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Abstract

We present a generic analysis that infers both upper and lower
bounds on the usage that a program makes of a set of user-definable
resources. The inferred bounds will in general be functions of input
data sizes. A resource in our approach is a quite general, user-defined
notion which associates a basic cost function with elementary opera-
tions. The analysis then derives the related (upper- and lower-bound)
cost functions for all procedures in the program. We also present an
assertion language which is used to define both such resources and
resource-related properties that the system can then check based on
the results of the analysis. We have performed some experiments with
some concrete resource-related properties such as execution steps, bits
sent or received by an application, number of arithmetic operations
performed, number of calls to a procedure, number of transactions, etc.
presenting the resource usage functions inferred and the times taken to
perform the analysis. Applications of our analysis include resource con-
sumption verification and debugging (including for mobile code), re-
source control in parallel/distributed computing, and resource-oriented
specialization.

1 Introduction

It is generally recognized that inferring information about the costs of com-
putations can be useful for a variety of applications. These costs are usually
related to execution steps and, sometimes, time or memory. We propose a
generic analyzer which allows automatically inferring both upper and lower
bounds on the usage that a program makes of a set of a more general con-
cept of user-definable resources. Examples of such user-definable resources
are bits sent or received by an application over a socket, number of calls to a
procedure, number of files opened, number of licenses consumed, monetary
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units spent, disk space used, etc., as well as the more traditional execution
steps, execution time, or memory. We expect the inference of this kind of
information to be instrumental in a variety of applications, such as resource
usage verification and debugging, certification of resource consumption in
mobile code, resource/granularity control in parallel/distributed computing,
or resource-oriented specialization.

In our approach a resource is a user-defined notion which associates a
basic cost function with elementary operations in the base language and/or
to some methods in libraries. In this sense, each resource is essentially a
user-defined counter. The user gives a name (such as, e.g., bits sent) to
the counter and then defines via assertions how each elementary operation in
the program (e.g., assignments, field accesses, calls to builtins, external calls,
etc.) increments or decrements that counter. The use of resources obviously
depends in practice on the sizes or values of certain inputs to programs or
procedures. Thus, in the assertions describing elementary operations the
counters may be incremented or decremented not only by constants but
also by amounts that are functions of input data sizes or values. Corre-
spondingly, the objective of our method is to statically derive from these
elementary assertions and the program text functions that yield upper- and
lower-bounds on the amount of those resources that each of the procedures
in the program (and the program as a whole) will consume or provide. The
input to these functions will also be the sizes or value ranges of the topmost
input data to the program or procedure being analyzed.

The method proposed builds on previous work on inferring functions pro-
viding upper- and lower-bounds on the number of execution steps performed
by procedures (based again on the sizes or value ranges of input) [15, 6, 16,
5, 11, 7, 8], but generalizes that work to deal with a much more general class
of user-defined resources. It also extends the range of languages to which the
methods are applicable. In [13], and inspired by [2] and [12], Nielson pre-
sented a complexity analysis for Horn clauses. In [3] a method is presented
for reserving resources before their actual use. However, the programmer
(or program optimizer) needs to annotate the program with acquire and
consume primitives, as well as loop invariants and function pre- and post-
conditions. Interesting type-based related work has also been performed
around the GRAIL system [1], also oriented towards resource analysis, but
it has concentrated mainly on ensuring memory bounds.
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< program > ::= < construct >∗

< construct > ::= < block > | < resource delta > | < approx def > | < primitive assrt >

< block > ::= < head > < assrt >∗ < body >

< head > ::= block name(var∗)
< body > ::= { < cond stmt >∗}
< cond stmt > ::= cond→< stmt body >

< stmt body > ::= < stmt >∗

< stmt > ::= block name(var∗) | primitive name(var∗)

Figure 1: Syntax of L (Blocks)

2 The Language L

We start by describing a block-oriented kernel language called L, which in-
cludes an assertion schema. The rules for the grammar of this language
are listed in Fig. 1 and those for the assertion schema in Fig. 2. Therein
we assume var ∈ V ars, where V ars is the set of variable identifiers and
block name is a block identifier, and primitive name is the name of a prim-
itive operation of the language. Calls to external methods or procedures will
also be represented with primitive names. In that way all statements are
normalized to be either calls to blocks or calls to primitives. The grammar
is purposely made independent of the basic statements of the language (e.g.,
assignment, field storage, expression evaluation, etc.) whose semantics (with
respect to resource consumption and argument size relationships) will be de-
scribed via assertions, as described later. Arithmetic or boolean expressions
at the statement level are also assumed to be normalized, so that they are
reduced to individual calls to atomic arithmetic or boolean primitives such
as addition, subtraction, conjunction, etc. The resource-related semantics
of such atomic primitives are also described via assertions.

