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Abstract

A recent trend towards convergence in the analysis and implementation techniques for CC and
CLP systems can be observed: while the respective implementations and characteristics of these
languages are in principle very different, CLP (and Prolog) systems have been incorporating capa-
bilities to deal with user–defined suspension and coroutining behaviors using very similar implemen-
tation techniques (and requiring very similar analyses) to those used in CC languages. Conversely,
CC compilers have been trying to coalesce fine–grained tasks into coarser–grained sequential threads
that are implemented using stack–based techniques similar to those used in sequential languages.
This convergence of techniques opens up the possibility of having a general purpose kernel language
and abstract machine to serve as a compilation target for a variety of user–level languages.

In this report, we propose a transformation technique, aided by analysis, directed towards the above
mentioned objective. In particular, we report on techniques to support the Andorra computational
model, essentially emulating the Andorra-I system, via program transformation into a sequential
language with delay primitives. The system is easily automatable, comprising a simple program
analyzer and a basic transformer to the kernel language. It turns out that a simple (parallel) CLP
(or Prolog) system with dynamic scheduling is sufficient as a kernel language for this purpose. The
preliminary results are quite encouraging: performance of the resulting system is comparable to
the current Andorra-I implementation.
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QE-Andorra:A Quiche–Eating Implementation of theBasic Andorra Model 1

1 Introduction: Towards General-Purpose Implementations

Many current proposals for parallel or concurrent logic programming languages and models are
actually “bundled packages”, in the sense that they offer a combined solution affecting a number
of issues such as choice of computation rule, concurrency, exploitation of parallelism, etc. This is
understandable since a practical model has to offer solutions for all the problems involved. However,
the bundled nature of (the description of) many models often makes it difficult to compare them
with each other. As a result, implementors typically build their systems from scratch, by writing
their own runtime systems and constructing compilers to compile programs into low-level languages
such as C or assembler.

The tremendous engineering and manpower overheads involved in such an enterprise means that
in many cases, implementors may be unable to take advantage of clever optimizations that other
researchers have implemented, or to invest the time and effort necessary to turn their systems from
research prototypes to mature and robust systems that can be shared with other researchers and
users. Some researchers find the “non-research” engineering overhead sufficiently daunting that
their ideas and languages do not make it past the paper design stage.

This is an unfortunate state of affairs, and leads to a great deal of duplicated effort and wasted
time. It is argued in [16] that this situation can be improved by performing a “separation analysis”
of the parallel or concurrent model underlying the language and isolating its fundamental principles.
On the one hand, such un-bundling shows that the applicability of these fundamental principles
can be enlarged by allowing the transference of the valuable features of a model to another. On the
other hand, the study reveals the existence of several fundamental principles which are common to
several models. This fact at the same time explains and is supported by the recent trend towards
convergence in the analysis and implementation techniques of models that are in principle very
different, such as the various parallel implementations of Prolog on one hand (see, for example,
[15, 24, 27]) and the implementations of the various committed choice languages on the other (see,
for example, [4, 10, 19, 32, 33]).

The aforementioned convergence of parallel and concurrent systems can be observed in that, on
one hand, driven by the demonstrated utility of delay primitives in sequential Prolog systems
(e.g., the freeze and block declarations of Sicstus Prolog [3], when declarations of NU-Prolog
[30], etc.), parallel Prolog systems have been incorporating capabilities to deal with user-defined
suspension and coroutining behaviors. In sequential Prolog systems with delay primitives, delayed
goals are typically represented via heap-allocated “suspension records,” and such goals are awak-
ened when the variables they are suspended on get bindings [2]. Parallel Prolog systems inherit
this architecture, leading to implementations where individual tasks are stack-oriented, together
with support for heap-allocated suspensions and dataflow synchronization. For example, &-Prolog
allows programmer-supplied wait-declarations, which can be used to express arbitrary control de-
pendencies, in addition to the more standard wait declarations. On the other hand, driven by
a growing consensus that some form of “sequentialization” is necessary to reduce the overhead
of managing fine-grained parallel tasks on stock hardware (see, for example, [9, 31, 22, 11]), im-
plementors of committed choice languages are investigating the use of compile-time analyses to
coalesce fine-grained tasks into coarser-grained sequential threads that can be implemented more
efficiently. This, again, leads to implementations where individual sequential threads execute in a
stack-oriented manner, but where sets of such threads are represented via heap-allocated activation
records that employ dataflow synchronization. Interestingly, and conversely, in the context of paral-
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Figure 1: Common Problems in Compilation

lel Prolog systems, there is also a growing body of work trying to address the problem of automatic
parallelizing compilers often “parallelizing too much” which appears if the target architecture is not
capable of supporting fine grain parallelism. Figure 1 illustrates this and underlines the common-
ality of techniques at the compiler level (a similar parallel could be drawn at the implementation
level).

This convergence of trends both at the compiler and the run-time system levels is exciting: it sug-
gests that we are beginning to understand the essential implementation issues for these languages,
and that from an implementor’s perspective these languages are not as fundamentally different as
was originally believed. It also opens up the possibility of having a general purpose kernel language
and abstract machine that supports the features needed by various parallel logic programming
languages. Given a sufficiently high level intermediate language of this kind, and carefully crafted
compilers and runtime systems for this language, the implementation of other logic programming
languages would be simplified considerably: rather than reinvent all aspects of an implementation
from scratch, it would be possible to share the “back end” across different systems, and thus re-
quire only the construction of compilers to the intermediate representation. In summary, it opens
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QE-Andorra:A Quiche–Eating Implementation of theBasic Andorra Model 3

up the possibility of having a general purpose kernel language and abstract machine to serve as a
compilation target for a variety of user-level languages.

