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Abstract. In an increasing number of applications (e.g., in embedded,
real-time, or mobile systems) it is important or even essential to en-
sure conformance with respect to a specification expressing the use of
some resource, such as execution time, energy, or user-defined resources.
In previous work we have presented a novel framework for data size-
dependent, static resource usage verification (which can also be com-
bined with run-time tests). Specifications can include both lower and
upper bound resource usage functions. In order to statically check such
specifications, both upper- and lower-bound resource usage functions (on
input data sizes) approximating the actual resource usage of the program
are automatically inferred and compared against the specification. The
outcome of the static checking of assertions can express intervals for the
input data sizes such that a given specification can be proved for some
intervals but disproved for others. After an overview of the approach,
in this paper we provide a number of novel contributions: we present a
more complete formalization and we report on and provide results from
an implementation within the Ciao/CiaoPP framework (which provides
a general, unified platform for static and run-time verification, as well
as unit testing). We also generalize the checking of assertions to allow
preconditions expressing intervals within which the input data size of
a program is supposed to lie (i.e., intervals for which each assertion is
applicable), and we extend the class of resource usage functions that can
be checked.

Key words: Cost Analysis, Resource Usage Analysis, Resource Usage
Verification, Program Verification and Debugging.

1 Introduction and Motivation

The conventional understanding of software correctness is the conformance to a
functional or behavioral specification, i.e., with respect to what the program is
supposed to compute or do. However, in an increasing number of applications,
particularly those running on devices with limited resources, it is also important



and sometimes essential to ensure conformance with respect to specifications ex-
pressing the use of some resource (such as execution time, energy, or user-defined
resources). For example, in a real-time application, a program completing an ac-
tion later than required is as erroneous as a program not computing the correct
answer. The same applies to an embedded application in a battery-operated de-
vice (e.g., in the medical or mobile phone domains) which makes the device run
out of batteries earlier than required, thus making the whole system useless.

In [13] we proposed techniques that extended the capacity of debugging and
verification systems based on static analysis [4, 2, 11] when dealing with a quite
general class of properties related to resource usage. This includes upper and
lower bounds on execution time, energy, and user-defined resources (the latter
in the sense of [19, 18]). Such bounds are given as functions on input data sizes
(see [19] for some metrics that can be used for data sizes, such as list-length, term-
depth or term-size). For example, the techniques of [13] extended the capacities
already present in CiaoPP for certifying programs with resource consumption
assurances and also for checking such certificates [10, 11], in terms of both power
and efficiency. We also defined an abstract semantics for resource usage proper-
ties and described operations to compare the (approximated) intended semantics
of a program (i.e., the specification, given as assertions in the program [20]) with
approximated semantics inferred by static analysis, all for the case of resources,
beyond [21]. These operations include the comparison of arithmetic functions (in
particular, for [13], polynomial and exponential functions).

In traditional static checking-based verification (e.g., [4]), for each property or
(part of) an assertion, the possible outcomes are true (property proved to hold),
false (property proved not to hold), and unknown (the analysis cannot prove true
or false). However, it is very common that cost functions have intersections, so
that for a given interval of input data sizes, one of them is smaller than the other
one, but for another interval it is the other way around. Consequently, a novel
aspect of the resource verification and debugging approach proposed in [13] is
that the answers of the checking process go beyond the three classical outcomes
and typically include conditions under which the truth or falsity of the property
can be proved. Such conditions can be parameterized by attributes of inputs,
such as input data size or value ranges. For example, it may be possible to say
that the outcome is true if the input data size is in a given range and false if it
is in another one.

Consider for example the naive reverse program in Figure 1, with the classical
definition of predicate append. The assertion (see [20] for more details on the
Ciao assertion language):

:- check comp nrev(A,B) + (cost(lb, steps, length(A)),

cost(ub, steps, 10*length(A))).

is a resource usage specification to be checked by CiaoPP. It uses the cost/3

property for expressing a resource usage as a function on input data sizes (third
argument) for a particular resource (second argument), approximated in the
way expressed by the first argument (e.g., lb for lower bounds and ub for up-
per bounds). The assertion expresses both an upper and a lower bound for



:- module(rev, [nrev/2], [assertions,regtypes,

nativeprops,predefres(res_steps)]).

:- entry nrev(A,B) : (list(A, gnd), var(B)).

:- check comp nrev(A,B)

+ (cost(lb, steps, length(A)), cost(ub, steps, 10*length(A))).

nrev([],[]).

nrev([H|L],R) :- nrev(L,R1), append(R1,[H],R).

Fig. 1. A module for the naive reverse program.
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Fig. 2. Resource usage functions for program naive reverse.

the number of resolution steps performed by nrev(A,B), given as functions on
the length of the input list A. In other words, it specifies that the resource
usage (given in number of resolution steps) of nrev(A,B) lies in the interval
[length(A), 10× length(A)].

Each Ciao assertion can be in a verification status [4, 20], marked by prefix-
ing the assertion itself with keywords such as check, checked, false, or true.
This specifies respectively whether the assertion is provided by the program-
mer and is to be checked, it is the result of processing an input assertion and
proving it correct or false, or it is the output of static analysis and thus correct
(safely approximated) information. Omitting this prefix means check, i.e., to be
checked.

The outcome of the static checking of the previous assertion is the following
set of assertions:

:- false comp nrev(A, B) : intervals(length(A),[i(0,0),i(17, inf)])

+ ( cost(lb,steps,length(A)), cost(ub,steps,10*length(A)) ).