Regarding control primitives, the language supports a slightly modi-
fied version of the traditional if-elseif-else statement through the rule
< cond stmt >::= cond →< stmt body > where cond is as < stmt >

but restricted to return only boolean values. For a given branch condi →
stmt bodyi, condi is executed to determine the corresponding boolean boolean
output value bi. If bi is true the stmt bodyi is executed; otherwise control
moves on to the next conditional statement condi+1 → stmt bodyi+1. We
assume that if any condi is ’ ’ it represents a condition that always returns
true and if any stmt bodyi is ’ ’ it means that represents that the body is
empty. The language also allows arbitrary recursive calls between blocks.
Loops are not supported directly. Instead, they are encoded as tail-recursive
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blocks.
Assertions (Fig. 2) are associated with primitives or with blocks (<

primitive assrt > or < assrt >).1 Such assertions can refer to properties
of the execution states when the primitive or block is called (the requires
part), properties of the execution states when the block terminates execution
(the ensures part), and properties which refer to the whole computation of
the block, rather than the input-output behavior (which herein will be used
only for resource-related properties and is thus labeled as the costs part).

In our particular application the assertion language is used essentially
to provide input to the resource analysis. The first and most fundamental
such use of assertions is to provide the cost functions for each language
primitive used in the program (as well as for the external calls). To this
end one or more costs assertions are used for each primitive, specifying
properties of the form res usage(< approx >, res name,< arith expr >).
The res name field in these properties states which resource the assertion
refers to. These res names are user-provided identifiers which are used to
name a particular resource that needs to be tracked. This resource does
not need to be defined in any other way –the set of resources that the
system is aware of is simply the set of such names that appear in assertions.
Most importantly, < arith expr > is an arithmetic expression which when
evaluated returns how much of a given resource that primitive consumes
(or provides). It is a function of the sizes of that primitive’s input data.
These expressions are built using numeric constants (num), basic arithmetic
operators (⊖), and functions (sz metric) which given input data return the
size of such data under a that metric. Typical size metrics are the actual
value of a number, the length of a list or array, the size (number of nodes and
fields) of a data structure, etc. Finally, the < approx > field states whether
< arith expr > is providing an upper-bound or a lower-bound (with o
meaning it is a “big O” expression, i.e., with only the order information).

The analysis is aimed at deriving the resource usage cost (as well as
argument size relations) for the non-primitive blocks. However, it is also
possible to state costs assertions for such blocks. These can be used to
guide the analysis. In particular, the analysis will compute the greatest
lower bound between the cost function provided by the assertion and the
cost function inferred by the analysis.

Assertions are also used, via the requires and ensures fields, to declare

1This language is also the language in which the compiler outputs the results of the
resource analysis. Furthermore, this assertion language is also the one used to state
resource-related specifications. These specifications are then proved or disproved based
on the results of the analysis, verifying the program or finding bugs [10].
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< primitive assrt > ::= primitive name(var∗)< assrt >∗

< assrt > ::= @ requires ( < prop >∗ )
| @ ensures ( < prop >∗ )
| @ costs ( < resource usage >∗ )

< resource usage > ::= res usage(< approx >, res name,< arith expr >)
< resource delta > ::= res delta(< approx >, res name,∆)
< approx def > ::= approx def(< approx >, arith function)
< prop > ::= in(var) | out(var) | type

| size(var,< approx >,< sz metric >,< arith expr >)
| size metric(var,< sz metric >)

< approx > ::= ub | lb | o
< sz metric > ::= value | length | size
< arith expr > ::= < sz val > | ⊖(< sz val >∗)
< sz val > ::= num | < sz metric > (var)

Figure 2: Syntax of L (Assertions)

relationships between the data sizes of the inputs and outputs of (primitive)
blocks, which are needed by our analysis, as will be described later. These
assertions are also used to label block arguments as input or output, as well
as to provide types or size metric information if needed (but note that many
size metrics can in practice be derived from types and many types inferred).
In the same way as with the costs assertions, for user-defined blocks these
other assertions can be provided by the user or inferred by the analysis.
Again, the analysis will compute the greatest lower bound of the two.