Encouraging initial results in this direction have been demonstrated in the sequential context by
the QD-Janus system [8] of S. Debray and his group. QD-Janus, which compiles down to Sicstus
Prolog and uses the delay primitives of the Prolog system to implement dataflow synchronization,
turns out to be more than three times faster, on the average, than Kliger’s customized implemen-
tation of FCP(:) [23] and requires two orders of magnitude less heap memory [7]. We believe that
this point will also extend to other logical languages and to parallel systems, given a suitable kernel
language.

We propose to use the Ciao (Concurrent/Constraint Independent And-Or parallel) model as
such general purpose kernel system. Ciao [16] can be viewed as an and generalization of the &-
Prolog system, thus inheriting a stack-oriented parallel execution together with arbitrary control
dependencies, suspension, and data-flow synchronization via user-supplied wait-declarations. This
suggests that, with some enhancements, some of which will be mentioned below, the dependency
graphs and wait-declarations of &-Prolog/Ciao, can serve as a common intermediate language, and
its runtime system can act as an appropriate common low-level implementation, for a variety of
parallel logic programming implementations.

Among other things, Ciao adds to &-prolog the possibility of attaching attributes to variables
[20, 2]. Incorporating the possibility of attaching attributes to variables in a logic programming
system has been shown to allow the addition of general constraint solving capabilities to it [17, 18].
This approach is very attractive in that by adding a few primitives any logic programming system
can be turned into a generic constraint logic programming system in which constraint solving can
be user defined, and at source level – an extreme example of the “glass box” approach. Thanks to
this technique Ciao can already be viewed as a generic constraint logic programming system.

Furthermore, as shown in [14], a system which implements attributed variables and a few ad-
ditional primitives (such as those present in Ciao) can be easily customized at source level to
implement many of the languages and execution models of parallelism and concurrency currently
proposed, in both shared memory and distributed systems. Our solution provides the same “glass
box” flavor and user accessibility to the implementation in a generic parallel/concurrent (constraint)
logic programming system. We do not mean to suggest that the performance of such a system will
be optimal for all possible logic programming languages: our claim is rather that it will provide a
way to researchers in the community implement their languages with considerably less effort than
has been possible to date, and yet attain reasonably good performance. We are currently exploring
these points in collaboration with S. Debray, F. Rossi, and U. Montanari, by using the Ciao system
as a generic implementation platform.

As one of the first steps in our construction, in this paper we show how the Ciao, and, in fact, even
a standard Prolog/CLP system with delay primitives, can serve as a target language for compiling
Andorra, and in particular Andorra-I, programs. We will show how to translate such programs
and the kind of optimizations that can be applied both during and after such translation. This
transformation will be illustrated by means of a detailed example in which we will follow all the
different steps applicable. Finally, we provide some experimental results which are encouraging:
performance of the resulting system is comparable to the native Andorra-I implementation [28].
Again, we do not mean to suggest that the performance of a system implemented using our approach
is optimal or that it will achieve better results than the native Andorra-I implementation, but rather
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QE-Andorra:A Quiche–Eating Implementation of theBasic Andorra Model 4

that the technique is practical and allows the support of the Basic Andorra Model on a generic
system with reasonable performance.

2 A General Transformation for the Andorra Model

As mentioned in the introduction, we would like to transform an Andorra-I program into our
kernel language in such a way that the execution of the transformed program follows the execution
model implemented by the sequential Andorra-I system, i.e., the Basic Andorra Model. In this
model a goal, or more precisely a reduction, is delayed until either (a) it becomes determinate or
(b) it becomes the leftmost reduction and no determinate reduction is available. Simulating (a) in
Prolog is conceptually simple, although might require complex machinery. Simulating (b) is more
involved due to the need of keeping track of the order in which the goals would have been reduced
in a sequential system with left-to-right computation rule.

For a program P , this operational semantics can be presented as a transition system on states
⟨G, c,D, Inf⟩ where G is a sequence of literals, c is a constraint, D is a sequence of delayed
literals, and Inf is a given structure. Intuitively, G is the sequence of literals being considered for
execution, c is the current store, D contains the sequence of literals which are satisfy neither (a) nor
(b), and Inf contains the information necessary for detecting condition (b). The transition system
is parameterized by three functions, namely determinate, leftmost, and add info. The function
determinate(l, c) holds iff the literal l is determinate in the context of constraint c. The function
leftmost(l, Inf) holds if, according to Inf , the literal l is leftmost. The function add info(l, Inf)
updates the structure Inf to take into account that the literal l is delayed. Also, and for the
sake of simplicity, the system will be also parameterized by the procedure reduce(⟨G, c,D⟩) which
obtains a sub-state ⟨G′, c′, D′⟩ by performing a reduction step from sub-state ⟨G, c,D⟩, based on the
particular operational semantics of the kernel language. The transitions in the transition system
are:

(a) ⟨G, c,D ∪ l, Inf⟩ →wdet ⟨G′, c′, D′, Inf⟩ if determinate(l, c) holds and reduce(⟨l : G, c,D⟩) =
⟨G′, c′, D′⟩.

(b) ⟨l : G, c,D, Inf⟩ →det ⟨G′, c′, D′, Inf⟩ if determinate(l, c) holds and reduce(⟨l : G, c,D⟩) =
⟨G′, c′, D′⟩.

(c) ⟨G, c,D ∪ l, Inf⟩ →wleft ⟨G′, c′, D′, Inf⟩ if leftmost(l, Inf) holds and reduce(⟨l : G, c,D⟩) =
⟨G′, c′, D′⟩.