:- checked comp nrev(A, B) : intervals(length(A),[i(1,16)])

+ ( cost(lb,steps,length(A)), cost(ub,steps,10*length(A)) ).

meaning that the assertion is false for values of length(A) belonging to the
interval [0, 0]∪ [17,∞], and true for values of length(A) in the interval [1, 16]. In



order to produce that outcome, CiaoPP’s resource analysis infers both upper and
lower bounds for the number of resolution steps of the naive reverse program of
arity 2 (nrev/2), which are compared against the specification. In this particular
case, the upper and lower bounds inferred by the analysis are the same, namely
the function 0.5× length(A)2+1.5× length(A)+1 (which implies that this is the
exact resource usage function for nrev/2). We refer the reader to [19] for more
details on the (user-definable version of the) resource analysis and references.

As we can see in Figure 2, the resource usage function inferred by CiaoPP lies
in the resource usage interval expressed by the specification, namely:
[length(A), 10 × length(A)], for length(A) belonging to the data size interval
[1, 16]. Therefore, CiaoPP says that the assertion is checked in that data size
interval. However for length(A) = 0 or length(A) ∈ [17, ∞], the assertion
is false. This is because the resource usage interval inferred by the analysis is
disjoint with the one expressed in the specification. This is determined by the fact
that the lower bound resource usage function inferred by the analysis is greater
that the upper bound resource usage function expressed in the specification.

Elaborating further on our contributions, in this paper we extend our previ-
ous work [13] in several ways. We present (a) a more detailed formalization of
the resource usage verification framework (including more accurate definitions,
e.g., concretization functions, and making more explicit its relation with a more
general verification framework). We also (b) extend the framework to deal with
specifications containing assertions that include preconditions expressing inter-
vals, and (c) extend the class of resource usage functions that can be checked
(summatory functions). Finally, (d) we report on a prototype implementation
and provide experimental results.

In order to illustrate (b) above, consider that often in a system the possible
input data belong to certain value ranges. We extend the model to make it possi-
ble to express specifications whose applicability is restricted to intervals of input
data sizes (previously this capability was limited to the output of the analyzer).
This is useful to reduce false negative errors during static checking which may be
caused by input values that actually never occur. To this end (and also to allow
the system to express inferred properties in a better way w.r.t. [13]) we extended
the Ciao assertion language with a new property intervals/2, for expressing
interval preconditions (used already previously in the system output assertions).
Consider the previous example, and assume now that the possible length of the
input list is in interval [1, 10]. In this case, we can add a precondition to the
specification expressing an interval for the input data size as follows:

:- check comp nrev(A,B) : intervals(length(A),[i(1,10)])

+ (cost(lb, steps, length(A)), cost(ub, steps, 10*length(A))).

As we can see in Figure 2, this assertion is true because for input values
A such that length(A) ∈ [1, 10], the resource usage function of the program
inferred by analysis lies in the specified resource usage interval [length(A), 10×
length(A)]. In general, the outcome of the static checking of an assertion with
a precondition expressing an interval for the input data size can be different for
different subintervals of the one expressed in the precondition.



In the rest of the paper Section 2 recalls the CiaoPP verification framework
and Section 3 describes how it is extended for the verification of resource usage
properties, presenting also the formalization of the framework. Section 4 then
explains our resource usage function comparison technique. Section 5 reports on
the implementation of our techniques within the Ciao/CiaoPP system, providing
experimental results, and finally Section 7 summarizes our conclusions.

2 Foundations of the Verification Framework

Our work on data size-dependent, static resource usage verification presented
in [13] and in this paper builds on top of the previously existing framework for
static verification and debugging [4, 10, 21], which is implemented and integrated
in the CiaoPP system [11]. Our initial work on resource usage verification re-
ported, e.g., in [11] and previous papers, was based on a different type of cost
function comparison, basically consisting on performing function normalization
and then using some syntactic comparison rules. Also, the outcome of the asser-
tion checking was the classical one (true, false, or unknown), and did not produce
intervals of input data sizes for which the verification result is different.

The verification and debugging framework of CiaoPP uses analyses, based
on the abstract interpretation technique, which are provably correct and also
practical, in order to statically compute semantic safe approximations of pro-
grams. These safe approximations are compared with (partial) specifications, in
the form of assertions that are written by the programmer, in order to detect
inconsistencies or to prove such assertions correct.

Semantics associate a meaning to a given program, and captures some prop-
erties of the computation of the program. We restrict ourselves to the important
class of fixpoint semantics. Under these assumptions, the meaning of a program
p, i.e., its actual semantics, denoted [[p]], is the (least) fixpoint of a monotonic
operator associated to the program p, denoted Sp, i.e. [[p]] = lfp(Sp). Such opera-
tor is a function defined on a semantic domain D, usually a complete lattice. We
assume then that the actual semantic of a given program p is a set of semantic
objects and the semantic domain D is the lattice of ordered sets by the inclusion
relation.

In the abstract interpretation technique, a domain Dα is defined, called the
abstract domain, which also has a lattice structure and is simpler than the con-
crete domain D. The concrete and abstract domains are related via a pair of
monotonic mappings: abstraction α : D 7→ Dα, and concretization γ : Dα 7→ D,
which relate the two domains by a Galois insertion [8]. Abstract operations over
Dα are also defined for each of the (concrete) operations over D. The abstraction
of a program p is obtained by replacing the (concrete) operators in p by their
abstract counterparts. The abstract semantics of a program p, i.e., its semantics
w.r.t. the abstract domain Dα, is computed (or approximated) by interpreting
the abstraction of the program p over the abstract domain Dα. One of the fun-
damental results of abstract interpretation is that an abstract semantic operator
Sαp for a program p can be defined which is correct w.r.t. Sp in the sense that



Property Definition

p is partially correct w.r.t. I [[p]] ⊆ I
p is complete w.r.t. I I ⊆ [[p]]

p is incorrect w.r.t. I [[p]] 6⊆ I
p is incomplete w.r.t. I I 6⊆ [[p]]

Table 1. Set theoretic formulation of verification problems

γ(lfp(Sαp )) is an approximation of [[p]], and, if certain conditions hold, then the
computation of lfp(Sαp ) terminates in a finite number of steps. We will denote
lfp(Sαp ), i.e., the result of abstract interpretation for a program p, as [[p]]α.