An additional kind of property, used in costs assertions, is res delta(<
approx >, res name,∆). These properties are used in to describe how a
block updates the value for certain resources (such as counting the num-
ber of arguments passed or total execution steps –see Section 5). By ∆ :
block text → arith expr we refer to a function which takes as input the
text of a block and returns an arithmetic expression as defined by the
< arith expr > rule.

The following example shows how a simple Java program can be repre-
sented in our language L in order to perform resource analysis. However,
giving a formal description of how such a translation can be made is outside
the scope of the paper.

Example 2.1 Consider the Java method exchangeBuffer defined in class
Buffer in Fig 3, which sends a buffer of bytes through a socket and re-
ceives another (possibly transformed) data buffer. Assume that we would
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public class Buffer{

private ByteList buffer;

public void exchangeBuffer (int s,ByteList ext_buf){

Byte c;

while ( ! buffer.empty()){

c = buffer.first();

c.exchangeByte(s,data);

buffer.next();

ext_buf.insert(data);

}}}

/*@ Byte.exchangeByte(s) costs res_usage(ub,bits_received,size(this.val)) */

Figure 3: Java source for the exchangeBuffer method and assertion for
exchangeByte method.

like to obtain an upper bound on the number of bits received by the method
exchangeBuffer from the application –a resource that we will call bits received.
Assume also that the ByteList class is defined in a library and implements
standard list operations such as empty, first, next, and insert. In Fig. 4
we show the same Java program transformed into our language L. The loops
are converted into recursive blocks (as in GRAIL [1]) and a standard static
single assignment (SSA) transformation is carried out so that each variable
is assigned exactly once (which allows us to have a clear notion of input
and output).2 Another aim of the transformation is to incorporate into the
L program the (resource-related part of) the semantics of the base language
(in this case, a part of Java) in such a way that the analysis has information
required in order to infer the usage functions for the resource desired. As we
will see, the analysis needs to know the for each argument in the program
the metric and whether it is input or output in order to perform properly
the size and resource usage analyses described in the Sect. 4 and 5. In-
put/output and metric information can be induced by the language (typed
language), given by the user (via assertions), or inferred automatically via
analysis. In the example, we assume that part of information is inferred
from the language and another part is asserted in the language library.

2Note that this transformation, used in most modern compiler intermediate forms
generally does not need to affect most resource-related analyses, even if sensitive resources
such as execution time are measured or even memory consumption: the number of new
variables created artificially by the transformation is statically determined and can be
compensated for.
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exchangeBuffer(buffer_i,stream,buffer_o)

@ requires (in(buffer_i),in(stream),out(buffer_o),size_metric(buffer_i,length))

{

empty(buffer_i) -> _,

_ -> first(buffer_i,c)

exchangeByte(c,s,data)

next(buffer_i,buffer_0)

exchangeBuffer(buffer_0,stream,buffer_1)

insert(buffer_1,data,buffer_o)

}

exchangeBytes(c,s,data)

@ costs (resource_usage(ub,bits_received,size(data))

@ requires (size(c,ub,size,8))

@ ensures (size(data,ub,size,size(c)))

first(buffer,elem)

@ requires (in(buffer), out(elem), size_metric(this.buffer,length))

@ ensures (size(elem,ub,size,size(elem)))

empty(buffer)

@ requires (in(buffer))

next(buffer_i,buffer_o)

@ requires (in(buffer_in), out(buffer_o), size_metric(buffer_i,length))

@ ensures (size(buffer_o,ub,length,length(buffer_i)-1))

insert(buffer_i,elem,buffer_o)

@ requires (in(buffer_i), in(elem), out(buffer_o), size_metric(this.buffer,length))

@ ensures (size(buffer_o,ub,length,length(buffer_i) + 1))

Figure 4: L code for the exchangeBuffer method, assertion for the
exchangeByte method, and assertions for library list operations.