(d) ⟨l : G, c,D, Inf⟩ →del ⟨G, c, l : D, Inf ′⟩ where add info(l, Inf) = Inf ′.

Then, the Basic Andorra model would be simulated by ensuring that transition (d) is applied
only if neither (a) nor (b) nor (c) can be applied, and transition (c) is applied only if neither (a)
nor (b) can be applied.

There are many ways in which the parameterized functions determinate and leftmost can be
defined, mainly depending on the concept of determinacy chosen and the kind of structure Inf
defined, respectively. The concept of determinacy will be instantiated later on in Section 3. Re-
garding the structure Inf , we will define it as a list of variables, each of them attached to the goal
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that would have been reduced in a sequential system with left-to-right computation rule, the rela-
tive order among the variables reflecting the relative order among such reductions. In this context,
leftmost(l, Inf) will hold if the variable in Inf attached to l has become non variable.

We will build Inf by means of difference lists. In particular, for each program predicate p/n, we
will create two predicates: p/n+2 and p susp/n+2. The definition of p/n+2 is the following:

p(X̄,L,L1):-

L = [S|L0],

det susp((det cond(X̄);nonvar(S)),p susp(X̄,L0,L1)).

where X̄ is a sequence of n distinct variables, for each constraint c, det cond(X̄) holds for c iff
determinate(p(X̄), c) holds, and det susp/2 is a suspension primitive of the language which delays
the goal provided as second argument until the condition provided as first argument becomes true.

Intuitively, S is the variable attached to p(X̄) and L0,L1 are the pointers which delimit the sublist
in which the variables attached to the subgoals in the derivation tree of p(X̄,L0,L1) will appear.
Intuitively, Inf can be considered a chain, and L0 and L1 can be considered the links which connect
the reductions needed to execute p(X̄,L0,L1) with those needed to execute the goals to the left
and right of p(X̄,L0,L1), respectively.

The definition of p susp/n+2 is derived from the definition of p/n as follows:

• For every fact p(X̄)., we create the fact p susp(X̄,L,L).

• For every clause p(X̄):- q1(Ȳ1) · · · qn(Ȳn)., with n > 0, we create the clause
p susp(X̄,L1,Ln+1):- q1(Ȳ1,L1,L2) · · · qn(Ȳn,Ln,Ln+1).

When a fact is selected during the execution of p/n+2, no further reductions are needed, and there-
fore we must unify the pointers associated to the goal thus closing the associated list. Otherwise,
we need to split up such list in as many sublist as goals appear in the body of the clause, always
keeping the left-to-right order.

We have already mentioned that leftmost(l, Inf) holds if the variable in Inf attached to l has
become non variable — thus, we will call such variables (S in the above definition) the “leftmost–
tokens.” The instantiation of these tokens is achieved by means of a transformed query.

• For a given query :- q1(Ȳ1) · · · qn(Ȳn)., where n > 0, we create the new query
:- q1(Ȳ1,L1,L2) · · · qn(Ȳn,Ln,Ln+1),wakeup(L1,Ln+1).

where wakeup/2 is defined as follows:

wakeup(L1,L2) :- L1==L2, !.
wakeup([L1|L2],L3) :- L1=up, wakeup(L2,L3).

With such a translation, and given the operational semantics defined above, it is clear that the
sequential execution of the transformed program in the target language emulates the determinate
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phase of an Andorra-I execution: the program is executed left-to-right but only determinate goals
are reduced, non–determinate goals being suspended. As the reduction of determinate goals makes
other goals determinate, the latter are woken (if suspended) and the determinate phase continues.
When no more determinate goals are available, wakeup/2 is reduced and instantiates the first token
in the chain–list, thus awakening the leftmost suspended (non–determinate) goal.

Example 2.1 Consider the following Andorra-I program:

p:- p1,p2. q(X). p1(X). p2.
p. q(Y). p1(Y).

Following the transformation mentioned above, we will obtain the transformed program:

p(L,L1):- L=[S|L0],det_susp(nonvar(S),p_susp(L0,L1)).
q(X,L,L1):- L=[S|L0],det_susp(nonvar(S),q_susp(X,L0,L1)).
p1(X,L,L1):- L=[S|L0],det_susp(nonvar(S),p1_susp(X,L0,L1)).
p2(L,L1):- L=[S|L0],det_susp((true;nonvar(S)),p2_susp(L0,L1)).

p_susp(L1,L3):- p1(L1,L2),p2(L2,L3). q_susp(X,L,L). p1_susp(X,L,L). p2_susp(L,L).
p_susp(L,L). q_susp(Y,L,L). p1_susp(Y,L,L).

Consider now the query :- p,q(X). The transformed query will be:

:- p(L1,L2),q(X,L2,L3),wakeup(L1,L3).

The following trace represents the computation states in the execution of the transformed pro-
gram. Note that some steps are summarized and the current store is omitted and already applied
to the resolvent.