Typically, abstract interpretation guarantees that [[p]]α is an over -approxima-
tion of the abstraction of the actual semantics of p (α([[p]])), i.e., α([[p]]) ⊆ [[p]]α.
When [[p]]α meets such a condition we denote it as [[p]]α+ . Alternatively, the
analysis can be designed to safely under -approximate the actual semantics. In
this case, we have that [[p]]α ⊆ α([[p]]), and [[p]]α is denoted as [[p]]α− .

Both program verification and debugging compare the actual semantics [[p]]
of a program p with an intended semantics for the same program, which we will
denote by I. This intended semantics embodies the user’s requirements, i.e., it is
an expression of the user’s expectations. In Table 1 we summarize the classical
understanding of some verification problems in a set-theoretic formulation as
simple relations between [[p]] and I. Using the exact actual or intended semantics
for automatic verification and debugging is in general not realistic, since the
exact semantics can be typically only partially known, infinite, too expensive to
compute, etc. On the other hand the technique of abstract interpretation allows
computing safe approximations of the program semantics. The key idea of the
CiaoPP approach [4, 10, 21] is to use the abstract approximation [[p]]α directly in
program verification and debugging tasks (and in an integrated way with other
techniques such as run-time checking and with the use of assertions).

Abstract Verification and Debugging. In the CiaoPP framework the ab-
stract approximation [[p]]α of the concrete semantics [[p]] of the program is actu-
ally computed and compared directly to the (also approximate) intention (which
is given in terms of assertions [20]), following almost directly the scheme of Ta-
ble 1. We safely assume that the program specification is given as an abstract
value Iα ∈ Dα (where Dα is the abstract domain of computation). Program ver-
ification is then performed by comparing Iα and [[p]]α. Table 2 shows sufficient
conditions for correctness and completeness w.r.t. Iα, which can be used when
[[p]] is approximated. Several instrumental conclusions can be drawn from these
relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as
[[p]]α+), are specially suited for proving partial correctness and incompleteness
with respect to the abstract specification Iα. It will also be sometimes possible to
prove incorrectness in the case in which the semantics inferred for the program



Property Definition Sufficient condition

P is partially correct w.r.t. Iα α([[p]]) ⊆ Iα [[p]]α+ ⊆ Iα
P is complete w.r.t. Iα Iα ⊆ α([[p]]) Iα ⊆ [[p]]α−
P is incorrect w.r.t. Iα α([[p]]) 6⊆ Iα [[p]]α− 6⊆ Iα, or

[[p]]α+ ∩ Iα = ∅ ∧ [[p]]α+ 6= ∅
P is incomplete w.r.t. Iα Iα 6⊆ α([[p]]) Iα 6⊆ [[p]]α+

Table 2. Verification problems using approximations.

is incompatible with the abstract specification, i.e., when [[p]]α+ ∩ Iα = ∅. On
the other hand, we use [[p]]α− to denote the (less frequent) case in which analysis
under-approximates the actual semantics. In such case, it will be possible to
prove completeness and incorrectness.

Since most of the properties being inferred are in general undecidable at
compile-time, the inference technique used, abstract interpretation, is necessarily
approximate, i.e., possibly imprecise. Nevertheless, such approximations are also
always guaranteed to be safe, in the sense that they are never incorrect.

3 Extending the Framework to Data Size-Dependent
Resource Usage Verification

As mentioned before, our data size-dependent resource usage verification frame-
work is characterized by being able to deal with specifications that include both
lower and upper bound resource usage functions (i.e., specifications that express
intervals where the resource usage is supposed to be included in), and, in an
extension of [13], that include preconditions expressing intervals within which
the input data size of a program is supposed to lie. We start by providing a more
complete formalization than that of [13].

3.1 Resource usage semantics

Given a program p, let Cp be the set of all calls to p. The concrete resource usage
semantics of a program p, for a particular resource of interest, [[p]], is a set of
pairs (p(t̄), r) such that t̄ is a tuple of terms, p(t̄) ∈ Cp is a call to predicate p with
actual parameters t̄, and r is a number expressing the amount of resource usage
of the computation of the call p(t̄). Such a semantic object can be computed
by a suitable operational semantics, such as SLD-resolution, adorned with the
computation of the resource usage. We abstract away such computation, since it
will in general be dependent on the particular resource r refers to. The concrete
resource usage semantics can be defined as a function [[p]] : Cp → R, i.e., where
R is the set of real numbers (note that depending on the type of resource we can
take another set of numbers, e.g., the set of natural numbers). In other words,
the concrete (semantics) domain D is 2Cp×R, and [[p]] ⊆ Cp ×R.



We define an abstract domain Dα whose elements are sets of pairs of the form
(p(v̄) : c(v̄)), Φ), where p(v̄) : c(v̄), is an abstraction of a set of calls and Φ is an
abstraction of the resource usage of such calls. We refer to such pairs as call-
resource pairs. More concretely, v̄ is a tuple of variables and c(v̄) is an abstraction
representing a set of tuples of terms which are instances of v̄. The abstraction
c(v̄) is a subset of the abstract domains present in the CiaoPP system expressing
instantiation states. An example of c(v̄) (in fact, the one used in Section 5 in
our experiments) is a combination of properties which are in the domain of
the regular type analysis (eterms) [22] and properties such as groundness and
freeness present in the shfr abstract domain [17].