3 Overview of the Approach

Our basic approach is as follows: given a procedure (block) call p, an expres-
sion Φp(r, n) is determined (at compile-time) that approximates Costp(r, n):
the units of resource r consumed or produced during the computation of p
for an input of size n. We will refer to such Φp(r, n) expressions as re-
source usage bound functions. Certain program information (such as, for
example, size metrics for arguments) is first automatically inferred by other
(abstract interpretation-based) analyzers and then provided as input to the
size and cost analysis (the techniques involved in inferring this information
are beyond the scope of this paper —see, e.g., [9] and its references for some
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examples). Based on this information, our analysis first finds bounds on the
size of input arguments to the calls in the body of the procedure being an-
alyzed, relative to the sizes of the input arguments to this procedure, using
the inferred metrics. The size of an output argument in a block call depends
in general on the size of the input arguments in that call. For this reason,
for each output argument we infer an expression which yields its size as a
function of the input data sizes. To this end, and using the input-output ar-
gument information, data dependency graphs are used to set up recurrence
equations whose solution yields size relationships between input and output
arguments of block calls. This information regarding argument sizes is then
used to set up another set of recurrence equations whose solution provides
bound functions on resource usage.

4 Size Analysis

In this section, we present a data dependency-based method for inferring the
sizes of output arguments in the head of a block as a function of the sizes of
input arguments to the block. We use a propagation approach (inspired by
that of [5]) starting from the size relations of the statements of the block.

Size metrics: Various metrics are used for the “size” of an argument. To
simplify the discussion, we assume (following L) that the measures used are
value, length, and size (but note that other metrics could also be used). Let
t be an argument position:

• The value metric defines the argument value as follows:

val(t) =

{

n if t is an integer n
⊖(val(t1), . . . , val(tn)) if t = ⊖(t1, . . . , tn).

where ⊖ is the concatenation operator.

• Let a proper list be either the atom nil or of the form cons(car(L), cdr(L)),
where L is a proper list. The length metric of a proper list L is defined
as follows:

length(L) =

{

0 if L = nil

length(cdr(L)) + 1 if L = cons(car(L), cdr(L)).

• The size metric of an argument t is defined by size(t) and represents
the amount of memory (e.g., in bytes) taken by the contents of t (e.g.,
an integer argument is 1, a long argument is 2, etc.).
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We also define the size metric(t) function as follows:

size metric(t) =















val(t) if size metric is val
length(t) if size metric is length
size(t) if size metric is size

⊥ otherwise,

The method for defining the argument sizes in a statement in terms
of the input argument sizes of the block head is based on setting up the
size differences between the statements arguments and the arguments of the
block head. To this end, we define the diff(x1, x2) operation which returns
the size difference between x1 and x2. Again, we define it for each metric:

• If the metric is val then

diff(n1, n2) =

{

n1 − n2 if n1 and n2 are integers

⊥ otherwise,

• If the metric is length then the size difference between two lists L1 and
L2 is defined as:

diff(L1, L2) =

{

length(L) if there is a proper list L such that L2 = L · L1

⊥ otherwise,

where · is the concatenation operator.

• If the metric is size then

diff(t1, t2) =

{

size(t2) − size(t1)
⊥ otherwise,

Data Dependency Graph: A directed data dependency graph G = (N,E)
(N a set of nodes and E a set of edges) is used to represent the data
dependency between statements in a conditional statement, and between
statements and the head of the block. A node in the graph denotes a state-
ment and is represented by the set of argument positions in the statement.
An edge is created from a node S1 to a node S2 if the statement denoted
by S2 is dependent on the statement denoted by S1. The node S1 is said
to be a predecessor of the node S2 and the node S2 a successor of the node
S1. The arguments in the head of a block are specially treated in the graph.
They are divided into two nodes: the start node consisting of the set of input
argument positions has no predecessor and the end node consisting of the
set of output argument positions has no successor.