⟨p(L1, L2) : q(X, L2, L3) : wakeup(L1, L3), nil⟩
L1=[Sp|L11]

⟨q(X, L2, L3) : wakeup([Sp|L11], L3), p susp(L11, L2)⟩
L2=[Sq|L21]

⟨wakeup([Sp|L11], L3), q susp(X, L21, L3) : p susp(L11, [Sq|L21])⟩
Sp=up

⟨p susp(L11, [Sq|L21]), wakeup(L11, L3), q susp(X, L21, L3)⟩
⟨p1(A, L11, L12), p2(L12, [Sq|L21]), wakeup(L11, L3), q susp(X, L21, L3)⟩

L11=[Sp1|L111]

⟨p2(L12, [Sq|L21]), wakeup([Sp1|L11], L3), p1 susp(A, L111, L12) : q susp(X, L21, L3)⟩
L12 = [Sq|L21]

⟨wakeup([Sp1|L111], L3), p1 susp(A, L111, [Sq|L21]) : q susp(X, L21, L3)⟩
Sp1=up

⟨p1 susp(A, L111, [Sq|L21]) : wakeup(L111, L3), q susp(X, L21, L3)⟩
L111 = [Sq|L21]

⟨wakeup([Sq|L21], L3), q susp(X, L21, L3)⟩
Sq=up

⟨q susp(X, L21, L3) : wakeup(L21, L3), nil⟩
L21 = L3
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⟨wakeup(L3, L3), nil⟩
⟨nil, nil⟩

Clearly, several possible optimizations can be applied to this rather general transformation in
order to improve execution of the transformed program. But before getting into them, let us first
discuss the determinacy conditions (det cond above) and the suspension primitives (for implement-
ing det susp/2 above) in the context of our target language.

3 Determinacy Conditions and Suspension Declarations

The concept of determinacy (of goals, literals, or predicates) has been defined in quite a number
of ways in the logic programming community. In general, it is associated to the fact that, for a given
goal to a predicate, only one clause will succeed. Informally, a predicate is said to be determinate
if all goals complying to the intended use of the predicate are. In a particular program, we will say
that a literal is determinate if all goals instantiating that literal are; a predicate being determinate,
if all literals in the program are.

Determinacy analysis can be generalized by defining it as the proof of the mutual exclusion of
some necessary conditions for the success of the clauses of the predicate definition. This proof can be
done based on the environment of a goal, the collecting semantics of a program literal, or that of the
predicate itself. This will yield each previous definition of determinacy. Furthermore, the necessary
conditions can be safely enforced with several degrees of accuracy, thus giving rise to a whole new
range of possibilities for defining determinacy. These conditions are usually expressed in terms
of the state of instantiation of the clause heads, and therefore easy to extract from the program
text itself. On the other hand, they can be as elaborated as being the result of a global program
analysis [26]. In between the former and the latter, one can find a wide range of possibilities.
One such kind of conditions are those used in the Andorra-I compiler, which we will also use: flat
determinacy [6, 29], i.e., that which can be recognized by means of head unification and a simple
analysis of built–ins. We will use this exact notion of determinacy for two very practical reasons:
on the one hand, we would like to be able to compare our results to those of Andorra-I. On the
other hand, we would like to reuse the determinacy detection phase of the Andorra-I compiler in
our implementation.

Another relevant issue in the context of determinacy detection is the nature and complexity of
the determinacy conditions, which can vary from very simple conditions such as true or false,
to complex conjunctions and/or disjunctions of tests regarding the instantiation states, the type,
or the unifiability of some variables. Although our kernel language does include a rich set of
such primitives, we find it interesting in this work to restrict that set to those primitives that are
available on most general purpose Prolog/CLP systems. Therefore, we will default to, and explain
how to substitute the det susp function introduced in the previous section by the usual suspension
primitives or user–predicates defining the expected relation.

SICStus Prolog, for example, provides coroutining facilities by means of block declarations and
when meta–calls, among others [3]. The block declaration takes the form:

:- block Spec, . . ., Spec.

where each Spec is a mode spec of the goals for the predicate, and each one specifies a condition for
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blocking goals of the predicate referred to by it. When a goal for the predicate is to be executed,
the mode specs are interpreted as conditions for blocking the goal, and if at least one condition
evaluates to true, the goal is blocked. A block condition evaluates to true iff all arguments specified
as - are uninstantiated, in which case the goal is blocked until at least one of those variables is
instantiated. The when meta–call has the general form:

when(Condition,Goal)

and blocks Goal until Condition is true, where Condition is a Prolog goal given by the following
restricted syntax:

Condition ::= nonvar(X)
Condition ::= ground(X)
Condition ::= ? = (X, Y)
Condition ::= Condition,Condition
Condition ::= Condition;Condition

Clearly, using this kind of primitives restricts the kind of suspensions that can be directly ex-
pressed. Whenever the determinacy condition det cond only contains nonvar tests over the predi-
cate arguments, then a block like suspension declaration can be used. It will only be necessary to
put det cond in conjunctive normal form and define one mode spec for each conjunct, where each
of these will have the corresponding argument replaced by a - flag. If this is not possible, but the
condition fits into the above syntax, then when–like literals can be used. Again, the condition can
be put in either conjunctive or disjunctive normal form, each item in this expression replaced by
the corresponding checks, and an expression built from the latter. If neither of them can be used,
user–defined predicates should be used, which will be the result of compiling the decision graph
which corresponds to the condition into Prolog itself.

4 Handling Non-Pure Features

In this section we will discuss the transformation of built-ins. There are basically three kinds of
built-ins. The first type is formed by those built-ins which can be considered as normal user goals
whose low-level implementation is only due to efficiency reasons. In this case, there are only two
differences between the general transformation defined in previous section and that applied to these
built-ins1. Firstly, the determinacy condition will be obtained from an internal database rather than
from the examination of the definition of the predicate. Secondly, the predicate provided as the
second argument of det susp/2 will be the original built-in.

Example 4.1 One possible transformation for the >/2 built-in could be the following:

>(X,Y,L,L2) :-

L=[S|L1],

when((ground(X/Y);nonvar(S)),X>Y).

1There is no point in including such transformed built-ins in each transformed program. Thus, they will form part
of a special module containing also the definition of the wakeup/2 predicate and some other related predicates.
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The second class is formed by those built-ins whose early evaluation may affect the correctness of
the execution. For example, side-effect built-ins such as write/1, meta-predicates such as var/1,
or pruning operators such as cuts. In the Andorra-I system this problem is easily solved by just
delaying such built-ins until they become leftmost [6]. In our approach, this simply corresponds to
creating a false determinacy condition.