We refer to Φ as a resource usage interval function for p, defined as follows:

Definition 1. A resource usage bound function for p is a monotonic arithmetic
function, Ψp : S 7→ R∞, for a given subset S ⊆ Rk, where R is the set of real
numbers, k is the number of input arguments to predicate p, and R∞ is the set
of real numbers augmented with the special symbols ∞ and −∞. We use such
functions to express lower and upper bounds on the resource usage of predicate
p depending on its input data sizes.

Definition 2. A resource usage interval function for p is an arithmetic function,
Φ : S 7→ RI, where S is defined as before and RI is the set of intervals of real
numbers, such that Φ(n̄) = [Φl(n̄), Φu(n̄)] for all n̄ ∈ S, where Φl(n̄) and Φu(n̄)
are resource usage bound functions that denote the lower and upper endpoints
of the interval Φ(n̄) respectively for the tuple of input data sizes n̄.1 We require
that Φ be well defined so that ∀n̄ (Φl(n̄) ≤ Φu(n̄)).

In order to relate the elements p(v̄) : c(v̄) and Φ in a call-resource pair as the one
described previously, we assume the existence of two functions inputp and sizep
associated to each predicate p in the program. Assume that p has k arguments
and i input arguments (i ≤ k). The function inputp takes a k-tuple of terms t̄
(the actual arguments of a call to p) and returns a tuple with the input arguments
to p. This function is generally inferred by using existing mode analysis, but can
also be given by the user by means of assertions. The function sizep(w̄) takes a
i-tuple of terms w̄ (the actual input arguments to p) and returns a tuple with
the sizes of those terms under a given metric. The metric used for measuring
the size of each argument of p is automatically inferred (based on type analysis
information), but again can also be given by the user by means of assertions [19].

Example 1. Consider for example the naive reverse program in Figure 1, with the
classical definition of predicate append. The first argument of nrev is declared
input, and the two first arguments of append are consequently inferred to be
also input. The size measure for all of them is inferred to be list-length. Then,
we have that:
inputnrev((x, y)) = (x), inputapp((x, y, z)) = (x, y),
sizenrev((x)) = (length(x)) and sizeapp((x, y)) = (length(x), length(y)).

1 Although n̄ is typically a tuple of natural numbers, we do not restrict the framework
to this case.



We define the concretization function γ : Dα 7→ D as follows:
∀X ∈ Dα, γ(X) =

⋃
x∈X γ1(x)

where γ1 is another concretization function, applied to call-resource pairs x’s of
the form (p(v̄) : c(v̄), Φ). We define:
γ1(x) = {(p(t̄), r) | t̄ ∈ γm(c(v̄)) ∧ n̄ = sizep(inputp(t̄)) ∧ r ∈ [Φl(n̄), Φu(n̄)]}

where γm is the concretization function of the mode/type abstract domain.
The definition of the abstraction function α : D 7→ Dα is straightforward,

given the definition of the concretization function γ above.

Intended meaning. As already said, the intended semantics is an expression
of the user’s expectations, and is typically only partially known. For this and
other reasons it is in general not realistic to use the exact intended semantics.
Thus, we define the intended approximated semantics Iα of a program as a set
of call-resource pairs (p(v̄) : c(v̄), Φ), identical to those previously used in the
abstract semantics definition. However, the former are provided by the user using
the Ciao/CiaoPP assertion language, while the latter are automatically inferred
by CiaoPP’s analysis tools. In particular, each one of such pairs is represented
as a resource usage assertion for predicate p in the program.

The most common syntactic schema of a resource usage assertion and its
correspondence to the call-resource pair it represents is the following:

:- comp p(v̄) : c(v̄) + Φ.

which expresses that for any call to predicate p, if (precondition) c(v̄) is satisfied
in the calling state, then the resource usage of the computation of the call is in the
interval represented by Φ. Note that c(v̄) is a conjunction of program execution
state properties, i.e., properties about the terms to which program variables are
bound to, or instantiation states of such variables. We use the comma (,) as
the symbol for the conjunction operator. If the precondition c(v̄) is omitted,
then it is assumed to be the “top” element of the lattice representing calls, i.e.,
the one that represents any call to predicate p. The syntax used to express the
resource usage interval function Φ is a conjunction of cost/3 properties (already
explained). Assuming that Φ(n̄) = [Φl(n̄), Φu(n̄)], where n̄ = sizep(inputp(v̄)),
Φ is represented in the resource usage assertion as the conjunction:

(cost(lb, r, Φl(n̄)), cost(ub, r, Φu(n̄)))
We use Prolog syntax for variable names (variables start with uppercase letters).

Example 2. In the program of Figure 1 one could use the assertion:

:- comp nrev(A,B): ( list(A, gnd), var(B) )

+ ( cost(lb, steps, 2 * length(A)),

cost(ub, steps, 1 + exp(length(A), 2) )).

to express that for any call to nrev(A,B) with the first argument bound to a
ground list and the second one a free variable, a lower (resp. upper) bound on
the number of resolution steps performed by the computation is 2× length(A)
(resp. 1 + length(A)2).



In this example, p is nrev, v̄ is (A, B), c(v̄) is ( list(A, gnd), var(B) ), n̄ =
sizenrev(inputnrev((A,B))) = (length(A)), where the functions sizenrev and
inputnrev are those defined in Example 1, and the interval Φrev(n̄) approximating
the number of resolution steps is [2× length(A), 1+ length(A)2] (in other words,
we are assuming that Φlnrev(x) = 2 × x and Φunrev(x) = 1 + x2). If we omit
the cost property expressing the lower bound (lb) on the resource usage, the
minimum of the interval is assumed to be zero (since the number of resolution
steps cannot be negative). If we assume that the resource usage can be negative,
the interval would be (−∞, 1+n2]. Similarly, if the upper bound (ub) is omitted,
the upper limit of the interval is assumed to be ∞.