In the following In(G,n) returns the set of input argument positions in
node n and Out(G,n) returns the set of output argument positions in node
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n. Let S be a statement corresponding to a node n in G, with In(G,n) =
{t1, . . . , tm}. Let Υt denote the size function of an input argument position
t. The size function of an output argument position in a statement depends,
in general, on the size of the input argument positions in that statement: let
the ith argument position of S be an output argument, then its size function

is denoted by Ψ
(i)
S (Υt1 , . . . ,Υtm).

Let s and e denote the start node and the end node of G, and B =
N−{s, e} the set of nodes for the statements. We distinguish between intra-
statement argument size relations, which refer to size relations between the
argument positions of a single statement, and inter-statement argument size
relations, which refer to relations between argument positions of different
statements. Then D = Out(G, e) ∪

⋃

n∈B In(G,n) denotes the set of argu-
ment positions for which the inter-statement argument size relations need to
be computed, and I =

⋃

n∈B Out(G,n) denotes the set of argument positions
for which the intra-statement argument size relations need to be computed.

Size Relation Equations: The aim of this phase is to set up the size
relation equations necessary to yield a closed form solution for the sizes
corresponding to the output arguments in the head of a block and defined
in terms of its input argument sizes. To do this we need to establish size
relation equations for arguments in statements and for the head arguments.
Regarding the arguments in a statement S we have:

• Output arguments. Let szt denote the size of an output argument po-
sition t, and s1, . . . , sm the input arguments of the statement S. We
construct a general equation as follows:

szt ≤ Ψt
S(Υ(s1), . . . ,Υ(sm))

Note that this equation can be used both with non-recursive state-
ments and recursive statements. However, in the case of non-recursive
statements the sizes for each of the si have already been computed
previously.

• Input arguments. Given an input argument position t in S, let predecessors(t)
be the set of predecessors of t in the data dependency graph, we have
the following possibilities:

1. Compute size metric(t). If size metric(t) 6= ⊥ then the result
is szt ≤ size metric(t).
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2. Otherwise, if ∃r ∈ predecessors(t) such that the size met-
rics corresponding to r and t are compatible then szt ≤ szr +
diff(t, r).

3. Otherwise, szt = ⊥.

Given the size relations for the body statements in a conditional state-
ment computed above, the key step in the size analysis is to define the size
relations for the output argument positions in the head of the block into
functions in terms of sizes of the input argument positions in the head. An
algorithm called normalization is defined in [5] which basically repeatedly
transforms size relations for body statementsinto size relations for head argu-
ments. When the algorithm terminates all size relations for body statements
are defined in terms of head arguments. Note that in case of a recursive block
the size of the output arguments of the recursive statements in the body are
expressed symbolically in terms of its input sizes. Let t be an head output
argument, and let Φt denote the size function for the tth output argument in
the head. We can define the size equations for the head output arguments
as follows:

1. If ∃r ∈ predecessor(t) then Φt ≤ szr + diff(t, r)

2. Otherwise, Φt = ⊥

Example 4.1 Consider again the L program obtained in Fig. 4. Let
block name be the name of a block and block namei be the size of its ith

argument. Let headi be the size of the conditional statement head ith ar-
gument. First, we set up the size relation equations for the output/input
arguments corresponding statements and the output arguments of the head:

first1 = size metric(buffer i) = head1 + diff(buffer i, buffer i) = head1
first2 = size metric(c) = 8
exchangeByte1 = first2
exchangeByte2 = size metric(stream) = head2 + diff(stream, stream) = head2
exchangeByte3 = size metric(data) = size metric(c) = 8
next1 = size metric(buffer i) = head1 + diff(buffer i, buffer i) = head1
next2 = size metric(buffer 0) = head1 + diff(buffer i, buffer 0) = head1 − 1
exchangeBuffer1 = next2 + diff(buffer 0, buffer 0) = next2
exchangeBuffer2 = size metric(stream) = head2 + diff(stream, stream) = head2
exchangeBuffer3 = Ψ3

exchangeBuffer(sendBuffer1, sendBuffer2)

insert1 = size metric(buffer 1) = exchangeBuffer3 + diff(buffer 1, buffer 1)
= exchangeBuffer3

