯
A ◦ JPush uk−1K

♯
A(f ♯)

Composition To compute composition, we can still use lookups for the initial part. However, the abstract
part is bit more complex. Indeed, suppose that we want to find a h♯ in order to define

J◦K♯
Ak

(
(−→u , g♯

1)
)
, (−→v , g♯

2)
)

=
{(

i 7→ ϕAk
(−→u , g♯

1)(vi), h♯
)}

.

Then, ϕA(h♯)(n) may either have to represent a composition of −→u and g♯
2, or of g♯

1 and g♯
2, depending of

the behaviour of ϕA(g♯
2).

There are actually three cases.

• It can be shown that ∀n, ϕA(g♯
2)(n) ≥ k.

To show this, it is sufficient to check that ϕA(g♯
2)(0) ≥ k.

In this case, we can set
h♯ = J◦K♯

A

(
g♯

1, J− f (Cst k)K♯
A(g♯

2)
)
.
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Note that we chose minus because we have in mind the example of affine sequences where this is more
precise and efficient than a positive shift, but we might imagine domains in which it is better to do a
positive shit on g♯

1.

• At the other extreme, it can be shown that ∀n, ϕA(g♯
2)(n) ≤ k − 1.

To show this, it is sufficient to check that ϕA(g♯
2)(∞) ≤ k − 1.

In this can, we need to compute a sound abstraction of n 7→ u
ϕA(g♯

2).

One easy choice, which is for the moment precise enough for us, is to compute max ϕA(g♯
2) as ϕA(g♯

2)(∞),
and set

h♯ =
t

Cst
(

max
0≤i≤ϕA(g♯

2)(∞)
ui

)|♯

A

(g♯
2)

= JCst
(
u

ϕA(g♯
2)(∞)

)
K♯

A
(g♯

2) when u is forced to be increasing

• The harder case is when ϕA(g♯
2) is first smaller than k, then bigger than k.

◦ Let ncrit be a finite overapproximation of the smallest ncrit such that

ϕA(g♯
2)(ncrit) ≥ k, i.e.; ∀n ≥ ncrit, ϕA(g♯

2)(n) ≥ k.

We can choose to set

h♯ =JPush
(
ϕAk

(
(−→u , g♯

1)
)(

ϕA(g♯
2)(0)

))
K
♯

A
◦ ... ◦ JPush

(
ϕAk

(
(−→u , g♯

1)
)(

ϕA(g♯
2)(ncrit − 1)

))
K
♯

A

◦ J◦K♯
A

(
g♯

1, J− f (Cst k)K♯
A ◦ JShift (−ncrit)K♯

A(g♯
2)
)
.

Note that to do this, we need to be able to compute such a n0. In the case of affine sequences, this can
be computed efficiently (and exactly).
Moreover, for large n0, this operation may become very costly.

◦ If this is not acceptable, another possibility is to look for an underapproximation ncrit of ncrit, i.e. such
that

∀n < n0, ϕA(g♯
2)(n) ≤ k − 1.

For this, a trivial underapproximation can always be computed.
With this, we can define

g̃1
♯ = JPush u0KA ◦ ... ◦ JPush uk−1KA(g♯

1),

and choose

h♯ = JPush
(
u

ϕA(g♯
2)(0)

)
K♯

A
◦ ... ◦ JPush

(
u

ϕA(g♯
2)(ncrit−1)

)
K♯

A

◦ JShift (−ncrit)K♯
A
◦ J◦K♯

A

(
g̃1

♯, g♯
2

)
.

Note that less precise g̃1
♯ may be computed if efficiency is key.

If we choose the trivial underapproximation ncrit = 0, this simply gives

h♯ = J◦K♯
A

(
g̃1

♯, g♯
2

)
.
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