Example 3. The assertion in Example 2 captures the following concrete semantic
pairs:

( nrev([a,b,c,d,e,f,g],X), 35 ) ( nrev([],Y), 1 )

but it does not capture the following ones:

( nrev([A,B,C,D,E,F,G],X), 35 ) ( nrev(W,Y), 1 )

( nrev([a,b,c,d,e,f,g],X), 53 ) ( nrev([],Y), 11 )

Those in the first line above are not captured because they correspond to calls
which are outside the scope of the assertion, i.e., they do not meet the assertion’s
precondition c(v̄): the leftmost one because nrev is called with the first argument
bound to a list of unbound variables (denoted by using uppercase letters), and
the other one because the first argument of nrev is an unbound variable. The
concrete semantic pairs on the second line will never occur during execution
because they violate the assertion, i.e., they meet the precondition c(v̄), but the
resource usage of their execution is not within the limits expressed by Φ.

3.2 Comparing Abstract Semantics: Correctness

The definition of partial correctness has been given by the condition [[p]] ⊆
I in Table 1. However, we have already argued that we are going to use an
approximation Iα of the intended semantics I, where Iα is given as a set of
call-resource pairs of the form (p(v̄) : c(v̄), Φ).

Definition 3. We say that p is partially correct with respect to a call-resource
pair (p(v̄) : cI(v̄), ΦI) if for all (p(t̄), r) ∈ [[p]] (i.e., p(t̄) ∈ Cp and r is the
amount of resource usage of the computation of the call p(t̄)), it holds that:
if t̄ ∈ γm(cI(v̄)) then r ∈ ΦI(n̄), where n̄ = sizep(inputp(t̄)) and γm is the
concretization function of the mode/type abstract domain.

Lemma 1. p is partially correct with respect to Iα, i.e. [[p]] ⊆ γ(Iα) if:

– For all (p(t̄), r) ∈ [[p]], there is a pair (p(v̄) : cI(v̄), ΦI) in Iα such that
t̄ ∈ γm(cI(v̄)), and

– p is partially correct with respect to every pair in Iα.



As mentioned before, we use a safe over-approximation of the program seman-
tics [[p]], that is automatically computed by static analyses, and that we denote
[[p]]α+. The description of how the resource usage bound functions appearing
in [[p]]α+ are computed is out of the scope of this paper, and it can be found
in [19] and its references. We assume for simplicity that the computed abstract
semantics [[p]]α+ is a set made up of a single call-resource pair (p(v̄) : c(v̄), Φ).
The safety of the analysis can then be expressed as follows:

Lemma 2 (Safety of the static analysis). Let [[p]]α+ = {(p(v̄) : c(v̄), Φ)}.
For all (p(t̄), r) ∈ [[p]], it holds that t̄ ∈ γm(cI(v̄)), and r ∈ ΦI(n̄), where n̄ =
sizep(inputp(t̄)).

Definition 4. Given two resource usage interval functions Φ1 and Φ2, such that
Φ1, Φ2 : S 7→ RI, where S ⊆ Rk, we define the inclusion relation vS and the
intersection operation uS as follows:

– Φ1 vS Φ2 iff for all n̄ ∈ S (S ⊆ Rk), Φ1(n̄) ⊆ Φ2(n̄).
– Φ1 uS Φ2 = Φ3 iff for all n̄ ∈ S (S ⊆ Rk), Φ1(n̄) ∩ Φ2(n̄) = Φ3(n̄).

Consider a pair (p(v̄) : cI(v̄), ΦI) in the intended meaning Iα, and the pair
(p(v̄) : c(v̄), Φ) in the computed abstract semantics [[p]]α+ (for simplicity, we
assume the same tuple of variables v̄ in all abstract objects).

Definition 5. We say that (p(v̄) : c(v̄), Φ) v (p(v̄) : cI(v̄), ΦI) if cI(v̄) vm c(v̄)
and Φ vS ΦI .

Note that the condition cI(v̄) vm c(v̄) is checked using the CiaoPP capa-
bilities for comparing program state properties such as types and modes, using
the appropriate definition of the comparison operator vm. Such a condition is
needed to ensure that we select resource analysis information that can safely be
used to verify the assertion corresponding to the pair (p(v̄) : cI(v̄), ΦI).

Definition 6. We say that (p(v̄) : c(v̄), Φ) u (p(v̄) : cI(v̄), ΦI) = ∅ if:
cI(v̄) vm c(v̄) and Φ uS ΦI = Φ∅,

where Φ∅ represents the constant function identical to the empty interval.

Lemma 3. If (p(v̄) : c(v̄), Φ) v (p(v̄) : cI(v̄), ΦI) then p is partially correct with
respect to (p(v̄) : cI(v̄), ΦI).

Proof. If (p(v̄) : c(v̄), Φ) v (p(v̄) : cI(v̄), ΦI) then cI(v̄) vm c(v̄) (Definition 5).
For all (p(t̄), r) ∈ [[p]], it holds that: if t̄ ∈ γm(cI(v̄)) then t̄ ∈ γm(c(v̄)) (because
cI(v̄) vm c(v̄)), and thus r ∈ Φ(n̄), where n̄ = sizep(inputp(t̄)) (because of the
safety of the analysis, Lemma 2). Since Φ vS ΦI (Definition 5), we have that
r ∈ ΦI(n̄).