insert2 = size metric(data) = exchangeByte2 + diff(data, data) = exchangeByte2
insert3 = Ψ3

insert(insert1, insert2)
head3 = size metric(buffer o) + diff(buffer o, buffer o) = size metric(buffer o)
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Normalizing the above equations, we obtain:

first1 = head1
first2 = 8
exchangeByte1 = 8
exchangeByte2 = head2
exchangeByte3 = 8
next1 = head1
next2 = head1 − 1
exchangeBuffer1 = head1 − 1
exchangeBuffer2 = head2
exchangeBuffer3 = Ψ3

exchangeBuffer(head1 − 1, head2)
insert1 = Ψ3

exchangeBuffer(head1 − 1, head2)
insert2 = head2
insert3 = 1 + Ψ3

exchangeBuffer(head1 − 1, head2)
head3 = 1 + Ψ3

exchangeBuffer(head1 − 1, head2)

Finally, we establish the recurrence equation for the output argument
since it belongs to a recursive block, and we obtain its closed form. Note
that we use the first statement as boundary condition.3

Ψ3

exchangeBuffer(0, head2) = 0

Ψ3

exchangeBuffer(head1, head2) = 1 + Ψ3

exchangeBuffer(head1 − 1, head2)

Ψ3

exchangeBuffer(head1, head2) = head1

5 Resource Usage Analysis

As mentioned before, our static resource usage cost analysis approach is
based on that of [6, 5] (for estimation of upper bounds on execution steps),
further extended in [7] for lower bounds. In these approaches the cost of
a block definition (generally taken as a number of execution steps) can be
bounded by the cost of the basic operations in the body of the block (in-
cluding the parameter passing cost), combined with bounds on the cost of
each of the block calls in the body. However, in our approach, the basic
metric is open and can be tailored to the use of other metrics as the unit of
cost in the analysis.

Assume that the program is analyzed in a single traversal of the call
graph in reverse topological order. Consider a block definition p given as
H {C1, ..., Cm}’ where each Ci is a conditional statement. Assume that each
Ci, 1 ≤ i ≤ m is of the form stcondi → Si1, ..., S

i
k where Sij, 1 ≤ j ≤ k, is

3Note that head3 is defined by the Ψ3

exchangeBuffer function.
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a statement (either a block call or a primitive operation of the language).
Assume that n is a vector such that each element corresponds to the size
of an input argument position to block p. Assume that ψj(n) is a vector
with the sizes of all the input arguments to the statement Sij, given as
functions of the sizes of the input arguments to the head of block p (the one
being analyzed). Note that these ψj(n) size relations have previously been
computed during size analysis for all input arguments to statements in the
body of all conditional statements.

Then, the cost (expressed in units of resource r with approximation ap)
of a call to p, Costblock(p, ap, r, n) for an input of size n (assuming that only
a conditional statement is executed), can be expressed as:

Costblock(p, ap, r, n) =
⊙

(ap)1≤i≤m{Costcond(Ci , p, ap, r, n)} (1)

where
⊙

(ap) is a function that takes an approximation identifier ap and
returns a function which applies over all Costcond(Ci , p, ap, r, n), for 1 ≤ i ≤
m. For example, if ap is the identifier for approximation “upper bound”
(ub), then

⊙

(ap) is the max function, which returns the maximum of all
Costcond(Ci , p, ap, r, n), for 1 ≤ i ≤ m. If ap is the identifier for approxi-
mation “lower bounds” (lb), then

⊙

(ap) is the min function. The function
⊙

(ap) is provided by means of assertions in the program.
In turn, the cost (expressed in units of resource r with approximation

ap) of conditional statement Ci, can be expressed as:

Costcond(Ci, p, ap, r, n) = δ(ap, r)(p)+
Costsc(stcondi, ap, r, n)+
k
∑

j=1
Coststm(S

i
j , ap, r, ψj(n)).