The third class is formed by built-ins which can be affected by the early execution of goals which
are dependent from it. In particular, whenever:

• an early failure prevents the execution of a side-effect, or

• an early binding affect cuts, meta-predicates and side-effects that assume their arguments to
be unbound.

Many different approaches can be taken in order to eliminate this problem [6]. We will follow
the same approach taken by the Andorra-I system, namely to detect these sensitive built-ins and
prevent any execution of goals to the right of one such built-in until both all goals to its left and the
built-in itself have been completely executed. In order to do this we will make use of “intermediate”
wakeup goals. Since, as we will see, the method is simple and intuitive we will avoid its formal
definition which seems to require too complex machinery.

The idea is to add a wakeup goal just after the transformed sensitive built-in, thus forcing all
goals to the left to be executed before continuing with those to its right. This implies adding (at
least) an extra argument to the predicates in order to provide the wakeup goal with the appropriate
“initial” pointer. Note that for those built-ins which belong both to the second and third classes,
allocating the wakeup goal just before the original (non transformed) built-in, would both prevent
any execution of goals to its right and delay the built-in until it becomes leftmost, thus solving
both problems.

Example 4.2 Consider the following piece of a program:

p(X):- q(X), r(X),write(X),s(X).

An early execution of write(X) might affect the correctness of the execution. Thus we will delay
it until leftmost. Also, it is a “sensitive” built-in and therefore we must disallow early execution of
the goals to the right. The predicate can be transformed as follows:

p(X,L,L1,In):-
L=[S|L0],det_susp(nonvar(S),p_susp(X,L0,L1,In)).

p_susp(X,L1,L4,In):-
q(X,L1,L2,In), r(X,L2,L3,In),wakeup(In,L3),write(X),
s(X,L3,L4,L3).

Thus the transformation is just changed in that we have to add an extra argument, which will be
the first argument of the intermediate wakeup goal introduced just before the sensitive built-in.
Then, when all goals in the list delimited by In and L3 have been already executed, the second
argument of the wakeup goal (i.e., L3) will become the new left pointer.
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Note that with this transformation, wakeup goals outside the derivation tree of the p(X,L1,L4,In)
will also have In as the first argument, even when all variables from In to the place initially marked
by L3 are already instantiated to up. Therefore, we will be generating useless work. This problem
can be solved by adding another extra argument which returns the new left pointer.

Example 4.3 Consider again the predicate of Example 4.2. A less naive transformation would
yield the following definitions:

p(X,L,L1,In,Out):-
L=[S|L0],det_susp(nonvar(S),p_susp(X,L0,L1,In,Out)).

p_susp(X,L1,L4,I,O):-
q(X,L1,L2,I,O1), r(X,L2,L3,O1,O2),wakeup(O2,L3),write(X),
s(X,L3,L4,L3,O).

5 Mixing Prolog and Andorra-I Code

It can be argued that while the Basic Andorra Principle is certainly interesting for its pruning
capabilities, in some cases a simple Prolog execution may be desirable. This can be the case for
programs known to be deterministic, or for which a fixed ordering of choice points is known to
be best, since then the determinacy checking overhead can be avoided (as well as the associated
compilation time). One interesting possibility that the transformational approach brings is to mix
execution in “Andorra mode” with normal (in this case, Prolog) execution. It is quite easy to
call from straight Prolog code to “Andorra transformed” code and the other way around. We
will assume that the source is marked in some way to distinguish those predicates that should be
compiled as normal Prolog predicates from those that are to be compiled to support the Andorra
model. The transformation is then done only on those predicates (files, modules,...) marked as
meant to run under the Andorra model. Calls from Prolog to Andorra goals are done in the same
way as shown previously for queries: a call to wakeup/2 is introduced after the goal, so that the
whole Andorra computation is completed before continuing the Prolog execution (if this is what is
desired – we assume the intended operational behavior is to isolate both executions).2 Calls from
Andorra-I to Prolog are preceded by a call wakeup/2, and will be then executed normally, outside
the context of any Andorra goals (again, if this is what is desired). An interesting alternative, from
the point of view of marking Andorra and Prolog execution parts would also be to simply mark
certain calls as Andorra calls (by, for example, wrapping them in a bam/1 goal). The compiler
would then simply generate special, transformed versions of all the predicates called by that goals
and its descendents (in addition to the normal ones). This avoids having to mark program parts
instead.

6 Optimizing the Transformation

Several sources of possible overheads arise in the above transformation. First, the amount of code
generated: for each procedure definition, the (generic) transformation yields up to two procedures.
Second, the addition of some arguments — at least the pointers to the chain–list of tokens, which

2Note that this has some resemblance to a deep guard, as used in AKL [21].
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may happen to be unnecessary. Finally, the need for detecting the conditions for determinism and
the leftmost goal, and the related suspension on these conditions. In this section we discuss some
optimizations that can be performed regarding these three sources, based on information available
prior to performing the transformation, and define an improved transformation.

6.1 Simple enhancements

If a goal is determinate at the time it is first considered for execution, it should not be suspended
to be immediately woken. Therefore, a translated program which checks the determinacy condition
det cond(X̄) first before blindly suspending with det susp/2 can be more efficient at execution time:

p(X̄,L,L1):-

goal(det cond(X̄)) -> L = L1, p det(X̄,L0,L1)

; L = [S|L0], det susp((det cond(X̄);nonvar(S)),p susp(X̄,L0,L1)).