Lemma 4. If (p(v̄) : c(v̄), Φ) u (p(v̄) : cI(v̄), ΦI) = ∅ and (p(v̄) : c(v̄), Φ) 6= ∅
then p is incorrect w.r.t. (p(v̄) : cI(v̄), ΦI).



In order to prove partial correctness or incorrectness we compare call-resource
pairs by using Lemmas 3 and 4 (thus ensuring the sufficient conditions given in
Table 2). This means that whenever cI(v̄) v c(v̄) we have to determine whether
Φ vS ΦI or Φ uS ΦI = Φ∅. To do this in practice, we compare resource usage
bound functions in the way expressed by Corollary 1 below.

Definition 7 (Input-size set). The input-size set of a call-resource abstract
pair (p(v̄) : c(v̄), Φ) is the set S = {n̄ | ∃ t̄ ∈ γm(c(v̄)) ∧ n̄ = sizep(inputp(t̄))}.
The input-size set is represented as an interval (or a union of intervals).

Corollary 1. Let (p(v̄) : cI(v̄), ΦI) be a pair in the intended abstract semantics
Iα (given in a specification), and (p(v̄) : c(v̄), Φ) the pair in the abstract seman-
tics [[p]]α+ inferred by analysis. Let S be the input-size set of (p(v̄) : cI(v̄), ΦI).
Assume that cI(v̄) vm c(v̄). Then, we have that:

1. If for all n̄ ∈ S, ΦlI(n̄) ≤ Φl(n̄) and Φu(n̄) ≤ ΦuI (n̄), then p is partially
correct with respect to (p(v̄) : cI(v̄), ΦI).

2. If for all n̄ ∈ S, Φu(n̄) < ΦlI(n̄) or ΦuI (n̄) < Φl(n̄), then p is incorrect with
respect to (p(v̄) : cI(v̄), ΦI).

When ΦuI (resp., ΦlI) is not present in a specification, we assume that ∀n̄
(ΦuI (n̄) =∞) (resp., ΦlI = −∞ or ΦlI(n̄) = 0, depending on the resource). With
this assumption, one of the resource usage bound function comparisons in the
sufficient condition 1 (resp., 2) above is always true (resp., false) and the truth
value of such conditions depends on the other comparison.

If none of the conditions 1 or 2 in Corollary 1 hold for the input-size set S
of the pair (p(v̄) : cI(v̄), ΦI), our proposal is to compute subsets Sj , 1 ≤ j ≤ a,
of S for which either one holds. Thus, as a result of the verification of (p(v̄) :
cI(v̄), ΦI) we produce a set of pairs (corresponding to assertions in the program)
(p(v̄) : cjI(v̄), ΦI), 1 ≤ j ≤ a, whose input-size set is Sj .

For the particular case where resource usage bound functions depend on
one argument, the element cjI(v̄) (in the assertion precondition) is of the form
cI(v̄)∧dj , where dj defines an interval for the input data size n to p. This allows
us to give intervals dj of input data sizes for which a program p is partially
correct (or incorrect).

The definition of input-size set can be extended to deal with data size inter-
vals dj ’s in a straightforward way:

Sj = {n | ∃ t̄ ∈ γm(c(v̄)) ∧ n = sizep(inputp(t̄)) ∧ n ∈ dj}.
From the practical point of view, in order to represent properties like n ∈

dj , we have extended the Ciao assertion language with the new intervals(A,

B) property, which expresses that the input data size A is included in some
of the intervals in the list B. To this end, in order to show the result of the
assertion checking process to the user, we group all the (p(v̄) : cjI(v̄), ΦI) pairs
that meet the above sufficient condition 1 (applied to the set Sj) and, assuming
that df1 , . . . , dfb are the computed input data size intervals for such pairs, an
assertion with the following syntactic schema is produced as output:



:- checked comp:cjI(v̄),intervals(sizep(inputp(v̄)),[df1 , . . . , dfb]) + ΦI .

Similarly, the pairs meeting the sufficient condition 2 are grouped and the fol-
lowing assertion is produced:

:- false comp: cjI(v̄),intervals(sizep(inputp(v̄)),[dg1 , . . . , dge]) + ΦI .

Finally, if there are intervals complementary to the previous ones w.r.t. S (the
input-size set of the original assertion), say dh1

, . . . , dhq
, the following assertion

is produced:

:- check comp:cjI(v̄),intervals(sizep(inputp(v̄)), [dh1 , . . . , dhq]) + ΦI .

The description of how the input data size intervals dj ’s are computed is
given in Section 4. While we have limited the discussion to cases where resource
usage bound functions depend on one argument, the approach can be extended
to the multi-argument case. Indeed, we have ongoing work to this end, using
techniques from constraint programming.

Dealing with Preconditions Expressing Input Data Size Intervals. In
order to allow checking assertions which include preconditions expressing inter-
vals within which the input data size of a program is supposed to lie (i.e., using
the intervals(A, B) property), we replace the concretization function γm by an
extended version γ′m. Given an abstract call-resource pair: (p(v̄) : cI(v̄)∧ d, ΦI),
where d represents an interval (or the union of severals intervals) for the input
data sizes to p, we define:

γ′m(cI(v̄) ∧ d) = {t̄ | t̄ ∈ γm(cI(v̄)) ∧ sizep(inputp(t̄)) ∈ d}.
We also extend the definition of the vm relation accordingly. With these ex-
tended operations, all the previous results in Section 3 are applicable.

4 Resource Usage Bound Function Comparison

As stated in [13, 14], fundamental to our approach to verification is the operation
that compares two resource usage bound functions, one of them inferred by the
static analysis and the other one given in an assertion present in the program
(i.e., given as a specification). Given two of such functions, Ψ1(n) and Ψ2(n),
where n is in the input-size set of the assertion, the objective of this operation is
to determine intervals for n in which Ψ1(n) > Ψ2(n), Ψ1(n) = Ψ2(n), or Ψ1(n) <
Ψ2(n). The fact that it is possible to restrict the input-size set of assertions (using
preconditions with intervals as already seen), facilitates the function comparison
operation.