(2)

where δ(ap, r) is a function that takes an approximation identifier ap and a
resource identifier r and returns a function ∆ : block name → arith expr

which takes a block name and returns an arithmetic cost expression <

arith expr > as defined in Section 2. Thus, δ(ap, r)(p) represents ∆(p).
For example, if the resource we want to measure is the number of block
calls (steps), we can define δ(ub, steps) = return 1, and define the func-
tion return 1 as return 1(x) = 1. If the resource we want to measure is
nc exchangeBytes, the number of calls to block exchangeBytes, then we
can define the function δ(ub, nc exchangeBytes) = exchb, and define the
function exchb as:

exchb(p) =

{

1 if p = nc exchangeBytes

0 otherwise
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Coststm(S
i
j, ap, r, ψj(n)) is:

• If Sij is recursive (i.e., performs a call to a block which is in the
strongly-connected component of the call graph being analyzed), then
Coststm(S

i
j, ap, r, ψj(n)) is expressed as a symbolic expression: Costblock(S

i
j, ap, r, ψj(n))

• If Sij is not recursive, assume that is a call to q (where q can be a
primitive name or a block name):

– If there is a resource usage assertion for q, res usage(ap, r,Φ),
then Coststm(S

i
j, ap, r, ψj(n)) is replaced by the arithmetic cost

expression (in closed form) Φ(ψj(n)).

– Otherwise, q has been already analyzed, i.e., the cost function
for q, has been recursively computed as Φ′ (a closed form cost
function) and Coststm(S

i
j, ap, r, n) can be expressed explicitly in

terms of the function Φ′, and it is thus replaced by Φ(ψj(n)).

Costsc(stcondi, ap, r, n) is the cost of evaluating the condition stcondi plus
the cost of evaluating all the conditions of the preceding conditional state-
ments.

It can be proved by induction on the number of statements in the body
of conditional statement Ci that:

1. If conditional statement Ci is nonrecursive, then, expression 2 results
in a closed form function of the sizes of the input argument positions
in the head of block p;

2. If conditional statement Ci is simply recursive, then, expression 2 re-
sults in a recurrence equation in terms of the sizes of the input argu-
ment positions in the head of block p;

3. If conditional statement Ci is mutually recursive, then expression 2
results in a recurrence equation which is part of a system of equations
for mutually recursive conditional statements in terms of the sizes of
the input argument positions in the head of block p.

If these recurrence equations can be solved then Costcond(Ci, p, ap, r, n)
in expression 2 can be expressed in a closed form, which is a function of the
sizes of the input argument positions in the head of block p. Thus, after
the strongly-connected component to which p belongs in the call graph has
been analyzed, we have that expression 1, results in a closed form function
of the sizes of the input argument positions in the head of block p.
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Note that our analysis is parameterized by the functions δ(ap, r) and
⊙

(ap), whose definition can be given by means of assertions of type <

resource delta > and < approx def > respectively, as given in Figure 2.
These functions make our analysis parametric w.r.t. resources (as execution
steps or calls to a procedure) and types of approximations (as lower and
upper bounds).

Example 5.1 Consider the same program defined in Fig. 4 and the size
relations computed in Ex. 4.1. Assume that ψS(n) is the vector with the
sizes of all the input arguments to the statement S, and it is defined as
follows:

ψexhange buffer(n) = (〈size(buffer i, ub, length, length(buffer i))〉,
〈size(c, ub, size, size(c))〉, 〈size(s, ub, size, 1)〉,
〈size(s, ub, size, 1)〉, 〈size(data, ub, size, size(c))〉,
〈size(buffer 0, ub, length, length(buffer i) − 1)〉,
〈size(buffer 1, ub, length, length(buffer 0))〉,
〈size(buffer o, ub, length, length(buffer 1) + 1)〉)

We define the following cost equations for each conditional statement:

CostexchangeBuffer1(0, ) = 0
CostexchangeBuffer2(b i, s) = δ(ub, bits received)(exchangeBuffer)+

Cost(empty, ub, bits received, b i)+
Cost(first, ub, bits received, ψexhange buffer(n))+
Cost(exchangeByte, ub, bits received, ψexhange buffer(n))+
Cost(next, ub, bits received, ψexhange buffer(n))+
Cost(exchangeBuffer, ub, bits received, ψexhange buffer(n))+
Cost(insert, ub, bits received, ψexhange buffer(n))

= 8 + Cost(exchangeBuffer, ub, bits received, ψexhange buffer(n))
= 8 + length(b i)