In general, det cond(X̄) may not be directly executable in the target language, and thus it must
be mapped into suitable goals by goal(det cond(X̄)). If this goal succeeds, a specialized version
of p susp/n+2 which does not need to suspend, p det/n+2, will be called. Because this predicate
will only be called when goals are known to be determinate, it is possible to avoid the creation
of choice–points when reducing them with its clauses by appropriately adding cuts. This would
closely simulate the commitment to certain clauses introduced by Andorra-I once a reduction is
known to be determinate.

6.2 Determinacy condition is true

Analyses can be done which guarantee that a determinacy condition will always succeed, will
always fail, or will partly succeed. One such analysis is an abstract interpretation of the original
program based on the Prolog semantics. Note that the results of this analysis are still correct for
our purposes as long as they approximate a downwards closed property such as groundness, since
the differences in our execution model w.r.t. that of Prolog amount to the Andorra model executing
goals ahead of its turn — in the sense of Prolog’s left–to–right execution. In other words, since
the determinacy conditions rely on the state of instantiation of variables, and logic languages are
monotonic, executing goals ahead of time can only result in further instantiation of the variables.3

An alternative analysis can be based on the Andorra semantics itself. Furthermore, even a simple
local analysis of the program can be performed. We regard such analyses as “a priori” analysis
w.r.t. the transformation, since they are performed over the original program.

Predicates whose determinacy can be inferred from examining the head of the clauses and/or
simple exclusive built-ins appearing at the beginning of the body, can be easily recognized with such
a Prolog semantics–based analysis. The conditions for determinacy of a predicate can be expressed
as checks on the degree of instantiation of certain argument variables. A mode/type analysis can
then guarantee that that degree of instantiation is always reached at the time of executing a given
goal. Let SC be the set of clauses in the definition of a predicate. Let us assume that we associate
with each clause Ci ∈ SC the subset Mi of the set of facts which define the meaning of such clause,
the analysis have been able to infer. The condition to be checked is that for a given abstract

3This has also been identified in the context of other computational models — see [13].
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constraint λ, and for every constraint c approximated by λ, it holds that for every fi ∈ Mi and
fj ∈Mj , i ̸= j, the constraint fi ∧ fj ∧ c is inconsistent.

A simple case of determinate goals, for which nothing more than inspecting the program text is
needed, is that of goals of a predicate defined by a unique clause. In this case, a straightforward
compile–time optimization can be achieved by a naive one–step unfolding of such goals. Since this
one could also be applied to Andorra programs themselves, we do not take it into account, but only
(possibly) until after our transformation is done.

When the determinacy condition is reduced to true, it is clear that the general transformation
based on an if-then-else defined previously, can be reduced to its “then” part. There is no need to
introduce a leftmost–token (i.e., no need to attach any variable), and no need of any suspension.
Therefore the extra clause the transformation will add amounts to a simple renaming, which in
fact can be performed at transformation–time. Alternatively, once more, it will be achieved by a
partial evaluation with a simple one–step unfolding.

6.3 Determinacy condition is false

In this case, a Prolog semantics–based analysis is not safe. Not only that the analysis can not
guarantee that if an abstract substitution implies that a variable is not sufficiently instantiated it
meant that it will never be at execution time, but also that such an analysis will not take into
account that running goals ahead of time can make other goals become determinate.

Nonetheless, from the definitions of certain predicates it can be easily detected that it is not
possible that the clauses are exclusive. The condition to be checked for this is that, for the set
Mi of facts which are true for each clause Ci of the predicate, it holds that for every fi ∈ Mi and
fj ∈Mj , i ̸= j, and for every constraint c, the constraint fi ∧ fj ∧ c is consistent.

When the determinacy condition is reduced to false, it is clear that the general transformation
based on an if-then-else defined previously, can be reduce to its “else” part. The only thing needed
is introducing a leftmost–token (i.e., to attach a particular variable), so that goals always suspend
until leftmost. In this case the original definition of predicate p should not only have to be renamed
to p susp, but additionally an extra argument should be added on which to suspend.

6.4 Unchaining calls to predicates

This optimization is based on the observation that certain clauses do not need the extra arguments
for the difference list of tokens to be passed. Such clauses include facts, and others which only have
literals in their body which, in turn, do not need such arguments, either. A clause is, therefore, said
to be unchained if all literals in its body are either: constraints (or unification equations), “always–
executable” built-ins (such as true), or goals for an unchained predicate. A predicate is said to be
unchained if all clauses in its definition are unchained and the predicate itself is determinate.

Note that an unchained clause does not need to have the extra arguments because, as soon as
it is reduced, the left–to–right execution of its body correspond to the Andorra model, due to the
nature of the literals in it. Also, since the previous definitions are recursive, one could think that
an analysis for unchain–ness should have to incorporate a fix-point computation. Nonetheless, this
is in fact not needed. Let all literals of a clause be unchained, except for a recursive call; the clause
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will be unchained only if that call does not need a token to be passed, and this is so only if it is
determinate. Therefore, a simpler algorithm in this style, which will allow marking clauses and
predicates as unchained, can be defined as follows:

unchained(p/n)← constraint(p/n)
unchained(p/n)← ready builtin(p/n)
unchained(p/n)← determinate(p/n) ∧ ∀C ∈ defn(p/n) unchained(C)

unchained(C)← body(C) = ∅
unchained(C)← ∀p/n ∈ body(C)

(¬recursive(p/n)→ unchained(p/n))∧
(recursive(p/n)→ determinate(p/n))

where constraint(p/n) holds if p/n is a constraint symbol, ready builtin(p/n) if it is an “always–
executable” built-in, determinate(p/n) if predicate p/n is known to be determinate, recursive(p/n)
if it is recursive, defn(p/n) gives the set of clauses defining it, and body(C) gives the list of predicates
of the body of a clause C.