Our approach consists in defining f(n) = Ψ1(n)−Ψ2(n) and finding the roots
of the equation f(n) = 0. Assume that the equation has m roots, n1, . . . , nm.
These roots are intersection points of Ψ1(n) and Ψ2(n). We consider the inter-
vals S1 = [0, n1), S2 = (n1, n2), Sm = . . . (nm−1, nm), Sm+1 = (nm,∞). For



each interval Si, 1 ≤ i ≤ m, we select a value vi in the interval. If f(vi) > 0
(respectively f(vi) < 0), then Ψ1(n) > Ψ2(n) (respectively Ψ1(n) < Ψ2(n)) for
all n ∈ Si.

Since our resource analysis is able to infer different types of functions, such
as polynomial, exponential, logarithmic and summatory, it is also desirable to
be able to compare all of these functions.

For polynomial functions there exist powerful algorithms for obtaining roots,
e.g., the one implemented in the GNU Scientific Library (GSL) [9], which is the
one we are currently using in our implementation, and which offers a specific
polynomial function library that uses analytical methods for finding roots of
polynomials up to order four, and uses numerical methods for higher order poly-
nomials. For the other functions, we safely approximate them using polynomials
such that they bound (from above or below as appropriate) such functions. In
this case, we should guarantee that the error falls in the safe side when comparing
the corresponding resource usage bound functions.

Exponential functions are approximated by using the expression:

ax = ex ln a ≈ 1 + x ln a+ (x ln a)2

2! + (x ln a)3

3! + . . .
which approximates the functions near x = 0. Since it is possible to restrict
the input-size set of assertions (by using preconditions with intervals), we can
approximate exponential functions near the minimum of such input-size set to
improve the accuracy of the approximation. We use finite calculus rules to de-
compose summatory functions into polynomials or functions that can we know
how to approximate by polynomials. We refer the reader to [14] for a full de-
scription of how the approximations above are performed.

5 Implementation and Experimental Results

In order to assess the accuracy and efficiency (as well as the scalability) of the
resource usage verification techniques presented in this paper, we have imple-
mented and integrated them in a seamless way within the Ciao/CiaoPP frame-
work, which unifies static and run-time verification, as well as unit testing [16].

Table 3 shows some experimental results obtained with our prototype imple-
mentation on an Intel Core2 Quad 2.5 GHz with quad core processor, 2GB of
RAM memory, running Debian Squeeze, kernel 2.6.32-5-686. The column labeled
Program shows the name of the program to be verified, the upper (ub) and
lower (lb) bound resource usage functions inferred by CiaoPP’s analyzers, the
input arguments, and the size measure used.

The scalability of the different analyses required is beyond the scope of this
paper (in the case of the core of the resource inference itself it follows generally
from its compositional nature). Our study focuses on the scalability of the asser-
tion comparison process. To this end, we have added a relatively large number
of assertions to a number of programs that are then statically checked. Column

Program shows an expression AvT = VTime
#Asser

giving the total time VTime

in milliseconds spent by the verification of all such assertions (whose number
is given by #Asser), and the resulting average time per assertion (AvT). A



Program ID Assertion Verif. Result Time (ms)
Tot Avg

Fibonacci A1 :- comp fib(N,R) F in [0, 10] 88 29
lb,ub: 1.45 ∗ 1.62x +cost(ub,steps, T in [11,∞]

+0.55 ∗ −0.62x − 1 exp(2,int(N))-1000).
x = length(N) A2 :- comp fib(N,R) F in [0, 10] ∪ [15,∞]
AvT= 964 ms

65 a
= 15ms

a
+ (cost(ub,steps, T in [11, 13]

exp(2,int(N))-1000), C in [14, 14]
cost(lb,steps,

exp(2,int(N))-10000)).
A3 :- comp fib(N,R) F in [1, 10]

:(intervals(int(N),[i(1,12)])) T in [11, 12]
+ (cost(ub,steps,

exp(2,int(N))-1000),
cost(lb,steps,

exp(2,int(N))-10000)).

Naive Reverse B1 :- comp nrev(A,B) F in [0, 3] 44 22
lb,ub: 0.5x2 + 1.5x+ 1 + ( cost(lb,steps,length(A)), T in [4,∞]
x = length(A) cost(ub,steps,
AvT= 780 ms

54 a
= 14ms

a
exp(length(A),2))).

B2 :- comp nrev(A, 1) F in [0, 0] ∪ [17,∞]
+ (cost(lb, steps, length(A)), T in [1, 16]
cost(ub, steps, 10*length(A))).

Quick Sort C1 :- comp qsort(A,B) F in [0, 2] 44 22

lb: x+ 5 + cost(ub, steps, C in [3,∞]
ub: (

∑x

j=1
j2x−j) + x2x−1 exp(length(A),2)).

+2 ∗ 2x − 1 C2 :- comp qsort(A,B) C in [0,∞]
x = length(A) + cost(ub, steps,
AvT= 800 ms

56 a
= 14ms

a
exp(length(A),3)).

Client D1 :- comp main(Op, I, B) C in [1, 7] 20 7
ub: 8x + cost(ub, bits received, T in [0, 0] ∪ [8,∞]
x = length(I) exp(length(I),2)).
AvT= 180 ms

60 a
= 3ms

a
D2 :- comp main(Op, I, B) T in [0,∞]

+ cost(ub, bits received,
10*length(I)).