6 Experimental results

In order to study the kinds of resource usage bound functions inferred by
our analysis as well as the time required to infer them we have completed a
prototype implementation of our approach. This implementation is written
in Ciao and uses a number of modules and facilities from the CiaoPP mul-
tiparadigm preprocessor. The results are shown in Table 1. The column
labeled Approx shows the type of approximation performed by the analysis
(for brevity we provide results only on upper bounds). The column labeled
Resource shows the actual resource for which bounds are being inferred by
the analysis for a given benchmark. While any of the resources could be used
for any of the benchmarks we show only the results for the most natural or
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Program Approx Resource Cost function Metric for x T

trans ub ”ext. accesses” λx.x2 + 1 length 66

nfib ub ”arith ops” λx.2.17 × 1.618x +
0.82 × (−0.618)x − 3

value 64

disk ub ”head moves” λx.2x − 1 value 56

file ub ”open files” λx.3x
”closed files” λx.2x+ 1

”unclosed files” λx.x− 1 length 52

nrev ub ”steps” λx.0.5x2 + 1.5x + 1 length 32

send ub ”bits sent” λx.8x length 24

exch ub ”bits exchanged” λx.16x length 28

qsort ub ”lists paral.” λx.4.2x − 2x− 4 length 140

Table 1: Accuracy and efficiency of the resource analysis.

interesting resource for each one of them. We have tried to use a relatively
wide range of resources: number of bytes sent by an application, number
of calls to a particular procedure, robot arm movements, money spent in
a commercial transaction, number of accesses to a database, etc. The col-
umn Cost function shows the actual cost function (which depends on the
size of the input arguments) inferred by the analysis, given as a lambda
term. Finally, the column labeled T shows analysis times in milliseconds,
on a medium-loaded Pentium IV Xeon 2.0Ghz with two processors, 4Gb of
RAM memory, running Fedora Core 5.0. These are quite reasonable for this
relatively small benchmarks (but scalability should obviously be studied in
future work).

In trans (a database transaction which carries out accesses to different
tables), we decided to measure the number of accesses to an external table
as a function of the length of the input data. In nfib (the naive, doubly
recursive implementation of finding the nth. Fibonacci number) we decided
to count the number of arithmetic operations performed. The result is given
as a function of the (integer) value of the input argument to fib representing
the ordinal of the Fibonacci number to be computed (the metric, as in the
rest of the cases, was inferred automatically from type analysis). In disk

(a standard implementation of the towers of Hanoi problem but where we
introduced calls to a virtual robotic arm that is assumed to be moving the
disks) we decided to count the number of movements that the robotic arm
has to make. The result is given as a function of the value of the input argu-
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ment to disk: the number of disks to move. In file (a typical piece of code
in an operative system kernel), we kept track of the number of unclosed file
descriptors as a function of the length of the input file descriptors. In nrev

(the standard naive recursive implementation of naive reversal of a list) we
simply decided to measure the number of steps which is obtained as a func-
tion of the length of the input list. This experiment essentially reproduces
the results of previous analyses aimed specifically at this steps measure. In
send (an extended version of the program of Figure 3) we decided to measure
the number of bits sent, which is obtained as a function of the length of the
input buffer. In exch (which is a more complex communications program
where information is both sent and received) we also measure number of bits
sent (in both directions). Finally in qsort (standard quick-sort algorithm)
we decided to count the number of list splits, which determines the number
recursions or iterations that can be executed in parallel. The (upper bound)
results are obtained as a function of the length of the input lists.

7 Conclusions

We have presented a generic analysis that infers upper or lower bounds on
the usage that a program makes of a quite general notion of user-definable
resources. The inferred bounds are in general functions of input data sizes.
We have also presented the assertion language which is used to define such
resources for the basic components of the language. The analysis then de-
rives the related (upper- and lower-bound) cost functions for all procedures
in the program. Our experimental results are encouraging because they
show that interesting resource bound functions can be obtained automati-
cally and in reasonable time, at least for our (small) benchmarks. Also, we
expect the applications of our analysis to be rather interesting, including re-
source consumption verification and debugging (including for mobile code),
resource control in parallel/distributed computing, and resource-oriented
specialization [4, 14].
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