Given that some predicates and clauses are marked as unchained, the definition of p susp/n+2

presented in Section 2 can be modified to take this into account:

• If unchained(p/n), then we can avoid the two extra arguments, the definition of p susp/n

being the result of renaming the functor p by the functor p susp.

• Otherwise, for every clause C in the set of clauses SC defining p/n:

– If C ≡ p(X̄)., it is transformed into p susp(X̄,L,L).

– If C ≡p(X̄):- q1(Ȳ1) · · · qn(Ȳn)., with n > 0, and ∃i ∈ [1, n] unchained(qi/ni), C is
transformed into the clause p susp(X̄,L1,Ln):- Q1, · · · ,Qm. where m = n− 1, and

Q1 =

{
qi(Ȳi), Li=Lj if unchained(qi/ni)
qi(Ȳi,Li,Lj) otherwise

where j = i + 1

Obviously the unification equations can be solved during the transformation, substituting one
variable for the other. In the following we will denote by chain(SC) the function which transforms
the set of clauses SC following the above proposed method.

6.5 An optimized algorithm

Note that the optimizations presented can be defined in terms of program specialization and
code reduction, based on concepts of abstract executability [12]. Having such a specializer, together
with a simple partial evaluator, the transformation proposed can default to the most general one,
and be done blindly. However, because doing the whole process in one single step can be more
efficient, and also because some unfoldings can be done which relate to predicates affected by
delay declarations (something that a partial evaluator will sure not consider), we present a generic
algorithm performing the translation from the original program and achieving all the optimizations.

Let SC be the set of clauses which define predicate p/n, with most general goal p(X̄), and C(X̄) be
the determinacy condition w.r.t. p(X̄), already simplified making use of the information available.
The transformation will substitute SC by a new set of clauses SC ′ as follows:
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• If C(X̄) = true and unchained(p/n) holds, the predicate will never suspend and no goal will
be suspended during its execution. Therefore, we need neither suspension conditions, nor
attached variables, nor chain pointers. Thus, SC ′ = SC.

• If C(X̄) = true but unchained(p/n) does not hold, the predicate will never suspend but
goals might suspend during its execution. Thus we might need chain pointers. Therefore,
SC ′ = chain(SC, p).

• If C(X̄) = false and unchained(p/n) holds, the predicate will always be initially suspended
but, once it has been woken, no goal will be suspended during its execution. Thus, we will
just need to attach a variable and place a condition on the instantiation state of such variable.
Therefore SC ′ is equal to SC plus the following clauses:

p(X̄,[S|L],L):- p susp(X̄,S).

:- block p susp(?̄,-).
p susp(X̄,S):- p(X̄).

• If C(X̄) = false and unchained(p/n) does not holds, we might also have to add chain pointers.
Thus, will just need attached variables. Therefore SC ′ is equal to chain(SC, p work) plus the
following clauses:

p(X̄,[S|L0],L1):- p susp(X̄,S,L0,L1).

:- block p susp(?̄,-,?,?).
p susp(X̄,S,L0,L1):- p work(X̄,L0,L1).

• Otherwise, SC ′ is formed by the following clauses:

p(X̄,L,L1):- goal(C(X̄)) -> work goal(p(X̄), L, L1)
L=[S|L0], det susp(C(X̄), p(X̄), S, L0, L1).

work def(SC,p(X̄))

where work goal, work def , and det susp are defined as follows:

work def(SC, p(X̄)) =

{
SC if unchained(p/n)
chain(rename(SC, p work)) otherwise

work goal(p(X̄), L, L1) =

{
p(X̄), L=L1 if unchained(p/n)
p work(X̄,L,L1) otherwise

det susp(C(X̄), p(X̄), S, L0, L1) =
if block(C(X̄))


p susp(X̄,S,L0,L1).

:- block p susp(block(C(X̄)),-,?,?).
p susp(X̄,S,L0,L1):- work goal(p(X̄), L0, L1).

if when(C(X̄)) when( ( when(C(X̄)) ; nonvar(S) ), work goal(p(X̄), L0, L1) )

where chain(SC, f) is identical to the function chain(SC) defined before but using the functor
f instead of p susp, goal(C(X̄)) gives the Prolog goal corresponding to a determinacy condition
C(X̄), block(C(X̄)) gives the sequence of block annotations corresponding to C(X̄) or fails if it is not
possible to do so, and when(C(X̄)) does the same for when annotations. These functions have been
informally defined in Section 3.
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Figure 2: Andorra-I Decision Graph.

7 An Example

In this section we will illustrate the transformation and optimization procedure by means of a
detailed simple example, the well known program for computing the Fibonacci series.

fib(0,1).
fib(1,1).
fib(A,B) :- A>1, C is A-1, D is A-2, fib(C,E), fib(D,F), B is F+E.

The decision graph created by the Andorra-I preprocessor for this program is the one shown in
Figure 2. Given that graph, it easy to conclude that fib(X,Y) will be determinate as soon as (a)
X become non–variable or (b) Y become a term not unifiable to 1. If only condition (a) had been
necessary, a block suspension primitive would had been enough.

fib(X,Y,L,L2) :- L = [S|L1], fib_susp(X,Y,S,L,L2).

:- block fib_susp(-,?,-,?,?).

fib_susp(X,Y,S,L1,L2) :- fib_work(X,Y,L1,L2).

fib_work(0,1,L1,L1).
fib_work(1,1,L1,L1).
fib_work(A,B,L1,L2) :- >(A,1,L1,L3), is(C,A-1,L3,L4), is(D,A-2,L4,L5),

fib(C,E,L5,L6), fib(D,F,L6,L7), is(B,F+E,L7,L2).