D3 :- comp main(Op, I, B) T in [1, 10] ∪ [100,∞]
: intervals(length(I),

[i(1,10),i(100,inf)])
+ cost(ub, bits received,

10*length(I)).

Reverse E1 :- comp reverse(A, B) F in [0, 9] 20 20
lb: 428x+ 694 + (cost(ub, ticks, C in [10, 22]
ub: 467x+ 758 500 * length(A))). T in [23,∞]
x = length(A)
AvT= 820 ms

60 a
= 14ms

a

Palindrome F1 :- comp palindrome(X,Y) F in [0,∞] 32 16
lb,ub: x2x−1 + 2 ∗ 2x − 1 + cost(ub,steps,
x=length(X) exp(length(X),2)).
AvT= 616 ms

52 a
= 12ms

a
F2 :- comp palindrome(X,Y) F in [0, 2] ∪ [5,∞]

+ cost(ub,steps, T in [3, 4]
exp(length(X),3)).

Powerset G1 :- comp powset(A,B) C in [0, 1] ∪ [17,∞] 32 16
ub: 0.5 ∗ 2x+1 + cost(ub,output elements, T in [2, 16]
x = length(A) exp(length(A),4)).
AvT= 564 ms

52 a
= 11ms

a
G2 :- comp powset(A,B) C in [0, 1]

+ cost(ub,output elements, T in [2,∞]
length(A)*exp(2,length(A))).

Table 3. Results of the interval-based static assertion checking integrated into CiaoPP.



ID Method Intervals
[1,12] [1,100] [1,1000] [1,10000]

A3 Root 84 84 84 84
Eval 80 84 132 644

D3 Root 19 19 19 19
Eval 33 33 44 102

Table 4. Comparison of assertion checking times for two methods.

few of those assertions are shown as examples in column Assertion (ID is the
assertion identifier.). Some assertions specify both upper and lower bounds (e.g.,
A2 or A3 ), but others only specify upper bounds (e.g., A1 or C1 ). Also, some
assertions include preconditions expressing intervals within which the input data
size of the program is supposed to lie (A3 and D3 ). The column Verif. Result
shows the result of the verification process for the assertions in column Asser-
tion, which in general express intervals of input data sizes for which the assertion
is true (T), false (F), or it has not been possible to determine whether it is true
or false (C). Column Tot (under Time) shows the total time (in milliseconds)
spent by the verification of the assertions shown in column Assertion and Avg
shows the average time per assertion for these assertions.

Note that, as mentioned before, the system can deal with different types of
resource usage functions: polynomial functions (e.g., program Naive Reverse),
exponential functions (e.g., Fibonacci), and summatory functions (Quick Sort).
In general, polynomial functions are faster to check than other functions, be-
cause they do not need additional processing for approximation. However the
additional time to compute approximations is very reasonable in practice. Fi-
nally, note that the prototype was not able to determine whether the assertion
C2 in the Quick Sort program is true or false (this is because the root finding
algorithm did not converge).

Table 4 shows assertion checking times (in milliseconds) for different input
data size intervals (columns under Intervals) and for two methods: the one de-
scribed so far (referred to as Root), and a simple method (Eval) that evaluates
the resource usage functions for all the (natural) values in a given input data size
interval and compares the results. Column ID refers to the assertions in Table 3.
We can see that checking time grows quite slowly compared to the length of the
interval, which grows exponentially.

6 Related Work

The closest related work we are aware of presents a method for comparison of
cost functions inferred by the COSTA system for Java bytecode [1]. The method
proves whether a cost function is smaller than another one for all the values of
a given initial set of input data sizes. The result of this comparison is a boolean
value. However, as mentioned before, in our approach the result is in general a
set of subsets (intervals) in which the initial set of input data sizes is partitioned,



so that the result of the comparison is different for each subset. Also, [1] differs in
that comparison is syntactic, using a method similar to what was already being
done in the CiaoPP system: performing a function normalization and then using
some syntactic comparison rules. In this work we go beyond these syntactic
comparison rules. Moreover, [1] only covers function comparisons while we have
addressed the whole resource usage verification process. Note also that, although
we have presented our work applied to logic programming, the CiaoPP system
can also deal with Java bytecode [18, 15].

In a more general context, using abstract interpretation in debugging and/or
verification tasks has now become well established. To cite some early work, ab-
stractions were used in the context of algorithmic debugging in [12]. Abstract
interpretation has been applied by Bourdoncle [3] to debugging of imperative
programs and by Comini et al. to the algorithmic debugging of logic programs
[6] (making use of partial specifications in [5]), and by P. Cousot [7] to verifica-
tion, among others. The CiaoPP framework [4, 10, 11] was pioneering, offering
an integrated approach combining abstraction-based verification, debugging, and
run-time checking with an assertion language.

7 Conclusions

We have presented several extensions and improvements to our framework for
verification/debugging within the CiaoPP system, dealing with specifications
about the resource usage of programs. We have provided a more complete formal-
ization and we have improved the resource usage function comparison method by
extending the class of resource usage functions that can be compared and provid-
ing better algorithms, which in addition allow for the case when the assertions
include preconditions expressing input data size intervals. We have also reported
on a prototype implementation and provided experimental results, which are en-
couraging, suggesting that our extensions are feasible and accurate in practice.
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14. P. López-Garćıa, L. Darmawan, F. Bueno, and M. Hermenegildo. To-
wards Resource Usage Function Verification based on Input Data Size In-
tervals. Technical Report CLIP4/2011.0, UPM, 2011. Available at
http://cliplab.org/papers/resource-verif-11-tr.pdf.

15. M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In 17th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR 2007),
number 4915 in LNCS, pages 154–168. Springer-Verlag, August 2007.
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