However, given the need of a non–unifiability test, even a when declaration is not enough. Thus,
the transformation needs to perform an explicit checking on the conditions the above graph repre-
sents.

fib(X,Y,L,L2) :- var(X), !, fib0(X,Y,L,L2).
fib(X,Y,L,L2) :- fib_work(X,Y,L,L2).
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fib0(X,Y,L,L2):- var(Y), !, L=[S|L1], fib_susp12(X,Y,S,L1,L2).
fib0(X,Y,L,L2):- fib1(Y,X,L,L2)

fib1(1,X,L,L2):- !,
L=[S|L1],
fib_susp1(X,1,S,L1,L2).

fib1(Y,X,L,L2):-
fib_work(X,Y,L,L2).

:- block fib_susp1(-,?,-,?,?).

fib_susp1(X,Y,S,L1,L2) :- fib_work(X,Y,L1,L2).

:- block fib_susp12(-,-,-,?,?).

fib_susp12(X,Y,S,L1,L2) :- nonvar(S), !, fib_work(X,Y,L1,L2).
fib_susp12(X,Y,S,L1,L2) :- fib(X,Y,L1,L2).

Given a(n) (abstract) query where the first two arguments are known to be ground, an abstract
interpretation–based analysis is enough to determine that those two arguments will be ground for
all calls to fib/2, and thus that it is determinate. Furthermore, it will also determine that the
built-ins are directly reducible. Therefore, this rather complex transformation can be avoided, and
the original Prolog program could be used instead.

An analysis based on a semantics with dynamic scheduling, such as for example [25], can provide
the same information. Furthermore, since the kind of information derived by such analysis does not
need to be downwards closed, it can determine that for a given query with first two arguments free
and the third ground (which, given the transformed program, is perfectly possible), no goal is ever
determinate (i.e. the goals are only awakened on the attached variable S). Therefore, suspensions
can be further reduced, giving the following program:

fib(X,Y,L,L2) :- L=[S|L1], fib_susp12(X,Y,S,L1,L2).

:- block fib_susp12(?,?,-,?,?).

fib_susp12(X,Y,S,L1,L2) :- fib_work(X,Y,L1,L2).

8 Performance Figures

In this section we present the results obtained from a preliminary evaluation of the proposed
approach. The experiments aim at determining the efficiency of the transformed programs when
compared to the Andorra-I programs.

The evaluation has been performed using a preliminary implementation of the transformation
procedure. The optimizations performed during such transformation are the following. First, it
introduces the necessary code to avoid a goal to be suspended if it is determinate at the moment it is
processed, as explained in Section 6.1. Second, it unchanges the predicates following the algorithm
provided in Section 6.4. Finally, it takes into account the cases in which the determinacy conditions
are true or false.
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Bench Andorra-I SICStus
Compiled Interpreted

fib 260 127 643

map 103 101 244

mutest 236 138 531

Table 1: Execution times in milliseconds

In order to be self-contained, the current system includes a simple determinacy condition gen-
erator. However, in order to make sure that the same reductions are performed by both systems
being compared in our experiments, and because in the future we plan to derive determinacy condi-
tions by using the information provided by the Andorra-I preprocessor, we have modified by hand
the transformed program to implement determinacy conditions which accurately simulate those
produced by the Andorra-I preprocessor.

Table 8 shows for some Andorra-I benchmark the execution time in Andorra-I and in SICStus,
using the transformation. For the latter, two cases are considered: when the program is compiled
and when it is interpreted. The implementation technology of the Andorra-I system available to
us (which is not the latest, compiler-based version), is somewhere between a compiler and an in-
terpreted system, in the sense that it is an optimized interpreter written directly in C (rather than
a slower, source-level meta-interpreter, as in the Prolog interpreter). Although it is clear that no
conclusions can be derived from only three benchmarks, we believe that the results are encour-
aging since the performance of the resulting system is so far comparable to the native Andorra-I
implementation.

9 Conclusions

We have reported on a transformation technique which allows supporting the Andorra compu-
tational model, essentially emulating the Andorra-I system, via program transformation into a
sequential language with delay primitives. We have also proposed several optimizations to the
transformation. The system is automatic, comprising a simple program analyzer and a basic trans-
former to the kernel language. The preliminary results are quite encouraging: performance of the
resulting system is comparable to the current Andorra-I implementation.

We do not mean to suggest that the performance of a system implemented using our approach is
optimal or that it will achieve in the end better results than a highly optimized, native the native
Andorra-I implementation, but rather that the technique is practical and allows the support of the
Basic Andorra Model on a generic system with reasonable performance. This is specially useful in
view of the proposed methods for combining traditional Prolog (or CLP) code and Andorra code.

We plan to further optimize and benchmark the system. We would also like to explore the
impact of certain optimizations which are applicable to the transformed programs, rather than to
the source programs, and which deal mainly, but not only, with the avoidance of suspensions. Since
the transformed program is simply a Prolog (or CLP) program with delay, standard analyses for
these kinds of programs can be used [25]. We also plan on performing other optimizations such as
further simplifying and optimizing the determinacy conditions and eliminating dead code. Finally,
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we are also planning on testing performance on parallel systems. Note that or-parallelism comes
for free by simply running the transformed program on a system like Muse [1] or Aurora [24]. We
also plan on implementing and-parallelism (both determinate–dependent and also independent)
by using the recently proposed notions of independence in systems with delay [5], the associated
compilation technology, and the parallel implementation of the Ciao system.
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